WO1997049524A1 - Measuring and processing system, method and apparatus therefor - Google Patents

Measuring and processing system, method and apparatus therefor Download PDF

Info

Publication number
WO1997049524A1
WO1997049524A1 PCT/JP1997/002203 JP9702203W WO9749524A1 WO 1997049524 A1 WO1997049524 A1 WO 1997049524A1 JP 9702203 W JP9702203 W JP 9702203W WO 9749524 A1 WO9749524 A1 WO 9749524A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing
measurement
cutting
data
measuring
Prior art date
Application number
PCT/JP1997/002203
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuhisa Sugai
Takashi Hirosawa
Kazuhide Shimura
Manabu Oota
Makoto Sakazume
Original Assignee
Kabushiki Kaisya Advance
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP18267896A external-priority patent/JPH106143A/en
Priority claimed from JP22616096A external-priority patent/JP3482077B2/en
Application filed by Kabushiki Kaisya Advance filed Critical Kabushiki Kaisya Advance
Priority to AU32747/97A priority Critical patent/AU3274797A/en
Publication of WO1997049524A1 publication Critical patent/WO1997049524A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/0003Making bridge-work, inlays, implants or the like
    • A61C13/0004Computer-assisted sizing or machining of dental prostheses
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4097Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using design data to control NC machines, e.g. CAD/CAM
    • G05B19/4099Surface or curve machining, making 3D objects, e.g. desktop manufacturing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/0003Making bridge-work, inlays, implants or the like
    • A61C13/0006Production methods
    • A61C13/0009Production methods using a copying machine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/0003Making bridge-work, inlays, implants or the like
    • A61C13/0022Blanks or green, unfinished dental restoration parts
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/35Nc in input of data, input till input file format
    • G05B2219/35217Cagd computer aided geometric design, sbgd scanning based geometric design

Definitions

  • the present invention relates to an automatic measurement by computer control and an apparatus for performing automatic processing based on the measurement information. More specifically, the present invention relates to an automatic computer system represented by a single CADZCAM device comprising a computer system for shape design, a servo control type NC device, and a mechanism for controlling the condition of an axis added thereto.
  • CADZCAM device CADZCAM device
  • it is possible to cut various materials such as dental prosthesis materials, which were difficult in the past, to produce precise dental prostheses, other dental materials, medical materials, and various imitations. It relates to a system that manufactures workpieces that are the same, similar or corresponding to the workpiece and the workpiece. Further, the present invention relates to the production of medical materials or dental materials using a cutting machine tool. Background art
  • dental prostheses have been manufactured and applied by the following methods.
  • a doctor forms an abutment on the patient's treated tooth, (2) obtains an impression of the tooth condition with an impression material, and (3) reproduces the impression with an impression stone.
  • Dental technician performs a wax-up on the duplicate, and (5) The finished wax pattern is made of metal (gold-silver palladium alloy) by the so-called roast-wax method.
  • (6) Make a dental prosthesis for the patient, and (6) adjust the inconsistency to fit the patient by oral examination of the patient.
  • a doctor forms an abutment on a patient's treated tooth, (2) obtains an impression of the tooth condition using an impression material, and (3) an impression stone.
  • a replica of impression gypsum is made with refractory stones, and (5) a dental technician applies dental porcelain with a brush on the refractory gypsum.
  • the doctor forms an abutment on the patient's treated tooth, (2) obtains an impression of the tooth condition using an impression material, and (3) reproduces the impression with a descendant for impression.
  • Measure the shape of the stone blue with a three-dimensional measuring instrument transfer this measurement data to the CADZCAM system, and (5) Convert the abutment tooth data to the inner surface data of the dental prosthesis using the CAD / CAM system.
  • the prosthetic crown data stored in advance is deformed according to the size of the inner surface data and transformed into a dental prosthesis shape by superposition.
  • Completed dental prosthesis The dental shape prosthesis is manufactured by cutting and shaping the object shape model with an NC machine, and (8) a physician performs an oral trial on the patient and adjusts and adjusts the mismatched part.
  • a method of moving a measuring device or a processing device is generally a method of fixing an X axis or a Y axis and moving a Y axis or an X axis and a Z axis. In other words, it is a method of moving the measuring equipment or processing equipment parallel to the rectangular coordinates.
  • the structure has thermal expansion and contraction, and this error cannot be ignored.
  • a stepping motor or servo motor is used as a motor for controlling the position of the NC machine tool. Therefore, the operation of the stepping motor or the servomotor is controlled in an open-loop manner in which data is discharged all at once. Therefore, when performing precise three-dimensional measurement or three-dimensional processing, it takes a long time to perform a precise operation.
  • NC machine tools have a jig for mounting measurement and machining equipment, measurement models and workpieces integrated with the main body. Therefore, measurement and processing methods are limited. Measuring and processing equipment is individually installed Since it comes out, three-dimensional processing becomes impossible. Also, besides the above
  • NC machine tools may be used as described above.
  • the vibration of the drill and the scattering of cuttings during machining may damage the measuring equipment.
  • the data taken in at the time of measurement increases the processing time due to the necessity of correction at the time of processing, and the accuracy of completed processed materials such as medical materials and dental materials is reduced due to occurrence of errors.
  • the measuring equipment and the processing equipment are damaged, it is necessary to perform the measurement and processing from the beginning due to the necessity of data correction, which requires more time.
  • the stabilization of the temperature during the operation of the cutting drill and the lump was insufficient, and the cutting drill and the lump were damaged, and the life of the cutting drill was short.
  • the cutting work is always a problem, because the cutting chips are always generated.
  • the work of cleaning the facets was performed using a brush, air brush, or vacuum cleaner, which required a great deal of labor.
  • a CADZ CAM system using a combi unit can be used to manufacture a partially or wholly modified or improved product, and a drive unit such as a single NC machine Equipment with a structure that only replaces the measuring and cutting parts, or both at the same time, more preferably based on a single closed droop, sabo control system
  • the aim is to propose a measurement processing system that can measure the model and cut the dental material with excellent biocompatibility to be precise, accurate and labor-saving.
  • a circumscribed circle is created according to the shape of the medical material or the dental material, and the measuring device or the processing device is moved radially from the center point. Therefore, the radially changing shape can be measured or processed with high accuracy.
  • the present invention has a detachable type and has a unified structure, has a function of mounting, replacing and rotating, a plurality of functions are provided, and a plurality of cutting processing equipment are provided.
  • the integrated configuration of the drill enables the precise positioning and fixing of workpieces used as measuring and processing equipment, measuring models, medical and dental materials.
  • the above-mentioned three-dimensional measurement refers to, for example, a contact type measuring device using a probe or the like, a laser non-contact type three-dimensional measuring device using a laser beam, or the like.
  • the three-dimensional machining device for example, cutting, drilling, electric discharge machining, or stereolithography is shown.
  • the medical materials shown in the present invention include those used in, for example, bone plates, osteosynthesis materials, artificial bones, artificial joints, artificial organs, and other medical prostheses.
  • Dental materials may be used in dental prostheses, dental implants, other dental treatments, or in seals, ornaments, etc., in shapes, structures, colors based on the model, and / or in one or more of these. This indicates a duplicate or part of or all of the duplicate that has been modified or improved.
  • the material of the agglomerate, that is, the work to be processed according to the present invention is a material that can be subjected to three-dimensional processing by a ceramic, a metal, a synthetic resin, and other three-dimensional processing machine tools. Not limited.
  • the lump is not particularly limited as long as it can be processed.
  • the material and shape of the lump are appropriately selected depending on the object to be processed, and examples thereof include a plate, a line, and a particle.
  • a central processing unit refers to a computer, workstation, or other device equipped with a central processing unit, whether general-purpose or dedicated, but any device that can perform data processing overnight. You may.
  • Peripheral devices for data storage include hard disk, floppy disk, magneto-optical disk, random access memory, IC card, and other devices for storing data. As long as it stores analog or digital data temporarily or continuously. Anything that can be stored can be suitably used, and is not particularly limited.
  • Encoders for detecting the position include a linear encoder attached to each axis table, a rotary encoder attached to a servomotor that is the power of each axis table, and the like. Not something.
  • the measuring and processing means in the present invention can use CAD / CAM, NC machine tool, etc., and the measuring device is a contact type three-dimensional measuring device, a laser, a measuring device using light, and the like.
  • the machine may be a machine using cutting drill, stereolithography, electric discharge machining, or the like.
  • a dental prosthesis made of a composite resin material can be manufactured quickly, accurately, and economically.
  • the closed droop * savo control method is used as a preferred example.
  • the numerical controller outputs a movement command to a motor used in a measuring and cutting machine, and when the motor moves, it is mounted on a rotary encoder attached to the motor or a moving shaft.
  • the linear encoder outputs the movement amount as pulse format data, and the output pulse data is fed back to the numerical controller, which enables accurate position detection, and enables accurate movement and stop. It is possible to do so.
  • this pulse data is sent to a numerical controller and simultaneously to a computer system for creating measurement data.
  • Computer system has an interface that receives an analog signal from an analog displacement contact probe attached to the main shaft, performs conversion internally as digital data, and converts this digital data into the original data. Then, the computer system outputs a movement command to the numerical controller, the motor operates, and when each axis (three axes) moves, the contact measuring element is displaced from the dental prosthesis model with which it is in contact. Occurs.
  • the computer system checks in real time whether the movement amount commanded to the numerical controller is being executed correctly. This makes it possible to stably measure the shape of a continuous dental prosthesis model without giving excessive stress to the contact type probe.
  • the measured data is weighted by the increment of the radius of the tip sphere of the contact probe. For this reason, the computer system can obtain the surface data of the dental prosthesis by subtracting the value corresponding to the radius of the tip sphere from all the acquired data.
  • the subtraction algorithm calculates the normal vector of the inclination of the surface of the dental prosthesis by differentiating the movement of the contact probe, and subtracts the radius from this direction.
  • the closed-loop control described in detail above it is possible to manufacture a medical material or a dental material with high accuracy by performing three-dimensional measurement and three-dimensional processing.
  • the processing speed of closed-loop three-dimensional measurement and three-dimensional processing is a problem, but high-speed measurement and processing can be achieved by distributing the data to multiple central processing units. o.
  • the system consisting of a computer that processes the data obtained as the measurement results and sends the processing data to the processing equipment uses the acquired dental prosthesis.
  • Numerical control data for machining G code
  • G code Numerical control data for machining
  • Cutting is performed by sending this numerical control data for processing to the NC processing machine.
  • the measuring instrument for performing the measurement and the NC processing machine for performing the processing are realized by only one CADZ CAM system, the cost can be reduced and the size can be reduced.
  • the shape around a model having a circular, elliptical, polygonal, or other complicated shape can be measured or processed with high precision.
  • Measureasuring and processing equipment measurement models and jigs for fixing workpieces can be fixed and detachable jigs that can be precisely determined, and the jigs can be unified so that they can be mounted and exchanged with each other By rotating the jig, the measurement model and the workpiece can be measured and processed with high accuracy in three dimensions.
  • the measuring equipment and the processing equipment can be installed on the same base jig, and the driving body such as a motor and the processing body such as a drill are integrated, and their shapes are combined with the measuring body such as a measurement probe.
  • the present invention realizes an apparatus in which a liquid tank is attached to a work part of a cutting machine tool so that a lump formed of a medical material or a dental material can be cut in liquid.
  • Material of the mass Indicates, for example, ceramics, metals, synthetic resins, and other materials that can be cut by a cutting machine.
  • the shape of the lump shows a cylindrical shape, a spherical shape, a rectangular parallelepiped, an approximate shape close to the final shape, and other shapes that can be cut by a cutting machine tool.
  • the size indicates a size that can be cut by a cutting machine tool.
  • Medical materials include those used in, for example, bone plates, osteosynthesis materials, artificial bones, artificial joints, artificial organs, and other medical prostheses.
  • Dental materials refer to dental prostheses, dental implants, and other materials used in dental treatment.
  • the means for cutting refers to, for example, NC machine tools, devices using CAD'CAM, and the like.
  • the cutting process indicates the process from a lump to the final shape, the process from the lump to an approximate shape close to the final shape, the process from the approximate shape to the final shape, and other possible cutting processes o
  • Liquid refers to water, oil, body fluid, simulated body fluid, saline, and other liquids.
  • Liquid temperature control in the liquid tank means that the liquid temperature is sensed using a heat sensor or the like, and the target temperature is kept constant using a heater or a cooler.
  • the liquid port flow in the liquid tank indicates that convection occurs in the liquid tank, and a device such as a pump or other device capable of flowing liquid is shown.
  • the timing of the port flow indicates when the cutting drill is in contact with a lump, when the cutting drill is operating, and other possible times of perfusion.
  • the above examples of the configuration of each unit are not limited to these.
  • the cutting drill or the mass can be cooled reliably, and the cutting drill or the mass is hardly damaged. .
  • the cutting temperature can be stabilized, thermal expansion of the cutting drill and the lump can be prevented, and a medical or dental material with high accuracy can be obtained.
  • the cut pieces generated in the step are not scattered, preventing danger to the human body.
  • the generated chips accumulate at the bottom of the liquid tank, they can be reliably collected, and cleaning work can be reduced.
  • a dental prosthesis When a dental prosthesis is created using the cutting machine tool of the present invention, the present conditions of dental technicians, such as impression sampling, gypsum model production, wax swap, construction mold production, and dental prosthesis Since part of the manual work such as construction and adjustment is mechanized, the time required for preparing a dental prosthesis can be greatly reduced. In this way, it is easy to manufacture precise and not necessarily mass-produced workpieces in a small space, especially without polluting the surrounding area. It can be used in Object to be cut (agglomerated material) For medical or dental materials that are embedded in a body and used to swell, set the same environment as the body fluid in the liquid tank and cut. By processing, medical or dental materials suitable for each individual can be obtained.
  • FIG. 1 is a schematic sectional view showing a tooth.
  • Figure 2 is a cross-sectional view showing the crown (model).
  • Figure 3 shows the measurement rib in contact with the crown (model).
  • FIG. 4 is a perspective view showing an apparatus according to an embodiment of the present invention.
  • FIG. 5A and FIG. 5B are views showing a holding part for a rotary jig.
  • FIGS. 6A and 6B are views showing a contact probe.
  • FIG. 7 is a diagram showing the rotating jig holder being rotated 90 degrees.
  • FIGS. 8A and 8B are diagrams showing a cutting block.
  • FIG. 9 is a diagram showing another embodiment of the present invention.
  • FIGS. 10A to 10F are flowcharts for explaining an embodiment of the present invention.
  • FIGS. 11A and 11B are diagrams showing a crown model of a dental prosthesis for three-dimensional measurement.
  • Figure 12 shows an example of the contour of a crown and an example of radial division.
  • FIGS. 13A and 13B are diagrams showing an example of orthogonally measuring a block obtained by radially dividing a crown.
  • FIG. 14 is a diagram showing an example of moving a cutting drill.
  • FIG. 15 is a diagram showing an example in which another crown is divided concentrically and radially measured.
  • FIG. 16 shows another embodiment of the present invention.
  • FIG. 17 is a diagram showing a block diagram of the apparatus of FIG.
  • FIG. 18 is a diagram showing an example of the measurement direction in FIG.
  • FIGS. 19A to 19D are views showing a mounting portion to which a drill and a probe can be exchangeably mounted.
  • FIG. 20 is a diagram showing another embodiment of the present invention.
  • FIG. 21 is a diagram showing a part of another embodiment of the present invention.
  • FIG. 22A and FIG. 22B are views showing a part of another embodiment of the present invention.
  • 23A to 23D are views showing the connecting rod and the mounting portion.
  • FIG. 24 is a side view showing a state where the workpiece has been mounted on the mounting portion.
  • FIG. 25 shows another embodiment of the present invention.
  • FIG. 26 shows cutting of a medical or dental material according to another embodiment of the present invention.
  • 1 is an external view of a cutting machine tool.
  • FIG. 27 is an enlarged view of the liquid tank portion of FIG.
  • FIG. 28 is a diagram showing an example in which the apparatus of FIG. 26 is provided with a cooling water constant temperature circulator.
  • FIG. 29 is an enlarged view of the liquid tank portion of FIG.
  • FIG. 30 is a diagram showing the cooling water constant temperature circulator of FIG.
  • FIG. 31 is a diagram showing an example in which a liquid exchange device is provided in the device of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 4 One embodiment of the present invention is shown in FIG. 4 and will be described in detail.
  • Reference numeral 101 denotes a working unit, which is composed of a general-purpose or dedicated NC machine tool or the like, and performs measurement and processing.
  • Reference numeral 102 denotes a control unit, which is formed of a personal computer, a dedicated computer, a dedicated controller, or the like having at least a storage unit and a processing unit.
  • FIG. 4 shows a personal computer 30.
  • the control unit 102 includes means for storing information by various methods such as memory, magnetism, light, and magneto-optics, and means for calculating the information and instructing the operation unit to operate.
  • the processing, recording, and transmission of information is primarily, but not exclusively, carried out digitally.
  • the working unit 101 and the control unit 102 are electrically connected by a connecting body 103 such as an electric lead wire.
  • the connecting body 103 is made up of light, infrared light, magnetism, and electromagnetic. Alternatively, they may be connected by a wireless medium such as ultrasonic waves.
  • reference numeral 11 denotes a Z-axis support member, which slides the Z-axis arm member 14 1 in the Z-axis direction, and moves the Z-axis arm member 14 1 It is for support.
  • Reference numeral 12 denotes an X-axis motor, which outputs power obtained by converting rotary power into a sliding force, and is connected to the X-axis table member 9 to slide it. It is for Reference numeral 13 denotes a Y-axis motor, which outputs power obtained by converting rotary power into a sliding force, and is connected to the Y-axis table member 10 to slide it.
  • Reference numeral 14 denotes a Z-axis motor, which outputs power obtained by converting a rotary force into a sliding force, and is connected to the Z-axis arm member 141 to slide it.
  • Reference numeral 15 denotes a spindle motor, which is used to rotate the drill when the drill is attached during processing.
  • a mounting connector 41 for processing is connected to the spindle motor 15.
  • the mounting connector 41 for processing is for detachably connecting the drill 19 for cutting.
  • a mounting connector 42 for measurement to which the measurement probe 20 is detachably connected is provided adjacent to the spindle motor 15.
  • Reference numeral 16 denotes a splash cover, which is used to prevent the scattering of swarf due to the splash or splattering of a lump during processing, and is fixed on the X-axis table member.
  • Reference numeral 17 denotes a pedestal, which incorporates a rotary jig holding portion 87 and a drive motor for rotating the same.
  • the rotating jig holding portion 87 is mainly for mounting a model for measurement and a lump for processing.
  • 7 is a machine lower part
  • 18 is a rotating wheel, which is mounted at four corners on the bottom of the machine lower part and makes the working unit 101 movable.
  • the operation of the present invention for quickly producing a dental prosthesis having good compatibility will be described with reference to FIGS. 1, 2, 3, 4, and 10A to 10F. I do.
  • step S1 of FIG. 10A The process of manually creating an object to be measured is shown in step S1 of FIG. 10A.
  • the step S 1 shows that a dental prosthesis prototype is made of dental materials (wax, tech) on the patient abutment 5.
  • a prosthesis model is formed directly on the patient's abutment teeth using an instant polymerization resin without using impression materials.
  • the details are shown in the steps Sll, S12, and S13 in FIG. 10B.
  • step Sll in Fig. 10B the shape of the abutment tooth 5 is considered according to the symptoms of caries.
  • Step S12 in FIG. 10B shows a step of forming a prosthesis shape on the abutment tooth 5 with a dental material (wax, tech).
  • Step S13 in FIG. 10B shows a step of solidifying the formed prosthesis prototype model with ultraviolet rays, chemicals, or the like.
  • Step S14 in FIG. 10B The prosthesis model is taken out of the patient's mouth after curing (step S14 in FIG. 10B), and the measurement model shown in FIG. 2 is obtained.
  • Step S14 in FIG. 10B shows the step of removing the prototype from the patient's mouth after solidification, as described above.
  • Process S2 of Fig. 10A and Fig. 10C show the process of mounting the prototype.
  • Step S2 in FIG. 10A shows a process in which the rib 91 for measurement is attached to the dental prosthesis prototype, attached to the measurement jig, and attached to the CADZCAM system by the holder.
  • an additional mechanism for measurement as shown in FIG. 3 is attached to the model for measurement (step S21 in FIG. 10C), and is attached to the holding portion 87 for the rotary jig as shown in FIG. (Steps S22 and S23 in FIG. 10C).
  • Step S21 in FIG. 10C shows a step of preparing a rib for measurement 91 and bonding it to the model 57 with an adhesive 92.
  • Step S22 in FIG. 10C shows a step of attaching the prototype model 57 on which the ribs 91 are attached to the exclusive holder 87, and a step of adjusting the angle to an angle that is easy to measure at this time.
  • Step S23 in FIG. 10C shows a step of attaching the holder 87 with the model attached to the pedestal on the X-axis table 9 of the CAD / CAM system.
  • Process S3 in Fig. 10A and Fig. 10D show the process of automatic measurement.
  • step S3 in Fig. 10A the shape of the model 57 was measured by measurement CAD, and the This figure shows the process of storing measurement data in a PC, the process, and inverting the model together with the jig 87 to measure the complete shape.
  • An analog contact probe (for example, 20 shown in Fig. 4) with a complete spherical tip mounted coaxially with the spindle of the spindle motor based on a closed droop type servo control, etc., and each motor shaft Drives a computer system (eg, 30 in Fig. 4) that has position detection pulse data from and an analog-to-digital conversion circuit.
  • Steps S31 and S32 in FIG. 10D Step S31 in FIG. 10D shows a step of selecting and starting the automatic measurement software from the menu. Step S32 in FIG. 10D shows the step of setting the position coordinates of the center of the prosthetic prototype model.o
  • This drive is performed by rotating an X-axis motor (for example, 12 in FIG. 4), a Y-axis motor (for example, 13 in FIG. 4), and a Z-axis motor (for example, 14 in FIG. 4).
  • the X-axis table for example, 9 in Fig. 4
  • the Y-axis table for example, 10 in Fig. 4
  • the Z-axis arm for example, 141 in Fig. 4) connected to the motor slide in each axis direction, and the probe 20 or the model 57 moves in conjunction with each other, so that the probe (20 in FIG.
  • Step S33 in FIG. 10D indicates a step of measuring a half surface of the prototype prosthesis by a radial measurement path from the set measurement center.
  • the computer system calculates the correction of the radius of the tip ball of the tracing stylus from the stored data and generates coordinate data of the model surface. (4) At this time, the computer system predicts the shape of the capture object model based on the data read sequentially, and determines the amount of movement of the next measurement point, thereby achieving efficient measurement. Can be performed continuously.
  • Step S34 and S35 in Fig. 10D shows a process in which after the half-surface measurement is completed, the holder holding the model is turned over and the unmeasured half-surface is measured by the radial measurement path.
  • Step S35 in FIG. 10D shows the steps of saving the measurement data to the PC, removing the step and the holder for measurement and the measurement stylus.
  • Step S4 in FIG. 10A and FIG. 10E show the calculation steps.
  • Step S4 in FIG. 10A shows a process of designing a machining tool path using software on a PC.
  • Step S41 in FIG. 10E shows a step of selecting and starting the machining path calculation software from the menu.
  • Step S42 in FIG. 10E shows a step of retrieving the data of the automatically measured capture prototype model.
  • Step S43 in FIG. 10E shows a process of calculating a roughing cutting drill and a feed rate, automatically creating and saving data of a roughing cutting path.
  • Step S44 in FIG. 10E shows a step of calculating the finishing cutting drill and speed, automatically creating and storing the finishing cutting path data based on the roughing cutting path data.
  • Step S5 in FIG. 10A and FIG. 10F show the processing steps.
  • Step S5 in Fig.10A is to attach and add the processing jig, the processing material and the end mill, and to reverse the processing material and the jig after half-face processing to process and complete the shape.
  • the process is shown.
  • Step S51 in FIG. 10F shows a process in which the work material is mounted on the cutting holder and installed in the CADZCAM system, and a process in which the cutting software is selected from a menu and activated.
  • Step S52 in FIG. 10F shows a step of calling the roughing cutting pass data and the finishing cutting path data to perform the roughing and the finishing.
  • Step S53 in FIG. 10F shows a step of turning the cutting holder to which the processing material has been attached after performing half-face processing.
  • a cutting tool (eg, 19 in Fig. 4) is used in place of the stylus 20 previously used for measurement.
  • the rib (812) is adhered to a lump (eg, as shown in FIG. 8) with an adhesive or the like, or the rib (812) of the lump provided with the rib (812) in advance by integral processing or the like. Attach to a rotating jig (for example, 87 in Fig. 4)
  • the finishing process is performed from the computer (CADZCAM) 30 based on the data of the finishing pass. At that time, exchange the drill, etc., and change the parameters etc. based on the part changed by the exchange etc. ⁇
  • Step S54 of FIG. 10F shows a step of performing rough processing and finish processing on the unprocessed half surface.
  • Step S55 in FIG. 10F shows a step of removing the dental prosthesis made by cutting from the holder for cutting and cutting off the rib.
  • the processing material used as the lump titanium, dental ceramics, composite resin, and the like are preferable, but are appropriately selected according to the processing target, and other metals, In some cases, ceramics, wood, etc. may be used.
  • the end step in FIG. 10A includes the steps of removing and trial-fitting the prosthesis.
  • the rotating jig 87 is accurately inverted and rotated to measure the complete shape.
  • the operation of the measurement is the same as the operation of the embodiment described above.
  • the shape is digitized by a computer (CADZ CAM) (for example, 30 in FIG. 4) and temporarily stored.
  • CADZ CAM computer
  • titanium, dental ceramics, composite resin, etc. are used, but other materials are used according to the purpose as described above.
  • this method does not require any manpower except for a series of operations for producing a dental prosthesis model, most of the operations constituting this method are automatically performed using appropriately controlled equipment. It should be noted that it is considered to be carried out in the future.
  • FIG. 1 An embodiment shown in the method for manufacturing a dental prosthesis according to the present invention will be described with reference to FIGS. 1, 2, 3, and 4.
  • FIG. 1 a dental prosthesis is called a crown.
  • FIG. 1 shows a crown 47 made of dental metal titanium to be manufactured by the method for manufacturing a dental prosthesis according to the present invention.
  • Fig. 1 the gingiva 1, the natural tooth root 3, and the abutment 5 are shown, and the abutment 5 is formed by a dentist.
  • the above-mentioned crown model 57 is taken out of the patient's mouth, and is bonded to the measurement rib material 91 and the glue-like adhesive 92 as shown in FIG. This is measured by the present invention.
  • FIG. 4 shows an embodiment of the present invention. To manufacture dental prostheses.
  • the crown model 57 with a rib shown in FIG. 3 is fixed to a rotating jig holder 87.
  • the fixed state is shown in Figure 5B.
  • the holder 87 for the rotating jig is attached to the pedestal 17 in FIG. (2nd step).
  • the attached crown model 57 is precisely measured by the CA DZ CAM system in Fig. 4 using the CA DZ CAM system.
  • the contact type measurement probe unit 20 is used for measurement. Used.
  • This contact type measurement probe unit 20 has a structure as shown in Fig. 6 and consists of a measuring instrument body 20a and a contact probe 20b, and depends on the displacement of the contact probe 20a. The coordinates of the object surface are determined and output as electrical signals.
  • Data controlled by the control computer 30 shown in FIG. 4 and measured by the measurement probe unit 20 is sent to the computer 30.
  • the measured data is processed by the computer 30 for offset correction of the tracing stylus radius, and is converted into data for cutting.
  • the measurement is performed in the radial direction from the center of the crown model 57 as shown in FIG. 11B in order to accurately obtain the shape of the crown model 57. By doing so, the shape of the most important part of the crown 47 (A2 in Fig. 11) can be accurately measured.
  • Measurement is performed by controlling each axis of X-axis motor 12, Y-axis motor 13 and Z-axis motor 14 according to the command from the computer 30. Only half of the shape of the model 57 can be measured. For this reason, after the measurement on one side is completed, the crown model 57 By inverting the angle by 180 degrees, the other half can be measured and a complete three-dimensional shape can be measured.
  • FIG. 7 shows the structure of this reversing mechanism. As shown in FIG. 7, the rotation of the rotating jig holder 87 by 90 degrees causes the crown model 57 connected thereto to rotate in conjunction therewith.
  • the measured result is sent to the computer 30, where the crown shape is designed. (3rd step).
  • the time required for this process is about 0.5 hours, but can be reduced.
  • the end mill 19 is attached to the spindle motor 15 in FIG.
  • the cutting block 90 is attached to the rotating jig holder 87.
  • the shape of the cutting block is cylindrical or conical with ribs (812 in Fig. 8) close to the dental prosthesis, and in fine units according to the finished dimensions of the crown 47. Numerous shapes with different dimensions are prepared, and dentists can select a cutting block 90 that has a shape close to that of crown 47. In addition, it is useful to make a hole in the center of one side of the cutting block 90 in view of the peculiarity of the shape of the crown 47. In addition, it was assumed that dental titanium was used as the material.
  • FIGS. 8A and 8B Examples of the shape of the cutting block 90 are shown in FIGS. 8A and 8B. Figure
  • FIG. 8A is the front part 90a
  • FIG. 8B is the back part 90b.
  • the back portion 90b is provided with the above-described hole portion 811 and a rib 812 for connection with a processing jig is physically connected.
  • the ribs 8 1 and 2 are integrally added when the cutting block 90 is manufactured. It is removed by folding it, but it may be fixed later with an adhesive or the like.
  • the cutting block 90 fixed to the rotary jig holder 87 is processed at the end mill 19 by a processing path for roughing and finishing generated by the converter 30.
  • a processing path for roughing and finishing generated by the converter 30 In this case, as in the case of the measurement, only the half surface is machined, so after machining the half surface, the holder 87 for the rotating jig is rotated to cut the back surface as shown in Fig. 7. is there.
  • the time required for this process is approximately one hour. (4th step).
  • the crown 47 is removed from the rotating jig holder 87, polished, and applied to the patient abutment tooth 5.
  • the attachment and detachment of the fixing jig indicates a method of tightening with a bolt, a hook, etc., and other possible gripping methods.
  • the positioning with a jig indicates a positioning method using pins and holes.
  • the method of rotating the jig and the positioning of the angle can be set by setting pins and holes for each angle and rotating the jig manually, or by attaching the jig to the servo motor attached to the encoder and rotating it automatically. It shows the method of manually and automatically determining the angle and other methods, but it is not limited to this as long as it is at least detachable.
  • the accuracy of the cutting crown 47 depends on the system accuracy, but in the system of the embodiment of the present invention, the error could be suppressed to 20 microns or less. This makes it possible to meet the ideal accuracy limit of dental prostheses of 50 micron.
  • the number of steps can be significantly reduced and the time can be significantly reduced as compared with the production method using the conventional method, and the titanium crown can be rapidly produced. You can do it.
  • the elimination of processes that require advanced skills and skills makes it easier and more reliable for inexperienced dentists and dental technicians. Can be manufactured.
  • the present invention can be applied to a single crown in which a plurality of crowns are connected.
  • the present invention is not limited to this, and dental porcelain (glass ceramics) and composite resin were used. In this case, the method can be applied.
  • FIG. 9 shows an embodiment in which measurement and cutting can be performed simultaneously.
  • FIG. 9 shows a configuration in which two holding units 92 1 and 92 1 ′ having the same structure are provided on the X-axis table 9. Since the structures of the holding portions 92 1 and 92 ⁇ are the same, the same reference numerals are given. Also, the structure of the holding portion 921 is the same as that shown in FIG. 4, so the same reference numerals as in FIG. 4 are assigned and the description is omitted.
  • the measuring jig holder 87 of the holding part 92 1 is equipped with a model 57 for measurement, and the cutting jig 90 is mounted on the holding part 92 1 ′ of the rotating jig holder. Installing.
  • the spindle motor 15 is connected and supported by a cutting drill 19 via a processing support portion 95, and the measurement probe unit 20 is connected to a unit support portion 94.
  • the unit support part 94 is fixedly connected to the processing support part 95 via a connecting body 93.
  • the information of the measurement probe unit 20 is configured to be transmitted to the computer 30 shown in FIG.
  • the measurement unit 20 outputs the information by contacting the model, and the computer 30 drives the X, ⁇ , and Z axis motors based on the information.
  • the connecting body 93 is driven by the forces moving in the X, ⁇ , and Z-axis directions.
  • the holding drill 92 also moves in conjunction with it, and the cutting drill 19 is rotated by the rotational drive of the spindle motor 15 to perform the same movement relative to the measurement probe unit 20 to perform cutting. Cut block 90.
  • the cutting operation two steps of rough cutting and finishing are required.However, the cutting that is performed simultaneously with the measurement is only a rough cutting step, and the finishing processing is performed again after the measurement is completed. In some cases, the process may be selected.
  • the connector 93 has a structure for fixing the measurement probe unit 20 and the cutting drill 19, but on the other hand, by adopting a structure capable of contraction and extension, the measurement of the measurement probe unit 20 is performed. It is also possible to realize more precise machining, such as realizing the movement of the cutting drill with the operation corrected.
  • the contact type analog contact probe in the device shown in Fig. 4 use a cutting machine using a cutting drill for machining, and use the method of measuring in the radial direction from the center.
  • the X and Y coordinates in FIGS. 12 to 15 indicate the sliding direction of the X-axis table and the sliding direction of the Y-axis table when the model A1 is mounted on the device shown in FIG.
  • Reference numeral 91 denotes a rib material shown in FIG. 3, which is a part to be attached to the rotating jig holder 87.
  • a dental model prosthesis with a crown model A1 shown in Fig. 11 as shown in Fig. 11 on a gypsum model used for dental treatment with an instant polymerization resin. Also, based on the measurement data, a cutting process is performed with titanium material to produce a crown to be used as a dental prosthesis.
  • the surface of the crown model A 1 shown in FIGS. 11A and 11B is contacted with a two-dimensional contour A as shown in FIG. Measure 4.
  • a circumscribed circle A 3 is created according to the contour A 4, a center point A 6 is obtained, and the center point A 6 is set as a center point (base point) for radial measurement.
  • the measurement range of the crown model of the dental prosthesis is divided into 18 every 20 degrees around the base point A6.
  • the analog tracing stylus A 19 is scanned on the divided trajectory A 0, and the shape of the contact area is taken as the amount of displacement.
  • the contact probe A 19 outputs this as an electric signal.
  • the number of divisions is, for example, up to 18 (within an interval of 20 degrees), but is not particularly limited because it is appropriately adjusted depending on the shape of the model and the like.
  • the measurement range A5 was performed by enlarging the shape of the measured contour to 110%. This expansion adds the "play" needed for measurement,
  • the center line A11 of the contact-type analog contact-type measuring element is run at right angles to the contour, and measurement is performed for each divided measurement range.
  • the crown model of the dental prosthesis is inverted by the rotating jig holder 87 shown in FIG. 4, and the shape is measured similarly.
  • Three-dimensional measurement data taken into a general-purpose computer is offset-calculated in accordance with the contact-type analog contact probe and cutting drill.
  • the data is converted into numerical control data, and cutting data is prepared.
  • a workpiece made of titanium to be used as a dental prosthesis is connected to the rotating jig holder 87.
  • the cutting drill shown in FIG. 14 is moved radially to cut the titanium workpiece.
  • the trajectory of the movement is indicated by A 8.
  • the order of the drill trajectory with reference to the center point 0 is shown by a to k. This order is to prevent the uncut portion from being generated at the portion distant from the base point A 6 due to the spread between the radial lines. Since the diameter of the radial line indicating the trajectory is narrow, the drill diameter is limited, so that the same drill can be used effectively and the number of replacements can be reduced. Can be.
  • the margin line A2 is used to reproduce the crown model A1 of the dental prosthesis in detail for the crown used for dental treatment. And could't.
  • the contact-type contact probe or the cutting drill moved in the same direction as the ridge. Since the contact anatomical contact probe or cutting drill is in contact with the ridge of A2 almost at a right angle, the crown model A1 of the dental prosthesis is used in detail for the crown used for dental treatment. It was possible to reproduce.
  • the present invention is not limited to this example as long as three-dimensional measurement or three-dimensional processing can be performed radially.
  • the crown model A1 of the dental prosthesis shown in Fig. 11A and Fig. 11B was measured with a contact type Fig. 13 shows a method for performing more accurate shape measurement when cutting a workpiece.
  • Fig. 13A shows a line drawn along the line A0 indicating the trajectory divided radially and further dividing the area between the lines A0 and A0 into two equal parts and passing through the center point A6.
  • this line a plurality of lines A 7 drawn so as to be divided in parallel at equal intervals are formed, and on the line A 7 showing this trajectory, the above-mentioned contactor A 19 is used. Movement is performed while measuring, so that the distance between the lines A7 is equal, and a measurement error in a portion distant from the center is suppressed.
  • Fig. 15 shows a method for performing highly accurate measurement as in Fig. 13A.
  • the crown model A1 of the dental prosthesis is measured two-dimensionally with a contact analog contact measuring element.
  • a circumscribed circle A3 was created in accordance with the contour A4, a center point A6 was obtained, and the center point A6 was set as a center point (base point) for radial measurement.
  • the shape of the measured contour was divided into two when it was reduced to 50%.
  • the inner measurement range A 9 is measured radially with a contact-type analog contact probe every 2 degrees
  • the outer measurement range A 10 is measured radially with a contact-type analog contact probe every 2 degrees. Measurements were taken.
  • the outer measurement range A10 was performed with "play” by enlarging the measured contour shape to 110%.
  • a plurality of concentric circles are set for the measurement or processing surface, and the concentric inner and outer circles (referred to as concentric circles) are radially divided.
  • the number of divisions between the concentric circles in the outward direction is larger than that in the inward direction, and the number is preferably 1 to 5, but the number of divisions is more complicated. It is appropriately adjusted in accordance with the size of the device, and is not particularly limited.
  • the setting of the center point according to the present invention is determined by the center point when the shape obtained by the probe coming into contact with the outer contour of the model is regarded as substantially circular or substantially elliptical.
  • a determination is made using a method in which the center point is the largest midpoint in the X direction and the midpoint having the largest width in the Y direction.
  • the shape of the object to be measured such as a model and the lump is not limited to the above, and the present embodiment is applicable to polygons, squares, and other complicated shapes.
  • the data of the motor be returned to the central processing unit and controlled by a closed-loop method for correcting the operation.
  • a drive measuring means for measuring this drive amount is added to the drive means so that a servo motor with an encoder is attached to the motor as power for the Y and Z axis tables.
  • the drive measuring means is not limited to this, but may be other means for measuring the rotation of the motor, or means for measuring the linear motion after converting the rotational motion of the motor into linear motion.
  • the drive measuring means detects the position of the working part such as a measuring probe or a processing drill, and converts this position data, for example, pulse data, into data that can be processed by a central processing unit, such as an analog-to-digital converter. Transform the data.
  • the central processing unit reads the accurate coordinate values and stores the numerical data in the central processing unit or its peripheral devices.
  • the central processing unit corrects the driving operation of the driving means, and sends the corrected data to the servo motors of each axis table.
  • This correction is based on a measurement method such as radial measurement or scanning measurement from one direction.
  • central processing When moving a probe that contacts the target location and outputs the contact amount as an electrical signal based on a measurement method, central processing The processing device outputs data therefor to the driving means.
  • the drive means rotates the X, Y and Z axis servo motors based on the data.
  • the rotation of the motor is converted to linear motion, which drives a table or a support arm that supports the measurement probe, and moves the measurement probe to the target location.
  • the drive measuring means set in association with the drive means sequentially sends the data of the drive means to the central processing unit.
  • the stored numerical data is offset for the measuring equipment, and coordinate data of the surface of the model that is three-dimensionally measured is created. After the coordinate data of the model surface is determined, each measurement direction (X, Y, Z coordinates)
  • the data can be enlarged or reduced by adding a numerical value to), and a reduced or enlarged copy of the model can be obtained.
  • the central processing unit uses the drive information sent from the drive measurement unit at this time to calculate The extent to which the probe has moved is determined, the amount of movement is compared with the drive data output to the drive means by the central processing unit in advance, and the axis in a direction beyond the measurement range is sent from the measurement probe. From the measured data, convert the drive amount of the drive means of the axis in the direction beyond the measurement range to data obtained by adding or subtracting the data based on the movement amount sent from the drive measurement means. In addition to outputting to the means, the data based on the movement amount sent from the drive measuring means is stored in the storage means.
  • the measurement probe moves in the X, Y, and Z-axis directions based on the data created by the central processing unit in a predictive manner, the movement is monitored, and the movement data and the data detected by the measurement probe are used. However, it is possible to accurately measure an unpredictable sudden surface change as described above. It has a remarkable effect especially when measuring the model.
  • the data obtained by the drive measurement means may not be sent to the central processing unit, but may be sent directly to the drive means.
  • the driving means is provided with means capable of reading data obtained by the driving measurement means.
  • This is an A / D converter, a DZA converter, a converter that converts the amount of rotation into a moving distance, etc.
  • the central processing unit sends the data for moving the measuring probe to the destination at each driving means.
  • Output to the servo motor Each servo motor rotates according to the value of the input data.
  • the rotation measuring unit outputs the measured rotation amount.
  • the driving means inputs the data, converts the data into movement data, and compares the measured data with data necessary for moving to the destination transmitted from the central processing unit. As a result of this comparison, if the two match, each servomotor stops operating.
  • the difference between the closed-loop system of the present invention and the open-loop system currently generally used is as follows.
  • the former detects the X, Y, and Z movement amounts of each axis by incorporating the encoder data of each axis into a general-purpose computer.
  • the detected data and the data of the travel distance instructed in advance by the personal computer should be checked and converted into X, Y, Z coordinate data.
  • the movement data defining the movement amounts of the X, Y, and Z axes on the computer side is used as the X, Y, and Z coordinate data.
  • the closed-loop method detects the amount of movement of each axis and data of measuring equipment, and determines coordinate data.
  • the closed-loop method can perform three-dimensional measurement with higher accuracy than the open-loop method.
  • motion compensation can be performed while checking the amount of movement in the X, Y, and Z axis directions.
  • three-dimensional measurement and three-dimensional processing with closed-loop control can be performed by a single central processing unit.However, in order to perform the processing at even higher speeds, a plurality of general-purpose or special-purpose central processing units are used. Use the device. The use of multiple central processing units means that the power of each axis table is It is possible to share the tasks of controlling the motor, processing pulse data sent from the measuring device, etc., and to perform measurement or processing at higher speed and with higher accuracy and with less failure of the device.
  • the apparatus used in the present invention used contact-type measurement using a probe for three-dimensional measurement, and cutting for processing.
  • the model performs three-dimensional contact measurement on three axes of X, ⁇ , and Z axes, and cuts medical materials or dental materials based on the measurement data. That is what you do.
  • each axis is such that the X-axis table B4 is placed on the Y-axis table B5 so that they can slide independently of each other, and a measurement model or a workpiece to be cut is mounted on it, An analog contact probe B10 and a cutting drill B9 are attached to the Z-axis table B6.
  • the spindle motor B8 is powerful, and is installed with the cutting drill B9 and its power connected.
  • the measurement model or the workpiece moves in a plane, and the height is compensated for by the movement of the analog contact probe B10 or the cutting drill B9.
  • Servomotors with encoders for X-axis B71, servomotors with encoder for Y-axis B72, and servomotors with encoder for Z-axis B73 were used as power for each axis table.
  • Fig. 17 shows a specific control program when the closed-dollar method is adopted.
  • the controller CPU (Central Processing Unit) B15 converts the data sent from the general-purpose computer B2 into numerical control data suitable for driving by the servo driver. To the B16-B18 and the servo mode connected to each driver. Control the rotational drive of the motors B 19, B 21, B 23.
  • the X-axis servo driver B16, the Y-axis servo driver B17, and the Z-axis servo driver B18 are connected and connected in a discrete manner so that they can perform independent operations.
  • the servo driver of each axis discharges the data of the movement amount of each axis to the X-axis, Y-axis, and Z-axis servo motors B19, B21, and B23, respectively.
  • the encoders B20, B22, B24 connected to the servo motors B19, B21, B23 of each axis detect the amount of movement, and the servo drivers B19, B21,
  • the feedback control as described above is performed by sending the pulse data back to B23.
  • the pulse data is connected to the work unit B3. It converts analog data (pulse data) to digital data and sends it out through a digital PC interface B25 to a general-purpose computer B2.
  • the connected general-purpose computer B2 has the pulse data discharged from the contact-type contact probe 10 in addition to the data of the encoders B20, B22, and B24. Process the data.
  • the coordinate data of the surface of the model measured three-dimensionally is created and stored.
  • the computer B 2 performs linear interpolation (position data) processing for measurement and processing, and also performs operations as CAD and other data processing to support the operation of the work unit B 3. .
  • the controller CPU B15 rewrites or translates the data sent from the computer B2 in accordance with the data for controlling the axis of each servo driver connected to the subsequent stage.
  • the instruction data to be output to each servo driver and other instruction data sent from personal computer B2 By performing data processing for the operation of each axis such as equipment and devices, measurement and machining operations can be sped up.
  • the controller CPU B15 is set to operate mainly for processing data (for example, G code). On the other hand, data processing for measurement is performed by the computer B2. Also, due to operability problems, the computer B 2 also serves as an interface for machining operations.
  • Figure 18 shows an example of the measurement direction.
  • the method of measurement with the analog contact type probe B 10 is to fix the Y-axis, move the contact type analog contact type probe B 10 in the X-axis direction, and measure the movement amount of the Z-axis at that time. .
  • the X-axis direction reaches a certain point, the Y-axis is moved, and at the same time, the movement amount of the Z-axis is measured according to the movement of the X-axis.
  • the trajectory is shown in B29.
  • the amount of movement of the Z-axis in accordance with the movement of the Y-axis of the next X-axis line is predicted, so a prediction is made on the general-purpose computer B2, and the processing data is transferred to the machine tool B3. It sends it to the controller CPU (Central Processing Unit) B15 inside and sends numerical data including prediction processing to the servo driver for each axis. At this time, measurement and processing that can deal with discontinuous shapes can be performed by signals from the encoder.
  • the controller CPU Central Processing Unit
  • the method of cutting is determined by the measurement model stored in the general-purpose computer B2.
  • the surface coordinate data of the file B ll is sent to a controller CPU (central processing unit) B 15 of the machining operation section B 3.
  • the controller CPU (Central Processing Unit) B15 converts the data into numerical control data, commands the servo drivers B16, B17, and B18 for each axis, and cuts the workpiece. I do.
  • the pulse data is passed from the encoders B20, B22, and B24 of each axis to the general-purpose computer B2 through the digitizing PC interface B25, and the analog data (pulse data) is transmitted. Convert to digital data and send out.
  • the general-purpose computer B2 confirms the operation of the machining operation part B3 based on the data.
  • the dental prosthesis model B11 was three-dimensionally measured, and the cutting process was performed with titanium in the same working section B3.
  • a crown was created with an instant polymerization resin on a stone blue model used for dental treatment.
  • the crown model B11 of the dental prosthesis is measured two-dimensionally in the X and Y directions with an analog contact probe B10, and three-dimensionally measured with a general-purpose computer B2. Range of X and Y directions was set.
  • the surface of the crown model B11 of the dental prosthesis was measured three-dimensionally.
  • the crown model B11 of the dental prosthesis was inverted, and the back side was similarly subjected to three-dimensional measurement.
  • the measurement data is used to calculate the offset of the analog contact probe B10 on a general-purpose computer B2, and the surface coordinate data on the front and back sides are joined to construct a three-dimensional shape.
  • the offset of the cutting drill B 9 is calculated, and the data is sent to the work unit B 3.
  • the crown model B11 of the dental prosthesis was removed from the working unit B3, the workpiece was set, and cutting was performed based on the three-dimensional measurement data. Also, as in the case of three-dimensional measurement, when the back side was cut, the cutting process was reversed.
  • the titanium crane obtained by the above method had an error within 30 m from the measurement model, and was more accurate than the open-loop method.
  • three-dimensional measurement and cutting can be performed quickly by using two central processing units.
  • NC machine tool which is generally used as a machine for processing a die or the like for the drive unit.
  • 19A to 19D are views showing the cutting drill 19 and the measurement probe 20 which can be exchanged and mounted on the mounting portion 41 shown in FIG.
  • Each of the cutting drill 19 and the measurement probe 20 is connected with a cylindrical connecting support rod 191, and a substantially uniform groove 193 is provided substantially at the center thereof along the circumference thereof.
  • the attachment portion 41 is provided with a connection hole 192 for inserting the connection support rod 191, and locking projections 194 are arranged in four directions inside the connection hole 192.
  • the locking projection 194 has a structure in which it is temporarily moved in the outer peripheral direction by the intrusion of the connecting support rod 191, and projects into the groove 193 and engages on all sides when the groove 193 is reached. Shall be.
  • a means for fixing the state of the locking projection 194 at the time of insertion and mounting may be further provided so that the connection support rod 191 does not come off.
  • FIGS. 19A and 19B show the mounting portion, the mounting drill 19, and the mounting portion of the measurement probe 20.
  • FIG. 19A is a diagram when the cutting drill 19 and the mounting portion 41 are mounted.
  • FIG. 19B is a diagram when the measuring probe and the mounting portion 41 are separated.
  • both the measurement probe 20 and the cutting drill 19 have the same shape to be mounted on the mounting portion 41, and the structure of the mounting portion 41 is shown in FIG.
  • the holder 87 may be provided.
  • Figure 19D shows an example. In this way, measurement and machining in various directions are possible by having interchangeability between work tools such as measurement and processing tools, and between models and lump objects.
  • Fig. 20 shows a configuration that enables more accurate measurement or processing, and allows the cutting direction of a lump or a model to be multi-directional and allows multiple operations to be performed. Show.
  • a dental prosthesis was prepared using an instant polymerization resin on a gypsum model used for dental treatment as a measurement model, attached to a mounting jig, and then fixed to a fixing jig 17 at 360 ° every 90 °. ° Measurements were taken. Next, it was attached to the fixing jig 17 ', and only one side of the measurement model was measured, and a total of five sides were measured. Following the measurement, the pure titanium lump was attached to the mounting jig, fixed to the fixing jig 17 and the cutting process was performed in the same procedure as the measurement according to the data obtained by measuring the model. A dental prosthesis was obtained.
  • FIG. 2 1 A a preferable example of the measurement or processing section is shown in FIG. 2 1 A is motor
  • Reference numeral 211 denotes a coupling mounting portion for coupling and mounting with the mounting portion 41 shown in FIG. 4, and is provided with a convex portion 194.
  • Reference numeral 212 denotes a motor, which performs a rotation operation by supplying electric power from the outside, and may perform a phase control or the like by inputting an electric control signal.
  • Reference numeral 213 denotes a cutting drill, whose strength, tooth shape, and the like are appropriately adjusted depending on the material, hardness, and the like of the lump to be cut.
  • Reference numeral 214 denotes a connection adjustment unit that adjusts the connection between the motor 212 and the cutting drill 213.
  • the connection adjusting section 214 is usually fixed, and is used for fine adjustment and pre-adjustment purposes.
  • Reference numeral 21B denotes an analog contact-type probe, which has the same shape and size as the coupling mounting portion 211 of the workpiece 21A, and has a configuration that can be mounted to the mounting portion 41.
  • Reference numeral 215 denotes a contact portion, which is a portion for making contact with the model.
  • Reference numeral 216 denotes a conversion unit, which is a part for converting the amount of mechanical displacement generated by the contact between the contact unit 215 and the model into an electric signal.
  • the integrated workpiece shown at 21 A and the analog contact type probe shown at 21 B can be mounted on the mounting part 41 as described above, but when they are mounted on the mounting part at least,
  • the length 217 is designed to match.
  • the length 217 is a positional length in a mounted state, and is not limited to a length when the head is removed. Therefore, even if the lengths are different when removed, it is only necessary that the lengths at the time of mounting match, and at the time of mounting, even if the lengths are different, integer multiples and other mathematics
  • both lengths are considered to be the same.
  • FIG. 22 shows another example of the measurement or processing unit.
  • Figures 22A and 22B show the connecting support rod 191 shown in Figure 21 on the side. It was done. Figure shows an example of the connection relationship between the connecting support rod 191 and the mounting part 41
  • FIG. 23A is a plan view of the mounting portion as viewed from above, and FIG. 23B is a side view.
  • Reference numeral 192 denotes a coupling hole, and projections 194 having elasticity to the left and right are arranged in four directions in the center of the inside.
  • 22 4 are auxiliary projections, which are arranged at four positions in a diagonal direction of the mounting portion.
  • the auxiliary projection 224 is a projection for accurate positioning of the contact point, cutting drill, etc., and can be positioned at an angle to change the direction of the cutting drill by 90 ° by arranging it at 90 ° intervals. (See Figure 25).
  • FIG. 23C is a top view of the periphery including the connection support rod 191, and FIG.
  • Reference numeral 191 denotes a connecting support rod, and a groove portion 193 is arranged on the side surface.
  • 225 formed on the connecting plate 226 are auxiliary holes, and are provided at four locations in the diagonal direction of the connecting plate 226. The coupling between the two is performed by inserting the connecting support rod 191 into the coupling hole 192, so that the groove portion 193 and the convex portion 194 are coupled in four directions, and the auxiliary hole 225 and the auxiliary projection 224 are coupled. Positioning relative to the angle is performed.
  • the convex portion 194 is in contact with a fixed support body 221 having a slope at the front end at the rear end portion thereof.
  • a fixed support body 221 having a slope at the front end at the rear end portion thereof.
  • an internal thread portion 227 having an internally threaded portion, and the fixed support 221 is rotated by meshing with the internal thread portion 227.
  • an external thread portion 228 having a threaded outer surface for sliding up and down and a beveled gear 229 at the end is provided.
  • an adjusting body 230 having a beveled gear 222 for engaging with the gear 229 and extending to the outside and having a grip portion 223 having easy manual operation.
  • the coordinator 230 is only required to be used for errand connection, and is preferably removed except for errands.
  • the portion where the fixed support 221 and the convex portion 194 are in contact with each other has a slope, so that the slope becomes shallower as the fixed support 221 moves upward and the convex portion is connected to the connection hole 1. 92, the groove 193 of the connecting support rod 191 engages with the projection 194 to form a fixed state.
  • the fixed support 221 moves downward, and the inclined portion of the tip surface where the fixed support 221 and the convex portion 194 are in contact becomes deeper.
  • the pressing and fixing force of the convex portion 194 in the inward direction decreases, and the engagement between the groove portion 193 and the convex portion 194 is released.
  • Fig. 24 shows a side view of the workpiece when it is mounted on the mounting part. Also, since the connecting connection portion 211 and the mounting portion 41 both have a quadrangular shape, and the auxiliary holes 225 and the auxiliary projections 224 are arranged at the same positions, the connecting direction of the two is four. It is possible. An example is shown in FIG. As described above, depending on the object obtained by the processing, the configuration shown in FIG. 25 is suitably used. By arranging the auxiliary protrusions in the diagonal direction of the symmetrical polygon, it is possible to arrange the workpiece or the analog contact measuring element for measurement in various directions.
  • the mounting portion 41 is also mounted on the holder 78 for the rotary jig shown in FIG. 4, a workpiece and a measurement analog contact type measuring element are mounted on the holder 78 for the rotary jig. In some cases, a lump, a model, or the like may be attached to the place where the attachment portion 41 indicated by 4 is attached.
  • Fig. 22B shows an analog contact type probe with the coupling connection 226 on the side. Except for the arrangement on the surface, it has the same configuration as that of FIG. 22A, and the description thereof is omitted.
  • the mounting location and number of the base jig and the mounting jig, the rotation angle of the mounting jig, and the installation location of the measurement and processing equipment are not limited to those described above. Also exists.
  • the measurement and processing machines have become detachable, so there is no effect on measurement equipment by replacing them with processing equipment during processing as well as three-dimensional measurement and processing.
  • the data correction can be omitted in addition to the integrated motor and drill.
  • the accuracy of the titanium dental capture material thus created has been improved by several steps as compared with conventional ones, and the production time has been significantly reduced.
  • a single unit could be used to compensate for this, reducing capital investment.
  • the present invention it is possible to make a copy of a model to be manufactured or a partial copy having a shape related to the model. It enables high-precision measurement, and at the time of machining, it uses the measured data to cut massive materials such as titanium and ceramic dental prostheses that were difficult to manufacture using conventional manufacturing methods. By doing so, it is possible to produce highly accurate duplicates etc. However, it can be manufactured with an accuracy not less than that of the construction method, and the man-hours and man-hours required for the production of dental prostheses are remarkably saved.
  • the method of three-dimensional measurement and three-dimensional processing by the closed-loop control and the apparatus using the same method of the present invention can confirm the three-dimensional movement amount more than the current open-loop control as described above. While performing, the accuracy is improved.
  • processing such as model duplication can be performed three-dimensionally, and correction processing can be omitted, shortening of time and improvement of accuracy can be said.
  • reprocessing after the processing was interrupted became possible.
  • the present invention has various effects such as various measurement and processing methods can be realized by one apparatus.
  • the cutting device used in this embodiment is based on an NC machine tool used as a machine for processing a die and the like.
  • NC machine tools that cut ordinary dies and the like are large, and their cutting accuracy is not suitable for medical or dental materials. Therefore, the cutting machine tool 303 shown in FIG. 26 has a reduced size and improved cutting accuracy.
  • the cutting machine tool 303 shown in FIG. 26 three-dimensionally cuts a lump of medical material or dental material along three axes of X, ,, and Z axes.
  • each axis is such that an X-axis table 304 is mounted on a Y-axis table 305, a lump is mounted on it, and a spindle motor 308 and a cutting drill 309 are mounted on a Z-axis table 306. is there.
  • the lump moves in two dimensions (plane), and its height is compensated for by a cutting drill.
  • An AC servomotor 307 is used for the power of each axis, and feedback control is performed by the attached encoder.
  • the spindle motor 308 was used as the power for the cutting drill.
  • the cutting machine tool 303 was connected to the personal computer 302, and the control was performed by the personal computer 302.
  • the personal computer 302 indicates a general-purpose or special-purpose personal computer. In addition, a special-purpose control device may be used.
  • a liquid tank 310 was mounted on the X-axis table 304 of the cutting machine tool 303 so that the submerged cutting as the object of the present invention can be performed.
  • a rotating jig 3 13 for fixing the lump was mounted in the liquid tank 310 to fix the lump.
  • a model of the dental prosthesis was created using an instant polymerization resin on a gypsum model used for dental treatment.
  • This model is connected to a personal computer using a contact type 3D digitizer.
  • the shape was input, digitized, and recorded in advance, temporarily or as needed. Note that the means for creating shape data is not limited to this.
  • this data is converted on a personal computer into data for a cutting machine tool, the offset of the diameter of the cutting drill is calculated, and based on the data, the cutting machine tool on a personal computer 302 is used.
  • the series of operations were controlled, and pure titanium used for dental prostheses was used as the material for cutting, and cutting was performed in the following steps.
  • (1) The lump of pure titanium is fixed on the rotating jig 313.
  • One side of the lump on the rotating jig 313 submerged in water is cut by a cutting drill 309.
  • the liquid tank 310 moves in the X and Y axis directions by rotating each spindle motor, and the cutting drill 309 moves in the Z axis direction. I do.
  • the rotating jig 313 is further rotated without changing the state of the liquid tank 310, and the back surface of the rotated mass is similarly put in water. Perform cutting.
  • the cutting process was carried out in water, the cooling was sufficient and the error between the model of the instant polymerization resin and the finished pure titanium dental prosthesis was within 20 m, and the cutting drill bit was also used. It has a longer duration than before. Furthermore, titanium chips are accumulated at the bottom of the liquid tank 310, and the liquid tank is removed from the device and the water in the liquid tank is transferred to a filter, so that the chips can be easily collected and cleaning work is reduced. Was done.
  • a titanium dental prosthesis was cut by an improved NC machine tool.
  • the present invention is not limited to this as long as a medical material or a dental material can be cut in liquid.
  • the cooling water constant temperature circulator 314 shown in Fig. 28 was attached to the cutting machine tool 303 attached to the liquid tank used in the embodiment shown in Fig. 26.
  • the mechanism of the cooling water constant temperature circulator 314 shown in Fig. 28 and Fig. 30 uses the priming pump 331 to take the liquid in the liquid tank into the machine, controls the temperature, sends it out again, and returns it to the liquid tank with the pump 332. Is the way.
  • a 20-W chiller outlet compressor 329 and a thermocouple 330 was installed.
  • the pipe heater 327, the rotary compressor 329, the thermocouple 330, the priming pump 331 and the delivery pump 332 are controlled by the control circuit board 333 of the cooling water constant temperature circulator to heat and cool the liquid. And keep the temperature constant.
  • the temperature setting is -10 to 80 ° C, in 0.1 ° C units.
  • the cooling water constant temperature circulator used in this example is an apparatus in which the above-described components are integrated.
  • a filter 322 was installed to prevent chips and foreign matter from flowing into the cooling water constant temperature circulator.
  • nozzle 323 was installed at the fluid discharge point of the liquid tank to improve the liquid flow velocity and adjust the liquid discharge to the cutting point.
  • a cutting piece attached to a cutting point can be removed.
  • a removable lid 325 was attached to the Z-axis table in order to prevent splashes from occurring in this port flow.
  • water was used as the liquid, the temperature was stabilized at 30 ° C, and pure titanium dental prosthesis was cut in the same manner as in Example 1 while circulating air.
  • the temperature controller kept the temperature constant throughout, and the error between the measurement model for the instantly polymerized resin and the finished titanium dental restoration was reduced to 20 m.
  • the jets of water can remove the chips attached to the cutting point, reducing the load on the cutting drill.
  • the cutting machine tool 303 attached to the liquid tank used in the above embodiment was equipped with the liquid exchange and facet recovery device shown in Fig. 31. Cutting was performed in the same manner as in the example of (1).
  • the mechanism of liquid exchange and chip recovery is as follows. As for the liquid supply to the liquid tank 310, the liquid in the liquid supply port 334 is injected into the liquid tank 310 by the pump 336 via the liquid supply tube 337. When the liquid reaches a certain level, the pump 336 is turned off by the liquid supply pump stoppage float type level switch 339, and the liquid supply is stopped.
  • the manual valve 341 was opened, and the waste liquid was discharged to the waste liquid tank 335 via the waste liquid tube 338.
  • the detachable filter 342 By passing through the detachable filter 342 on the way, the cutting pieces generated during the cutting process are collected.
  • the power of the pump 336 is turned on by the float type level switch 340 for moving the liquid supply pump, and the liquid is supplied to the liquid tank.
  • Dental prosthesis was cut with titanium by using water as the liquid with the above device. After the cutting operation, the valve for draining the waste liquid was opened, and the cutting chips were reliably collected and water was automatically supplied to the liquid tank. Therefore, liquid exchange and cleaning work became simple.
  • the present invention is not limited to this as long as the medical cutting tool or the dental tool can be cut in liquid by recovering the cutting face and exchanging the liquid.
  • the method for cutting and applying a medical material or dental material in a liquid of the present invention and the apparatus using the method ensure that a cutting drill or a mass of medical or dental material is cooled.
  • drills and lumps are prevented from being damaged, and highly accurate medical or dental materials can be obtained.
  • cutting pieces generated from lumps of medical or dental materials and scattered can be easily collected, after cutting work is completed, The resulting machine cleaning work is simplified.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Veterinary Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Dentistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)
  • Dental Prosthetics (AREA)

Abstract

A measuring and processing system measures a model on the basis of an equipment enabling using of a CAD/CAM system or the like, in which a computer is used and which has a single drive unit for NC machinery and the like, that is, an equipment constructed for changing only a measuring unit and a cutting process unit, or an equipment provided with both of the above units, preferably a single closed loop servo control system, and forms a processed product identical or similar to or matching the model on the basis of the measurement data. Accordingly, a cutting and processing system for medical materials, dental materials, decorative articles and the like is realized, which is more compact, easier to handle, higher in speed and accuracy. Further, a method of and an apparatus for cutting and processing a lump article in a liquid are disclosed.

Description

明 細 書 計測及び加工システム並びに方法及び装置 技術分野  Description Measurement and processing system, method and apparatus
本発明はコ ンピュータ制御による自動計測及びこの計測情報に基 づく 自動加工を行う装置に関する。 より詳細には、 本発明は形状設 計用のコ ンピュータ システムとサ一ボコ ン ト ロール方式の NC装置と それに付加する軸の具合を制御する機構より成る単一の CADZCAM 装置に代表される自動計測及び自動加工手段を用いるこ とにより、 従来では困難性を有した歯科補綴用材料等様々な材料を切削加工す る事によって、 精密な歯科補綴物、 その他歯科材、 医科材、 各種模 倣物、 被計測物に同一、 類似あるいは対応した加工物を製造する シ ステムに関する。 さ らに、 本発明は切削加工工作機械による医療用 材又は歯科用材の製造に関するものである。 背景技術  The present invention relates to an automatic measurement by computer control and an apparatus for performing automatic processing based on the measurement information. More specifically, the present invention relates to an automatic computer system represented by a single CADZCAM device comprising a computer system for shape design, a servo control type NC device, and a mechanism for controlling the condition of an axis added thereto. By using measurement and automatic processing means, it is possible to cut various materials such as dental prosthesis materials, which were difficult in the past, to produce precise dental prostheses, other dental materials, medical materials, and various imitations. It relates to a system that manufactures workpieces that are the same, similar or corresponding to the workpiece and the workpiece. Further, the present invention relates to the production of medical materials or dental materials using a cutting machine tool. Background art
いわゆる通法と呼ばれる物で、 従来、 歯科補綴物は下記の方法で 製造、 適用されていた。 第 1 の方法は、 ( 1 ) 患者の処置歯に対し て医師が支台歯形成を行い、 ( 2 ) 歯牙状態を印象材により印象採 得し、 ( 3 ) 印象用石裔にて複製を作り、 ( 4 ) 複製上で歯科技工 士がワ ッ クスア ップを行い、 ( 5 ) 完成したワ ッ クスパターンをい わゆるロス ト ワ ッ クス法による铸造法にて金属 (金銀パラ ジウム合 金) の歯科補辍物を作成し、 ( 6 ) それを患者に医師が口腔内試適 を行い不整合部を調整し適合させる。  Conventionally, dental prostheses have been manufactured and applied by the following methods. In the first method, (1) a doctor forms an abutment on the patient's treated tooth, (2) obtains an impression of the tooth condition with an impression material, and (3) reproduces the impression with an impression stone. (4) Dental technician performs a wax-up on the duplicate, and (5) The finished wax pattern is made of metal (gold-silver palladium alloy) by the so-called roast-wax method. (6) Make a dental prosthesis for the patient, and (6) adjust the inconsistency to fit the patient by oral examination of the patient.
第 2の方法は、 ( 1 ) 患者の処置歯に対して医師が支台歯形成を 行い、 ( 2 ) 歯牙状態を印象材により印象採得し、 ( 3 ) 印象用石 膏にて複製を作り、 ( 4 ) さ らに、 耐火石裔にて印象用石膏の複製 を作り、 ( 5 ) 耐火石膏上で歯科技工士が歯科用陶材を筆にて塗布 し、 これを焼結してコアフ レームを作成し、 ( 6 ) 完成したコアフ レームに仕上げ用の陶材を塗布し、 再焼結を行いセラ ミ ッ ク歯科補 綴物を作成し、 ( 7 ) それを患者に医師が口腔内試適を行い不整合 部を調整し適合させる方法、 In the second method, (1) a doctor forms an abutment on a patient's treated tooth, (2) obtains an impression of the tooth condition using an impression material, and (3) an impression stone. (4) In addition, a replica of impression gypsum is made with refractory stones, and (5) a dental technician applies dental porcelain with a brush on the refractory gypsum. (6) Apply the porcelain for finishing to the completed core frame, re-sinter it to create a ceramic dental prosthesis, and (7) How a physician performs an oral trial on a patient to adjust and fit the mismatch
第 3の方法は、 ( 1 ) 患者の処置歯に対して医師が支台歯形成を 行い、 ( 2 ) 歯牙状態を印象材により印象採得し、 ( 3 ) 印象用石 裔にて複製を作り、 ( 4 ) その石青の形状を 3次元計測器で計測し 、 この計測データを CADZCAM システムへ転送し、 ( 5 ) CAD/CA M システムで支台歯データを歯科補綴物の内面データに変換し、 ( 6 ) あらかじめ記憶しておいた補綴物歯冠データを内面データの大 きさに合わせ変形し、 重ね合わせにより歯科補綴物形状と してモデ ル化し、 ( 7 ) 完成した歯科補綴物形状モデルを NCマシンで切削加 ェし歯科補綴物を製造し、 ( 8 ) それを患者に医師が口腔内試適を 行い不整合部を調整し適合させる。  In the third method, (1) the doctor forms an abutment on the patient's treated tooth, (2) obtains an impression of the tooth condition using an impression material, and (3) reproduces the impression with a descendant for impression. (4) Measure the shape of the stone blue with a three-dimensional measuring instrument, transfer this measurement data to the CADZCAM system, and (5) Convert the abutment tooth data to the inner surface data of the dental prosthesis using the CAD / CAM system. (6) The prosthetic crown data stored in advance is deformed according to the size of the inner surface data and transformed into a dental prosthesis shape by superposition. (7) Completed dental prosthesis The dental shape prosthesis is manufactured by cutting and shaping the object shape model with an NC machine, and (8) a physician performs an oral trial on the patient and adjusts and adjusts the mismatched part.
ところで、 NC加工工作機械を用いた場合、 計測機器又は加工機器 の移動の仕方は、 X軸又は Y軸を固定し、 Y軸又は X軸と Z軸を移 動させる方法が一般的である。 つま り、 直交座標に合わせて平行に 計測機器又は加工機器を移動する方法である。  By the way, when using an NC processing machine tool, a method of moving a measuring device or a processing device is generally a method of fixing an X axis or a Y axis and moving a Y axis or an X axis and a Z axis. In other words, it is a method of moving the measuring equipment or processing equipment parallel to the rectangular coordinates.
しかしながら、 上記のような従来の方法では、 手順が多く 時間と 手間が掛かってしま う。  However, the conventional method as described above requires many steps and takes time and effort.
また、 印象材により患者の歯牙形態を間接的に取るため、 材料精 度により形態が正確に取れないと云う欠点がある。  In addition, since the impression material is used to indirectly take the shape of the patient's teeth, there is a disadvantage that the shape cannot be accurately obtained due to the accuracy of the material.
歯科医療現場では印象を取るのは一般的に歯科衛生士であるため 、 歯科衛生士の技量に左右される所が大き く 、 正碑な処置歯の形状 を取ることが出来にく いという要因が有る。 また、 ロス トワ ッ クス法を用いるため、 補綴物が铸造可能な金属 に限られ、 金属アレルギーを引き起こ し易いこと、 審美性に劣るな どの欠点があった。 It is generally the dental hygienist who takes an impression at the dental care site, so it depends largely on the skill of the dental hygienist, and it is difficult to take the shape of a true treated tooth. There is. In addition, since the prosthetic prosthesis is limited to metal that can be manufactured due to the use of the roto-strox method, there are drawbacks such as easy occurrence of metal allergy and poor aesthetics.
また铸造では熱膨張収縮があり、 この誤差が無視できない。  Also, the structure has thermal expansion and contraction, and this error cannot be ignored.
また、 铸造歪み又は鬆の問題も無視できない。 審美性を考慮した 陶材焼付铸造冠という ものがあるが、 ベース (フ レーム) が铸造し た金属であるため、 前記の問題が解決されていない。  Also, the problem of artificial distortion or voids cannot be ignored. There is a porcelain porcelain crown with consideration for aesthetics, but the above problem has not been solved because the base (frame) is a forged metal.
近年、 コ ンピュータ技術と NC機械の進歩により、 これらを用いて 歯科捕綴物を製造する試みがなされているその NC工作機械の位置制 御するモータと してステツ ビングモータ又はサ一ボモータを利用 し ており、 ステッ ピングモータ又はサーボモータの動作の制御は、 モ 一夕にデータを排出するだけのオープンループ方式で行われている 。 そのため、 精密な三次元計測又は三次元加工を行う場合には、 モ 一夕の精密な動作にかかってく る。  In recent years, due to advances in computer technology and NC machines, attempts have been made to manufacture dental prostheses using these. A stepping motor or servo motor is used as a motor for controlling the position of the NC machine tool. Therefore, the operation of the stepping motor or the servomotor is controlled in an open-loop manner in which data is discharged all at once. Therefore, when performing precise three-dimensional measurement or three-dimensional processing, it takes a long time to perform a precise operation.
又、 上述の如く 、 そのモータの動作を確認せず、 処理データをモ 一夕側に送り出すだけのオープンループ方式を取つているこ とから モータの動作の確認、 つま り各軸テーブルの移動量の確認が行われ ていないために、 モータの精密が得られない場合は、 正確な三次元 計測及び三次元加工ができないという欠点がある。  In addition, as described above, since the operation of the motor is not confirmed, and the open loop system is used in which the processing data is sent out to the motor side, the operation of the motor is confirmed, that is, the movement amount of each axis table. If the accuracy of the motor cannot be obtained because no confirmation has been made, accurate three-dimensional measurement and three-dimensional machining cannot be performed.
更に目的物の形状が円筒形又は球形など、 放射状に形状が変化し ている場合、 従来の直交座標に合わせての計測又は加工を行う と精 度良く 計測又は加工ができない点等も指摘される。  Furthermore, when the shape of the target object changes radially, such as cylindrical or spherical, it is pointed out that measurement or processing cannot be performed with high accuracy if measurement or processing is performed according to the conventional rectangular coordinates. .
他方、 コ ンピュータ制御に於ける計測、 加工時に用いられる治具 等に於いても、 NC工作機械には計測および加工機器と計測モデルお よび加工物を取り付けるための治具が本体と一体化しているために 、 計測および加工方法は限定されてく る。 計測および加工機器が個 々 に設置 · 固定されているこ とで、 測定および加工のできない面が 出てく る為に三次元的な加工は不可能になる。 また、 上記以外にもOn the other hand, with regard to jigs used in computer control for measurement and machining, NC machine tools have a jig for mounting measurement and machining equipment, measurement models and workpieces integrated with the main body. Therefore, measurement and processing methods are limited. Measuring and processing equipment is individually installed Since it comes out, three-dimensional processing becomes impossible. Also, besides the above
、 計測による位匱データを加工の為の位置データへコ ン ピュータ処 理による補正を行うだけでなく 、 加工機器用のモータに ドリ ルを取 り付ける際に、 計測の先端位置から加工の ドリル先端位置へのデ— タ捕正を行う必要もあり、 製作の為の時間をかなり要した。 更に、 計測機器や加工機器の破損が生じた場合には、 データ補正の必要性 から始めからの計測、 加工を行わなければならない等煩雑な面を有 していた。 In addition to performing computer processing to correct the position data for processing to the position data for processing, drills for processing from the tip of the measurement when mounting the drill on the motor for processing equipment It was also necessary to perform data collection at the tip position, which required a considerable amount of time for manufacturing. Furthermore, if the measuring equipment and processing equipment were damaged, there was a complicated aspect such as the need to perform data measurement and processing from the beginning due to the necessity of data correction.
手作業により医療用材および歯科用材の切削加工を行う場合、 大 変な労力と製作時間を要することから、 上述した様に NC工作機械が 用いられる場合もあるが、 装置の構造上計測および加工方法が限定 されており、 加工しょう とする物によっては、 加工の際の ドリ ルの 振動、 切り粉の飛散により計測機器を破損させるこ と もある。 更に 、 計測時に取り入れたデータを加工時の補正の必要性による加工時 間の拡大や、 誤差の発生による完成された医療用材および歯科用材 等の加工品の精度は低下が生じる。 また、 計測機器や加工機器の破 損が生じた場合に、 データ補正の必要性から始めからの計測、 加工 を行わなければならなく 、 更に時間を要する。  When machining medical and dental materials by hand, it takes a great deal of labor and manufacturing time.Therefore, NC machine tools may be used as described above. However, depending on the object to be machined, the vibration of the drill and the scattering of cuttings during machining may damage the measuring equipment. Furthermore, the data taken in at the time of measurement increases the processing time due to the necessity of correction at the time of processing, and the accuracy of completed processed materials such as medical materials and dental materials is reduced due to occurrence of errors. Further, when the measuring equipment and the processing equipment are damaged, it is necessary to perform the measurement and processing from the beginning due to the necessity of data correction, which requires more time.
そこで、 医療用材および歯科用材の切削加工を行う場合の精度の 向上、 製作時間の短縮、 計測 , 加工が中断されても途中からの再計 測 · 再加工性が求められるものである。  Therefore, there is a need for improved precision when cutting medical and dental materials, reduction in manufacturing time, and re-measurement / reworkability from the middle even if measurement and processing are interrupted.
また、 NC工作機械を用いて計測 · 加工を行う場合、 複数の装置を 用いるために設備投資等の面で費用がかかる ものであった。  In addition, when performing measurement and machining using NC machine tools, the use of multiple devices was costly in terms of capital investment and the like.
以上の課題を解決し、 より コ ンパク トで、 より取扱いが簡単で、 より速く 、 より精度の高い計測及び加工ができる システムが希求さ れる ものであった。  There is a need for a system that solves the above problems and that is more compact, easier to handle, faster, and capable of more accurate measurement and processing.
さ らにまた、 医療用材又は歯科用材を切削で加工する場合、 塊状 物に、 水又は切削水を注水しながら切削加工を行っている。 また材 質によっては乾式で切削加工を行っている。 これらの切削加工の作 業は、 歯科技工士等が手で行っているため、 大変な労力と時間を要 している。 近年、 上記の作業の近代化を図るために、 医療用材又は 歯科用材を NC工作機械を用いて切削加工する方法がある。 この NCェ 作機械を使用する場合、 切削 ドリル及び塊状物の冷却や切削点に付 着する切り子の除去による切削抵抗の軽減のために、 水又は切削水 を注水しながら切削加工を行っている。 また、 塊状物の材質によ つ ては乾式で切削加工を行う こと もある。 しかし、 切削 ドリ ルや塊状 物の作業時における温度の安定化は不十分であり、 切削 ドリ ルや塊 状物の破損がみられ、 切削 ドリルの寿命も短いものとなっていた。 さ らに、 切削加工の場合、 必ず切り子が発生するため、 その清掃作 業が問題となっていた。 その対応と して、 ブラ シ、 エアブラ シ又は 掃除機などを用いて、 切り子の清掃作業を行っており、 大変な労力 を要していた。 In addition, when cutting medical or dental materials by cutting, Cutting is performed while water or cutting water is being injected into the object. Some materials are dry-cut. The work of these cutting operations is performed by hand by dental technicians and the like, and requires a great deal of labor and time. In recent years, in order to modernize the above work, there is a method of cutting medical materials or dental materials using NC machine tools. When using this NC machining machine, cutting is performed while pouring water or cutting water in order to cool the cutting drill and lump and to reduce cutting resistance by removing the cutting chips attached to the cutting point. . Also, depending on the material of the agglomerate, dry cutting may be performed. However, the stabilization of the temperature during the operation of the cutting drill and the lump was insufficient, and the cutting drill and the lump were damaged, and the life of the cutting drill was short. In addition, in the case of cutting, the cutting work is always a problem, because the cutting chips are always generated. As a response, the work of cleaning the facets was performed using a brush, air brush, or vacuum cleaner, which required a great deal of labor.
水又は切削水などの注水を要する医療用材又は歯科用材の塊状物 の場合は、 注水しながら切削加工を行っている力 水又は切削水の 注水量が材質又は切削 ドリ ルの回転数により異なるため、 注水量の 設定に繁雑さが伴う という問題がある。 さ らに、 注水量や注水位置 が微妙に異なると切削 ドリルゃ塊状物の冷却が確実にできず、 切削 ドリル又は塊状物の破損が起こ りやすく なる。 また、 切削 ドリ ル又 は被塊状物の破損が避けられたと しても、 温度による熱膨張がある ため、 精度の良い医療用材又は歯科用材が得られない可能性がある 。 塊状物を乾式又は注水式で切削加工を行った場合、 必ず切り子が 発生する。 この切り子は飛散するため危険であり、 また切削加工機 に飛散した切り子の清掃に労力が必要になるという欠点がある。 発明の開示 In the case of a lump of medical or dental material that requires water injection, such as water or cutting water, the amount of water or cutting water that is being cut while water is injected differs depending on the material or the number of revolutions of the cutting drill. However, there is a problem that setting the water injection amount is complicated. In addition, if the water injection amount and injection position are slightly different, the cooling of the cutting drill or the lump cannot be ensured, and the cutting drill or lump tends to break. Further, even if the cutting drill or the mass is prevented from being damaged, there is a possibility that accurate medical or dental materials cannot be obtained due to thermal expansion due to temperature. When a lump is cut in a dry or water-filled manner, cuts always occur. These facets are dangerous because they are scattered, and have the disadvantage that labor is required to clean the facets that have scattered in the cutting machine. Disclosure of the invention
本発明の目的は上記の歯科その他生体用捕綴物、 ィ ンプラ ン ト、 或いは、 印章材、 装飾品等、 モデルに基づく形状、 構造、 色彩の及 びこれらの 1 又は複数の組み合わせを有する複製的又は複製の一部 又は全部に修飾的、 改良的加工を施した物を製造するため、 コ ンビ ユ ー夕を用いた CADZ CAM システム等を使用可能と し、 単一の NC機 械等の駆動部を有する機器、 即ち計測部、 切削加工部のみを交換す る構造を有するもの、 或いは両方を同時に備えたもの、 により好ま しく は単一のク ローズ ドループ · サ一ボコ ン トロールシステムに基 づいてモデルを計測し、 生体親和性の優れた歯科用材料を切削加工 する事によって精密、 正確でかつ省力化出来る計測加工システムを 提案する事にある。  It is an object of the present invention to provide a dental or other biological capture device, an implant, a seal material, a decorative article, or the like, having a model-based shape, structure, color, and / or a replica or a combination thereof having one or more of these. A CADZ CAM system using a combi unit can be used to manufacture a partially or wholly modified or improved product, and a drive unit such as a single NC machine Equipment with a structure that only replaces the measuring and cutting parts, or both at the same time, more preferably based on a single closed droop, sabo control system The aim is to propose a measurement processing system that can measure the model and cut the dental material with excellent biocompatibility to be precise, accurate and labor-saving.
又、 本発明では、 モデル等の被計測物を計測する際、 或いは塊状 物をデータに基づいて切削加工する際、 以下の計測乃至加工をする 事でより精度を向上させることを可能と した。  Further, in the present invention, when measuring an object to be measured such as a model, or when cutting a lump based on data, it is possible to further improve the accuracy by performing the following measurement or processing.
即ち、 医療用材又は歯科用材の形状に合わせて外接円を作成し、 その中心点から放射状に計測機器又は加工機器を移動させる。 その ため放射状に変化している形状を精度良く計測又は加工ができる。  That is, a circumscribed circle is created according to the shape of the medical material or the dental material, and the measuring device or the processing device is moved radially from the center point. Therefore, the radially changing shape can be measured or processed with high accuracy.
しかし、 放射状の場合、 中心点から離れるにつれ、 精度が粗く な るこ とへの対応と して、 放射状に分割し、 その分割したものを直交 座標に合わせて平行に計測又は加工することにより、 前記の問題点 が補う ことができる。 また、 中心点からある半径の距離ごとに同心 円上に分割する。 中心点から近い部分を放射状に計測又は加工を行 い、 次に中心点から近い部分を更に 2倍等拡大して、 計測又は加工 を行う ことにより、 問題点を捕う ことができるのである。  However, in the case of radial, in order to cope with the decrease in accuracy as the distance from the center point increases, by dividing radially and measuring or processing the divided parts in parallel to the rectangular coordinates, The above problems can be compensated. In addition, it is divided into concentric circles for each distance of a certain radius from the center point. By measuring or processing the portion close to the center point radially and then magnifying the portion near the center point twice more, and then performing the measurement or processing, it is possible to catch the problem.
更に本発明では、 離脱着式で、 しかも統一構造を有し、 取り付け 、 交換、 回転の機能を有し、 複数設け、 切削用加工機器のモ一夕と ドリルを一体型にする構成により、 計測および加工機器、 計測モデ ル、 医療用材および歯科用材と して使用される加工物の位置を正確 に出し、 固定することを実現する。 Further, according to the present invention, it has a detachable type and has a unified structure, has a function of mounting, replacing and rotating, a plurality of functions are provided, and a plurality of cutting processing equipment are provided. The integrated configuration of the drill enables the precise positioning and fixing of workpieces used as measuring and processing equipment, measuring models, medical and dental materials.
前記の三次元計測は、 例えばプローブ等を利用 した接触式計測機 器、 レーザー光を利用 したレーザー非接触式三次元計測機器等を示 す。  The above-mentioned three-dimensional measurement refers to, for example, a contact type measuring device using a probe or the like, a laser non-contact type three-dimensional measuring device using a laser beam, or the like.
三次元加工装置と して、 例えば、 切削 ドリル加工、 放電加工又は 光造形等を示す。  As the three-dimensional machining device, for example, cutting, drilling, electric discharge machining, or stereolithography is shown.
本発明で示す医療用材は、 例えば骨プレー 卜、 骨接合材、 人工骨 、 人工関節、 人工臓器、 その他医療用補綴物、 等で使用される もの を示す。 歯科用材は、 歯科用補綴物、 歯科用イ ンプラ ン ト、 その他 歯科治療で使用されるもの或いは、 印章材、 装飾品等、 モデルに基 づく形状、 構造、 色彩の及びこれらの 1 又は複数の組み合わせを有 する複製的又は複製の一部又は全部に修飾的、 改良的加工を施した 物を示す。 本発明で示す塊状物即ち被加工物の材質は、 セラ ミ ッ ク ス、 金属、 合成樹脂及びその他三次元加工工作機にて三次元加工が 施せる材質のものであり、 加工可能であれば特に限定されない。  The medical materials shown in the present invention include those used in, for example, bone plates, osteosynthesis materials, artificial bones, artificial joints, artificial organs, and other medical prostheses. Dental materials may be used in dental prostheses, dental implants, other dental treatments, or in seals, ornaments, etc., in shapes, structures, colors based on the model, and / or in one or more of these. This indicates a duplicate or part of or all of the duplicate that has been modified or improved. The material of the agglomerate, that is, the work to be processed according to the present invention is a material that can be subjected to three-dimensional processing by a ceramic, a metal, a synthetic resin, and other three-dimensional processing machine tools. Not limited.
又、 塊状物は、 加工できる ものであれば良く 、 その材質、 形状は 、 加工対象物によって適宜選択されるものであるが、 例えば、 板状 、 線状、 粒状が例示される。  The lump is not particularly limited as long as it can be processed. The material and shape of the lump are appropriately selected depending on the object to be processed, and examples thereof include a plate, a line, and a particle.
中央演算処理装置とは、 汎用、 専用を問わずパソコ ン、 ワークス テーシ ヨ ン、 その他中央演算処理装置を搭載したものを示すが、 デ 一夕処理を可能とする ものであればいかなるものであってもよい。 データを保存するための周辺機器と して、 ハー ドディ スク、 フ ロ ッ ピーディ スク、 光磁気デイ スク、 ラ ンダムアクセスメ モ リ ー、 I C カー ド又はその他のデータを保存するための装置を示すものであれ ばよ く 、 アナログ又はデジタルデータを一時的或いは連続的に記憶 保存できるものであれば、 好適に利用できる ものであり、 特に限定 されない。 三次元的に移動する方法と して、 X, Y , Z軸テーブル を利用 した方法、 産業ロボッ 卜等に利用されているアーム型を利用 した方法等が考えられる。 位置を検出するためのエ ンコーダは、 各 軸テーブルに取り付ける リニアエンコーダ、 各軸テーブルの動力で あるサーボモータに取り付けるロータ リ ーエンコーダ等を示すが、 上記に示した各部構成の例示は、 これに限る ものではない。 A central processing unit refers to a computer, workstation, or other device equipped with a central processing unit, whether general-purpose or dedicated, but any device that can perform data processing overnight. You may. Peripheral devices for data storage include hard disk, floppy disk, magneto-optical disk, random access memory, IC card, and other devices for storing data. As long as it stores analog or digital data temporarily or continuously. Anything that can be stored can be suitably used, and is not particularly limited. As a method of moving three-dimensionally, a method using an X-, Y-, or Z-axis table, a method using an arm type used in an industrial robot, and the like can be considered. Encoders for detecting the position include a linear encoder attached to each axis table, a rotary encoder attached to a servomotor that is the power of each axis table, and the like. Not something.
本発明における計測および加工手段は、 CA D / CAM , N C工作機械 等を用いるこ とができ、 計測機器は、 接触式三次元計測機器、 レー ザ一および光を用いた計測機器等を、 加工機器は、 切削 ドリ ル、 光 造形、 放電加工を用いた加工機器等を用いるこ とができる。  The measuring and processing means in the present invention can use CAD / CAM, NC machine tool, etc., and the measuring device is a contact type three-dimensional measuring device, a laser, a measuring device using light, and the like. The machine may be a machine using cutting drill, stereolithography, electric discharge machining, or the like.
以上説明 した本発明の特徴によれば、 従来の方法である铸造法で 問題のあった铸造歪み、 鬆等が解決され、 また铸造法では困難であ つ た、 チタ ン、 セラ ミ ッ ク ス、 複合樹脂材料から成る歯科補綴物を 本発明を用いることで早く 、 正確で且つ経済的に製造するこ とが出 来る。  According to the features of the present invention described above, structural distortions, voids, and the like, which were problematic in the conventional method, are solved, and titanium, ceramics, which are difficult in the method, are used. By using the present invention, a dental prosthesis made of a composite resin material can be manufactured quickly, accurately, and economically.
好ま しい態様では、 ク ローズ ドループ * サ一ボコ ン トロール方式 を好適な一例と して用いる ものである。  In a preferred embodiment, the closed droop * savo control method is used as a preferred example.
即ち、 その数値制御器が計測、 切削加工機に用いられているモー 夕に移動指令を出力し、 モータが移動するとモータに取り付けられ たロ ータ リ 一エンコーダ若し く は移動軸に取り付けられた リニアェ ンコーダにより移動量がパルス形式のデータと して出力され、 この 出力されたパルスデータは数値制御器にフ ィ ー ドバッ ク され、 それ により正確な位置検出を行え、 移動と停止を精度良く 行う こ とが可 能となる。  That is, the numerical controller outputs a movement command to a motor used in a measuring and cutting machine, and when the motor moves, it is mounted on a rotary encoder attached to the motor or a moving shaft. The linear encoder outputs the movement amount as pulse format data, and the output pulse data is fed back to the numerical controller, which enables accurate position detection, and enables accurate movement and stop. It is possible to do so.
本発明ではこのパルスデータを数値制御器に送ると同時に測定デ —タ作成用のコ ン ピュータ システムへ送信する。 コ ン ピュータ シス テムには主軸に取り付けられたアナ口グ変位接触式測定子からのァ ナログ信号を受けるィ ンターフ ェースを持ち、 内部にてデジタルデ 一夕と して変換を行い、 このデジタルデ一夕を元にコ ンピュータ シ ステムは数値制御器に移動指令を出力し、 モータが動作し、 各軸 ( 3軸) が移動すると、 その接触式測定子が接触している歯科補綴物 モデルとの間に変位が生じる。 In the present invention, this pulse data is sent to a numerical controller and simultaneously to a computer system for creating measurement data. Computer system The system has an interface that receives an analog signal from an analog displacement contact probe attached to the main shaft, performs conversion internally as digital data, and converts this digital data into the original data. Then, the computer system outputs a movement command to the numerical controller, the motor operates, and when each axis (three axes) moves, the contact measuring element is displaced from the dental prosthesis model with which it is in contact. Occurs.
この時エンコーダからのパルスデータは直接コ ン ピュ ータ システ ムに入力されているためコ ンピュータ システムは数値制御器に指令 した移動量が正し く実行されているかどうかを リ アルタイ ムで確認 するこ とが可能であり、 接触式測定子に対して過度のス ト レスを与 えるこ とな く連続した歯科補綴物モデルの形状の計測を安定に行う ことが出来る。  At this time, since the pulse data from the encoder is directly input to the computer system, the computer system checks in real time whether the movement amount commanded to the numerical controller is being executed correctly. This makes it possible to stably measure the shape of a continuous dental prosthesis model without giving excessive stress to the contact type probe.
測定されたデータは接触式測定子の先端球の半径分の増分が加重 されたデータとなっている。 このため、 コ ンピュータ システムは全 ての取得データより、 先端球の半径分の数値を減算するこ とにより 、 歯科補綴物の表面データを得るこ とが出来る。  The measured data is weighted by the increment of the radius of the tip sphere of the contact probe. For this reason, the computer system can obtain the surface data of the dental prosthesis by subtracting the value corresponding to the radius of the tip sphere from all the acquired data.
減算のアルゴリ ズムは、 接触式測定子の動きを微分するこ とによ り、 歯科補綴物表面の傾斜の法線べク トルを求め、 この方向から半 径分を減ずると言う ものである。  The subtraction algorithm calculates the normal vector of the inclination of the surface of the dental prosthesis by differentiating the movement of the contact probe, and subtracts the radius from this direction.
以上詳述したク ローズ ドループ方式制御によれば三次元計測及び 三次元加工するこ とにより、 精度の良い医療用材又は歯科用材の製 造が可能となる。 また、 パソ コ ンを用いた場合、 ク ローズ ドループ 方式三次元計測及び三次元加工の処理速度が問題であるが、 複数の 中央演算処理装置に分散させることにより、 高速計測及び加工が図 りれ o。  According to the closed-loop control described in detail above, it is possible to manufacture a medical material or a dental material with high accuracy by performing three-dimensional measurement and three-dimensional processing. In addition, when a personal computer is used, the processing speed of closed-loop three-dimensional measurement and three-dimensional processing is a problem, but high-speed measurement and processing can be achieved by distributing the data to multiple central processing units. o.
計測結果と して得られたデータを処理し、 加工機器に加工用デー タを送るコ ン ピュータ等からなるシステムはこの取得した歯科補綴 物の正確な表面データに基づき、 準備された歯科材料ブロ ッ ク (被 切削物) の特性により、 最適な工具、 加工速度、 加工経路等を自動 選択し加工用数値制御データ (Gコー ド) を生成する。 The system consisting of a computer that processes the data obtained as the measurement results and sends the processing data to the processing equipment uses the acquired dental prosthesis. Numerical control data for machining (G code) by automatically selecting the optimal tool, machining speed, machining path, etc. based on the characteristics of the prepared dental material block (machine) based on accurate surface data of the object Generate
切削加工はこの加工用数値制御データを NC加工機へ送出する事に より行われる。  Cutting is performed by sending this numerical control data for processing to the NC processing machine.
本発明は計測を行う計測器と加工を行う NC加工機が一つの CADZ CAM システムのみで実現されていることから、 低コス ト化、 小型化 を図るこ とが可能となる。  In the present invention, since the measuring instrument for performing the measurement and the NC processing machine for performing the processing are realized by only one CADZ CAM system, the cost can be reduced and the size can be reduced.
更に本発明では、 放射状計測又は放射状加工手段を用いることに より、 円形、 楕円形、 多角形、 その他複雑な形状を有するモデルの 周囲の形状を詳細に高精度で計測又は加工可能とする。  Further, in the present invention, by using radial measurement or radial processing means, the shape around a model having a circular, elliptical, polygonal, or other complicated shape can be measured or processed with high precision.
計測および加工機器、 計測モデルおよび加工物を固定する為の治 具の位置が精密に決まる離脱着式の治具に し、 その治具を統一可能 とするこ とで、 相互に取り付け交換が可能になり、 更に治具を回転 させることで、 計測モデルおよび加工物を三次元的に精度が高い計 測および加工を可能とする。  Measuring and processing equipment, measurement models and jigs for fixing workpieces can be fixed and detachable jigs that can be precisely determined, and the jigs can be unified so that they can be mounted and exchanged with each other By rotating the jig, the measurement model and the workpiece can be measured and processed with high accuracy in three dimensions.
更に、 計測機器と加工機器が同一のベース治具に設置することが でき、 且つモータ等の駆動体と ドリ ル等の加工体を一体型と し、 そ の形状を測定プローブ等の測定体と同一或いは相関性を与えるこ と で、 データ補正処理を省く こ とによる製作時間の短縮や誤差が殆ど 無く なるこ とで精度が向上するだけでなく 、 計測および加工機器破 損の際にも、 中断箇所からの計測、 加工が容易になる。  Furthermore, the measuring equipment and the processing equipment can be installed on the same base jig, and the driving body such as a motor and the processing body such as a drill are integrated, and their shapes are combined with the measuring body such as a measurement probe. By giving the same or correlation, not only the manufacturing time is shortened by eliminating the data correction process and the error is almost eliminated, the accuracy is improved, but also the measurement and processing equipment is damaged. Measurement and processing from the interrupted point becomes easy.
また、 CADZ CAM を用いた装置一台で、 多彩な計測および加工手 段が得られ、 このことが設備投資の削減等を実現する。  In addition, a variety of measurement and processing means can be obtained with a single device using CADZ CAM, which can reduce capital investment.
さ らにまた、 本発明は、 医療用材又は歯科用材等で示される塊状 物を、 液中切削加工できるように切削加工工作機械のワークの部分 に液槽を装着した装置を実現したものである。 前記の塊状物の材質 は、 例えばセラ ミ ッ クス、 金属、 合成樹脂及びその他切削加工工作 機にて切削加工が施せる材質のものを示す。 塊状物の形状は、 円筒 状、 球状、 直方体及び最終形状に近い近似形状及びその他切削加工 工作機械にて切削加工が施せる形状を示す。 またその大きさは、 切 削加工工作機械で切削加工が施せる程度の大きさを示す。 医療用材 は、 例えば骨プレー ト、 骨接合材、 人工骨、 人工関節、 人工臓器、 その他医療用補綴物等で使用される ものを示す。 歯科用材は、 歯科 用補綴物、 歯科用イ ンプラ ン ト、 その他歯科治療で使用されるもの を示す。 切削加工する手段とは、 例えば NC工作機械、 CAD ' CAM を 用いた装置等を示す。 切削加工の工程は、 塊状物から最終形状まで の工程、 塊状物から最終形状に近い近似形状までの工程、 近似形状 から最終形状までの工程及びその他考えられる切削加工工程を示す o Furthermore, the present invention realizes an apparatus in which a liquid tank is attached to a work part of a cutting machine tool so that a lump formed of a medical material or a dental material can be cut in liquid. . Material of the mass Indicates, for example, ceramics, metals, synthetic resins, and other materials that can be cut by a cutting machine. The shape of the lump shows a cylindrical shape, a spherical shape, a rectangular parallelepiped, an approximate shape close to the final shape, and other shapes that can be cut by a cutting machine tool. In addition, the size indicates a size that can be cut by a cutting machine tool. Medical materials include those used in, for example, bone plates, osteosynthesis materials, artificial bones, artificial joints, artificial organs, and other medical prostheses. Dental materials refer to dental prostheses, dental implants, and other materials used in dental treatment. The means for cutting refers to, for example, NC machine tools, devices using CAD'CAM, and the like. The cutting process indicates the process from a lump to the final shape, the process from the lump to an approximate shape close to the final shape, the process from the approximate shape to the final shape, and other possible cutting processes o
液体は、 水、 油、 体液、 疑似体液、 生理食塩水、 その他の液体を 示す。 液槽内の液体温度管理とは、 熱センサー等を使用 して液温を 感知し、 加温機又は冷却機等を利用 して目的の温度を一定に保つこ とを示す。 液槽内の液体港流とは、 液槽内が対流させるこ とを示し 、 その装置は、 ポンプ又はその他液体漼流が可能な装置等を示す。 また港流を行う時期は、 切削 ドリ ルが塊状物に接しているとき、 切 削 ドリ ルが動作しているとき及びその他考えられる灌流の時期を示 す。 上記した各部構成の例示は、 これに限る ものではない。  Liquid refers to water, oil, body fluid, simulated body fluid, saline, and other liquids. Liquid temperature control in the liquid tank means that the liquid temperature is sensed using a heat sensor or the like, and the target temperature is kept constant using a heater or a cooler. The liquid port flow in the liquid tank indicates that convection occurs in the liquid tank, and a device such as a pump or other device capable of flowing liquid is shown. The timing of the port flow indicates when the cutting drill is in contact with a lump, when the cutting drill is operating, and other possible times of perfusion. The above examples of the configuration of each unit are not limited to these.
医療用材又は歯科用材の塊状物を水又は切削水の中で切削加工を 行うため、 切削 ドリル又は塊状物の冷却が確実に行う ことができ、 切削 ドリルや塊状物の破損がしにく く なる。 また、 切削加工温度の 安定化が図れるために、 切削 ドリ ルや塊状物の熱膨張を防ぐことと なり、 精度の良い医療用材又は歯科用材が得られるようになる。 液 中で医療用材又は歯科用材の塊状物を切削加工するため、 切削加工 で発生した切り子が飛散せず、 人体に対する危険防止になる。 また 発生した切り子は液槽の底に蓄積されるため、 確実に回収できるよ う になり、 清掃作業の軽減化が図れる。 Since the cutting of medical materials or dental materials is performed in water or cutting water, the cutting drill or the mass can be cooled reliably, and the cutting drill or the mass is hardly damaged. . In addition, since the cutting temperature can be stabilized, thermal expansion of the cutting drill and the lump can be prevented, and a medical or dental material with high accuracy can be obtained. In order to cut a lump of medical or dental material in liquid, The cut pieces generated in the step are not scattered, preventing danger to the human body. In addition, since the generated chips accumulate at the bottom of the liquid tank, they can be reliably collected, and cleaning work can be reduced.
本発明の切削加工工作機械を使用 して、 歯科捕綴物を作成した場 合、 歯科技工の現状である印象採種、 石膏モデル作製、 ワ ッ ク スァ ップ、 铸造用型作製、 歯科補綴物の铸造、 調整等の手作業の一部分 が機械化になるために、 歯科補綴物作製に要する時間が大幅に短縮 できる。 この様に、 精密であって、 必ずしも量産性を有しない加工 物の製造を、 小さな空間で特に周辺を汚さず、 簡単に行えるこ とか ら、 狭い空間で開業している各種医院、 歯科医等での利用を可能と する ものである。 切削加工を行おう とする対象物 (塊状物) 力 体 内に埋入して使用する医療用材又は歯科用材で、 膨潤する材質の場 合、 体液と同 じ環境を液槽で設定し、 切削加工を施すこ とで各個人 に適した医療用材又は歯科用材が得られる。 例えば、 人工関節に使 用される超高分子量ポ リ エチレンを切削加工する際、 体液により膨 潤する分を考慮して切削加工が施せるので、 寸法精度等で、 患者に 適した人工関節が得られる。 図面の簡単な説明  When a dental prosthesis is created using the cutting machine tool of the present invention, the present conditions of dental technicians, such as impression sampling, gypsum model production, wax swap, construction mold production, and dental prosthesis Since part of the manual work such as construction and adjustment is mechanized, the time required for preparing a dental prosthesis can be greatly reduced. In this way, it is easy to manufacture precise and not necessarily mass-produced workpieces in a small space, especially without polluting the surrounding area. It can be used in Object to be cut (agglomerated material) For medical or dental materials that are embedded in a body and used to swell, set the same environment as the body fluid in the liquid tank and cut. By processing, medical or dental materials suitable for each individual can be obtained. For example, when cutting ultra-high molecular weight polyethylene used in artificial joints, cutting can be performed in consideration of swelling due to bodily fluids, so that artificial joints suitable for patients with dimensional accuracy etc. can be obtained. Can be BRIEF DESCRIPTION OF THE FIGURES
以下本発明を図面を参照してより詳細に説明する。  Hereinafter, the present invention will be described in more detail with reference to the drawings.
図 1 は歯を示す略断面図である。  FIG. 1 is a schematic sectional view showing a tooth.
図 2 はク ラ ウ ン (モデル) を示す断面図である。  Figure 2 is a cross-sectional view showing the crown (model).
図 3 はクラウン (モデル) に計測用 リ ブを接触させている図であ o  Figure 3 shows the measurement rib in contact with the crown (model).
図 4 は本発明の実施例の装置を示す斜視図である。  FIG. 4 is a perspective view showing an apparatus according to an embodiment of the present invention.
図 5 A及び図 5 Bは回転治具用保持部を示す図である。  FIG. 5A and FIG. 5B are views showing a holding part for a rotary jig.
図 6 A及び図 6 Bは接触式探針子を示す図である。 図 7 は回転治具用保持具を 90度回転させるところを示す図である 図 8 A及び図 8 Bは切削用ブロ ッ クを示す図である。 6A and 6B are views showing a contact probe. FIG. 7 is a diagram showing the rotating jig holder being rotated 90 degrees. FIGS. 8A and 8B are diagrams showing a cutting block.
図 9 は本発明の他の実施例を示す図である。  FIG. 9 is a diagram showing another embodiment of the present invention.
図 10Aから図 10 Fは本発明の実施例を説明する為のフローチ ヤ一 トである。  FIGS. 10A to 10F are flowcharts for explaining an embodiment of the present invention.
図 11 A及び図 11 Bは三次元計測のための歯科捕綴物のクラウンモ デルを示す図である。  FIGS. 11A and 11B are diagrams showing a crown model of a dental prosthesis for three-dimensional measurement.
図 12はク ラ ウ ンの輪郭及び放射状に分割し測定する例を示す図で あ o  Figure 12 shows an example of the contour of a crown and an example of radial division.
図 13A及び図 13Bはクラウンを放射状に分割したブロ ッ クを直交 的にを測定する例を示す図である。  FIGS. 13A and 13B are diagrams showing an example of orthogonally measuring a block obtained by radially dividing a crown.
図 14は切削加工 ドリルを移動させる例を示す図である。  FIG. 14 is a diagram showing an example of moving a cutting drill.
図 15は他ク ラ ウ ンを同心円状に分割し、 放射状に測定する例を示 す図である。  FIG. 15 is a diagram showing an example in which another crown is divided concentrically and radially measured.
図 16は本発明の他の実施例を示す図である。  FIG. 16 shows another embodiment of the present invention.
図 17は図 16の装置のブロ ックダイヤグラムを示す図である。  FIG. 17 is a diagram showing a block diagram of the apparatus of FIG.
図 18は図 17における計測方向の例を示す図である。  FIG. 18 is a diagram showing an example of the measurement direction in FIG.
図 19Aから図 19Dは ドリルとプローブを交換可能に取り付けるこ とのできる装着部を示す図である。  FIGS. 19A to 19D are views showing a mounting portion to which a drill and a probe can be exchangeably mounted.
図 20は本発明の他の実施例を示す図である。  FIG. 20 is a diagram showing another embodiment of the present invention.
図 21は本発明の他の実施例の一部を示す図である。  FIG. 21 is a diagram showing a part of another embodiment of the present invention.
図 22 A及び図 22 Bは本発明の他の実施例の一部を示す図である。 図 23Aから図 23Dは連結棒と装着部を示す図である。  FIG. 22A and FIG. 22B are views showing a part of another embodiment of the present invention. 23A to 23D are views showing the connecting rod and the mounting portion.
図 24は加工体を装着部に装着したところを示す側面図である。 図 25は本発明の他の実施例を示す図である。  FIG. 24 is a side view showing a state where the workpiece has been mounted on the mounting portion. FIG. 25 shows another embodiment of the present invention.
図 26は本発明の他の実施例の医療用材又は歯科用材を切削加工す る切削加工工作機械の外観図である。 FIG. 26 shows cutting of a medical or dental material according to another embodiment of the present invention. 1 is an external view of a cutting machine tool.
図 27は図 26の液槽部分を拡大した図である。  FIG. 27 is an enlarged view of the liquid tank portion of FIG.
図 28は図 26の装置に冷却水恒温循環機を具備した例を示す図であ る。  FIG. 28 is a diagram showing an example in which the apparatus of FIG. 26 is provided with a cooling water constant temperature circulator.
図 29は図 28の液槽部分を拡大した図である。  FIG. 29 is an enlarged view of the liquid tank portion of FIG.
図 30は図 28の冷却水恒温循環機を示す図である。  FIG. 30 is a diagram showing the cooling water constant temperature circulator of FIG.
図 3 1は図 26の装置に液交換装置を具備した例を示す図である。 発明を実施するための最良の形態  FIG. 31 is a diagram showing an example in which a liquid exchange device is provided in the device of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の一実施例を図 4 に示し詳細に説明する。  One embodiment of the present invention is shown in FIG. 4 and will be described in detail.
1 0 1 は作業部であり汎用又は専用の NC工作機械等で構成され、 計 測及び加工を行う部分である。 1 02 は、 制御部であり、 パー ソ ナル コ ンピュータ、 専用コ ンピュータ、 専用のコ ン ト ローラ等少なく と も、 記憶部と処理部を有する もので形成される。 図 4 では、 パ一ソ ナルコ ン ピュータ 30を示した。 制御部 1 02 は、 メ モ リ 、 磁気、 光、 光磁気等様々な手法で情報を記憶する手段と、 この情報を演算し、 作業部に動作を指示するための手段を具備する。 情報の処理、 記録 、 伝達は、 主にデジタル方式によ り行われる ものであるが、 これに 限る ものではない。  Reference numeral 101 denotes a working unit, which is composed of a general-purpose or dedicated NC machine tool or the like, and performs measurement and processing. Reference numeral 102 denotes a control unit, which is formed of a personal computer, a dedicated computer, a dedicated controller, or the like having at least a storage unit and a processing unit. FIG. 4 shows a personal computer 30. The control unit 102 includes means for storing information by various methods such as memory, magnetism, light, and magneto-optics, and means for calculating the information and instructing the operation unit to operate. The processing, recording, and transmission of information is primarily, but not exclusively, carried out digitally.
作業部 1 0 1 と制御部 1 02 は、 電気リ ー ド線等の連結体 1 03 で電気 的に接続されるものであるが、 その他、 連結体 1 03 は、 光、 赤外線 、 磁気、 電磁気、 超音波等の無線媒体で接続されても良い。  The working unit 101 and the control unit 102 are electrically connected by a connecting body 103 such as an electric lead wire. In addition, the connecting body 103 is made up of light, infrared light, magnetism, and electromagnetic. Alternatively, they may be connected by a wireless medium such as ultrasonic waves.
作業部 1 0 1 に於いて、 1 1は、 Z軸用支持部材であり、 この表面を Z軸方向に Z軸用アーム部材 14 1 を摺動させ、 且つ Z軸用アーム部 材 14 1 を支持する為のものである。  In the working section 101, reference numeral 11 denotes a Z-axis support member, which slides the Z-axis arm member 14 1 in the Z-axis direction, and moves the Z-axis arm member 14 1 It is for support.
12は、 X軸用モータであり、 回転カを摺動力に変換した動力を出 力し、 且つ、 X軸用テーブル部材 9 に連結してこれを摺動させるた めのものである。 1 3は、 Y軸用モータであり、 回転カを摺動力に変 換した動力を出力し、 且つ、 Y軸用テーブル部材 1 0に連結してこれ を摺動させるためのものである。 1 4は、 Z軸用モータであり、 回転 カを摺動力に変換した動力を出力し、 且つ、 Z軸用アーム部材 1 4 1 に連結してこれを摺動させるためのものである。 Reference numeral 12 denotes an X-axis motor, which outputs power obtained by converting rotary power into a sliding force, and is connected to the X-axis table member 9 to slide it. It is for Reference numeral 13 denotes a Y-axis motor, which outputs power obtained by converting rotary power into a sliding force, and is connected to the Y-axis table member 10 to slide it. Reference numeral 14 denotes a Z-axis motor, which outputs power obtained by converting a rotary force into a sliding force, and is connected to the Z-axis arm member 141 to slide it.
15はスピン ドルモータであり、 主に加工時ドリルを装着した際、 この ドリルを回転させるためのものである。 スピン ドルモータ 15に は、 加工用の装着コネクタ 41が接続されている。 加工用の装着コネ ク夕 41は、 切削用 ドリル 1 9を着脱可能に接続するものである。 更に スピン ドルモータ 15に隣接する形で、 計測用プローブ 20が着脱自在 に接続する計測用の装着コネクタ 42が設けられている。 1 6は、 飛沫 覆いであり、 加工時の塊状物の飛沫、 飛び散りによる削りかすの外 部散乱を防止する為のものであって、 X軸テーブル部材上に固定さ れている。 1 7は、 台座であり、 回転治具用保持部 87及びこれを回転 させる駆動モータを内蔵する。 回転治具用保持部 87は、 主に、 計測 する為のモデル、 加工する為の塊状物を装着する為の物である。 そ の他、 7 は機械下部であり、 18は、 回転車であり、 機械下部底面の 4隅に装着され、 作業部 101 を移動可能とするためのものである。 本発明の適合性の良い歯科補綴物を早く作る為の動作について具 体的計測加工工程を図面を図 1 、 図 2、 図 3、 図 4、 図 10 A〜図 10 Fを参照して説明する。  Reference numeral 15 denotes a spindle motor, which is used to rotate the drill when the drill is attached during processing. A mounting connector 41 for processing is connected to the spindle motor 15. The mounting connector 41 for processing is for detachably connecting the drill 19 for cutting. Further, a mounting connector 42 for measurement to which the measurement probe 20 is detachably connected is provided adjacent to the spindle motor 15. Reference numeral 16 denotes a splash cover, which is used to prevent the scattering of swarf due to the splash or splattering of a lump during processing, and is fixed on the X-axis table member. Reference numeral 17 denotes a pedestal, which incorporates a rotary jig holding portion 87 and a drive motor for rotating the same. The rotating jig holding portion 87 is mainly for mounting a model for measurement and a lump for processing. In addition, 7 is a machine lower part, and 18 is a rotating wheel, which is mounted at four corners on the bottom of the machine lower part and makes the working unit 101 movable. The operation of the present invention for quickly producing a dental prosthesis having good compatibility will be described with reference to FIGS. 1, 2, 3, 4, and 10A to 10F. I do.
被計測物の手動による作成過程を図 1 0 Aの工程 S 1 に示す。 工程 S 1 は、 患者支台歯 5上に歯科用蠟材 (ワ ッ ク ス、 テッ ク) にて歯 科補綴物原型模型を作成する、 ことを示すものである。 ( 1 ) 患者 歯牙形態を正確に採得するため、 印象材を使用せず、 患者支台歯上 に直接即時重合レジンにて補綴物モデル形成を行う。 この詳細は、 図 10 Bの工程 S l l, S 1 2, S 13の工程に示す。 図 10Bの工程 S llは、 虫歯の症状に応じて支台歯 5の形状を考えThe process of manually creating an object to be measured is shown in step S1 of FIG. 10A. The step S 1 shows that a dental prosthesis prototype is made of dental materials (wax, tech) on the patient abutment 5. (1) Patients In order to obtain accurate tooth morphology, a prosthesis model is formed directly on the patient's abutment teeth using an instant polymerization resin without using impression materials. The details are shown in the steps Sll, S12, and S13 in FIG. 10B. In step Sll in Fig. 10B, the shape of the abutment tooth 5 is considered according to the symptoms of caries.
、 歯科治療用バーにて形成する、 工程を示すものである。 図 10Bの 工程 S 12は、 歯科用蠟材 (ワッ クス、 テッ ク) にて、 支台歯 5上に 補綴物形状を形成していく 、 工程を示すものである。 図 10Bの工程 S 13は、 形成された補綴物原型模型を紫外線や薬剤などで固化する 、 工程を示すものである。 It shows the process of forming with a dental treatment bar. Step S12 in FIG. 10B shows a step of forming a prosthesis shape on the abutment tooth 5 with a dental material (wax, tech). Step S13 in FIG. 10B shows a step of solidifying the formed prosthesis prototype model with ultraviolet rays, chemicals, or the like.
( 2 ) その補綴物モデルは硬化後患者口中から取り出され (図 10 Bの工程 S 14) 、 図 2で示す計測用のモデルが得られる。 図 10Bの 工程 S 14は、 上述の通り、 固化後、 患者口内より原型模型を取り出 す、 工程を示すものである。  (2) The prosthesis model is taken out of the patient's mouth after curing (step S14 in FIG. 10B), and the measurement model shown in FIG. 2 is obtained. Step S14 in FIG. 10B shows the step of removing the prototype from the patient's mouth after solidification, as described above.
取り付け工程  Installation process
( 1 ) 図 10 Aの工程 S 2並びに図 10Cに原型の取り付け工程を示 す。 図 10Aの工程 S 2 は、 歯科補綴物原型模型に計測用のリブ 91を 取付け、 計測用治具へ装着し保持具にて CADZCAM システムへ装着 する、 工程を示すものである。  (1) Process S2 of Fig. 10A and Fig. 10C show the process of mounting the prototype. Step S2 in FIG. 10A shows a process in which the rib 91 for measurement is attached to the dental prosthesis prototype, attached to the measurement jig, and attached to the CADZCAM system by the holder.
この計測用モデルに例えば図 3で示すような計測用の付加機構を 取り付け (図 10Cの工程 S 21) 、 図 4 で示すような回転治具用保持 部 87に装着する。 (図 10Cの工程 S 22, S 23) 。 図 10Cの工程 S 21 は、 計測用のリブ 91を準備し、 接着剤 92で模型 57に接着する、 工程 を示すものである。 図 10Cの工程 S 22は、 リブ 91が取付けられた原 型模型 57を専用の保持具 87へ取付ける工程、 及びこの時計測しやす い角度に調整する、 工程を示すものである。 図 10Cの工程 S 23は、 模型が取付けられた保持具 87を CAD/CAM システムの X軸テーブル 9上の台座へ取付ける、 工程を示すものである。  For example, an additional mechanism for measurement as shown in FIG. 3 is attached to the model for measurement (step S21 in FIG. 10C), and is attached to the holding portion 87 for the rotary jig as shown in FIG. (Steps S22 and S23 in FIG. 10C). Step S21 in FIG. 10C shows a step of preparing a rib for measurement 91 and bonding it to the model 57 with an adhesive 92. Step S22 in FIG. 10C shows a step of attaching the prototype model 57 on which the ribs 91 are attached to the exclusive holder 87, and a step of adjusting the angle to an angle that is easy to measure at this time. Step S23 in FIG. 10C shows a step of attaching the holder 87 with the model attached to the pedestal on the X-axis table 9 of the CAD / CAM system.
自動計測工程  Automatic measurement process
( 2 ) 図 10Aの工程 S 3並びに図 10Dに自動計測の工程を示す。 図 10Aの工程 S 3 は、 模型 57の形状を計測 CAD により計測し、 計 測データを PCに格納する、 工程及び完全な形状を計測するため模型 を治具 87ごと反転させる、 工程を示すものである。 (2) Process S3 in Fig. 10A and Fig. 10D show the process of automatic measurement. In step S3 in Fig. 10A, the shape of the model 57 was measured by measurement CAD, and the This figure shows the process of storing measurement data in a PC, the process, and inverting the model together with the jig 87 to measure the complete shape.
ク ローズ ドループ方式サ一ボコ ン ト ロール等に基づき、 スピン ド ルモータ主軸と同軸上に取り付けられた先端形状が完全な球である アナログ接触式測定子 (例えば図 4で示す 20) と各モータ軸からの 位置検出パルスデータ及びアナログ一デジタル変換回路を持つコ ン ピュー夕 システム (例えば図 4 の 30) を駆動させる。 図 10Dの工程 S 31, S 32。 図 10Dの工程 S 31は、 自動計測ソフ トをメニューから 選択し起動する、 工程を示すものである。 図 10Dの工程 S 32は、 補 綴物原型模型の中心の位置座標を設定する、 工程を示すものである o  An analog contact probe (for example, 20 shown in Fig. 4) with a complete spherical tip mounted coaxially with the spindle of the spindle motor based on a closed droop type servo control, etc., and each motor shaft Drives a computer system (eg, 30 in Fig. 4) that has position detection pulse data from and an analog-to-digital conversion circuit. Steps S31 and S32 in FIG. 10D. Step S31 in FIG. 10D shows a step of selecting and starting the automatic measurement software from the menu. Step S32 in FIG. 10D shows the step of setting the position coordinates of the center of the prosthetic prototype model.o
この駆動は、 詳細には X軸モータ (例えば図 4 の 12) 、 Y軸モ一 タ (例えば図 4 の 13) 、 Z軸モータ (例えば図 4 の 14) が回転し、 その回転により、 各モータに連結された X軸テーブル (例えば図 4 の 9 ) 、 Y軸テーブル (例えば図 4 の 10) 、 Z軸アーム (例えば図 4 の 141)が各軸方向へ摺動することで、 測定子 20或いはモデル 57が 連動するように動く ことから、 モデル 57上を測定子 (図 4 で示す 20 ) が接触しながらその表面を移動し、 測定子 20に加えられる力に基 づく 変位量及び各モータの動作に基づく情報から正確な座標値を読 みとり コ ンピュータ(CADZ CAM)システム内に数値デ一タ と して保存 する。 図 10 Dの工程 S 33。  This drive is performed by rotating an X-axis motor (for example, 12 in FIG. 4), a Y-axis motor (for example, 13 in FIG. 4), and a Z-axis motor (for example, 14 in FIG. 4). The X-axis table (for example, 9 in Fig. 4), the Y-axis table (for example, 10 in Fig. 4), and the Z-axis arm (for example, 141 in Fig. 4) connected to the motor slide in each axis direction, and the probe 20 or the model 57 moves in conjunction with each other, so that the probe (20 in FIG. 4) moves on the surface of the model 57 while making contact with it, and the displacement amount and the displacement based on the force applied to the probe 20 Reads accurate coordinate values from information based on motor operation and stores them as numerical data in a computer (CADZ CAM) system. Step S33 in FIG. 10D.
図 10Dの工程 S 33は、 設定した計測中心から、 補綴物原型模型の 半面を放射状の計測パスによって計測する、 工程を示すものである o  Step S33 in FIG. 10D indicates a step of measuring a half surface of the prototype prosthesis by a radial measurement path from the set measurement center.o
( 3 ) 保存されたデータより測定子の先端球の半径分の補正をコ ンピュータ システムにて計算しモデルの表面の座標データを生成す る o ( 4 ) この際コ ンピュータシステムは逐次読みとつたデータを元 にして、 捕綴物モデルの形状の予測を行い、 これにより次の測定点 の移動量を決定するこ とにより、 無駄のない測定を連続して行う こ と も出来る。 (3) The computer system calculates the correction of the radius of the tip ball of the tracing stylus from the stored data and generates coordinate data of the model surface. (4) At this time, the computer system predicts the shape of the capture object model based on the data read sequentially, and determines the amount of movement of the next measurement point, thereby achieving efficient measurement. Can be performed continuously.
( 5 ) この時、 形状を正確に計測するため、 回転治具 87で示され るような 180 度正確に反転できる治具を用いて表裏の完全な形状を 計測する。 図 10Dの工程 S 34, S 35。 図 10Dの工程 S 34は、 半面計 測終了後、 模型を装着した保持具ごと反転し、 未計測の半面を放射 状計測パスにて計測する、 工程を示すものである。 図 10Dの工程 S 35は、 計測データを PCに保存する、 工程及び計測用保持具及び計測 スタイ ラスを取り外す、 工程を示すものである。  (5) At this time, in order to accurately measure the shape, the complete shape of the front and back sides is measured using a jig that can be inverted exactly 180 degrees as shown by the rotating jig 87. Steps S34 and S35 in Fig. 10D. Step S34 in FIG. 10D shows a process in which after the half-surface measurement is completed, the holder holding the model is turned over and the unmeasured half-surface is measured by the radial measurement path. Step S35 in FIG. 10D shows the steps of saving the measurement data to the PC, removing the step and the holder for measurement and the measurement stylus.
得られたデータの計算工程  Calculation process of the obtained data
図 10 Aの工程 S 4 、 並びに図 10Eに計算工程を示す。 図 10 Aのェ 程 S 4 は、 PC上のソフ トウエアにて、 加工ツールパスを設計する、 工程を示すものである。 図 10 Eの工程 S 41は、 加工パス計算ソフ ト ウェアをメニューから選択し、 起動する、 工程を示すものである。 図 10Eの工程 S 42は、 自動計測した捕綴物原型模型のデータを呼び 出す、 工程を示すものである。 図 10Eの工程 S 43は、 粗加工用切削 ドリル及び送り速度を計算し、 粗加工用切削パスのデータを自動で 作成し、 保存する、 工程を示すものである。 図 10Eの工程 S 44は、 仕上げ用切削 ドリ ル及び速度を計算し、 粗加工用切削パスデータを もとに仕上げ切削パスデータを自動で作成し、 保存する、 工程を示 すものである。  Step S4 in FIG. 10A and FIG. 10E show the calculation steps. Step S4 in FIG. 10A shows a process of designing a machining tool path using software on a PC. Step S41 in FIG. 10E shows a step of selecting and starting the machining path calculation software from the menu. Step S42 in FIG. 10E shows a step of retrieving the data of the automatically measured capture prototype model. Step S43 in FIG. 10E shows a process of calculating a roughing cutting drill and a feed rate, automatically creating and saving data of a roughing cutting path. Step S44 in FIG. 10E shows a step of calculating the finishing cutting drill and speed, automatically creating and storing the finishing cutting path data based on the roughing cutting path data.
( 1 ) 図 4 のコ ンピュータ 30上で加工パス計算ソフ トを起動させ 、 コ ンピュータ 30に蓄えられた計測データを読み出し、 この計測デ 一夕を数値化した後加工データへ変換し、 必要で有れば、 データの 拡大、 縮小の処理を加える。 更に、 粗加工用パスの作成を行い、 次 に仕上げ用切削パスの作成を行い、 それぞれ、 コ ンピュータ 30に保 存する。 この場合、 粗削り用又は仕上げ用に使用される ドリ ル等の 加工体の口径、 形状は予め設定されている ものとする。 (1) Start the machining path calculation software on the computer 30 shown in Fig. 4, read out the measurement data stored in the computer 30, convert this measurement data into numerical data, convert it to machining data, and If there is, add processing to enlarge or reduce the data. In addition, a roughing pass was created, First, a finishing cutting path is created and saved in the computer 30. In this case, the diameter and shape of the workpiece such as a drill used for rough cutting or finishing shall be set in advance.
加工工程  Processing process
( 1 ) 図 10Aの工程 S 5並びに図 10Fに加工工程を示す。 図 10A の工程 S 5 は、 加工用治具、 加工材料及びェン ドミ ルを取付け、 加 ェする、 工程及び完全な形状を加工するために、 半面加工後治具ご と加工材料を反転する、 工程を示すものである。 図 10Fの工程 S 51 は、 加工材料を切削保持具に装着し、 それを CADZCAM システムに 設置する、 工程及び切削加工用ソフ 卜ウェアをメニューから選択し 起動する工程を示すものである。 図 10Fの工程 S 52は、 粗加工用切 削パスデータ及び仕上げ加工用切削パスデータを呼び出 し、 粗加工 及び仕上げ加工を行う、 工程を示すものである。 図 10Fの工程 S 53 は、 半面の加工を施した後に、 加工材料を装着した切削保持具を反 転する、 工程を示すものである。 切削工具 (例えば図 4 の 19) を今 まで測定用に装着されていた測定子 20に替わり使用する。  (1) Step S5 in FIG. 10A and FIG. 10F show the processing steps. Step S5 in Fig.10A is to attach and add the processing jig, the processing material and the end mill, and to reverse the processing material and the jig after half-face processing to process and complete the shape. The process is shown. Step S51 in FIG. 10F shows a process in which the work material is mounted on the cutting holder and installed in the CADZCAM system, and a process in which the cutting software is selected from a menu and activated. Step S52 in FIG. 10F shows a step of calling the roughing cutting pass data and the finishing cutting path data to perform the roughing and the finishing. Step S53 in FIG. 10F shows a step of turning the cutting holder to which the processing material has been attached after performing half-face processing. A cutting tool (eg, 19 in Fig. 4) is used in place of the stylus 20 previously used for measurement.
( 2 ) 塊状物 (例えば図 8 で示す様なもの) にリ ブ 812 を接着剤 等で接着したもの、 或いは予めリ ブ 812 を一体的加工等により備え た塊状物の リ ブ 812 の部分を回転治具 (例えば図 4 の 87) に装着す  (2) The rib (812) is adhered to a lump (eg, as shown in FIG. 8) with an adhesive or the like, or the rib (812) of the lump provided with the rib (812) in advance by integral processing or the like. Attach to a rotating jig (for example, 87 in Fig. 4)
( 3 ) コ ンピュータ(CADZCAM Oからまず粗削り用パスのデータ に基づき、 粗削り工程を行う。 この粗削りは、 X軸モータ (例えば 図 4 の 12) 、 Y軸モータ (例えば図 4の 13) 、 Z軸モータ (例えば 図 4 の 14) が回転し、 その回転により、 各モータに連結された X軸 テーブル (例えば図 4 の 9 ) 、 Y軸テーブル (例えば図 4 の 10) 、 Z軸アーム (例えば図 4 の 141)が各軸方向へ摺動し、 この摺動によ り塊状物と駆動している切削工具 19が接触し、 切削工具 19が塊状物 を切削加工して行われる。 (3) Computer (From CADZCAM O, the roughing process is first performed based on the data of the roughing path. This roughing is performed by the X-axis motor (for example, 12 in Fig. 4), the Y-axis motor (for example, 13 in Fig. 4), Z The axis motor (eg, 14 in FIG. 4) rotates, and the rotation causes the X-axis table (eg, 9 in FIG. 4), the Y-axis table (eg, 10 in FIG. 4), the Z-axis arm (eg, In Fig. 4, 141) slides in each axis direction, and the sliding causes the driven cutting tool 19 to come into contact with the lump, causing the cutting tool 19 to lump. Is performed by cutting.
( 4 ) 次に、 コ ンピュータ(CADZCAM)30から仕上げ用パスのデー 夕に基づき、 仕上げ工程を行う。 その際、 ドリ ルの交換等を行い、 交換等によ り変更となった部分に基づく パラメ ータ等の変更を行う ο  (4) Next, the finishing process is performed from the computer (CADZCAM) 30 based on the data of the finishing pass. At that time, exchange the drill, etc., and change the parameters etc. based on the part changed by the exchange etc.ο
( 5 ) 表面が加工された後、 回転治具用保持部 87が回転し、 裏面 が切削加工される。 この際、 粗加工、 及び仕上げ加工を順に行う。 図 10Fの工程 S 54にその部分を示す。 図 10Fの工程 S 54は、 未加工 の半面を粗加工及び仕上げ加工を行う、 工程を示すものである。  (5) After the front surface is processed, the holding portion 87 for the rotary jig rotates and the back surface is cut. At this time, roughing and finishing are performed in order. The portion is shown in step S54 of FIG. 10F. Step S54 in FIG. 10F shows a step of performing rough processing and finish processing on the unprocessed half surface.
( 6 ) 加工終了後、 回転治具用保持部材 87から加工された塊状物 を取り外し、 リ ブ (図 8 812で示す) を切除する。 図 10Fの工程 S 55。 図 10Fの工程 S 55は、 切削加工で出来た歯科補綴物を切削用保 持具より取り外し、 リ ブを切除する、 工程を示すものである。 尚、 塊状物と して用いられる加工材料と してはチタ ン、 歯科セラ ミ ッ ク ス、 複合樹脂等が好ま しいが、 加工対象物に応じ適宜選択される も のであり、 その他、 金属、 セラ ミ ッ クス、 木材、 等を用いる場合も ある。  (6) After the processing is completed, the processed lump is removed from the holding member 87 for the rotary jig, and the rib (shown in FIG. 8 812) is cut off. Step S55 in FIG. 10F. Step S55 in FIG. 10F shows a step of removing the dental prosthesis made by cutting from the holder for cutting and cutting off the rib. As the processing material used as the lump, titanium, dental ceramics, composite resin, and the like are preferable, but are appropriately selected according to the processing target, and other metals, In some cases, ceramics, wood, etc. may be used.
図 10Aの終了工程には、 補綴物を取り外し、 試適する、 工程を含 むものである。  The end step in FIG. 10A includes the steps of removing and trial-fitting the prosthesis.
次に適合性の良い歯科補綴物を正確に早く作る為の実施例の動作 を説明する。  Next, the operation of the embodiment for accurately and quickly producing a dental prosthesis having good compatibility will be described.
構成等は上述した実施例と同様であるので、 番号を付する以外は その詳細な説明は省略する。  Since the configuration and the like are the same as those in the above-described embodiment, detailed description thereof is omitted except for the numbering.
被計測物の作成工程  Creation process of the measured object
( 1 ) 患者歯牙形態を、 印象材にて採得し、  (1) Obtain the patient's tooth morphology with impression material,
( 2 ) 印象用石膏にて歯牙形態を複製し、  (2) Replicate the tooth form with impression plaster,
( 3 ) 複製上で歯科技工士がワ ッ クスア ップを行いク ラウ ンなる ワ ッ クスモデルを形成し、 実施例 1 で示した様なモデルを得る。 計測工程 (3) Dental technician performs a work-up on the copy and becomes a crown A wax model is formed to obtain a model as shown in the first embodiment. Measurement process
( 4 ) 図 4で示す装置に測定子 (例えば図 4 の 20) を取付け、 回 転治具 (例えば図 4 の 87) にこのモデルを装着した状態で、 形状を 正確に計測する。  (4) Attach a tracing stylus (for example, 20 in Fig. 4) to the device shown in Fig. 4, and measure the shape accurately with this model attached to a rotating jig (for example, 87 in Fig. 4).
( 5 ) この時、 形状を正確に計測するため、 回転治具 87を正確に 反転、 回転させ、 完全な形状を計測する。 計測の動作は上述した実 施例の動作と同様である。  (5) At this time, in order to measure the shape accurately, the rotating jig 87 is accurately inverted and rotated to measure the complete shape. The operation of the measurement is the same as the operation of the embodiment described above.
( 6 ) コ ンピュータ(CADZ CAM) (例えば図 4 の 30) によって形状 を数値化し一時的に記憶させる。  (6) The shape is digitized by a computer (CADZ CAM) (for example, 30 in FIG. 4) and temporarily stored.
加工工程  Processing process
( 7 ) 切削に適した切削工具を選択した後、 この切削工具 (例え ば図 4 の 19) を今まで測定用に装着されていた測定子 20と交換する  (7) After selecting a cutting tool suitable for cutting, replace this cutting tool (for example, 19 in Fig. 4) with the tracing stylus 20 that has been mounted for measurement.
( 8 ) 塊状物を、 回転治具 (例えば図 4 の 87) に装着する。 (8) Attach the lump to a rotating jig (for example, 87 in Fig. 4).
( 9 ) 取り替えた切削工具 (例えば図 4 の 19) によって塊状物を 切削加工し、 所望の補綴物を製造する。  (9) Cut the lump with the replaced cutting tool (eg 19 in Fig. 4) to produce the desired prosthesis.
尚、 加工材料と してはチタ ン、 歯科セラ ミ ッ クス、 複合樹脂等を 用いる ものであるが上述と同様、 目的に応じその他の材料が使用さ れる。  As the processing material, titanium, dental ceramics, composite resin, etc. are used, but other materials are used according to the purpose as described above.
こ こで本方法の各種段階の詳細な説明をする。  A detailed description of the various steps of the method will now be given.
上述したが、 本方法は歯科補綴物モデルを作製するための一連の 作業以外は人手を必要と しないので、 本方法を構成する諸作業の大 半は適切に制御された装置を用いて自動的に遂行されると考えられ う る ことを銘記すべきである。  As mentioned above, since this method does not require any manpower except for a series of operations for producing a dental prosthesis model, most of the operations constituting this method are automatically performed using appropriately controlled equipment. It should be noted that it is considered to be carried out in the future.
また、 歯科補綴物の形成用と して示された材料は現在市販され且 つ歯科分野での専門家に周知されている材料であるが、 本発明の範 囲を逸脱するこ となく 、 同等の機能を備える他の材料を案出し使用 し得る こ と も銘記されるべきである。 Materials shown for the formation of dental prostheses are currently commercially available and well known to experts in the field of dentistry. It should be noted that other materials with equivalent functions could be devised and used without departing from the scope.
実際上、 以下の本方法の詳細な説明は、 現今の歯科作業場におけ るその性能に関連しているが、 工業製品水準にあり且つ種々 な材料 を使用する、 他の実施例に対しても明確に適応できる。  Indeed, the following detailed description of the method relates to its performance in modern dental workplaces, but also to other embodiments that are at the industrial grade and use a variety of materials. Clearly adaptable.
本発明による歯科補綴物製造方法で示される実施例を図 1 、 図 2 、 図 3 、 図 4等を用いて説明する。 以下で述べる、 実施例では歯科 補綴物のうちクラウ ンと呼ばれる物を対象と した。  An embodiment shown in the method for manufacturing a dental prosthesis according to the present invention will be described with reference to FIGS. 1, 2, 3, and 4. FIG. In the examples described below, a dental prosthesis is called a crown.
図 1 は本発明の歯科補綴物製造方法によって製造しょ う とする歯 科用金属チタ ン製の歯冠 (ク ラウ ン) 47を示す物である。 図 1 にお いて、 歯肉 1 、 自然歯歯根 3 、 支台歯 5 を示し、 支台歯 5 は歯科医 により、 形成が成されている。  FIG. 1 shows a crown 47 made of dental metal titanium to be manufactured by the method for manufacturing a dental prosthesis according to the present invention. In Fig. 1, the gingiva 1, the natural tooth root 3, and the abutment 5 are shown, and the abutment 5 is formed by a dentist.
以下に、 図 1 に示すク ラウ ン 47の製造方法について説明する。 被計測物の作成工程  Hereinafter, a method for manufacturing the crown 47 shown in FIG. 1 will be described. Creation process of the measured object
まず、 歯科医の手作業によって、 図 2 に示すような、 図 1 におけ る クラ ウ ン 47と全く 同じ形の歯科補綴物原型 (ク ラウ ンモデル) 57 を歯科用の蠟材 (ワ ッ クス、 光硬化樹脂、 テ ッ ク等の即時重合性を 有する ものが好ま しいがこれに限る ものではない。 尚、 生体用に使 用する ものの他に適用する際も、 即時重合性がある部材が使用され るこ とが好ま しいがこれに限るものではない。 ) により患者の口中 にて支台歯 5上に形成する。 (第 1 工程) 。 この工程に掛かる時間 は大凡 1 0〜1 5分程度である。  First, as shown in Fig. 2, a dental prosthesis prototype (crown model) 57 having exactly the same shape as the crown 47 in Fig. 1, as shown in Fig. 2, was manually worked by the dentist. However, it is preferable, but not limited to, those that have immediate polymerizability, such as light-curing resins and technics. It is preferably used, but not limited to.) Formed on the abutment 5 in the mouth of the patient. (First step). The time required for this step is about 10 to 15 minutes.
計測工程  Measurement process
次に、 上記クラウ ンモデル 57を患者口中より取り出 し、 図 3 に示 すよう に計測用のリ ブ材 9 1と糊状接着剤 92と接着する。 これを本発 明により計測する。  Next, the above-mentioned crown model 57 is taken out of the patient's mouth, and is bonded to the measurement rib material 91 and the glue-like adhesive 92 as shown in FIG. This is measured by the present invention.
図 4 は本発明の実施例を示すもので、 以下このシステムを使用 し て歯科補綴物を製造していく 。 FIG. 4 shows an embodiment of the present invention. To manufacture dental prostheses.
まず図 3 で示した、 リ ブ付ク ラ ウ ンモデル 57は、 回転治具用保持 具 87へ固定される。 固定された状態を図 5 B に示す。 この回転治具 用保持具 87を図 4 の台座 1 7へ取り付ける。 (第 2工程) 。  First, the crown model 57 with a rib shown in FIG. 3 is fixed to a rotating jig holder 87. The fixed state is shown in Figure 5B. The holder 87 for the rotating jig is attached to the pedestal 17 in FIG. (2nd step).
次に、 この取り付けられたク ラ ウ ンモデル 57を図 4 の CA D Z CAM システムによって、 その形状を精密に計測するわけである力く、 本実 施例では計測に接触式の計測プローブュニッ ト 20を用いている。 こ の接触式計測プローブユニッ ト 20は図 6 に示すとおりの構造をして おり、 計測器本体 20 a と接触探診子 20 bよ り成っており、 接触探診 子 20 aの変位量によって物体表面の座標を割り出し、 電気信号と し て出力する ものである。  Next, the attached crown model 57 is precisely measured by the CA DZ CAM system in Fig. 4 using the CA DZ CAM system. In this embodiment, the contact type measurement probe unit 20 is used for measurement. Used. This contact type measurement probe unit 20 has a structure as shown in Fig. 6 and consists of a measuring instrument body 20a and a contact probe 20b, and depends on the displacement of the contact probe 20a. The coordinates of the object surface are determined and output as electrical signals.
図 4 の制御用のコ ン ピュ一タ 30により制御され、 計測プローブュ ニッ ト 20によって計測されたデータはコ ン ピュータ 30へと送られる 。 計測されたデータはコ ン ピュータ 30によ り、 測定子半径オフセ ッ ト補正の処理を施され切削加工用のデータへ変換される。 計測はク ラゥ ンモデル 57の形状を正確に取得するため、 図 1 1 Bに示すよ う に ク ラ ウ ンモデルの中心からの放射状方向に計測していく 。 こ うする こ とによって、 クラウ ン 47にと つて、 一番重要であるところのマ一 ジ ン部 (図 1 1の A 2 ) の形状を正確に計測するこ とが出来る。  Data controlled by the control computer 30 shown in FIG. 4 and measured by the measurement probe unit 20 is sent to the computer 30. The measured data is processed by the computer 30 for offset correction of the tracing stylus radius, and is converted into data for cutting. The measurement is performed in the radial direction from the center of the crown model 57 as shown in FIG. 11B in order to accurately obtain the shape of the crown model 57. By doing so, the shape of the most important part of the crown 47 (A2 in Fig. 11) can be accurately measured.
この様にマー ジ ン部を正確に加工できる ことにより、 加工物 (ク ラウ ン) を実際に装着した際、 装着した支台歯との接触部分に隙間 ができな く なるので、 二次う蝕の危険性が少なくて済み、 安定した 使用が可能となる。  By being able to accurately machine the margins in this way, when the workpiece (crown) is actually mounted, there is no gap at the point of contact with the mounted abutment teeth. The risk of erosion is small and stable use is possible.
計測は X軸モータ 12、 Y軸モータ 1 3、 Z軸モータ 1 4をコ ン ビユー タ 30からの指令により、 各軸を制御するこ とによって行われる力く、 3軸制御の為、 ク ラウ ンモデル 57の形状の半分しか計測する ことが 出来ない。 このため、 半面の計測が終了した後、 ク ラ ウ ンモデル 57 を 1 80 度反転するこ とでもう半面を計測し、 完全な 3次元形状を計 測するこ とが出来るようになつている。 Measurement is performed by controlling each axis of X-axis motor 12, Y-axis motor 13 and Z-axis motor 14 according to the command from the computer 30. Only half of the shape of the model 57 can be measured. For this reason, after the measurement on one side is completed, the crown model 57 By inverting the angle by 180 degrees, the other half can be measured and a complete three-dimensional shape can be measured.
この反転は、 回転治具用保持具 87が取り付けられている台座 17と の嵌合機構によって正確に行われる、 このため反転するこ とによる 位置精度の誤差は 5 ミ ク ロ ン以下に抑えるこ とが出来ている、 この 反転機構の構造を図 7 に示す。 図 7 で示すよう に回転治具用保持具 87の 90度づつの回転により、 これと連結したク ラウ ンモデル 57が連 動して回転する。  This inversion is accurately performed by a fitting mechanism with the pedestal 17 on which the rotating jig holder 87 is mounted. Therefore, the error in the positional accuracy due to the inversion is suppressed to 5 micron or less. Figure 7 shows the structure of this reversing mechanism. As shown in FIG. 7, the rotation of the rotating jig holder 87 by 90 degrees causes the crown model 57 connected thereto to rotate in conjunction therewith.
計測された結果はコ ン ピュータ 30へ送られ、 歯冠形状設計が行わ れる。 (第 3工程) 。 この工程に掛かる時間は大凡 0. 5 時間程度で あるがより短縮可能である。  The measured result is sent to the computer 30, where the crown shape is designed. (3rd step). The time required for this process is about 0.5 hours, but can be reduced.
加工工程  Processing process
次に、 クラウ ン 47を切削加工するため、 図 4 において、 スピン ド ルモータ 1 5へエン ド ミ ル 1 9を取り付ける。 そ して、 回転治具用保持 具 87へ切削用プロ ッ ク 90を取り付ける。 この切削ブロ ッ クの形状は 歯科補綴物に近い円柱状または円錐状のリ ブ付き (図 8 の 8 1 2 )の形 状をしており、 クラウ ン 47の仕上がり寸法に応じて細かい単位で寸 法の違う形状を多数準備されており、 歯科医はもつ と もク ラ ウ ン 47 に近い形状の切削用ブロ ッ ク 90を選択するこ とが出来る。 またク ラ ゥ ン 47の形状の特異性を鑑みて切削用ブロ ッ ク 90の片面中心部に穴 を開ける事が有用である。 また、 材質と しては歯科用チタ ンを用い ている場合と した。  Next, in order to cut the crown 47, the end mill 19 is attached to the spindle motor 15 in FIG. Then, the cutting block 90 is attached to the rotating jig holder 87. The shape of the cutting block is cylindrical or conical with ribs (812 in Fig. 8) close to the dental prosthesis, and in fine units according to the finished dimensions of the crown 47. Numerous shapes with different dimensions are prepared, and dentists can select a cutting block 90 that has a shape close to that of crown 47. In addition, it is useful to make a hole in the center of one side of the cutting block 90 in view of the peculiarity of the shape of the crown 47. In addition, it was assumed that dental titanium was used as the material.
この切削ブロ ッ ク 90の形状の一例を図 8 A及び図 8 Bに示す。 図 Examples of the shape of the cutting block 90 are shown in FIGS. 8A and 8B. Figure
8 Aは表部分 90 a、 図 8 Bは裏部分 90 bである。 裏部分 90 bは、 上 述した孔部 8 1 1 が穿設されていると共に加工用治具と接続する為の リ ブ 8 12 がー体的に接続している。 このリ ブ 8 1 2 は、 切削ブロ ッ ク 90が製造される際、 一体的に付加されている ものであり、 加工後、 これを折ることで削除する ものであるが、 後で接着剤等で接着固定 したものであってもよい。 8A is the front part 90a, and FIG. 8B is the back part 90b. The back portion 90b is provided with the above-described hole portion 811 and a rib 812 for connection with a processing jig is physically connected. The ribs 8 1 and 2 are integrally added when the cutting block 90 is manufactured. It is removed by folding it, but it may be fixed later with an adhesive or the like.
回転治具用保持具 87に固定された切削用プロ ッ ク 90はコ ンビユ ー タ 30によつて生成される粗削り用及び仕上げ用、 加工パスによりェ ン ドミ ル 19にて加工される。 こ こでも、 計測時と同じ く 、 加工は半 面しか行われないため、 半面の加工が終了後、 図 7 に示す様に回転 治具用保持具 87を回転させ、 裏面を切削する ものである。 この工程 に掛かる時間は大凡 1 時間である。 (第 4工程) 。  The cutting block 90 fixed to the rotary jig holder 87 is processed at the end mill 19 by a processing path for roughing and finishing generated by the converter 30. In this case, as in the case of the measurement, only the half surface is machined, so after machining the half surface, the holder 87 for the rotating jig is rotated to cut the back surface as shown in Fig. 7. is there. The time required for this process is approximately one hour. (4th step).
切削加工終了後、 ク ラ ウ ン 47を回転ジグ用保持具 87より取り外し 、 磨き加工を施し、 患者支台歯 5 へ適用する。  After the cutting process, the crown 47 is removed from the rotating jig holder 87, polished, and applied to the patient abutment tooth 5.
固定治具の離脱着は、 ボル ト、 ッメ等により締め付ける方法その ほか考えられる把持する方式を示し、 治具による位置決めは、 ピン と穴による位置決め方法等を示す。 また、 治具の回転方法および角 度の位置決めは、 ある角度毎にピンおよび穴を設定し、 手動にて回 転させる方法、 エンコーダ付属サーボモータに治具を取り付け、 自 動にて回転させる方法、 その他正確に角度が決められ、 手動および 自動にて行う方法を示すものであるが、 少なく と も着脱可能であれ ばよ く これに限る ものではない。  The attachment and detachment of the fixing jig indicates a method of tightening with a bolt, a hook, etc., and other possible gripping methods. The positioning with a jig indicates a positioning method using pins and holes. In addition, the method of rotating the jig and the positioning of the angle can be set by setting pins and holes for each angle and rotating the jig manually, or by attaching the jig to the servo motor attached to the encoder and rotating it automatically. It shows the method of manually and automatically determining the angle and other methods, but it is not limited to this as long as it is at least detachable.
切削加工クラウ ン 47の精度はシステム精度に依るが、 本発明の実 施例のシステムでは、 誤差を 20ミ ク ロ ン以下に抑えるこ とが出来た 。 これは、 歯科補綴物の理想的精度限界である 50ミ ク ロ ンを満足す る ものを形成するこ とが可能である。  The accuracy of the cutting crown 47 depends on the system accuracy, but in the system of the embodiment of the present invention, the error could be suppressed to 20 microns or less. This makes it possible to meet the ideal accuracy limit of dental prostheses of 50 micron.
上記実施例の様なチタ ンクラウ ンの製造方法によれば、 従来手法 によるところの製造方法に比して工程を大幅に短縮でき、 時間的に も大幅に短縮でき、 チタ ンクラウ ンを迅速に製造することが出来る 。 また、 高度の技能や熟練度を必要とする工程を無く したために、 経験の浅い歯科医、 歯科技工士等にも容易、 確実にチタ ン ク ラ ウ ン を製造することが出来る。 According to the method for producing titanium crown as in the above-described embodiment, the number of steps can be significantly reduced and the time can be significantly reduced as compared with the production method using the conventional method, and the titanium crown can be rapidly produced. You can do it. In addition, the elimination of processes that require advanced skills and skills makes it easier and more reliable for inexperienced dentists and dental technicians. Can be manufactured.
なお、 上記実施例においては本発明を単独のクラウ ンに適用 した 場合について説明したが、 複数の歯冠がつながるブリ ッ ジについて も本発明を適用するこ とが可能である。  In the above embodiment, the case where the present invention is applied to a single crown has been described. However, the present invention can be applied to a bridge in which a plurality of crowns are connected.
また、 上記実施例では、 ク ラウ ン 47の材料と してチタ ンを使用 し た場合を説明したが、 これに限らず、 歯科用の陶材 (ガラスセラ ミ ッ クス) 、 複合樹脂を使用 した場合でも本方法が適用できる。  In the above embodiment, the case where titanium was used as the material of the crown 47 was described. However, the present invention is not limited to this, and dental porcelain (glass ceramics) and composite resin were used. In this case, the method can be applied.
上述した実施例では、 計測と切削をおのおの別に行つていたが、 計測と切削を同時に行う こ とが可能である実施例を図 9 に示す。  In the above-described embodiment, measurement and cutting are separately performed. However, FIG. 9 shows an embodiment in which measurement and cutting can be performed simultaneously.
図 9 は、 X軸テーブル 9上に 2 つの同一構造を有する保持部 92 1, 92 1 ' を設けたものである。 保持部 92 1 , 92 Γ の構造は同一である ので同一符号を付した。 又保持部 92 1 の構造についても図 4 で示し たものと同一であるので、 図 4 と同一符号を付してその説明は省略 "¾ る。  FIG. 9 shows a configuration in which two holding units 92 1 and 92 1 ′ having the same structure are provided on the X-axis table 9. Since the structures of the holding portions 92 1 and 92 同一 are the same, the same reference numerals are given. Also, the structure of the holding portion 921 is the same as that shown in FIG. 4, so the same reference numerals as in FIG. 4 are assigned and the description is omitted.
保持部 92 1 の計測用回転ジグ用保持具 87には、 計測する為のモデ ル 57を装着し、 保持部 92 1 ' の切削用回転ジグ用保持具には、 切削 用ブロ ッ ク 90を装着する。  The measuring jig holder 87 of the holding part 92 1 is equipped with a model 57 for measurement, and the cutting jig 90 is mounted on the holding part 92 1 ′ of the rotating jig holder. Installing.
スピン ドルモータ 1 5は、 切削用 ドリ ル 1 9と加工支持部 95を介して 連結支持され、 測定用プローブュニッ ト 20は、 ュニッ ト支持部 94と 接続している。 ュニッ ト支持部 94は、 加工支持部 95と連結体 93を介 して固定的に接続している。  The spindle motor 15 is connected and supported by a cutting drill 19 via a processing support portion 95, and the measurement probe unit 20 is connected to a unit support portion 94. The unit support part 94 is fixedly connected to the processing support part 95 via a connecting body 93.
測定用プローブュニッ ト 20の情報は、 図 4 で示すコ ンピュータ 30 に伝達される様な構成を有する。  The information of the measurement probe unit 20 is configured to be transmitted to the computer 30 shown in FIG.
測定用プロ一ブュニッ 卜 20は、 モデルと接触することで、 その情 報を出力 し、 コ ンピュータ 30は、 その情報に基づいて X , Υ , Z軸 モータを駆動させる。 これらモータの駆動により、 連結体 93は、 X , Υ , Z軸方向に移動する力 その移動に基づいて、 切削 ドリ ル 1 9 及び保持部 92 Γ も連動して移動し、 切削用 ド リ ル 19は、 ス ピン ド ルモータ 1 5の回転駆動により回転し、 測定用プローブュニッ 卜 20と 相対的に同一の動きを行い、 切削用ブロ ッ ク 90を切削する。 The measurement unit 20 outputs the information by contacting the model, and the computer 30 drives the X, Υ, and Z axis motors based on the information. By driving these motors, the connecting body 93 is driven by the forces moving in the X, Υ, and Z-axis directions. The holding drill 92 also moves in conjunction with it, and the cutting drill 19 is rotated by the rotational drive of the spindle motor 15 to perform the same movement relative to the measurement probe unit 20 to perform cutting. Cut block 90.
尚、 切削動作の場合は、 粗削り、 仕上げの 2 回の工程を要するが 、 計測と同時に行う切削を粗削りのみの工程と し、 測定終了後再度 仕上げ加工を行う場合や、 切削を 1 回の工程とする場合等の工程の 選択を行う場合もある。  In the case of the cutting operation, two steps of rough cutting and finishing are required.However, the cutting that is performed simultaneously with the measurement is only a rough cutting step, and the finishing processing is performed again after the measurement is completed. In some cases, the process may be selected.
又、 連結体 93は、 測定プローブュニッ ト 20と切削 ドリ ル 19を固定 するような構造を有するものであるが、 他方、 収縮、 伸長可能な構 造にすることにより、 測定プローブュニッ ト 20の測定の為の動作を 補正した切削 ド リ ルの動きを実現する等、 より精密な加工を実現す る こ と も可能である。  Further, the connector 93 has a structure for fixing the measurement probe unit 20 and the cutting drill 19, but on the other hand, by adopting a structure capable of contraction and extension, the measurement of the measurement probe unit 20 is performed. It is also possible to realize more precise machining, such as realizing the movement of the cutting drill with the operation corrected.
この様に計測と加工を同時に行う、 いわゆる自動倣い加工によれ ば、 作業工程、 作業時間を他の実施例に比べ半分にするこ と、 取扱 いを簡素化する こ と等も可能である。  In this way, according to the so-called automatic copying, in which measurement and processing are performed at the same time, it is possible to reduce the work process and work time by half as compared with the other embodiments, simplify the handling, and the like.
放射状計測乃至放射状加工  Radial measurement to radial processing
計測時、 図 4 で示す装置に接触式アナログ接触式測定子を、 加工 時には切削 ドリ ルを用いた切削加工機器を用いて、 且つ中心から放 射状方向へ計測する方式を用いた場合の実施例を説明する。 図 1 2〜 図 1 5中 X , Y座標は、 図 4 で示す装置にモデル A 1 を装着した際の 、 X軸テーブルの摺動方向及び Y軸テーブルの摺動方向を示す。 91 は、 図 3 で示すリ ブ材であり、 回転治具用保持具 87に装着する部分 である。  For measurement, use the contact type analog contact probe in the device shown in Fig. 4, use a cutting machine using a cutting drill for machining, and use the method of measuring in the radial direction from the center. An example will be described. The X and Y coordinates in FIGS. 12 to 15 indicate the sliding direction of the X-axis table and the sliding direction of the Y-axis table when the model A1 is mounted on the device shown in FIG. Reference numeral 91 denotes a rib material shown in FIG. 3, which is a part to be attached to the rotating jig holder 87.
説明上、 歯科治療に用いられる ク ラ ウ ンを作製する場合の動作を 説明する。 歯科治療に使用する石膏模型上で即時重合レジンにて歯 科補綴物の図 1 1に示すクラウ ンモデル A 1 を作成したものを使用す る 又、 その計測データをもとにチタ ン材で切削加工を行い、 歯科補 綴物と して使用するク ラウ ンを作製する ものである。 For the purpose of explanation, the operation for producing a crown used for dental treatment will be described. Use a dental model prosthesis with a crown model A1 shown in Fig. 11 as shown in Fig. 11 on a gypsum model used for dental treatment with an instant polymerization resin. Also, based on the measurement data, a cutting process is performed with titanium material to produce a crown to be used as a dental prosthesis.
最初、 図 1 1 A及び図 1 1 Bに示すク ラウ ンモデル A 1 の表面に対し 、 図 4で示す接触式アナログ接触式測定子 20で、 図 1 2に示すよ うな 二次元的に輪郭 A 4 を計測する。 その輪郭 A 4 に合わせて外接円 A 3 を作成し、 中心点 A 6 を求め、 中心点 A 6 を放射状計測の中心点 (基点) とする。  First, the surface of the crown model A 1 shown in FIGS. 11A and 11B is contacted with a two-dimensional contour A as shown in FIG. Measure 4. A circumscribed circle A 3 is created according to the contour A 4, a center point A 6 is obtained, and the center point A 6 is set as a center point (base point) for radial measurement.
基点 A 6 を中心に歯科補綴物のクラウ ンモデルの計測範囲を 20度 ごと 18個に分割する。 この分割された軌跡上 A 0 を、 図 1 1 Bで示す 様に、 アナログ接触式測定子 A 1 9を走査させて、 その接触部位の形 状を変位量と してと らえたアナ口グ接触式測定子 A 19は、 これを電 気信号と して出力する。  The measurement range of the crown model of the dental prosthesis is divided into 18 every 20 degrees around the base point A6. As shown in Fig. 11B, the analog tracing stylus A 19 is scanned on the divided trajectory A 0, and the shape of the contact area is taken as the amount of displacement. The contact probe A 19 outputs this as an electric signal.
分割の個数は、 18個以内 (20度間隔以内) が例示される ものであ るが、 モデルの形状等により適宜調整される物であって特に限定さ れる ものではない。  The number of divisions is, for example, up to 18 (within an interval of 20 degrees), but is not particularly limited because it is appropriately adjusted depending on the shape of the model and the like.
尚、 測定範囲 A 5 は測定した輪郭の形状を 1 1 0 %に拡大して行つ た。 この拡大は、 計測に必要な "遊び" を付加する ものであって、 The measurement range A5 was performed by enlarging the shape of the measured contour to 110%. This expansion adds the "play" needed for measurement,
100 %以上であれば計測に支障がない限り、 適宜調整される もので める。 If it is 100% or more, it can be adjusted appropriately as long as there is no problem in measurement.
図 1 3 Bに示すように、 接触式アナログ接触式測定子の中心線 A 1 1 が輪郭部分に直角にあたるよう走らせ、 分割した計測範囲ごとに、 計測を行う。  As shown in Fig. 13B, the center line A11 of the contact-type analog contact-type measuring element is run at right angles to the contour, and measurement is performed for each divided measurement range.
また、 計測できない裏側は歯科補綴物のクラゥ ンモデルを図 4で 示す回転治具用保持具 87により反転させ、 同様に形状の計測を行う o  On the back side where measurement is not possible, the crown model of the dental prosthesis is inverted by the rotating jig holder 87 shown in FIG. 4, and the shape is measured similarly.
汎用パソコ ンに取り込まれた三次元計測データは、 接触式アナ口 グ接触式測定子及び切削加工 ドリ ルに合わせてオフセ ッ ト計算され 、 数値制御データに変換を行い、 切削加工データが準備される。 歯科補綴物と して使用するチタ ンよ りなる被加工物を回転治具用 保持具 87に接続する。 Three-dimensional measurement data taken into a general-purpose computer is offset-calculated in accordance with the contact-type analog contact probe and cutting drill. The data is converted into numerical control data, and cutting data is prepared. A workpiece made of titanium to be used as a dental prosthesis is connected to the rotating jig holder 87.
切削加工時、 図 14に示した切削加工 ドリ ルは放射状的に移動させ 、 チタ ンの被加工物を切削加工を行う。  At the time of cutting, the cutting drill shown in FIG. 14 is moved radially to cut the titanium workpiece.
移動の軌跡を A 8 で示す。 中心点 0を基準と して ドリ ルの移動軌 跡の順序を a〜 kで示した。 この順序は、 基点 A 6 から離れた部分 では、 放射状の線間の広がりにより、 未切削部が生じるため、 その 部分をなるベく なく すための順序であると共に、 中心点 A 6近傍で は、 軌跡を示す放射状の線間隔が狭く なるため ドリ ル口径が限定さ れるこ とから、 同一 ドリルを有効に使用 し、 交換数を少なく するこ とができるなど、 加工効率の向上等を図ることができる。  The trajectory of the movement is indicated by A 8. The order of the drill trajectory with reference to the center point 0 is shown by a to k. This order is to prevent the uncut portion from being generated at the portion distant from the base point A 6 due to the spread between the radial lines. Since the diameter of the radial line indicating the trajectory is narrow, the drill diameter is limited, so that the same drill can be used effectively and the number of replacements can be reduced. Can be.
また、 切削加工できない裏側は、 被加工物を反転させ、 同様に切 削加工を行った。  On the other side, which cannot be machined, the workpiece was turned over and the same machining was performed.
従来の平行的に接触式計測又は切削加工の場合 (図 18を参照) 、 マージンライ ン A 2が詳細に歯科補綴物のクラウ ンモデル A 1 を歯 科治療に使用する クラウ ンに再現を行う こ とができなかった。 特に マー ジ ンライ ン A 2の尾根の部分で、 尾根と同方向に接触式アナ口 グ接触式測定子又は切削加工 ドリ ルが移動した箇所で見られたが、 本発明において、 マ一ジンライ ン A 2の尾根の部分とほぼ直角に、 接触式アナ口グ接触式測定子又は切削加工 ドリルが接するため、 詳 細に歯科補綴物のク ラ ウ ンモデル A 1 を歯科治療に使用するクラウ ンに再現を行う ことができた。  In the case of conventional parallel contact measurement or cutting (see Fig. 18), the margin line A2 is used to reproduce the crown model A1 of the dental prosthesis in detail for the crown used for dental treatment. And couldn't. In particular, at the ridge portion of the margin line A2, it was observed at the point where the contact-type contact probe or the cutting drill moved in the same direction as the ridge. Since the contact anatomical contact probe or cutting drill is in contact with the ridge of A2 almost at a right angle, the crown model A1 of the dental prosthesis is used in detail for the crown used for dental treatment. It was possible to reproduce.
尚、 放射状に三次元計測又は三次元加工が施せれば、 この例示に 限る ものではない。  The present invention is not limited to this example as long as three-dimensional measurement or three-dimensional processing can be performed radially.
図 1 1 A及び図 1 1 Bに示す歯科補綴物のク ラウ ンモデル A 1 を接触 式アナ口グ接触式測定子 A 19で計測し、 歯科治療に使用するクラウ ンを切削加工を行う場合に於いて、 より精度の高い形状計測が行え る方法を図 1 3に示す。 The crown model A1 of the dental prosthesis shown in Fig. 11A and Fig. 11B was measured with a contact type Fig. 13 shows a method for performing more accurate shape measurement when cutting a workpiece.
図 13 Aは、 放射状に分割した軌跡を示す線 A 0 に更に線 A 0 と線 A 0 間の領域を 2等分する様に且つ中心点 A 6 を通る様に引かれた 軌跡を示す線を設けこの線に対し、 等間隔に平行に分割するように 引かれた複数の線 A 7 を形成し、 この軌跡を示す線 A 7上を上述し たアナ口グ接触式測定子 A 19が測定しながら移動させるものであり 、 このことにより、 線 A 7 間が等間隔となり、 中心から離れた部分 の測定誤差が抑えられるものである。  Fig. 13A shows a line drawn along the line A0 indicating the trajectory divided radially and further dividing the area between the lines A0 and A0 into two equal parts and passing through the center point A6. In this line, a plurality of lines A 7 drawn so as to be divided in parallel at equal intervals are formed, and on the line A 7 showing this trajectory, the above-mentioned contactor A 19 is used. Movement is performed while measuring, so that the distance between the lines A7 is equal, and a measurement error in a portion distant from the center is suppressed.
又、 図 13 Aと同様に精度の高い計測が行える方法を図 1 5に示す。 歯科補綴物のク ラウ ンモデル A 1 を接触式アナログ接触式測定子 で、 二次元的に輪郭 A 4 を計測する。 その輪郭 A 4 に合わせて外接 円 A 3 を作成し、 中心点 A 6 を求め、 中心点 A 6 を放射状計測の中 心点 (基点) と した。 測定した輪郭の形状を 50 %に縮小したと ころ で 2 つに分割した。 内側の計測範囲 A 9 は 2度ごとに接触式アナ口 グ接触式測定子で放射状に計測を行い、 外側の計測範囲 A 10は 1 度 ごとに接触式アナ口グ接触式測定子で放射状に計測を行った。  Fig. 15 shows a method for performing highly accurate measurement as in Fig. 13A. The crown model A1 of the dental prosthesis is measured two-dimensionally with a contact analog contact measuring element. A circumscribed circle A3 was created in accordance with the contour A4, a center point A6 was obtained, and the center point A6 was set as a center point (base point) for radial measurement. The shape of the measured contour was divided into two when it was reduced to 50%. The inner measurement range A 9 is measured radially with a contact-type analog contact probe every 2 degrees, and the outer measurement range A 10 is measured radially with a contact-type analog contact probe every 2 degrees. Measurements were taken.
尚、 外側の測定範囲 A 1 0は測定した輪郭の形状を 1 10 %に拡大し て "遊び" をもたせて行つた。  The outer measurement range A10 was performed with "play" by enlarging the measured contour shape to 110%.
上記実施例と同様に、 切削加工データを準備し、 歯科補綴物と し て使用する クラウ ンの切削加工を行った。 その結果、 歯科補綴物の クラウ ンモデルを歯科治療に使用するク ラウ ンを詳細に再現するこ とができた。 特に再現が困難なマ一ジンライ ン部分において、 詳細 に再現できた。 放射状に三次元計測又は三次元加工が施せれば、 こ の例示に限る ものではない。  In the same manner as in the above example, cutting data was prepared, and the cutting used for the dental prosthesis was cut. As a result, we were able to reproduce in detail the crown used for dental treatment using the crown model of the dental prosthesis. In particular, it was possible to reproduce details in the magazine line where reproduction was difficult. It is not limited to this example as long as three-dimensional measurement or three-dimensional processing can be performed radially.
本実施例では、 測定乃至加工面に対し、 複数の同心円を設定し、 その同心円の内円と外円間 (同心円間と呼ぶ) を放射状に分割する 場合、 外方向の同心円間は、 内方向より、 分割の数を多く する もの であるが、 その個数は、 好ま しく は 1〜 5個が示されるが、 測定乃 至加工対象物の形状の複雑さ等に応じて適宜調整される ものであり 、 特に限定されない。 In the present embodiment, a plurality of concentric circles are set for the measurement or processing surface, and the concentric inner and outer circles (referred to as concentric circles) are radially divided. In this case, the number of divisions between the concentric circles in the outward direction is larger than that in the inward direction, and the number is preferably 1 to 5, but the number of divisions is more complicated. It is appropriately adjusted in accordance with the size of the device, and is not particularly limited.
本発明の中心点の設定は、 プローブがモデル外郭に接触して得ら れた形状を略円状乃至略楕円状にみなした時の中心点により決定さ れる ものである。 その他変形円形状の場合は、 例えば、 X方向の最 大幅の中間点と Y方向も最大幅の中間点を中心点とする方法による 決定が示される。 又、 モデル等の被計測物及び塊状物の形状は、 上 述に限らず、 多角形、 四角形、 その他複雑な形状でも、 本実施例は 適用可能である。  The setting of the center point according to the present invention is determined by the center point when the shape obtained by the probe coming into contact with the outer contour of the model is regarded as substantially circular or substantially elliptical. In the case of other deformed circular shapes, for example, a determination is made using a method in which the center point is the largest midpoint in the X direction and the midpoint having the largest width in the Y direction. Also, the shape of the object to be measured such as a model and the lump is not limited to the above, and the present embodiment is applicable to polygons, squares, and other complicated shapes.
ク ローズ ドループ方式  Closed droop method
本発明では、 モータの動作を正確にするために、 モータのデータ を中央演算処理装置に戻し、 動作の補正を行う ク ローズ ドループ方 式で制御するこ とがより好ま しいものである。 次に、 本発明で示す ク ローズ ドループ制御によるモデル等の被計測物の形状の測定、 及 び、 測定データに基づく塊状物の切削加工について詳細に説明する 三次元的に移動するための X, Y , Z軸テーブルの動力と しての モ一夕にエンコーダ付のサ一ボモータを装着する様に駆動手段に対 しこの駆動量を計測する為の駆動計測手段を付加する。 尚、 駆動計 測手段は、 これに限らず、 モータの回転を計測する他の手段、 ある いは、 モータの回転運動を直線運動に変換したあとの直線運動を計 測する手段、 であって、 接触式あるいは、 レーザー、 超音波を用い た ドップラー方式等の様な非接触式で構成される場合もあり、 少な く と も、 運動を電気信号等の情報信号に置き換えられる ものでもよ く 、 限定されない。 この駆動計測手段により、 測定用プローブや加工用 ドリ ル等の作 業部の位置を検出 し、 この位置データ、 例えばパルスデータをアナ ログ一デジタル変換回路等、 中央演算処理装置が処理できる形態に データを変換する。 In the present invention, in order to make the operation of the motor accurate, it is more preferable that the data of the motor be returned to the central processing unit and controlled by a closed-loop method for correcting the operation. Next, measurement of the shape of an object to be measured such as a model by closed-loop control shown in the present invention and cutting of a lump based on the measured data will be described in detail. A drive measuring means for measuring this drive amount is added to the drive means so that a servo motor with an encoder is attached to the motor as power for the Y and Z axis tables. The drive measuring means is not limited to this, but may be other means for measuring the rotation of the motor, or means for measuring the linear motion after converting the rotational motion of the motor into linear motion. In some cases, it may be a non-contact type such as a contact type or a Doppler type using laser or ultrasonic waves, and at least the motion may be replaced with an information signal such as an electric signal. Not limited. The drive measuring means detects the position of the working part such as a measuring probe or a processing drill, and converts this position data, for example, pulse data, into data that can be processed by a central processing unit, such as an analog-to-digital converter. Transform the data.
例えば、 このデータに基づき、 その中央演算処理装置で正確な座 標値を読み取り、 中央演算処理装置又はその周辺機器に数値データ を保存する。  For example, based on this data, the central processing unit reads the accurate coordinate values and stores the numerical data in the central processing unit or its peripheral devices.
このデータに基づき、 中央演算処理装置にて駆動手段の駆動動作 を補正し、 補正したデータを各軸テーブルのサ一ボモータに送り出 す。  Based on this data, the central processing unit corrects the driving operation of the driving means, and sends the corrected data to the servo motors of each axis table.
この補正とは放射状の測定、 1 方向からの走査的測定等の測定方 法に基づいて基点から目的場所へ接触してその接触量を電気信号と して出力するプローブを移動させる場合、 中央演算処理装置は、 そ のためのデータを駆動手段に出力する。 駆動手段は、 そのデータに基 づき X, Y . Z軸のサ一ボモータを回転させる。  This correction is based on a measurement method such as radial measurement or scanning measurement from one direction.When moving a probe that contacts the target location and outputs the contact amount as an electrical signal based on a measurement method, central processing The processing device outputs data therefor to the driving means. The drive means rotates the X, Y and Z axis servo motors based on the data.
モータの回転は、 直線運動に変換され、 テーブル又は測定プロ一 ブを支持している支持アームを駆動し、 測定プローブを目的の箇所 へ移動させる。 この際、 駆動手段と付随して設定されている駆動計 測手段は、 駆動手段のデータを逐次中央演算処理装置へ送る。  The rotation of the motor is converted to linear motion, which drives a table or a support arm that supports the measurement probe, and moves the measurement probe to the target location. At this time, the drive measuring means set in association with the drive means sequentially sends the data of the drive means to the central processing unit.
加工時は、 保存された数値データを測定機器の分のオフセ ッ トを 行い、 三次元計測したモデルの表面の座標データを作成する。 モデ ル表面の座標データが決定された後、 各測定方向 (X, Y , Z座標 At the time of machining, the stored numerical data is offset for the measuring equipment, and coordinate data of the surface of the model that is three-dimensionally measured is created. After the coordinate data of the model surface is determined, each measurement direction (X, Y, Z coordinates)
) に数値を加えるこ とによりデータの拡大又は縮小ができ、 モデル に対し縮小乃至拡大した複製を得ることができる。 The data can be enlarged or reduced by adding a numerical value to), and a reduced or enlarged copy of the model can be obtained.
次に、 中央演算処理装置が駆動計測手段から出力されるデータに 基づいて、 駆動手段へ送る為のデータの作成例に付いて説明する。  Next, an example of creating data for the central processing unit to send to the drive unit based on the data output from the drive measurement unit will be described.
( 1 ) 中央演算処理手段が予め予測的に作成したデータに基づき 駆動手段を駆動し、 この駆動手段と連動して動く プローブがモデル 表面の凹凸を接触しながら移動している場合、 (1) Based on the data that the central processing unit When the probe that drives the driving means and moves in conjunction with this driving means is moving while touching the irregularities on the model surface,
プローブが、 モデルの急激な起伏により、 プローブが出力する信 号内容が、 測定許容範囲を越えた場合、 中央演算処理手段は、 この 時の駆動計測手段から送られてきた駆動情報から、 基点からどの程 度プローブが移動したかを求め、 その移動量と予め中央演算処理装 置が駆動手段に出力した駆動データとを比較し、 更に測定範囲を越 えた方向の軸を測定プローブから送られてきたデータから求め、 測 定範囲を越えた方向の軸の駆動手段の駆動量を駆動計測手段から送 られてきた移動量に基づいたデータに対して加算又は減算したデ一 タに変換して駆動手段に出力すると共に、 駆動計測手段から送られ てきた移動量に基づいたデータを記憶手段に保管する。  If the signal content of the probe exceeds the allowable measurement range due to the sudden undulation of the model, the central processing unit uses the drive information sent from the drive measurement unit at this time to calculate The extent to which the probe has moved is determined, the amount of movement is compared with the drive data output to the drive means by the central processing unit in advance, and the axis in a direction beyond the measurement range is sent from the measurement probe. From the measured data, convert the drive amount of the drive means of the axis in the direction beyond the measurement range to data obtained by adding or subtracting the data based on the movement amount sent from the drive measurement means. In addition to outputting to the means, the data based on the movement amount sent from the drive measuring means is stored in the storage means.
測定用プローブは、 中央演算処理手段が予測的に作成したデータ に基づいて X, Y , Z軸方向に動く ので、 その動きを監視し、 その 動きのデータと測定用プローブが検出したデータ等から、 上述の様 な予測不可能な急激な表面変化にも精度良く測定可能となる。 特に モデル測定時に顕著な効果を有する。  Since the measurement probe moves in the X, Y, and Z-axis directions based on the data created by the central processing unit in a predictive manner, the movement is monitored, and the movement data and the data detected by the measurement probe are used. However, it is possible to accurately measure an unpredictable sudden surface change as described above. It has a remarkable effect especially when measuring the model.
( 2 ) その他、 駆動計測手段で得られたデータを中央演算処理装 置に送るのではなく 、 直接駆動手段に送る場合もある。  (2) In addition, the data obtained by the drive measurement means may not be sent to the central processing unit, but may be sent directly to the drive means.
この場合、 駆動手段には、 駆動計測手段で得られたデータを読む こ とが可能な手段が備えられているものとする。 これは、 A / D変 換器、 D Z A変換器、 回転量を移動距離へ変換する変換器等である o  In this case, it is assumed that the driving means is provided with means capable of reading data obtained by the driving measurement means. This is an A / D converter, a DZA converter, a converter that converts the amount of rotation into a moving distance, etc.
後者の様に、 直接駆動手段に計測手段で得られたデータを送る場 合、 例えば、 計測時、 中央演算処理装置は、 目的場所へ、 測定プロ ーブを移動する為のデータを各駆動手段のサ一ボモータに出力する 各サーボモータは、 入力されたデータの値に従って回転する。 こ の回転量を駆動計測手段は、 計測した回転量を出力する。 駆動手段 は、 これを入力し移動データに変換した後、 中央演算処理装置から 送られている目的場所へ移動する為に必要なデータ とこの計測され た差分等して比較する。 この比較により、 両者が一致した場合、 各 サ一ボモータは、 動作を停止する。 When the data obtained by the measuring means is directly sent to the driving means as in the latter case, for example, at the time of measurement, the central processing unit sends the data for moving the measuring probe to the destination at each driving means. Output to the servo motor Each servo motor rotates according to the value of the input data. The rotation measuring unit outputs the measured rotation amount. The driving means inputs the data, converts the data into movement data, and compares the measured data with data necessary for moving to the destination transmitted from the central processing unit. As a result of this comparison, if the two match, each servomotor stops operating.
加工時も同じ様な動作を行う ものであるが加工する際、 加工用切 削 ドリ ルが回転した状態で移動する際、 余計な部分を切削しない点 で顕著な効果を有する。  Although the same operation is performed during machining, it has a remarkable effect in that, when machining, when the machining drill moves in a rotating state, unnecessary portions are not cut.
本発明のク ローズ ドループ方式と現在一般的に行われているォー プンループ方式の違いは、 次の通りである。 前者は、 各軸のェンコ ーダのデータを汎用パソ コ ンに取り入れるこ とにより、 各軸の X, Y , Zの移動量を検出する。 この検出 したデータ と事前にパソ コ ン 側で指令した移動量のデータを確認して、 X, Y , Zの座標データ にするこ とである。 これに対して後者は、 ノ ソ コ ン側で X, Y , Z 軸の移動量を定めた移動量のデータを、 X, Y , Zの座標データに する。 例えば三次元計測の場合、 ク ローズ ドループ方式は各軸の移 動量と計測機器のデータを検出 し、 座標データを決定する。 しかし 、 オープンループ方式は、 パソ コ ン側が定めた移動量に対する計測 機器のデータだけを検出 して、 座標データを決定する。 このため、 ク ローズ ドループ方式はオープンループ方式より も、 精度良く 三次 元計測が行う ことができる。 また、 三次元加工も、 X , Y , Z軸方 向の移動量を確認しながら動作補正を行う こ とができる。 また、 ク ローズ ドループ方式制御の三次元計測及び三次元加工は、 一つの中 央演算処理装置で可能であるが、 さ らに高速に行うために、 複数の 汎用、 専用を問わず中央演算処理装置を使用する。 複数の中央演算 処理装置を使用するという ことは、 各軸テーブルの動力であるサー ボモータ制御、 計測機器から送り出されるパルスデータの処理等に 分担させることを可能と し、 より高速に且つ高精度に、 装置の故障 が少ない計測乃至加工を行う ことを可能とする ものである。 The difference between the closed-loop system of the present invention and the open-loop system currently generally used is as follows. The former detects the X, Y, and Z movement amounts of each axis by incorporating the encoder data of each axis into a general-purpose computer. The detected data and the data of the travel distance instructed in advance by the personal computer should be checked and converted into X, Y, Z coordinate data. In the latter, on the other hand, the movement data defining the movement amounts of the X, Y, and Z axes on the computer side is used as the X, Y, and Z coordinate data. For example, in the case of three-dimensional measurement, the closed-loop method detects the amount of movement of each axis and data of measuring equipment, and determines coordinate data. However, in the open loop method, only the data of the measuring device for the moving amount determined by the personal computer is detected to determine the coordinate data. Therefore, the closed-loop method can perform three-dimensional measurement with higher accuracy than the open-loop method. Also in 3D machining, motion compensation can be performed while checking the amount of movement in the X, Y, and Z axis directions. In addition, three-dimensional measurement and three-dimensional processing with closed-loop control can be performed by a single central processing unit.However, in order to perform the processing at even higher speeds, a plurality of general-purpose or special-purpose central processing units are used. Use the device. The use of multiple central processing units means that the power of each axis table is It is possible to share the tasks of controlling the motor, processing pulse data sent from the measuring device, etc., and to perform measurement or processing at higher speed and with higher accuracy and with less failure of the device.
ク ローズ ドループ方式を用いた他の実施例を以下に示す。  Another embodiment using the closed droop method will be described below.
本発明と して使用する装置は、 三次元計測にプローブを利用 した 接触式計測、 加工には切削加工を用いた。  The apparatus used in the present invention used contact-type measurement using a probe for three-dimensional measurement, and cutting for processing.
図 1 6で示す実施例は、 モデルを X, Υ , Z軸の三軸で三次元的に 接触式計測を行い、 またその計測のデータをもとに医療用材又は歯 科用材等を切削加工する ものである。  In the embodiment shown in Fig. 16, the model performs three-dimensional contact measurement on three axes of X, Υ, and Z axes, and cuts medical materials or dental materials based on the measurement data. That is what you do.
各軸の構成は、 Y軸テーブル B 5 に X軸テーブル B 4が互いに独 立した摺動が可能な状態で配置されており、 その上に計測モデル又 は切削加工する被加工物を取り付け、 Z軸テ一ブル B 6 にアナログ 接触式測定子 B 10及び切削 ドリル B 9 を併設装着されており、  The configuration of each axis is such that the X-axis table B4 is placed on the Y-axis table B5 so that they can slide independently of each other, and a measurement model or a workpiece to be cut is mounted on it, An analog contact probe B10 and a cutting drill B9 are attached to the Z-axis table B6.
スピン ドルモータ B 8 力く、 切削用 ドリ ル B 9 とその動力を連結し た状態で設置している構造である。  The spindle motor B8 is powerful, and is installed with the cutting drill B9 and its power connected.
づま り、 計測モデル又は被加工物が平面的に移動し、 高さをアナ 口グ接触式測定子 B 1 0又は切削 ド リ ル B 9 の移動で補う形を取って いる。 各軸テーブルの動力と して X軸用ェンコ一ダ付サ一ボモータ B 71、 Y軸用エンコーダ付サーボモータ B 72、 Z軸用エンコーダ付 サーボモータ B 73を使用 した。  In other words, the measurement model or the workpiece moves in a plane, and the height is compensated for by the movement of the analog contact probe B10 or the cutting drill B9. Servomotors with encoders for X-axis B71, servomotors with encoder for Y-axis B72, and servomotors with encoder for Z-axis B73 were used as power for each axis table.
ク ローズ ドル一プ方式を採用する場合の具体的な制御プロ ッ クダ ィャグラムを図 17に示す。  Fig. 17 shows a specific control program when the closed-dollar method is adopted.
汎用のパソ コ ン B とアナ口グ接触式測定子 B 10以外は、 作業部 B 3 の下収納部に含まれている。 コ ン ト ローラ CPU (中央演算処理装 置) B 1 5は汎用パソコ ン B 2 から送られてきたデータをサーボ ドラ ィバーが駆動するに適した数値制御データに変換し、 各サ一ボ ドラ ィバ一 B 1 6〜 B 18に送り出 し、 各 ドライバーと接続したサーボモー タ B 1 9, B 21 , B 23の回転駆動を制御する。 Except for the general-purpose computer B and the analog contact probe B10, they are included in the lower storage section of the working section B3. The controller CPU (Central Processing Unit) B15 converts the data sent from the general-purpose computer B2 into numerical control data suitable for driving by the servo driver. To the B16-B18 and the servo mode connected to each driver. Control the rotational drive of the motors B 19, B 21, B 23.
X軸サ一ボ ドライバー B 1 6、 Y軸サーボ ドライバー B 17及び Z軸 サーボ ドライバー B 18は、 それぞれ独立の動作を行う こ とが可能な 状態でディ ーシーチヱー ン状に連結接続されている。  The X-axis servo driver B16, the Y-axis servo driver B17, and the Z-axis servo driver B18 are connected and connected in a discrete manner so that they can perform independent operations.
各軸のサーボ ドライバ一は、 それぞれ X軸、 Y軸、 Z軸サ一ボモ 一夕 B 1 9, B 21 , B 23に各軸の移動量のデータを排出する。 各軸の サ一ボモータ B 1 9, B 21 , B 23に接続されているエンコーダ B 20, B 22, B 24が移動量を検出し、 各軸のサ一ボ ドライバ一 B 19, B 21 , B 23にパルスデータを送り返すことにより、 上述したようなフ ィ 一 ドバッ ク制御を行っている。  The servo driver of each axis discharges the data of the movement amount of each axis to the X-axis, Y-axis, and Z-axis servo motors B19, B21, and B23, respectively. The encoders B20, B22, B24 connected to the servo motors B19, B21, B23 of each axis detect the amount of movement, and the servo drivers B19, B21, The feedback control as described above is performed by sending the pulse data back to B23.
また、 エンコーダ B 20, B 22, B 24から排出されるパルスデータ を、 各軸のサーボ ドライバ一 B 1 9, B 2 1 , B 23に送り返すだけでな く 、 作業部 B 3 に接続されている汎用パソ コ ン B 2 にデジタイ ジ ン グ PCイ ンターフ ェース B 25通し、 アナログデータ (パルスデータ) をデジタルデータに変換して送り出す。  In addition to returning the pulse data discharged from the encoders B20, B22, and B24 to the servo drivers B19, B21, and B23 of each axis, the pulse data is connected to the work unit B3. It converts analog data (pulse data) to digital data and sends it out through a digital PC interface B25 to a general-purpose computer B2.
接続されている汎用パソ コ ン B 2 にはエ ンコーダ B 20, B 22 , B 24のデータの他に、 接触式アナ口グ接触式測定子 1 0から排出される パルスデータがあり、 各々のデータを処理する。  The connected general-purpose computer B2 has the pulse data discharged from the contact-type contact probe 10 in addition to the data of the encoders B20, B22, and B24. Process the data.
つま り、 三次元計測したモデルの表面の座標データを作成し保存 する。  In other words, the coordinate data of the surface of the model measured three-dimensionally is created and stored.
パソ コ ン B 2 は、 計測、 加工の為の直線補間 (位置デ一タ) 処理 や、 CAD と しての動作、 その他作業部 B 3 の動作を支持する為のデ -夕を処理等する。  The computer B 2 performs linear interpolation (position data) processing for measurement and processing, and also performs operations as CAD and other data processing to support the operation of the work unit B 3. .
コ ン ト ローラ CPU B 15は、 パソ コ ン B 2 から送られてきたデータ を後段に接続する各サ一ボ ドライバ一の軸制御を行うためのデータ にあわせた形で書き換え、 又は翻訳して各サ一ボ ドライバーに出力 する、 その他パソ コ ン B 2から送られてきた指示データを後段の各 装置、 デバイス等の各軸の動作の為のデータ処理を行う こ とで、 計 測、 加工動作の高速化を図るこ とができる。 The controller CPU B15 rewrites or translates the data sent from the computer B2 in accordance with the data for controlling the axis of each servo driver connected to the subsequent stage. The instruction data to be output to each servo driver and other instruction data sent from personal computer B2 By performing data processing for the operation of each axis such as equipment and devices, measurement and machining operations can be sped up.
コ ン ト ローラ CPU B 1 5は、 主に加工用データ (例えば Gコー ド) 処理用と して動作するように設定されている。 他方計測用のデータ 処理は、 パソコ ン B 2が行う。 又操作性の問題等により、 パソコ ン B 2側で加工操作のィ ンターフ ェースも兼ねる ものである。  The controller CPU B15 is set to operate mainly for processing data (for example, G code). On the other hand, data processing for measurement is performed by the computer B2. Also, due to operability problems, the computer B 2 also serves as an interface for machining operations.
このことから、 精度の高い表面の計測データを得る こ とを、 処理 能力が大きいパソコ ン等におこなわせ、 加工の様に、 切削具合が切 削 ドリ ルの動作に直接係る場合は、 切削 ドリ ルを駆動する ドライバ —を制御する為の専用の CPU をパソコ ンと ドライバ一間の中間に配 する こ とで、 合理的且つ高速に計測と加工を行う こ とができ、 また 計測と加工が連続したシステムの構築を可能と した。  For this reason, highly accurate surface measurement data can be obtained on a computer with a large processing capacity, etc., and when the degree of cutting directly affects the operation of the cutting drill, such as in machining, the cutting drill is used. By arranging a dedicated CPU for controlling the driver that drives the driver in the middle between the personal computer and the driver, measurement and processing can be performed rationally and at high speed. The construction of a continuous system was made possible.
尚、 本構成においては、 2 つの CPU をそれぞれ、 計測と加工に分 けた形で動作させるこ とを示したが、 これに限る ものではな く 、 そ れぞれ、 計測、 加工用データの処理を行う ものであってもよい。 図 18に計測方向の一例を示す。 アナログ接触式測定子 B 1 0での計 測の仕方は、 Y軸を固定し、 X軸方向に接触式アナログ接触式測定 子 B 1 0を移動させ、 その時の Z軸の移動量を計測する。 X軸方向が ある地点まで行き着いたら、 Y軸を移動させ、 同時に X軸の移動に 合わせた Z軸の移動量を計測する。 その軌跡を B 29に示す。  In this configuration, it has been shown that the two CPUs are operated separately in the form of measurement and processing.However, the present invention is not limited to this, and processing of measurement and processing data is respectively performed. May be performed. Figure 18 shows an example of the measurement direction. The method of measurement with the analog contact type probe B 10 is to fix the Y-axis, move the contact type analog contact type probe B 10 in the X-axis direction, and measure the movement amount of the Z-axis at that time. . When the X-axis direction reaches a certain point, the Y-axis is moved, and at the same time, the movement amount of the Z-axis is measured according to the movement of the X-axis. The trajectory is shown in B29.
このこ とから、 つぎの X軸ライ ンの Y軸の移動に合わせた Z軸の 移動量が予測されるために、 汎用パソコ ン B 2で予測を立て、 その 処理データを工作機械 B 3 の中にあるコ ン ト ローラ CPU (中央演算処 理装置) B 1 5に送り出 し、 予測処理を含めた数値データを各軸のサ ーボ ドライバ一に指令をする。 この際、 エンコーダからの信号によ り、 不連続な形状などにも対処できる計測、 加工ができる。  From this, the amount of movement of the Z-axis in accordance with the movement of the Y-axis of the next X-axis line is predicted, so a prediction is made on the general-purpose computer B2, and the processing data is transferred to the machine tool B3. It sends it to the controller CPU (Central Processing Unit) B15 inside and sends numerical data including prediction processing to the servo driver for each axis. At this time, measurement and processing that can deal with discontinuous shapes can be performed by signals from the encoder.
切削加工の仕方は、 汎用パソ コ ン B 2 に保存されている計測モデ ル B l lの表面座標データを、 加工作業部 B 3 のコ ン ト ロ一ラ CPU (中 央演算処理装置) B 15に送り出す。 そのコ ン ト ローラ CPU (中央演算 処理装置) B 1 5は、 数値制御データに変換し、 各軸のサーボ ドライ バー B 1 6, B 17 , B 18に指令をし、 被加工物を切削加工する。 三次 元計測と同様に、 各軸のエ ンコーダ B 20, B 22, B 24より、 パルス データを汎用パソコ ン B 2 にデジタイ ジング PCイ ンターフ ヱ一ス B 25通し、 アナログデータ (パルスデータ) をデジタルデータに変換 して送り出す。 汎用パソ コ ン B 2ではそのデータをもとに、 加工作 業部 B 3の動作を確認する。 前記の構成の装置をもとに、 歯科補綴 物のモデル B 1 1を三次元計測し、 チタ ンにて切削加工を同一の加工 作業部 B 3 で行った。 歯科補綴物のモデル B 1 1は、 歯科治療に使用 する石青模型上で即時重合レ ジ ンにてク ラ ウ ンを作成した。 その歯 科補綴物のク ラ ウ ンモデル B 1 1をアナログ接触式測定子 B 10で、 X , Y方向の外形を二次元的に計測し、 汎用パソ コ ン B 2 にて三次元 計測するための X, Y方向の範囲を設定した。 The method of cutting is determined by the measurement model stored in the general-purpose computer B2. The surface coordinate data of the file B ll is sent to a controller CPU (central processing unit) B 15 of the machining operation section B 3. The controller CPU (Central Processing Unit) B15 converts the data into numerical control data, commands the servo drivers B16, B17, and B18 for each axis, and cuts the workpiece. I do. As in the three-dimensional measurement, the pulse data is passed from the encoders B20, B22, and B24 of each axis to the general-purpose computer B2 through the digitizing PC interface B25, and the analog data (pulse data) is transmitted. Convert to digital data and send out. The general-purpose computer B2 confirms the operation of the machining operation part B3 based on the data. Based on the apparatus having the above-described configuration, the dental prosthesis model B11 was three-dimensionally measured, and the cutting process was performed with titanium in the same working section B3. For the dental prosthesis model B11, a crown was created with an instant polymerization resin on a stone blue model used for dental treatment. The crown model B11 of the dental prosthesis is measured two-dimensionally in the X and Y directions with an analog contact probe B10, and three-dimensionally measured with a general-purpose computer B2. Range of X and Y directions was set.
その範囲を歯科補綴物のク ラ ウ ンモデル B 1 1の表面を三次元計測 を行った。 次に、 歯科補綴物のクラウ ンモデル B 1 1を反転し、 同様 に裏側を三次元計測を行った。 その計測データを汎用パソ コ ン B 2 にて、 アナログ接触式測定子 B 10のオフセ ッ ト計算を行い、 表側と 裏側の表面座標データを張り合わせ、 三次元形状に構築する。  In this range, the surface of the crown model B11 of the dental prosthesis was measured three-dimensionally. Next, the crown model B11 of the dental prosthesis was inverted, and the back side was similarly subjected to three-dimensional measurement. The measurement data is used to calculate the offset of the analog contact probe B10 on a general-purpose computer B2, and the surface coordinate data on the front and back sides are joined to construct a three-dimensional shape.
その後、 切削 ドリ ル B 9 のオフセッ ト計算を行い、 作業部 B 3 に データを送る。 作業部 B 3 から歯科補綴物のク ラ ウ ンモデル B 1 1を 取り外し、 被加工物をセ ッ 卜 し、 三次元計測のデータをもとに切削 加工を行った。 また、 三次元計測と同様に、 裏側を切削する ときに は反転して切削加工を行った。 以上の方法で得られたチタ ンのク ラ ゥ ンは、 計測モデルとの誤差が 30〃 mに収ま り、 オープンループ方 式より も精度が良かった。 また、 2つの中央演算処理装置を使ったことにより、 三次元計測 及び切削加工が速く 出来た。 After that, the offset of the cutting drill B 9 is calculated, and the data is sent to the work unit B 3. The crown model B11 of the dental prosthesis was removed from the working unit B3, the workpiece was set, and cutting was performed based on the three-dimensional measurement data. Also, as in the case of three-dimensional measurement, when the back side was cut, the cutting process was reversed. The titanium crane obtained by the above method had an error within 30 m from the measurement model, and was more accurate than the open-loop method. In addition, three-dimensional measurement and cutting can be performed quickly by using two central processing units.
尚、 三次元移動を実現するために、 その駆動部について金型など を加工する機械と して一般的に用いられている NC工作機械等を採用 することも可能である。  In addition, in order to realize three-dimensional movement, it is also possible to employ an NC machine tool or the like, which is generally used as a machine for processing a die or the like for the drive unit.
計測加工装置用治具  Jig for measuring and processing equipment
次に本発明で好適に使用される計測乃至加工用治具に付いて説明 する。  Next, a measurement or processing jig suitably used in the present invention will be described.
図 19Aから図 19Dは、 図 4で示す装着部 41に互いに交換して装着 可能な切削 ドリル 19及び、 測定用プローブ 20を示す図である。  19A to 19D are views showing the cutting drill 19 and the measurement probe 20 which can be exchanged and mounted on the mounting portion 41 shown in FIG.
切削 ドリル 19及び、 測定用プローブ 20には、 それぞれ円筒形の連 結支持棒 191 が接続され、 その略中央に、 その円周に従って一様な 溝部 193 が設けられている。 装着部 41には、 連結支持棒 191 を挿入 する為の連結孔 192 が設けられ、 その内部に係止用突起 194 が 4方 に配置されている。 係止用突起 194 は、 連結支持棒 191 の侵入で、 一時的に外周方向に移動し、 溝部 193 が到達した時、 溝部 193 内に 突出して四方で係合する様な構造を有しているものとする。 又、 連 結支持棒 191 が抜けないように、 挿入装着時、 係止用突起 194 の状 態を固定する手段を更に設ける場合もある。  Each of the cutting drill 19 and the measurement probe 20 is connected with a cylindrical connecting support rod 191, and a substantially uniform groove 193 is provided substantially at the center thereof along the circumference thereof. The attachment portion 41 is provided with a connection hole 192 for inserting the connection support rod 191, and locking projections 194 are arranged in four directions inside the connection hole 192. The locking projection 194 has a structure in which it is temporarily moved in the outer peripheral direction by the intrusion of the connecting support rod 191, and projects into the groove 193 and engages on all sides when the groove 193 is reached. Shall be. In some cases, a means for fixing the state of the locking projection 194 at the time of insertion and mounting may be further provided so that the connection support rod 191 does not come off.
装着部、 切削用 ドリル 19及び測定用プローブ 20の取り付け部を図 19A、 図 19Bに示す。 図 19Aは、 切削用 ドリル 19と装着部 41とが装 着した時の図である。 図 19Bは、 測定用プローブと装着部 41が離れ た時の図である。  FIGS. 19A and 19B show the mounting portion, the mounting drill 19, and the mounting portion of the measurement probe 20. FIG. FIG. 19A is a diagram when the cutting drill 19 and the mounting portion 41 are mounted. FIG. 19B is a diagram when the measuring probe and the mounting portion 41 are separated.
測定用プローブ 20と切削用 ドリル 19の何れもが、 装着部 41と装着 するために同一形状を有しているものと し、 この装着部 41の構造を 図 4で示す支持台 17或いは回転用保持具 87に設けてもよい。 図 19D にその一例を示した。 この様に、 計測、 加工具等の作業具間の交換性、 さ らには、 モデ ル、 塊状物と、 作業具間の交換性を有するこ とにより、 様々な方向 の計測加工を可能と し、 より精度の高い計測乃至加工が可能となる 又塊状物、 又はモデルの切削方向等を多方向と し、 且つ複数の動 作を行わせるこ とが可能な構成と して、 図 20を示す。 1 7 , 1 7 ' が固 定治具であり、 塊状物、 モデル、 或いは切削用 ドリ ル、 測定用プロ 一ブ等を装着する方向が異なる他は同一構成を有している。 It is assumed that both the measurement probe 20 and the cutting drill 19 have the same shape to be mounted on the mounting portion 41, and the structure of the mounting portion 41 is shown in FIG. The holder 87 may be provided. Figure 19D shows an example. In this way, measurement and machining in various directions are possible by having interchangeability between work tools such as measurement and processing tools, and between models and lump objects. In addition, Fig. 20 shows a configuration that enables more accurate measurement or processing, and allows the cutting direction of a lump or a model to be multi-directional and allows multiple operations to be performed. Show. Reference numerals 17 and 17 'denote fixing jigs, which have the same configuration except that the direction in which a lump, a model, a cutting drill, a measuring probe, or the like is mounted is different.
この様に複数の固定治具を設けた場合次のような加工方法の一例 を示すこ とができる。  When a plurality of fixing jigs are provided in this manner, an example of the following processing method can be shown.
即ち、 まず、 計測モデルと して歯科治療に使用する石膏模型上で 即時重合レジンにて歯科補綴物を作成し、 取り付け治具に装着した 後固定治具 17に固定して 90 ° 毎に 360 ° 計測を行った。 次に、 固定 治具 1 7 ' に取り付け、 計測モデルの一面のみの測定を行い、 計五面 を計測した。 計測に引き続き、 純チタ ンの塊状物を取り付け治具に 装着した後固定治具 1 7に固定し、 モデルを測定したデータに従い、 切削加工を計測の場合と同様な手順で行い、 チタ ン製歯科補綴物を 得た。  First, a dental prosthesis was prepared using an instant polymerization resin on a gypsum model used for dental treatment as a measurement model, attached to a mounting jig, and then fixed to a fixing jig 17 at 360 ° every 90 °. ° Measurements were taken. Next, it was attached to the fixing jig 17 ', and only one side of the measurement model was measured, and a total of five sides were measured. Following the measurement, the pure titanium lump was attached to the mounting jig, fixed to the fixing jig 17 and the cutting process was performed in the same procedure as the measurement according to the data obtained by measuring the model. A dental prosthesis was obtained.
この様に、 モデルの様々な方向の計測及び加工が可能であり、 こ れら工程の精度の向上が図られるが、 固定治具の取り付け箇所 · 数 、 取り付け治具の回転角度は上記に限られる ものではな く 、 計測モ デルおよび加工物においても上記以外のものも存在する。  In this way, it is possible to measure and process the model in various directions and improve the accuracy of these processes.However, the number and location of the fixing jigs and the rotation angle of the mounting jigs are limited However, there are other measurement models and workpieces other than those described above.
今回の結果は、 三次元的な計測および加工を行う ことができた為 に、 製作された歯科補綴物の精度は以前の方法に比べて向上されて いた。 しかし、 計測から加工の際へのデータ補正処理を行ったこと で、 製作に要した時間は余り変わらなかった。  The results show that the accuracy of the manufactured dental prosthesis was improved compared to the previous method because three-dimensional measurement and processing could be performed. However, the data correction process from measurement to processing did not change much the time required for production.
更に計測乃至加工部の好ま しい一例を図 21に示す。 2 1 Aはモータ と ドリルを一体型にした加工体を示す。 21 1 は、 図 4 で示した装着 部 41と結合装着するための結合装着部であり、 凸部 194 が設けられ ている。 21 2 は、 モータであり、 外部からの電気供給により回転動 作を行う と共に電気制御信号を入力するこ とで位相制御等がされる 場合もある。 21 3 は切削用 ドリルであり、 切削対象となる塊状物の 材質、 硬度等でその強度、 歯型等は適宜調整される ものである。 21 4 は、 接続調整部であり、 モータ 212 と切削用 ドリ ル 213 の接続を 調整する箇所である。 尚この接続調整部 214 は、 通常、 固定されて おり、 微調整的、 前調整的な目的で使用する為の部分である。 Further, a preferable example of the measurement or processing section is shown in FIG. 2 1 A is motor The figure shows a machined body with an integrated drill. Reference numeral 211 denotes a coupling mounting portion for coupling and mounting with the mounting portion 41 shown in FIG. 4, and is provided with a convex portion 194. Reference numeral 212 denotes a motor, which performs a rotation operation by supplying electric power from the outside, and may perform a phase control or the like by inputting an electric control signal. Reference numeral 213 denotes a cutting drill, whose strength, tooth shape, and the like are appropriately adjusted depending on the material, hardness, and the like of the lump to be cut. Reference numeral 214 denotes a connection adjustment unit that adjusts the connection between the motor 212 and the cutting drill 213. The connection adjusting section 214 is usually fixed, and is used for fine adjustment and pre-adjustment purposes.
21 Bは、 アナログ接触式測定子であり、 加工体 21 Aの結合装着部 2 1 1 と同一の形状、 大きさを有する ものであって装着部 41と装着可 能な構成を有する。 215 は、 接触部であって、 モデルと接触させる 為の部分である。 21 6 は、 変換部であり、 接触部 21 5 とモデルとの 接触によって、 生じる機械的変位量を電気信号に変換する為の部分 ^ある。  Reference numeral 21B denotes an analog contact-type probe, which has the same shape and size as the coupling mounting portion 211 of the workpiece 21A, and has a configuration that can be mounted to the mounting portion 41. Reference numeral 215 denotes a contact portion, which is a portion for making contact with the model. Reference numeral 216 denotes a conversion unit, which is a part for converting the amount of mechanical displacement generated by the contact between the contact unit 215 and the model into an electric signal.
21 Aで示す一体型加工体と、 21 Bで示すアナログ接触式測定子と は、 上述した通り、 装着部 41に装着可能であるが、 更に、 少な く と も装着部に装着した際、 両者の長さ 217 がー致する様に構成されて いるものである。 この長さ 217 とは、 装着状態での、 位置上な長さ であり、 取り外した際の長さのみをいう ものではない。 従って取り 外した際の長さが異なっていても、 装着時の長さが一致していれば よいものであり、 又、 装着時、 異なる長さであっても、 整数倍、 そ の他数学的相関性を有する状態等、 計算的把握が可能な長さ関係で あれば、 数値データに基づく演算加工を行う本願発明においては、 両者の長さは、 一致する ものとみなすものである。  The integrated workpiece shown at 21 A and the analog contact type probe shown at 21 B can be mounted on the mounting part 41 as described above, but when they are mounted on the mounting part at least, The length 217 is designed to match. The length 217 is a positional length in a mounted state, and is not limited to a length when the head is removed. Therefore, even if the lengths are different when removed, it is only necessary that the lengths at the time of mounting match, and at the time of mounting, even if the lengths are different, integer multiples and other mathematics In the present invention that performs arithmetic processing based on numerical data as long as it has a length relationship that can be grasped computationally, such as a state having a statistical correlation, both lengths are considered to be the same.
更に計測乃至加工部の他の例を図 22に示す。  FIG. 22 shows another example of the measurement or processing unit.
図 22 A及び図 22 Bは、 図 21で示した連結支持棒 1 91 を側面に配置 したものである。 連結支持棒 191 、 装着部 41の接続関係の一例を図Figures 22A and 22B show the connecting support rod 191 shown in Figure 21 on the side. It was done. Figure shows an example of the connection relationship between the connecting support rod 191 and the mounting part 41
23 Aから図 23 Dに示す。 図 23Aは、 装着部を上面から見た平面図で あり、 図 23Bは、 側面図である。 192 は、 結合用孔であり、 内部中 央に、 左右へ弾力性を有する突起 194 が四方に配置されている。 22 4 は、 補助突起であり、 装着部の対角線方向に 4 箇所に配置されて いる。 補助突起 224 は、 測定子や、 切削 ド リ ル等の正確な位置だし の為の突起であり、 更に 90 ° ごとの配置により、 切削 ドリ ルの方向 を 90° 変更させる角度の位置だしを可能と もする (図 25参照) 。 図 23Cは、 連結支持棒 191 を含む周辺を上面から見た図であり、 図 23Dは側面図である。 191 は、 連結支持棒であり、 側面に溝部 19 3 がー様に配置されている。 連結板 226 上に穿設された 225 は補助 用孔であり、 連結板 226 の対角線方向に 4箇所に設けられている。 両者の結合は、 連結支持棒 191 が結合用孔 192 に挿入される こ とに より、 溝部 193 と凸部 194 が 4方で結合し、 且つ補助用孔 225 と補 助突起 224 が結合し、 角度に対する位置だしが行われる。 Figures 23A to 23D show. FIG. 23A is a plan view of the mounting portion as viewed from above, and FIG. 23B is a side view. Reference numeral 192 denotes a coupling hole, and projections 194 having elasticity to the left and right are arranged in four directions in the center of the inside. 22 4 are auxiliary projections, which are arranged at four positions in a diagonal direction of the mounting portion. The auxiliary projection 224 is a projection for accurate positioning of the contact point, cutting drill, etc., and can be positioned at an angle to change the direction of the cutting drill by 90 ° by arranging it at 90 ° intervals. (See Figure 25). FIG. 23C is a top view of the periphery including the connection support rod 191, and FIG. 23D is a side view. Reference numeral 191 denotes a connecting support rod, and a groove portion 193 is arranged on the side surface. 225 formed on the connecting plate 226 are auxiliary holes, and are provided at four locations in the diagonal direction of the connecting plate 226. The coupling between the two is performed by inserting the connecting support rod 191 into the coupling hole 192, so that the groove portion 193 and the convex portion 194 are coupled in four directions, and the auxiliary hole 225 and the auxiliary projection 224 are coupled. Positioning relative to the angle is performed.
凸部 194 は、 その末端後部において、 先端に傾斜を有する固定支 持体 221 と接触している。 固定支持体 221 の略中央部には、 内面に ネジ切りが施された内ネジ部 227 が設けられ、 その内ネ ジ部 227 と 嚙み合い回転するこ とで、 固定支持体 221 を図 23Bからすれば、 上 下に摺動させる為の外面にネジ切りがされ、 先端に傘歯上のギア 22 9 を設けた外ネジ部 228 が設けられている。  The convex portion 194 is in contact with a fixed support body 221 having a slope at the front end at the rear end portion thereof. At a substantially central portion of the fixed support 221, there is provided an internal thread portion 227 having an internally threaded portion, and the fixed support 221 is rotated by meshing with the internal thread portion 227. In view of this, an external thread portion 228 having a threaded outer surface for sliding up and down and a beveled gear 229 at the end is provided.
更にこのギア 229 と嚙み合う為の傘歯上のギア 222 を有し、 外部 へ延びたものであって、 容易手動可能性を有する把持部 223 を有す る調整体 230 が形成されている。 調整体 230 は、 用事連結使用され ればよいものであって、 用事以外は取り外されるこ とが好ま しいも のである。  Further, there is formed an adjusting body 230 having a beveled gear 222 for engaging with the gear 229 and extending to the outside and having a grip portion 223 having easy manual operation. . The coordinator 230 is only required to be used for errand connection, and is preferably removed except for errands.
その動作例について説明する。 連結支持棒 191 を、 連結孔 192 に 挿入し、 補助用孔 225 と補助突起 224 とが結合し、 且つ溝部 1 93 と 凸部 1 94 の部分が一致した後、 調整体 230 のギア 222 とギア 229 を 接続させる。 次に、 把持部 223 を回転させる。 この回転は、 ギア 22 2 、 ギア 229 を経て、 外ネジ部 228 を回転させる。 外ネ ジ部 228 の 外ネジと固定支持体 22 1 の内ネジ 227 が嚙み合った状態であるため 、 外ネジ部 228 の回転により、 内ネジ部 227 を含めた固定支持体 22 1 が上方へ移動する、 固定支持体 221 と凸部 1 94 とが接触している 部分は、 傾斜を有する為、 固定支持体 221 の上方への移動と共にそ の傾斜が浅く なり、 凸部を連結孔 1 92 の中心方向へ移動させ、 連結 支持棒 191 の溝部 1 93 と凸部 194 が係合し固定状態が形成される。 離脱時、 把持部 223 を反対方向に回すことにより、 固定支持体 22 1 が下方へ移動し、 固定支持体 22 1 と凸部 1 94 が接触している先端 面の傾斜部が深く なるこ とで、 凸部 1 94 の内方向への押圧固定力が 減少し、 溝部 1 93 と凸部 1 94 の係合は解除される ものである。 An example of the operation will be described. Connect the connecting support rod 191 to the connecting hole 192 After the insertion, the auxiliary holes 225 and the auxiliary protrusions 224 are connected, and the grooves 193 and the convex portions 194 are aligned, and then the gear 222 and the gear 229 of the adjusting body 230 are connected. Next, the grip part 223 is rotated. This rotation causes the external thread portion 228 to rotate via the gear 22 2 and the gear 229. Since the outer screw of the outer screw portion 228 and the inner screw 227 of the fixed support 221 are engaged with each other, the rotation of the outer screw portion 228 causes the fixed support 221 including the inner screw portion 227 to move upward. The portion where the fixed support 221 and the convex portion 194 are in contact with each other has a slope, so that the slope becomes shallower as the fixed support 221 moves upward and the convex portion is connected to the connection hole 1. 92, the groove 193 of the connecting support rod 191 engages with the projection 194 to form a fixed state. At the time of disengagement, by rotating the gripping portion 223 in the opposite direction, the fixed support 221 moves downward, and the inclined portion of the tip surface where the fixed support 221 and the convex portion 194 are in contact becomes deeper. As a result, the pressing and fixing force of the convex portion 194 in the inward direction decreases, and the engagement between the groove portion 193 and the convex portion 194 is released.
加工体を装着部に装着した際の側面から見た図を図 24に示す。 又、 結合接続部 2 1 1 と装着部 4 1は、 両者共 4 角形を有し、 同位置 に補助用孔 225 と補助突起 224 とが配置されているこ とから、 両者 の結合方向は 4通り可能である。 その一例を図 25に示す。 この様に 、 加工により得られる物体によっては、 図 25で示す構成が好適に利 用される ものである。 尚、 補助用突起を対象性を有する多角形の対 角線方向に配置すれば、 様々な方向に加工体又は計測用のアナログ 接触式測定子を配置できう るものである。  Fig. 24 shows a side view of the workpiece when it is mounted on the mounting part. Also, since the connecting connection portion 211 and the mounting portion 41 both have a quadrangular shape, and the auxiliary holes 225 and the auxiliary projections 224 are arranged at the same positions, the connecting direction of the two is four. It is possible. An example is shown in FIG. As described above, depending on the object obtained by the processing, the configuration shown in FIG. 25 is suitably used. By arranging the auxiliary protrusions in the diagonal direction of the symmetrical polygon, it is possible to arrange the workpiece or the analog contact measuring element for measurement in various directions.
又、 装着部 4 1は、 図 4の回転治具用保持具 78にも装着される もの であるから、 回転治具用保持具 78に加工体、 計測アナログ接触式測 定子を装着し、 図 4で示す装着部 4 1が装着されている箇所に塊状物 、 モデル等を装着する場合もある。  Further, since the mounting portion 41 is also mounted on the holder 78 for the rotary jig shown in FIG. 4, a workpiece and a measurement analog contact type measuring element are mounted on the holder 78 for the rotary jig. In some cases, a lump, a model, or the like may be attached to the place where the attachment portion 41 indicated by 4 is attached.
尚図 22 Bは、 アナログ接触式測定子であり、 結合接続部 226 を側 面に配置した他は図 22 Aと同一の構成を有する ものであり、 その説 明は省略した。 Note that Fig. 22B shows an analog contact type probe with the coupling connection 226 on the side. Except for the arrangement on the surface, it has the same configuration as that of FIG. 22A, and the description thereof is omitted.
ベース治具および取り付け治具の取り付け箇所 · 数、 また、 取り 付け治具の回転角度、 計測および加工機器の設置箇所は上記に限ら れる ものではなく 、 計測モデルおよび加工物においても上記以外の ものも存在する。  The mounting location and number of the base jig and the mounting jig, the rotation angle of the mounting jig, and the installation location of the measurement and processing equipment are not limited to those described above. Also exists.
以上の様に計測および加工機が離脱着式になったこ とで、 三次元 的な計測および加工は勿論のこ と、 加工の際に加工機器に付け替え るこ とで計測機器への影響を無く し、 モータ と ドリ ルを一体型に し たこ と と併せてデータ補正を省略するこ とができた。 これらのこ と により、 作成されたチタ ン製歯科捕辍物の精度は、 今までの物と比 較してみても数段向上され、 製作時間に関しても従来より大幅に短 縮された。 また、 計測および加工機器を付け替えるこ とで一台の本 体で補え、 設備投資削減ができた。  As described above, the measurement and processing machines have become detachable, so there is no effect on measurement equipment by replacing them with processing equipment during processing as well as three-dimensional measurement and processing. In addition, the data correction can be omitted in addition to the integrated motor and drill. As a result, the accuracy of the titanium dental capture material thus created has been improved by several steps as compared with conventional ones, and the production time has been significantly reduced. In addition, by replacing measurement and processing equipment, a single unit could be used to compensate for this, reducing capital investment.
図 21、 図 22 A、 図 22 Bで示すような、 一体的構成を有する加工部 を用いた場合、 加工の途中で何らかの破損、 故障等が生じ一時中断 した場合でも、 単に交換するだけで、 補正処理な しで切削加工を再 開でき、 最初からの加工および補正処理を省略しても精度の高い物 が加工可能であることを示唆するこ とができる ものである。  When using a machined part having an integrated structure as shown in Fig. 21, Fig. 22A, Fig. 22B, even if any breakage, failure, etc. occurs during machining and it is temporarily stopped, simply replace it. The cutting process can be resumed without correction processing, and it can be suggested that a highly accurate object can be processed even if the processing and correction processing are omitted from the beginning.
尚、 ドリ ルの摩耗および破損した場合の対処に関して上記のよう に行ったが、 方法はこれだけに限る ものではない。  Although the drills were dealt with in the case of wear and breakage as described above, the method is not limited to this.
以上のように、 本発明においては、 製作しょう とするモデルの複 製或いはそれに関連した形状を有する一部複製を製作するこ とを可 能とする ものであって、 モデルの計測時に於いては、 高精度の計測 を可能と し、 加工時に於いては、 その計測データに基づいて従来の 铸造法では製造が困難であつたチタ ン、 セラ ミ ッ クス歯科補綴物等 の塊状物を切削加工する こ とで、 精度が高い複製物等の製作を可能 と し、 铸造法の精度に勝ると も劣らない精度にて製造できるもので あり、 歯科補綴物製造に掛かる工数、 人手を著し く 省力化を可能と する。 As described above, in the present invention, it is possible to make a copy of a model to be manufactured or a partial copy having a shape related to the model. It enables high-precision measurement, and at the time of machining, it uses the measured data to cut massive materials such as titanium and ceramic dental prostheses that were difficult to manufacture using conventional manufacturing methods. By doing so, it is possible to produce highly accurate duplicates etc. However, it can be manufactured with an accuracy not less than that of the construction method, and the man-hours and man-hours required for the production of dental prostheses are remarkably saved.
このことによって、 歯科専門家はより知能的な作業に従事する こ とが可能となり、 歯科捕綴物の品質の向上に寄与するという効果も 期待できる。  This makes it possible for dental professionals to engage in more intelligent work, which is expected to contribute to improving the quality of dental prostheses.
更に、 本発明を詳細に説明したが、 この分野の熟練者には、 本発 明の範囲を逸脱するこ となく 、 この分野の専門家に周知された同等 の技法及び同等の材料をこの方法に利用出来得る事が認識されよう 本発明の放射状に三次元計測又は三次元加工を施すこ とにより、 円形に近い形状の物体での周囲部の形状を詳細に計測又は加工が得 りれる。  Additionally, while the present invention has been described in detail, those skilled in the art will be able to use equivalent techniques and materials known to those skilled in the art without departing from the scope of the invention. By performing the three-dimensional measurement or the three-dimensional processing on the radial shape of the present invention, it is possible to measure or process the shape of the peripheral portion of a nearly circular object in detail.
本発明のク ローズ ドループ方式制御による三次元計測及び三次元 加工の方法及び同方法を用いた装置は、 上述したように現状のォー プンループ方式制御より も、 三次元的な移動量を確認しながら行う ために、 精度の向上が図られる。  As described above, the method of three-dimensional measurement and three-dimensional processing by the closed-loop control and the apparatus using the same method of the present invention can confirm the three-dimensional movement amount more than the current open-loop control as described above. While performing, the accuracy is improved.
また、 複数の中央演算処理装置を使用するこ とにより、 高速にク ローズ ドループ方式制御による医療用材又は歯科用材の三次元計測 及び三次元加工が行う ことができる。  In addition, by using a plurality of central processing units, three-dimensional measurement and three-dimensional processing of medical or dental materials by closed-loop control can be performed at high speed.
又、 モデルの複製等の加工が三次元的に行え、 補正処理の省略が 可能になったこ とで、 時間の短縮および精度の向上が伺えた。 また 、 加工が中断されてからの再加工が可能になった。 更に、 多彩な計 測および加工方法が一台の装置で実現できるなど様々な効果を有す るものである。  In addition, since processing such as model duplication can be performed three-dimensionally, and correction processing can be omitted, shortening of time and improvement of accuracy can be said. In addition, reprocessing after the processing was interrupted became possible. Further, the present invention has various effects such as various measurement and processing methods can be realized by one apparatus.
他の実施例  Other embodiments
さ らに、 塊状物切削加工方法及び同方法を用いた装置の実施例に ついて図 26から図 3 1を参照して説明する。 In addition, examples of the method for cutting a lump and an apparatus using the method are described. This will be described with reference to FIGS. 26 to 31.
この実施例で使用する切削装置は、 金型などを加工する機械と し て用いられている NC工作機械を基本と している。 しかし、 一般の金 型などを切削する NC工作機械は大型であり、 切削精度も医療用材又 は歯科用材に適していない。 そのため、 図 26に示す切削工作機械 30 3 は、 小型化に且つ切削精度も改良している。 図 26の切削加工工作 機械 303 は、 X, Υ , Z軸の三軸で三次元的に医療用材又は歯科用 材の塊状物を切削加工する。 各軸の構成は、 Y軸テーブル 305 に X 軸テーブル 304 が乗っており、 その上に塊状物を取り付け、 Z軸テ —ブル 306 にスピン ドルモータ 308 及び切削 ドリ ル 309 が装着して いる構造である。 つま り、 塊状物が二次元 (平面) に移動し、 高さ を切削 ドリルで補う形をと つている。 各々の軸の動力に ACサ一ボモ —タ 307 を使用 し、 付属のエンコーダにてフ ィ ー ドバッ ク制御を行 つている。 また切削 ドリ ルの動力と してスピン ドルモータ 308 を使 用 した。 各々の動作は、 この切削加工工作機械 303 をパソ コ ン 302 に接続して、 パソコ ン 302 にて制御を行った。 パソコ ン 302 とは、 汎用又は専用のパーソナルコ ンピュータを示すが、 その他、 専用制 御機器を使用する場合もある。  The cutting device used in this embodiment is based on an NC machine tool used as a machine for processing a die and the like. However, NC machine tools that cut ordinary dies and the like are large, and their cutting accuracy is not suitable for medical or dental materials. Therefore, the cutting machine tool 303 shown in FIG. 26 has a reduced size and improved cutting accuracy. The cutting machine tool 303 shown in FIG. 26 three-dimensionally cuts a lump of medical material or dental material along three axes of X, ,, and Z axes. The configuration of each axis is such that an X-axis table 304 is mounted on a Y-axis table 305, a lump is mounted on it, and a spindle motor 308 and a cutting drill 309 are mounted on a Z-axis table 306. is there. In other words, the lump moves in two dimensions (plane), and its height is compensated for by a cutting drill. An AC servomotor 307 is used for the power of each axis, and feedback control is performed by the attached encoder. The spindle motor 308 was used as the power for the cutting drill. In each operation, the cutting machine tool 303 was connected to the personal computer 302, and the control was performed by the personal computer 302. The personal computer 302 indicates a general-purpose or special-purpose personal computer. In addition, a special-purpose control device may be used.
また、 本発明の目的である液中切削加工が施せるように、 この切 削加工工作機械 303 の X軸テーブル 304 上に液槽 31 0 を装着した。 さ らに液槽 3 1 0 の中に塊状物を固定する回転治具 3 1 3 を取付け、 塊 状物を固定した。 X軸テーブル 304 に液槽 3 10 を装着するこ とによ り、 塊状物と同様に二次元的な移動を可能と した。  In addition, a liquid tank 310 was mounted on the X-axis table 304 of the cutting machine tool 303 so that the submerged cutting as the object of the present invention can be performed. In addition, a rotating jig 3 13 for fixing the lump was mounted in the liquid tank 310 to fix the lump. By attaching the liquid tank 3 10 to the X-axis table 304, two-dimensional movement was possible as with the lump.
切削対象物の形状データの作成  Creation of shape data of cutting object
今回、 切削加工する歯科補綴物 3 1 1 の形状は、 歯科治療に使用す る石膏模型上で即時重合レジンにて歯科補綴物のモデルを作成した 。 このモデルを接触式の三次元デジタイザ一を用いて、 パソ コ ンに 形状を入力し、 数値化を行い予め又は一時的に又は必要に応じてデ 一夕と して記録した。 尚、 形状データの作成手段については、 これ に限る ものではない。 This time, for the shape of the dental prosthesis 311 to be cut, a model of the dental prosthesis was created using an instant polymerization resin on a gypsum model used for dental treatment. This model is connected to a personal computer using a contact type 3D digitizer. The shape was input, digitized, and recorded in advance, temporarily or as needed. Note that the means for creating shape data is not limited to this.
切削加工  Cutting
次に、 パソ コ ン上でこのデータを切削加工工作機械用にデータを 変換し、 切削 ドリ ルの刃径のオフセッ ト計算を行い、 そのデータを 元にパソ コ ン 302 で切削加工工作機械 303 の一連の動作を制御し、 切削加工の材料と して、 歯科補綴物に利用される純チタ ンを用い、 以下の工程により切削した。 ( 1 ) 上記純チタ ン製の塊状物を回転 治具 313 上に固定する。 ( 2 ) 液槽 310 に水を 312 の位置まで注ぐ 。 ( 3 ) 水中に没した回転治具 313 上の塊状物の片面に対し切削 ド リル 309 により切削加工を行う。 切削の際、 パソ コ ン 302 から送ら れてく るデータに基づき、 各スピン ドルモータが回転するこ とで X , Y軸方向に液槽 310 が移動し、 更に Z軸方向に切削 ドリ ル 309 が 移動する。 ( 4 ) 片面の切削が完了した後又は所定の切削が完了し た後、 更に回転治具 313 を液槽 310 の状態を変えずに回転させ、 回 転した塊状物の裏面を同様に水中で切削加工を行う。  Next, this data is converted on a personal computer into data for a cutting machine tool, the offset of the diameter of the cutting drill is calculated, and based on the data, the cutting machine tool on a personal computer 302 is used. The series of operations were controlled, and pure titanium used for dental prostheses was used as the material for cutting, and cutting was performed in the following steps. (1) The lump of pure titanium is fixed on the rotating jig 313. (2) Pour water into liquid tank 310 up to position 312. (3) One side of the lump on the rotating jig 313 submerged in water is cut by a cutting drill 309. At the time of cutting, based on the data sent from the personal computer 302, the liquid tank 310 moves in the X and Y axis directions by rotating each spindle motor, and the cutting drill 309 moves in the Z axis direction. I do. (4) After the cutting of one side is completed or the predetermined cutting is completed, the rotating jig 313 is further rotated without changing the state of the liquid tank 310, and the back surface of the rotated mass is similarly put in water. Perform cutting.
水中で切削加工を行ったので、 冷却が十分に施され、 即時重合レ ジ ンのモデルと仕上がった純チタ ンの歯科補綴物の誤差が 20〃 m以 内に収ま り、 切削 ドリルの刃も従来より も長時間持つようになった 。 更に、 チタ ンの切り子が液槽 310 の底に蓄積されており、 本装置 より液槽を取り外し、 液槽の水を濾過器に移すこ とにより、 切り子 が簡単に回収され、 清掃作業が軽減された。 この例示にて、 チタ ン 製歯科補綴物を NC工作機械の改良機で切削加工を行ったが、 医療用 材又は歯科用材が液中切削できれば、 これに限る ものではない。  Since the cutting process was carried out in water, the cooling was sufficient and the error between the model of the instant polymerization resin and the finished pure titanium dental prosthesis was within 20 m, and the cutting drill bit was also used. It has a longer duration than before. Furthermore, titanium chips are accumulated at the bottom of the liquid tank 310, and the liquid tank is removed from the device and the water in the liquid tank is transferred to a filter, so that the chips can be easily collected and cleaning work is reduced. Was done. In this example, a titanium dental prosthesis was cut by an improved NC machine tool. However, the present invention is not limited to this as long as a medical material or a dental material can be cut in liquid.
変化例  Example of change
長時間に及ぶ切削加工により、 液温の上昇を抑え、 且つ温度安定 化を図るために、 図 26の実施例で使用 した液槽付属の切削加工工作 機械 303 に、 図 28に示す冷却水恒温循環機 3 1 4 を取り付けた。 図 28 及び図 30に示す冷却水恒温循環機 31 4 の機構は、 呼び水ポンプ 33 1 にて液槽の液体を機械に取り入れ、 温度を制御し、 再び送出 しボン プ 332 にて液槽へ戻す方法である。 液体を循環させる途中にバッチ 326 があり、 そのバッチ 326 内に 600Wのパイプヒータ 327 、 冷媒 管 328 が取り付けられている 1 20Wの冷凍機用口一タ リ 一コ ンプレ ッサ 329 及び熱電対 330 を設置した。 このパイプヒータ 327 、 ロー タ リ 一コ ンプレッサ 329 、 熱電対 330 、 呼び水ポンプ 33 1 及び送出 しポンプ 332 を冷却水恒温循環機の制御用回路基盤 333 が制御して 、 液体を加温及び加冷却し温度を一定に保ち続ける。 温度設定は - 10〜80°Cで、 0. 1 °C単位である。 この例示に使用 した冷却水恒温循 環機は上記の各部構成が一体になつた機器である。 この冷却水恒温 循環機に切り子や異物が流入しないよう にフ ィ ルタ 322 を設置した 。 また液体の流速の向上及び液体噴出を切削点に合わせるために、 液槽の流体噴出箇所にノ ズル 323 を取り付けた。 このノ ズル 323 に より、 切削点付着する切り子の除去が図られる。 尚、 この港流で発 生する水しぶきを防ぐために、 着脱式の蓋 325 を Z軸テーブルに取 り付けた。 今回実施した例は、 液体に水を使い、 温度を 30 °Cに安定 化させ、 漼流を行いながら純チタ ン製歯科補綴物を実施例 1 と同様 の方法で切削加工を行った。 温度制御装置により終始温度の一定化 が図れ、 即時重合レジンの計測モデルと仕上がったチタ ン製歯科捕 綴物の誤差が 20 mに抑えられた。 さ らに、 噴出する水により切削 点に付着する切り子が除去できるようになり、 切削 ドリルに対する 負荷が軽減された。 この例示以外に、 液槽の温度管理及び液体港流 が施せて、 医療用材又は歯科用材が液中切削できれば、 これに限る ものではない。 変化例 Long-term cutting suppresses rise in liquid temperature and stabilizes temperature In order to achieve this, the cooling water constant temperature circulator 314 shown in Fig. 28 was attached to the cutting machine tool 303 attached to the liquid tank used in the embodiment shown in Fig. 26. The mechanism of the cooling water constant temperature circulator 314 shown in Fig. 28 and Fig. 30 uses the priming pump 331 to take the liquid in the liquid tank into the machine, controls the temperature, sends it out again, and returns it to the liquid tank with the pump 332. Is the way. There is a batch 326 in the middle of circulating the liquid, in which a 600-W pipe heater 327 and a refrigerant pipe 328 are attached. 1 A 20-W chiller outlet compressor 329 and a thermocouple 330 Was installed. The pipe heater 327, the rotary compressor 329, the thermocouple 330, the priming pump 331 and the delivery pump 332 are controlled by the control circuit board 333 of the cooling water constant temperature circulator to heat and cool the liquid. And keep the temperature constant. The temperature setting is -10 to 80 ° C, in 0.1 ° C units. The cooling water constant temperature circulator used in this example is an apparatus in which the above-described components are integrated. A filter 322 was installed to prevent chips and foreign matter from flowing into the cooling water constant temperature circulator. In addition, nozzle 323 was installed at the fluid discharge point of the liquid tank to improve the liquid flow velocity and adjust the liquid discharge to the cutting point. By using the nozzle 323, a cutting piece attached to a cutting point can be removed. Note that a removable lid 325 was attached to the Z-axis table in order to prevent splashes from occurring in this port flow. In this example, water was used as the liquid, the temperature was stabilized at 30 ° C, and pure titanium dental prosthesis was cut in the same manner as in Example 1 while circulating air. The temperature controller kept the temperature constant throughout, and the error between the measurement model for the instantly polymerized resin and the finished titanium dental restoration was reduced to 20 m. In addition, the jets of water can remove the chips attached to the cutting point, reducing the load on the cutting drill. Other than this example, as long as the temperature control of the liquid tank and the liquid port flow can be performed and the medical material or the dental material can be cut in the liquid, it is not limited to this. Example of change
切削加工時に発生する切り子を回収するために、 前記の実施例で 使用 した液槽付属の切削加工工作機械 303 に、 図 31に示す液交換及 び切り子回収装置を取り付け、 歯科補綴物を図 26の実施例と同様に 切削加工を行った。 液交換及び切り子回収の機構は次の通りである 。 液槽 310 への液体供給については、 液体供給用ポ リ タ ンク 334 の 液体をポンプ 336 で液体供給用チューブ 337 を経由 して液槽 3 1 0 に注水する。 液体が一定量に達すると液体供給ポンプ停止用フ ロー ト式レベルスィ ッチ 339 でポンプ 336 の電源をオフにし、 液体の供 給を停止する。 廃液の排出については、 手動式のバルブ 341 を開き 、 廃液用チューブ 338 を経由 して廃液用ポ リ タ ンク 335 に流した。 途中の着脱式フ ィ ルタ一 342 を経由するこ とによって、 切削加工時 に発生した切り子が回収される。 また、 液槽が空の状態になると液 体供給ポンプ可動用フロー ト式レベルスィ ッチ 340 でポンプ 336 の 電源がオンになり、 液槽に液体が供給される。 上記の装置にて、 液 体に水を使用 し、 チタ ンにて歯科補綴物を切削加工を行った。 切削 加工終了後、 廃液を排出するためのバルブを開けたと ころ、 確実に 切り子が回収され、 自動的に水が液槽に供給された。 そのため液交 換及び清掃作業が簡便になった。 この例示以外に、 切削切り子の回 収及び液体の交換が施せて、 医療用材又は歯科用材が液中切削でき れば、 これに限る ものではない。  In order to collect the facets generated during the cutting process, the cutting machine tool 303 attached to the liquid tank used in the above embodiment was equipped with the liquid exchange and facet recovery device shown in Fig. 31. Cutting was performed in the same manner as in the example of (1). The mechanism of liquid exchange and chip recovery is as follows. As for the liquid supply to the liquid tank 310, the liquid in the liquid supply port 334 is injected into the liquid tank 310 by the pump 336 via the liquid supply tube 337. When the liquid reaches a certain level, the pump 336 is turned off by the liquid supply pump stoppage float type level switch 339, and the liquid supply is stopped. Regarding the discharge of the waste liquid, the manual valve 341 was opened, and the waste liquid was discharged to the waste liquid tank 335 via the waste liquid tube 338. By passing through the detachable filter 342 on the way, the cutting pieces generated during the cutting process are collected. When the liquid tank is empty, the power of the pump 336 is turned on by the float type level switch 340 for moving the liquid supply pump, and the liquid is supplied to the liquid tank. Dental prosthesis was cut with titanium by using water as the liquid with the above device. After the cutting operation, the valve for draining the waste liquid was opened, and the cutting chips were reliably collected and water was automatically supplied to the liquid tank. Therefore, liquid exchange and cleaning work became simple. Other than this example, the present invention is not limited to this as long as the medical cutting tool or the dental tool can be cut in liquid by recovering the cutting face and exchanging the liquid.
以上のよう に、 本発明の医療用材又は歯科用材の液中での切削加 ェ方法及び同方法を用いた装置は、 切削 ドリ ルや医療用材又は歯科 用材の塊状物の冷却が確実に施されるため、 ドリ ルや塊状物の破損 を防ぎ、 精度の良い医療用材又は歯科用材が得られるようになる。 また、 医療用材又は歯科用材の塊状物から発生し、 飛散する切り子 が容易に回収を行う こ とができるために、 切削加工の作業終了後に 発生する機械清掃作業が簡便になる。 As described above, the method for cutting and applying a medical material or dental material in a liquid of the present invention and the apparatus using the method ensure that a cutting drill or a mass of medical or dental material is cooled. As a result, drills and lumps are prevented from being damaged, and highly accurate medical or dental materials can be obtained. In addition, since cutting pieces generated from lumps of medical or dental materials and scattered can be easily collected, after cutting work is completed, The resulting machine cleaning work is simplified.

Claims

請 求 の 範 囲 The scope of the claims
1. 目的物の形状をデータに変換する変換手段と、 前記変換手段 で得られたデータに基づき塊状物を加工するための加工手段とより なる計測及び加工システム。 1. A measurement and processing system comprising a conversion unit for converting the shape of an object into data, and a processing unit for processing a lump based on the data obtained by the conversion unit.
2. 前記変換手段及び前記加工手段の一部又は全部を同一乃至類 似の駆動手段によつて駆動させる請求項 1 に記載の計測及び加工シ ステム。  2. The measurement and processing system according to claim 1, wherein a part or all of the conversion means and the processing means are driven by the same or similar driving means.
3. 前記変換手段は、 目的物の形状を示すモデルを形成した後、 前記モデルをデータに変換するものであって、 前記モデルが即時重 合部材である請求項 1 に記載の計測及び加工システム。  3. The measurement and processing system according to claim 1, wherein the conversion unit converts the model into data after forming a model indicating a shape of an object, and the model is an immediate overlapping member. .
4. 前記変換手段は、 モデル乃至塊状物を適時回転させて計測乃 至加工する請求項 1 に記載の計測及び加工システム。  4. The measurement and processing system according to claim 1, wherein the conversion unit rotates the model or the block as necessary to perform the measurement and processing.
5. 前記モデルは、 歯牙状態を印象材により印象採得し印象用石 膏にて歯牙の複製を取ることで得られる請求項 1 に記載の計測及び 加工システム。  5. The measurement and processing system according to claim 1, wherein the model is obtained by taking an impression of a tooth state with an impression material and copying the tooth with an impression gypsum.
6. 前記加工手段は粗切削と仕上げ切削の 2つの工程を有する請 求項 1 に記載の計測及び加工システム。  6. The measurement and processing system according to claim 1, wherein the processing means has two steps of rough cutting and finish cutting.
7. 目的物の計測と塊状物の切削加工を同時に行うためのリ ンク 機構を有し、 当該リ ンク機構により自動ならい加工を行う計測及び 加工システム。  7. A measurement and processing system that has a link mechanism for simultaneously measuring the target object and cutting the lump, and performs automatic tracing using the link mechanism.
8. 目的物の形状を放射状に計測してデータ化し、 当該データに 基づいて塊状物を加工することを特徴とする計測及び加工方法。  8. A measurement and processing method characterized by radially measuring the shape of an object and converting it into data, and processing a lump based on the data.
9. 目的物の形状に対し、 放射状に分割し、 その分割した部分を 平行に計測してデータ化し、 当該データに基づいて塊状物を加工す る請求項 8 に記載の計測及び加工方法。  9. The measurement and processing method according to claim 8, wherein the object is divided radially into a shape, the divided part is measured in parallel to generate data, and the lump is processed based on the data.
10. 計測面乃至加工面を同心円上に分割し、 同心円ごとに計測又 は加工するこ とを更に設けた請求項 8 に記載の放射状に計測又は加 ェする方法。 10. Divide the measurement surface or processing surface on concentric circles, and 9. The method for radially measuring or adding according to claim 8, further comprising processing.
1 1 . ク ローズ ドループ制御による計測及び加工を行う方法及び同 方法を用いた装置。  1 1. A method for measuring and processing by closed-loop control and an apparatus using the method.
1 2. 目的物の形状を測定する形状測定手段、 前記形状測定手段の 動作に起因するデータを検出する検出手段、 前記検出手段の検出デ 一夕に基づき前記形状測定手段の測定動作を調整する調整手段より なる請求項 1 1に記載の測定方法及び同方法を用いた装置。  1 2. Shape measuring means for measuring the shape of the object, detecting means for detecting data resulting from the operation of the shape measuring means, and adjusting the measuring operation of the shape measuring means based on the detection data of the detecting means. 12. The measuring method according to claim 11, comprising an adjusting means, and an apparatus using the method.
13. 塊状物を目的物の形状を測定した測定データに基づき加工す る加工手段、 前記加工手段の加工動作に起因するデータを検出する 検出手段、 前記検出手段の検出データに基づき前記加工手段の加工 動作を調整する調整手段よりなる請求項 1 1に記載の加工方法及び同 方法を用いた装置。  13. Processing means for processing the lump based on the measurement data obtained by measuring the shape of the object; detecting means for detecting data resulting from the processing operation of the processing means; 12. The processing method according to claim 11, comprising an adjusting means for adjusting the processing operation, and an apparatus using the method.
1 4. 単数又は複数の中央演算処理装置又は超小型演算処理装置を 設けた請求項 1 3に記載の計測及び加工を行う方法及び同方法を用い た装置。  14. The method for performing measurement and processing according to claim 13, further comprising one or more central processing units or ultra-small processing units, and an apparatus using the method.
1 5. 目的物乃至塊状物を固定する為の固定部、 目的物の形状を測 定し、 情報と して出力する為の計測部、 塊状物を外部入力情報に基 づき加工する加工部、 前記計測部及び前記加工部及び前記固定部を 着脱交換及び回転を可能と し、 装着時、 駆動操作する駆動操作部を 有する請求項 2 に記載の計測及び加工装置。  1 5. Fixing part for fixing the object or lump, measuring part for measuring the shape of the target and outputting it as information, processing part for processing lump based on external input information, The measuring and processing apparatus according to claim 2, wherein the measuring section, the processing section, and the fixing section are detachable, exchangeable, and rotatable.
1 6. 前記加工部が、 塊状物を回転するこ とにより加工する加工体 、 前記加工体と一体的且つ着脱自在に接続され、 前記加工体を回転 駆動する回転駆動手段よりなる請求項 1 4に記載の計測及び加工装置  1 6. The processing unit, wherein the processing unit includes a processing body that processes the lump by rotating the lump, a rotation driving unit that is integrally and detachably connected to the processing body, and that rotates the processing body. Measurement and processing equipment described in
1 7. 前記加工部と前記計測部は、 装着時、 絶対的又は相対的に同 一又は相関を有する状態を形成する請求項 1 5に記載の計測及び加工 装置。 17. The measurement and processing according to claim 15, wherein the processing unit and the measurement unit form a state having an absolute or relatively the same or a correlation at the time of mounting. apparatus.
18. 塊状物を液中で切削加工することを特徴とする塊状物切削加 ェ方法。  18. A method for cutting and applying a lump, characterized by cutting a lump in a liquid.
19. 塊状物を液中にて切削加工するための手段を設けた塊状物切 削加工装置。  19. A lump cutting device equipped with means for cutting lump in liquid.
20. 前記の塊状物は医療用材又は歯科用材であることを特徴とす る請求項 18又は 19に記載の塊状物切削加工方法及び同方法を用いた 装置。  20. The mass cutting method according to claim 18 or 19, wherein the mass is a medical material or a dental material, and an apparatus using the method.
21. 液体の温度管理を行うための手段を更に設けた請求項 18又は 19に記載の塊状物切削加工方法及び同方法を用いた装置。  21. The mass cutting method according to claim 18 or 19, further comprising means for controlling the temperature of the liquid, and an apparatus using the method.
22. 前記液体を灌流するための手段を更に具備する請求項 18又は 19に記載の塊状物切削加工方法及び同方法を用いた装置。  22. The mass cutting method according to claim 18 or 19, further comprising a means for perfusing the liquid, and an apparatus using the method.
23. 液中の切削切り子を回収するための手段を更に設けた請求項 18又は 19に記載の塊状物切削加工方法及び同方法を用いた装置。  23. The lump cutting method according to claim 18 or 19, further comprising means for collecting cutting chips in the liquid, and an apparatus using the method.
24. 前記液体を交換するための手段を更に設けた請求項 18又は 19 に記載の塊状物切削加工方法及び同方法を用いた装置。  24. The mass cutting method according to claim 18 or 19, further comprising a means for exchanging the liquid, and an apparatus using the method.
PCT/JP1997/002203 1996-06-25 1997-06-25 Measuring and processing system, method and apparatus therefor WO1997049524A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU32747/97A AU3274797A (en) 1996-06-25 1997-06-25 Measuring and processing system, method and apparatus therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP8/182678 1996-06-25
JP18267896A JPH106143A (en) 1996-06-25 1996-06-25 Massive material cutting method and device using this method
JP22616096A JP3482077B2 (en) 1996-08-09 1996-08-09 Manufacturing method of dental prosthesis
JP8/226160 1996-08-09

Publications (1)

Publication Number Publication Date
WO1997049524A1 true WO1997049524A1 (en) 1997-12-31

Family

ID=26501397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/002203 WO1997049524A1 (en) 1996-06-25 1997-06-25 Measuring and processing system, method and apparatus therefor

Country Status (2)

Country Link
AU (1) AU3274797A (en)
WO (1) WO1997049524A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001039691A1 (en) * 1999-12-02 2001-06-07 Eidgenössische Technische Hochschule Zürich Nichtmetallische Werkstoffe Machine tool for the production of base structures for false teeth
WO2008062938A1 (en) * 2006-11-21 2008-05-29 Ray Co., Ltd. Manufacturing method and apparatus of artificial teeth using dental ct
WO2009106830A1 (en) * 2008-02-28 2009-09-03 Renishaw Plc Modular scanning and machining apparatus
CN102370525A (en) * 2011-10-31 2012-03-14 山东新华医疗器械股份有限公司 Cantilever type workbench mechanism of processing equipment of full automatic engraving and milling machine
CN108526717A (en) * 2018-04-14 2018-09-14 芜湖致新信息科技有限公司 A kind of laser cutting machine for steel plate processing
CN108655934A (en) * 2017-03-27 2018-10-16 郭嘉文 A kind of mouth mending material automatic polishing device and polishing method
EP2604219B1 (en) 2011-12-16 2020-01-08 Yeom, Myong Hee Abutment fixing apparatus
CN111956349A (en) * 2020-09-15 2020-11-20 温静 Digital dental prosthesis manufacturing equipment
US20230210643A1 (en) * 2022-01-06 2023-07-06 Zeus Tech Co., Ltd. Real-time monitoring system for artificial tooth processing machine

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59192446A (en) * 1983-04-14 1984-10-31 Fanuc Ltd Tracing control device
JPS6159865B2 (en) * 1981-05-21 1986-12-18 Mitsubishi Electric Corp
JPS6225323Y2 (en) * 1983-11-14 1987-06-29
JPH0158020B2 (en) * 1985-06-28 1989-12-08 Okuma Machinery Works Ltd
JPH02139154A (en) * 1988-11-16 1990-05-29 Toyoda Mach Works Ltd Working device capable of submerged working
JPH0232102B2 (en) * 1985-08-22 1990-07-18 Fanuc Ltd
JPH0349745A (en) * 1989-06-13 1991-03-04 Mikrona Technol Ag Making of work-formed member, specially of dental inlay, onlay and crown, and device therefor
JPH04304955A (en) * 1991-03-29 1992-10-28 Fanuc Ltd Copy control device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6159865B2 (en) * 1981-05-21 1986-12-18 Mitsubishi Electric Corp
JPS59192446A (en) * 1983-04-14 1984-10-31 Fanuc Ltd Tracing control device
JPS6225323Y2 (en) * 1983-11-14 1987-06-29
JPH0158020B2 (en) * 1985-06-28 1989-12-08 Okuma Machinery Works Ltd
JPH0232102B2 (en) * 1985-08-22 1990-07-18 Fanuc Ltd
JPH02139154A (en) * 1988-11-16 1990-05-29 Toyoda Mach Works Ltd Working device capable of submerged working
JPH0349745A (en) * 1989-06-13 1991-03-04 Mikrona Technol Ag Making of work-formed member, specially of dental inlay, onlay and crown, and device therefor
JPH04304955A (en) * 1991-03-29 1992-10-28 Fanuc Ltd Copy control device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001039691A1 (en) * 1999-12-02 2001-06-07 Eidgenössische Technische Hochschule Zürich Nichtmetallische Werkstoffe Machine tool for the production of base structures for false teeth
EP1106146A1 (en) * 1999-12-02 2001-06-13 Eidgenössische Technische Hochschule Zürich Machine tool for the production of preforms for dental prosthesis
US6905293B1 (en) 1999-12-02 2005-06-14 Eidgenossische Technische Hochschule Zurich Machine tool for the production of base structures for false teeth
US8157564B2 (en) 2006-11-21 2012-04-17 Ray Co., Ltd. Manufacturing method and apparatus of artificial teeth using dental CT
WO2008062938A1 (en) * 2006-11-21 2008-05-29 Ray Co., Ltd. Manufacturing method and apparatus of artificial teeth using dental ct
WO2009106830A1 (en) * 2008-02-28 2009-09-03 Renishaw Plc Modular scanning and machining apparatus
CN102370525A (en) * 2011-10-31 2012-03-14 山东新华医疗器械股份有限公司 Cantilever type workbench mechanism of processing equipment of full automatic engraving and milling machine
CN102370525B (en) * 2011-10-31 2013-07-31 山东新华医疗器械股份有限公司 Cantilever type workbench mechanism of processing equipment of full automatic engraving and milling machine
EP2604219B1 (en) 2011-12-16 2020-01-08 Yeom, Myong Hee Abutment fixing apparatus
CN108655934A (en) * 2017-03-27 2018-10-16 郭嘉文 A kind of mouth mending material automatic polishing device and polishing method
CN108526717A (en) * 2018-04-14 2018-09-14 芜湖致新信息科技有限公司 A kind of laser cutting machine for steel plate processing
CN111956349A (en) * 2020-09-15 2020-11-20 温静 Digital dental prosthesis manufacturing equipment
US20230210643A1 (en) * 2022-01-06 2023-07-06 Zeus Tech Co., Ltd. Real-time monitoring system for artificial tooth processing machine
US11806201B2 (en) * 2022-01-06 2023-11-07 Zeus Tech Co., Ltd. Real-time monitoring system for artificial tooth processing machine

Also Published As

Publication number Publication date
AU3274797A (en) 1998-01-14

Similar Documents

Publication Publication Date Title
JP3482077B2 (en) Manufacturing method of dental prosthesis
EP0476032B1 (en) Automated fabrication of objects of unique geometry
US5121333A (en) Method and apparatus for manipulating computer-based representations of objects of complex and unique geometry
US5257203A (en) Method and apparatus for manipulating computer-based representations of objects of complex and unique geometry
US5027281A (en) Method and apparatus for scanning and recording of coordinates describing three dimensional objects of complex and unique geometry
US5184306A (en) Automated high-precision fabrication of objects of complex and unique geometry
US5224049A (en) Method, system and mold assembly for use in preparing a dental prosthesis
US5121334A (en) Method and apparatus for automated machining of objects of complex and unique geometry
US5347454A (en) Method, system and mold assembly for use in preparing a dental restoration
US7234938B2 (en) Milling/grinding machine for the manufacture of dental-medical workpieces
EP2227172B1 (en) Fabrication of dental articles using digitally-controlled reductive and digitally-controlled additive processes
WO1999061202A1 (en) Method and device for machining prosthetic appliance and prosthetic block
JP4902802B2 (en) Denture grinding method, pre-dental denture grinding part calculation program, and occlusal state reproduction device
US20150289954A1 (en) Computer fabrication of dental prosthetics
KR101567204B1 (en) Method and system for fabricating dental prosthesis
US20060003292A1 (en) Digital manufacturing of removable oral appliances
JPH04282151A (en) Method and apparatus for producing supply material for crown restoration
US20060253215A1 (en) Method, computer, computer program and computer-readable medium relating to the examination of data records for dental prosthesis parts
WO2006050452A2 (en) Methods and apparatuses for manufacturing dental aligners
CN101589968A (en) Make the method for orthodontic bracket
JP4291897B2 (en) Method for producing dental prosthesis
WO1997049524A1 (en) Measuring and processing system, method and apparatus therefor
CN104116569A (en) Computer fabrication of dental prosthetic
Zarina et al. Evolution of the Software and Hardware in CAD/CAM Systems used in Dentistry
JPH10192305A (en) Production of artificial adaptation material and its device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA