WO1998002000A1 - Image encoder and image decoder - Google Patents

Image encoder and image decoder Download PDF

Info

Publication number
WO1998002000A1
WO1998002000A1 PCT/JP1997/001448 JP9701448W WO9802000A1 WO 1998002000 A1 WO1998002000 A1 WO 1998002000A1 JP 9701448 W JP9701448 W JP 9701448W WO 9802000 A1 WO9802000 A1 WO 9802000A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
shape
area
region
deformed
Prior art date
Application number
PCT/JP1997/001448
Other languages
French (fr)
Japanese (ja)
Inventor
Norio Ito
Shuichi Watanabe
Hiroyuki Katata
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO1998002000A1 publication Critical patent/WO1998002000A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/537Motion estimation other than block-based
    • H04N19/543Motion estimation other than block-based using regions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/20Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using video object coding

Definitions

  • the present invention belongs to the field of digital image processing, and relates to an image encoding device that encodes image data with high efficiency, and an image decoding device that decodes encoded data created by the image encoding device.
  • IS OZ IEC MP EG 4 International standardization of moving picture coding method
  • the coding device and the decoding device having a hierarchical structure as shown in Fig. 8 use input information and shape information indicating the shape of the region of interest. Encoding, decoding, and combining of multiple component images represented by are considered.
  • the part image is an image obtained by cutting out a person or an object in a moving image as a part.
  • a normal moving image itself is also treated as a kind of component image.
  • the first component image encoding unit 801, the second component image encoding unit 802, and the third component image encoding unit 803 include pixel value data of input images 1, 2, and 3, and shape information 1, 2, and 3. Are respectively encoded, and the multiplexing unit 804 multiplexes a plurality of component image encoded data, and transmits or accumulates them.
  • the coded data is separated into a plurality of component image coded data by the demultiplexing unit 805, and the first component image decoding unit 806, the second component image decoding unit 807, and the third component image decoding unit 808
  • each of the plurality of component image encoded data is decoded
  • the component image synthesizing unit 809 the decoded images 1, 2, and 3 and the shape information 1, 2, and 3 are each synthesized and output as a synthesized video output, which is displayed on a display (not shown) or the like.
  • the combination position information is information indicating a position when each component is displayed on the display at the time of combination.
  • Fig. 9 schematically shows the component images and how they are combined.
  • the part image 1 in FIG. 9 (a) is a normal moving image representing the background
  • the part image 2 in FIG. 9 (b) is a moving image obtained by cutting out only a person.
  • part image 3 in Fig. 9 (c) is a moving image cut out of only the car.
  • Fig. 9 (a) If only the component image 1 of the encoded data is decoded, an image with only the same background as in Fig. 9 (a) can be obtained. If the component image 1 and the component image 2 are decoded and combined, Fig. 9 (d) An image like is played. Furthermore, if component image 3 is decoded and the three component images are combined, an image as shown in Fig. 9 (e) is reproduced.
  • the component image is represented by a set of an image information area 501 and a shape information area 502 indicating its shape. At this time, it is assumed that the corresponding image information exists inside the shape information area.
  • the shape information area in the image information area 601 in FIG. 6 is deformed as shown in FIG. 6, the data area in the image information area that is beyond the original image information area is assumed. There will be an area 6 03 where does not exist. Therefore, there is no image information corresponding to the region 603, and if it is handled as if it exists, the image quality may be degraded.
  • An object of the present invention is to solve the problems of the prior art, and to avoid the inconvenience that occurs when the original shape information region extends over the inside and outside of the image information region by the lossless encoding of the shape information as described above.
  • An object of the present invention is to provide a component image encoding method. Disclosure of the invention
  • the present invention has been made to achieve the above object, and the gist thereof is as follows.
  • a first gist of the present invention is to provide a moving image encoding apparatus that cuts out an arbitrary shape region of interest from an image frame and encodes data in the cut region.
  • Image coding characterized in that, when performing lossless encoding, if the area shape deformed due to high-efficiency compression protrudes from the image information area, the deformed area shape is deformed according to the shape of the image information area. In the device.
  • a second gist of the present invention is to provide a moving image encoding apparatus that cuts out an arbitrary shape region of interest from an image frame and encodes data in the cut out region.
  • An image coding apparatus characterized in that when irreversible coding is performed, the coding process is controlled so that the area shape deformed for high efficiency compression does not protrude from the image information area.
  • a third gist of the present invention resides in a moving picture encoding apparatus that cuts out an arbitrary shape region of interest from an image frame and encodes data in the cut region, wherein the shape information representing the region is not encoded.
  • a moving picture encoding apparatus that cuts out an arbitrary shape region of interest from an image frame and encodes data in the cut region, wherein the shape information representing the region is not encoded.
  • a fourth gist of the present invention is a moving image decoding apparatus that decodes an image region that is an arbitrary-shaped region. As a result of decoding the shape information representing the region, the region shape deformed for high-efficiency compression is transformed into an image.
  • An image decoding apparatus characterized in that, when the image is outside the information area, the shape of the deformed area is deformed in accordance with the shape of the image information area.
  • FIG. 1 is a block diagram showing a first embodiment of the present invention.
  • FIG. 2 is a block diagram showing a second embodiment of the present invention.
  • FIG. 3 is a block diagram showing a third embodiment of the present invention.
  • FIG. 4 is a block diagram showing a fourth embodiment of the present invention.
  • FIG. 5 is a diagram for explaining a conventional technique.
  • FIG. 6 is a diagram for explaining a problem of the conventional technique.
  • FIG. 7 is a diagram illustrating an embodiment of the present invention.
  • FIG. 8 is a block diagram illustrating a conventional technique.
  • FIG. 9 is a diagram schematically showing a component image and a state of the combination.
  • FIG. 1 is a block diagram showing a first embodiment of the present invention. This solves the problem of the prior art by deforming the shape information deformed by non-reversible coding according to the size of the image shape area.
  • the coding method of the image signal (texture) by the image coding unit 105 is not described, but it is for coding an arbitrary shape area defined by the shape information area.
  • the input shape information is coded using the coding parameters determined by the shape coding unit 101.
  • the inside / outside determination unit 103 determines whether or not the shape information area decoded by the shape decoding unit 102 is inside the image information area. If it is inside, the image signal is encoded by the image encoding unit 105 using the decoding area shape.
  • the decoded shape area is deformed by the shape deforming unit 104 according to the shape of the image frame, and then the image is again encoded by the image coding unit 105.
  • the coded area shape and image information are multiplexed by the multiplexing unit 106 to become coded data of one arbitrarily shaped area.
  • the shape deformation processing corresponds to, for example, deleting an area 603 where no data exists in the image information area as shown in FIG. As a result, all the image information in the shape information area is obtained from the data in the image information area.
  • FIG. 2 is a block diagram showing a second embodiment of the present invention. This solves the problem of the prior art by adjusting the parameters so that the shape information area obtained by decoding when performing non-reversible coding always exists inside the image information area. is there.
  • the shape information encoded by the shape encoding unit 201 is decoded by the shape decoding unit 202, it is determined whether or not the result exists in the image information area by the inside / outside determination unit. Judge at 203. If it extends over the outside, the two switches 206 and 207 are turned off, and the coding parameter change unit 205 changes the parameters.
  • the image encoding unit 204 performs encoding using the shape information area thus obtained.
  • a method of selecting parameters for example, a part that can greatly deform the shape is represented by a simple shape by reducing the amount of noise, and conversely, a part with a small amount is used to approach the original shape by spending the amount of code.
  • FIG. 3 is a block diagram showing a third embodiment of the present invention. This is a method in which an image information area is created in advance using extrapolation so that corresponding image information always exists inside a shape information area deformed by non-reversible coding.
  • the area extension unit 3 is adjusted to the size of the area shape. 03 Additional regions are created by extrapolation.
  • the additional area refers to an area 703 indicated by a hatched portion in FIG.
  • the image information area By encoding this as a new image information area in the image encoding unit 304 in FIG. 3, the image information area always exists inside the shape information area 720 in FIG. The problem of the conventional technology can be solved.
  • the image information area 602 and the area 603 where no data exists in the image information area are the same as those in FIG.
  • the coded region shape and image information are multiplexed by the multiplexing unit 106 in FIG. You.
  • FIG. 4 is a block diagram showing a fourth embodiment of the present invention. This is because, when the decoded shape information area is irreversibly encoded on the encoding side and straddles the inside and outside of the image information area, it is deformed according to the size of the image information, thereby causing a problem in the conventional technology. Is to solve.
  • the decoded shape information area is the same as that obtained in the irreversible process at the time of encoding, and the inside / outside determination unit 403 determines whether or not this crosses the image information area. If it is determined that this straddles the outside of the image information area, the shape is deformed by the shape deforming section 404 so as not to straddle the outside. Otherwise, the original component image is decoded and reproduced by the image decoding unit 405 using the decoding result as it is.
  • image quality degradation due to external data reference due to changes in the area shape due to lossy coding of the area shape information is adjusted to match the image information area when the shape information area extends inside and outside the image information area. Deformation can suppress image quality degradation.
  • image quality degradation due to data reference outside the image information area due to changes in the area shape due to lossy coding of the area shape information is explained by the loss of shape due to lossy coding when the shape information area extends over the inside and outside of the frame.
  • the image information area extends outside and inside, the image information area can be interpolated with a certain appropriate value so as to include the shape information area, so that the deterioration of image quality can be suppressed. Furthermore, when the shape information area in which the area shape information is decoded extends over the inside and outside of the image information area, the quality of the decoded image can be prevented from lowering by deforming it in accordance with the image information area.

Abstract

An image coder and an image decoder which can eliminate the deterioration of the quality of image at the time of encoding an image by deforming a shape information area extending over the inside and outside of an image frame based on the shape of an image information area during the course of the irreversibly encoding processing of a shape image, or expanding the circumference of the image information area by interpolation, so that all preceding shape information areas are included in the circumference before the processing.

Description

明 細 書 画像符号化装置及び画像復号装置 技術分野  Description Image coding device and image decoding device
本発明はディ ジタル画像処理の分野に属し、 画像データを高能率に符号化する 画像符号化装置及びこの画像符号化装置で作成された符号化データを復号する画 像復号装置に関するものである。 背景技術  The present invention belongs to the field of digital image processing, and relates to an image encoding device that encodes image data with high efficiency, and an image decoding device that decodes encoded data created by the image encoding device. Background art
画像符号化において、 異なる動画像シーケンスを符号化及び復号し、 合成する 方式が検討されている。 例えば、 文献 「階層表現と多重テンプレー卜を用いた画 像符号化」 (信学技報 I E 94— 159、 p p 99 - 106 (1 995)) では、 背景となる動画像シーケンスと前景となる部品動画像の動画像シーケンス (例え ばクロマキ一技術によって切り出された人物画像や魚の映像など) を合成して新 たなシ一ゲンスを作成する手法が述べられている。  In image coding, methods for encoding, decoding, and combining different moving image sequences are being studied. For example, in the document “Image Coding Using Hierarchical Representation and Multiple Templates” (IEICE Technical Report IE 94-159, pp 99-106 (1 995)), a moving image sequence as a background and a component as a foreground are described. It describes a method of creating a new sequence by combining a moving image sequence of moving images (for example, a human image or a video of a fish cut out using chromaki technology).
また、 動画像符号化方式の国際標準化 ( I S OZ I E C MP E G 4) では、 第 8図に示すような階層構造を持つ符号化装置及び復号装置によって入力画像と 注目する領域の形状を示す形状情報で表される複数の部品画像の符号化、 復号及 び合成が検討されている。  Also, international standardization of moving picture coding method (IS OZ IEC MP EG 4) requires that the coding device and the decoding device having a hierarchical structure as shown in Fig. 8 use input information and shape information indicating the shape of the region of interest. Encoding, decoding, and combining of multiple component images represented by are considered.
ここで部品画像とは、 動画像内の人物や物体などを部品として切り出した画像 のことである。 ただし、 通常の動画像自体も部品画像の一種として扱われる。 第 1の部品画像符号化部 801及び第 2の部品画像符号化部 802及び第 3の部品 画像符号化部 803では入力画像 1, 2, 3の画素値データと、 形状情報 1, 2, 3がそれぞれ符号化され、 多重化部 804では複数の部品画像符号化データが多 重化され、 伝送または蓄積される。  Here, the part image is an image obtained by cutting out a person or an object in a moving image as a part. However, a normal moving image itself is also treated as a kind of component image. The first component image encoding unit 801, the second component image encoding unit 802, and the third component image encoding unit 803 include pixel value data of input images 1, 2, and 3, and shape information 1, 2, and 3. Are respectively encoded, and the multiplexing unit 804 multiplexes a plurality of component image encoded data, and transmits or accumulates them.
復号装置では非多重化部 805で符号化データが複数の部品画像符号化データ に分離され、 第 1の部品画像復号部 806及び第 2の部品画像復号部 807及び 第 3の部品画像復号部 808では複数の部品画像符号化データが各々復号され、 部品画像合成部 8 0 9では復号画像 1 , 2 , 3と形状情報 1 , 2 , 3が各々合成 されて合成映像出力として出力され、図示しないディスプレイなどに表示される。 ここで、 合成位置情報は合成時に各部品をディスブレイに表示する際の位置を 示す情報である。 この情報は符号化時に符号化デ一夕に多重しているものを用い ても良いし、 または復号時に手動又は自動で与えられるものを用いても良い。 第 9図は部品画像と、 その合成の様子を模式的に示したものである。 第 9図 ( a ) の部品画像 1は背景を表す通常の動画像であり、 第 9図 (b ) の部品画像 2は人物のみを切り出した動画像である。 さらに、 第 9図 (c ) の部品画像 3は 自動車のみを切り出した動画像である。 In the decoding apparatus, the coded data is separated into a plurality of component image coded data by the demultiplexing unit 805, and the first component image decoding unit 806, the second component image decoding unit 807, and the third component image decoding unit 808 In each of the plurality of component image encoded data is decoded, In the component image synthesizing unit 809, the decoded images 1, 2, and 3 and the shape information 1, 2, and 3 are each synthesized and output as a synthesized video output, which is displayed on a display (not shown) or the like. Here, the combination position information is information indicating a position when each component is displayed on the display at the time of combination. This information may be multiplexed in the coded data at the time of encoding, or may be manually or automatically given at the time of decoding. Fig. 9 schematically shows the component images and how they are combined. The part image 1 in FIG. 9 (a) is a normal moving image representing the background, and the part image 2 in FIG. 9 (b) is a moving image obtained by cutting out only a person. Furthermore, part image 3 in Fig. 9 (c) is a moving image cut out of only the car.
符号化データのうち部品画像 1だけを復号すれば第 9図 (a ) と同様の背景だ けの画像が得られ、 部品画像 1と部品画像 2を復号し合成すれば第 9図 (d ) の ような画像が再生される。 さらに部品画像 3を復号し、 3つの部品画像を合成す れば第 9図 (e ) のような画像が再生される。  If only the component image 1 of the encoded data is decoded, an image with only the same background as in Fig. 9 (a) can be obtained. If the component image 1 and the component image 2 are decoded and combined, Fig. 9 (d) An image like is played. Furthermore, if component image 3 is decoded and the three component images are combined, an image as shown in Fig. 9 (e) is reproduced.
従来の技術の問題点を図を用いて説明する。  Problems of the conventional technique will be described with reference to the drawings.
第 5図に示した通り部品画像は、 画像情報領域 5 0 1とその形状を示す形状情 報領域 5 0 2の組によって表わされる。 この時、 形状情報領域内部に対応する画 像情報が存在することが前提となっている。  As shown in FIG. 5, the component image is represented by a set of an image information area 501 and a shape information area 502 indicating its shape. At this time, it is assumed that the corresponding image information exists inside the shape information area.
しかし、 低ビッ トレートで部品画像を符号化する場合には、 与えられたビッ ト レー卜によっては元の形状を再現できるよう可逆符号化するのは適当でなく、 何 らかの非可逆的過程を行なうことで符号量削減を実現する必要がある。  However, when encoding a component image at a low bit rate, it is not appropriate to perform lossless encoding so that the original shape can be reproduced depending on the given bit rate. , It is necessary to reduce the code amount.
しかし、 第 6図において画像情報領域 6 0 1の中の形伏情報領域が 6 0 2のよ うに変形されたとすると、 元の画像情報領域をはみ出した領域である画像情報領 域内のデ一夕の存在しない領域 6 0 3が存在することになる。 そのため、 上記領 域 6 0 3に対応する画像情報が存在せず、これを存在するかのごとく取り扱うと、 画質が低下するおそれがある。  However, if the shape information area in the image information area 601 in FIG. 6 is deformed as shown in FIG. 6, the data area in the image information area that is beyond the original image information area is assumed. There will be an area 6 03 where does not exist. Therefore, there is no image information corresponding to the region 603, and if it is handled as if it exists, the image quality may be degraded.
本発明の目的は従来技術の問題を解決し、 上述したように形状情報の可逆符号 化によつて元の形状情報領域が画像情報領域内外部に跨るような場合に生じる不 具合を回避しつつ部品画像の符号化方式を提供することにある。 発明の開示 An object of the present invention is to solve the problems of the prior art, and to avoid the inconvenience that occurs when the original shape information region extends over the inside and outside of the image information region by the lossless encoding of the shape information as described above. An object of the present invention is to provide a component image encoding method. Disclosure of the invention
本発明は、 上記目的を達成するためになされたものであり、 その要旨は次のと おりである。  The present invention has been made to achieve the above object, and the gist thereof is as follows.
まず、 本発明の第 1の要旨は、 画像フレームから注目する任意形状領域を切り 出し、 切り出された領域内のデータを符号化する動画像符号化装置において、 前 記領域を表す形状情報を非可逆符号化する際、 高能率圧縮のため変形した領域形 状が画像情報領域よりはみ出した場合に、 前記変形した領域形状を画像情報領域 の形状に合わせて変形することを特徴とした画像符号化装置にある。  First, a first gist of the present invention is to provide a moving image encoding apparatus that cuts out an arbitrary shape region of interest from an image frame and encodes data in the cut region. Image coding characterized in that, when performing lossless encoding, if the area shape deformed due to high-efficiency compression protrudes from the image information area, the deformed area shape is deformed according to the shape of the image information area. In the device.
次に、 本発明の第 2の要旨は、 画像フレームから注目する任意形状領域を切り 出し、 切り出された領域内のデータを符号化する動画像符号化装置において、 前 記領域を表す形伏情報を非可逆符号化する際、 高能率圧縮のため変形した領域形 状が画像情報領域からはみ出さないよう符号化過程を制御することを特徴とする 画像符号化装置にある。  Next, a second gist of the present invention is to provide a moving image encoding apparatus that cuts out an arbitrary shape region of interest from an image frame and encodes data in the cut out region. An image coding apparatus characterized in that when irreversible coding is performed, the coding process is controlled so that the area shape deformed for high efficiency compression does not protrude from the image information area.
また、 本発明の第 3の要旨は、 画像フレームから注目する任意形状領域を切り 出し、 切り出された領域内のデータを符号化する動画像符号化装置において、 前 記領域を表す形状情報を非可逆符号化する際、 高能率圧縮のため変形した領域形 状が画像情報領域よりはみ出した場合に、 入力画像領域が前記変形した領域形状 を完全に含むよう画像情報領域の周囲を適切な値を用いて前もって補間すること を特徴とした画像符号化装置にある。  Further, a third gist of the present invention resides in a moving picture encoding apparatus that cuts out an arbitrary shape region of interest from an image frame and encodes data in the cut region, wherein the shape information representing the region is not encoded. When performing lossless encoding, if the shape of the area deformed due to high-efficiency compression protrudes from the image information area, an appropriate value is set around the image information area so that the input image area completely includes the deformed area shape. An image coding apparatus characterized in that interpolation is performed in advance by using the image coding apparatus.
さらに、 本発明の第 4の要旨は、 任意形状領域である画像領域を復号する動画 像復号装置において、 前記領域を表す形状情報を復号した結果、 高能率圧縮のた め変形した領域形状が画像情報領域よりはみ出した場合に、 前記変形した領域形 状を画像情報領域の形状に合わせて変形することを特徴とした画像復号装置にあ  Furthermore, a fourth gist of the present invention is a moving image decoding apparatus that decodes an image region that is an arbitrary-shaped region. As a result of decoding the shape information representing the region, the region shape deformed for high-efficiency compression is transformed into an image. An image decoding apparatus characterized in that, when the image is outside the information area, the shape of the deformed area is deformed in accordance with the shape of the image information area.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
第 1図は本発明の第 1の実施の形態を示すプロック図である。  FIG. 1 is a block diagram showing a first embodiment of the present invention.
第 2図は本発明の第 2の実施の形態を示すプロック図である。  FIG. 2 is a block diagram showing a second embodiment of the present invention.
第 3図は本発明の第 3の実施の形態を示すプロック図である。 ― 第 4図は本発明の第 4の実施の形態を示すプロック図である。 FIG. 3 is a block diagram showing a third embodiment of the present invention. FIG. 4 is a block diagram showing a fourth embodiment of the present invention.
第 5図は従来の技術を説明する図である。  FIG. 5 is a diagram for explaining a conventional technique.
第 6図は従来の技術の問題点を説明する図である。  FIG. 6 is a diagram for explaining a problem of the conventional technique.
第 7図は本発明の実施の形態を説明する図である。  FIG. 7 is a diagram illustrating an embodiment of the present invention.
第 8図は従来の技術を説明するプロック図である。  FIG. 8 is a block diagram illustrating a conventional technique.
第 9図は部品画像と、 その合成の様子を模式的に示す図である。 発明を実施するための最良の形態  FIG. 9 is a diagram schematically showing a component image and a state of the combination. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を参照しながら、 本発明の実施の形態を詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
第 1図は、 本発明の第 1の実施の形態を示すブロック図である。 これは、 非可 逆符号化によって変形した形状情報を画像形状領域の大きさに合わせて変形する ことで従来技術の問題を解決するものである。  FIG. 1 is a block diagram showing a first embodiment of the present invention. This solves the problem of the prior art by deforming the shape information deformed by non-reversible coding according to the size of the image shape area.
この実施の形態では、 画像符号化部 1 0 5による画像信号 (テクスチャ) の符 号化方式については言及しないが、 これは形状情報領域によって定められた任意 形状領域を符号化するものである。 入力された形伏情報は形状符号化部 1 0 1に て決定された符号化ノ、'ラメータを用いて符号化される。  In this embodiment, the coding method of the image signal (texture) by the image coding unit 105 is not described, but it is for coding an arbitrary shape area defined by the shape information area. The input shape information is coded using the coding parameters determined by the shape coding unit 101.
形状復号部 1 0 2にて復号された形状情報領域が画像情報領域の内部にあるか どうかを内外判定部 1 0 3にて行なう。 もし、 内部にあるならばその復号領域形 状を用いて画像信号の符号化を画像符号化部 1 0 5にて行なう。  The inside / outside determination unit 103 determines whether or not the shape information area decoded by the shape decoding unit 102 is inside the image information area. If it is inside, the image signal is encoded by the image encoding unit 105 using the decoding area shape.
もし、 外部にあるならば形状変形部 1 0 4にて復号形状領域を画像フレームの 形状に合わせて変形した後、 改めて画像符号化部 1 0 5にて符号化を行なう。 符 号化された領域形状と画像情報は多重化部 1 0 6にて多重化され、 1つの任意形 状領域の符号化データとなる。  If it is outside, the decoded shape area is deformed by the shape deforming unit 104 according to the shape of the image frame, and then the image is again encoded by the image coding unit 105. The coded area shape and image information are multiplexed by the multiplexing unit 106 to become coded data of one arbitrarily shaped area.
ここでいう形状の変形処理とは、 例えば第 6図に示すように画像情報領域内の デ一夕が存在しない領域 6 0 3を削除することに相当する。 これにより、 形状情 報領域内部の全ての画像情報が画像情報領域内のデータから得られる。  Here, the shape deformation processing corresponds to, for example, deleting an area 603 where no data exists in the image information area as shown in FIG. As a result, all the image information in the shape information area is obtained from the data in the image information area.
第 2図は、 本発明の第 2の実施の形態を示すブロック図である。 これは、 非可 逆符号化を行なう際に復号して得られた形状情報領域が画像情報領域内部に必ず 存在するようパラメータを調整することにより従来技術の問題を解決するもので ある。 FIG. 2 is a block diagram showing a second embodiment of the present invention. This solves the problem of the prior art by adjusting the parameters so that the shape information area obtained by decoding when performing non-reversible coding always exists inside the image information area. is there.
この実施の形態では、 形状符号化部 2 0 1にて符号化した形状情報を形状復号 部 2 0 2にて復号した後、 この結果が画像情報領域内部に存在するかどうかを内 外判定部 2 0 3にて判定する。 もしこれが外部に跨っている場合には、 2つのス イッチ 2 0 6, 2 0 7がオフとなり、 符号化パラメータ変更部 2 0 5にてパラメ —夕の変更を行なう。  In this embodiment, after the shape information encoded by the shape encoding unit 201 is decoded by the shape decoding unit 202, it is determined whether or not the result exists in the image information area by the inside / outside determination unit. Judge at 203. If it extends over the outside, the two switches 206 and 207 are turned off, and the coding parameter change unit 205 changes the parameters.
そうでなければ、 2つのスィッチ 2 0 6, 2 0 7がオンとなり、 その時点で得 られている形伏情報領域を用いて画像情報の符号化が行なわれる。 したがって、 形状符号化の処理は目的の符号化パラメータが発見されるまで繰り返し行なわれ る。 こうして得られた形状情報領域を用いて画像符号化部 2 0 4にて符号化を行 なう。 パラメータの選択の手法として、 例えば形状を大きく変形できる部分は苻 号量を減らして単純な形状で表現し、 逆にこれが小さい部分は符号量を費やして 元の形状に近づける手法が考えられる。  Otherwise, the two switches 206 and 207 are turned on, and the image information is encoded using the shape information area obtained at that time. Therefore, the shape encoding process is repeated until the target encoding parameter is found. The image encoding unit 204 performs encoding using the shape information area thus obtained. As a method of selecting parameters, for example, a part that can greatly deform the shape is represented by a simple shape by reducing the amount of noise, and conversely, a part with a small amount is used to approach the original shape by spending the amount of code.
なお、 前述の第 1の実施の形態と同様に、 符号化された領域形状と画像情報は 多重化部 1 0 6にて多重化され、 1つの任意形状領域の符号化データとなる。 第 3図は、 本発明の第 3の実施の形態を示すブロック図である。 これは、 非可 逆符号化によって変形した形状情報領域の内部に対応する画像情報が必ず存在す るよう、 画像情報領域をあらかじめ外挿補間を用いて作成する手法である。 この実施の形態では、 第 3図の形状符号化部 1 0 1にて符号化した形状情報を 形状復号部 1 0 2にて復号した後、 この領域形状の大きさに合わせて領域拡張部 3 0 3にて追加領域を外挿補間により作成する。  As in the first embodiment, the coded area shape and the image information are multiplexed by the multiplexing unit 106 to become coded data of one arbitrarily shaped area. FIG. 3 is a block diagram showing a third embodiment of the present invention. This is a method in which an image information area is created in advance using extrapolation so that corresponding image information always exists inside a shape information area deformed by non-reversible coding. In this embodiment, after the shape information encoded by the shape encoding unit 101 in FIG. 3 is decoded by the shape decoding unit 102, the area extension unit 3 is adjusted to the size of the area shape. 03 Additional regions are created by extrapolation.
ここでいう追加領域とは第 7図の斜線部に示される領域 7 0 3を指す。 これを 新たな画像情報領域として第 3図の画像符号化部 3 0 4で符号化することで、 第 7図の形状情報領域 7 0 2の内部に必ず画像情報領域が存在するようになり、 従 来技術の問題を解決することができる。  Here, the additional area refers to an area 703 indicated by a hatched portion in FIG. By encoding this as a new image information area in the image encoding unit 304 in FIG. 3, the image information area always exists inside the shape information area 720 in FIG. The problem of the conventional technology can be solved.
なお、 画像情報領域 6 0 2と画像情報領域内のデータの存在しない領域 6 0 3 は、 上述の第 6図のものと同じであるので説明は省略する。  The image information area 602 and the area 603 where no data exists in the image information area are the same as those in FIG.
また、 上述の第 1の実施の形態と同様に、 符号化された領域形状と画像情報は 第 3図の多重化部 1 0 6にて多重化され、 1つの任意形状領域の符号化データと る。 Further, as in the first embodiment described above, the coded region shape and image information are multiplexed by the multiplexing unit 106 in FIG. You.
第 4図は、 本発明の第 4の実施の形態を示すブロック図である。 これは、 復号 した形状情報領域が符号化側で非可逆符号化を行なつたため画像情報領域の内外 に跨る場合に、 これを画像情報の大きさに合わせて変形することで従来技術の問 題を解決するものである。  FIG. 4 is a block diagram showing a fourth embodiment of the present invention. This is because, when the decoded shape information area is irreversibly encoded on the encoding side and straddles the inside and outside of the image information area, it is deformed according to the size of the image information, thereby causing a problem in the conventional technology. Is to solve.
この実施の形態においても、 第 4図の画像復号部 4 0 5における画像信号の復 号方式の詳細については言及しないが、 これも形状情報によって定められた任意 の形状をした画像情報を復号するものである。 同図の非多重化部 4 0 1にて分離 された形状情報は形状復号部 4 0 2にて復号される。  Also in this embodiment, although details of the image signal decoding method in the image decoding unit 405 in FIG. 4 are not described, this also decodes image information having an arbitrary shape determined by the shape information. Things. The shape information separated by the demultiplexing unit 401 in the figure is decoded by the shape decoding unit 402.
復号された形状情報領域は、 符号化時に非可逆的過程にて得られたものと同一 であり、 これが画像情報領域内外に跨るかどうかを内外判定部 4 0 3にて判定す る。 もし、 これが画像情報領域の外側に跨ると判定された場合には、 形状変形部 4 0 4にて外部に跨らないように変形する。 そうでなければ、 復号した結果をそ のまま用い、 画像復号部 4 0 5にて元の部品画像が復号再生される。  The decoded shape information area is the same as that obtained in the irreversible process at the time of encoding, and the inside / outside determination unit 403 determines whether or not this crosses the image information area. If it is determined that this straddles the outside of the image information area, the shape is deformed by the shape deforming section 404 so as not to straddle the outside. Otherwise, the original component image is decoded and reproduced by the image decoding unit 405 using the decoding result as it is.
なお、 本発明は画像情報として動画像だけでなく、 静止画像にも同様に適用で きる。 産業上の利用可能性  Note that the present invention can be similarly applied to still images as well as moving images as image information. Industrial applicability
本発明の画像符号化及び復号装置を用いれば以下の効巣を奏する。  The following advantages can be obtained by using the image encoding and decoding apparatus of the present invention.
まず、 領域形状情報の非可逆符号化による領域形状の変化による画像情報領域 外部のデータ参照に起因する画質低下を、 形状情報領域が画像情報領域内外部に 跨る場合にこれを画像情報領域に合わせて変形することにより画質低下を抑える ことができる。  First, image quality degradation due to external data reference due to changes in the area shape due to lossy coding of the area shape information is adjusted to match the image information area when the shape information area extends inside and outside the image information area. Deformation can suppress image quality degradation.
次に領域形状情報の非可逆符号化による領域形状の変化による画像情報領域外 部のデータ参照に起因する画質低下を、 形状情報領域がフレーム内外部に跨る場 合に非可逆符号化による形状変化を画像情報領域内部に制限するよう符号化パラ メータを制御することで画質低下を抑えることができる。  Next, image quality degradation due to data reference outside the image information area due to changes in the area shape due to lossy coding of the area shape information is explained by the loss of shape due to lossy coding when the shape information area extends over the inside and outside of the frame. By controlling the encoding parameters so that the image quality is restricted to the inside of the image information area, it is possible to suppress the deterioration of the image quality.
また、 領域形状情報の非可逆符号化による領域形状の変化による画像情報領域 外部のデータ参照に起因する画質低下を、 非可逆符号化により形状情報領域が画 像情報領域内外部に跨る場合に、 画像情報領域の周囲をある適切な値で補間して 形状情報領域を含むようにすることにより画質低下を抑えることができる。 さらに、 領域形状情報の復号された形状情報領域が画像情報領域内外部に跨る 場合に、 これを画像情報領域に合わせて変形することにより復号画像の画質低下 を抑えることができる。 In addition, loss of image quality due to external data reference caused by changes in the area shape due to lossy encoding of the area shape information is reduced. When the image information area extends outside and inside, the image information area can be interpolated with a certain appropriate value so as to include the shape information area, so that the deterioration of image quality can be suppressed. Furthermore, when the shape information area in which the area shape information is decoded extends over the inside and outside of the image information area, the quality of the decoded image can be prevented from lowering by deforming it in accordance with the image information area.

Claims

請 求 の 範 囲 The scope of the claims
1 . 画像フレームから注目する任意形状領域を切り出し、 切り出された領域 内のデータを符号化する動画像符号化装置において、 前記領域を表す形状情報を 非可逆符号化する際、 高能率圧縮のため変形した領域形状が画像情報領域よりは み出した場合に、 前記変形した領域形状を画像情報領域の形状に合わせて変形す ることを特徴とした画像符号化装置。 1. In a video encoding device that cuts out an arbitrary shape area of interest from an image frame and encodes data in the cut-out area, when irreversibly coding the shape information representing the area, high efficiency compression is performed. An image coding apparatus characterized in that when a deformed region shape protrudes from an image information region, the deformed region shape is deformed according to the shape of the image information region.
2 . 画像フレームから注目する任意形状領域を切り出し、 切り出された領域 内のデータを符号化する動画像符号化装置において、 前記領域を表す形状情報を 非可逆符号化する際、 高能率圧縮のため変形した領域形状が画像情報領域からは み出さないよう符号化過程を制御することを特徴とする画像符号化装置。  2. In a video encoding device that cuts out an arbitrary shape region of interest from an image frame and encodes data in the cut region, when irreversibly encoding the shape information representing the region, high efficiency compression is performed. An image encoding device, wherein an encoding process is controlled so that a deformed area shape does not protrude from an image information area.
3 . 画像フレームから注目する任意形状領域を切り出し、 切り出された領域 内のデータを符号化する動画像符号化装置において、 前記領域を表す形状情報を 非可逆符号化する際、 高能率圧縮のため変形した領域形状が画像情報領域よりは み出した場合に、 入力画像領域が前記変形した領域形状を完全に含むよう画像情 報領域の周囲を適切な値を用いて前もって補間することを特徴とした画像符号化  3. In a video encoding device that cuts out an arbitrary shape area of interest from an image frame and encodes data in the cut-out area, when irreversibly encoding the shape information representing the area, high efficiency compression is performed. When the deformed region shape protrudes from the image information region, interpolation is performed in advance using appropriate values around the image information region so that the input image region completely includes the deformed region shape. Image coding
4 . 任意形状領域である画像領域を復号する動画像復号装置において、 前記 領域を表す形状情報を復号した結果、 高能率圧縮のため変形した領域形状が画像 情報領域よりはみ出した場合に、 前記変形した領域形状を画像情報領域の形状に 合わせて変形することを特徴とした画像復号装置。 4. In the moving picture decoding apparatus that decodes an image area that is an arbitrary-shaped area, if the area information deformed for high-efficiency compression protrudes from the image information area as a result of decoding the shape information representing the area, the deformation is performed. An image decoding device characterized in that the shape of an area is transformed according to the shape of the image information area.
PCT/JP1997/001448 1996-07-04 1997-04-25 Image encoder and image decoder WO1998002000A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP17444996A JP3474707B2 (en) 1996-07-04 1996-07-04 Image encoding device and image decoding device
JP8/174449 1996-07-04

Publications (1)

Publication Number Publication Date
WO1998002000A1 true WO1998002000A1 (en) 1998-01-15

Family

ID=15978698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/001448 WO1998002000A1 (en) 1996-07-04 1997-04-25 Image encoder and image decoder

Country Status (2)

Country Link
JP (1) JP3474707B2 (en)
WO (1) WO1998002000A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01181280A (en) * 1988-01-13 1989-07-19 Nippon Telegr & Teleph Corp <Ntt> Coding system for picture signal
JPH04195686A (en) * 1990-11-28 1992-07-15 Matsushita Electric Ind Co Ltd Area division device
JPH07177516A (en) * 1993-10-15 1995-07-14 At & T Corp Block transformation coding of picture of optional shape
JPH07262384A (en) * 1994-03-23 1995-10-13 Nippon Telegr & Teleph Corp <Ntt> Method and device for dividing image area
EP0707427A2 (en) * 1994-10-13 1996-04-17 AT&T Corp. Method and apparatus for a region-based approach to coding a sequence of video images
JPH08161505A (en) * 1994-11-30 1996-06-21 Sony Corp Dynamic image processor, dynamic image encoding device, and dynamic image decoding device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01181280A (en) * 1988-01-13 1989-07-19 Nippon Telegr & Teleph Corp <Ntt> Coding system for picture signal
JPH04195686A (en) * 1990-11-28 1992-07-15 Matsushita Electric Ind Co Ltd Area division device
JPH07177516A (en) * 1993-10-15 1995-07-14 At & T Corp Block transformation coding of picture of optional shape
JPH07262384A (en) * 1994-03-23 1995-10-13 Nippon Telegr & Teleph Corp <Ntt> Method and device for dividing image area
EP0707427A2 (en) * 1994-10-13 1996-04-17 AT&T Corp. Method and apparatus for a region-based approach to coding a sequence of video images
JPH08161505A (en) * 1994-11-30 1996-06-21 Sony Corp Dynamic image processor, dynamic image encoding device, and dynamic image decoding device

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
SIGNAL PROCESSING: IMAGE COMMUNICATION, Vol. 1, No. 2, (October 1989), H.G. MUSMANN et al., "Object-Oriented Analysis-Synthesis Coding of Moving Images", p. 117-138. *
SIGNAL PROCESSING: IMAGE COMMUNICATION, Vol. 1, No. 2, (October 1989), M. GILGE et al., "Coding of Arbitrarily Shaped Image Segments Based on a Generalized Orthogonal Transform" p. 153-180. *
SIGNAL PROCESSING: IMAGE COMMUNICATION, Vol. 2, No. 4, (December 1990), M. HOETTER, "Object-Oriented Analysis-Synthesis Coding Based on Moving Two-Dimensional Objects", p. 409-428. *
TECHNICAL RESEARCH REPORT OF IEICE, Vol. 95, No. 436, December 1995 (TOKYO), YOSHIAKI SHIKAKURA, "Examination of Coding of Arbitrary Shape Using Region Support DCT (In Japanese)", p. 61-66. *
TECHNICAL RESEARCH REPORT OF IEICE, Vol. 95, No. 469, January 1996, (TOKYO), MINORU EIDOU, "Trend in the Movement MPEG-4 of Standardization of Moving Picture Encoding (In Japanese)", p. 55-60. *
TELECOMMUNICATIONS, Vol. 57, No. 572, August 1994, (TOKYO), MINORU EIDOU, "Coding Ultra-Low Bitrate Dynamic Image -MPEG4- (In Japanese)", p. 62-66. *

Also Published As

Publication number Publication date
JPH1023400A (en) 1998-01-23
JP3474707B2 (en) 2003-12-08

Similar Documents

Publication Publication Date Title
EP1813119B1 (en) Film grain sei message insertion for bit-accurate simulation in a video system
CA2024135A1 (en) Conditional motion compensated interpolation of digital motion video
WO2007038700A2 (en) Multimedia coding techniques for transitional effects
JPWO2005081515A1 (en) Image compression method, image compression apparatus, image transmission system, data compression pre-processing apparatus, and computer program
JPH06224776A (en) Decoder
EP1061749B1 (en) Moving picture decoder
JP2911114B2 (en) Contour line decoding device
CN106028031A (en) Video coding device, video coding method, video decoding device and video decoding method
WO1998002000A1 (en) Image encoder and image decoder
JP3158064B2 (en) Video encoding device and video decoding device
JPH11215491A (en) Signal processing unit and method therefor
JPH08307860A (en) Scene re-encoder
JP3427505B2 (en) Image coding method and editing device
JP2000032458A (en) Image compression method
JP3280546B2 (en) Image editing / encoding device and image decoding device
JP4136403B2 (en) Image processing apparatus, image processing method, program, and storage medium
JPH11266454A (en) Image coder and image decoder
JP2005236723A (en) Device and method for encoding moving image, and device and method for decoding the moving image
JPH1023433A (en) Target code quantity calculating device and code quantity controller
JPH07123412A (en) Moving image compression-encoding method
WO2003039163A1 (en) Moving picture information compression method and system thereof
JP2001136532A (en) Encoding device
JP2002142225A (en) Image signal-coding device
JPH10271496A (en) Processing method for coded and decoded image
JPH08130735A (en) Picture data encoding and decoding device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA