WO1997049919A1 - Displacement type fluid machine - Google Patents

Displacement type fluid machine Download PDF

Info

Publication number
WO1997049919A1
WO1997049919A1 PCT/JP1997/002181 JP9702181W WO9749919A1 WO 1997049919 A1 WO1997049919 A1 WO 1997049919A1 JP 9702181 W JP9702181 W JP 9702181W WO 9749919 A1 WO9749919 A1 WO 9749919A1
Authority
WO
WIPO (PCT)
Prior art keywords
space
fluid
film
members
scroll
Prior art date
Application number
PCT/JP1997/002181
Other languages
French (fr)
Japanese (ja)
Inventor
Yuuichi Yanagase
Akihiko Yamamoto
Muneo Mizumoto
Tatsuo Natori
Isamu Tsubono
Koichi Inaba
Nobuo Abe
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to JP50268698A priority Critical patent/JP3226549B2/en
Publication of WO1997049919A1 publication Critical patent/WO1997049919A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/90Improving properties of machine parts
    • F04C2230/91Coating

Definitions

  • the present invention relates to a positive displacement type fluid machine, and more particularly to a positive displacement type fluid machine in which performance is improved by minimizing a gap between engagement portions of a portion forming a compression chamber, and a method of manufacturing the same.
  • a scroll compressor As a conventional positive displacement fluid machine, for example, there is a scroll compressor.
  • the compression chambers of the scroll compressor are formed simultaneously by engaging the spiral wraps formed on the fixed scroll and the orbiting scroll, and multiple compression chambers are formed at the same time.
  • the volume of the chamber becomes smaller as needed, and the fluid in the compression chamber is compressed to a high pressure and discharged from the discharge port.
  • the conventional method of manufacturing fixed scrolls and rotating scrolls involves precision finishing and assembly by machining.
  • structural parts have tolerance dimensions even when finished with super precision, and when these are assembled, errors are often accumulated, and it is difficult to make the gap of the compression chamber close to the minimum by machining only. In order to reach the minimum, processing costs that do not match the product cost will be spent.
  • Reference 1 Japanese Patent Laid-Open Publication No. Hei 6-323049 (hereinafter referred to as Reference 1) applied ultra-precision polishing to the mirror plate surface of the fixed scroll. After precision polishing of the revolving scroll, a soft surface treatment such as phosphate coating or MoS2 is applied, and these parts are combined to reduce the clearance by bringing both end plate surfaces into contact with each other. Has been described.
  • Displacement compressors are made by combining several components with each other. Since the compression chamber is formed, the shape and dimensions of the mating portion are precisely machined. However, each component has its own dimensional tolerance due to machining tolerances, and assembling these components may further increase the dimensional tolerance. It is often treated. This surface treatment also considers reducing the frictional resistance during compressor operation and reducing the wear by changing the combination of the same sliding materials, but also plays a role in adjusting the mutual clearance in the initial stage of assembly. Yes. In other words, the soft surface treatment layer is worn away at the parts that are in strong contact with each other after assembling, and the clearance is adjusted so as not to make strong contact with each other. However, it is possible to adjust the clearance at the contacting part, but at the non-contact part, the operation is performed with the large clearance, and there is no effect on the improvement of the compression efficiency.
  • a first object of the present invention is to provide a fluid compressor in which the clearance between members forming a compression chamber is minimized in the entire compression stroke in order to improve compression efficiency.
  • a second object of the present invention is to provide a method of manufacturing a fluid compressor in which the clearance between members forming a compression chamber is minimized in the entire compression stroke in order to improve compression efficiency.
  • the displacement type fluid machine includes: a space formed by a plurality of members; a volume variable unit that changes a volume of the space by changing a relative position of the plurality of members;
  • a positive displacement type fluid machine including a fluid introduction unit for introducing a fluid and a fluid discharge unit for releasing a fluid from the space, a film is formed on a surface of a plurality of members forming the space, The space is sealed by sliding the films formed on the surfaces of the plurality of members in a range in which the plurality of members can be moved by the variable capacity means.
  • a method of manufacturing a positive displacement fluid machine according to the present invention includes the following steps.
  • a film-forming material is injected into the space from the fluid introduction means to fill the space.
  • M o S 2 particles were desirable to inject those containing at least one particle selected from S b 2 0 3 particles, C particles and the group consisting of the graph eye Bok as a film forming material. In addition, it is effective to heat the film forming material in order to cure the film forming material.
  • FIG. 1 is a longitudinal sectional view of a hermetic scroll compressor according to Embodiment 1 of the present invention.
  • FIG. 2 is an enlarged sectional view of a main part of FIG. 1 and a diagram showing a film forming method.
  • FIG. 3 is a longitudinal sectional view of the hermetic scroll compressor according to Embodiment 1 of the present invention.
  • FIG. 4 is a longitudinal sectional view of the hermetic scroll compressor according to Embodiment 1 of the present invention.
  • FIG. 5 is a longitudinal sectional view of the oil free scroll fluid machine according to Embodiment 1 of the present invention.
  • FIG. 6 is a longitudinal sectional view of the oil free scroll fluid machine according to Embodiment 1 of the present invention.
  • FIG. 7 is a longitudinal sectional view of the oil-readable scroll compressor according to Embodiment 1 of the present invention.
  • FIG. 8 is a model diagram of a cross-sectional state of a film of a film-forming material according to Example 1 of the present invention.
  • FIG. 9 is a longitudinal sectional view of a vertical film forming apparatus according to Embodiment 2 of the present invention.
  • FIG. 10 is a longitudinal sectional view of a vertical film forming apparatus of a scroll fluid machine according to Embodiment 2 of the present invention.
  • FIG. 11 is a longitudinal sectional view of a vertical film forming apparatus of a scroll fluid machine according to Embodiment 2 of the present invention.
  • FIG. 12 is an enlarged cross-sectional view of a spiral wrap portion of a fixed and revolving scroll according to Embodiment 2 of the present invention and a diagram showing a film forming method in a film forming apparatus.
  • FIG. 13 is a longitudinal sectional view of a horizontal film forming apparatus according to Embodiment 2 of the present invention.
  • FIG. 14 is a system diagram of a film forming apparatus for mass production according to Embodiment 2 of the present invention.
  • FIG. 15 is a longitudinal sectional view of a hermetic compressor in which a swirling type fluid machine according to Embodiment 3 of the present invention is applied to a compressor.
  • FIG. 16 is an enlarged sectional view of a main part of FIG.
  • FIG. 17 is a plan view of a compression element of a swirling type fluid machine according to Embodiment 3 of the present invention.
  • FIG. 18 is an explanatory view of the operation principle of the swirling fluid machine according to Embodiment 3 of the present invention.
  • FIG. 19 is an enlarged sectional view of a compression element and a film forming method of a swirling type fluid machine according to Embodiment 3 of the present invention.
  • FIG. 20 is an explanatory diagram of a film forming method of the screw compressor according to Embodiment 4 of the present invention.
  • FIG. 21 is a cross-sectional view showing a toothed portion of a screw-type compressor according to Embodiment 4 of the present invention.
  • FIG. 22 is a cross-sectional view showing a rotor tooth profile of a screw-type compressor according to Embodiment 4 of the present invention.
  • FIG. 23 is a longitudinal sectional view of an oil-free screw-type compressor according to Embodiment 4 of the present invention. The best way to carry out the invention
  • FIG. 1 is a longitudinal sectional view showing a hermetic scroll compressor to which the present invention is applied.
  • the fixed scroll 4 and the rotating scroll 5 that mesh with each other are connected between the frame 8 and the rotating scroll 5 via an Oldham ring 10 that prevents rotation. 8 and fixed scroll 4 are bolted together.
  • the driving rotary shaft 9 is engaged with the electric motor 3 including the rotor 3 a and the stay 3 b, and is further supported and rotated by the raw bearing 11 provided on the inner surface side of the frame 8. .
  • One end of the driving rotary shaft 9 is an eccentric shaft and engages with a rotary scroll bearing 5a to enable the rotary motion.
  • Lubrication of the main bearing 11 and the slewing bearing 5a is performed by using oil 12 accumulated at the bottom of the container 1 with a differential pressure oil through an oil supply hole 9a provided in the rotary shaft 9.
  • oil 12 accumulated at the bottom of the container 1 with a differential pressure oil through an oil supply hole 9a provided in the rotary shaft 9.
  • a liquid film-forming material is injected into the compression chamber in a state where the fixed and rotating scrolls are assembled, and the compression space is reduced. Produces a solid film that forms At this time, the rotating scroll is moved at the same time as the film-forming material is injected to remove excess film-forming material adhered to the surfaces of the spiral wraps, thereby minimizing clearance. It is important that the turning scroll starts its movement before the material is solidified and discharges excess film material. If a slurry-like film-forming material is used, the rotating scroll is moved after the slurry is filled. The film-forming material introduced into each compression space by the movement of the rotating scroll adheres to each surface and is kneaded.
  • the film-forming material rubbed against the surface has an appropriate tackiness, the two are integrated with each other with a strong adhesion. Further, by continuing the swirling motion, the heat generated by the compression of the gas in the compression space causes the film-forming material to be dried and cured when the film contains resin.
  • the adhesive strength of the film differs depending on the combination of the material of the surface of the compression space and the component of the film forming material.
  • the following materials are suitable as the components of the composite material of the iron-based material whose surface of the compression space is.
  • M o S 2 particles as the Bigume down bets on by Nda poly amino Doi mi de (PAI), S b 2 0 3 that the particles and C particles are dispersed.
  • PAI poly amino Doi mi de
  • the film can be uniformly formed.
  • FIG. 2 shows an enlarged longitudinal sectional view of a compressed portion formed by a fixed scroll and a rotating scroll, and a film forming method of the present invention.
  • a film formation liquid suction pipe 18 is attached to a discharge part 4a disposed on the outer periphery of the fixed scroll 4 from a discharge port 6 provided in the container 1, and the film formation liquid 13 is pierced, for example.
  • the excess film-forming liquid is supplied to the pump 15 from the suction port 7 while adhering to the spiral wrap of the fixed scroll 4 and the orbiting scroll 5, the tooth bottom and the end plate surface To discharge.
  • the film solution 13 discharged outside is collected through a pipe and used again as a film forming solution if necessary.
  • the film-forming liquid supply pipe 18 and the discharge portion 4 a of the fixed scroll are sealed with a ring 16 so as not to leak into the container 1.
  • the film forming liquid 13 injected into the compression space 2 formed by the fixed scroll 4 and the orbiting scroll 5 is adhered to the spiral wrap of the fixed scroll 4 and the orbiting scroll 5 and the end plate surface.
  • hot air is supplied from the discharge port 6 by a hot air supply source 17 arranged outside, and heated and maintained at a predetermined temperature.
  • the film formation is completed by solidifying the film formation liquid.
  • the film at the contact area is worn out or eliminated, and the coating material adheres further to the area where the clarity is large, and the clarity narrows as needed, resulting in extremely small clarity.
  • the shape To achieve. As a heating source at this time, self-heating due to the compression movement of the orbiting scroll 5 or hot air from a hot air supply source 17 is introduced, and when a predetermined temperature, for example, 150, is reached, the film forming solution is heated. Solidify. As a result, the compression part is fixed, the spiral wrap of the revolving scroll, the clearance between the tooth bottom and the mirror surface are minimized, and the efficiency of the scroll fluid machine is improved by an inexpensive film forming method. Can be achieved.
  • FIGS. 3 to 6 which has a structure in which a compression section and an electric motor can be separated.
  • FIG. 3 is a longitudinal sectional view showing another hermetic scroll compressor to which the present invention is applied.
  • the fixed scroll 4 and the revolving scroll 5 meshing with each other are connected between the frame 8 and the revolving scroll 5 via an Oldham ring 10 that prevents rotation. 8 and fixed scroll 4 are fastened by bolts.
  • the driving rotary shaft 9 is supported and rotated by a main bearing 11 provided on the inner surface side of the frame 8, and one end of the driving rotary shaft 9 becomes an eccentric shaft and engages with the rotary scroll bearing 5a. It is possible to turn.
  • oil 12 is supplied with differential pressure oil through the oil supply hole 9a provided in the rotating shaft.
  • the drive rotary shaft 9 and the electric motor 19 are connected by a magnetic force ring 20 formed by a rotor 2 Oa and a magnetite 2 Ob, and the compression unit and the electric motor 19 are sealed. I have.
  • the compression section and the electric motor 19 can be separated by the magnetic coupling 20, so that the same coating treatment as in FIG. 2 can be performed with only the compression section.
  • FIG. 4 is a longitudinal sectional view showing another hermetic scroll compressor to which the present invention is applied.
  • the fixed scroll 4 and the revolving scroll 5 meshing with each other are connected between the frame 8 and the revolving scroll 5 via an Oldham ring 10 for preventing rotation.
  • Frame 8 and fixed scroll 4 are fastened by bolts.
  • the drive rotary shaft 9 is The rotary shaft 9 is supported and rotated by a raw bearing 11 provided on the inner surface side of the frame 8, and one end of a drive rotary shaft 9 is engaged with a rotary scroll bearing 5 a as an eccentric shaft so as to be rotatable.
  • oil 12 is supplied with differential pressure oil through an oil supply hole 9a provided in the rotating shaft 9.
  • a sealing mechanism 21 is provided to completely seal the drive rotation shaft 9 and the electric motor 19, and the compression section and the electric motor 19 are completely sealed. Since the compression part of the scroll compressor of this structure and the electric motor 19 can be separated by the seal mechanism 21, the same coating treatment as in Fig. 2 can be performed with only the compression part.
  • FIG. 5 is a longitudinal sectional view showing another oil free scroll fluid machine to which the present invention is applied.
  • the fixed scroll 4 and the revolving scroll 5 that mesh with each other are connected between the frame 8 and the revolving scroll 5 via an Oldham ring 10 that prevents rotation.
  • Frame 8 and fixed scroll 4 are bolted together.
  • the driving rotary shaft 9 is supported and rotated by a main bearing 11 provided on the inner surface side of the frame 8, and one end of the driving rotary shaft 9 becomes an eccentric shaft and engages with the bearing 5 a of the orbiting scroll 5. It is possible to make a turning motion.
  • the lubrication of the main bearing 11 and the slewing bearing 5a uses grease or solid lubricant.
  • the drive rotary shaft 9 and the electric motor 19 are connected by an electromagnetic coupling 20 formed of a rotor 20a and a magnet 20b, and a seal between the compression section and the electric motor 19 is provided. are doing. Since the compression section of the scroll compressor of this structure and the electric motor 19 can be separated by the electromagnetic coupling 20, the same coating treatment as in FIG. 2 can be performed with only the compression section.
  • FIG. 6 is a longitudinal sectional view showing another oil free scroll fluid machine to which the present invention is applied.
  • the fixed scroll 4 and the revolving scroll 5 that mesh with each other are connected between the frame 8 and the revolving scroll 5 via an Oldham ring 10 that prevents rotation.
  • Frame 8 and fixed scroll 4 are fastened by bolts.
  • drive rotation The shaft 9 is supported and rotated by a main bearing 11 provided on the inner surface side of the frame 8, and one end of the driving rotary shaft 9 is formed as an eccentric shaft and engages with the bearing 5 a of the rotary scroll 5 to be able to rotate.
  • the lubrication of the main bearing 11 and the slewing bearing 5a uses grease or solid lubricant.
  • a sealing mechanism 21 is provided to hermetically seal the driving rotary shaft 9 and the electric motor 19, and the compression section and the electric motor 19 are completely sealed. Since the compression part of the scroll compressor of this structure and the electric motor 19 can be separated by the seal mechanism 21, the same coating treatment as in Fig. 2 can be performed with only the compression part.
  • FIG. 7 is a longitudinal sectional view of another oil feeder pull scroll fluid machine to which the present invention is applied.
  • La orbiting scroll 7 0 was formed in a spiral shape on both sides of the ⁇ 7 0 b-up 7 0 a,, 7 0 a 2 is configured, the tip seal member 7 to the tip of Raniso is 0 c Are arranged.
  • the compression chamber 73 is formed together with the revolving scroll in a state where the wraps 7 la and 72 a are spirally formed.
  • Tip seals 71 C and 72 C are provided at the tips of these wraps.
  • the drive shaft 75 having an eccentric portion is rotatably supported by bearing means 77 a and bearing means 77 b provided on the first fixed scroll 71.
  • bearing means 73a At the eccentric portion of the drive shaft 75, a part of the outer peripheral portion of the end plate of the revolving scroll is rotatably connected by bearing means 73a.
  • an auxiliary crank shaft 76 having an eccentric portion is disposed at a position of approximately 180 °, and a part of the outer peripheral portion of the rotating scroll plate is also supported by this. They are connected via means 74b.
  • the auxiliary crankshaft 76 is formed by bearing means 77c provided on the head plate 71b of the first fixed scroll and bearing means 77d provided on the head plate 72b of the second fixed scroll. It is rotatably supported. Balance axis 7 9a, 7 on drive shaft 75 9 b is provided so that the unbalance amount of the interlocking movement of the orbiting scroll 70 is offset. Further, the auxiliary crank 76 is connected to the drive shaft 75 by means of a rotation adjusting means 78 so that the auxiliary crank 76 rotates in synchronization with the rotation of the drive shaft 75. The drive shaft 75 is rotated by a power source 83 arranged outside the fixed scroll.
  • a suction port 82 is provided on the outer periphery of the first fixed scroll 71 so that gas fills the outer periphery of the scroll.
  • the compression operation chamber 73 divided into two parts by the revolving scroll head plate 70b is configured so that the volume decreases from the outer peripheral part toward the center part, and the flow path 70 e united. Further, a discharge hole 80 is provided in the plate 71b of the first fixed scroll 71 so as to face this flow path.
  • the orbiting scroll head 70 b is provided with a communication hole 70 d so that the pressures in the upper and lower compression working chambers 73 are equalized as much as possible.
  • the surfaces of the first fixed scroll 71 and the second fixed scroll 72 are provided with heat dissipating fins 81a and 81b, respectively.
  • the orbiting scroll 70 having laps on both sides of the head plate makes a revolving motion while preventing rotation by the auxiliary crank shaft 76.
  • the film forming material is introduced from the discharge holes 80 while moving the swirling scroll 70, and the spiral wrap, the tooth bottom and the sickle It is discharged from the inlet 82 while adhering to the plate surface.
  • the film-forming material that has entered the compression chamber adheres to the surface of the fixed and orbiting scroll, and heats and maintains the film at a predetermined temperature to form a film.
  • the heating source at this time may be self-heating due to the compressive motion of the orbiting scroll 70 or, though not shown, hot air from the outside may be introduced from the inlet to reach a predetermined temperature to form a film forming solution.
  • Fig. 8 shows a model of the substrate and the cross-sectional state of the film thus formed.
  • the figure shows a state where a film is directly formed on a base iron-based material.
  • a film is formed after applying a surface treatment to form irregularities in advance on the surface of the iron-based material, for example, a phosphate film treatment, the film can be formed uniformly and uniformly, and the adhesion to the iron-based material can be improved. May be improved.
  • Those shown in the figure is obtained by dispersing the M o S 2 particles, S b 2 0 3 particles and C particles as the Bigume down bets on by Nda poly A Mi Doi mi de (PAI).
  • a deposition agent, S b 2 0 3 particles, of C particles and graphs eye DOO In some cases, a plurality of types are dispersed.
  • Narumakuzai and to the inorganic silicate soda also properly is re-cone also rather death Rige door of by Nda to Bigume down door and to M o S 2 particles, S b 2 0 3
  • a dispersion of multiple types of particles, C particles and graphite is suitable.
  • FIGS. 3 to 6 As an example of the hermetic scroll compressor, a compressor with a structure that allows the compression section and the electric motor to be separated (Figs. 3 to 6) has been described. A film forming apparatus suitable for the above film forming operation will be described with reference to FIGS.
  • FIG. 9 is a longitudinal sectional view of a vertical film forming apparatus of a scroll fluid machine.
  • the fixed scroll 4 and the revolving scroll 5 are connected between the frame 8 and the revolving scroll 5 via an Oldham ring 10 that prevents rotation, and assemble a compression section formed by combining the above members.
  • the electric motor 30 mounted on the film-forming apparatus and the drive cultivation shaft 9 are connected to each other with the cutting 31 in a state where the film-forming apparatus is installed in an upright position. Since the electric motor 30 has a function of controlling the rotation speed, it is possible to change the rotation speed depending on the film formation state.
  • the film forming liquid is supplied from the discharge port 4a while moving the rotating scroll 5 to be formed, and the excess is discharged from the suction port 4b while adhering to the spiral wrap portion, the tooth bottom and the end plate surface. Is done.
  • the film-forming material entering the compression chamber adheres to the surfaces of the fixed scroll 4 and the orbiting scroll 5, and can be solidified by heating and maintaining the film at a predetermined temperature, for example, 150.
  • Fig. 10 shows a coiled spring spring 32 installed in the compression part of the closed scroll fluid machine shown in Figs. 3 to 6, and seals the end plates of the fixed scroll 4 and the rotating scroll 5. This is to enhance the effect and prevent leakage of the film forming solution. According to this structure, it is possible to reliably prevent the film-forming material from leaking out of the compression chamber, so that problems such as the film-forming material adhering to the bearing can be prevented.
  • the rotating scroll 5 is pressed against the fixed scroll 4 by the springs 32. Therefore, if the scroll fluid machine is assembled with this structure, the amount of the pressing load of the coil springs 32 will be reduced. Power loss occurs.
  • the frame 8 is divided into two parts, a housing 33 provided with a main bearing 11 and a seal mechanism 21 is provided, and the seal 21 with the frame 8 is sealed with a 0 ring 34. After film formation, the coil spring 32 can be removed.
  • Fig. 11 shows an example in which an elastic body is installed in the compression part of the closed scroll fluid machine shown in Figs. FIG. According to this structure, it is possible to reliably prevent the film-forming material from leaking out of the compression chamber, thereby preventing problems such as the film-forming material sticking to the bearing.
  • the revolving scroll 5 is pressed against the fixed scroll 4 by the elastic body 35. Therefore, if the scroll fluid machine is assembled with this structure, the power for the pressing load of the elastic body 35 is applied. Loss occurs.
  • the frame 8 is divided into two parts, the main bearing 11 and the sealing mechanism 21 A housing 33 equipped with L4 is provided, and the seal 21 with the frame 8 is sealed with a 0 ring 34.
  • the elastic body 35 can be removed after film formation. I have.
  • FIG. 12 shows a specific film forming method when the vertical film forming apparatus S of this embodiment is used.
  • a film-forming liquid suction pipe 18 is attached to the discharge part 4a on the outer periphery of the fixed scroll 4, and the film-forming liquid 13 is pushed out by, for example, a piston type pump 14, and the fixed scroll 4 and the swivel are rotated.
  • Excess film formation liquid is suctioned and discharged from the suction port 4b of the fixed scroll 4 by the pump 15 while being attached to the spiral wrap portion, the tooth bottom and the end surface of the scroll 5.
  • the film material discharged outside is collected through a pipe and used as a film material again if necessary.
  • the film forming liquid supply pipe 18 and the discharge portion 4a of the fixed scroll are sealed with a 0 ring 16 so as not to leak outside.
  • the film forming liquid 13 entering the compression chamber formed by the fixed scroll 4 and the swirling scroll 5 adheres to the surface of the fixed scroll 4 and the swirling scroll 5 and is supplied from outside by a hot air supply source 17. Hot air is supplied from the discharge port 4a and heated and maintained at a predetermined temperature, thereby completing the film formation. In this process, the film at the contact portion is worn out or eliminated, and the material for deposition further adheres to a portion where the clarity is large, and the clarity narrows as needed to form a very small clarity.
  • the heating source at this time, self-heating by the compression movement of the revolving scroll 5 or hot air from the hot air supply source is introduced from the discharge part 4a by the hot air supply source 18, and a constant temperature of, for example, 15 When the temperature reaches 0, the film forming liquid solidifies.
  • the compactness of the compression section, the spiral wrap of the orbiting scroll, the clearance between the tooth bottom and the end plate surface are minimized, and the scroll fluid machine is manufactured using an inexpensive film-forming method. It is possible to achieve higher efficiency.
  • the film forming apparatus has a mechanism capable of forming a film while swinging or tilting the compression unit up to about ⁇ 120 °.
  • films can be formed in compression chambers of various types of scrolls, so that the scroll compressor can be easily made into a series.
  • FIG. 13 is a longitudinal sectional view of a horizontal film forming apparatus for a scroll fluid machine.
  • the compression section is arranged in the film forming apparatus, and the film forming material is introduced from the discharge section 4a while the orbiting scroll 5 is moved.
  • the excess is discharged out of the suction part 4b by a pump while being attached to the spiral wrap, the tooth bottom and the end plate surface.
  • the suction part 4b is attached below the discharge part 4a as shown.
  • the film-forming material that has entered the compression chamber adheres to the surface of the fixed and revolving scroll, and can be solidified by heating to a predetermined temperature, for example, 150.
  • the film at the contact area is worn away or eliminated, and the film material adheres to the area where the clarity is large, and the clarity narrows as needed to form a very small clarity. .
  • a heating source at this time a self-heating due to the compression movement of the orbiting scroll 5 or a film forming apparatus for solidifying a film forming liquid by introducing hot air from a discharge unit.
  • the film forming apparatus has a mechanism capable of forming a film while swinging or tilting the compression unit up to about ⁇ 120 °.
  • the compression part can be swung or tilted even in a region where there is a possibility that the film forming liquid may not reach the spiral wrap above the discharge port of the compression chamber. As a result, a film can be reliably formed.
  • films can be formed in the compression chambers of various types of scrolls, so that the scroll compressor can be easily made into a series.
  • Fig. 14 shows a system diagram of a film forming system for mass production of scroll fluid machinery.
  • the excess is introduced by a suction type pump 14 and attached to the spiral wrap, the tooth bottom and the end plate surface, and the excess is discharged out of the suction part 4 b by the suction pump 15.
  • the film-forming material entering the compression chamber adheres to the surface of the fixed and swirling scroll, and can be solidified by heating and maintaining the film at a predetermined temperature, for example, 150.
  • the heating source at this time is a self-heating due to the compression movement of the orbiting scroll, or a mass-production film forming apparatus for solidifying the film forming liquid by introducing hot air from the discharge port.
  • FIG. 15 is a longitudinal sectional view of a hermetic compressor when the positive displacement fluid machine according to the present invention is used as a compressor.
  • FIG. 16 is an enlarged sectional view of a main part of FIG.
  • FIG. 7 is a plan view of the compression element.
  • the cross-sectional views of the compression element shown in FIGS. 15 and 16 correspond to the A_ A cross section in FIG.
  • reference numeral 41 denotes a positive displacement element according to the present invention
  • 42 denotes a frost moving element for driving the same
  • 43 denotes a closed container containing the positive displacement element 41 and the electric element 42. is there.
  • the details of the positive displacement compression element 41 will be described with reference to FIG. 17 which shows a three-section lap in which three sets of the same contour are combined.
  • the inner peripheral shape of the cylinder 44 is formed such that a hollow portion having a shape like a ginkgo leaf appears at every 120 ° (center ⁇ ′).
  • Each end of the ginkgo leaf-shaped hollow portion has a plurality of (in this case, three) substantially arc-shaped vanes 44 b protruding inward.
  • the swivel piston 45 is disposed inside the cylinder 44, and has an inner peripheral wall 44 a (a portion having a larger curvature than the vane 44 b) and a vane 44. It is configured to engage with b.
  • the center o 'of the dam 44 and the center o of the turning screw 45 match, the contours of the two are similar, and a gap having a constant width is formed between the two.
  • FIG. The symbol 0 is the center of the turning screw 45 which is a displacer, and the symbol o 'is the center of the cylinder 44 (or the drive shaft 46).
  • the symbols a, b, c, d, e, and f represent the contact points between the inner peripheral wall 44a and the vane 44b of the cylinder 44 and the rotating piston 45.
  • the same combination of curves is smoothly connected by surrounding three places. Focusing on one of these points, ⁇ ⁇
  • the curve that forms the peripheral wall 44a and the vane 44b can be regarded as one thick vortex curve (the tip of the vane 44b is considered to be the beginning of the vortex).
  • the wall curve (ga) has a winding angle of approximately 360 ° (meaning that it is 360 ° by design, but not exactly due to manufacturing errors. The same applies hereinafter).
  • the outer wall curve (g'-b) is a vortex curve with a winding angle of almost 180 °.
  • the inner contour at one location is formed from an inner wall curve, an outer wall curve, and a connection curve (g-g ') connecting the outer wall curve and the inner wall curve.
  • a spiral body composed of these three curves is arranged at a substantially equal pitch (120 °) on the circumference, and the outer and inner wall curves of adjacent spiral bodies are smooth curves such as arcs (for example, b — b ' ),
  • An inner peripheral contour shape of the cylinder 44 is formed.
  • the outer peripheral shape of the revolving screw 45 is also configured according to the same principle as that of the cylinder 44.
  • the spiral body composed of three curves is assumed to be arranged at a substantially equal pitch (120 °) on the circumference. This is for the purpose of evenly distributing the load associated with the compression operation described later and for ease of manufacturing. In particular, if these things do not matter, an unjust pitch may be used.
  • a plurality of working chambers 55 (moving around the center ⁇ of the swivel piston 45) (enclosed and sealed by the cylinder inner peripheral contour (inner wall) and the piston outer peripheral contour (side wall)) This is the space where the suction is completed and the compression (discharge) process is completed, and this space is lost at the end of compression, but the suction ends at that moment, so this space is counted as one.
  • a space that communicates with the outside via a discharge port is formed (in the present embodiment, there are always three working chambers).
  • Fig. 18 (1) shows the state in which the suction of working gas from the suction port 7a into this working chamber has been completed.
  • Fig. 18 (2) shows the state where the 90 ° drive shaft 46 has rotated from this state, and
  • Fig. 18 (3) shows the state where the drive shaft has rotated 180 ° from the beginning.
  • Fig. 18 (4) shows a state in which the rotation has progressed by 270 ° from the beginning.
  • Fig. 18 When the force rotates 90 °, it returns to the initial state shown in Fig. 18 (1). Thus, as the rotation proceeds, the working chamber 55 decreases its volume, and the discharge port 48a is closed by the discharge valve 49 (shown in Fig. 19), so that the working fluid compresses. It will be done. When the pressure in the working chamber 55 becomes higher than the external discharge pressure, the discharge valve 49 automatically opens due to the pressure difference, and the compressed working gas is discharged through the discharge port 48a. Is done.
  • the shaft rotation angle from the end of suction (compression start) to the end of discharge is 360 °, and the next suction stroke is prepared during each compression and discharge stroke. Starts compression.
  • the space formed by the contacts a and b Of the fluid should be compressed by the space formed by the contacts a and b after the shaft rotation angle of 360 °, but this space will not expand after the expansion as shown in Fig. 18 (3). However, not all the fluid in the space formed by the contacts a and d is compressed in the space formed by the contacts a and b, since the separation occurs in Fig. 18 (4). . In FIG. 18 (4), the space formed by the contacts b and e in the suction process is the same as the volume of fluid that has been divided and not taken into the space formed by the contacts a and d. As shown in Fig. 18 (1), it is divided and filled with the fluid flowing into the space formed by the contact point b near the discharge port and the contact point b.
  • the swirl screw 45 is disposed in the cylinder 44 forming the compression element 41 of the piston type positive displacement fluid machine described above, and the inner peripheral wall 44 a of the cylinder 44 is provided. And the vane 4 4b.
  • the film forming solution 13 is introduced from the film forming solution supply tank 36 by the piston type pump 14 from the suction port 47 a while rotating the swirling screw 45 to rotate the swirling screw 45.
  • the excess is discharged from the discharge pipe 54 through the discharge port 48 a and the discharge valve 49 by the suction pump 15 while being attached to the outer periphery of 45 and the inner peripheral wall 44 a of the cylinder.
  • the film-forming material that has entered the compression chamber adheres to the outer periphery of the swirling screw 45 and the surface of the inner peripheral wall 44a, and is heated and maintained at a predetermined temperature, for example, 150 °. Can be solidified. As a heating source at this time, self-heating due to the compression movement of the swirl-stone or hot air is introduced from the discharge port to solidify the film-forming liquid. Until this film formation is completed, the film at the contact area is worn away or eliminated, and the material for deposition is further attached to areas with high clarity. Form a sense.
  • FIG. 20 An embodiment of a screw compressor according to the present invention will be described with reference to FIGS. 20 to 23.
  • FIG. 1 An embodiment of a screw compressor according to the present invention will be described with reference to FIGS. 20 to 23.
  • FIG. 20 An embodiment of a screw compressor according to the present invention will be described with reference to FIGS. 20 to 23.
  • FIG. 20 An embodiment of a screw compressor according to the present invention will be described with reference to FIGS. 20 to 23.
  • FIG. 23 is a sectional view showing a screw compressor to which the present invention is applied.
  • the male rotor 93 b and the female rotor 93 a that engage with each other are rotatably supported at both ends by bearings 99, and the bearings 9 1
  • the oil that has lubricated 9 is prevented from entering the compression chamber C formed by the rotor casing 100 and the rotor 93. Further, in the compression chamber C, for example, oil is not injected to cool the pair of rotors 93 and the like.
  • the male mouth 93b has a drive pinion 97 fixed at one end thereof, and a pair of timing gears 9 at the other end and the other end of the female rotor 93b. 8 is fixed.
  • the pair of timing gears 98 causes the pair of rotors 93 to rotate synchronously, compressing the air sucked from the suction port A indicated by the one-point line, and compressing the air into a chain line. Discharge from discharge port B indicated by.
  • the surfaces of the pair of rotors 93 are exposed to high-temperature air, and the temperature rises and thermal expansion occurs.
  • the tooth shape is deformed. Accordingly, in the present invention, the tooth profile and the gap of the pair of rotors 93 are formed as follows. FIG.
  • FIG. 22 is a cross-section perpendicular to the axis of the tooth profile and casing of FIG.
  • FIG. 21 is an enlarged cross-sectional view showing one embodiment of the tooth profile portion of the pair of blades 93 of FIG. 23.
  • FIG. 20 is a schematic view showing an embodiment of the present invention.
  • reference numeral 93 denotes a set of rotors, and a casing 100 surrounds the set.
  • the coating agent is introduced from the air inlet 91 and adheres to at least one set of the rotor surface and the inner surface of the casing 100, and the remainder is discharged out of the system through the air outlet 92.
  • the coating agent discharged to the outside can return to the vicinity of the suction port as needed through a pipe (not shown), and can be used again as a coating agent.
  • the female rotor 93a also forms a base with the same material as the male rotor 93b, and a coating agent externally introduced is formed on its surface as a coating.
  • At least one set of rotors determines a tooth profile that takes into account the thermal expansion of the tooth profile at the preset maximum temperature and the gap between the pair of rotors 93 in FIG. 23, and then sets the pair of rotors 93 to room temperature.
  • the thickness of the coating agent can be easily made uniform, so that the effect of the invention can be further improved.
  • the tooth profile of the other female rotor 93 b in particular is As will be described later, when the pair of rotors 62 are assembled to a compressor, and the load is driven by synchronous rotation by the timing gear 98, it is generated by the one male rotor 93b. Any shape is acceptable and does not require accuracy as in the past. Further, when the pair of rotors 93 are assembled to the compressor, the gap may be formed to be a value slightly larger than a predetermined gap.
  • the pair of rotors 93 are assembled to a compressor, and while the backlash in the rotational direction is restrained by the timing gear 98, the rotational speeds V m ( Male port-Rotating at evening speed), Vi (rotating speed of female rotor), releasing the discharge port to the atmosphere at first, performing no-load operation at low speed, and then applying the coating agent from the suction port.
  • V m Male port-Rotating at evening speed
  • Vi rotating speed of female rotor
  • the male rotor 93b and the female rotor 93a contact each other regardless of the advancing surface or the reversing surface of the coating 94b of the female rotor 93b. Are cut down by each other by each other. Also, at this time, when the coating 93c adhered to the inner surface of the mouth-taking 100 comes into contact with the above-mentioned mouths 93a and 93b, the contact portion becomes the above-mentioned raw material coating 94a, Cut by 9 4 b.
  • the deformation due to the thermal expansion of the pair of rotors 93 due to the rise in the temperature and pressure of the discharge air and the process of creation by the male rotors 93 b are performed at a preset maximum temperature of the pair of rotors 93. Rotation is continued until a value with a certain margin is added, and finally, the entire rotor surface 93 and the entire axial section are rotated until the above-mentioned individual rotors 93 have the optimum tooth profile to maintain the minimum clearance. In the process, the coating is created. In this way, when the generating process is completed, the operation of the compressor is stopped, and the pair of rotors 93 is returned to room temperature.
  • the male rotor and the female rotor are described as a pair.
  • the present invention relates to a screw-type compressor in which the male rotor and the female mouth are configured as a pair or more. Can be similarly applied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

After a compression portion of a displacement type compressor is assembled, a film forming material is poured into a compression chamber while the compression portion is being operated. As a result, an excessive film forming material at a contact portion is removed and a thick film forming material is formed at a non-contact portion. Consequently, clearance of the compression chamber becomes minimal, and a displacement type fluid machine having high compression performance can be obtained.

Description

明 細 書  Specification
容積 流体機械  Fluid machinery
技術分野 Technical field
本発明は容積型流体機械に係り、 特に圧縮室を形成する部分の嚙み合い部 の隙間を最小にして性能向上を図った容積型流体機械及びその製造方法に関 する。  The present invention relates to a positive displacement type fluid machine, and more particularly to a positive displacement type fluid machine in which performance is improved by minimizing a gap between engagement portions of a portion forming a compression chamber, and a method of manufacturing the same.
背景技術 Background art
従来から用いられている容積型流体機械と して例えばスク ロール圧 縮機がある。 スクロール圧縮機の圧縮室は固定スク ロールと旋回スク ロールに形成されている渦巻き状のラ ップをかみ合わせることによ り 同時に複数の圧縮室が形成され、 旋回スク ロールの旋回運動により圧 縮室の容積が随時狭く なり圧縮室内の流体が高圧に圧縮されて吐出口 から吐出される。 固定スク ロール及び旋回スク ロールの従来の製造方 法は機械加工により精密に仕上げ、 組み立てる方法が取られている。 しかしながら、 構造部品 超精密に仕上げても公差寸法を持っており、 これらを組み立てるとさ らに誤差が累積されるこ とが多く圧縮室の隙 間を機械加工のみで極小に近づけることは難しく 、 極小に近づけるた めには製品コス 卜に見合わない加工コス 卜を費やすこ とになる。 従つ て、 従来は圧縮機の高効率化を達成するために例えば特開平 6 — 3 2 0 3 4 9号公報 (以下、 文献 1 という) に固定スク ロールの鏡板面を 超精密研磨を施し旋回スク ロールを精密研磨した後に軟質な表面処理、 たとえばりん酸塩被膜処理あるいは M o S 2を施し、 これらの部品を組み 合わせて両鏡板面を互いに接触させてク リ アランスを狭くすることが 記載されている。  As a conventional positive displacement fluid machine, for example, there is a scroll compressor. The compression chambers of the scroll compressor are formed simultaneously by engaging the spiral wraps formed on the fixed scroll and the orbiting scroll, and multiple compression chambers are formed at the same time. The volume of the chamber becomes smaller as needed, and the fluid in the compression chamber is compressed to a high pressure and discharged from the discharge port. The conventional method of manufacturing fixed scrolls and rotating scrolls involves precision finishing and assembly by machining. However, structural parts have tolerance dimensions even when finished with super precision, and when these are assembled, errors are often accumulated, and it is difficult to make the gap of the compression chamber close to the minimum by machining only. In order to reach the minimum, processing costs that do not match the product cost will be spent. Therefore, in the past, in order to achieve high efficiency of the compressor, for example, Japanese Patent Laid-Open Publication No. Hei 6-323049 (hereinafter referred to as Reference 1) applied ultra-precision polishing to the mirror plate surface of the fixed scroll. After precision polishing of the revolving scroll, a soft surface treatment such as phosphate coating or MoS2 is applied, and these parts are combined to reduce the clearance by bringing both end plate surfaces into contact with each other. Has been described.
発明の開示 Disclosure of the invention
容積型圧縮機は複数の部材を互いに嚙み合わせるこ とによって複数 の圧縮室を形成するこ とから、 嚙み合い部の形状寸法は精密に機械加 ェされている。 しかし、 部品単体毎には機械加工公差による寸法の許 容範囲を有しており これらを組み立てるこ とにより さ らに寸法許容範 囲が大き く なることがあるため、 圧縮室形成部分に予め表面処理を施 してることが多い。 この表面処理は圧縮機運転時の摩擦抵抗を小さ く したり互いの摺動の同種材組み合わせを変えて摩耗をおさえることも 考慮しているが、 組み立て初期の互いのク リアラ ンス調整の役も有し ている。 すなわち、 軟質な表面処理層は、 組立後の強く互いに接触し た部分では摩滅を起こ し、 互いに強い接触にならないよう にク リ アラ ンスの調整を行う ものである。 しかしながら、 接触する部分のク リ ア ラ ンス調整は可能であるが非接触部分ではク リ アラ ンスが大きいまま の運転となり、 圧縮効率の向上には効果を示さないことになる。 Displacement compressors are made by combining several components with each other. Since the compression chamber is formed, the shape and dimensions of the mating portion are precisely machined. However, each component has its own dimensional tolerance due to machining tolerances, and assembling these components may further increase the dimensional tolerance. It is often treated. This surface treatment also considers reducing the frictional resistance during compressor operation and reducing the wear by changing the combination of the same sliding materials, but also plays a role in adjusting the mutual clearance in the initial stage of assembly. Yes. In other words, the soft surface treatment layer is worn away at the parts that are in strong contact with each other after assembling, and the clearance is adjusted so as not to make strong contact with each other. However, it is possible to adjust the clearance at the contacting part, but at the non-contact part, the operation is performed with the large clearance, and there is no effect on the improvement of the compression efficiency.
本発明の第 1 の目的は圧縮効率を向上させるために圧縮室を形成す る部材間のク リ アランスを全圧縮行程において最小と した流体圧縮機 を提供することにある。  A first object of the present invention is to provide a fluid compressor in which the clearance between members forming a compression chamber is minimized in the entire compression stroke in order to improve compression efficiency.
本発明の第 2の目的は圧縮効率を向上させるために圧縮室を形成す る部材間のク リ アラ ンスを全圧縮行程において最小と した流体圧縮機 の製造方法を提供するこ とにある。  A second object of the present invention is to provide a method of manufacturing a fluid compressor in which the clearance between members forming a compression chamber is minimized in the entire compression stroke in order to improve compression efficiency.
上述のように容積型流体機械の圧縮効率を向上させるために圧縮室 形成部分を精密に加工することは現実的ではない。  As described above, it is not practical to precisely process the compression chamber forming portion in order to improve the compression efficiency of the positive displacement fluid machine.
また、 文献 1 のように圧縮室形成部分に軟質な表面処理を施した後 にこれらの部品を組み合わせて各部材を接触させてク リ アラ ンスを狭 しても、 非接触部分ではク リアラ ンスが大きいままの運転となり圧縮 効率の向上を図ることができない。  Also, as shown in Reference 1, even after applying a soft surface treatment to the compression chamber forming part, these parts are combined and the members are brought into contact to narrow the clearance, but the non-contact part does not clear the clearance. And the compression efficiency cannot be improved.
発明者らは圧縮室形成部分を精密に加工することなく 容積型流体機 械の圧縮効率を高める方法に関して鋭意研究した結果、 本願発明に至 つた。 本願発明の容積型流体機械は、 複数の部材で形成された空間と、 前記複 数の部材の相対位置を変化させることによ り前記空間の容積を変化させ る容積可変手段と、 前記空間に流体を導入する流体導入手段と、 前記空 間から流体を放出する流体放出手段とを備えた容積型流体機械において、 前記空間を形成する複数の部材の表面には膜が形成されており、 前記空 間は前記容量可変手段によ り前記複数の部材が移動可能な範囲において 前記複数の部材の表面に形成された膜同志が摺接することによ り シール されていることを特徴とする。 The inventors have conducted intensive studies on a method of increasing the compression efficiency of a positive displacement fluid machine without precisely processing the compression chamber forming portion, and as a result, have reached the present invention. The displacement type fluid machine according to the present invention includes: a space formed by a plurality of members; a volume variable unit that changes a volume of the space by changing a relative position of the plurality of members; In a positive displacement type fluid machine including a fluid introduction unit for introducing a fluid and a fluid discharge unit for releasing a fluid from the space, a film is formed on a surface of a plurality of members forming the space, The space is sealed by sliding the films formed on the surfaces of the plurality of members in a range in which the plurality of members can be moved by the variable capacity means.
また、 前記空間を形成する複数の部材の表面に形成される膜には M o S 2粒子、 S b 2 0 3粒子、 C粒子及びグラフアイ トからなる群から選ばれる少なくとも 1 つの粒子を含有することが望ましい。 Further, the film formed on the surface of a plurality of members to form the space containing at least one particle selected from M o S 2 particles, S b 2 0 3 particles, the group consisting of C particles and graphs eye DOO It is desirable to do.
本願発明の容積型流体機械の製造方法は、 次の工程を有するこ とを特徵 とする。  A method of manufacturing a positive displacement fluid machine according to the present invention includes the following steps.
( 1 ) 前記空間を組み立てる工程。  (1) A step of assembling the space.
( 2 ) 前記容積可変手段を駆動する工程。  (2) A step of driving the volume variable means.
( 3 ) 前記流体導入手段から前記空間に成膜材を注入して前記空間を  (3) A film-forming material is injected into the space from the fluid introduction means to fill the space.
構成する面に前記成膜材を付着させる工程。  A step of attaching the film forming material to a surface to be configured.
( 4 ) 前記空間に注入した成膜材であって前記空間を構成する面に付着 しなかった成膜材を前記流体放出手段から回収する工程。  (4) a step of collecting from the fluid discharging means a film-forming material that has been injected into the space and that has not adhered to a surface constituting the space.
( 5 ) 前記空間を構成する面に付着した成膜材を硬化させる工程。  (5) A step of curing the film-forming material attached to the surface constituting the space.
なお、 成膜材と して M o S 2粒子、 S b 2 0 3粒子、 C粒子及びグラフアイ 卜から なる群から選ばれる少なくとも 1つの粒子を含有するものを注入することが望まし 、。 また、 成膜材を硬化させるために成膜材を加熱することが有効である。 図面の簡単な説明 Incidentally, M o S 2 particles were desirable to inject those containing at least one particle selected from S b 2 0 3 particles, C particles and the group consisting of the graph eye Bok as a film forming material. In addition, it is effective to heat the film forming material in order to cure the film forming material. BRIEF DESCRIPTION OF THE FIGURES
第 1 図は本発明の実施例 1 に係る密閉型スク ロール圧縮機の縱断面図 である。 第 2図は第 1 図の要部断面拡大断面図と成膜方法を示す図である。 第 3図は本発明の実施例 1 に係る密閉型スク ロール圧縮機の縱断面図 である。 FIG. 1 is a longitudinal sectional view of a hermetic scroll compressor according to Embodiment 1 of the present invention. FIG. 2 is an enlarged sectional view of a main part of FIG. 1 and a diagram showing a film forming method. FIG. 3 is a longitudinal sectional view of the hermetic scroll compressor according to Embodiment 1 of the present invention.
第 4図は本発明の実施例 1 に係る密閉型スク ロール圧縮機の縱断面図 である。 FIG. 4 is a longitudinal sectional view of the hermetic scroll compressor according to Embodiment 1 of the present invention.
第 5図は本発明の実施例 1 に係るオイルフ リ ースク ロール流体機械の 縱断面図である。 FIG. 5 is a longitudinal sectional view of the oil free scroll fluid machine according to Embodiment 1 of the present invention.
第 6図は本発明の実施例 1 に係るオイルフ リ ースク ロール流体機械の 縦断面図である。 FIG. 6 is a longitudinal sectional view of the oil free scroll fluid machine according to Embodiment 1 of the present invention.
第 7図は本発明の実施例 1 に係るオイルフ リーダブルスク ロール圧縮 機の縱断面図である。 FIG. 7 is a longitudinal sectional view of the oil-readable scroll compressor according to Embodiment 1 of the present invention.
第 8図は本発明の実施例 1 に係る成膜材料の被膜断面状態モデル図で ある。 FIG. 8 is a model diagram of a cross-sectional state of a film of a film-forming material according to Example 1 of the present invention.
第 9図は本発明の実施例 2 に係る縱型成膜装置の縱断面図である。 第 1 0図は本発明の実施例 2 に係るスク ロール流体機械の縱型成膜装 置の縱断面図である。 FIG. 9 is a longitudinal sectional view of a vertical film forming apparatus according to Embodiment 2 of the present invention. FIG. 10 is a longitudinal sectional view of a vertical film forming apparatus of a scroll fluid machine according to Embodiment 2 of the present invention.
第 1 1 図は本発明の実施例 2に係るスク ロール流体機械の縱型成膜装 置の縱断面図である。 FIG. 11 is a longitudinal sectional view of a vertical film forming apparatus of a scroll fluid machine according to Embodiment 2 of the present invention.
第 1 2図は本発明の実施例 2 に係る固定及び旋回スク ロールの渦巻状 ラ ップ部分の断面拡大図と成膜装置での成膜方法を示す図である。 第 1 3図は本発明の実施例 2 に係る横型成膜装置の縱断面図である。 第 1 4図は本発明の実施例 2 に係る量産用成膜装置のシステム図であ る。 FIG. 12 is an enlarged cross-sectional view of a spiral wrap portion of a fixed and revolving scroll according to Embodiment 2 of the present invention and a diagram showing a film forming method in a film forming apparatus. FIG. 13 is a longitudinal sectional view of a horizontal film forming apparatus according to Embodiment 2 of the present invention. FIG. 14 is a system diagram of a film forming apparatus for mass production according to Embodiment 2 of the present invention.
第 1 5図は本発明の実施例 3に係る旋回型流体機械を圧縮機に適用 し た密閉型圧縮機の縦断面図である。 FIG. 15 is a longitudinal sectional view of a hermetic compressor in which a swirling type fluid machine according to Embodiment 3 of the present invention is applied to a compressor.
第 1 6図は第 1 5図の要部拡大断面図である。 FIG. 16 is an enlarged sectional view of a main part of FIG.
第 1 7図は本発明の実施例 3 に係る旋回型流体機械の圧縮要素の平面 図である。 FIG. 17 is a plan view of a compression element of a swirling type fluid machine according to Embodiment 3 of the present invention. FIG.
第 1 8図は本発明の実施例 3 に係る旋回流体機械の作動原理説明図で ある。 FIG. 18 is an explanatory view of the operation principle of the swirling fluid machine according to Embodiment 3 of the present invention.
第 1 9図は本発明の実施例 3 に係る旋回型流体機械の圧縮要素拡大断 面図と成膜方法を示す図である。 FIG. 19 is an enlarged sectional view of a compression element and a film forming method of a swirling type fluid machine according to Embodiment 3 of the present invention.
第 2 0図は本発明の実施例 4 に係るスク リ ュ型圧縮機の成膜方法説明 図である。 FIG. 20 is an explanatory diagram of a film forming method of the screw compressor according to Embodiment 4 of the present invention.
第 2 1 図は本発明の実施例 4 に係るスク リ ュ型圧縮機歯形部分を示す 断面図である。 FIG. 21 is a cross-sectional view showing a toothed portion of a screw-type compressor according to Embodiment 4 of the present invention.
第 2 2図は本発明の実施例 4 に係るスク リ ュ型圧縮機のロータ歯形部 分を示す横断面図である。 FIG. 22 is a cross-sectional view showing a rotor tooth profile of a screw-type compressor according to Embodiment 4 of the present invention.
第 2 3図は本発明の実施例 4 に係るオイルフ リ ー式スク リ ュ型圧縮機 の縱断面図である。 発明を実施するための缦良の形慈 FIG. 23 is a longitudinal sectional view of an oil-free screw-type compressor according to Embodiment 4 of the present invention. The best way to carry out the invention
本発明を実施するための最良の形態を実施例によ り詳細に説明する。 The best mode for carrying out the present invention will be described in detail with reference to examples.
(実施例 1 ) (Example 1)
第 1 図は本発明を適用 した密閉型スク ロール圧縮機を示す縱断面図 である。 同図に示すように、 互いにかみ合う固定スク ロール 4及び旋 回スク ロール 5 はフ レーム 8 と旋回スク ロール 5の間に自転を阻止す るオルダムリ ング 1 0を介して接続されており、 フ レーム 8 と固定ス ク ロール 4 はボル トにより締結するようになっている。 また、 駆動用 回転軸 9 は、 ロータ 3 a とステ一夕 3 bからなる電動機 3 と係合されて おり、 さ らにフ レーム 8の内面側に設けた生軸受 1 1 で支持され回転 する。 その駆動用回転軸 9の一端は偏心軸となって旋回スク ロールの 軸受 5 a と係合し旋回運動可能と している。 主軸受 1 1 及び旋回軸受 5 aの潤滑は容器 1 の底に溜ま っているオイル 1 2を前記回転軸 9 に設 けた給油孔 9 aよ り差圧給油で行う。 この密閉型スク ロール圧縮機の圧縮機効率を高めるためには固定ス ク ロールと旋回スク ロールとの全てのク リアラ ンスを最小とする必要 がある。 FIG. 1 is a longitudinal sectional view showing a hermetic scroll compressor to which the present invention is applied. As shown in the figure, the fixed scroll 4 and the rotating scroll 5 that mesh with each other are connected between the frame 8 and the rotating scroll 5 via an Oldham ring 10 that prevents rotation. 8 and fixed scroll 4 are bolted together. The driving rotary shaft 9 is engaged with the electric motor 3 including the rotor 3 a and the stay 3 b, and is further supported and rotated by the raw bearing 11 provided on the inner surface side of the frame 8. . One end of the driving rotary shaft 9 is an eccentric shaft and engages with a rotary scroll bearing 5a to enable the rotary motion. Lubrication of the main bearing 11 and the slewing bearing 5a is performed by using oil 12 accumulated at the bottom of the container 1 with a differential pressure oil through an oil supply hole 9a provided in the rotary shaft 9. In order to increase the compressor efficiency of this hermetic scroll compressor, it is necessary to minimize all the clearances of the fixed scroll and the rotating scroll.
本実施例では固定スク ロールと旋回スク ロールとの全てのク リ アラ ンスを最小とするために、 固定及び旋回スク ロールを組立てた状態で 圧縮室に液状の成膜材を注入して圧縮空間を形成する堅固な被膜を生 成する。 この際、 成膜材の注入と同時に旋回スク ロールを運動させ相 互の渦巻状ラ ップ表面に付着した余剰となった成膜材を除去させク リ ァランスを極小とするものである。 この旋回スク ロールの運動は成膜 材が固化する前に運動を始め余剰な成膜材を排出することが肝要であ る。 なお、 スラ リ一状の成膜材を用いる場合には、 スラ リ一を充填し てから後に旋回スク ロールを運動させる。 旋回スク ロールの運動によ り各圧縮空間内に導入された成膜材はそれぞれの表面に付着しかつ練 り合わされる。  In this embodiment, in order to minimize all the clearance between the fixed scroll and the rotating scroll, a liquid film-forming material is injected into the compression chamber in a state where the fixed and rotating scrolls are assembled, and the compression space is reduced. Produces a solid film that forms At this time, the rotating scroll is moved at the same time as the film-forming material is injected to remove excess film-forming material adhered to the surfaces of the spiral wraps, thereby minimizing clearance. It is important that the turning scroll starts its movement before the material is solidified and discharges excess film material. If a slurry-like film-forming material is used, the rotating scroll is moved after the slurry is filled. The film-forming material introduced into each compression space by the movement of the rotating scroll adheres to each surface and is kneaded.
表面に擦りつけられた成膜材は適度な粘着性を有するので両者は相 互に強い密着力で一体化する。 また、 旋回運動を続けることによ り、 圧縮空間内の気体の圧縮に伴う発熱現象によ り、 成膜材は乾燥される と共に、 樹脂分を含む場合はキュアされる。  Since the film-forming material rubbed against the surface has an appropriate tackiness, the two are integrated with each other with a strong adhesion. Further, by continuing the swirling motion, the heat generated by the compression of the gas in the compression space causes the film-forming material to be dried and cured when the film contains resin.
なお圧縮空間表面の材質と成膜材成分との組み合わせにより膜の密 着力は異なるので付着力が強く なる組み合わせることが重要となる。  The adhesive strength of the film differs depending on the combination of the material of the surface of the compression space and the component of the film forming material.
例えば圧縮空間表面が鉄系材料の塲合成膜材の成分と しては次のも のが適している。  For example, the following materials are suitable as the components of the composite material of the iron-based material whose surface of the compression space is.
( 1 ) ポリ アミ ドイ ミ ド( P A I )のバイ ンダーにビグメ ン トと して M o S 2粒子、 S b 2 0 3粒子及び C粒子を分散させたもの。 (1) M o S 2 particles as the Bigume down bets on by Nda poly amino Doi mi de (PAI), S b 2 0 3 that the particles and C particles are dispersed.
( 2 ) 有機系のフヱ一ノル樹脂のバイ ンダーにピグメ ン トと して M o S 2粒子、 S b 2 0 3粒子、 C粒子及びグラフ アイ トの複数種を分散 させたもの。 C 3 ) 無機系の珪酸ソーダも しく はシ リ コーンも しく はシリ ゲー ト のバイ ンダーにビグメ ン ト と して M o S 2粒子、 S b 2 0 3粒子、 C粒 子及びグラフアイ トの複数種を分散させたもの。 (2) by Nda organic in full We one nor resin M o S 2 particles as the Pigume down bets, S b 2 0 3 particles, it is dispersed a plurality of kinds of C particles and graphs eye and. C 3) an inorganic sodium silicate also properly is re cone also properly is a Bigume down bets on silicon gate bi Nda M o S 2 particles, S b 2 0 3 particles, C particle terminal and graph eye DOO What dispersed several kinds of.
なお、 圧縮空間表面に例えばリ ン酸塩皮膜処理等の表面処理を行い 圧縮空間表面に微細な凹凸を形成しておけば膜がむらなく均一に成膜 できる。  If the surface of the compression space is subjected to a surface treatment such as a phosphate film treatment to form fine irregularities on the surface of the compression space, the film can be uniformly formed.
また、 成膜材の乾燥硬化、 キュアリ ングを助成するために外部から の加熱、 たとえば熱風を導入が望ま しい。  In addition, it is desirable to introduce external heating, for example, hot air, to assist in drying and hardening and curing of the film forming material.
さて、 以下に成膜工程の具体例を第 2図を用いて説明する。  Now, a specific example of the film forming process will be described below with reference to FIG.
第 2図には固定スク ロール及び旋回スク ロールから形成される圧縮 部を拡大した縱断面図と本発明の成膜方法を示す。 この図のよう に容 器 1 に設置した吐出口 6から固定スク ロール 4の外周部に配設した吐 出部 4 aに成膜液吸入パイプ 1 8を取付け、 成膜液 1 3を例えばピス ト ン式ポンプ 1 4で押し出し、 固定スク ロール 4及び旋回スク ロール 5 の渦巻き状ラ ップ部、 歯底及び鏡板面に付着させながら吸入口 7から 余剰分の成膜液をポンプ 1 5 にて吸引排出させる。 外部排出された成 膜液 1 3 は配管を通じて回収され必要に応じ再度成膜液と して使用 し う る。 前記成膜液供給パイプ 1 8 と固定スク ロールの吐出部 4 aは 0 リ ング 1 6 にてシールし、 容器 1 の内部に漏れないようにしている。 前 記固定スク ロール 4及び旋回スクロール 5から形成される圧縮空間 2 に注入した成膜液 1 3を前記固定スク ロール 4及び旋回スクロール 5 の渦巻き状ラ ップや鏡板表面に付着させる。 成膜液 1 3を付着させた 後に成膜液 1 3を乾燥させるには、 外部に配置した熱風供給源 1 7で 吐出口 6 よ り熱風を供給し、 所定温度に加熱保持することによ り成膜 液を固化させるこ とで成膜が完了する。 この成膜液固化工程で接触部 の膜は摩滅あるいは排除され、 ク リ アラ ンスの大きい箇所にはさ らに 成膜材が付着し、 ク リ アラ ンスが随時狭く な り極小ク リ アラ ンスを形 成する。 この時の加熱源と しては、 旋回スク ロール 5の圧縮運動によ る自己発熱あるいは、 熱風供給源 1 7の熱風を導入し、 所定温度たと えば 1 5 0てに達すると成膜液は固化する。 これによつて、 圧縮部の 固定、 旋回スク ロールの渦巻き状ラ ップ部、 歯底及び鏡板面のク リ ア ラ ンスは極小となり、 安価な成膜方法でスク ロール流体機械の効率向 上を達成できるものである。 FIG. 2 shows an enlarged longitudinal sectional view of a compressed portion formed by a fixed scroll and a rotating scroll, and a film forming method of the present invention. As shown in this figure, a film formation liquid suction pipe 18 is attached to a discharge part 4a disposed on the outer periphery of the fixed scroll 4 from a discharge port 6 provided in the container 1, and the film formation liquid 13 is pierced, for example. Extruded with a ton-type pump 14, the excess film-forming liquid is supplied to the pump 15 from the suction port 7 while adhering to the spiral wrap of the fixed scroll 4 and the orbiting scroll 5, the tooth bottom and the end plate surface To discharge. The film solution 13 discharged outside is collected through a pipe and used again as a film forming solution if necessary. The film-forming liquid supply pipe 18 and the discharge portion 4 a of the fixed scroll are sealed with a ring 16 so as not to leak into the container 1. The film forming liquid 13 injected into the compression space 2 formed by the fixed scroll 4 and the orbiting scroll 5 is adhered to the spiral wrap of the fixed scroll 4 and the orbiting scroll 5 and the end plate surface. In order to dry the film forming liquid 13 after the film forming liquid 13 is applied, hot air is supplied from the discharge port 6 by a hot air supply source 17 arranged outside, and heated and maintained at a predetermined temperature. The film formation is completed by solidifying the film formation liquid. In this film-forming liquid solidification process, the film at the contact area is worn out or eliminated, and the coating material adheres further to the area where the clarity is large, and the clarity narrows as needed, resulting in extremely small clarity. The shape To achieve. As a heating source at this time, self-heating due to the compression movement of the orbiting scroll 5 or hot air from a hot air supply source 17 is introduced, and when a predetermined temperature, for example, 150, is reached, the film forming solution is heated. Solidify. As a result, the compression part is fixed, the spiral wrap of the revolving scroll, the clearance between the tooth bottom and the mirror surface are minimized, and the efficiency of the scroll fluid machine is improved by an inexpensive film forming method. Can be achieved.
本願発明を適応した密閉型スク ロール圧縮機の例と して圧縮部と電 動モータが分離できる構造のものを第 3図〜第 6図を用いて説明する。  An example of a hermetic scroll compressor to which the present invention is applied will be described with reference to FIGS. 3 to 6, which has a structure in which a compression section and an electric motor can be separated.
第 3図は本発明を適用 した他の密閉型スク ロール圧縮機を示す縦断 面図である。 同図に示すように、 互いにかみ合う固定スク ロール 4及 び旋回スク ロール 5はフ レーム 8 と旋回スク ロール 5の間に自転を阻 止するオルダムリ ング 1 0を介して接続されており、 フ レーム 8 と固 定スク ロール 4 はボル トによ り締結する。 また、 駆動用回転軸 9はフ レーム 8の内面側に設けた主軸受 1 1 で支持され回転し、 駆動用回転 軸 9の一端は偏心軸となって旋回スク ロールの軸受 5 a と係合し旋回 運動可能と している。 主軸受 1 1 及び旋回軸受 5 aの潤滑はオイル 1 2 を回転軸に設けた給油孔 9 aにより差圧給油する。 前記駆動用回転軸 9 と電動モータ 1 9の接続は回転子 2 O aとマゲネッ ト 2 O bから形成さ れる磁気力ップリ ング 2 0で行い、 圧縮部と電動モータ 1 9のシール をしている。 本構造のスク ロール圧縮機は圧縮部と電動モータ 1 9は 磁気カ ツプリ ング 2 0で分離できるので、 圧縮部のみの状態で第 2図 と同様の皮膜処理を行う こ とができる。  FIG. 3 is a longitudinal sectional view showing another hermetic scroll compressor to which the present invention is applied. As shown in the figure, the fixed scroll 4 and the revolving scroll 5 meshing with each other are connected between the frame 8 and the revolving scroll 5 via an Oldham ring 10 that prevents rotation. 8 and fixed scroll 4 are fastened by bolts. The driving rotary shaft 9 is supported and rotated by a main bearing 11 provided on the inner surface side of the frame 8, and one end of the driving rotary shaft 9 becomes an eccentric shaft and engages with the rotary scroll bearing 5a. It is possible to turn. For lubrication of the main bearing 11 and the slewing bearing 5a, oil 12 is supplied with differential pressure oil through the oil supply hole 9a provided in the rotating shaft. The drive rotary shaft 9 and the electric motor 19 are connected by a magnetic force ring 20 formed by a rotor 2 Oa and a magnetite 2 Ob, and the compression unit and the electric motor 19 are sealed. I have. In the scroll compressor having this structure, the compression section and the electric motor 19 can be separated by the magnetic coupling 20, so that the same coating treatment as in FIG. 2 can be performed with only the compression section.
第 4 図は本発明を適用 した他の密閉型スク ロール圧縮機を示す縱断 面図である。 同図に示すように、 互いにかみ合う固定スク ロール 4及 び旋回スク ロール 5 はフ レーム 8 と旋回スク ロール 5の間に自転を阻 止するオルダム リ ング 1 0を介して接続されており、 フ レーム 8 と固 定スク ロール 4 はボル トによ り締結する。 また、 駆動用回転軸 9はフ レーム 8の内面側に設けた生軸受 1 1 で支持され回転し、 駆動用回転 軸 9の一端は偏心軸となつて旋回スク ロールの軸受 5 a と係合し旋回 運動可能と している。 前記主軸受 1 1 及び旋回軸受 5 aの潤滑はオイル 1 2を回転軸 9に設けた給油孔 9 aにより差圧給油する。 前記駆動用回 転軸 9 と電動モータ 1 9を完全密閉するためにシール機構 2 1 を設け、 圧縮部と電動モータ 1 9を完全にシールしている。 本構造のスク ロー ル圧縮機の圧縮部と電動モータ 1 9 はシール機構 2 1 で分離できるの で、 圧縮部のみの状態で第 2図と同様の皮膜処理を行う ことができる。 FIG. 4 is a longitudinal sectional view showing another hermetic scroll compressor to which the present invention is applied. As shown in the figure, the fixed scroll 4 and the revolving scroll 5 meshing with each other are connected between the frame 8 and the revolving scroll 5 via an Oldham ring 10 for preventing rotation. Frame 8 and fixed scroll 4 are fastened by bolts. Also, the drive rotary shaft 9 is The rotary shaft 9 is supported and rotated by a raw bearing 11 provided on the inner surface side of the frame 8, and one end of a drive rotary shaft 9 is engaged with a rotary scroll bearing 5 a as an eccentric shaft so as to be rotatable. For lubrication of the main bearing 11 and the slewing bearing 5a, oil 12 is supplied with differential pressure oil through an oil supply hole 9a provided in the rotating shaft 9. A sealing mechanism 21 is provided to completely seal the drive rotation shaft 9 and the electric motor 19, and the compression section and the electric motor 19 are completely sealed. Since the compression part of the scroll compressor of this structure and the electric motor 19 can be separated by the seal mechanism 21, the same coating treatment as in Fig. 2 can be performed with only the compression part.
第 5図は本発明を適用 した他のオイルフ リ ースクロール流体機械を 示す縱断面図である。 同図に示すように、 互いにかみ合う固定スク ロ —ル 4及び旋回スク ロール 5 はフ レーム 8 と旋回スク ロール 5の間に 自転を阻止するオルダム リ ング 1 0を介して接続されており、 フ レー ム 8 と固定スクロール 4 はボル トにより締結する。 また、 駆動用回転 軸 9 はフ レーム 8の内面側に設けた主軸受 1 1 で支持され回転し、 駆 動用回転軸 9の一端は偏心軸となって旋回スクロール 5 の軸受 5 a と 係合し旋回運動可能と している。 前記主軸受 1 1 及び旋回軸受 5 aの潤 滑はグリ ース若しく は固体潤滑剤を使用する ものである。 前記駆動用 回転軸 9 と電動モータ 1 9 の接続は回転子 2 0 aとマゲネ ッ ト 2 0 bか ら形成される電磁カ ツプリ ング 2 0で行い、 圧縮部と電動モータ 1 9 のシールをしている。 本構造のスク ロール圧縮機の圧縮部と電動モー タ 1 9は電磁カ ツプリ ング 2 0で分離できるので、 圧縮部のみの状態 で第 2図と同様の皮膜処理を行う ことができる。  FIG. 5 is a longitudinal sectional view showing another oil free scroll fluid machine to which the present invention is applied. As shown in the figure, the fixed scroll 4 and the revolving scroll 5 that mesh with each other are connected between the frame 8 and the revolving scroll 5 via an Oldham ring 10 that prevents rotation. Frame 8 and fixed scroll 4 are bolted together. The driving rotary shaft 9 is supported and rotated by a main bearing 11 provided on the inner surface side of the frame 8, and one end of the driving rotary shaft 9 becomes an eccentric shaft and engages with the bearing 5 a of the orbiting scroll 5. It is possible to make a turning motion. The lubrication of the main bearing 11 and the slewing bearing 5a uses grease or solid lubricant. The drive rotary shaft 9 and the electric motor 19 are connected by an electromagnetic coupling 20 formed of a rotor 20a and a magnet 20b, and a seal between the compression section and the electric motor 19 is provided. are doing. Since the compression section of the scroll compressor of this structure and the electric motor 19 can be separated by the electromagnetic coupling 20, the same coating treatment as in FIG. 2 can be performed with only the compression section.
第 6図は本発明を適用 した他のオイルフ リ ースク ロール流体機械を 示す縱断面図である。 同図に示すように、 互いにかみ合う固定スク ロ —ル 4及び旋回スク ロール 5 はフ レーム 8 と旋回スク ロール 5の間に 自転を阻止するオルダム リ ング 1 0を介して接続されており、 フ レー ム 8 と固定スクロール 4 はボル トによ り締結する。 また、 駆動用回転 軸 9 はフ レーム 8の内面側に設けた主軸受 1 1 で支持され回転し、 駆 動用回転軸 9の一端は偏心軸となって旋回スク ロール 5の軸受 5 a と 係合し旋回運動可能と している。 前記主軸受 1 1 及び旋回軸受 5 aの潤 滑はグリ ース若しく は固体潤滑剤を使用するものである。 前記駆動用 回転軸 9 と電動モータ 1 9を密閉するためにシール機構 2 1 を設け、 圧縮部と電動モータ 1 9を完全にシールしている。 本構造のスク ロー ル圧縮機の圧縮部と電動モータ 1 9 はシール機構 2 1 で分離できるの で、 圧縮部のみの状態で第 2図と同様の皮膜処理を行う ことができる。 FIG. 6 is a longitudinal sectional view showing another oil free scroll fluid machine to which the present invention is applied. As shown in the figure, the fixed scroll 4 and the revolving scroll 5 that mesh with each other are connected between the frame 8 and the revolving scroll 5 via an Oldham ring 10 that prevents rotation. Frame 8 and fixed scroll 4 are fastened by bolts. Also, drive rotation The shaft 9 is supported and rotated by a main bearing 11 provided on the inner surface side of the frame 8, and one end of the driving rotary shaft 9 is formed as an eccentric shaft and engages with the bearing 5 a of the rotary scroll 5 to be able to rotate. And The lubrication of the main bearing 11 and the slewing bearing 5a uses grease or solid lubricant. A sealing mechanism 21 is provided to hermetically seal the driving rotary shaft 9 and the electric motor 19, and the compression section and the electric motor 19 are completely sealed. Since the compression part of the scroll compressor of this structure and the electric motor 19 can be separated by the seal mechanism 21, the same coating treatment as in Fig. 2 can be performed with only the compression part.
第 7図は本発明を適用 した他のオイルフ リ ーダプルスク ロール流体 機械の縦断面図を示す。 旋回スクロール 7 0はその鍊板 7 0 bの両面 に渦巻状に形成したラ ップ 7 0 a , , 7 0 a 2が構成されており、 さ らにそ の先端にチップシール材 7 0 cが配設されている。 固定スク ロールは 二つあり第一の固定スク ロール 7 1 と第二の固定スク ロール 7 2が平 行に配設されており、 その外周部で該固定スク ロール 7 1, 7 2が互い に締結手段で固定されている。 そ して、 それぞれのラ ップ 7 l aと 7 2 aが渦巻状に構成された状態で旋回スク ロールと共に圧縮室 7 3を構成 している。 これらのラ ップ先端部にはチップシール 7 1 C , 7 2 Cが配 設されている。 偏心部を有する駆動軸 7 5は第一の固定スク ロール 7 1 に設けた軸受手段 7 7 aと軸受手段 7 7 bによって回転可能に支持され ている。 駆動軸 7 5の偏心部では旋回スク ロールの鏡板外周部の一部 分が軸受手段 7 3 aによって回転可能に連結されている。 また、 これに 対してほぼ 1 80 ° の位置に偏心部を有する補助ク ラ ンク軸 7 6が配設 されていて、 これに対しても旋回スク ロールの镜板外周部の一部が軸 受手段 7 4 bを介して連結されている。 補助クランク軸 7 6は第一の固 定スク ロールの鏡板 7 1 b に設けられた軸受手段 7 7 c と第二の固定 スク ロールの鏡板 7 2 b に設けられた軸受手段 7 7 d とによって回転 可能に支持されている。 駆動軸 7 5にはバラ ンスゥヱイ ト 7 9 a、 7 9 bが設けられており、 旋回スクロール 7 0の連動の不釣り合い量が 相殺されるようになっている。 さ らに、 補助クラ ンク 7 6は、 回転夕 ィ ミ ング調整手段 7 8 によって駆動軸 7 5 と連結されており、 駆動軸 7 5の回転に同期して回転するように成っている。 駆動軸 7 5 は固定 スクロールの外側に配置した動力源 8 3 によって回転させる。 第一の 固定スク ロールの 7 1 の外周部には吸入ホ° -ト 8 2が設けられていて、 気体がスク ロール外周部に充満するようになつている。 旋回スク ロ一 ル鏡板 7 0 b によって 2分割されている圧縮動作室 7 3 は、 外周部か ら中心部に向かって体積が小さ く なるように構成されていて中心部で は流路 7 0 e によって一体となっている。 さ らに、 この流路に対向し て第一の固定スク ロール 7 1 の镜板 7 1 b に吐出孔 8 0が設けられて いる。 また、 旋回スク ロール鏡板 7 0 b には連絡孔 7 0 dが設けられ ており、 上下の圧縮作動室 7 3の圧力ができるだけ等し く なるように している。 第一の固定スク ロール 7 1 と第二の固定スク ロール 7 2の 表面には、 それぞれ放熱フイ ン 8 1 a, 8 1 bが設けられている。 FIG. 7 is a longitudinal sectional view of another oil feeder pull scroll fluid machine to which the present invention is applied. La orbiting scroll 7 0 was formed in a spiral shape on both sides of the鍊板7 0 b-up 7 0 a,, 7 0 a 2 is configured, the tip seal member 7 to the tip of Raniso is 0 c Are arranged. There are two fixed scrolls, and the first fixed scroll 71 and the second fixed scroll 72 are arranged in parallel, and the fixed scrolls 71, 72 are mutually connected at the outer periphery. It is fixed by fastening means. The compression chamber 73 is formed together with the revolving scroll in a state where the wraps 7 la and 72 a are spirally formed. Tip seals 71 C and 72 C are provided at the tips of these wraps. The drive shaft 75 having an eccentric portion is rotatably supported by bearing means 77 a and bearing means 77 b provided on the first fixed scroll 71. At the eccentric portion of the drive shaft 75, a part of the outer peripheral portion of the end plate of the revolving scroll is rotatably connected by bearing means 73a. On the other hand, an auxiliary crank shaft 76 having an eccentric portion is disposed at a position of approximately 180 °, and a part of the outer peripheral portion of the rotating scroll plate is also supported by this. They are connected via means 74b. The auxiliary crankshaft 76 is formed by bearing means 77c provided on the head plate 71b of the first fixed scroll and bearing means 77d provided on the head plate 72b of the second fixed scroll. It is rotatably supported. Balance axis 7 9a, 7 on drive shaft 75 9 b is provided so that the unbalance amount of the interlocking movement of the orbiting scroll 70 is offset. Further, the auxiliary crank 76 is connected to the drive shaft 75 by means of a rotation adjusting means 78 so that the auxiliary crank 76 rotates in synchronization with the rotation of the drive shaft 75. The drive shaft 75 is rotated by a power source 83 arranged outside the fixed scroll. A suction port 82 is provided on the outer periphery of the first fixed scroll 71 so that gas fills the outer periphery of the scroll. The compression operation chamber 73 divided into two parts by the revolving scroll head plate 70b is configured so that the volume decreases from the outer peripheral part toward the center part, and the flow path 70 e united. Further, a discharge hole 80 is provided in the plate 71b of the first fixed scroll 71 so as to face this flow path. The orbiting scroll head 70 b is provided with a communication hole 70 d so that the pressures in the upper and lower compression working chambers 73 are equalized as much as possible. The surfaces of the first fixed scroll 71 and the second fixed scroll 72 are provided with heat dissipating fins 81a and 81b, respectively.
駆動軸 7 5が回転すると鏡板の両側にラ ップを有する旋回スク ロー ル 7 0が補助クラ ンク軸 7 6によって自転を阻止しながら旋回運動を する。 本構造のスク ロール流体機械に成膜液を供給するときは旋回ス ク ロール 7 0を運動させながら吐出孔 8 0から成膜材を導入し、 渦巻 き状ラ ップ部、 歯底及び鎌板面に付着しながら吸入口 8 2の外に排出 される。 圧縮室内を入つた成膜材は固定及び旋回スクロール表面に付 着し、 所定温度に加熱保持することにより成膜する。 この完了するま での間、 接触部の膜は摩滅あるいは排除され、 ク リ アラ ンスの大きい 箇所にはさ らに成膜材が付着し、 ク リ アラ ンスが随時狭く なり極小ク リ アラ ンスを形成する。 この時の加熱源と しては、 旋回スクロール 7 0の圧縮運動による 自己発熱あるいは、 図示していないが外部よりの 熱風を吸入口から導入し、 所定温度にするこ とによ り成膜液を固化さ せる。 When the drive shaft 75 rotates, the orbiting scroll 70 having laps on both sides of the head plate makes a revolving motion while preventing rotation by the auxiliary crank shaft 76. When supplying the film forming liquid to the scroll fluid machine with this structure, the film forming material is introduced from the discharge holes 80 while moving the swirling scroll 70, and the spiral wrap, the tooth bottom and the sickle It is discharged from the inlet 82 while adhering to the plate surface. The film-forming material that has entered the compression chamber adheres to the surface of the fixed and orbiting scroll, and heats and maintains the film at a predetermined temperature to form a film. Until this process is completed, the film at the contact area is worn away or eliminated, and the coating material adheres to the areas where the clarity is large, and the clarity narrows as needed, resulting in extremely small clarity. To form The heating source at this time may be self-heating due to the compressive motion of the orbiting scroll 70 or, though not shown, hot air from the outside may be introduced from the inlet to reach a predetermined temperature to form a film forming solution. Solidified Let
この様に して成膜した素地と膜の断面状態のモデルを第 8図に示す。 図は素地の鉄系材料に直接成膜した場合の状態を示している。 この時 の鉄系材料の表面に予め凹凸を形成する表面処理、 たとえばりん酸塩 被膜処理を施した後成膜を実施すると膜がむらな く均一に成膜でき、 鉄系材料との密着性が改善されること もある。 図に示したものはポリ ア ミ ドイ ミ ド( P A I )のバイ ンダーにビグメ ン ト と して M o S 2粒子、 S b 2 0 3粒子及び C粒子を分散させたものである。 また、 図に示してい ないが成膜剤と しては有機系のフヱーノル樹脂のバイ ンダーにピグメ ン トと して M o S 2粒子、 S b 2 0 3粒子、 C粒子及びグラフアイ トの 複数種を分散させたものを使用する場合もある。 このほかに、 成膜剤 と しては無機系の珪酸ソーダも しく はシ リ コーンも し く はシ リゲー ト のバイ ンダーにビグメ ン トと して M o S 2粒子、 S b 2 0 3粒子、 C粒 子及びグラフ アイ トの複数種を分散させたものが適している。 Fig. 8 shows a model of the substrate and the cross-sectional state of the film thus formed. The figure shows a state where a film is directly formed on a base iron-based material. At this time, if a film is formed after applying a surface treatment to form irregularities in advance on the surface of the iron-based material, for example, a phosphate film treatment, the film can be formed uniformly and uniformly, and the adhesion to the iron-based material can be improved. May be improved. Those shown in the figure is obtained by dispersing the M o S 2 particles, S b 2 0 3 particles and C particles as the Bigume down bets on by Nda poly A Mi Doi mi de (PAI). Further, M o S 2 particles as the Pigume down bets on Fuwenoru resin by Nda organic system and is not shown in FIG. A deposition agent, S b 2 0 3 particles, of C particles and graphs eye DOO In some cases, a plurality of types are dispersed. In addition to this, Narumakuzai and to the inorganic silicate soda also properly is re-cone also rather death Rige door of by Nda to Bigume down door and to M o S 2 particles, S b 2 0 3 A dispersion of multiple types of particles, C particles and graphite is suitable.
(実施例 2 )  (Example 2)
密閉型スク ロール圧縮機の例と して圧縮部と電動モータが分離でき る構造のもの (第 3図〜第 6図) を説明したが、 この構造の密閉型ス ク ロール圧縮機の圧縮部の成膜作業に適している成膜装置を第 9図〜 1 4 を用いて説明する。  As an example of the hermetic scroll compressor, a compressor with a structure that allows the compression section and the electric motor to be separated (Figs. 3 to 6) has been described. A film forming apparatus suitable for the above film forming operation will be described with reference to FIGS.
第 9図はスク ロール流体機械の縱型成膜装置の縱断面図を示す。 固 定スク ロール 4及び旋回スク ロール 5 はフ レーム 8 と旋回スク ロール 5の間に自転を阻止するオルダム リ ング 1 0を介して接続されており、 前記部材を組み合わせて形成した圧縮部を組み立てた伏態で成膜装置 に配置し、 成膜装置据え付けの電動モータ 3 0 と駆動用回耘軸 9の接 続はカ ツプリ ング 3 1 にて行う。 前記電動モータ 3 0 は回転速度を制 御できる機能を有しているので、 成膜状態によつて回転速度を変化さ せることが可能である。 本成膜装置で成膜するときは、 前記圧縮部を 形成する旋回スク ロール 5を運動させながら吐出口 4 aから成膜液を供 給し、 渦巻状ラ ップ部、 歯底及び鏡板面に付着させながら余剰分は吸 入口 4 bから外へ排出される。 圧縮室内を入った成膜材は固定スク ロー ル 4及び旋回スク ロール 5の表面に付着し、 所定温度たとえば 1 5 0 に加熱保持することによ り成膜材を固化するこ とができる。 FIG. 9 is a longitudinal sectional view of a vertical film forming apparatus of a scroll fluid machine. The fixed scroll 4 and the revolving scroll 5 are connected between the frame 8 and the revolving scroll 5 via an Oldham ring 10 that prevents rotation, and assemble a compression section formed by combining the above members. The electric motor 30 mounted on the film-forming apparatus and the drive cultivation shaft 9 are connected to each other with the cutting 31 in a state where the film-forming apparatus is installed in an upright position. Since the electric motor 30 has a function of controlling the rotation speed, it is possible to change the rotation speed depending on the film formation state. When forming a film with this film forming apparatus, The film forming liquid is supplied from the discharge port 4a while moving the rotating scroll 5 to be formed, and the excess is discharged from the suction port 4b while adhering to the spiral wrap portion, the tooth bottom and the end plate surface. Is done. The film-forming material entering the compression chamber adheres to the surfaces of the fixed scroll 4 and the orbiting scroll 5, and can be solidified by heating and maintaining the film at a predetermined temperature, for example, 150.
第 1 0図は第 3図〜第 6図の密閉型スク ロール流体機械の圧縮部内 にコイル状のスプリ ングばね 3 2を配備し、 固定スク ロール 4及び旋 回スク ロール 5の鏡板部のシール効果を高め成膜液の漏れ防止を図つ たものである。 本構造によれば成膜材の圧縮室外への漏れを確実に防 止するこ とができるので成膜材が軸受に付着する等の不具合を防止す ることができる。  Fig. 10 shows a coiled spring spring 32 installed in the compression part of the closed scroll fluid machine shown in Figs. 3 to 6, and seals the end plates of the fixed scroll 4 and the rotating scroll 5. This is to enhance the effect and prevent leakage of the film forming solution. According to this structure, it is possible to reliably prevent the film-forming material from leaking out of the compression chamber, so that problems such as the film-forming material adhering to the bearing can be prevented.
なお、 この構造は固定スク ロール 4 に旋回スク ロール 5をスプリ ン グばね 3 2で押し付ける構造となっているので、 この構造のままスク ロール流体機械を組み立てるとコイルスプリ ング 3 2の押し付け荷重 分の動力損失が生じる。 このためフ レーム 8を 2分割し、 主軸受 1 1 及びシール機構 2 1 を配備したハウジング 3 3を設け、 フ レーム 8 と のシール 2 1 は 0 リ ング 3 4 にてシールする構造と し、 成膜後、 コィ ルスプリ ング 3 2を取り外すことができる構造となっている。  In this structure, the rotating scroll 5 is pressed against the fixed scroll 4 by the springs 32. Therefore, if the scroll fluid machine is assembled with this structure, the amount of the pressing load of the coil springs 32 will be reduced. Power loss occurs. For this purpose, the frame 8 is divided into two parts, a housing 33 provided with a main bearing 11 and a seal mechanism 21 is provided, and the seal 21 with the frame 8 is sealed with a 0 ring 34. After film formation, the coil spring 32 can be removed.
第 1 1 図は第 3図〜第 6図の密閉型スク ロール流体機械の圧縮部内 に弾性体を配備し、 固定スク ロール及び旋回スク ロールの鏡盤部のシ ール効果を高め成膜液の漏れ防止の図つたものである。 本構造によれ ば成膜材の圧縮室外への漏れを確実に防止することができるので成膜 材が軸受に付着する等の不具合を防止するこ とができる。  Fig. 11 shows an example in which an elastic body is installed in the compression part of the closed scroll fluid machine shown in Figs. FIG. According to this structure, it is possible to reliably prevent the film-forming material from leaking out of the compression chamber, thereby preventing problems such as the film-forming material sticking to the bearing.
なお、 この構造は固定スク ロール 4 に旋回スク ロール 5を弾性体 3 5で押し付ける構造となっているので、 この構造のままスク ロール流 体機械を組み立てると弾性体 3 5の押し付け荷重分の動力損失が生じ る。 このためフ レーム 8を 2分割し、 主軸受 1 1 及びシール機構 2 1 L4 を配備したハウジング 3 3を設け、 フ レーム 8 とのシール 2 1 は 0 リ ング 3 4 にてシールする構造と し、 成膜後、 弾性体 3 5を取り外すこ とができる構造となっている。 In this structure, the revolving scroll 5 is pressed against the fixed scroll 4 by the elastic body 35. Therefore, if the scroll fluid machine is assembled with this structure, the power for the pressing load of the elastic body 35 is applied. Loss occurs. For this reason, the frame 8 is divided into two parts, the main bearing 11 and the sealing mechanism 21 A housing 33 equipped with L4 is provided, and the seal 21 with the frame 8 is sealed with a 0 ring 34.The elastic body 35 can be removed after film formation. I have.
本実施例の縱型成膜装 Sを用いた場合の具体的な成膜方法を第 1 2 図に示す。 この図ように固定スク ロール 4の外周部の吐出部 4 aに成膜 液吸入パイプ 1 8を取付、 成膜液 1 3を例えばピス ト ン式ポンプ 1 4 で押し出し、 固定スク ロール 4及び旋回スク ロール 5の渦巻き状ラ ッ プ部、 歯底及び鏡板面に付着させながら固定スク ロール 4の吸入口 4 b から余剰分の成膜液をポンプ 1 5にて吸引排出させる。 外部排出され た成膜材は配管を通じて回収され必要に応じ再度成膜材と して使用 し う る。 前記成膜液供給パイプ 1 8 と固定スク ロールの吐出部 4 aは 0 リ ング 1 6 にてシールし、 外部に漏れないようにしている。 前記固定ス ク ロール 4及び旋回スク ロール 5から形成される圧縮室内を入った成 膜液 1 3 は前記固定スク ロール 4及び旋回スク ロール 5の表面に付着 し、 外部から熱風供給源 1 7で吐出口 4 aよ り熱風を供給し、 所定温度 に加熱保持するこ とによ り成膜が完了する。 この過程で接触部の膜は 摩滅あるいは排除され、 ク リ アラ ンスの大きい箇所にはさ らに成膜材 が付着し、 ク リ アラ ンスが随時狭く なり極小ク リ アラ ンスを形成する。 この時の加熱源と しては、 旋回スク ロール 5の圧縮運動による 自己発 熱あるいは、 熱風供給源よ りの熱風を熱風供給源 1 8で吐出部 4 aから 導入し、 定温度たとえば 1 5 0 に達すると成膜液は固化する。 こ れによつ て、 圧縮部の固定、 旋回スク ロールの渦巻き状ラ ップ部、 歯 底及び鏡板面のク リ ァラ ンスは極小となり、 安価な成膜方法でスク 口 —ル流体機械の効率向上を達成できる ものである。  FIG. 12 shows a specific film forming method when the vertical film forming apparatus S of this embodiment is used. As shown in this figure, a film-forming liquid suction pipe 18 is attached to the discharge part 4a on the outer periphery of the fixed scroll 4, and the film-forming liquid 13 is pushed out by, for example, a piston type pump 14, and the fixed scroll 4 and the swivel are rotated. Excess film formation liquid is suctioned and discharged from the suction port 4b of the fixed scroll 4 by the pump 15 while being attached to the spiral wrap portion, the tooth bottom and the end surface of the scroll 5. The film material discharged outside is collected through a pipe and used as a film material again if necessary. The film forming liquid supply pipe 18 and the discharge portion 4a of the fixed scroll are sealed with a 0 ring 16 so as not to leak outside. The film forming liquid 13 entering the compression chamber formed by the fixed scroll 4 and the swirling scroll 5 adheres to the surface of the fixed scroll 4 and the swirling scroll 5 and is supplied from outside by a hot air supply source 17. Hot air is supplied from the discharge port 4a and heated and maintained at a predetermined temperature, thereby completing the film formation. In this process, the film at the contact portion is worn out or eliminated, and the material for deposition further adheres to a portion where the clarity is large, and the clarity narrows as needed to form a very small clarity. As the heating source at this time, self-heating by the compression movement of the revolving scroll 5 or hot air from the hot air supply source is introduced from the discharge part 4a by the hot air supply source 18, and a constant temperature of, for example, 15 When the temperature reaches 0, the film forming liquid solidifies. As a result, the compactness of the compression section, the spiral wrap of the orbiting scroll, the clearance between the tooth bottom and the end plate surface are minimized, and the scroll fluid machine is manufactured using an inexpensive film-forming method. It is possible to achieve higher efficiency.
本成膜装置には図示はしていないが圧縮部を ± 1 2 0 ° 程度までス ゥ イ ング運動または傾斜させながら成膜できる機構を有している。  Although not shown, the film forming apparatus has a mechanism capable of forming a film while swinging or tilting the compression unit up to about ± 120 °.
そ してこの機能により、 ラ ップ高が高く成膜液が重力の反対方向に ― With this function, the lap height is high and the film-forming liquid moves in the opposite direction of gravity. ―
15 は付着しにく い圧縮部でも この圧縮部をス ウ ィ ング運動または傾斜さ せることによ り確実に対象面に成膜するこ とができる。 15 can reliably form a film on the target surface even in a compressed portion that is difficult to adhere to by swinging or tilting the compressed portion.
本成膜装置を用いれば多種のスクロールの圧縮室に成膜できるので スク ロール圧縮機のシ リ ーズ化が容易となる。  If this film forming apparatus is used, films can be formed in compression chambers of various types of scrolls, so that the scroll compressor can be easily made into a series.
第 1 3図はスク ロール流体機械用の横型成膜装置の縱断面図を示す。 スク ロール流体機械の圧縮部と電動モータを分離可能な前記圧縮部を 組立てた状態で、 成膜装置に配置し、 旋回スク ロール 5を運動させな がら吐出部 4 aから成膜材を導入し、 渦巻き状ラ ップ部、 歯底及び鏡板 面に付着させながら余剰分は吸入部 4 bからポンプで外へ排出される。 吸入部 4 bは図示の如く 吐出部 4 aよ り下方向につける。 圧縮室内を入 つた成膜材は固定及び旋回スク ロール表面に付着し、 所定温度たとえ ば 1 5 0 に加熱保持することによ り成膜材を固化するこ とができる。  FIG. 13 is a longitudinal sectional view of a horizontal film forming apparatus for a scroll fluid machine. In a state where the compression section of the scroll fluid machine and the compression section capable of separating the electric motor are assembled, the compression section is arranged in the film forming apparatus, and the film forming material is introduced from the discharge section 4a while the orbiting scroll 5 is moved. The excess is discharged out of the suction part 4b by a pump while being attached to the spiral wrap, the tooth bottom and the end plate surface. The suction part 4b is attached below the discharge part 4a as shown. The film-forming material that has entered the compression chamber adheres to the surface of the fixed and revolving scroll, and can be solidified by heating to a predetermined temperature, for example, 150.
この固化する過程で接触部の膜は摩滅あるいは排除され、 ク リ アラ ン スの大きい箇所にはさ らに成膜材が付着し、 ク リアラ ンスが随時狭く なり極小ク リ アラ ンスを形成する。 この時の加熱源と しては、 旋回ス クロール 5の圧縮運動による 自己発熱あるいは、 吐出部から熱風を導 入し、 成膜液を固化させる成膜装置である。 In the process of solidification, the film at the contact area is worn away or eliminated, and the film material adheres to the area where the clarity is large, and the clarity narrows as needed to form a very small clarity. . As a heating source at this time, a self-heating due to the compression movement of the orbiting scroll 5 or a film forming apparatus for solidifying a film forming liquid by introducing hot air from a discharge unit.
本成膜装置には図示はしていないが圧縮部を ± 1 2 0 ° 程度までス ゥ イ ング運動または傾斜させながら成膜できる機構を有している。  Although not shown, the film forming apparatus has a mechanism capable of forming a film while swinging or tilting the compression unit up to about ± 120 °.
そ してこの機能により、 圧縮室の吐出口よ り上方向の渦巻状ラ ップ の成膜液が行き渡らない可能性がある領域に対してでもこの圧縮部を ス ウイ ング運動または傾斜させることによ り確実に成膜することがで きる。  By this function, the compression part can be swung or tilted even in a region where there is a possibility that the film forming liquid may not reach the spiral wrap above the discharge port of the compression chamber. As a result, a film can be reliably formed.
本成膜装置を用いれば多種のスク ロールの圧縮室に成膜できるので スクロール圧縮機のシ リ ーズ化が容易となる。  By using this film forming apparatus, films can be formed in the compression chambers of various types of scrolls, so that the scroll compressor can be easily made into a series.
また、 加振するこ とによって上述の課題を解決こと も可能である。 第 1 4図はスク ロール流体機械の量産用成膜装置のシステム図を示 す。 スク ロール流体機械の圧縮部を組立てた状態で、 成膜装置に配置 し、 旋回スク ロール 5を運動させながら吐出部 4 aから成膜液 1 3 を成 膜液供給タ ンク 3 6 より ピス ト ン式ポンプ 1 4 で導入し、 渦巻き状ラ ップ部、 歯底及び鏡板面に付着させながら余剰分は吸入部 4 bから吸引 ポンプ 1 5で外へ排出される。 圧縮室内を入った成膜材は固定及び旋 回スク ロール表面に付着し、 所定温度たとえば 1 5 0 に加熱保持する ことによ り成膜材を固化することができる。 この時の加熱源と しては、 旋回スク ロールの圧縮運動による 自己発熱あるいは、 吐出口から熱風 を導入し、 成膜液を固化させる量産用成膜装置である。 In addition, the above problem can be solved by applying vibration. Fig. 14 shows a system diagram of a film forming system for mass production of scroll fluid machinery. You. With the compression part of the scroll fluid machine assembled, it is placed in the film forming apparatus, and while moving the orbiting scroll 5, the film forming liquid 13 is discharged from the film forming liquid supply tank 36 from the discharge part 4a while moving the rotary scroll 5. The excess is introduced by a suction type pump 14 and attached to the spiral wrap, the tooth bottom and the end plate surface, and the excess is discharged out of the suction part 4 b by the suction pump 15. The film-forming material entering the compression chamber adheres to the surface of the fixed and swirling scroll, and can be solidified by heating and maintaining the film at a predetermined temperature, for example, 150. The heating source at this time is a self-heating due to the compression movement of the orbiting scroll, or a mass-production film forming apparatus for solidifying the film forming liquid by introducing hot air from the discharge port.
(実施例 3 )  (Example 3)
本発明に係る旋回式容積型流体機械の構造を第 1 5図乃至第 1 7図 を用いて説明する。 第 1 5図は本発明に係る容積型流体機械を圧縮機 と して用いた場合における密閉型圧縮機の縦断面図、 第 1 6図は第 1 5図の要部拡大断面図、 第 1 7図は圧縮要素の平面図である。 なお、 第 1 5 図と第 1 6図に示した圧縮要素部の断面図は第 1 7図の A _ Λ 断面に相当する。  The structure of the rotary positive displacement fluid machine according to the present invention will be described with reference to FIGS. 15 to 17. FIG. FIG. 15 is a longitudinal sectional view of a hermetic compressor when the positive displacement fluid machine according to the present invention is used as a compressor. FIG. 16 is an enlarged sectional view of a main part of FIG. FIG. 7 is a plan view of the compression element. The cross-sectional views of the compression element shown in FIGS. 15 and 16 correspond to the A_ A cross section in FIG.
第 1 5図において、 4 1 は本発明の係る容積型圧縮要素、 4 2 はこ れを駆動する霜動要素、 4 3 は容積型圧縮要素 4 1 と電動要素 4 2を 収納した密閉容器である。 容積型圧縮要素 4 1 の詳細を第 1 7図を用 いて説明する同図は同一輪郭形状が 3組組み合わされた 3条ラ ップを 示している。 シ リ ンダ 4 4の内周'形状は、 銀杏の葉のような形状をし た中空部が 1 2 0 ° (中心 ο ' ) 毎に同一の形状が現れるように形成され ている。 この個々の銀杏の葉状をした中空部の端部には、 内方に向か つて突出する複数 (この場合は 3つ) の略円弧形状のベーン 4 4 bを 有する。 旋回ピス ト ン 4 5 は、 このシリ ンダ 4 4 の内側に配設され、 シ リ ンダ 4 4の内周壁 4 4 a (ベーン 4 4 b よ り も曲率が大きい部分 ) 及びべーン 4 4 b とかみ合うよう に構成されている。 なお、 シ リ ン ダ 4 4 の中心 o 'と旋回ビス ト ン 4 5の中心 oを一致させると、 両者の 輪郭形状は相似形となつており、 両者の間には一定幅の隙間が形成さ れる。 次に、 容積型圧縮要素 4 1 の作動原理を第 1 7図及び第 1 8図 により説明する。 記号 0はディスプレーサである旋回ビス ト ン 4 5の 中心、 記号 o 'はシ リ ンダ 4 4 (あるいは駆動軸 4 6 ) の中心である。 記号 a, b, c , d , e , f はシリ ンダ 4 4の内周壁 4 4 a及びべ一 ン 4 4 b と旋回ピス ト ン 4 5のかみ合いの接点を表す。 こ こで、 シ リ ンダ 4 4 の內周輪郭形状を見ると、 同じ曲線の組合せが 3箇所連繞し て滑らかに接続されている。 このうちの 1 箇所に着目すると、 內周壁 4 4 a, ベーン 4 4 bを形作る曲線を、 厚みのある一つの渦曲線 (ベー ン 4 4 bの先端を渦の巻初めと考える) と見ることができ、 その内の 壁曲線 ( g— a ) は巻き角がほぼ 360° (設計上は 360° であるが製造 誤差のため丁度その値には成らないという意味である。 以下、 同様) の渦曲線で、 外壁曲線 ( g '— b ) は卷き角がほぼ 180° の渦曲線であ る。 そ して、 上記 1 箇所の内周輪郭形状は、 内壁曲線、 外壁曲線、 及 び外壁曲線と内壁曲線を結ぶ接続曲線 ( g — g ') から形成されている。 これら 3つの曲線からなる渦巻体を円周上にほぼ等ピッチ ( 120° ) に配設し、 隣合う渦巻き体の外壁曲線と内壁曲線とは円弧等の滑らか な曲線 (例えば、 b — b ' ) で結ぶことによって、 シ リ ンダ 4 4の内周 輪郭形状が構成されている。 旋回ビス ト ン 4 5の外周輪郭形状も上記 シリ ンダ 4 4 と同じ原理で構成されている。 In FIG. 15, reference numeral 41 denotes a positive displacement element according to the present invention, 42 denotes a frost moving element for driving the same, and 43 denotes a closed container containing the positive displacement element 41 and the electric element 42. is there. The details of the positive displacement compression element 41 will be described with reference to FIG. 17 which shows a three-section lap in which three sets of the same contour are combined. The inner peripheral shape of the cylinder 44 is formed such that a hollow portion having a shape like a ginkgo leaf appears at every 120 ° (center ο ′). Each end of the ginkgo leaf-shaped hollow portion has a plurality of (in this case, three) substantially arc-shaped vanes 44 b protruding inward. The swivel piston 45 is disposed inside the cylinder 44, and has an inner peripheral wall 44 a (a portion having a larger curvature than the vane 44 b) and a vane 44. It is configured to engage with b. In addition, When the center o 'of the dam 44 and the center o of the turning screw 45 match, the contours of the two are similar, and a gap having a constant width is formed between the two. Next, the operating principle of the positive displacement compression element 41 will be described with reference to FIGS. 17 and 18. FIG. The symbol 0 is the center of the turning screw 45 which is a displacer, and the symbol o 'is the center of the cylinder 44 (or the drive shaft 46). The symbols a, b, c, d, e, and f represent the contact points between the inner peripheral wall 44a and the vane 44b of the cylinder 44 and the rotating piston 45. Here, looking at the peripheral contour shape of the cylinder 44, the same combination of curves is smoothly connected by surrounding three places. Focusing on one of these points, こ と The curve that forms the peripheral wall 44a and the vane 44b can be regarded as one thick vortex curve (the tip of the vane 44b is considered to be the beginning of the vortex). The wall curve (ga) has a winding angle of approximately 360 ° (meaning that it is 360 ° by design, but not exactly due to manufacturing errors. The same applies hereinafter). The outer wall curve (g'-b) is a vortex curve with a winding angle of almost 180 °. The inner contour at one location is formed from an inner wall curve, an outer wall curve, and a connection curve (g-g ') connecting the outer wall curve and the inner wall curve. A spiral body composed of these three curves is arranged at a substantially equal pitch (120 °) on the circumference, and the outer and inner wall curves of adjacent spiral bodies are smooth curves such as arcs (for example, b — b ' ), An inner peripheral contour shape of the cylinder 44 is formed. The outer peripheral shape of the revolving screw 45 is also configured according to the same principle as that of the cylinder 44.
なお、 3つの曲線からなる渦卷体を円周上にほぼ等ピッチ (120° ) に配設すると したが、 これは後述する圧縮動作に伴う荷重を均等に 分散させる目的と製造のし易さを配慮したためで、 特に、 これらのこ とが問題にならない場合は、 不当ピッチでも良い。  The spiral body composed of three curves is assumed to be arranged at a substantially equal pitch (120 °) on the circumference. This is for the purpose of evenly distributing the load associated with the compression operation described later and for ease of manufacturing. In particular, if these things do not matter, an unjust pitch may be used.
さて、 このように構成されたシ リ ンダ 4 4 と旋回ピス ト ン 4 5によ る圧縮動作を第 1 8図を用いて説明する。 4 7 a は吸入ポー トであり、 4 8 a は吐出ポー トであり、 夫々 3箇所に設けられている。 駆動軸 6 を回転させることによ り、 旋回ビス ト ン 4 5が固定側であるシリ ンダ 4 4の中心 o 'の周りを自転すること無しに旋回半径 ε ( = ο , ο ' ) で 公転運動し、 旋回ビス ト ン 4 5の中心 ο周りに複数の作動室 5 5 (シ リ ンダ内周輪郭 (内壁) とピス ト ン外周輪郭 (側壁) とによ り囲まれ て密閉させた複数の空間のう ち、 吸入が終了し圧縮 (吐出) 行程とな つている空間をいう。 圧縮終了時点ではこの空間が無く なるが、 その 瞬間に吸入も終了するのでこの空間を 1 つと勘定する。 但し、 ポンプ と して用いる場合は、 吐出ポー トを介して外部と連通している空間を いう) が形成される (本実施の形態では常時 3個の作動室) 。 接点 a と接点 bで囲まれハッチングが施された 1 つの作動室 (吸入終了時点 では 2つに別れている力、'、 圧縮行程が開始されると直ぐにこの 2つの 作動室はつながって 1 つになる) に着目 して説明する。 第 1 8図 ( 1 ) が吸入ポー ト 7 aからこの作動室への作動ガスの吸入が終了した状 態である。 この状態から 9 0 ° 駆動軸 4 6が回転した状態が第 1 8図 ( 2 ) で、 回転が進み最初から 1 8 0 ° 回転した状態が第 1 8図 ( 3 ) で、 さ らに回転が進み最初から 2 7 0 ° 回転した状態が第 1 8図 ( 4 ) であ る。 Now, the compression operation by the cylinder 44 and the swivel piston 45 configured as described above will be described with reference to FIG. 4 7a is the suction port, 48 a is a discharge port, which is provided at each of three locations. By rotating the drive shaft 6, the turning screw 45 revolves around the center o 'of the fixed cylinder 4 4 with a turning radius ε (= ο, ο') without rotating around the center o '. A plurality of working chambers 55 (moving around the center ο of the swivel piston 45) (enclosed and sealed by the cylinder inner peripheral contour (inner wall) and the piston outer peripheral contour (side wall)) This is the space where the suction is completed and the compression (discharge) process is completed, and this space is lost at the end of compression, but the suction ends at that moment, so this space is counted as one. However, when used as a pump, a space that communicates with the outside via a discharge port is formed (in the present embodiment, there are always three working chambers). One hatched working chamber surrounded by contacts a and b (force divided into two at the end of suction, ', and as soon as the compression stroke starts, these two working chambers are connected and become one ). Fig. 18 (1) shows the state in which the suction of working gas from the suction port 7a into this working chamber has been completed. Fig. 18 (2) shows the state where the 90 ° drive shaft 46 has rotated from this state, and Fig. 18 (3) shows the state where the drive shaft has rotated 180 ° from the beginning. Fig. 18 (4) shows a state in which the rotation has progressed by 270 ° from the beginning.
第 1 8図 ( 4 ) 力、ら 9 0 ° 回転すると最初の第 1 8図 ( 1 ) の状態に 戻る。 これより、 回転が進むに従って作動室 5 5 はその容積を縮小し、 吐出ポー ト 4 8 aは吐出弁 4 9 (第 1 9図に示す) で閉じられている ため作動流体の圧縮作用が行われるこ とになる。 そして、 作動室 5 5 内の圧力が外部の吐出圧力よ り も高く なると圧力差で吐出弁 4 9が自 動的に開き、 圧縮された作動ガスは吐出ポー ト 4 8 aを通って吐き出 される。 吸入終了 (圧縮開始) から、 吐出終了までの軸回転角は 3 6 0 ° で圧縮、 吐出の各行程が実施されている間に次の吸入行程が準備さ れており、 吐出終了時が次の圧縮開始となる。 例えば、 接点 a と d に よって構成される空間に着目すると、 第 1 8図 ( 1 ) の段階で既に吸 入が開始されており、 回転が進むに連れてその容積が増し、 第 1 8図 ( 4 ) の状態になると、 この空間は分断される。 この分断された量に 相当する流体は接点 b と e によって形成される空間から補われる。 上 記圧縮動作について以下に詳述する。 第 1 8図 ( 1 ) の状態の接点 a と d とによ り形成された作動室に着目すると、 隣の接点 a と dによつ て形成された空間は吸入が始まっており、 この中の流体が軸回転角 3 6 0 ° 後に接点 a と b によって形成される空間によって圧縮されるはずで あるが、 この空間は、 ー且第 1 8図 ( 3 ) に示されるように広がった 後、 第 1 8図 ( 4 ) になると分断されてしま うので、 接点 a と dによ つて形成された空間の全ての流体が接点 a と b によって形成される空 間で圧縮される訳ではない。 分断されて接点 a と dによって形成され た空間に取り込まれなかつた流体体積と同量の流体は、 第 1 8図 ( 4 ) において吸入過程にある接点 b と e とによって形成される空間が、 第 1 8図 ( 1 ) に示されるように分断されて、 吐出ポー ト付近の接点 と接点 b とにより形成される空間に流入している流体によって充当さ れる。 これは、 前述したように、 不均等ピッチで配置したのではな く 均等ピッチで配置したことによる。 即ち、 旋回ピス ト ン及びシ リ ンダ の形状が同一輪郭形状の繰り返しによ り形成されているため、 いずれ の作動室も異なる空間から流体を得てもほぼ同量の流体を圧縮するこ とができるのである。 なお、 不均等ピッチであっても各空間に形成さ れる容積が等しく なるように加工を施すことは可能であるが製作性が 悪い。 このように作動室に隣合う吸入過程にある空間が分断されて圧 縮動作を行う ことは本圧縮機の特徴でもある。 Fig. 18 (4) When the force rotates 90 °, it returns to the initial state shown in Fig. 18 (1). Thus, as the rotation proceeds, the working chamber 55 decreases its volume, and the discharge port 48a is closed by the discharge valve 49 (shown in Fig. 19), so that the working fluid compresses. It will be done. When the pressure in the working chamber 55 becomes higher than the external discharge pressure, the discharge valve 49 automatically opens due to the pressure difference, and the compressed working gas is discharged through the discharge port 48a. Is done. The shaft rotation angle from the end of suction (compression start) to the end of discharge is 360 °, and the next suction stroke is prepared during each compression and discharge stroke. Starts compression. For example, for contacts a and d Focusing on the space constituted by the above, suction has already started at the stage of Fig. 18 (1), and its volume increases as the rotation progresses, and when the state of Fig. 18 (4) is reached, This space is divided. The fluid corresponding to this split amount is supplemented from the space formed by the contacts b and e. The above-mentioned compression operation will be described in detail below. Focusing on the working chamber formed by the contacts a and d in the state shown in Fig. 18 (1), the space formed by the adjacent contacts a and d has started to be sucked. Of the fluid should be compressed by the space formed by the contacts a and b after the shaft rotation angle of 360 °, but this space will not expand after the expansion as shown in Fig. 18 (3). However, not all the fluid in the space formed by the contacts a and d is compressed in the space formed by the contacts a and b, since the separation occurs in Fig. 18 (4). . In FIG. 18 (4), the space formed by the contacts b and e in the suction process is the same as the volume of fluid that has been divided and not taken into the space formed by the contacts a and d. As shown in Fig. 18 (1), it is divided and filled with the fluid flowing into the space formed by the contact point b near the discharge port and the contact point b. This is because, as described above, they are arranged at a uniform pitch, not at an uneven pitch. In other words, since the shape of the revolving piston and the cylinder are formed by repeating the same contour shape, almost the same amount of fluid is compressed even if fluid is obtained from different spaces in any of the working chambers. You can do it. Although it is possible to perform processing so that the volumes formed in the respective spaces are equal even if the pitch is not uniform, the productivity is poor. It is a characteristic of this compressor that the space adjacent to the working chamber in the suction process is divided and the compression operation is performed.
上記で説明したピス ト ン式容積型流体機械の圧縮要素 4 1 を形成す る シリ ンダ 4 4 内に旋回ビス ト ン 4 5を配設させ、 前記シ リ ンダ 4 4 の内周壁 4 4 a及びべーン 4 4 bとかみ合うように構成されている。 該 旋回ビス ト ン 4 5を回転運動させながら吸入ポ一 ト 4 7 aから成膜液 1 3を成膜液供給タ ンク 3 6 よ り ピス ト ン式ポンプ 1 4で導入し、 旋回 ビス ト ン 4 5の外周及びシリ ンダ内周壁 4 4 aに付着させながら余剰分 は吐出ポー ト 4 8 a, 吐出弁 4 9を介して吐出パイプ 5 4から吸引ボン プ 1 5で外へ排出される。 圧縮室内を入った成膜材は旋回ビス ト ン 4 5の外周及びシリ ンダ内周壁 4 4 a表面に付着し、 所定温度たとえば 1 5 0 ·€に加熱保持するこ とによ り成膜材を固化することができる。 この 時の加熱源と しては、 旋回ビス ト ンの圧縮運動による自己発熱あるい は、 吐出口から熱風を導入し、 成膜液を固化させる。 この成膜が完了 するまでの間、 接触部の膜は摩滅あるいは排除され、 ク リ アラ ンスの 大きい箇所にはさ らに成膜材が付着し、 ク リアラ ンスが随時狭く なり 極小ク リ アラ ンスを形成する。 この時の加熱源と しては、 旋回ピス ト ン 4 5の圧縮運動による 自己発熱あるいは、 熱風供給源 1 7の熱風を 導入し、 所定温度たとえば 1 5 0 °Cに達すると成膜液は固化する。 こ れによって、 圧縮部の旋回ビス ト ン 4 5の外周部及びシ リ ンダ內周壁 4 4 aのク リ アランスは極小となり、 安価な成膜方法で容積型流体機械 の効率向上を達成できる ものである。 The swirl screw 45 is disposed in the cylinder 44 forming the compression element 41 of the piston type positive displacement fluid machine described above, and the inner peripheral wall 44 a of the cylinder 44 is provided. And the vane 4 4b. The The film forming solution 13 is introduced from the film forming solution supply tank 36 by the piston type pump 14 from the suction port 47 a while rotating the swirling screw 45 to rotate the swirling screw 45. The excess is discharged from the discharge pipe 54 through the discharge port 48 a and the discharge valve 49 by the suction pump 15 while being attached to the outer periphery of 45 and the inner peripheral wall 44 a of the cylinder. The film-forming material that has entered the compression chamber adheres to the outer periphery of the swirling screw 45 and the surface of the inner peripheral wall 44a, and is heated and maintained at a predetermined temperature, for example, 150 °. Can be solidified. As a heating source at this time, self-heating due to the compression movement of the swirl-stone or hot air is introduced from the discharge port to solidify the film-forming liquid. Until this film formation is completed, the film at the contact area is worn away or eliminated, and the material for deposition is further attached to areas with high clarity. Form a sense. As a heating source at this time, self-heating due to the compression movement of the swirling piston 45 or hot air from the hot air supply source 17 is introduced, and when the temperature reaches a predetermined temperature, for example, 150 ° C., the film forming solution is heated. Solidify. As a result, the clearance between the outer peripheral portion of the rotating screw 45 of the compression section and the peripheral wall 44a of the cylinder is minimized, and the efficiency of the positive displacement fluid machine can be improved by an inexpensive film forming method. It is.
(実施例 4 )  (Example 4)
本発明に係るスク リ ュ型圧縮機の実施形態を第 2 0図乃至第 2 3図 を用いて説明する。  An embodiment of a screw compressor according to the present invention will be described with reference to FIGS. 20 to 23. FIG.
第 2 3図は、 本発明を適用 したスク リ ュ圧縮機を示す断面図である。 同図に示すように、 互いに嚙み合う雄ロータ 9 3 bおよび雌ロータ 9 3 aは、 それぞれ両端部を軸受 9 9によって回転自在に支持され、 かつ軸 封装置 1 0 1 によって、 上記軸受 9 9を潤滑した油が、 ロータケ一シ ング 1 0 0および上記ロータ 9 3 によつて形成される圧縮室 C内に侵 入するのを防止している。 また、 上記圧縮室 C内には、 たとえば油を 噴射して上記一対のロータ 9 3などを冷却することは行われていない。 さ らに、 上記雄口一夕 9 3 bは、 その一方先端部に駆動ピニオン 9 7を 固定し、 その他方先端部および上記雌ロータ 9 3 bの他方先端部に一 対のタイ ミ ングギヤ 9 8を固定している。 したがって、 上記駆動ピニ オン 9 7を駆動すると、 上記一対のタイ ミ ングギヤ 9 8 によって一対 のロータ 9 3が同期回転して一点鎮線に示す吸込口 Aから吸入された 空気を圧縮して鎖線にて示す吐出口 Bから吐出する。 このとき、 上記 一対のロータ 9 3間には、 冷却用の油を給入していないので、 これら 一対のロータ 9 3の表面は高温空気にさ らされ、 温度上昇すると共に、 熱膨張して歯形が変形する。 そこで本発明は、 上記一対のロータ 9 3 の歯形および間隙をそれぞれ次のようにして成形している。 第 2 2図 は、 第 2 3図の歯形及びケ一シングの軸直角断面である。 第 2 1 図は、 前記第 2 3図の一対のロー夕 9 3の歯形部分の一実施例を示す拡大断 面図である。 なお、 第 2 0図は本発明の実施態様を示す模式図である。 第 2 0図で、 9 3 は 1 組のロータを示し、 それを囲んでいるのがケー シング 1 0 0である。 コーティ ング剤は空気吸込口 9 1 よ り導入され 少なく とも 1 組のロータ表面及びケーシング 1 0 0の内面に付着し残 部は空気吐出口 9 2 よ り系外に出される。 外部に排出されたコ一ティ ング剤は図示せざる配管を通じて必要に応じ、 吸込口近傍に戻り、 再 度コーティ ング剤と して使用 し得る。 雌ロータ 9 3 aも雄ロータ 9 3 b と同種の材料にて素地を形成し、 その表面には、 外部よ り導入したコ 一ティ ング剤が被膜と して形成されている。 少なく とも 1 組のロータ はあらかじめ設定した最高温度時における歯形の熱膨張および第 2 3 図の一対のロータ 9 3間の間隙を考慮した歯形を求め、 その後、 上記 一対のロータ 9 3を常温に戻し、 収縮した歯形を求め、 該歯形になる ように、 それぞれ研削盤などにて研削加工してあれば、 コーティ ング 剤の厚みを均一にし易いので発明の効果を更に向上させると言えるが、 必須要件ではない。 この場合、 特に上記他方の雌ロータ 9 3 bの歯形は、 後述するように、 上記一対のロータ 6 2を圧縮機に組み付け、 上記タ ィ ミ ングギヤ 9 8 によ り同期回転して負荷運転したとき、 上記一方の 雄ロータ 9 3 b によって創成加工されるような形状であれば良く 、 従 来のように正確度を必要と しない。 また、 上記一対のロータ 9 3 は、 圧縮機に組み付けた際、 間隙が所定の間隙よ り もやや大きい値に形成 しても良い。 次いで、 上記一対のロータ 9 3を前記第 2 3図に示すよ うに、 圧縮機に組み付け、 上記タイ ミ ングギヤ 9 8によって回転方向 のバッ クラ ッ シュを拘束しながら、 互いに異なる回転速度 V m (雄口 —夕の回転速度) , V i (雌ロータの回転速度) で回転し、 当初吐出 口を大気に解放して低速で無負荷運転を行ったのち、 吸込口よ り コー ティ ング剤を導入し負荷運転に切り換えて吐出圧力を上昇させて行く と、 他方のロータ 9 3 aは、 温度上昇に伴って熱膨張すると共に、 上記 一対のロータ 9 3の表面が相対すベりを発生する。 この先を第 2 2図 によって説明すると、 雌ロータ 9 3 bの皮膜 9 4 bの前進面, 後進面を 問わず、 雄ロータ 9 3 b及び雌ロータ 9 3 aは相互に接触すると、 接触部 分は、 互いに相手によって僮かずつ削られて行く 。 またこのとき、 口 —タケ一シング 1 0 0の内面に固着したコーティ ング 9 3 cが上記口一 夕 9 3 a, 9 3 bに接触すると、 接触部分は上記ロー夕の皮膜 9 4 a , 9 4 b によって削られる。 この吐出空気の温度上昇, 圧力上昇に伴う一 対のロータ 9 3の熱膨張による変形および上記雄ロータ 9 3 b による 創成加工のプロセスは、 あらかじめ設定された一対のロータ 9 3の最 高温度にある一定のマージンを加えた値まで継続して行われ、 最終的 に全歯面, 軸方向全断面で、 個々の上記ロータ 9 3が最小間隙を保持 するような最適な歯形になるまで、 回転させる過程で被膜の創成加工 が行われる。 このようにして、 創成加工が終了したとき、 圧縮機の運 転を停止し、 上記一対のロータ 9 3を常温に戻す。 FIG. 23 is a sectional view showing a screw compressor to which the present invention is applied. As shown in the figure, the male rotor 93 b and the female rotor 93 a that engage with each other are rotatably supported at both ends by bearings 99, and the bearings 9 1 The oil that has lubricated 9 is prevented from entering the compression chamber C formed by the rotor casing 100 and the rotor 93. Further, in the compression chamber C, for example, oil is not injected to cool the pair of rotors 93 and the like. In addition, the male mouth 93b has a drive pinion 97 fixed at one end thereof, and a pair of timing gears 9 at the other end and the other end of the female rotor 93b. 8 is fixed. Therefore, when the drive pinion 97 is driven, the pair of timing gears 98 causes the pair of rotors 93 to rotate synchronously, compressing the air sucked from the suction port A indicated by the one-point line, and compressing the air into a chain line. Discharge from discharge port B indicated by. At this time, since cooling oil is not supplied between the pair of rotors 93, the surfaces of the pair of rotors 93 are exposed to high-temperature air, and the temperature rises and thermal expansion occurs. The tooth shape is deformed. Accordingly, in the present invention, the tooth profile and the gap of the pair of rotors 93 are formed as follows. FIG. 22 is a cross-section perpendicular to the axis of the tooth profile and casing of FIG. FIG. 21 is an enlarged cross-sectional view showing one embodiment of the tooth profile portion of the pair of blades 93 of FIG. 23. FIG. 20 is a schematic view showing an embodiment of the present invention. In FIG. 20, reference numeral 93 denotes a set of rotors, and a casing 100 surrounds the set. The coating agent is introduced from the air inlet 91 and adheres to at least one set of the rotor surface and the inner surface of the casing 100, and the remainder is discharged out of the system through the air outlet 92. The coating agent discharged to the outside can return to the vicinity of the suction port as needed through a pipe (not shown), and can be used again as a coating agent. The female rotor 93a also forms a base with the same material as the male rotor 93b, and a coating agent externally introduced is formed on its surface as a coating. At least one set of rotors determines a tooth profile that takes into account the thermal expansion of the tooth profile at the preset maximum temperature and the gap between the pair of rotors 93 in FIG. 23, and then sets the pair of rotors 93 to room temperature. It is possible to say that if the returned and contracted tooth profile is obtained and ground by a grinding machine or the like so that the tooth profile is obtained, the thickness of the coating agent can be easily made uniform, so that the effect of the invention can be further improved. Not a requirement. In this case, the tooth profile of the other female rotor 93 b in particular is As will be described later, when the pair of rotors 62 are assembled to a compressor, and the load is driven by synchronous rotation by the timing gear 98, it is generated by the one male rotor 93b. Any shape is acceptable and does not require accuracy as in the past. Further, when the pair of rotors 93 are assembled to the compressor, the gap may be formed to be a value slightly larger than a predetermined gap. Next, as shown in FIG. 23, the pair of rotors 93 are assembled to a compressor, and while the backlash in the rotational direction is restrained by the timing gear 98, the rotational speeds V m ( Male port-Rotating at evening speed), Vi (rotating speed of female rotor), releasing the discharge port to the atmosphere at first, performing no-load operation at low speed, and then applying the coating agent from the suction port. When the discharge pressure is increased by switching to the load operation with the introduction, the other rotor 93 a thermally expands as the temperature rises, and the surfaces of the pair of rotors 93 generate relative slip. . This point will be described with reference to Fig. 22. The male rotor 93b and the female rotor 93a contact each other regardless of the advancing surface or the reversing surface of the coating 94b of the female rotor 93b. Are cut down by each other by each other. Also, at this time, when the coating 93c adhered to the inner surface of the mouth-taking 100 comes into contact with the above-mentioned mouths 93a and 93b, the contact portion becomes the above-mentioned raw material coating 94a, Cut by 9 4 b. The deformation due to the thermal expansion of the pair of rotors 93 due to the rise in the temperature and pressure of the discharge air and the process of creation by the male rotors 93 b are performed at a preset maximum temperature of the pair of rotors 93. Rotation is continued until a value with a certain margin is added, and finally, the entire rotor surface 93 and the entire axial section are rotated until the above-mentioned individual rotors 93 have the optimum tooth profile to maintain the minimum clearance. In the process, the coating is created. In this way, when the generating process is completed, the operation of the compressor is stopped, and the pair of rotors 93 is returned to room temperature.
したがって、 本実施例では、 あらかじめ単体で成形された一対の口 —タ 9 3を圧縮機に組み付け、 軸受にて中心距離を保持され、 かつ、 回転方向のバックラ ッ シュをタイ ミ ングギヤ 9 8で拘束された状態で 回転させながら外部よ り圧縮室にコーティ ング剤を導入しロータ 9 3 及びケーシ ング 1 0 0 によ り互いに相手を創成加工すると共に、 最小 の間隙を形成するもので、 従来のように実機で負荷連転した状態をあ らかじめ想定して上記両口一夕の歯形および間隙を正確に計算し、 計 算結果に基づいて歯形を単体で創成加工する場合に比較して、 極めて 容易にかつ正確に上記ロータ 9 3の歯形及びケーシング 1 0 0の形状Therefore, in the present embodiment, a pair of ports formed in タ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 The lubricant is introduced and the counterpart is created by the rotor 93 and the casing 100, and the minimum gap is formed.It is assumed that the load has been continuously rotated by the actual machine as in the past. The tooth profile and the casing of the rotor 93 are extremely easily and accurately compared to the case where the tooth profile and the gap between the two mouths are accurately calculated and the tooth profile is formed alone based on the calculation result. 100 shape
• 寸法を駆動時における最小間隙に加工するこ とができる。 また、 個 々の圧縮機の構成部品の精度にマッチした最適の間隙を創出すること ができる。 • Dimensions can be machined to the minimum clearance when driven. Also, it is possible to create an optimum gap that matches the precision of the components of each compressor.
なお、 上記の各実施例では、 雄ロータと雌ロー夕が一対のものにつ いて説明したが、 本発明は雄ロータと雌口一夕が一対以上で構成され るスク リ ュ一式圧縮機にも同様に適用できる。  In each of the embodiments described above, the male rotor and the female rotor are described as a pair. However, the present invention relates to a screw-type compressor in which the male rotor and the female mouth are configured as a pair or more. Can be similarly applied.

Claims

請求の範囲 The scope of the claims
1 . 複数の部材で形成された空間と、 前記複数の部材の相対位置を変化 させることによ り前記空間の容積を変化させる容積可変手段と、 前記空 間に流体を導入する流体導入手段と、 前記空間から流体を放出する流体 放出手段とを備えた容積型流体機械において、  1. A space formed by a plurality of members, a volume variable unit that changes a volume of the space by changing a relative position of the plurality of members, and a fluid introduction unit that introduces a fluid into the space. A fluid discharge device that discharges fluid from the space,
前記空間を形成する複数の部材の表面には膜が形成されており、 前記空間は前記容量可変手段により前記複数の部材が移動可能な範囲に おいて前記複数の部材の表面に形成された膜同志が摺接することにより シールされていることを特徴とする容積型流体機械。 A film is formed on the surface of the plurality of members forming the space, and the space is a film formed on the surface of the plurality of members within a range in which the plurality of members can move by the capacitance changing unit. A positive displacement fluid machine characterized by being sealed by sliding contact with each other.
2 . 複数の部材で形成された空間と、 前記複数の部材の相対位置を変化 させることによ り前記空間の容積を変化させる容積可変手段と、 前記空 間に流体を導入する流体導入手段と、 前記空間から流体を放出する流体 放出手段とを備えた容積型流体機械において、 2. A space formed by a plurality of members, a volume variable unit that changes a volume of the space by changing a relative position of the plurality of members, and a fluid introduction unit that introduces a fluid into the space. A fluid discharge device that discharges fluid from the space,
前記複数の部材は鉄系材料で形成されており、 The plurality of members are formed of an iron-based material,
前記空間を形成する複数の部材の表面には M o S 2粒子、 S b 2 0 3粒子、 C粒 子及びグラフアイ トからなる群から選ばれる少なくとも 1つの粒子を含有する膜が形 成されており、 Film containing at least one particle is made form selected from M o S 2 particles, S b 2 0 3 particles, the group consisting of C particles resonator and a graph Ai DOO on the surface of the plurality of members forming the space And
前記空間は前記容量可変手段により前記複数の部材が移動可能な範囲に おいて前記複数の部材の表面に形成された膜同志が摺接するこ とにより シールされていることを特徴とする容積型流体機械。 The volume-type fluid is characterized in that the space is sealed by the sliding contact of the films formed on the surfaces of the plurality of members within a range in which the plurality of members can move by the variable capacity means. machine.
3 . 複数の部材で形成された空間と、 前記複数の部材の相対位置を変化 させることにより前記空間の容積を変化させる容積可変手段と、 前記空 間に流体を導入する流体導入手段と、 前記空間から流体を放出する流体 放出手段とを備えた容積型流体機械の製造方法において、 次の工程を有 することを特徴とする容積型流体機械の製造方法。  3. A space formed by a plurality of members, a volume changing unit that changes a volume of the space by changing a relative position of the plurality of members, a fluid introduction unit that introduces a fluid into the space, What is claimed is: 1. A method for manufacturing a positive displacement fluid machine, comprising: a fluid discharging means for releasing a fluid from a space, comprising the following steps.
( 1 ) 前記空間を組み立てる工程。 ( 2 ) 前記容積可変手段を駆動する工程。 (1) A step of assembling the space. (2) A step of driving the volume variable means.
( 3 ) 前記流体導入手段から前記空間に成膜材を注入して前記空間を 構成する面に前記成膜材を付着させる工程。  (3) a step of injecting a film-forming material into the space from the fluid introduction means and attaching the film-forming material to a surface constituting the space;
( 4 ) 前記空間に注入した成膜材であつて前記空間を構成する面に付着 しなかった成膜材を前記流体放出手段から回収する工程。  (4) A step of collecting from the fluid discharging means a film-forming material that has been injected into the space and that has not adhered to a surface constituting the space.
( 5 ) 前記空間を構成する面に付着した成膜材を硬化させる工程。  (5) A step of curing the film-forming material attached to the surface constituting the space.
4. 鉄系材料からなる複数の部材で形成された空間と、 前記複数の部材 の相対位置を変化させることによ り前記空間の容積を変化させる容積可 変手段と、 前記空間に流体を導入する流体導入手段と、 前記空間から流 体を放出する流体放出手段とを備えた容積型流体機械の製造方法におい て、 次の工程を有することを特徴とする容積型流体機械の製造方法。  4. a space formed by a plurality of members made of an iron-based material; a volume changing unit that changes a volume of the space by changing a relative position of the plurality of members; and introducing a fluid into the space. A method for manufacturing a positive displacement fluid machine, comprising: a fluid introducing means for discharging a fluid from the space; and a fluid discharging means for discharging a fluid from the space, comprising the following steps.
( 1 ) 前記空間を組み立てる工程。  (1) A step of assembling the space.
( 2 ) 前記容積可変手段を駆動する工程。  (2) A step of driving the volume variable means.
( 3 ) 前記流体導入手段から前記空間に Mo S2粒子、 Sb 203粒子、 C粒 子及びグラフアイ卜からなる群から選ばれる少なくとも 1つの粒子を含有する 成膜材を注入して前記空間を構成する面に前記成膜材を付着させる 工程。 (3) said fluid introducing means Mo S 2 particles in the space from, Sb 2 0 3 particles, by injecting a deposition material containing at least one particle selected from the group consisting of C particles resonator and a graph eye Bok said Attaching the film-forming material to a surface constituting a space.
( ) 前記空間に注入した成膜材であって前記空間を構成する面に付着 しなかった成膜材を前記流体放出手段から回収する工程。  (4) recovering from the fluid discharge means the film-forming material that has been injected into the space and that has not adhered to the surface constituting the space.
( 5 ) 前記空間を構成する面に付着した成膜材を硬化させる工程。  (5) A step of curing the film-forming material attached to the surface constituting the space.
PCT/JP1997/002181 1996-06-24 1997-06-24 Displacement type fluid machine WO1997049919A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50268698A JP3226549B2 (en) 1996-06-24 1997-06-24 Positive displacement fluid machine

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP8/162691 1996-06-24
JP16269196 1996-06-24
JP30899996 1996-11-20
JP8/308999 1996-11-20

Publications (1)

Publication Number Publication Date
WO1997049919A1 true WO1997049919A1 (en) 1997-12-31

Family

ID=26488392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/002181 WO1997049919A1 (en) 1996-06-24 1997-06-24 Displacement type fluid machine

Country Status (2)

Country Link
JP (1) JP3226549B2 (en)
WO (1) WO1997049919A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008190330A (en) * 2007-01-31 2008-08-21 Hitachi Ltd Scroll fluid machine
JP2012057635A (en) * 2011-12-22 2012-03-22 Hitachi Industrial Equipment Systems Co Ltd Scroll type fluid machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54157315A (en) * 1978-06-02 1979-12-12 Hitachi Ltd Scroll fluid machine
JPH02308902A (en) * 1989-05-23 1990-12-21 Mitsubishi Electric Corp Fluid sealing method of scroll assembling body
JPH04237889A (en) * 1991-01-18 1992-08-26 Tokico Ltd Scroll type fluid machinery
JPH0988851A (en) * 1995-09-29 1997-03-31 Ntn Corp Manufacture of scroll member of displacement compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54157315A (en) * 1978-06-02 1979-12-12 Hitachi Ltd Scroll fluid machine
JPH02308902A (en) * 1989-05-23 1990-12-21 Mitsubishi Electric Corp Fluid sealing method of scroll assembling body
JPH04237889A (en) * 1991-01-18 1992-08-26 Tokico Ltd Scroll type fluid machinery
JPH0988851A (en) * 1995-09-29 1997-03-31 Ntn Corp Manufacture of scroll member of displacement compressor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008190330A (en) * 2007-01-31 2008-08-21 Hitachi Ltd Scroll fluid machine
US8628313B2 (en) 2007-01-31 2014-01-14 Hitachi, Ltd. Scroll fluid machine with a coating layer
JP2012057635A (en) * 2011-12-22 2012-03-22 Hitachi Industrial Equipment Systems Co Ltd Scroll type fluid machine

Also Published As

Publication number Publication date
JP3226549B2 (en) 2001-11-05

Similar Documents

Publication Publication Date Title
US5638600A (en) Method of making an efficiency enhanced fluid pump or compressor
US4802831A (en) Fluid machine with resin-coated scroll members
US4129405A (en) Scroll-type liquid pump with transfer passages in end plate
US10837444B2 (en) Helical trochoidal rotary machines with offset
KR0177012B1 (en) Lightweight scroll element and method of making the same
GB2183735A (en) Scroll fluid machine
KR20060020684A (en) Scroll compressor
US20170204857A1 (en) Epitrochoidal type compressor
JP4823455B2 (en) Fluid machine provided with a gear and a pair of engagement gears using the gear
US5261803A (en) Gerotor pump with interference fit closure
KR101011323B1 (en) Fluid machine
US6345967B1 (en) Scroll type fluid machine having different wrap side surface clearances
WO1997049919A1 (en) Displacement type fluid machine
JP3296439B2 (en) Scroll fluid machine
US6179593B1 (en) Displacement fluid machine
JPH01216082A (en) Vacuum pump
CN220815971U (en) Self-rotation vortex compressor
JP6488893B2 (en) Scroll compressor
JPH01227885A (en) Scroll compressor
KR102654609B1 (en) Rotating roter having cooling effect of sealing device
JPH073229B2 (en) Scroll gas compressor
JP2002213381A (en) Fluid machinery
JP2003035284A (en) Surface coating method for member of scroll type pump
US20230114095A1 (en) Screw compressor
JPH1150979A (en) Displacement fluid machine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)