WO1998001131A1 - Drugs inducing ultrasonic action and apparatus wherein the drugs are used - Google Patents

Drugs inducing ultrasonic action and apparatus wherein the drugs are used Download PDF

Info

Publication number
WO1998001131A1
WO1998001131A1 PCT/JP1997/002285 JP9702285W WO9801131A1 WO 1998001131 A1 WO1998001131 A1 WO 1998001131A1 JP 9702285 W JP9702285 W JP 9702285W WO 9801131 A1 WO9801131 A1 WO 9801131A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
xanthene dye
ultrasonic
derivative
xanthene
Prior art date
Application number
PCT/JP1997/002285
Other languages
French (fr)
Japanese (ja)
Inventor
Kenichi Kawabata
Shinichiro Umemura
Kazuaki Sasaki
Nami Sugita
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Publication of WO1998001131A1 publication Critical patent/WO1998001131A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0028Disruption, e.g. by heat or ultrasounds, sonophysical or sonochemical activation, e.g. thermosensitive or heat-sensitive liposomes, disruption of calculi with a medicinal preparation and ultrasounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/78Ring systems having three or more relevant rings
    • C07D311/80Dibenzopyrans; Hydrogenated dibenzopyrans
    • C07D311/82Xanthenes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy

Definitions

  • the present invention relates to a method for treating acoustic or cavitation using acoustic cavitation, a chemical reaction by ultrasonic waves, generation of bubbles by ultrasonic waves, ultrasonic imaging using bubbles, or sterilization of a liquid.
  • the present invention relates to an agent for inducing an ultrasonic action, which contains a compound having an action for reducing the effect of an ultrasonic wave, and an ultrasonic apparatus using the same.
  • Techniques for treating tumors, calculi, etc. by irradiating focused ultrasound from outside the body are less invasive than open surgery, lowering physical strength during surgery and quality of life after surgery (Quality of Life). ) Is excellent in principle, and is considered to increase social value in the future.
  • Acoustic cavitation is considered to play an important role in the mechanism by which the therapeutic effect can be obtained by the irradiation of convergent ultrasonic waves, and in the mechanism of promoting the chemical reaction by the irradiation of ultrasonic waves.
  • acoustic cavitation occurs in the living body and bubbles It is described that when generated, the generated bubbles can produce an ultrasound contrast effect.
  • JP Hei 2 The technology described in JP-A-26848 focuses on the fact that the ultrasonic irradiation time required to generate acoustic cavitation is 1 msec to 100 msec, and two types of sound fields with different ultrasonic wavefronts are used.
  • the sound field is switched by repeating the cycle of irradiating ultrasonic waves while switching at time intervals of 1 msec to 100 msec, and crushing the hairpin cavitation generated by one sound field by the other sound field.
  • the efficiency of sonochemical action is improved by an order of magnitude at the same ultrasonic power compared to the case without.
  • Ultrasonics Sonoch em istryvo 1.3, No. 1, pp. 1-6 (1996) (Kawa bata, K and Umemu ra, S) usually obtains only when there is a reflective object.
  • the technique of the second harmonic superposition method which obtains an ultrasonic wave having a waveform that is advantageous for generating acoustic cavitation even in a situation where there is no reflector, describes an ultrasonic wave that is advantageous for generating acoustic cavitation.
  • a substance such as porphyrin is used as a substance that generates active oxygen by the chemical action of ultrasound.
  • a substance such as porphyrin has a force that has a function of generating active oxygen secondary by acoustic cavitation generated by ultrasonic waves, and a threshold value for generating acoustic cavitation. Can not cause a decline in
  • acoustic cavitation threshold the threshold of the sound intensity at which acoustic cavitation is generated by a chemical method
  • an ultrasonic action-inducing (or attraction) technique which makes it possible to generate acoustic cavitation with lower acoustic intensity, which was not possible with the prior art approach.
  • short-lived chemical species such as hydroxyl radicals generated by acoustic cavitation, and secondary generated chemical species caused by these short-lived chemical species.
  • An object of the present invention is to provide an ultrasonic action inducer that does not suppress (prevent) the chemical action of short-lived chemical species in order to perform a chemical treatment based on the drug, and to provide an ultrasonic apparatus using the drug.
  • the ultrasonic action inducer of the present invention comprises a compound comprising a xanthene dye containing a xanthene ring or a derivative of a xanthene dye, and is an agent for lowering the threshold of acoustic intensity for generating acoustic cavitation.
  • a halogenated acetate amide group containing a xanthene ring or a derivative of a xanthene dye
  • the ultrasonic action inducer of the present invention comprises a compound comprising a xanthene dye containing a xanthene ring or a derivative of a xanthene dye, and is an agent for lowering the threshold of acoustic intensity for generating acoustic cavitation.
  • R 2 shown in Fig. 4 is any functional group of a halogenated acetamido group, maleimide group, aziridine group, isothiocyanate group, succinimid group, and sulfonyl chloride group.
  • the above derivative has the structure of ONa and COONa in which H of OH and COOH is replaced by Na in FIG. 4, and may be a salt of a xanthene dye.
  • a substance in which two molecules of a xanthene dye or a derivative of a xanthene dye containing a xanthene ring are linked by — (CH 2 ) favour-(3 ⁇ n (integer) (hereinafter, a xanthene dye or a derivative of a xanthene dye derivative) Dimer), and the threshold of the sound intensity to generate acoustic cavitation.
  • the above derivative has two or more halogens bonded to the carbon atom of the skeleton of the xanthene dye.
  • the derivative has a halogenated acetoamide group bonded to the carbon atom of the skeleton of the xanthene dye.
  • R 2 shown in FIG. 10 is any one of a halogenated acetoamide group, a maleimide group, an aziridine group, an isothiocyanate group, a succinimid group, and a sulfonyl chloride group.
  • the above derivative has a structure of ONa in which H of OH is replaced by Na in FIG. 10, and may be a salt of a xanthene dye or a dimer of a derivative of the xanthene dye.
  • An ultrasonic apparatus using the ultrasonic wave inducer of the present invention includes a compound (including a dimer) of a xanthene dye containing a xanthene ring or a derivative of a xanthene dye, and has a threshold of an acoustic intensity for generating an acoustic cavitation.
  • a means for administering the ultrasonic action inducer to be reduced to a target site of the subject; and a means for superimposing ultrasonic waves having a plurality of center frequencies having an acoustic intensity of 1 O WZ cm 2 or less and irradiating the target site. And means for detecting ultrasonic waves from a target site.
  • An ultrasonic treatment method using the ultrasonic action inducer of the present invention comprises a compound comprising a xanthene dye containing a xanthene ring or a derivative of a xanthene dye (including a dimer), and comprises a threshold of acoustic intensity for generating acoustic cavitation.
  • a step of detecting ultrasonic waves from a target site is a compound comprising a xanthene dye containing a xanthene ring or a derivative of a xanthene dye (including a dimer), and comprises a threshold of acoustic intensity for generating acoustic cavitation.
  • surfactant does not promote acoustic cavitation due to the disadvantageous effect of low interfacial tension during acoustic cavitation. You.
  • surfactants generally form relatively large bubbles, as is prominent in detergents, and it is considered that the large bubbles that have formed adversely affect the formation of acoustic cavitation.
  • the strong surfactant action of surfactants has the effect of destroying cell membranes of living organisms, causing strong biotoxicity. If surfactants have a substance that has the function of promoting the production of acoustic cavitation. Even so, application to living organisms is difficult.
  • Dyes are used to generate short-lived species by light irradiation, and are unlikely to act as scavenging agents for short-lived species.
  • the evaluation of the effect of acoustic cavitation generation was performed using a method that confirmed the generation of subharmonic waves. This method is an acoustic measurement and can directly measure the movement of the bubble itself compared to other methods.
  • ultrasonic waves generate short-lived chemical species such as hydroxyl radicals
  • the subharmonic wave can be measured. The generation must be observed (Ken—ichi Kawabataand Shin—ichiro Umemu ra; The J ourna 1 of Ph ysical Chem istryvol. 100, no. 48, p p. 1 996))).
  • Ultrasonic waves are applied by an ultrasonic probe (details of the configuration will be described later) that measures the generation of acoustic cavitation in a liquid with the configuration shown in Fig. I.
  • the acoustic signal from the sample was measured to determine whether subharmonics were generated.
  • Figure 2 shows the spectrum of a typical acoustic signal when acoustic cavitation occurs.
  • Figure 2 shows a 1 MHz solution of Rose Bengal in a 0.1 mM (millimolar) solution.
  • FIG. 4 is a diagram showing a typical spectrum of an acoustic signal obtained when acoustic cavitation is generated in a liquid by simultaneously irradiating ultrasonic waves of 2 MHz and 2 MHz at an intensity of 5 W / cm 2 for 1 minute.
  • the vertical axis indicates the relative value of the average signal intensity based on 1 ⁇ 10 ′′ 8 (mV) 2 ).
  • Figure 3 shows the intensity of subharmonic waves generated when a solution containing various dyes was irradiated with ultrasonic waves.
  • the intensity of subharmonic waves obtained by irradiating ultrasonic waves to a phosphate buffer solution was measured. Is shown.
  • large subharmonic signals are obtained only in the case of xanthene-based erythrocycin.
  • FIG. 4 is a diagram showing the structure of a compound comprising a xanthene dye or a derivative of a xanthene dye containing a xanthene ring used in a test example of the present invention.
  • FIG. 5 is a diagram showing the structure of a compound comprising a derivative of a xanthene dye or a xanthene dye used in a test example of the present invention.
  • Xanthene dyes are also derivatives of phthalic acid and are also called phthalein dyes. All but phenolphthalene contain a xanthene ring in the molecule. In PH 7.4, the xanthene dye has the structure shown in Fig.
  • Fluorescein F 1 u 0 rescein
  • dichlorofluorescein 2 '7' -D ichlorofluorescein
  • tetrachloro mouth fluorescein 4,5,6,7 — Tetrachlorofluorescein
  • eosin ⁇ osin Y
  • phloxine B P h 1 oxin B
  • rose downy Bengal Ro sebengal
  • the salt of ONa or COONa in which H of OH and COOH is replaced by Na may be used.
  • Figure 6 is a diagram showing the intensity of subharmonic waves generated when a solution containing a xanthene dye or a derivative of a xanthene dye is irradiated with ultrasonic waves.
  • the vertical axis represents the intensity of the subharmonic wave at 1 X 1 CT 7 (mV) 2 Is shown as a relative value based on.
  • Fig. 6 the effect of the xanthene dye containing a halogen atom on the acoustic intensity required for the production of acoustic cavitation was reduced, and the halogen atom was added to the skeleton of the carbon atom of the xanthene dye shown in Fig. 4. It has been confirmed that the compound with the compound has the effect of lowering the sound intensity required for the generation of acoustic cavitation, especially for compounds having two or more halogen atoms in the molecule. .
  • the threshold force of acoustic cavitation in a liquid in which cells such as cancer cells or red blood cells are suspended, ' is lower than the threshold of acoustic cavitation in water, means that proteins on the cell surface may With the core of cavitation It is thought to be due to Based on the belief that it is more effective to lower the threshold of cavitation in body fluids (water) in living organisms, it is more effective to use cells in body fluids as nuclei of cavitation. We searched for compounds that could be present at a higher rate near the surface.
  • Chemical substances in which a functional group capable of binding to a thiol group or amino group of an amino acid is chemically bonded to a xanthene dye have high affinity for cell membranes (Cobb, C and Beth, A; Biochemistry 1. 29, No. 36, pp. 8283-8290 (1990)).
  • a functional group capable of binding to a thiol group or an amino group halogenated acetamide, maleimide, aziridine, isothiocyanate, succinimide, and sulfonyl chloride are known.
  • FIG. 7 is a diagram showing the structure of a compound comprising a xanthene dye or a derivative of a xanthene dye having a functional group capable of chemically bonding to a thiol group or an amino group.
  • the structure of these xanthene dye derivatives is as follows: R, R 2 , R 3 , R 4 , R 5 , R 6) shown in Fig. 4 where R 7 and R 8 are the elements or functional groups shown in Fig. 7. .
  • R 2 shown in FIG. 4 is an iodoacetamido group, an isothiocyanate group, a maleimide group, a derivative of a xanthene dye shown in FIG.
  • acoustic cavitation For acoustic amide (Erythrosin-5-iodoacet amide), erythrosin-5-isothiocyanate, and erythrosin-5-ma1 eimide, acoustic cavitation Lowers the sound intensity required for generation Since interaction with the living body is particularly important for the mechanism, the effect of lowering the threshold of acoustic cavitation was examined using a living body (ddY mouse (os, 5 weeks old)).
  • Each compound shown in Fig. 7 is administered to ddY mice at a dose of 50 mg / Kg body weight, and the ultrasonic device shown in Fig. 8 is used to measure the production of acoustic cavitation in a living body. (Details will be described later) using 0.5 ⁇ ⁇ ⁇ and 1 MHz ultrasonic waves at a sound intensity ratio of 1: 1 to generate subharmonic waves and tissue damage from mouse liver. was observed.
  • FIG. 9 is a diagram showing threshold values of acoustic cavitation in mouse liver when a compound comprising a xanthene dye or a derivative of a xanthene dye having a functional group capable of chemically bonding to a thiol group or an amino group is present.
  • the threshold for acoustic cavitation in the mouse liver was defined as the minimum acoustic intensity that produced both subharmonics and tissue damage.
  • physiological saline was administered to the mice instead of the acoustic cavitation inducer, and the mice were irradiated with ultrasonic waves.
  • halogenated acetamido group, maleimide group, aziridine group, isothiocyanate group, succinimid group, and sulfonyl chloride group which are functional groups capable of binding to a thiol group or an amino group, are: the 4th Regardless of the position of R 2 , R 3 , R 4 , R 5 , R s , R 7 , or R 8 in the carbon atom skeleton of the xanthene dye shown in the figure, a thiol group or is capable of binding with Amino group, R lt R 2, R 3 , R 4, R 5, R 6, R 7, even when in any position of the R a, acoustic needed to generate acoustic Canon bi station It has the effect of reducing strength. Further, a plurality of functional groups capable of bonding to a thiol group or an amino group may be bonded to the carbon atom skeleton of the xanthene dye shown in FIG.
  • Xanthene dyes and derivatives of xanthene dyes generally have high hydrophilicity and, when administered to a living body, flow out of the living body in a relatively short period of time.
  • a protocol that administers to a living body at a relatively high concentration and irradiates the living body with ultrasonic waves in a relatively short time after the administration is effective.
  • xanthene dyes or derivatives of xanthene dyes are considered to be suitable for treatment of calculi, ultrasonic imaging using bubbles, and the like.
  • a method of adding an alkyl group is generally used.
  • Derivatives of xanthene dyes produced by this method have a hydrophobic part and a hydrophilic part in the molecule.
  • Molecules may exist in an aqueous solution or body fluid in the form of micelles, and the physicochemical properties of the molecule in an aqueous solution or body fluid may be a xanthene dye or its derivative. It may be different from the physicochemical properties of the original molecules.
  • Figure 10 shows that two of the molecules consisting of a xanthene dye or a derivative of a xanthene dye are —
  • 2 is a diagram showing the structure of a dimer compound formed by bonding with CH 2 ) n — — (CH 2 ) n — (3 ⁇ n (integer) ⁇ 20), whereby two molecules of a xanthene dye or its A compound having a dimeric structure obtained by cross-linking a derivative is administered to mice, and the generation of subharmonic waves and tissue damage from the liver of the mouse is performed using an ultrasonic device shown in Fig. 8 (details will be described later).
  • acoustic cavitation was measured by the method: Rose Bengal, Rose Bengal Dimer (Structure: Fig. 10 And each compound was administered to d dY mice at a dose of 5 OmgZKg body weight, using an ultrasonic device (see details later) with the configuration shown in FIG. Ultrasonic waves of 5 MHz and 1 MHz were simultaneously irradiated at a sound intensity ratio of 1: 1 to observe the generation of subharmonics and the generation of tissue damage from the mouse liver.
  • Fig. 11 shows the threshold value of acoustic cavitation in the mouse liver in the presence of Rose Bengal dimer, In Fig.
  • the threshold value of acoustic cavitation in the mouse liver is: , Subharmonic and tissue damage Is defined as the minimum sound intensity that produces both In the control experiment shown in Fig. 11, mice were injected with physiological saline and irradiated with ultrasound. Administration of the Rose Bengal dimer and administration of Rose Bengal to mice produced acoustic cavitation at approximately the same sound intensity. From these results, it can be seen that a compound having a dimer structure in which two molecules of a xanthene dye or a derivative thereof are crosslinked by one (CH 2 ) n- (3 ⁇ n (integer) ⁇ 20) has high hydrophobicity.
  • FIG. 1 is a diagram showing a configuration of an ultrasonic apparatus for measuring the generation of acoustic cavitation in a liquid in a test example of the present invention.
  • FIG. 2 shows a typical spectrum of an acoustic signal obtained when acoustic cavitation is generated in a liquid in a test example of the present invention.
  • FIG. 3 shows a test pattern of the present invention.
  • a diagram showing the intensity of subharmonic waves generated when a solution containing various dyes is irradiated with ultrasonic waves
  • FIG. 4 is a diagram showing the structure of a compound comprising a xanthene dye containing a xanthene ring or a derivative of a xanthene dye used in the test example of the present invention
  • FIG. 5 is a diagram showing the xanthene dye used in the test example of the present invention.
  • Figure showing the structure of a compound consisting of a dye or a derivative of a xanthene dye.
  • FIG. 6 is a diagram showing the intensity of subharmonic waves generated when a solution containing a xanthene dye or a derivative of a xanthene dye is irradiated with ultrasonic waves in the test example of the present invention.
  • FIG. 7 is a diagram showing the structure of a compound comprising a xanthene dye or a derivative of a xanthene dye having a functional group capable of chemically bonding to a thiol group or an amino group in a test example of the present invention.
  • FIG. 8 is a diagram showing a configuration of an ultrasonic device for measuring the generation of acoustic cavitation in a living body in a test example of the present invention.
  • FIG. 9 shows the results obtained in the test example of the present invention in the mouse liver when a compound comprising a xanthene dye or a derivative of a xanthene dye having a functional group capable of chemically bonding to a thiol group or an amino group is present.
  • Fig. 11 is a graph showing the threshold value of acoustic cavitation in mouse liver in the presence of Rose Bengal and Rose Bengal dimer in the test example of the present invention.
  • FIG. 12 is a diagram showing a configuration of an ultrasonic apparatus for measuring an antitumor (tumor growth inhibition) effect in a living body in a test example of the present invention.
  • Fig. 13 is a graph showing the dependence of the intensity of the subharmonic wave generated when a solution containing a xanthene dye is irradiated with ultrasonic waves on the acoustic intensity in the test example of the present invention.
  • Fig. 14 is a graph showing the dependence of the amount of active oxygen generated on the sound intensity when a solution containing a xanthene dye was irradiated with ultrasonic waves in the test example of the present invention.
  • FIG. 15 is a graph showing the inhibition rate of tumor growth when mice were administered with Rose Bengal and irradiated with ultrasonic waves in the test example of the present invention.
  • Fig. 16 is a graph showing the calculus breaking ratio when calculus in a solution containing a xanthene dye was irradiated with ultrasonic waves in the test example of the present invention.
  • Fig. 17 shows the results of the modulation produced when a solution containing a derivative of a xanthene dye having a functional group capable of chemically bonding to a thiol group or an amino group was irradiated with ultrasonic waves in the test example of the present invention.
  • Fig. 18 shows the active oxygen content of a solution containing a compound comprising a derivative of a xanthene dye having a functional group capable of chemically bonding to a thiol group or an amino group in a test example of the present invention.
  • Figure showing the dependence of the amount of generated sound on the sound intensity.
  • FIG. 19 is a graph showing the inhibition rate of tumor growth when mice were administered with erythrochloride acetoacetamide and irradiated with ultrasonic waves in the test example of the present invention.
  • FIG. FIG. 4 is a graph showing stone destruction rates when a stone in a solution containing a compound comprising a derivative of a xanthene dye having a functional group capable of chemically bonding to a thiol group or an amino group is irradiated with ultrasonic waves in a test example;
  • Figure 21 shows that in the test example of the present invention, a solution containing a dimer formed by binding two molecules of a xanthene dye or a derivative of a xanthene dye by one (CH 2 ) ⁇ —
  • Fig. 4 shows the dependence of the intensity of the subharmonic generated when sonic waves are irradiated on the acoustic intensity.
  • FIG. 22 shows a solution containing a dimer formed by bonding two molecules of a xanthene dye or a derivative of a xanthene dye with — (CH 2 ) n — in the test example of the present invention.
  • FIG. 23 shows the structure of a dimer formed by bonding two molecules of a xanthene dye or a derivative of a xanthene dye with — (CH 2 ) n — in a test example of the present invention.
  • Fig. 24 shows the results obtained when two molecules of a xanthene dye or a derivative of a xanthene dye are linked by — (CH 2 ) n — in a test example of the present invention.
  • acoustic cavitation in mouse liver Diagram showing the threshold of
  • FIG. 25 is a graph showing the inhibition rate of tumor growth when mice were administered with Rose Bengal dimer and Eris mouth simple acetate amide dimer in a test example of the present invention and irradiated with ultrasonic waves. is there.
  • the relative value is set to 1.
  • FIG. 3 is a diagram illustrating a configuration of an ultrasonic device that measures the generation of acoustic cavitation.
  • the waveform generator 14 synthesizes a sine wave having a frequency of 1 MHz and a sine wave having a frequency of 2 MHz, amplifies the resulting signal with an amplifier 13, and inputs the amplified signal to a planar ultrasonic transducer 9 held by a fixture 10. Ultrasonic waves at frequencies of 1 MHz and 2 MHz are simultaneously radiated from the ultrasonic transducer 9 for 1 to 2 minutes. During the ultrasonic irradiation, the sound pinion signal from the sample solution 4 is held by the holder 8. Underwater microphone 7 Measure more.
  • the acoustic signal measured by the underwater microphone 7 is amplified by the amplifier 11 and then input to the spectrum analyzer 12 to extract the signal component of 500 MHz, which is a subharmonic of 1 MHz, every second. From 15, the time average of the square of the subharmonic component is calculated. The time average of the square of the subharmonic component was defined as the subharmonic intensity, which was used as an index of the magnitude of acoustic cavitation generation.
  • FIG. 3 is a diagram illustrating a configuration of an ultrasonic device that measures the generation of acoustic cavitation.
  • the ultrasound effect inducer was administered at a dose of 5 mg / Kg body weight (Test Example 7) or a dose of 5 OmgZKg body weight (Test Example 13).
  • the mouse 24 After intravenous injection, with the liver 25 exposed outside the body, the mouse 24 was fixed in a water tank 2 filled with degassed water 1, and focused ultrasound at frequencies of 0.5 and 1 MHz was applied at an acoustic intensity ratio. The liver 25 was irradiated at the same time so that the ratio became 1: 1.
  • the converging ultrasonic transducer 26 is composed of piezoelectric elements 28-1, 28-2, ..., 28-N and 0.5MHz ultrasonic waves arranged on a ring for irradiating a 1MHz ultrasonic wave. It consists of piezoelectric elements 29-1, 29-2, ..., 29-N arranged on the irradiation ring.
  • the anesthetized mouse 24 fixed to the fixture 23 is placed in the water tank 2 filled with degassed water 1, and the liver 25 exposed outside the body is fixed at the focal point 27 of the focused ultrasonic transducer 26.
  • Move tool 23 After intravenous injection of an ultrasonic action inducer, ultrasonic waves were conveyed by a convergent ultrasonic transducer 26 for 1 hour. Irradiate for 80 seconds, and visually check for damage to liver 25 during the irradiation time.
  • the acoustic signal obtained from the liver 25 during ultrasonic irradiation is measured with a submerged microphone 31 to check for the presence of the 250 MHz subharmonic component of 0.5 MHz.
  • the minimum acoustic intensity at which the damage and subharmonic waves of the liver 25 were observed by the irradiation of the ultrasonic wave was set as the acoustic cavitation threshold, and it was determined that the acoustic cavitation was generated and that the biological effect was caused by the action of the acoustic cavitation.
  • physiological saline was injected intravenously instead of the ultrasonic wave inducer, and irradiated with ultrasonic waves.
  • the focal point 27 is confirmed using an imaging ultrasonic probe 30 composed of multiple transducers.
  • 32 is a processing circuit for controlling the transmission and reception of ultrasonic waves by the imaging ultrasonic probe 30 and obtaining an image
  • 34 is a transmission waveform generation circuit for driving the piezoelectric element of the converging ultrasonic transducer
  • 33 is an amplifier for amplifying the transmission waveform.
  • Width circuit, 35 is an amplification circuit that amplifies the reception signal of the underwater microphone 31,
  • Reference numeral 36 denotes a reception waveform processing circuit for calculating a time average of the square of the subharmonic component.
  • Evaluation experiment C “Measurement of effects that promote sonochemical reactions"
  • the effect of the ultrasonic action-inducing (attracting) agent of the present invention to promote the sonochemical reaction was determined by measuring the amount of active oxygen produced, which is the source of the antitumor effect by ultrasonic chemical action. investigated.
  • the amount of generated active oxygen was measured by the oxidation reaction of iodine ions generated by the active oxygen.
  • the progress of the reaction was investigated by spectroscopically measuring the concentration of triiodide ion, an oxidation product of iodine ion.
  • Ultrasonic action inducing agent and phosphoric acid buffer solution containing iodide force Riumu each at a concentration of 1 X 10- 4 Micromax and 0. 1 ⁇ ( ⁇ 7.
  • FIG. 12 shows the results of a test using the ultrasonic action-inducing (attracting) agent of the present invention in the following test examples.
  • FIG. 3 is a diagram showing a configuration of an ultrasonic apparatus for measuring an antitumor (tumor growth inhibition) effect in the inside.
  • the configuration of the ultrasonic device shown in FIG. 12 is the same as the configuration of the ultrasonic device shown in FIG.
  • the measurement of the antitumor effect (tumor growth inhibition test) is performed as follows.
  • mice Seven-week-old male BAL BZc mice (3 mice per group) were transplanted with C 0 10 n 26 cells subcutaneously in the abdomen, and then administered an ultrasound inducer when the tumor diameter reached approximately 1 cm. It was injected intravenously to give an amount of 5 OmgZkg body weight.
  • the anesthetized mouse 24 fixed to the fixture 23 is placed in the water tank 2 filled with deaerated water 1, and the subcutaneously implanted tumor of about 1 cm in diameter comes to the focal point 27 of the converging ultrasonic transducer 26. Move the fixture 23. After administration by intravenous injection of ultrasonic action inducing agents, converged by the ultrasound transducer 26, in 0.
  • Tumor growth inhibition rate (%) ((mean tumor weight of control group-mean tumor weight of test group) mean tumor weight of control group) X 100 (1) 0 n26 cells were implanted, and then ultrasound was administered without administration of ultrasound, and mice were implanted with C.sub.10n26 cells and then were administered without administration of ultrasound. It consists of a group that performs sound wave irradiation. W
  • the position of the underwater microphone 31 and the position of the imaging ultrasonic probe 30 may be interchanged.
  • a water jacket may be placed between the front surface of the convergent ultrasonic transducer 26 and the affected area instead of using the water tank 2.
  • Figure 13 shows the dependence of the intensity of the subharmonic generated when a solution containing a xanthene dye is irradiated with ultrasonic waves on the acoustic intensity.
  • Figure 13 shows an example of the test results in accordance with Evaluation Experiment A.
  • an ultrasonic wave inducer such as Phloxine B, Rose Bengal or Erythritis
  • the acoustic intensity is about 2 WZ cm 2.
  • acoustic cavitation occurs, and as the acoustic intensity increases, the cavitation intensity also increases.
  • Test Example 2 "Confirmation test of the effect of xanthene dye on accelerating sonochemical reaction"
  • FIG. 14 shows the dependence of the amount of active oxygen generated on the sound intensity when a solution containing a xanthene dye is irradiated with ultrasonic waves.
  • Fig. 14 shows an example of the test results according to the evaluation experiment C.
  • an ultrasonic action inducer such as Phloxine B, Rose Bengal or Erythritis
  • the sound intensity is about 2 cm 2 or more.
  • active oxygen is generated with increasing acoustic intensity.
  • no active oxygen was generated even at an acoustic intensity of 1 O WZ cm 2 , indicating that the ultrasonic action inducer accelerated the sonochemical reaction in this test example. is there.
  • active oxygen has a bactericidal action as well as an antitumor action, it is clear that the ultrasonic action inducer of the present invention is effective for sterilization by ultrasound.
  • Test example 3 "Confirmation test of rose bengal's antitumor effect (tumor growth inhibition rate)"
  • Fig. 15 shows the tumor growth inhibition rate when rose bengal was administered to mice and irradiated with ultrasound.
  • Figure 15 shows an example of the test results according to evaluation experiment D, showing the results for the xanthene dye rose bengal.
  • the rate of inhibition of tumor growth (inhibition rate) in the case of ultrasonic irradiation was 14.7% in the control experiment, while that in the case of using Rose Bengal was compared. In this case, it was 57.7%, and the antitumor pain effect was about 4 times higher.
  • the antitumor effect of this test example is obtained by the effect of lowering the threshold of the acoustic cavitation and the effect of accelerating the sonochemical reaction of the ultrasonic action inducer of the present invention.
  • xanthene dyes other than Rose Bengal, phloxin B, erythrin syn, tetracro mouth fluorescein, etc. in which halogen is bonded to multiple conjugated carbon atoms, have the same antitumor properties as Rose Bengal. (4) It is expected that an effect can be obtained.
  • phloxine B and erythrocystin show the same effect as Rose Pengal in lowering the acoustic cavitation threshold and producing active oxygen.
  • FIG. 16 shows the stone destruction rate when stones in a solution containing xanthene dye are irradiated with ultrasonic waves.
  • Fig. 16 shows an example of test results according to evaluation experiment E.
  • the phloxin B, rose bengal and erythro-orcin-induced sonication inducers (Macao 1 ⁇ 10 " 4 ) were compared with the control experiment by 2.4 and 2. It showed a stone destruction rate of 2 to 1.9 times, the highest when using Phloxine B, and all of the ultrasonic action inducers were effective in promoting stone destruction.
  • Test Example 5 “Confirmation test of the effect of a compound consisting of a derivative of a xanthene dye having a functional group capable of chemically bonding to a thiol group or amino group to reduce the ⁇ value of sound cavitation in a liquid”
  • FIG. 17 shows the dependence of the intensity of the subharmonic wave generated when a solution containing a compound consisting of a derivative of a xanthene dye having a functional group capable of chemically bonding to a thiol or amino group is irradiated with ultrasonic waves on the acoustic intensity.
  • FIG. In the first 7 figure shows an example of a test result in accordance with the evaluation experiments A, if containing ultrasonic action inducing agent such as Ellis port Shin Yodoase Bok Ami de is acoustic intensity of about 2 W / cm 2 or more Acoustic cavitation has occurred.
  • the control experiment even if the sound intensity was 10 WZ cm 2 , gagged cavitation was generated.
  • Test Example 6 “Confirmation test of the effect of a compound consisting of a derivative of a xanthene dye having a functional group capable of chemically bonding to a thiol group or an amino group to accelerate the sonochemical reaction”
  • FIG. 18 shows the dependence of the amount of active oxygen generated on sound intensity when a solution containing a compound consisting of a derivative of a xanthene dye having a functional group capable of chemically bonding to a thiol group or an amino group is irradiated with ultrasonic waves.
  • FIG. The first 8 figure shows an example of a test result in accordance with the evaluation experiment C, and may include an ultrasound action inducing agent such as Ellis port Shinyo one Doasetoami de is active in acoustic intensity of about 2 W / cm 2 or more Oxygen is being produced.
  • test Example 7 “Confirmation test of the effect of a compound consisting of a xanthene dye or a derivative of a xanthene dye having a functional group capable of chemically bonding to a thiol group or an amino group to lower the threshold of acoustic cavitation in a living body”
  • FIG. 9 is a diagram showing threshold values of acoustic cavitation in mouse liver when a compound comprising a xanthene dye or a derivative of a xanthene dye having a functional group capable of chemically bonding to a thiol group or an amino group is present.
  • Fig. 9 shows an example of the test results according to the evaluation experiment B. Eris mouth Sin, Eris mouth Sindoacetamide, Eris mouth Sin isothiosinate, The threshold value of acoustic cavitation was lower in all cases of Ellis mouth cinmaremid than in the case where no ultrasonic action inducer was administered. The acoustic cavitation threshold was reduced to about 2.4, 1/12, 1/8 and 1/3 by each ultrasonic action inducer.
  • Test Example 8 “Confirmation test of antitumor effect (tumor growth inhibition rate) of erythrocyte syndodoctamide”
  • Fig. 19 is a graph showing the inhibition rate of tumor growth when mice were injected with erythrocyte cindoacetamide and irradiated with ultrasound.
  • Fig. 19 shows an example of the test results obtained in accordance with Evaluation Experiment D, and shows the results for the xanthene dye Eris Mouth Sidodoacetamide.
  • the rate of inhibition of tumor growth (suppression rate) in the case of ultrasonic irradiation was 14.7% in the control experiment, whereas the rate of inhibition in the control experiment was 44.7% when erythrocyte cinnacetamide was used. At 9.7%, an anti-tumor effect of about 3.4 times was obtained.
  • the antitumor effect of this test example is obtained by the effect of the sonication inducer on lowering the threshold of the sound tone and the effect of promoting the sonochemical reaction. It is expected that xanthene dyes other than erythrido-syndoacetamide having an affinity for thiol group or amino group will have the same antitumor effect as erythrocyte-scinodacetamide. Mouth synthiothiocyanate and erythrosine maleimide showed almost the same effects as elimination cinnamate acetoamide in lowering the acoustic cavitation threshold and producing active oxygen ( Test Example 9: “thiol group or amino acid”). Confirmation of the effect of a compound consisting of a derivative of a xanthene dye having a functional group capable of chemically bonding with a group to accelerate stone destruction ”
  • Fig. 20 shows an example of the application of ultrasonic waves to a calculus in a solution containing a compound consisting of a derivative of a xanthene dye having a functional group capable of chemically bonding to a thiol group or an amino group. It is a figure which shows the calculus destruction rate at the time of irradiating.
  • Fig. 20 shows an example of test results according to evaluation experiment E, in which xylose dye acetamido, ellis cinthiothiothiocyanate, and ellis cinmareimide were selected as xanthene dye derivatives.
  • the stone destruction rate was 1.9 times higher, the highest when using Ellis mouth cinnacetacetamide, and all ultrasonic action inducers were effective in promoting stone destruction.
  • Test Example 10 “Test for confirming the effect of erythricular cinnamate acetoamide generating bubbles for ultrasound imaging”
  • Test Example 11 “Confirmation of the effect of dimer and its derivative formed by binding two molecules of xanthene dye by — (CH 2 ) n — to lower the threshold of acoustic cavitation in liquid test”
  • Fig. 21 shows the components generated when a solution containing a dimer formed by combining two molecules of a xanthene dye or a derivative of a xanthene dye with one (CH 2 ) n — is irradiated with ultrasonic waves.
  • FIG. 6 is a diagram showing the dependence of the harmonic intensity on the acoustic intensity.
  • Figure 23 is a diagram showing the structure of a dimer formed by combining two molecules of a xanthene dye or a derivative of a xanthene dye with one (CH 2 ) n —. shown, shown xanthene dyes or hexa pentene in the dimer of the dye derivative R t, R 2, R 3 , R 4> R s, the R 6, R 7, R 8 .
  • Figure 21 shows an example of the test results according to evaluation experiment C.
  • an ultrasonic wave inducer such as a Rose Bengal dimer
  • the acoustic intensity is about 2 WZ cm 2 or more and the acoustic cavitation is not possible. Has occurred.
  • control of the acoustic intensity in experiments does not occur acoustic Kiyabiteshiyon even 1 OWZ cm 2
  • an ultrasonic action inducing agent in the present test example lowers the acoustic Kiyabiteshi ® emission threshold 1 Z5 below It is clear that there is.
  • Test Example 12 “Confirmation test of the effect of a dimer and its derivative formed by bonding two molecules of a xanthene dye by — (CH 2 ) ⁇ — to accelerate the sonochemical reaction”
  • FIG. 22 shows active oxygen when a solution containing a dimer formed by combining two molecules consisting of a xanthene dye or a derivative of a xanthene dye by one (CH 2 ) n — is irradiated with ultrasonic waves.
  • FIG. 4 is a diagram showing the dependence of the amount of generated sound on the sound intensity.
  • Figure 22 shows an example of the test results according to evaluation experiment C. When an ultrasonic wave inducer such as rose bengal dimer is included, active oxygen is generated at an acoustic intensity of about SWZcm 2 or more. I have. In contrast, in the control experiment, no active oxygen was generated even at an acoustic intensity of 1 OWZcm 2 .
  • FIG. 23 is a diagram showing the structure of a dimer formed by bonding two molecules of a xanthene dye or a derivative of a xanthene dye with — (CH 2 ) n —, as shown in FIG.
  • FIG. 24 xanthene dyes or two molecular consisting derivatives of xanthene dyes one (CH 2) ⁇ - when the dimer is formed by bonding by the presence, in the acoustic Kiyabite in mouse liver It is a figure showing a threshold of one shot.
  • Fig. 24 shows an example of the test results according to the evaluation experiment II. Rosebengal dimer, ellis mouth succinoacetamide dimer, eosin isothiosinate dimer, fluorescein male The threshold of acoustic cavitation was lower in all of the mid dimers than in the case where no ultrasonic action inducer was administered.
  • Test Example 14 “One molecule of xanthene dye is one (CH 2 ). Confirmation test of antitumor effect (tumor growth inhibition rate) of dimer and its derivative formed by binding together
  • Figure 25 shows the tumor growth inhibition rate when mice were administered with Rose Bengal dimer and Elis succinoacetoamide dimer and irradiated with ultrasound.
  • Fig. 25 shows an example of the test results according to Evaluation Experiment D, and shows the results for dioxbengal dimer and erythrox cinnamate acetamide dimer.
  • the inhibition rate of tumor growth with ultrasound irradiation was 10.1% in the control experiment, whereas it was 70.5% when Rose Bengal dimer was used, and In contrast, when Eris mouth succinoacetamide dimer was used, it was 73.2%, and the antitumor effect was about 7 times higher.
  • the antitumor effect of the rose pengal dimer in this test example is about twice that of the antitumor effect of rose bengal monomer in test example 3.
  • the antitumor effect in this test example was determined from the results of Test Examples 11 and 12. It was confirmed that the ultrasonic action inducer of the present invention was obtained by the effect of lowering the threshold value of acoustic cavitation and the effect of promoting the chemical reaction of sound. It should be noted that a dimer of a xanthene dye having a functional group other than an acetoacetamide group capable of binding to a thiol group or an amino group also has an antitumor effect equivalent to that of an erythrocyte sio-doacetamide dimer.
  • the threshold value of sound cavitation can be reduced, and irradiation of ultrasonic waves with low acoustic intensity can benign or malignant tumors and calculi. Treatment can be performed safely.
  • the present invention is summarized as follows.
  • a xanthene dye containing a xanthene ring or It contains a compound consisting of a derivative of a xanthene dye (including a dimer) and is an agent that induces the action of ultrasound that lowers the threshold of sound intensity that produces acoustic cavitation.
  • halogen halogenated Asetoami de group, male imide group , Aziridine, isothiocyanate, succinimid, or sulfonyl chloride.
  • the threshold of acoustic intensity for the generation of acoustic cavitation can be lowered, and the treatment of benign or malignant tumors and calculi can be safely performed by irradiating low-intensity ultrasonic waves.

Abstract

Drugs containing compounds of xanthene dyes or derivatives thereof (including dimers) having xanthene ring(s) and inducing an ultrasonic action of lowering the threshold of acoustic strength causing acoustic cavitation, wherein any of R1 to R8 bonded to carbon atoms of the xanthene dye skeleton is a functional group capable of chemically binding to a halogeno, thiol or amino group (selected from among halogenated acetamide, maleimide, aziridine, isothiocyanate, succinimide and sulfonyl chloride). Because of being able to lower the threshold, these drugs make it possible to safely treat benign or malignant tumors or stones by the irradiation with ultrasonic waves of a low acoustic strenght.

Description

明 細 書 超音波作用を誘導する薬剤及びこれを用いる超音波装置 技術分野  Description: Agent for inducing ultrasonic action and ultrasonic device using the same
本発明は, 音響キヤビテーシヨンを用いる腫瘍又は結石の治療, 超音 波による化学反応, 超音波による気泡発生, 気泡を用いる超音波造影, 又は液体の殺菌等に於ける, 音響キヤビテーシヨンの生成の闞値を低下 させる作用を有する化合物を含む超音波作用を誘導する薬剤, 及びこれ を用いる超音波装置に関する。 背景技術  The present invention relates to a method for treating acoustic or cavitation using acoustic cavitation, a chemical reaction by ultrasonic waves, generation of bubbles by ultrasonic waves, ultrasonic imaging using bubbles, or sterilization of a liquid. The present invention relates to an agent for inducing an ultrasonic action, which contains a compound having an action for reducing the effect of an ultrasonic wave, and an ultrasonic apparatus using the same. Background art
体外から収束超音波を照射して, 腫瘍, 結石等の治療を行なう技術は, 開腹手術に較べ低侵襲であリ, 患者の手術中の体力低下や手術後の生活 の質 (Qu a l i t y o f L i f e ) に関して原理的に優れておリ, 今後社会的に価値を高めて行くものと考えられる。 収束超音波の照射に よリ治療効果が得られる機構, 及び超音波の照射による化学反応の促進 の機構として, 音響キヤビテ一シヨンが重要な役割を担っていると考え られている。 ジャーナル ォブ アコウスティカル ソサエティ一 ォ ブ アメリカ ( J . A c 0 u s t . S o c . Am. , 第 89巻, 274 0頁, 1 99 1年) には, 生体中で音響キヤビテーシヨンを生じ気泡が 生成すると, 生成した気泡により超音波の造影効果が得られることが記 載されている。  Techniques for treating tumors, calculi, etc. by irradiating focused ultrasound from outside the body are less invasive than open surgery, lowering physical strength during surgery and quality of life after surgery (Quality of Life). ) Is excellent in principle, and is considered to increase social value in the future. Acoustic cavitation is considered to play an important role in the mechanism by which the therapeutic effect can be obtained by the irradiation of convergent ultrasonic waves, and in the mechanism of promoting the chemical reaction by the irradiation of ultrasonic waves. In the Journal of Acoustical Society of America (J. Acust. Soc. Am., Vol. 89, p. 2740, 1999), acoustic cavitation occurs in the living body and bubbles It is described that when generated, the generated bubbles can produce an ultrasound contrast effect.
従来, 音響キヤビテ一シヨンの生成 ·圧壊を効率的に行なう方法とし て, 専ら物理的な手段を用いる方法が提案されてきた。 例えば, 特開平 2- 1 26848号公報には, 1 ms e c〜 1 00m s e cの時間間隔 で音場を切り変えて超音波を照射する技術が記載されている。 特開平 2 - 1 26848号公報に記載の技術では, 音響キヤビテーシヨンの生成 に要する超音波の照射時間が 1 ms e c〜 1 00m s e cであることに 着目し, 超音波の波面が異なる 2種類の音場を, 1 m s e c〜 1 00m s e cの時間間隔で切替えながら超音波を照射し, 一方の音場により生 成した音簪キヤビテーシヨンを, もう一方の音場により圧壊するという サイクルを繰り返し行なって, 音場を切替えない場合に較べて, 音響化 学作用の効率を同じ超音波パワーに於いて一桁ほど改善している。 Hitherto, as a method for efficiently generating and crushing acoustic cavities, a method using exclusively physical means has been proposed. For example, Japanese Patent Application Laid-Open No. 2-126848 describes a technique of irradiating an ultrasonic wave by changing a sound field at a time interval of 1 ms ec to 100 msec. JP Hei 2 -The technology described in JP-A-26848 focuses on the fact that the ultrasonic irradiation time required to generate acoustic cavitation is 1 msec to 100 msec, and two types of sound fields with different ultrasonic wavefronts are used. The sound field is switched by repeating the cycle of irradiating ultrasonic waves while switching at time intervals of 1 msec to 100 msec, and crushing the hairpin cavitation generated by one sound field by the other sound field. The efficiency of sonochemical action is improved by an order of magnitude at the same ultrasonic power compared to the case without.
また, U l t r a s o n i c s S o n o c h em i s t r y v o 1. 3, No. 1 , p p . 1 - 6 ( 1 996 ) (K awa b a t a, K a n d Umemu r a, S ) には, 通常反射物が存在する場合のみ に得られる, 音響キヤビテーションの生成に有利な波形を持つ超音波を, 反射物がない状況に於いても得る第 2高調波重畳法の技術が記載されて おり, 音響キヤビテーシヨンの生成に有利な超音波波形として, 1つの 周波数成分をもつ波形に, この 1つの周波数成分の倍周波を重畳して使 用し, 複数の中心周波数を持つ超音波を同時に生体に照射する時には, 超音波照射による治療に於いて超音波照射の効果の増進及び安全性の向 上への寄与が期待される。  In addition, Ultrasonics Sonoch em istryvo 1.3, No. 1, pp. 1-6 (1996) (Kawa bata, K and Umemu ra, S) usually obtains only when there is a reflective object. The technique of the second harmonic superposition method, which obtains an ultrasonic wave having a waveform that is advantageous for generating acoustic cavitation even in a situation where there is no reflector, describes an ultrasonic wave that is advantageous for generating acoustic cavitation. When a multiple frequency of this one frequency component is superimposed on a waveform having one frequency component and used as a sound wave waveform, and a living body is irradiated with ultrasonic waves having multiple center frequencies at the same time, treatment by ultrasonic irradiation is used. It is expected that the effect of ultrasonic irradiation will be enhanced and safety will be improved in the future.
また, 特公平 6— 29 1 96号公報には, 超音波の抗腫癌効果を化学 的に高める方法として, 超音波の化学作用により活性酸素を生成する物 質としてボルフィ リン等の物質を用いる方法が記載されているが, ポル フイ リン等の物質は, 超音波により生じた音響キヤビテ一ションにより 2次的に活性酸素を生じる機能を有している力、', 音響キヤビテーシヨン を生成する閾値の低下そのものを引き起こすことはできない。  In Japanese Patent Publication No. 6-29196, as a method of chemically enhancing the antitumor cancer effect of ultrasound, a substance such as porphyrin is used as a substance that generates active oxygen by the chemical action of ultrasound. Although the method is described, a substance such as porphyrin has a force that has a function of generating active oxygen secondary by acoustic cavitation generated by ultrasonic waves, and a threshold value for generating acoustic cavitation. Can not cause a decline in
発明の開示 Disclosure of the invention
従来技術での物理的な音場の工夫による方法では, 特に複数の超音波 発生源を用いて超音波を収束させて患者に照射する場合, 個々の超音波 W In the conventional method based on the physical sound field, individual ultrasonic waves are converged, especially when the ultrasonic waves are converged and irradiated to the patient using multiple ultrasonic sources. W
3 Three
発生源から照射される超音波同士の音響強度及び相対的な位相差を一定 の関係に保持したまま目的部位に到達させる必要があるため, 生体等の 音響的に不均一な対象では, 予想される治療効果 (均一な対象で得た効 果) が必ずしも得られない場合が考えられる。 化学的な手法により音響 キヤビテーシヨンを生成する音響強度の閾値 (以下, 単に 「音響キヤビ テーシヨンの閾値」 と略す) の低下が可能であれば, 不均一な対象に対 しても治療効果を損なうことなく超音波による治療が可能となる。 しか し, 従来報告されている超音波生体作用の増強物質では, 音響キヤビテ ーシヨンの閾値を低下させる機能を持たせることを念頭に置いていなか つた。  Since it is necessary to reach the target site while maintaining the sound intensity and the relative phase difference between the ultrasonic waves emitted from the source in a constant relationship, it is expected for an acoustically nonuniform object such as a living body. In some cases, a therapeutic effect (effect obtained on a uniform subject) may not always be obtained. If the threshold of the sound intensity at which acoustic cavitation is generated by a chemical method (hereinafter simply referred to as “acoustic cavitation threshold”) can be reduced, the therapeutic effect will be impaired even for non-uniform objects. And treatment by ultrasound is possible. However, we did not keep in mind that the conventionally reported substances that enhance the biological effects of ultrasound have the function of lowering the threshold of acoustic cavitation.
音響キヤビテ一シヨンの閾値は, 液体 (生体では水) の界面張力及び 粘性により変化することが知られている。 これまで, 比較的低濃度の物 質により水の粘性を変化させることは知られておらず, 水の粘性を変化 させ, 音響キヤビテーシヨンの閎値を低下させることは実際上困難であ つた。 比較的少量の界面活性剤の添加により, 界面張力を変化させるこ とができ, 界面張力を変化させることによリ音響キヤビテーシヨンの閾 値を変化させることが考えられる。 水中での音響キヤビテーションは, 水分子間に空洞をつく リ微小な気泡を生成する過程, 微小な気泡が成長 する過程, 及び成長した気泡が圧壊する過程からなっている。 最初の微 小な気泡を生成する過程が, 界面活性剤による界面張力の低下により, より低い音響強度で進行することが期待されるが, 実際には, 界面活性 剤の存在により音響キヤビテーション閾値はむしろ高くなることが知ら れている ( L. A. C r um : N a t u r e v o l . 278 , n o. 8, p p. 1 48— 149 ( 1 979 ) ) 。 音響キヤビテーションの閾 値の低下には, 音響キヤビテーションの最後の過程に於ける気泡の圧壊 に於いて, 界面張力が高いことが要求されると考えられる。 単に界面活 性作用又は粘性に着目したのでは, 低濃度の物質により音響キヤビテ一 ション閾値を低下させることはできなかった。 It is known that the threshold of acoustic cavitation changes depending on the interfacial tension and viscosity of a liquid (water in living organisms). Until now, it has not been known that the viscosity of water is changed by relatively low-concentration substances, and it has been practically difficult to change the viscosity of water and reduce the 閎 value of the acoustic cavitation. The addition of a relatively small amount of surfactant can change the interfacial tension, and changing the interfacial tension can change the threshold of acoustic cavitation. Acoustic cavitation in water consists of the process of creating microbubbles that create cavities between water molecules, the process of growing microbubbles, and the process of collapsing the grown bubbles. It is expected that the process of generating the first microbubbles will proceed at a lower acoustic intensity due to the decrease in interfacial tension due to the surfactant, but in actuality, the presence of the surfactant will result in acoustic cavitation. It is known that the threshold is rather high (LA Crum: Nature vol. 278, no. 8, pp. 148-149 (1799)). Decreasing the threshold value of acoustic cavitation may require a high interfacial tension in the collapse of bubbles in the last stage of acoustic cavitation. Focusing solely on surfactant activity or viscosity, acoustic cavities can be created by using low-concentration substances. It was not possible to lower the threshold.
本発明の目的は, 従来技術のアプローチでは不可能であった, 音響キ ャビテーシヨンをより低い音響強度で生成すること可能とする, 超音波 作用を誘導する薬剤 (以下, 超音波作用誘導 (又は誘引) 剤と呼ぶ) を 提供することにあり, 特に, 音響キヤビテ一シヨンにより生成する水酸 基ラジカル等の短寿命化学種, 及びこの短寿命化学種が原因して 2次的 に生成する化学種に基づく化学的治療を行なうため, 短寿命化学種の化 学作用を抑制 (阻止) しない超音波作用誘導剤, 及びこの薬剤を用いる 超音波装置を提供することにある。  It is an object of the present invention to provide an agent that induces an ultrasonic action (hereinafter referred to as an ultrasonic action-inducing (or attraction) technique, which makes it possible to generate acoustic cavitation with lower acoustic intensity, which was not possible with the prior art approach. In particular, short-lived chemical species such as hydroxyl radicals generated by acoustic cavitation, and secondary generated chemical species caused by these short-lived chemical species. An object of the present invention is to provide an ultrasonic action inducer that does not suppress (prevent) the chemical action of short-lived chemical species in order to perform a chemical treatment based on the drug, and to provide an ultrasonic apparatus using the drug.
本発明の超音波作用誘導剤は, キサンテン環を含むキサンテン染料又 はキサンテン染料の誘導体からなる化合物を含み, 音響キヤビテーショ ンを発生させる音響強度の閾値を低下させる薬剤であり, 上記誘導体は キサンテン染料の骨格の炭素原子に結合する 2以上のハロゲンを有する こと, 上記誘導体はキサンテン染料の骨格の炭素原子に結合する, ハロ ゲン化ァセ卜アミ ド基, マレイミ ド基, アジリジン基, イソチオシァネ —卜基, スクシンイミ ド基, スルホニルクロライ ド基の何れかの官能基 を有し, この官能基はチオール基又はアミノ基と化学結合可能であるこ と, 等に特徴を有する。 例えば, 第 4図に示す R 2が, ハロゲン化ァセ トアミ ド基, マレイミ ド基, アジリジン基, イソチオシァネート基, ス クシンイミ ド基, スルホニルクロライ ド基の何れかの官能基である。 更 に, 上記誘導体は, 第 4図に於いて, O H及び C O O Hの Hが N aに置 換された O N a, C O O N aの構造を有し, キサンテン染料の塩でもよ レゝ The ultrasonic action inducer of the present invention comprises a compound comprising a xanthene dye containing a xanthene ring or a derivative of a xanthene dye, and is an agent for lowering the threshold of acoustic intensity for generating acoustic cavitation. Having two or more halogens bonded to the carbon atom of the skeleton of the xanthene dye, the above derivative being bonded to the carbon atom of the skeleton of the xanthene dye, a halogenated acetate amide group, a maleimide group, an aziridine group, and an isothiocyanate group. Group, a succinimide group, or a sulfonyl chloride group, and this functional group is characterized in that it can be chemically bonded to a thiol group or an amino group. For example, R 2 shown in Fig. 4 is any functional group of a halogenated acetamido group, maleimide group, aziridine group, isothiocyanate group, succinimid group, and sulfonyl chloride group. . Further, the above derivative has the structure of ONa and COONa in which H of OH and COOH is replaced by Na in FIG. 4, and may be a salt of a xanthene dye.
また, キサンテン環を含むキサンテン染料又はキサンテン染料の誘導 体の 2分子を, ― (C H 2 ) „- (但し, 3≤n (整数) により 結合した物質 (以下, キサンテン染料又はキサンテン染料の誘導体の 2 量体と呼ぶ) を含み, 音響キヤビテ一シヨンを発生させる音響強度の閾 値を低下させる薬剤であり, 上記誘導体はキサンテン染料の骨格の炭素 原子に結合する 2以上のハロゲンを有すること, 上記誘導体はキサンテ ン染料の骨格の炭素原子に結合する, ハロゲン化ァセトアミ ド基, マレ イミ ド基, アジリジン基, イソチオシァネート基, スクシンイミ ド基, スルホニルクロライ ド基の何れかの官能基を有し, この官能基はチォー ル基又はアミノ基と化学結合可能であること, 等に特徴を有する。 例え ば, 第 1 0図に示す R 2が, ハロゲン化ァセトアミ ド基, マレイミ ド基, アジリジン基, イソチオシァネート基, スクシンイミ ド基, スルホニル クロライ ド基の何れかの官能基である。 更に, 上記誘導体は, 第 1 0図 に於いて, O Hの Hが N aに置換された O N aの構造を有し, キサンテ ン染料又はキサンテン染料の誘導体の 2量体の塩でもよい。 In addition, a substance in which two molecules of a xanthene dye or a derivative of a xanthene dye containing a xanthene ring are linked by — (CH 2 ) „-(3 ≤ n (integer) (hereinafter, a xanthene dye or a derivative of a xanthene dye derivative) Dimer), and the threshold of the sound intensity to generate acoustic cavitation. The above derivative has two or more halogens bonded to the carbon atom of the skeleton of the xanthene dye. The derivative has a halogenated acetoamide group bonded to the carbon atom of the skeleton of the xanthene dye. It has a maleimide group, aziridine group, isothiocyanate group, succinimide group, or sulfonyl chloride group, which can be chemically bonded to a thiol group or an amino group. ,, Etc. For example, R 2 shown in FIG. 10 is any one of a halogenated acetoamide group, a maleimide group, an aziridine group, an isothiocyanate group, a succinimid group, and a sulfonyl chloride group. Further, the above derivative has a structure of ONa in which H of OH is replaced by Na in FIG. 10, and may be a salt of a xanthene dye or a dimer of a derivative of the xanthene dye.
本発明の超音波作用誘導剤を用いる超音波装置は, キサンテン環を含 むキサンテン染料又はキサンテン染料の誘導体からなる化合物 ( 2量体 も含む) を含み, 音響キヤビテーシヨンを生成させる音響強度の閾値を 低下させる超音波作用誘導剤を被検体の目的の部位に投与する手段と, 1 O WZ c m 2以下の音響強度の複数の中心周波数を持つ超音波を重畳 して目的の部位に照射する手段と, 目的の部位からの超音波を検出する 手段とを有することに特徴がある。 An ultrasonic apparatus using the ultrasonic wave inducer of the present invention includes a compound (including a dimer) of a xanthene dye containing a xanthene ring or a derivative of a xanthene dye, and has a threshold of an acoustic intensity for generating an acoustic cavitation. A means for administering the ultrasonic action inducer to be reduced to a target site of the subject; and a means for superimposing ultrasonic waves having a plurality of center frequencies having an acoustic intensity of 1 O WZ cm 2 or less and irradiating the target site. And means for detecting ultrasonic waves from a target site.
本発明の超音波作用誘導剤を用いる超音波治療方法は, キサンテン環 を含むキサンテン染料又はキサンテン染料の誘導体からなる化合物 ( 2 量体も含む) を含み, 音響キヤビテーシヨンを生成させる音響強度の閾 値を低下させる超音波作用誘導剤を被検体の目的の部位に投与する工程 と, 1 O WZ c m 2以下の音響強度の複数の中心周波数を持つ超音波を 重畳して目的の部位に照射する工程と, 目的の部位からの超音波を検出 する工程とを有することに特徴がある。 An ultrasonic treatment method using the ultrasonic action inducer of the present invention comprises a compound comprising a xanthene dye containing a xanthene ring or a derivative of a xanthene dye (including a dimer), and comprises a threshold of acoustic intensity for generating acoustic cavitation. Administering an ultrasonic action-inducing agent to the target site on the subject, and irradiating the target site with superimposed ultrasonic waves having multiple center frequencies with an acoustic intensity of 1 O WZ cm 2 or less And a step of detecting ultrasonic waves from a target site.
音響キヤビテーションの過程に於いて界面張力が低いことが不利に作 用して, 界面活性剤が音響キヤビテーシヨンを促進させないと考えられ る。 また, 洗剤で顕著なように, 一般に界面活性剤は比較的大きな気泡 を形成するため, 生成した大きな気泡が音響キヤビテーシヨンの生成に 不利に作用していると考えられる。 更に, 界面活性剤の強い界面活性作 用は生物の細胞膜等を破壊する作用があり, 強い生体毒性の原因となり, 仮に界面活性剤の中に音響キヤビテーシヨンの生成を促進する働きを持 つ物質があるとしても生体への応用は困難である。 これの観点から, 我 々は界面活性剤と同様に親水性と親油性 (脂溶性) を有し, 且つ強い界 面活性作用を持たない有機化合物の中に, 水分子と弱い相互作用を有し 水分子間の相互作用を弱めて音響キヤビテーシヨンを生成しやすく し, なお且つ界面張力をあまリ低下させない物質, 又は弱い起泡能力により 音藿キヤビテーシヨンに適切な大きさの気泡を生成する物質の探索を行 なってきた。 特に, 音響キヤビテーシヨンの化学作用を治療に用いる場 合, 音響キヤビテーシヨンにより生じた短寿命化学種による化学作用を 抑制 (阻止) しない物質が望ましい。 It is thought that the surfactant does not promote acoustic cavitation due to the disadvantageous effect of low interfacial tension during acoustic cavitation. You. In addition, surfactants generally form relatively large bubbles, as is prominent in detergents, and it is considered that the large bubbles that have formed adversely affect the formation of acoustic cavitation. In addition, the strong surfactant action of surfactants has the effect of destroying cell membranes of living organisms, causing strong biotoxicity. If surfactants have a substance that has the function of promoting the production of acoustic cavitation. Even so, application to living organisms is difficult. From this point of view, we have a weak interaction with water molecules in organic compounds that have hydrophilicity and lipophilicity (lipophilicity) like surfactants, and do not have strong surfactant activity. A substance that weakens the interaction between water molecules to facilitate the generation of acoustic cavitation and that does not reduce the interfacial tension in general, or a substance that generates bubbles of appropriate size for sound cavitation due to its weak foaming ability. I've been searching. In particular, when the chemical action of acoustic cavitation is used for therapy, a substance that does not inhibit (block) the chemical action of the short-lived species generated by acoustic cavitation is desirable.
色素は, 光照射による短寿命化学種の生成に使用され, 短寿命化学種 の消去剤として働く可能性は低いと考えられ, 色素を対象にして探索を 行なった。 探索に於いて, 音響キヤビテーシヨンの生成の効果の評価は, 分調波の発生により確認する手法を用いて行った。 この手法は音響的な 測定であり, 他の手法に比較して直接的に気泡の運動そのものを測定で きること, 超音波により水酸基ラジカル等の短寿命化学種が生成する際 に分調波の生成が必ず見られること (Ke n— i c h i K a w a b a t a a n d S h i n— i c h i r o Umemu r a ; Th e J o u r n a 1 o f Ph y s i c a l C h em i s t r y v o l . 1 00, n o. 48, p p. 1 8784— 1 8789 ( 1 996 ) ) 等 の特徴がある。  Dyes are used to generate short-lived species by light irradiation, and are unlikely to act as scavenging agents for short-lived species. In the search, the evaluation of the effect of acoustic cavitation generation was performed using a method that confirmed the generation of subharmonic waves. This method is an acoustic measurement and can directly measure the movement of the bubble itself compared to other methods. When ultrasonic waves generate short-lived chemical species such as hydroxyl radicals, the subharmonic wave can be measured. The generation must be observed (Ken—ichi Kawabataand Shin—ichiro Umemu ra; The J ourna 1 of Ph ysical Chem istryvol. 100, no. 48, p p. 1 996))).
第 i図に示す構成の, 液体中での音響キヤビテーションの生成の測定 を行なう超音波装匱 (構成の詳細は後述する) により, 超音波を照射し 試料からの音響信号を測定し, 分調波が生成しているか否かを調べた。 第 2図は, 音響キヤビテ一シヨンが生じている場合の典型的な音響信号 のスペク トルである (第 2図は, ローズベンガルの 0. I mM (ミリモ ル) 濃度の溶液に, 1 MH z及び 2MH zの超音波を同時に 5 W/c m 2の強度で 1分間照射し, 液体中で音響キヤビテーシヨンが生成してい る時に得られる典型的な音響信号のスぺク トルを示す図であり, 縦軸は 1 X 10"8 (mV) 2を基準とした平均信号強度の相対値を示す) 。 Ultrasonic waves are applied by an ultrasonic probe (details of the configuration will be described later) that measures the generation of acoustic cavitation in a liquid with the configuration shown in Fig. I. The acoustic signal from the sample was measured to determine whether subharmonics were generated. Figure 2 shows the spectrum of a typical acoustic signal when acoustic cavitation occurs. (Figure 2 shows a 1 MHz solution of Rose Bengal in a 0.1 mM (millimolar) solution. FIG. 4 is a diagram showing a typical spectrum of an acoustic signal obtained when acoustic cavitation is generated in a liquid by simultaneously irradiating ultrasonic waves of 2 MHz and 2 MHz at an intensity of 5 W / cm 2 for 1 minute. The vertical axis indicates the relative value of the average signal intensity based on 1 × 10 ″ 8 (mV) 2 ).
キサンテン系色素のエリス口シン, チアジン系色素のメチレンブルー, ポルフィリン系色素のへマトポルフィリン, アジン系色素のリボフラビ ンの各色素の濃度 0. 1 mM (ミリモル) の溶液に, 1 MH z及び 2M H zの超音波を同時に 5 W/c m 2の強度で 1分間照射し照射中に発生 する分調波信号を 1秒毎に測定した。 照射時間中の分調波の振幅の 2乗 平均値を, 1 X 1 0— 7 (mV) 2を基準とした相対値として分調波強度 とし, 分調波の生成の程度の指標とした。 分調波の信号強度が大きい程, 音響キヤビテーシヨンの生成が盛んであることを示し, より低い音響強 度で音響キヤビテーシヨンが生成することを意味する。 1MHz and 2M H2 in a 0.1 mM (mmol) solution of the xanthene dye erythroxin, the thiazine dye methylene blue, the porphyrin dye hematoporphyrin, and the azine dye riboflavin Ultrasonic waves of z were simultaneously irradiated at an intensity of 5 W / cm 2 for 1 minute, and a subharmonic signal generated during the irradiation was measured every second. The mean square value of the amplitude of the subharmonic waves in the irradiation time, the subharmonic intensity as relative values relative to the 1 X 1 0- 7 (mV) 2, was used as an indicator of the degree of generation of subharmonics . The higher the signal strength of the subharmonic wave, the more active the acoustic cavitation is, which means that the acoustic cavitation is generated at a lower acoustic intensity.
第 3図は, 各種色素を含む溶液を超音波照射した時に生成する分調波 の強度を示す図であり, 対照実験はリン酸緩衝液に超音波を照射して得 られた分調波強度を示す。 第 3図から明らかなように, キサンテン系色 素のエリス口シンの場合のみ, 大きな分調波の信号が得られいる。  Figure 3 shows the intensity of subharmonic waves generated when a solution containing various dyes was irradiated with ultrasonic waves. In the control experiment, the intensity of subharmonic waves obtained by irradiating ultrasonic waves to a phosphate buffer solution was measured. Is shown. As is evident from Fig. 3, large subharmonic signals are obtained only in the case of xanthene-based erythrocycin.
更に, キサンテン染料に分類される色素, フルォレセイン, テ卜ラク 口口フルォレセイン, ェォシン Y, エリス口シン, フロキシン B, ロー ズベンガルの各色素の濃度 0. l mW [の溶液に, 1 MHz及び 2 MH z の超音波を同時に 5 WZ cm 2の強度で 1分間照射し照射中に発生する 分調波信号を 1秒毎に測定した結果を第 6図に示す。 In addition, a solution of the dyes classified as xanthene dyes, fluorescein, tetralucorin fluorescein, eosin Y, ellis cincinus, phloxin B, and rose bengal, at a concentration of 0.1 mW [1 MHz and 2 MHz Fig. 6 shows the results of simultaneously irradiating an ultrasonic wave of z with an intensity of 5 WZ cm 2 for 1 minute and measuring the subharmonic signal generated during the irradiation every second.
第 4図は, 本発明の試験例に於いて用いるキサンテン環を含むキサン テン染料又はキサンテン染料の誘導体からなる化合物の構造を示す図で あり, 第 5図は, 本発明の試験例に於いて用いるキサンテン染料又はキ サンテン染料の誘導体からなる化合物の構造を示す図である。 キサンテ ン染料は, フタル酸の誘導体でもあり, フタレイン染料とも呼ばれてお り, フエノールフタレンを除く全ては分子内にキサンテン環を含んでい る。 PH 7. 4では, キサンテン染料は, 第 4図に示す構造を有し, OH及びCOOHのHがN aに置換された ON a, COON aの塩の構 造の化合物が通常広く使用される。 フルォレセイン (F 1 u 0 r e s c e i n ) , ジクロロフルォレセィン ( 2' 7 ' -D i c h l o r o f l u o r e s c e i n) , テトラクロ口フルォレセィン ( 4, 5, 6, 7 — T e t r a c h l o r o f l u o r e s c e i n ) , ェォシン Υ ( Ε o s i n Y ) , エリス口シン (E r y t h r o s i n) , フロキシン B ( P h 1 o x i n B) , ローズべンガル (Ro s e b e n g a l ) は, 第 4図に示す R R2, R3, R4, R5, Re, R7, R8を, 第 5図 に示す元素とする構造を持つ。 なお, OH及び CO 0Hの Hが N.aに置 換された ON a, COON aの塩でもよい。 FIG. 4 is a diagram showing the structure of a compound comprising a xanthene dye or a derivative of a xanthene dye containing a xanthene ring used in a test example of the present invention. FIG. 5 is a diagram showing the structure of a compound comprising a derivative of a xanthene dye or a xanthene dye used in a test example of the present invention. Xanthene dyes are also derivatives of phthalic acid and are also called phthalein dyes. All but phenolphthalene contain a xanthene ring in the molecule. In PH 7.4, the xanthene dye has the structure shown in Fig. 4, and a compound having a salt structure of ONa and COONa in which H of OH and COOH is replaced by Na is generally widely used. . Fluorescein (F 1 u 0 rescein), dichlorofluorescein (2 '7' -D ichlorofluorescein), tetrachloro mouth fluorescein (4,5,6,7 — Tetrachlorofluorescein), eosin Ε (osin Y) mouth Shin (E rythrosin), phloxine B (P h 1 oxin B) , rose downy Bengal (Ro sebengal) is, RR 2, R 3 shown in FIG. 4, R 4, R 5, Re , R 7, R 8 Has the structure shown in Fig. 5 as an element. The salt of ONa or COONa in which H of OH and COOH is replaced by Na may be used.
第 6図は, キサンテン染料又はキサンテン染料の誘導体を含む溶液を 超音波照射した時に生成する分調波の強度を示す図であり, 縦軸は, 分 調波強度を 1 X1CT7 (mV) 2を基準とする相対値で示す。 第 6図から 明らかなように, ハロゲン原子を含むキサンテン染料について音響キヤ ビテ一シヨン生成に必要な音響強度を低下させる効果が見られ, 第 4図 に示すキサンテン染料の炭素原子の骨格にハロゲン原子が結合している 化合物が, 音響キヤビテ一シヨンの生成に必要な音響強度を低下させる 効果があり, 特に, ハロゲン原子を分子内に 2個以上有する化合物につ いて, 効果が大きいことを確認した。 Figure 6 is a diagram showing the intensity of subharmonic waves generated when a solution containing a xanthene dye or a derivative of a xanthene dye is irradiated with ultrasonic waves. The vertical axis represents the intensity of the subharmonic wave at 1 X 1 CT 7 (mV) 2 Is shown as a relative value based on. As is clear from Fig. 6, the effect of the xanthene dye containing a halogen atom on the acoustic intensity required for the production of acoustic cavitation was reduced, and the halogen atom was added to the skeleton of the carbon atom of the xanthene dye shown in Fig. 4. It has been confirmed that the compound with the compound has the effect of lowering the sound intensity required for the generation of acoustic cavitation, especially for compounds having two or more halogen atoms in the molecule. .
ガン細胞又は赤血球等の細胞が浮遊する液に於ける音響キヤビテーシ ョンの閾値力、', 水中に於ける音響キヤビテーシヨンの閾値よりも低いと いう事実は, 細胞表面に於ける蛋白質等が音霤キヤビテーシヨンの核と なることに起因すると考えられる。 生体中に於いても, 体液 (水) に於 いてキヤビテ一ションの閾値を低下させるよリ, 体液中の細胞をキヤビ テ一シヨンの核とする方が効果が高いとの考えに立ち, 細胞表面の近傍 に, よリ高い割合で存在可能な化合物について探索した。 The fact that the threshold force of acoustic cavitation in a liquid in which cells such as cancer cells or red blood cells are suspended, ', is lower than the threshold of acoustic cavitation in water, means that proteins on the cell surface may With the core of cavitation It is thought to be due to Based on the belief that it is more effective to lower the threshold of cavitation in body fluids (water) in living organisms, it is more effective to use cells in body fluids as nuclei of cavitation. We searched for compounds that could be present at a higher rate near the surface.
キサンテン染料に, アミノ酸のチオール基又はアミノ基と結合可能な 官能基を化学結合した化学物質は, 細胞膜への親和性が高くなる (C o b b, C a n d B e t h, A ; B i o c h em i s t r y o 1. 29, No. 36, p p. 8283-8290 ( 1 990) ) 。 チ オール基又はアミノ基と結合可能な官能基として, ハロゲン化ァセトァ ミ ド, マレイミ ド, アジリジン, ィソチオシァネート, スクシンィミ ド, スルホニルクロライ ドが知られている。 チオール基又はアミノ基と結合 可能な官能基を化学結合したキサンテン染料の誘導体について, 音響キ ャビテーシヨンの生成に必要な音響強度を低下させる効果を調べた。 第 7図は, チオール基又はアミノ基と化学結合可能な官能基を有する キサンテン染料又はキサンテン染料の誘導体からなる化合物の構造を示 す図である。 これらのキサンテン染料の誘導体の構造は, 第 4図に示す R,, R2, R3, R4, R5, R6) R7, R 8を第 7図に示す元素又は官能 基とする。 なお, OH及び COOHの Hが N aに置換された ON a, C OON aの塩でもよい。 第 4図に示す R2を, ョ一ドアセトアミ ド基 ( I o d o a c e t am i d e g r o u p , イソチォシァネー卜基 ( I s o t h i o c y a n a t e g r o u p ) , マレイミ ド基 (Ma l e i m i d e g r o u p) とする, 第 7図に示すキサンテン染料の 誘導体, エリス口シンョードアセ卜アミ ド (E r y t h r o s i n— 5 - i o d o a c e t am i d e ) , エリス口シンイソチオシァネート ( E r y t h r o s i n— 5— i s o t h i o c y a n a t e ) , エリ スロシンマレイミ ド (E r y t h r o s i n - 5— m a 1 e i m i d e ) に関しては, 音響キヤビテーシヨンの生成に必要な音響強度を低下させ る機構に特に生体との相互作用が重要であるため, 生体 ( d d Yマウス (ォス, 5週齢) ) を用いて, 音響キヤビテーシヨンの閾値の低下の効 果を調べた。 Chemical substances in which a functional group capable of binding to a thiol group or amino group of an amino acid is chemically bonded to a xanthene dye have high affinity for cell membranes (Cobb, C and Beth, A; Biochemistry 1. 29, No. 36, pp. 8283-8290 (1990)). As a functional group capable of binding to a thiol group or an amino group, halogenated acetamide, maleimide, aziridine, isothiocyanate, succinimide, and sulfonyl chloride are known. For the xanthene dye derivative chemically bonded with a functional group capable of binding to a thiol group or an amino group, the effect of lowering the sound intensity required for generating sound cavitation was investigated. FIG. 7 is a diagram showing the structure of a compound comprising a xanthene dye or a derivative of a xanthene dye having a functional group capable of chemically bonding to a thiol group or an amino group. The structure of these xanthene dye derivatives is as follows: R, R 2 , R 3 , R 4 , R 5 , R 6) shown in Fig. 4 where R 7 and R 8 are the elements or functional groups shown in Fig. 7. . The salt of ONa or COONa in which H of OH and COOH is replaced by Na may be used. R 2 shown in FIG. 4 is an iodoacetamido group, an isothiocyanate group, a maleimide group, a derivative of a xanthene dye shown in FIG. For acoustic amide (Erythrosin-5-iodoacet amide), erythrosin-5-isothiocyanate, and erythrosin-5-ma1 eimide, acoustic cavitation Lowers the sound intensity required for generation Since interaction with the living body is particularly important for the mechanism, the effect of lowering the threshold of acoustic cavitation was examined using a living body (ddY mouse (os, 5 weeks old)).
第 7図に示す各化合物を投与量 5 0 m g / K g体重となるように d d Yマウスに投与して, 第 8図に示す, 生体中での音響キヤビテーシヨン の生成の測定を行なう超音波装置 (詳細は後述する) を用い, 0 . 5 Μ Η Ζ及び 1 M H zの超音波を, 1 : 1の音響強度比で照射し, マウス肝 臓からの分調波の生成及び組織ダメージの生成を観測した。 Each compound shown in Fig. 7 is administered to ddY mice at a dose of 50 mg / Kg body weight, and the ultrasonic device shown in Fig. 8 is used to measure the production of acoustic cavitation in a living body. (Details will be described later) using 0.5 Μ Ζ Ζ and 1 MHz ultrasonic waves at a sound intensity ratio of 1: 1 to generate subharmonic waves and tissue damage from mouse liver. Was observed.
第 9図は, チオール基又はアミノ基と化学結合可能な官能基を有する キサンテン染料又はキサンテン染料の誘導体からなる化合物が存在する 時の, マウス肝臓に於ける音響キヤビテーシヨンの閾値を示す図である。 第 9図に於いて, マウス肝臓に於ける音響キヤビテーションの閾値は, 分調波及び組織ダメージの双方を生成する最小音響強度として定義した。 第 9図に示す対照実験は, 音響キヤビテーション作用誘導剤の代わりに 生理的食塩水をマウスに投与して超音波を照射した。 マウスに投与する 各化合物の溶液の濃度を変化させて, 分調波の生成及び組織ダメージの 生成を観測した結果, 第 7図に示す物質何れに於いても, チオール基に 結合可能な官能基を持たないエリスロシンと比較して, 同等又は同等以 上の音響キヤビテーションの闞値の低下を示した。 チオール基又はアミ ノ基と結合可能な官能基を持たないエリス口シンを用いて, エリスロシ ンョ一ドアセ卜アミ ドを投与量 5 m g Z K g体重で投与した時と同じ音 響キヤビテ一シヨンの閾値の低下を生じるには, 1 0倍の投与量 5 0 m g Z K g体重で投与する必要があり, チオール基と結合可能な官能基を 持つ物質を用いて, より低濃度で音響キヤビテーシヨンの閾値の低下が 可能となった。 なお, チオール基又はアミノ基と結合可能な官能基であ る, ハロゲン化ァセ卜アミ ド基, マレイミ ド基, アジリジン基, イソチ オシァネ一卜基, スクシンイミ ド基, スルホニルクロライ ド基は, 第 4 図に示すキサンテン染料の炭素原子の骨格に於いて, Rい R2, R3, R4, R5, Rs, R7, R8の何れの位置にある場合にも, チオール基又 はァミノ基と結合可能であり, Rlt R2, R3, R4, R5, R6, R7, Raの何れの位置にある場合にも, 音響キヤビテーションの生成に必要 な音響強度を低下させる効果を有する。 また, チオール基又はアミノ基 と結合できる官能基を, 第 4図に示すキサンテン染料の炭素原子の骨格 に複数結合していてもよい。 FIG. 9 is a diagram showing threshold values of acoustic cavitation in mouse liver when a compound comprising a xanthene dye or a derivative of a xanthene dye having a functional group capable of chemically bonding to a thiol group or an amino group is present. In Figure 9, the threshold for acoustic cavitation in the mouse liver was defined as the minimum acoustic intensity that produced both subharmonics and tissue damage. In the control experiment shown in Fig. 9, physiological saline was administered to the mice instead of the acoustic cavitation inducer, and the mice were irradiated with ultrasonic waves. As a result of observing the generation of subharmonic waves and the generation of tissue damage by varying the concentration of each compound solution administered to mice, the functional groups capable of binding to the thiol group were observed for any of the substances shown in Fig. 7. Compared to erythrosine without γ, the 闞 value of acoustic cavitation was reduced to the same or higher level. The same acoustic cavitation threshold value as when erythro-cindoacetamide was administered at a dose of 5 mg ZK g body weight using an erythrocystine without a functional group capable of binding to a thiol group or an amino group. In order to produce a decrease in the concentration, it is necessary to administer a 10-fold dose of 50 mg ZK g body weight, and use a substance having a functional group capable of binding to a thiol group to lower the threshold value of acoustic cavitation at a lower concentration. This has been made possible. The halogenated acetamido group, maleimide group, aziridine group, isothiocyanate group, succinimid group, and sulfonyl chloride group, which are functional groups capable of binding to a thiol group or an amino group, are: the 4th Regardless of the position of R 2 , R 3 , R 4 , R 5 , R s , R 7 , or R 8 in the carbon atom skeleton of the xanthene dye shown in the figure, a thiol group or is capable of binding with Amino group, R lt R 2, R 3 , R 4, R 5, R 6, R 7, even when in any position of the R a, acoustic needed to generate acoustic Canon bi station It has the effect of reducing strength. Further, a plurality of functional groups capable of bonding to a thiol group or an amino group may be bonded to the carbon atom skeleton of the xanthene dye shown in FIG.
キサンテン染料又はキサンテン染料の誘導体は, 一般に親水性が高く, 生体に投与した場合に比較的短時間で生体から流出するので, キサンテ ン染料又はキサンテン染料の誘導体を生体中での音響キヤビテ一シヨン 作用誘導剤として用いる場合には, 比較的高濃度で生体に投与し, 投与 後は比較的短時間後に超音波を生体に照射するプロ卜コルが有効である。 特に, キサンテン染料又はキサンテン染料の誘導体は, 結石の治療, 気 泡を用いる超音波造影等に適すると考えられる。  Xanthene dyes and derivatives of xanthene dyes generally have high hydrophilicity and, when administered to a living body, flow out of the living body in a relatively short period of time. When used as an inducer, a protocol that administers to a living body at a relatively high concentration and irradiates the living body with ultrasonic waves in a relatively short time after the administration is effective. In particular, xanthene dyes or derivatives of xanthene dyes are considered to be suitable for treatment of calculi, ultrasonic imaging using bubbles, and the like.
しかし, 腫瘍の治療を考える場合には, 良性又は悪性の腫瘍の一部等 に親水性の高い物質を高濃度で存在させることが困難な場合があり, こ れら腫瘍の治療は, 従来のキサンテン染料を用いるだけでは充分ではな かった。  However, when considering the treatment of tumors, it may be difficult to allow highly hydrophilic substances to be present in high concentrations in a part of benign or malignant tumors. Using xanthene dye alone was not enough.
高い脂溶性を持つ音響キヤビテーシヨン作用誘導剤を得るために, 先ず, キサンテン染料と同様に親水性且つ親油性 (脂溶性) であり, 更に脂溶 性がキサンテン染料より高い物質を探索した。 色素について探索を行な つた力 第 3図に示すへマ卜ポルフィ リン, リボフラビン等の何れの色 素も音響キヤビテーシヨン作用誘導剤として有効ではなかった。 To obtain an acoustic cavitation effect inducer with high fat solubility, we first searched for a substance that was hydrophilic and lipophilic (lipid-soluble) in the same way as xanthene dyes, and had higher lipophilicity than xanthene dyes. Power of searching for dyes Neither hematoporphyrin nor riboflavin shown in Fig. 3 was effective as an acoustic cavitation effect inducer.
次に, キサンテン染料又はその誘導体に, 疎水性の基を付加した音響 キヤビテーシヨン作用誘導剤に関して探索を行なった。 化合物の疎水性 を高めるには, アルキル基を付加する手法が一般的であるが, この手法 で作られたキサンテン染料の誘導体は, 分子内に疎水的な部分と親水的 な部分とを持っため, 分子が水溶液や体液の中でミセル状に配向して存 在する可能性があリ, 水溶液や体液の中での分子の物理化学的性質が, キサンテン染料又はその誘導体の分子が本来持つ物理化学的性質と異な る可能性がある。 キサンテン染料又はその誘導体のもつ本来の物理化学 的性質をできるだけ変化させずに疎水性のみを変化させるには, 2量体 にすることが望ましいと考え, 2個のキサンテン染料又はその誘導体の 分子を, 疎水性のアルキレン基 (一 (CH2) π— : 3≤n (整数) 0 ) で架橋して結合した 2量体の構造を持つ化合物について探索した。 なお, 一 (CH2) „- ( 3≤ n (整数) ≤ 20 ) により 2分子のキサ ンテン染料又はその誘導体を架橋した 2量体の構造を有する化合物は, 文献 (Ph o t o c h em. Ph o t o b i o l . V o l . 47, No 4. , p p 55 1 - 557 ( 1 988 ) ) を参照して合成した。 第 1 0図は, キサンテン染料又はキサンテン染料の誘導体からなる分 子の 2個が— (CH2) n—により結合して形成される 2量体化合物の構 造を示す図である。 ― (CH2) n— ( 3≤n (整数) ≤ 20) により 2 分子のキサンテン染料又はその誘導体を架橋した 2量体の構造を有する 化合物をマウスに投与し, 第 8図に示す超音波構成の装置 (詳細は後述 する) を用いて, マウス肝臓からの分調波及び組織障害の生成により音 響キヤビテーシヨンの生成を測定した。 ローズベンガル, ローズべンガ ル 2量体 (構造は, 第 1 0図及び第 23図を参照) の各化合物を投与量 が 5 OmgZKg体重となるよう d dYマウスに投与して, 第 8図に示 す構成の超音波装置 (詳細は後述する) を用い, 0. 5MH z及びlM H zの超音波を, 1 : 1の音響強度比で同時に照射し, マウス肝臓から の分調波の生成及び組織ダメージの生成を観測した。 第 1 1図は, ロー ズベンガル, ローズベンガル 2量体が存在する時の, マウス肝臓に於け る音響キヤビテ一シヨンの閾値を示す図である。 第 1 1図に於いて, マ ウス肝臓に於ける音響キヤビテーションの閾値は, 分調波及び組織ダメ ージの双方を生成する最小音響強度として定義しだ。 第 1 1図に示す対 照実験では, 生理的食塩水マウスに投与して超音波を照射した。 マウス への, ローズベンガル 2量体の投与, ローズベンガルの投与では, ほぼ 同程度の音響強度に於いて音響キヤビテーシヨンを生成した。 この結果 から, 一 (C H 2 ) n - ( 3 < n (整数) ≤ 2 0 ) により 2分子のキサン テン染料又はその誘導体を架橋した 2量体の構造を有する化合物は, 疎 水性が高く, 且つ音響キヤビテーシヨンの生成に必要な音響強度を, キ サンテン染料又はその誘導体の 1分子と同程度に低下させる効果を持つ ことが判明した。 第 1 0図に於いて, O Hの Hが N aに置換された O N aの塩の構造の化合物とした場合にも同様の効果が得られた。 キサンテ ン染料又はその誘導体のモノマ一は, クロロフオルムに難溶性であるが, 2量体はクロロフオルムに易溶であり脂溶性が高い。 図面の簡単な説明 Next, we searched for an acoustic cavitation effect inducer in which a hydrophobic group was added to a xanthene dye or its derivative. In order to increase the hydrophobicity of a compound, a method of adding an alkyl group is generally used. Derivatives of xanthene dyes produced by this method have a hydrophobic part and a hydrophilic part in the molecule. Molecules may exist in an aqueous solution or body fluid in the form of micelles, and the physicochemical properties of the molecule in an aqueous solution or body fluid may be a xanthene dye or its derivative. It may be different from the physicochemical properties of the original molecules. In order to change only the hydrophobicity of the xanthene dye or its derivative without altering its original physicochemical properties as much as possible, it is desirable to make it a dimer. A search was made for compounds having a dimeric structure cross-linked by a hydrophobic alkylene group (1 (CH 2 ) π —: 3≤n (integer) 0). Compounds having a dimer structure in which two molecules of a xanthene dye or its derivative are cross-linked by one (CH 2 ) „-(3≤n (integer) ≤20) are described in the literature (Photochem. Ph otobiol). Vol. 47, No. 4, pp. 551-557 (1988)) Figure 10 shows that two of the molecules consisting of a xanthene dye or a derivative of a xanthene dye are — ( 2 is a diagram showing the structure of a dimer compound formed by bonding with CH 2 ) n — — (CH 2 ) n — (3≤n (integer) ≤20), whereby two molecules of a xanthene dye or its A compound having a dimeric structure obtained by cross-linking a derivative is administered to mice, and the generation of subharmonic waves and tissue damage from the liver of the mouse is performed using an ultrasonic device shown in Fig. 8 (details will be described later). The production of acoustic cavitation was measured by the method: Rose Bengal, Rose Bengal Dimer (Structure: Fig. 10 And each compound was administered to d dY mice at a dose of 5 OmgZKg body weight, using an ultrasonic device (see details later) with the configuration shown in FIG. Ultrasonic waves of 5 MHz and 1 MHz were simultaneously irradiated at a sound intensity ratio of 1: 1 to observe the generation of subharmonics and the generation of tissue damage from the mouse liver. Fig. 11 shows the threshold value of acoustic cavitation in the mouse liver in the presence of Rose Bengal dimer, In Fig. 11, the threshold value of acoustic cavitation in the mouse liver is: , Subharmonic and tissue damage Is defined as the minimum sound intensity that produces both In the control experiment shown in Fig. 11, mice were injected with physiological saline and irradiated with ultrasound. Administration of the Rose Bengal dimer and administration of Rose Bengal to mice produced acoustic cavitation at approximately the same sound intensity. From these results, it can be seen that a compound having a dimer structure in which two molecules of a xanthene dye or a derivative thereof are crosslinked by one (CH 2 ) n- (3 <n (integer) ≤ 20) has high hydrophobicity. It was also found that the acoustic intensity required to produce acoustic cavitation was reduced to the same extent as one molecule of the xanthen dye or its derivative. In FIG. 10, the same effect was obtained when a compound having a salt structure of ONa in which H of OH was replaced with Na was used. Monomers of xanthene dyes or their derivatives are poorly soluble in chloroform, but dimers are readily soluble in chloroform and highly lipophilic. BRIEF DESCRIPTION OF THE FIGURES
第 1図は, 本発明の試験例に於いて, 液体中での音響キヤビテーショ ンの生成の測定を行なう超音波装置の構成を示す図,  FIG. 1 is a diagram showing a configuration of an ultrasonic apparatus for measuring the generation of acoustic cavitation in a liquid in a test example of the present invention.
第 2図は, 本発明の試験例に於いて, 液体中で音響キヤビテーシヨンが 生成している時に得られる典型的な音響信号のスぺク トルを示す図, 第 3図は, 本発明の試験例に於いて, 各種色素を含む溶液を超音波照射 した時に生成する分調波の強度を示す図, FIG. 2 shows a typical spectrum of an acoustic signal obtained when acoustic cavitation is generated in a liquid in a test example of the present invention. FIG. 3 shows a test pattern of the present invention. In the example, a diagram showing the intensity of subharmonic waves generated when a solution containing various dyes is irradiated with ultrasonic waves,
第 4図は, 本発明の試験例に於いて用いるキサンテン環を含むキサンテ ン染料又はキサンテン染料の誘導体からなる化合物の構造を示す図, 第 5図は, 本発明の試験例に於いて用いるキサンテン染料又はキサンテ ン染料の誘導体からなる化合物の構造を示す図, FIG. 4 is a diagram showing the structure of a compound comprising a xanthene dye containing a xanthene ring or a derivative of a xanthene dye used in the test example of the present invention, and FIG. 5 is a diagram showing the xanthene dye used in the test example of the present invention. Figure showing the structure of a compound consisting of a dye or a derivative of a xanthene dye.
第 6図は, 本発明の試験例に於いて, キサンテン染料又はキサンテン染 料の誘導体を含む溶液を超音波照射した時に生成する分調波の強度を示 す図, 第 7図は, 本発明の試験例に於いて, チオール基又はアミノ基と化学結 合可能な官能基を有するキサンテン染料又はキサンテン染料の誘導体か らなる化合物の構造を示す図, FIG. 6 is a diagram showing the intensity of subharmonic waves generated when a solution containing a xanthene dye or a derivative of a xanthene dye is irradiated with ultrasonic waves in the test example of the present invention. FIG. 7 is a diagram showing the structure of a compound comprising a xanthene dye or a derivative of a xanthene dye having a functional group capable of chemically bonding to a thiol group or an amino group in a test example of the present invention.
第 8図は, 本発明の試験例に於いて, 生体中での音響キヤビテーシヨン の生成の測定を行なう超音波装置の構成を示す図, FIG. 8 is a diagram showing a configuration of an ultrasonic device for measuring the generation of acoustic cavitation in a living body in a test example of the present invention.
第 9図は, 本発明の試験例に於いて, チオール基又はアミノ基と化学結 合可能な官能基を有するキサンテン染料又はキサンテン染料の誘導体か らなる化合物が存在する時の, マウス肝臓に於ける音響キヤビテーショ ンの閾値を示す図, FIG. 9 shows the results obtained in the test example of the present invention in the mouse liver when a compound comprising a xanthene dye or a derivative of a xanthene dye having a functional group capable of chemically bonding to a thiol group or an amino group is present. Diagram showing the threshold of acoustic cavitation
第 1 0図は, 本発明の試験例に於いて, キサンテン染料又はキサンテン 染料の誘導体からなる分子の 2個が一 (C H 2 ) π—により結合して形成 される 2量体の構造を示す図, The first 0 figures In the test examples of the present invention, two molecules consisting of derivatives of xanthene dyes or xanthene dyes one (CH 2) π - shows the structure of a dimer which is formed by combining the Figure,
第 1 1図は, 本発明の試験例に於いて, ローズベンガル, ローズべンガ ル 2量体が存在する時の, マウス肝臓に於ける音響キヤビテーシヨンの の閾値を示す図, Fig. 11 is a graph showing the threshold value of acoustic cavitation in mouse liver in the presence of Rose Bengal and Rose Bengal dimer in the test example of the present invention.
第 1 2図は, 本発明の試験例に於いて, 生体中での抗腫瘍 (腫瘍増殖阻 止) 効果測定を行なう超音波装置の構成を示す図, FIG. 12 is a diagram showing a configuration of an ultrasonic apparatus for measuring an antitumor (tumor growth inhibition) effect in a living body in a test example of the present invention.
第 1 3図は, 本発明の試験例に於いて, キサンテン染料を含む溶液を超 音波照射した時に生成する分調波の強度の音響強度に対する依存性を示 す図, Fig. 13 is a graph showing the dependence of the intensity of the subharmonic wave generated when a solution containing a xanthene dye is irradiated with ultrasonic waves on the acoustic intensity in the test example of the present invention.
第 1 4図は, 本発明の試験例に於いて, キサンテン染料を含む溶液を超 音波照射した時の, 活性酸素の生成量の音響強度に対する依存性を示す 図, Fig. 14 is a graph showing the dependence of the amount of active oxygen generated on the sound intensity when a solution containing a xanthene dye was irradiated with ultrasonic waves in the test example of the present invention.
第 1 5図は, 本発明の試験例に於いて, ローズベンガルをマウスに投与 して超音波照射した時の腫癌増殖阻止率を示す図, FIG. 15 is a graph showing the inhibition rate of tumor growth when mice were administered with Rose Bengal and irradiated with ultrasonic waves in the test example of the present invention.
第 1 6図は, 本発明の試験例に於いて, キサンテン染料を含む溶液中の 結石に超音波を照射した時の結石破壊率を示す図, 第 1 7図は, 本発明の試験例に於いて, チオール基又はアミノ基と化学 結合可能な官能基を有するキサンテン染料の誘導体からなる化合物を含 む溶液を超音波照射した時に生成する分調波の強度の音響強度に対する 依存性を示す図, Fig. 16 is a graph showing the calculus breaking ratio when calculus in a solution containing a xanthene dye was irradiated with ultrasonic waves in the test example of the present invention. Fig. 17 shows the results of the modulation produced when a solution containing a derivative of a xanthene dye having a functional group capable of chemically bonding to a thiol group or an amino group was irradiated with ultrasonic waves in the test example of the present invention. Figure showing the dependence of wave intensity on sound intensity.
第 1 8図は, 本発明の試験例に於いて, チオール基又はアミノ基と化学 結合可能な官能基を有するキサンテン染料の誘導体からなる化合物を含 む溶液を超音波照射した時の, 活性酸素の生成量の音響強度に対する依 存性を示す図, Fig. 18 shows the active oxygen content of a solution containing a compound comprising a derivative of a xanthene dye having a functional group capable of chemically bonding to a thiol group or an amino group in a test example of the present invention. Figure showing the dependence of the amount of generated sound on the sound intensity.
第 1 9図は, 本発明の試験例に於いて, エリス口シンョ一ドアセトアミ ドをマウスに投与して超音波照射した時の腫瘍増殖阻止率を示す図, 第 2 0図は, 本発明の試験例に於いて, チオール基又はアミノ基と化学 結合可能な官能基を有するキサンテン染料の誘導体からなる化合物を含 む溶液中の結石に超音波を照射した時の結石破壊率を示す図, 第 2 1図は, 本発明の試験例に於いて, キサンテン染料又はキサンテン 染料の誘導体からなる分子の 2個が一 (C H 2 ) π—により結合して形成 される 2量体を含む溶液を超音波照射した時に生成する分調波の強度の 音響強度に対する依存性を示す図, FIG. 19 is a graph showing the inhibition rate of tumor growth when mice were administered with erythrochloride acetoacetamide and irradiated with ultrasonic waves in the test example of the present invention. FIG. FIG. 4 is a graph showing stone destruction rates when a stone in a solution containing a compound comprising a derivative of a xanthene dye having a functional group capable of chemically bonding to a thiol group or an amino group is irradiated with ultrasonic waves in a test example; Figure 21 shows that in the test example of the present invention, a solution containing a dimer formed by binding two molecules of a xanthene dye or a derivative of a xanthene dye by one (CH 2 ) π— Fig. 4 shows the dependence of the intensity of the subharmonic generated when sonic waves are irradiated on the acoustic intensity.
第 2 2図は, 本発明の試験例に於いて, キサンテン染料又はキサンテン 染料の誘導体からなる分子の 2個が— (C H 2 ) n—により結合して形成 される 2量体を含む溶液を超音波照射した時の, 活性酸素の生成量の音 響強度に対する依存性を示す図, FIG. 22 shows a solution containing a dimer formed by bonding two molecules of a xanthene dye or a derivative of a xanthene dye with — (CH 2 ) n — in the test example of the present invention. Diagram showing the dependence of the amount of active oxygen generated on sound intensity when irradiated with ultrasonic waves.
第 2 3図は, 本発明の試験例に於いて, キサンテン染料又はキサンテン 染料の誘導体からなる分子の 2個が— (C H 2 ) n—により結合して形成 される 2量体の構造を示す図, FIG. 23 shows the structure of a dimer formed by bonding two molecules of a xanthene dye or a derivative of a xanthene dye with — (CH 2 ) n — in a test example of the present invention. Figure,
第 2 4図は, 本発明の試験例に於いて, キサンテン染料又はキサンテン 染料の誘導体からなる分子の 2個が— (C H 2 ) n—により結合して形成 される 2量体が存在する時の, マウス肝臓に於ける音響キヤビテ一ショ ンの閾値を示す図, Fig. 24 shows the results obtained when two molecules of a xanthene dye or a derivative of a xanthene dye are linked by — (CH 2 ) n — in a test example of the present invention. Of acoustic cavitation in mouse liver Diagram showing the threshold of
第 2 5図は, 本発明の試験例に於いて, ローズベンガル 2量体, エリス 口シンョードアセ卜アミ ド 2量体をマウスに投与して超音波照射した時 の腫瘍増殖阻止率を示す図である。 FIG. 25 is a graph showing the inhibition rate of tumor growth when mice were administered with Rose Bengal dimer and Eris mouth simple acetate amide dimer in a test example of the present invention and irradiated with ultrasonic waves. is there.
なお, 第 3図, 第 6図, 第 1 3図, 第 1 7図, 第 2 1図に於いて, 分 調波強度は分調波の振幅の 2乗平均値を 1 X 1 0— 7 (mV)2を基準とし た相対値で表わし, 第 1 4図, 第 18図, 第 22図に於いて, 活性酸素 生成量はヨウ素イオンを 1 (マイクロモル) i nの割合で酸化 できる量を 1とする相対値で示す。 発明を実施するための最良の形態 The third diagram, Figure 6, the first 3 diagrams, first 7 view, in the second 1 figure, subharmonic intensity mean square value of the amplitude of subharmonic 1 X 1 0- 7 (mV) expressed as a relative value based on 2 , and in Fig. 14, Fig. 18, and Fig. 22, the amount of active oxygen generated is the amount that can oxidize iodine ions at a rate of 1 (micromol) in. The relative value is set to 1. BEST MODE FOR CARRYING OUT THE INVENTION
本発明を詳細に説明するために, 以下, 添付の図面に従って, 本発明 の超音波作用誘導剤の効果を確認した試験例を具体的に説明するが, 本 発明はこれらの試験例に限定されるものではない。  Hereinafter, in order to explain the present invention in detail, test examples in which the effect of the ultrasonic action inducer of the present invention has been confirmed will be specifically described with reference to the accompanying drawings. However, the present invention is not limited to these test examples. Not something.
評価実験 A: 『液体中での音響キヤビテーシヨンの生成の測定』 第 1図は, 以下に説明する試験例に於いて, 本発明の超音波作用誘導 (誘引) 剤を用いて, 液体中での音響キヤビテーシヨンの生成の測定を 行なう超音波装置の構成を示す図である。 超音波作用誘導剤を 1 X 1 0 —4Mの濃度で含むリン酸緩衝液 (pH= 7. 4) を試料溶液 4として, 試料溶液 4を封入した 30 X 2 5 mmの大きさのポリエチレンバッグ 3 を, ピンチコック 5— 1及び 5— 2により固定具 6に固定し, 脱気水 1 を満した水槽 2に入れる。 波形発生装置 14により, 周波数 1 MHzの サイン波と周波数 2 MH zのサイン波とを合成しアンプ 1 3により増幅 して, 固定具 10に保持される平面型超音波トランスデューサ 9に入力 する。 超音波トランスデューサ 9から周波数 1 MH zと 2MH zとを重 畳した超音波を同時に 1分から 2分間照射し, 超音波の照射の間, 試料 溶液 4からの音簪信号を保持具 8に保持される水中マイクロフォン 7に より測定する。 水中マイクロフォン 7で測定した音響信号をアンプ 1 1 で増幅した後スペク トルアナライザ 1 2に入力し, 1 MH zの分調波で ある 500 kH zの信号成分を 1秒毎に取り出し, 信号処理装置 1 5に より, 分調波成分の 2乗の時間平均を求める。 分調波成分の自乗の時間 平均を分調波強度と定義し, 音響キヤビテーシヨン生成の大きさの指標 とした。 対照実験は, 超音波作用誘導剤を含むリン酸緩衝液 (PH=7. 4 ) をリン酸緩衝液 (p H== 7. 4) に置き換えて行なった。 Evaluation experiment A: “Measurement of formation of acoustic cavitation in liquid” Fig. 1 shows the results of the test described below, using the ultrasonic action-inducing (attracting) agent of the present invention. FIG. 3 is a diagram illustrating a configuration of an ultrasonic device that measures the generation of acoustic cavitation. As a sample solution 4, a phosphate buffer solution (pH = 7.4) containing an ultrasonic wave inducer at a concentration of 1 × 10—4 M was used. Fix the bag 3 to the fixture 6 with pinch cocks 5-1 and 5-2, and put it in the water tank 2 filled with deaerated water 1. The waveform generator 14 synthesizes a sine wave having a frequency of 1 MHz and a sine wave having a frequency of 2 MHz, amplifies the resulting signal with an amplifier 13, and inputs the amplified signal to a planar ultrasonic transducer 9 held by a fixture 10. Ultrasonic waves at frequencies of 1 MHz and 2 MHz are simultaneously radiated from the ultrasonic transducer 9 for 1 to 2 minutes. During the ultrasonic irradiation, the sound pinion signal from the sample solution 4 is held by the holder 8. Underwater microphone 7 Measure more. The acoustic signal measured by the underwater microphone 7 is amplified by the amplifier 11 and then input to the spectrum analyzer 12 to extract the signal component of 500 MHz, which is a subharmonic of 1 MHz, every second. From 15, the time average of the square of the subharmonic component is calculated. The time average of the square of the subharmonic component was defined as the subharmonic intensity, which was used as an index of the magnitude of acoustic cavitation generation. The control experiment was performed by replacing the phosphate buffer (PH = 7.4) containing the sonication inducer with a phosphate buffer (pH = = 7.4).
評価実験 B : 『生体中での音響キヤビテ一シヨンの生成の測定』 第 8図は, 以下の試験例に於いて, 本発明の超音波作用誘導 (誘引) 剤を用いて, 生体中での音響キヤビテーシヨンの生成の測定を行なう超 音波装置の構成を示す図である。 麻酔された d dYマウス ( 5週齢, ォ ス) に, 超音波作用誘導剤が, 投与量 5mg/Kg体重 (試験例 7 ) 又 は投与量 5 OmgZKg体重 (試験例 1 3) となるよう静脈注射し, 肝 臓 25を体外に露出した状態で, マウス 24を脱気水 1を満した水槽 2 中に固定し, 0. 5及び 1 MH zの周波数の収束超音波を音響強度比で 1 : 1となるよう同時に肝臓 25に向けて照射した。 Evaluation experiment B : “Measurement of the production of acoustic cavitation in a living body” Fig. 8 shows the results of the following test examples in which the ultrasonic action-inducing (attracting) agent of the present invention was used. FIG. 3 is a diagram illustrating a configuration of an ultrasonic device that measures the generation of acoustic cavitation. In anaesthetized d dY mice (5-week-old, female), the ultrasound effect inducer was administered at a dose of 5 mg / Kg body weight (Test Example 7) or a dose of 5 OmgZKg body weight (Test Example 13). After intravenous injection, with the liver 25 exposed outside the body, the mouse 24 was fixed in a water tank 2 filled with degassed water 1, and focused ultrasound at frequencies of 0.5 and 1 MHz was applied at an acoustic intensity ratio. The liver 25 was irradiated at the same time so that the ratio became 1: 1.
第 2高調波重畳法 (文献, U l t r a s o n i c s S o n o c h e m i s t r y v o l . 3, No. 1 , p p . 1 - 6 ( 1 996 ) (K a w a b a t a , K a n d Urn e m u r a , S ) を参照) による超 音波照射が可能な収束超音波トランスデューサ 26は, 1 MH zの超音 波の照射用の円環上に配置される圧電素子 28— 1 , 28 - 2, …, 2 8— N及び 0. 5MH zの超音波の照射用の円環上に配置される圧電素 子 29— 1 , 29— 2, ···, 29— Nより構成される。 固定具 23に固 定された麻酔されたマウス 24を脱気水 1を満した水槽 2に入れ, 体外 に露出させた肝臓 25が収束超音波卜ランスデューサ 26の焦点 27の 位置に来るよう固定具 23を移動させる。 超音波作用誘導剤.を静脈注射 によリ投与した後, 収束超音波トランスデューサ 26により超音波を 1 80秒間照射し, 照射時間中の肝臓 25のダメージの有無を目視により 確認する。 また, 超音波の照射中に肝臓 25から得られる音響信号を水 中マイクロフォン 3 1により測定し, 0. 5 MH zの分調波である 25 0 k H z成分の有無を確認する。 超音波の照射により肝臓 25のダメー ジ及び分調波が観測された最小音響強度を音響キヤビテーシヨン閾値と し, 音響キヤビテ一シヨンが生成し, 且つ音響キヤビテーシヨンの作用 により生体作用が生じたと判定した。 対照実験では, 超音波作用誘導剤 の代わりに生理的食塩水を静脈注射し, 超音波を照射した。 Ultrasonic irradiation by the 2nd harmonic superposition method (see literature, Ultrasonics Sonochemistry vol. 3, No. 1, pp. 1-6 (1996) (Kawabata, K and Urnemura, S)) is possible. The converging ultrasonic transducer 26 is composed of piezoelectric elements 28-1, 28-2, ..., 28-N and 0.5MHz ultrasonic waves arranged on a ring for irradiating a 1MHz ultrasonic wave. It consists of piezoelectric elements 29-1, 29-2, ..., 29-N arranged on the irradiation ring. The anesthetized mouse 24 fixed to the fixture 23 is placed in the water tank 2 filled with degassed water 1, and the liver 25 exposed outside the body is fixed at the focal point 27 of the focused ultrasonic transducer 26. Move tool 23. After intravenous injection of an ultrasonic action inducer, ultrasonic waves were conveyed by a convergent ultrasonic transducer 26 for 1 hour. Irradiate for 80 seconds, and visually check for damage to liver 25 during the irradiation time. In addition, the acoustic signal obtained from the liver 25 during ultrasonic irradiation is measured with a submerged microphone 31 to check for the presence of the 250 MHz subharmonic component of 0.5 MHz. The minimum acoustic intensity at which the damage and subharmonic waves of the liver 25 were observed by the irradiation of the ultrasonic wave was set as the acoustic cavitation threshold, and it was determined that the acoustic cavitation was generated and that the biological effect was caused by the action of the acoustic cavitation. In the control experiment, physiological saline was injected intravenously instead of the ultrasonic wave inducer, and irradiated with ultrasonic waves.
なお, 焦点 27の確認は, 複数の振動子から成る撮像用超音波探触子 30を用いる。 32は, 撮像用超音波探触子 30による超音波の送受信 の制御及び画像を求める処理回路, 34は収束超音波トランスデューサ の圧電素子を駆動する送信波形発生回路, 33は送信波形を増幅する増 幅回路, 35は水中マイクロフォン 3 1の受信信号を増幅する増幅回路, The focal point 27 is confirmed using an imaging ultrasonic probe 30 composed of multiple transducers. 32 is a processing circuit for controlling the transmission and reception of ultrasonic waves by the imaging ultrasonic probe 30 and obtaining an image, 34 is a transmission waveform generation circuit for driving the piezoelectric element of the converging ultrasonic transducer, and 33 is an amplifier for amplifying the transmission waveform. Width circuit, 35 is an amplification circuit that amplifies the reception signal of the underwater microphone 31,
36は, 分調波成分の 2乗の時間平均を求める受信波形処理回路である。 評価実験 C : 『音響化学反応を促進する効果の測定』 Reference numeral 36 denotes a reception waveform processing circuit for calculating a time average of the square of the subharmonic component. Evaluation experiment C: "Measurement of effects that promote sonochemical reactions"
以下の試験例に於いて, 本発明の超音波作用誘導 (誘引) 剤が音響化 学反応を促進する効果を, 超音波化学作用による抗腫瘍効果の源である 活性酸素の生成量の測定により検討した。 生成した活性酸素の量は, 活 性酸素により生じるヨウ素イオンの酸化反応により測定した。 反応の進 行は, ヨウ素イオンの酸化生成物である三ョゥ化物イオンの濃度を分光 学的に測定することにより調べた。 本発明の超音波作用誘導剤及びヨウ 化力リゥムをそれぞれ 1 X 10—4Μ及び 0. 1 Μの濃度で含むリン酸緩 衝液 (ρΗ= 7. 4 ) をポリエチレン製のバッグ (厚さ 0. 03mm) に密封し, 音響強度 0〜 1 OWZcm2, 照射時間 1分間の条件で 1 M H z及び 2MH zの超音波を同時に照射した。 対照実験は, 超音波作用 誘導剤を含むリン酸緩衝液 (p H-7. 4) をリン酸緩衝液 (pH=7.In the following test examples, the effect of the ultrasonic action-inducing (attracting) agent of the present invention to promote the sonochemical reaction was determined by measuring the amount of active oxygen produced, which is the source of the antitumor effect by ultrasonic chemical action. investigated. The amount of generated active oxygen was measured by the oxidation reaction of iodine ions generated by the active oxygen. The progress of the reaction was investigated by spectroscopically measuring the concentration of triiodide ion, an oxidation product of iodine ion. Ultrasonic action inducing agent and phosphoric acid buffer solution containing iodide force Riumu each at a concentration of 1 X 10- 4 Micromax and 0. 1 Μ (ρΗ = 7. 4 ) Polyethylene bags (thickness of the present invention 0 03 mm), and were irradiated simultaneously with 1 MHz and 2 MHz ultrasonic waves under the conditions of sound intensity of 0 to 1 OWZcm 2 and irradiation time of 1 minute. In the control experiment, the phosphate buffer containing an ultrasonic wave inducer (pH 7.4) was added to the phosphate buffer (pH = 7.
4 ) に置き換えて行なった。 評価実験 D : 『生体中での抗腫瘍 (腫瘍増殖阻止) 効果の測定』 第 1 2図は, 以下の試験例に於いて, 本発明の超音波作用誘導 (誘引) 剤を用いて, 生体中での抗腫瘍 (腫瘍増殖阻止) 効果の測定を行なう超 音波装置の構成を示す図である。 第 1 2図に示す超音波装置の構成は第 8図に示す超音波装置の構成と同じである。 抗腫瘍効果の測定 (腫瘍増 植阻止試験) は, 次のように行なう。 7週齢の雄性 BAL BZcマウス ( 1群 3匹) の腹部皮下に C 0 1 0 n 26細胞を移植し, その後腫瘍直 径が約 1 cmになった段階で, 超音波作用誘導剤を投与量 5 OmgZk g体重となるよう静脈注射した。 固定具 23に固定された麻酔されたマ ウス 24を脱気水 1を満した水槽 2に入れ, 皮下に移植した直径約 1 c mの腫瘍が収束超音波トランスデューサ 26の焦点 27の位置に来るよ う固定具 23を移動させる。 超音波作用誘導剤を静脈注射により投与し た後, 収束超音波トランスデューサ 26により, 0. 5MHz及び 1M H zの超音波を重畳して同時にそれぞれ 1.0 WZc m2の音響強度で, 超音波を 5秒間照射し, 超音波の照射中に腫瘍 37から得られる音響信 号を水中マイクロフォン 3 1により測定し, 0. 5MH zの分調波であ る 2 50 k H z成分が含まれることを確認する。 その後, 薬剤投与 1 2 時間後に, 0. 5MH z及び 1 MH zの超音波を重畳して同時にそれぞ れ 1 OWZcm2の音響強度で 5分間照射し, 超音波の照射後 14曰後 に腫瘍 37の重量を測定し, 式 ( 1 ) により腫瘍増植阻止率を算出した。 なお, 焦点 27の確認には, 撮像用超音波探触子 1 0を用いる。 4). Evaluation Experiment D: “Measurement of Antitumor (Tumor Growth Inhibition) Effect in Living Body” FIG. 12 shows the results of a test using the ultrasonic action-inducing (attracting) agent of the present invention in the following test examples. FIG. 3 is a diagram showing a configuration of an ultrasonic apparatus for measuring an antitumor (tumor growth inhibition) effect in the inside. The configuration of the ultrasonic device shown in FIG. 12 is the same as the configuration of the ultrasonic device shown in FIG. The measurement of the antitumor effect (tumor growth inhibition test) is performed as follows. Seven-week-old male BAL BZc mice (3 mice per group) were transplanted with C 0 10 n 26 cells subcutaneously in the abdomen, and then administered an ultrasound inducer when the tumor diameter reached approximately 1 cm. It was injected intravenously to give an amount of 5 OmgZkg body weight. The anesthetized mouse 24 fixed to the fixture 23 is placed in the water tank 2 filled with deaerated water 1, and the subcutaneously implanted tumor of about 1 cm in diameter comes to the focal point 27 of the converging ultrasonic transducer 26. Move the fixture 23. After administration by intravenous injection of ultrasonic action inducing agents, converged by the ultrasound transducer 26, in 0. 5 MHz and 1M H sound intensity of each superimposed simultaneously 1.0 WZC m 2 ultrasound z, ultrasound 5 Irradiation for 2 s, the acoustic signal obtained from the tumor 37 during the ultrasonic irradiation was measured with an underwater microphone 31 and it was confirmed that the component of 250 MHz, which is a subharmonic of 0.5 MHz, was included. I do. Then, 12 hours after administration of the drug, ultrasonic waves of 0.5 MHz and 1 MHz were superimposed and simultaneously irradiated at an acoustic intensity of 1 OWZ cm 2 for 5 minutes each. The weight of 37 was measured, and the tumor growth inhibition rate was calculated by equation (1). The ultrasonic probe 10 for imaging was used to confirm the focal point 27.
腫瘍増植阻止率 (%) = ( (対照実験群の平均腫瘍重量 -試験群の平均 腫癌重量) 対照群の平均腫瘍重量) X 1 00 ( 1 ) 対照実験群は, マウスに C 0 1 0 n 26細胞を移植した後に超音波誘導 剤の投与を行なって超音波を照射しない群, 及びマウスに C o 1 0 n 2 6細胞を移植した後に超音波誘導剤の投与を行わずに超音波照射を行な う群からなる。 W Tumor growth inhibition rate (%) = ((mean tumor weight of control group-mean tumor weight of test group) mean tumor weight of control group) X 100 (1) 0 n26 cells were implanted, and then ultrasound was administered without administration of ultrasound, and mice were implanted with C.sub.10n26 cells and then were administered without administration of ultrasound. It consists of a group that performs sound wave irradiation. W
20 20
第 8図及び第 1 2図の超音波装置に於いて, 水中マイクロフォン 3 1 の位置と撮像用超音波探触子 30の位置とを入れ換えても構わない。 第 8図及び第 1 2図の超音波装置を人体に適用する時には, 水槽 2を用い る代わりに, ウォータージャケットを収束超音波トランスデューサ 26 の前面と患部との間に置いてもよい。  In the ultrasonic apparatus shown in FIGS. 8 and 12, the position of the underwater microphone 31 and the position of the imaging ultrasonic probe 30 may be interchanged. When applying the ultrasonic device shown in FIGS. 8 and 12 to the human body, a water jacket may be placed between the front surface of the convergent ultrasonic transducer 26 and the affected area instead of using the water tank 2.
評価実験 E : 『結石破壊を促進する効果の測定』  Evaluation experiment E: "Measurement of effects promoting stone destruction"
以下の試験例に於いて, 本発明の超音波作用誘導 (誘引) 剤が, 音響 キヤビテーシヨンにより結石破壊を促進する効果をコレステロール溶解 . 試験により評価した。 コレステロール 1. 5 gを 400気圧, 1分間の 条件で加圧し, 直径 1 c mのペレツ卜を成形する。 このペレットを, ポ リエチレン製のバッグ (厚さ 0. 03mm) に, 超音波作用誘導剤を含 むリン酸緩衝液 (pH= 7. 4) lm 1と共に入れて 1 MHzの超音波 を 2分間照射した。 照射後試料を 3分間静置し, 上澄みを除去した後に 乾燥させてペレツ 卜重量を測定し, 式 ( 2 ) により結石破壊率を算出し た。 対照実験は, 超音波作用誘導剤を含むリン酸緩衝液 (PH= 7. 4) をリン酸緩衝液 (pH= 7. 4 ) に置き換えて行なった。  In the following test examples, the effect of the ultrasonic action-inducing (attracting) agent of the present invention to promote stone destruction by acoustic cavitation was evaluated by a cholesterol dissolution test. Pressurize 1.5 g of cholesterol under the conditions of 400 atm for 1 minute to form a pellet 1 cm in diameter. The pellet is placed in a polyethylene bag (0.03 mm thick) together with phosphate buffer (pH = 7.4) lm 1 containing an ultrasonic wave inducer, and 1 MHz ultrasonic waves are applied for 2 minutes. Irradiated. After irradiation, the sample was allowed to stand for 3 minutes. After removing the supernatant, the sample was dried, the pellet weight was measured, and the calculus breaking ratio was calculated by equation (2). Control experiments were performed by replacing the phosphate buffer (PH = 7.4) containing the sonication inducer with a phosphate buffer (pH = 7.4).
結石破壊率 (%) = ( (照射前のペレット重量一照射後のペレッ ト重量) ノ照射前のペレッ ト重量) X 1 00 ( 2) 試験例 1 : 『キサンテン染料が液体中で音響キヤビテーシヨンの閾値 を低下させる効果の確認試験』  Calculus destruction rate (%) = ((weight of pellet before irradiation-weight of pellet after irradiation) weight of pellet before irradiation) X100 (2) Test Example 1: "Xanthene dye is used in a liquid for acoustic cavitation. Test to confirm the effect of lowering the threshold ”
第 1 3図は, キサンテン染料を含む溶液を超音波照射した時に生成す る分調波の強度の音響強度に対する依存性を示す図である。 第 1 3図は, 評価実験 Aに従った試験結果の一例を示し, フロキシン B, ローズベン ガル又はエリス口シンのような超音波作用誘導剤を含む場合には, 音響 強度が約 2 WZ c m 2以上で音響キヤビテーシヨンが生じ, 音響強度の 増加に伴い, キヤビテーシヨン強度も増加している。 これに対し, 対照 実験では音欝強度が 1 0 WZc m2でも音簪キヤビテーシヨンが生じて いないことから, 本試験例に於いて超音波作用誘導剤が音響キヤビテ一 ション閾値を 1 / 5以下に低下させていることは明らかである。 また, 本試験例で分調波が測定された全ての場合に於いて, 目に見える気泡の 生成が観察されたことから, 本発明の超音波作用誘導剤が音響キヤビテ ーシヨンによる気泡発生に有効であることは明らかである。 Figure 13 shows the dependence of the intensity of the subharmonic generated when a solution containing a xanthene dye is irradiated with ultrasonic waves on the acoustic intensity. Figure 13 shows an example of the test results in accordance with Evaluation Experiment A. When an ultrasonic wave inducer such as Phloxine B, Rose Bengal or Erythritis is included, the acoustic intensity is about 2 WZ cm 2. Above, acoustic cavitation occurs, and as the acoustic intensity increases, the cavitation intensity also increases. In contrast, control experiments in sound depression intensity occurs sound hairpin Kiyabiteshiyon even 1 0 WZc m 2 From this, it is clear that the ultrasonic action inducer lowered the acoustic cavitation threshold to 1/5 or less in this test example. In all cases where subharmonics were measured in this test example, visible bubble formation was observed. Therefore, the ultrasonic action-inducing agent of the present invention was effective in generating bubbles by acoustic cavitation. It is clear that
試験例 2 : 『キサンテン染料が音響化学反応を促進する効果の確認試 験』  Test Example 2: "Confirmation test of the effect of xanthene dye on accelerating sonochemical reaction"
第 1 4図は, キサンテン染料を含む溶液を超音波照射した時の, 活性 酸素の生成量の音響強度に対する依存性を示す図である。 第 1 4図は, 評価実験 Cに従った試験結果の一例であり, フロキシン B, ローズベン ガル又はエリス口シンのような超音波作用誘導剤を含む場合には, 音響 強度が約 2 c m 2以上で活性酸素が生成され, 音響強度の増加に伴 い活性酸素の生成量も増加している。 これに対し, 対照実験では音響強 度が 1 O WZ c m 2でも活性酸素の生成が見られないことから, 本試験 例に於いて超音波作用誘導剤が音響化学反応を促進することが明らかで ある。 また, 活性酸素は抗腫瘍作用と同時に殺菌作用を有することから, 本発明の超音波作用誘導剤が超音波による殺菌に有効であることが明ら かである。 Figure 14 shows the dependence of the amount of active oxygen generated on the sound intensity when a solution containing a xanthene dye is irradiated with ultrasonic waves. Fig. 14 shows an example of the test results according to the evaluation experiment C. When an ultrasonic action inducer such as Phloxine B, Rose Bengal or Erythritis is included, the sound intensity is about 2 cm 2 or more. As a result, active oxygen is generated with increasing acoustic intensity. On the other hand, in the control experiment, no active oxygen was generated even at an acoustic intensity of 1 O WZ cm 2 , indicating that the ultrasonic action inducer accelerated the sonochemical reaction in this test example. is there. In addition, since active oxygen has a bactericidal action as well as an antitumor action, it is clear that the ultrasonic action inducer of the present invention is effective for sterilization by ultrasound.
試験例 3 : 『ローズベンガルの抗腫瘍効果 (腫瘍増殖阻止率) の確認 試験』  Test example 3: "Confirmation test of rose bengal's antitumor effect (tumor growth inhibition rate)"
第 1 5図は, ローズベンガルをマウスに投与して超音波照射した時の 腫瘍増殖阻止率を示す図である。 第 1 5図は, 評価実験 Dに従った試験 結果の一例であリ, キサンテン染料のローズベンガルについての結果を 示す。 第 1 5図に示すように, 超音波照射を行なった場合の腫瘍増植阻 止率 (抑制率) は, 対照実験では 1 4 . 7 %であるのに対して, ローズ ベンガルを用いた場合には 5 7 . 7 %であり, 約 4倍の抗腫痛効果が得 られている。 なお, 超音波照射を行わない時のローズベンガルの効果は 対照実験よリも低いがこれは誤差範囲内であると考えられる。 本試験例 の抗腫瘍効果は, 本発明の超音波作用誘導剤の音響キヤビテーシヨンの 閾値を低下させる効果及び音響化学反応を促進する効果により得られる。 なお, ローズベンガル以外のキサンテン染料の中で, 共役している複 数の炭素原子にハロゲンが結合しているフロキシン B , エリス口シン, テ卜ラクロ口フルォレセイン等についてもローズベンガルと同等の抗腫 瘪効果が得られると期待され, 実際に試験例 1及び試験例 2に於いて, フロキシン B, エリス口シンは音響キヤビテーション閾値低下及び活性 酸素生成に於いて, ローズペンガルと同等の効果を示した。 Fig. 15 shows the tumor growth inhibition rate when rose bengal was administered to mice and irradiated with ultrasound. Figure 15 shows an example of the test results according to evaluation experiment D, showing the results for the xanthene dye rose bengal. As shown in Fig. 15, the rate of inhibition of tumor growth (inhibition rate) in the case of ultrasonic irradiation was 14.7% in the control experiment, while that in the case of using Rose Bengal was compared. In this case, it was 57.7%, and the antitumor pain effect was about 4 times higher. The effect of rose bengal when ultrasonic irradiation is not performed Although lower than the control experiment, this is considered to be within the error range. The antitumor effect of this test example is obtained by the effect of lowering the threshold of the acoustic cavitation and the effect of accelerating the sonochemical reaction of the ultrasonic action inducer of the present invention. Among xanthene dyes other than Rose Bengal, phloxin B, erythrin syn, tetracro mouth fluorescein, etc., in which halogen is bonded to multiple conjugated carbon atoms, have the same antitumor properties as Rose Bengal. (4) It is expected that an effect can be obtained. In Test Examples 1 and 2, phloxine B and erythrocystin show the same effect as Rose Pengal in lowering the acoustic cavitation threshold and producing active oxygen. Was.
試験例 4 : 『キサンテン染料が結石破壊を促進する効果の確認試験』 第 1 6図は, キサンテン染料を含む溶液中の結石に超音波を照射した 時の結石破壊率を示す図である。 第 1 6図は, 評価実験 Eに従った試験 結果の一例を示す。 第 1 6図に示すように, フロキシン B, ローズベン ガル及びエリス口シンの各超音波作用誘導剤 (澳度は 1 X 1 0 "4 ) は 対照実験と比較し, それぞれ 2 . 4 , 2 . 2 , 1 . 9倍の結石破壊率を 示し, フロキシン Bを用いる場合最も高く, 何れの超音波作用誘導剤も 結石破壊の促進に有効であった。 Test Example 4: “Confirmation test of the effect of xanthene dye on accelerating stone destruction” Figure 16 shows the stone destruction rate when stones in a solution containing xanthene dye are irradiated with ultrasonic waves. Fig. 16 shows an example of test results according to evaluation experiment E. As shown in Fig. 16, the phloxin B, rose bengal and erythro-orcin-induced sonication inducers (Macao 1 × 10 " 4 ) were compared with the control experiment by 2.4 and 2. It showed a stone destruction rate of 2 to 1.9 times, the highest when using Phloxine B, and all of the ultrasonic action inducers were effective in promoting stone destruction.
試験例 5 : 『チオール基又はアミノ基と化学結合可能な官能基を有す るキサンテン染料の誘導体からなる化合物が, 液体中で音饗キヤビテー ションの閎値を低下させる効果の確認試験』  Test Example 5: “Confirmation test of the effect of a compound consisting of a derivative of a xanthene dye having a functional group capable of chemically bonding to a thiol group or amino group to reduce the 閎 value of sound cavitation in a liquid”
第 1 7図は, チオール基又はアミノ基と化学結合可能な官能基を有す るキサンテン染料の誘導体からなる化合物を含む溶液を超音波照射した 時に生成する分調波の強度の音響強度に対する依存性を示す図である。 第 1 7図は, 評価実験 Aに従った試験結果の一例を示し, エリス口シン ョードアセ卜アミ ド等の超音波作用誘導剤を含む場合には, 音響強度が 約 2 W/ c m 2以上で音響キヤビテーシヨンが生じている。 これに対し, 対照実験では音響強度が 1 0 WZ c m 2でも音轡キヤビテ一シヨンが生 じていないことから, 本試験例に於いて超音波作用誘導剤が音響キヤビ テ一ション閾値を 1 5以下に低下させていること明らかである。 また, 本試験例で分調波が測定された全ての場合に於いて, 目に見える気泡の 生成が観察されたことから, 超音波作用誘導剤が音響キヤビテ一シヨン による気泡発生に有効であることは明らかである。 Figure 17 shows the dependence of the intensity of the subharmonic wave generated when a solution containing a compound consisting of a derivative of a xanthene dye having a functional group capable of chemically bonding to a thiol or amino group is irradiated with ultrasonic waves on the acoustic intensity. FIG. In the first 7 figure shows an example of a test result in accordance with the evaluation experiments A, if containing ultrasonic action inducing agent such as Ellis port Shin Yodoase Bok Ami de is acoustic intensity of about 2 W / cm 2 or more Acoustic cavitation has occurred. On the other hand, in the control experiment, even if the sound intensity was 10 WZ cm 2 , gagged cavitation was generated. From this, it is clear that the ultrasonic action inducer lowered the acoustic cavitation threshold below 15 in this test example. Also, in all cases where subharmonics were measured in this test example, visible bubble formation was observed, indicating that the ultrasonic action inducer is effective in generating bubbles by acoustic cavitation. It is clear.
試験例 6 : 『チオール基又はアミノ基と化学結合可能な官能基を有 するキサンテン染料の誘導体からなる化合物が, 音響化学反応を促進す る効果の確認試験』  Test Example 6: “Confirmation test of the effect of a compound consisting of a derivative of a xanthene dye having a functional group capable of chemically bonding to a thiol group or an amino group to accelerate the sonochemical reaction”
第 1 8図は, チオール基又はアミノ基と化学結合可能な官能基を有す るキサンテン染料の誘導体からなる化合物を含む溶液を超音波照射した 時の, 活性酸素の生成量の音響強度に対する依存性を示す図である。 第 1 8図は, 評価実験 Cに従った試験結果の一例を示し, エリス口シンョ 一ドアセトアミ ド等の超音波作用誘導剤を含む場合には, 音響強度が約 2 W/ c m 2以上で活性酸素が生成している。 これに対し, 対照実験で は音響強度が 1 O WZ c m 2でも活性酸素の生成が見られないことから, 本試験例に於いて超音波作用誘導剤が音響化学反応を促進することが明 らかである。 活性酸素は抗腫瘍作用と同時に殺菌作用を有することから, 超音波作用誘導剤が超音波による殺菌に有効であることが明らかである。 試験例 7 : 『チオール基又はアミノ基と化学結合可能な官能基を有す るキサンテン染料又はキサンテン染料の誘導体からなる化合物が, 生体 中の音響キヤビテーションの閾値を低下させる効果の確認試験』 Figure 18 shows the dependence of the amount of active oxygen generated on sound intensity when a solution containing a compound consisting of a derivative of a xanthene dye having a functional group capable of chemically bonding to a thiol group or an amino group is irradiated with ultrasonic waves. FIG. The first 8 figure shows an example of a test result in accordance with the evaluation experiment C, and may include an ultrasound action inducing agent such as Ellis port Shinyo one Doasetoami de is active in acoustic intensity of about 2 W / cm 2 or more Oxygen is being produced. In contrast, in the control experiment, no active oxygen was generated even at an acoustic intensity of 1 O WZ cm 2 , indicating that the ultrasonic action inducer accelerated the sonochemical reaction in this test example. Is. Since active oxygen has a bactericidal effect as well as an antitumor effect, it is clear that the ultrasonic action inducer is effective for sterilization by ultrasound. Test Example 7: “Confirmation test of the effect of a compound consisting of a xanthene dye or a derivative of a xanthene dye having a functional group capable of chemically bonding to a thiol group or an amino group to lower the threshold of acoustic cavitation in a living body”
第 9図は, チオール基又はアミノ基と化学結合可能な官能基を有する キサンテン染料又はキサンテン染料の誘導体からなる化合物が存在する 時の, マウス肝臓に於ける音響キヤビテーシヨンの閾値を示す図である。 第 9図は, 評価実験 Bに従った試験結果の一例を示し, エリス口シン, エリス口シンョードアセ卜アミ ド, エリス口シンイソチオシァネー卜, エリス口シンマレイミ ド何れに於いても, 超音波作用誘導剤を投与しな い場合に比べて音響キヤビテーシヨンの閾値は低下している。 各超音波 作用誘導剤により音響キヤビテーシヨン閾値は, 約 1ノ 2 . 4, 1 / 1 2, 1 / 8 , 1 / 3程度に低下している。 FIG. 9 is a diagram showing threshold values of acoustic cavitation in mouse liver when a compound comprising a xanthene dye or a derivative of a xanthene dye having a functional group capable of chemically bonding to a thiol group or an amino group is present. Fig. 9 shows an example of the test results according to the evaluation experiment B. Eris mouth Sin, Eris mouth Sindoacetamide, Eris mouth Sin isothiosinate, The threshold value of acoustic cavitation was lower in all cases of Ellis mouth cinmaremid than in the case where no ultrasonic action inducer was administered. The acoustic cavitation threshold was reduced to about 2.4, 1/12, 1/8 and 1/3 by each ultrasonic action inducer.
試験例 8 : 『エリス口シンョ一ドアセトアミ ドの抗腫瘍効果 (腫瘍増 殖阻止率) の確認試験』  Test Example 8: “Confirmation test of antitumor effect (tumor growth inhibition rate) of erythrocyte syndodoctamide”
第 1 9図は, エリス口シンョ一ドアセトアミ ドをマウスに投与して超 音波照射した時の腫瘍増殖阻止率を示す図である。 第 1 9図は, 評価実 験 Dに従った試験結果の一例であり, キサンテン染料のエリス口シンョ 一ドアセトアミ ドについての結果を示す。 超音波照射を行なった場合の 腫瘍増植阻止率 (抑制率) は, 対照実験では 1 4 . 7 %であるのに対し て, エリス口シンョードアセトアミ ドを用いた場合には 4 9 . 7 %であ リ, 約 3 . 4倍の抗腫瘍効果が得られている。  Fig. 19 is a graph showing the inhibition rate of tumor growth when mice were injected with erythrocyte cindoacetamide and irradiated with ultrasound. Fig. 19 shows an example of the test results obtained in accordance with Evaluation Experiment D, and shows the results for the xanthene dye Eris Mouth Sidodoacetamide. The rate of inhibition of tumor growth (suppression rate) in the case of ultrasonic irradiation was 14.7% in the control experiment, whereas the rate of inhibition in the control experiment was 44.7% when erythrocyte cinnacetamide was used. At 9.7%, an anti-tumor effect of about 3.4 times was obtained.
本試験例の抗腫瘍効果は, 試験例 6及び試験例 7に示したように, 超 音波作用誘導剤の音饕キヤビテ一シヨン閾値を低下させる効果及び音響 化学反応を促進する効果により得られる。 なお, チオール基又はアミノ 基に親和性を有するエリス口シンョードアセ卜アミ ド以外のキサンテン 染料等についてもエリス口シンョードアセトアミ ドと同等の抗腫瘍効果 が得られると期待され, 実際にエリス口シンイソチオシァネート, エリ スロシンマレイミ ドは音響キヤビテーシヨン閾値低下及び活性酸素生成 に於いて, エリス口シンョードアセトアミ ドとほぼ同等の効果を示した ( 試験例 9 : 『チオール基又はアミノ基と化学結合可能な官能基を有す るキサンテン染料の誘導体からなる化合物が, 結石破壊を促進する効果 の確認試験』 As shown in Test Examples 6 and 7, the antitumor effect of this test example is obtained by the effect of the sonication inducer on lowering the threshold of the sound tone and the effect of promoting the sonochemical reaction. It is expected that xanthene dyes other than erythrido-syndoacetamide having an affinity for thiol group or amino group will have the same antitumor effect as erythrocyte-scinodacetamide. Mouth synthiothiocyanate and erythrosine maleimide showed almost the same effects as elimination cinnamate acetoamide in lowering the acoustic cavitation threshold and producing active oxygen ( Test Example 9: “thiol group or amino acid”). Confirmation of the effect of a compound consisting of a derivative of a xanthene dye having a functional group capable of chemically bonding with a group to accelerate stone destruction ”
第 2 0図は, チオール基又はアミノ基と化学結合可能な官能基を有す るキサンテン染料の誘導体からなる化合物を含む溶液中の結石に超音波 を照射した時の結石破壊率を示す図である。 第 20図は, キサンテン染 料の誘導体として, エリス口シンョ一ドアセトアミ ド, エリス口シンィ ソチオシァネート, エリス口シンマレイミ ドを選び, 評価実験 Eに従つ た試験結果の一例を示す。 Fig. 20 shows an example of the application of ultrasonic waves to a calculus in a solution containing a compound consisting of a derivative of a xanthene dye having a functional group capable of chemically bonding to a thiol group or an amino group. It is a figure which shows the calculus destruction rate at the time of irradiating. Fig. 20 shows an example of test results according to evaluation experiment E, in which xylose dye acetamido, ellis cinthiothiothiocyanate, and ellis cinmareimide were selected as xanthene dye derivatives.
第 20図に示すように, エリス口シンョ一ドアセトアミ ド, エリスロシ ンィソチオシァネー卜, エリス口シンマレイミ ドの各超音波作用誘導剤 (濃度は 1 X 10— 4M) は対照実験と比較し, それぞれ 2. 2, 1. 9,As shown in FIG. 20, Ellis port Shinyo one Doasetoami de, Erisuroshi Ni source thio Xia Natick Bok, Ellis port Shinmareimi de of the ultrasonic action inducing agent (concentration 1 X 10- 4 M) is compared to the control experiment , 2. 2. 1. 9, respectively
1. 9倍の結石破壊率を示し, エリス口シンョードアセトアミ ドを用い る場合最も高く, 何れの超音波作用誘導剤も結石破壊の促進に有効であ つた。 The stone destruction rate was 1.9 times higher, the highest when using Ellis mouth cinnacetacetamide, and all ultrasonic action inducers were effective in promoting stone destruction.
試験例 1 0 : 『エリス口シンョードアセトアミ ドが超音波造影用の気 泡を生成する効果の確認試験』  Test Example 10: “Test for confirming the effect of erythricular cinnamate acetoamide generating bubbles for ultrasound imaging”
超音波作用誘導剤の存在下で, 音響キヤビテーシヨンにより気泡を生 成した場合の超音波造影作用を, SDラッ卜の膀胱を対象にして検討し た。 超音波診断装置は日立製作所製 EUB— 450を用い, 探触子は術 中用指先探触子 ( 7. 5MHz ) を用いた。 20週齢の SDラッ トに麻 酔剤を静脈注入し麻酔させた後, 探触子を膀胱に押し当てて膀胱の超音 波 Bモード像を得た。 膀胱の辺縁部のみから強いエコー信号が観測され た。 次に, エリス口シンョードアセトアミ ドを 0. 5 gZ l (リットル) となるよう生理的食塩水に溶かした溶液を, 5mg/k g体重となるよ う SDラッ 卜に静脈注入し, 1 5分後に周波数 0. 5MH z及び 1 MH zの超音波を同時にそれぞれ 5 WZc m2の音響強度で 5秒間照射した。 超音波の照射中及び照射直後の数秒間にわたり, 超音波照射前には見ら れなかった膀胱内からのェコ一信号が観測された。 We examined the ultrasound contrast effect of the generation of air bubbles by acoustic cavitation in the presence of an ultrasonic action inducer, targeting the bladder of an SD rat. An EUB-450 manufactured by Hitachi, Ltd. was used as the ultrasonic diagnostic apparatus, and an intraoperative fingertip probe (7.5 MHz) was used as the probe. After anesthesia was performed by intravenously injecting an anesthetic into a 20-week-old SD rat, the probe was pressed against the bladder to obtain an ultrasonic B-mode image of the bladder. Strong echo signals were observed only from the periphery of the bladder. Next, a solution prepared by dissolving erythridocindoacetamide in physiological saline to a concentration of 0.5 gZl (liter) was injected intravenously into an SD rattle to a concentration of 5 mg / kg body weight. After 15 minutes, ultrasonic waves of frequencies 0.5 MHz and 1 MHz were simultaneously irradiated at an acoustic intensity of 5 WZcm 2 for 5 seconds. During the ultrasound irradiation and for several seconds immediately after the ultrasound irradiation, echo signals from the bladder that were not seen before the ultrasound irradiation were observed.
試験例 1 1 : 『キサンテン染料の 2分子を— (CH2) n—により結合 して形成される 2量体及びその誘導体が, 液体中で音響キヤビテ一ショ ンの閾値を低下させる効果の確認試験』 第 2 1図は, キサンテン染料又はキサンテン染料の誘導体からなる分 子の 2個が一 (CH2) n—により結合して形成される 2量体を含む溶液 を超音波照射した時に生成する分調波の強度の音響強度に対する依存性 を示す図である。 第 23図は, キサンテン染料又はキサンテン染料の誘 導体からなる分子の 2個が一 (CH2) n—により結合して形成される 2 量体の構造を示す図であり, 第 2 1図に示す, キサンテン染料又はキサ ンテン染料の誘導体の 2量体に於ける Rt, R2, R3, R4> Rs, R6, R7, R8を示す。 Test Example 11: “Confirmation of the effect of dimer and its derivative formed by binding two molecules of xanthene dye by — (CH 2 ) n — to lower the threshold of acoustic cavitation in liquid test" Fig. 21 shows the components generated when a solution containing a dimer formed by combining two molecules of a xanthene dye or a derivative of a xanthene dye with one (CH 2 ) n — is irradiated with ultrasonic waves. FIG. 6 is a diagram showing the dependence of the harmonic intensity on the acoustic intensity. Figure 23 is a diagram showing the structure of a dimer formed by combining two molecules of a xanthene dye or a derivative of a xanthene dye with one (CH 2 ) n —. shown, shown xanthene dyes or hexa pentene in the dimer of the dye derivative R t, R 2, R 3 , R 4> R s, the R 6, R 7, R 8 .
第 2 1図は, 評価実験 Cに従った試験結果の一例を示し, ローズベン ガル 2量体等の超音波作用誘導剤を含む場合には, 音響強度が約 2 WZ cm2以上で音響キヤビテーシヨンが生じている。 これに対し, 対照実 験では音響強度が 1 OWZ cm 2でも音響キヤビテーシヨンが生じてい ないことから, 本試験例に於いて超音波作用誘導剤が音響キヤビテーシ ョン閾値を 1 Z5以下に低下させていることが明らかである。 Figure 21 shows an example of the test results according to evaluation experiment C. When an ultrasonic wave inducer such as a Rose Bengal dimer is included, the acoustic intensity is about 2 WZ cm 2 or more and the acoustic cavitation is not possible. Has occurred. In contrast, control of the acoustic intensity in experiments does not occur acoustic Kiyabiteshiyon even 1 OWZ cm 2, an ultrasonic action inducing agent in the present test example lowers the acoustic Kiyabiteshi ® emission threshold 1 Z5 below It is clear that there is.
試験例 1 2 : 『キサンテン染料の 2分子を— (CH2) π—により結合 して形成される 2量体及びその誘導体が, 音響化学反応を促進する効果 の確認試験』 Test Example 12: “Confirmation test of the effect of a dimer and its derivative formed by bonding two molecules of a xanthene dye by — (CH 2 ) π— to accelerate the sonochemical reaction”
第 22図は, キサンテン染料又はキサンテン染料の誘導体からなる分 子の 2個が一 (CH2) n—により結合して形成される 2量体を含む溶液 を超音波照射した時の, 活性酸素の生成量の音響強度に対する依存性を 示す図である。 第 22図は, 評価実験 Cに従った試験結果の一例を示し, ローズベンガル 2量体等の超音波作用誘導剤を含む場合には, 音響強度 が約 SWZcm2以上で活性酸素が生成している。 これに対し, 対照実 験では音響強度が 1 OWZcm2でも活性酸素の生成が見られない。 第 23図は, キサンテン染料又はキサンテン染料の誘導体からなる分子の 2個が— (CH2) n—により結合して形成される 2量体の構造を示す図 であり, 第 22図に示す, キサンテン染料又はキサンテン染料の誘導体 の 2量体に於ける R2, R3, R4, R5, R6l R7, R8を示す。 試験例 1 3 : 『キサンテン染料の 2分子を一 (CH2) n—により結合 して形成される 2量体及びその誘導体が, 生体中の音響キヤビテーショ ンの閾値を低下させる効果の確認試験』 Fig. 22 shows active oxygen when a solution containing a dimer formed by combining two molecules consisting of a xanthene dye or a derivative of a xanthene dye by one (CH 2 ) n — is irradiated with ultrasonic waves. FIG. 4 is a diagram showing the dependence of the amount of generated sound on the sound intensity. Figure 22 shows an example of the test results according to evaluation experiment C. When an ultrasonic wave inducer such as rose bengal dimer is included, active oxygen is generated at an acoustic intensity of about SWZcm 2 or more. I have. In contrast, in the control experiment, no active oxygen was generated even at an acoustic intensity of 1 OWZcm 2 . FIG. 23 is a diagram showing the structure of a dimer formed by bonding two molecules of a xanthene dye or a derivative of a xanthene dye with — (CH 2 ) n —, as shown in FIG. Xanthene dye or derivative of xanthene dye R 2 , R 3 , R 4 , R 5 , R 6l R 7 , R 8 in the dimer of Test Example 13: “Confirmation test of the effect of dimer and its derivative formed by binding two molecules of xanthene dye by one (CH 2 ) n — to lower the threshold of acoustic cavitation in living body”
第 24図は, キサンテン染料又はキサンテン染料の誘導体からなる分 子の 2個が一 (CH2) π—により結合して形成される 2量体が存在する 時の, マウス肝臓に於ける音響キヤビテ一シヨンの閾値を示す図である。 第 24図は, 評価実験 Βに従った試験結果の一例を示し, ローズべンガ ル 2量体, エリス口シンョードアセトアミ ド 2量体, ェォシンイソチォ シァネート 2量体, フルォレセインマレイミ ド 2量体何れに於いても, 超音波作用誘導剤を投与しない場合に比べて音響キヤビテーシヨンの閾 値は低下している。 各超音波作用誘導剤により音響キヤビテーシヨン閾 値は, 約 1 1 2, 1/ 1 2, 1/8 , 1 3程度に低下している。 試験例 1 4 : 『キサンテン染料の 2分子を一 (CH2) 。一により結合 して形成される 2量体及びその誘導体の, 抗腫瘍効果 (腫瘍増殖阻止率) の確認試験』 FIG. 24, xanthene dyes or two molecular consisting derivatives of xanthene dyes one (CH 2) π - when the dimer is formed by bonding by the presence, in the acoustic Kiyabite in mouse liver It is a figure showing a threshold of one shot. Fig. 24 shows an example of the test results according to the evaluation experiment II. Rosebengal dimer, ellis mouth succinoacetamide dimer, eosin isothiosinate dimer, fluorescein male The threshold of acoustic cavitation was lower in all of the mid dimers than in the case where no ultrasonic action inducer was administered. The acoustic cavitation threshold is reduced to about 112, 1/2, 1/8, and 13 by each ultrasonic action inducer. Test Example 14: “One molecule of xanthene dye is one (CH 2 ). Confirmation test of antitumor effect (tumor growth inhibition rate) of dimer and its derivative formed by binding together
第 25図は, ローズベンガル 2量体, エリス口シンョードアセトアミ ド 2量体をマウスに投与して超音波照射した時の腫瘍増殖阻止率を示す 図である。 第 25図は, 評価実験 Dに従った試験結果の一例であり, 口 ーズベンガル 2量体及びエリス口シンョードアセトアミ ド 2量体につい ての結果を示す。 超音波照射を行なった場合の腫瘍増植阻止率 (抑制率) は, 対照実験では 10. 1 %であるのに対して, ローズベンガル 2量体 を用いた場合には 70. 5%, また, エリス口シンョードアセトアミ ド 2量体を用いた場合には 73. 2%であり, 約 7倍の抗腫瘍効果が得ら れている。 本試験例でのローズペンガル 2量体による抗腫瘍効果は, 試 験例 3におけるローズベンガルモノマーの抗腫瘪効果の約 2倍である。 本試験例における抗腫瘍効果は, 試験例 1 1及び試験例 1 2の結果から, 本発明の超音波作用誘導剤の音響キヤビテーシヨシ閾値を低下させる効 果及び音饗化学反応を促進する効果により得られたことが確認された。 なお, チオール基又はアミノ基と結合可能な, ョードアセトアミ ド基以 外の官能基を持つキサンテン染料の 2量体についても, エリス口シンョ 一ドアセトアミ ド 2量体と同等の抗腫瘍効果が得られると期待され, 実 際に試験例 1 1及び試験例 1 2に於いて, ェォシンイソチオシァネート 2量体, フルォレセィンマレイミ ド 2量体は音響キヤビテ一ション閾値 低下及び活性酸素生成に於いて, エリス口シンョードアセトアミ ド 2量 体とほぼ同等の効果を示した。 Figure 25 shows the tumor growth inhibition rate when mice were administered with Rose Bengal dimer and Elis succinoacetoamide dimer and irradiated with ultrasound. Fig. 25 shows an example of the test results according to Evaluation Experiment D, and shows the results for dioxbengal dimer and erythrox cinnamate acetamide dimer. The inhibition rate of tumor growth with ultrasound irradiation was 10.1% in the control experiment, whereas it was 70.5% when Rose Bengal dimer was used, and In contrast, when Eris mouth succinoacetamide dimer was used, it was 73.2%, and the antitumor effect was about 7 times higher. The antitumor effect of the rose pengal dimer in this test example is about twice that of the antitumor effect of rose bengal monomer in test example 3. The antitumor effect in this test example was determined from the results of Test Examples 11 and 12. It was confirmed that the ultrasonic action inducer of the present invention was obtained by the effect of lowering the threshold value of acoustic cavitation and the effect of promoting the chemical reaction of sound. It should be noted that a dimer of a xanthene dye having a functional group other than an acetoacetamide group capable of binding to a thiol group or an amino group also has an antitumor effect equivalent to that of an erythrocyte sio-doacetamide dimer. Expected, in fact, in Test Examples 11 and 12, eosin isothiocynate dimer and fluorescein maleide dimer showed lower acoustic cavitation threshold and active oxygen. In the formation, the effect was almost the same as that of the elimination of cinnamate acetamide dimer.
なお, 第 2 1図, 第 22図, 第 24図, 第 25図に示す, キサンテン 染料又はキサンテン染料の誘導体の 2量体に於いて R2が, 塩素原子で ある口一ズベンガル 2量体 (O c t ame t hy l e n e b i s— r o s e b e n g a l ) では n = 8 , ョ一ドアセ卜アミ ド基 ( I o d o a c e t am i d e g r o u p ) であるエリス口シンョ一ドアセトァ ミ ド ( 2量体 ) (D e c ame t hy l e n e b i s— ( e r y t h r o s i n— 5— i o d o a c e t am i d e ) ) で tま n= 1 0, イソ チォシァネ一卜基 ( I s o t h i o c y an a t e g r o u p ) であ るェオシンィソチオシネ一卜 ( 2量体) (He x a d e c ame t hy l e n e b i s— ( e o s i n— 5— i s o t h i o c y an a t e ) ) では n= 1 6 , マレイミ ド基 ( a i e i m i d e g r o u p) で あるフルォレセィンマレイミ ド ( 2量体) (De c ame t h y l e n e b i s— ( f l u o r e s c e i n— 5— ma l e i m i d e) ) では n = 1 0である。 In addition, in the dimer of the xanthene dye or the derivative of the xanthene dye shown in FIGS. 21, 22, 24, and 25, R 1 is a chlorine-atom-to-substituted dimer ( In Oct ame t hy lenebis—rosebengal, n = 8, the elimination of the erythrocin succin-doacetamide (dimer), which is the odoacet amide group (Dec ame t hy lenebis— ( erythrosin— 5— iodoacet am ide)) and n = 10, eosinisothiocinet (dimer), which is an isothiocyanate group (He xadec ame t hy In lenebis— (eosin—5—isothiocy anate)), n = 16, fluorescein maleide (dimer), which is a maleimide group (aieimide group), is used. leimide)), n = 10
以上のように, 本発明の超音波作用誘導剤によれば, 音饗キヤビテ一 ションの閾値を低下させることができ, 低音響強度の超音波の照射によ り良性又は悪性の腫瘍, 結石の治療を安全に実行できる。 以上本発明を 要約すると以下のようになる。 キサンテン環を含むキサンテン染料又は キサンテン染料の誘導体からなる化合物 ( 2量体をも含む) を含み, 音 響キヤビテ一シヨンを発生させる音響強度の閾値を低下させる超音波作 用を誘導する薬剤であり, キサンテン染料の骨格の炭素原子に結合する R i〜R 8 (第 4図又は第 1 0図) の何れかは, ハロゲン, チオール基又 はァミノ基と化学結合可能な官能基 (ハロゲン化ァセトアミ ド基, マレ イミ ド基, アジリジン基, イソチオシァネート基, スクシンイミ ド基, スルホニルクロライ ド基の何れか) を有する薬剤である。 音響キヤビテ ーシヨンの発生のための音響強度の閾値を低下させることができ, 低音 響強度の超音波の照射により良性又は悪性の腫瘍, 結石の治療を安全に 実行できる。 As described above, according to the ultrasonic action inducer of the present invention, the threshold value of sound cavitation can be reduced, and irradiation of ultrasonic waves with low acoustic intensity can benign or malignant tumors and calculi. Treatment can be performed safely. The present invention is summarized as follows. A xanthene dye containing a xanthene ring or It contains a compound consisting of a derivative of a xanthene dye (including a dimer) and is an agent that induces the action of ultrasound that lowers the threshold of sound intensity that produces acoustic cavitation. R i~R 8 bound to atoms either (FIG. 4 or the 1 0 view), halogen, thiol groups or Amino group capable of chemically bonding functional group (halogenated Asetoami de group, male imide group , Aziridine, isothiocyanate, succinimid, or sulfonyl chloride). The threshold of acoustic intensity for the generation of acoustic cavitation can be lowered, and the treatment of benign or malignant tumors and calculi can be safely performed by irradiating low-intensity ultrasonic waves.

Claims

請 求 の 範 囲 The scope of the claims
1 . キサンテン環を含むキサンテン染料又は該キサンテン染料の誘導 体からなる化合物を含み, 音響キヤビテ一シヨンを発生させる音響強度 の閾値を低下させる超音波作用を誘導する薬剤。 1. A drug that induces an ultrasonic action that lowers the threshold of acoustic intensity that generates acoustic cavitation, comprising a compound comprising a xanthene dye containing a xanthene ring or a derivative of the xanthene dye.
2 . 請求項 1に記載の薬剤に於いて, 前記誘導体は前記キサンテン染 料の骨格の炭素原子に結合する 2以上のハロゲンを有する薬剤。  2. The drug according to claim 1, wherein the derivative has two or more halogens bonded to a carbon atom of the skeleton of the xanthene dye.
3 . 請求項 1に記載の薬剤に於いて, 前記誘導体は前記キサンテン染 料の骨格の炭素原子に結合する官能基を有し, 該官能基はチオール基又 はァミノ基と化学結合可能である薬剤。  3. The drug according to claim 1, wherein the derivative has a functional group bonded to a carbon atom of the skeleton of the xanthene dye, and the functional group can be chemically bonded to a thiol group or an amino group. Drugs.
4 . 請求項 3に記載の薬剤に於いて, 前記官能基が, ハロゲン化ァセ トアミ ド基, マレイミ ド基, アジリジン基, イソチオシァネート基, ス クシンイミ ド基, スルホニルクロライ ド基の何れかである薬剤。  4. The drug according to claim 3, wherein the functional group is a halogenated acetamido group, a maleimide group, an aziridine group, an isothiocyanate group, a succinimid group, or a sulfonyl chloride group. A drug that is either.
5 . 請求項 1に記載の薬剤に於いて, 前記化合物は前記キサンテン環 を 2個有する薬剤。  5. The drug according to claim 1, wherein the compound has two of the xanthene rings.
6 . 請求項 1に記載の薬剤に於いて, 前記キサンテン染料又は前記キ サンテン染料の誘導体からなる前記化合物を 2個有し, 2個の前記化合 物が一 (C H 2 ) „- (但し, 3≤n (整数) ≤ 2 0 ) により結合してい る薬剤。 6. The drug according to claim 1, wherein the compound comprising two of the xanthene dye or a derivative of the xanthene dye has two, and two of the compounds are one (CH 2 ) „-(where, Drugs bound by 3≤n (integer) ≤20).
7 . 請求項 6に記載の薬剤に於いて, 前記誘導体は前記キサンテン染 料の骨格の炭素原子に結合する 2以上のハロゲンを有する薬剤。  7. The drug according to claim 6, wherein the derivative has two or more halogens bonded to carbon atoms of the skeleton of the xanthene dye.
8 . 請求項 6に記載の薬剤に於いて, 前記誘導体は前記キサンテン染 料の骨格の炭素原子に結合する官能基を有し, 該官能基はチオール基又 はァミノ基と化学結合可能である薬剤。  8. The drug according to claim 6, wherein the derivative has a functional group bonded to a carbon atom of the skeleton of the xanthene dye, and the functional group is capable of chemically bonding to a thiol group or an amino group. Drugs.
9 . 請求項 8に記載の薬剤に於いて, 前記官能基が, ハロゲン化ァセ 卜アミ ド基, マレイミ ド基, アジリジン基, イソチオシァネート基, ス クシンイミ ド基, スルホニルクロライ ド基の何れかである薬剤。 9. The drug according to claim 8, wherein the functional group is a halogenated acetate amide group, a maleimide group, an aziridine group, an isothiocyanate group, a succinimid group, or a sulfonyl chloride group. A drug that is any of
1 0. キサンテン環を含むキサンテン染料又は該キサンテン染料の誘 導体からなる化合物を含み, 音響キヤビテーシヨンを発生させる音響強 度の閾値を低下させる超音波作用を誘導する薬剤を被検体の目的の部位 に投与する手段と, 1 OWZcm2以下の音響強度の複数の中心周波数 を持つ超音波を重畳して前記目的の部位に照射する手段と, 前記目的の 部位からの超音波を検出する手段とを有する超音波装置。 10. An agent that induces an ultrasonic action that lowers the threshold of acoustic intensity that generates acoustic cavitation, containing a xanthene dye containing a xanthene ring or a compound that is a derivative of the xanthene dye, is applied to the target site of the subject. a means for administration, and means for irradiating by superimposing the ultrasonic wave at the site of the target with a plurality of center frequencies of the acoustic intensity of 1 OWZcm 2 or less, and means for detecting the ultrasonic wave from the site of the target Ultrasound device.
1 1. キサンテン環を含むキサンテン染料又は該キサンテン染料の誘 導体からなる化合物を含み, 音響キヤビテーシヨンを発生させる音響強 度の閾値を低下させる超音波作用を誘導する薬剤を被検体の目的の部位 に投与する工程と, 1 OW/cm2以下の音響強度の複数の中心周波数 を持つ超音波を重畳して前記目的の部位に照射する工程と, 前記目的の 部位からの超音波を検出する工程とを有する超音波治療方法。 1 1. An agent that contains a xanthene dye containing a xanthene ring or a compound composed of a derivative of the xanthene dye and induces an ultrasonic action that lowers the threshold of acoustic intensity that generates acoustic cavitation is applied to a target site of the subject. Administering, superposing ultrasonic waves having a plurality of center frequencies having an acoustic intensity of 1 OW / cm 2 or less, and irradiating the ultrasonic waves to the target site, and detecting ultrasonic waves from the target site. Ultrasound treatment method comprising:
PCT/JP1997/002285 1996-07-05 1997-07-02 Drugs inducing ultrasonic action and apparatus wherein the drugs are used WO1998001131A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP8/176207 1996-07-05
JP17620796 1996-07-05
JP9/31993 1997-02-17
JP3199397 1997-02-17

Publications (1)

Publication Number Publication Date
WO1998001131A1 true WO1998001131A1 (en) 1998-01-15

Family

ID=26370509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/002285 WO1998001131A1 (en) 1996-07-05 1997-07-02 Drugs inducing ultrasonic action and apparatus wherein the drugs are used

Country Status (1)

Country Link
WO (1) WO1998001131A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998052609A1 (en) * 1997-05-19 1998-11-26 Nycomed Imaging As Sonodynamic therapy using an ultrasound sensitizer compound
WO1998052610A1 (en) * 1997-05-22 1998-11-26 Technion Research And Development Foundation Ltd. Photodynamic and sonodynamic therapy and agents and system for use therefor
JP2002017742A (en) * 2000-06-30 2002-01-22 Hitachi Ltd Ultrasonic therapeutic device
JP2003531834A (en) * 2000-04-06 2003-10-28 フォトゲン インク Internal drugs for high energy phototherapy treatment of diseases
JP2004503592A (en) * 2000-07-14 2004-02-05 フォトゲン インク Drugs for chemotherapy treatment of diseases
EP1393775A1 (en) 2002-08-28 2004-03-03 Hitachi, Ltd. Ultrasonic apparatus for therapeutic use
WO2004052407A1 (en) * 2002-12-09 2004-06-24 Xantech Pharmaceuticals, Inc. Ultrasound contrast using halogenated xanthenes
US7074427B2 (en) 2002-01-30 2006-07-11 Hitachi, Ltd. Medicine, carrier for medicine, method of producing medicine, and method of tumor treatment
WO2007049708A1 (en) 2005-10-26 2007-05-03 Toto Ltd. Ultrasonic cancer therapy accelerator and cytotoxic agent
US7824336B2 (en) 2005-05-17 2010-11-02 Hitachi, Ltd. Ultrasonic apparatus for diagnosis and therapy
US9078594B2 (en) 2010-04-09 2015-07-14 Hitachi, Ltd. Ultrasound diagnostic and treatment device
WO2016148215A1 (en) * 2015-03-17 2016-09-22 国立大学法人東京大学 Mint 3 INHIBITOR

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63264064A (en) * 1987-04-07 1988-10-31 ベベセ Instrument sterilizing method and apparatus
JPH0629196B2 (en) * 1987-12-01 1994-04-20 甲子郎 梅村 Physiological action enhancer for tumor treatment by ultrasound
JPH08176017A (en) * 1994-08-04 1996-07-09 Touin Gakuen Contrast medium for ultrasonic wave and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63264064A (en) * 1987-04-07 1988-10-31 ベベセ Instrument sterilizing method and apparatus
JPH0629196B2 (en) * 1987-12-01 1994-04-20 甲子郎 梅村 Physiological action enhancer for tumor treatment by ultrasound
JPH08176017A (en) * 1994-08-04 1996-07-09 Touin Gakuen Contrast medium for ultrasonic wave and its production

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998052609A1 (en) * 1997-05-19 1998-11-26 Nycomed Imaging As Sonodynamic therapy using an ultrasound sensitizer compound
US6498945B1 (en) 1997-05-19 2002-12-24 Amersham Health As Sonodynamic therapy using an ultrasound sensitizer compound
WO1998052610A1 (en) * 1997-05-22 1998-11-26 Technion Research And Development Foundation Ltd. Photodynamic and sonodynamic therapy and agents and system for use therefor
US6986740B2 (en) 1998-11-02 2006-01-17 Xantech Pharmaceuticals, Inc. Ultrasound contrast using halogenated xanthenes
JP2003531834A (en) * 2000-04-06 2003-10-28 フォトゲン インク Internal drugs for high energy phototherapy treatment of diseases
JP2002017742A (en) * 2000-06-30 2002-01-22 Hitachi Ltd Ultrasonic therapeutic device
JP2004503592A (en) * 2000-07-14 2004-02-05 フォトゲン インク Drugs for chemotherapy treatment of diseases
US7074427B2 (en) 2002-01-30 2006-07-11 Hitachi, Ltd. Medicine, carrier for medicine, method of producing medicine, and method of tumor treatment
US7125387B2 (en) 2002-08-28 2006-10-24 Hitachi, Ltd. Ultrasonic apparatus for therapeutical use
EP1393775A1 (en) 2002-08-28 2004-03-03 Hitachi, Ltd. Ultrasonic apparatus for therapeutic use
JP2006510677A (en) * 2002-12-09 2006-03-30 ザンテック ファーマスーティカルズ,インク. Ultrasound imaging using halogenated xanthene
WO2004052407A1 (en) * 2002-12-09 2004-06-24 Xantech Pharmaceuticals, Inc. Ultrasound contrast using halogenated xanthenes
US7824336B2 (en) 2005-05-17 2010-11-02 Hitachi, Ltd. Ultrasonic apparatus for diagnosis and therapy
WO2007049708A1 (en) 2005-10-26 2007-05-03 Toto Ltd. Ultrasonic cancer therapy accelerator and cytotoxic agent
US8992958B2 (en) 2005-10-26 2015-03-31 Toto Ltd. Ultrasonic cancer treatment enhancer and cell killer
US9078594B2 (en) 2010-04-09 2015-07-14 Hitachi, Ltd. Ultrasound diagnostic and treatment device
WO2016148215A1 (en) * 2015-03-17 2016-09-22 国立大学法人東京大学 Mint 3 INHIBITOR
JP2016172705A (en) * 2015-03-17 2016-09-29 国立大学法人 東京大学 Mint3 inhibitor

Similar Documents

Publication Publication Date Title
Umemura et al. In vitro and in vivo enhancement of sonodynamically active cavitation by second-harmonic superimposition
Canavese et al. Nanoparticle-assisted ultrasound: A special focus on sonodynamic therapy against cancer
Giesecke et al. Ultrasound-mediated cavitation thresholds of liquid perfluorocarbon droplets in vitro
Umemura et al. Recent advances in sonodynamic approach to cancer therapy
Rapoport et al. Cavitation properties of block copolymer stabilized phase-shift nanoemulsions used as drug carriers
Rosenthal et al. Sonodynamic therapy––a review of the synergistic effects of drugs and ultrasound
You et al. Porphyrin-grafted lipid microbubbles for the enhanced efficacy of photodynamic therapy in prostate cancer through ultrasound-controlled in situ accumulation
Umemura et al. Sonodynamically induced effect of rose bengal on isolated sarcoma 180 cells
Yumita et al. Sonodynamically induced antitumor effect of a gallium‐porphyrin complex, ATX‐70
US20030147812A1 (en) Device and methods for initiating chemical reactions and for the targeted delivery of drugs or other agents
WO1998001131A1 (en) Drugs inducing ultrasonic action and apparatus wherein the drugs are used
Chang et al. IR780 loaded perfluorohexane nanodroplets for efficient sonodynamic effect induced by short-pulsed focused ultrasound
EP1362598A1 (en) Active oxygen generator containing photosensitizer for ultrasonic therapy
Miller et al. Contrast-agent gas bodies enhance hemolysis induced by lithotripter shock waves and high-intensity focused ultrasound in whole blood
US20100178305A1 (en) Ultrasonic nanotherapy of solid tumors with block copolymers stabilized perfluorocarbon nanodroplets
WO2006043359A1 (en) Ultrasonic contrast medium
Dong et al. Cold plasma gas loaded microbubbles as a novel ultrasound contrast agent
Shanei et al. An overview of therapeutic applications of ultrasound based on synergetic effects with gold nanoparticles and laser excitation
Yumita Membrane lipid peroxidation as a mechanism of sonodynamically induced erythrocyte lysis
CA2290450A1 (en) Photodynamic and sonodynamic therapy and agents and system for use therefor
JP3816809B2 (en) Drug, drug carrier, drug production method and tumor treatment method
Perng et al. Ultrasound imaging of oxidative stress in vivo with chemically-generated gas microbubbles
JP2008100956A (en) Composition for treating cancer
Choi et al. Synergistic agents for tumor-specific therapy mediated by focused ultrasound treatment
Topaz et al. EPR analysis of radicals generated in ultrasound-assisted lipoplasty simulated environment

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase