WO1997045078A1 - Ultrasonic handpiece with multiple piezoelectric elements and heat dissipator - Google Patents

Ultrasonic handpiece with multiple piezoelectric elements and heat dissipator Download PDF

Info

Publication number
WO1997045078A1
WO1997045078A1 PCT/US1997/008434 US9708434W WO9745078A1 WO 1997045078 A1 WO1997045078 A1 WO 1997045078A1 US 9708434 W US9708434 W US 9708434W WO 9745078 A1 WO9745078 A1 WO 9745078A1
Authority
WO
WIPO (PCT)
Prior art keywords
horn
piezoelectric crystals
piezoelectric
handpiece
heat sink
Prior art date
Application number
PCT/US1997/008434
Other languages
French (fr)
Inventor
Pravin V. Mehta
George Bromfield
Original Assignee
Allergan Sales, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Allergan Sales, Inc. filed Critical Allergan Sales, Inc.
Priority to JP54261797A priority Critical patent/JP3703149B2/en
Priority to DE69723856T priority patent/DE69723856T2/en
Priority to EP97924759A priority patent/EP0942696B1/en
Publication of WO1997045078A1 publication Critical patent/WO1997045078A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0611Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements in a pile
    • B06B1/0618Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements in a pile of piezo- and non-piezoelectric elements, e.g. 'Tonpilz'
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting in contact-lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/00736Instruments for removal of intra-ocular material or intra-ocular injection, e.g. cataract instruments
    • A61F9/00745Instruments for removal of intra-ocular material or intra-ocular injection, e.g. cataract instruments using mechanical vibrations, e.g. ultrasonic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00011Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
    • A61B2018/00029Cooling or heating of the probe or tissue immediately surrounding the probe with fluids open
    • A61B2018/00035Cooling or heating of the probe or tissue immediately surrounding the probe with fluids open with return means

Definitions

  • the present invention generally relates to surgical instruments, and more particularly, is directed to a handpiece for selective removal of unwanted material in an animal body such as, for example, unwanted tissue, tumors, cartilage, bone, calculi or the like.
  • Ultrasound has found many medical/surgical applications for the removal of tissue, such as in phacoemulsification, bone and cartilage repair and in lithotripsy, the removal of calculi. All of these procedures involve the application of appropriate ultrasound of sufficient energy to emulsify, fragment or disrupt the selected tissue, cartilage, bone or calculi. In many operations the disrupted material is aspirated from the site by a handpiece which also supplies the ultrasonic energy.
  • phacoemulsification involves the fragmentation of lens tissue as is performed, for example, in cataract surgery.
  • a transducer such as a piezoelectric crystal, converts an electrical signal into ultrasonic energy generally in the range of 20 to 100 KHz.
  • the ultrasonic energy generated by the crystal is coupled to a horn and a needle to radiate the ultrasonic energy into eye tissue for fragmentation or phacoemulsification thereof.
  • the cataratic tissue After the cataratic tissue is fragmented, it is removed from the eye by aspiration of irrigation fluid provided for maintaining intraocular pressure and for flushing of fragmented tissue.
  • the aspiration of fluid is commonly conducted through the ultrasonic needle itself, which is hollow.
  • the flow of fluid through the needle and horn provides a means for cooling the piezoelectric crystals which generate heat as well as the ultrasonic energy.
  • the efficiency of a piezoelectric crystal in converting electrical signals to ultrasonic energy is temperature dependent. That is, overheating of piezoelectric crystals causes the significant decrease in their ultrasonic output. In fact, severe overheating may destroy the usefulness of the crystals in generating ultrasonic energy or cause permanent damage to the crystals.
  • the present invention is directed to a handpiece for disruption and removal of unwanted material in an animal body.
  • the handpiece includes a heat sink for maintaining piezoelectric crystal temperature during occluded and partial occluded fluid flow conditions through the handpiece.
  • Handpiece apparatus in accordance with the present invention useful for the disruption (ie, fragmentation, eroding, sloughing off and emulsification) and removal of unwanted material such as tissue, tumors, cartilage, bone, calculi or the like from an animal body such as a human, generally includes a housing and a horn having a needle which provides means for radiating ultrasonic energy into a body for emulsifying or fragmenting tissue, tumors, cartilage, bone calculi or the like.
  • a lumen is provided, through the needle and horn, which provides a means for passing aspiration fluid therethrough along with the fragmented material and, importantly, for cooling of the horn during fluid flow therethrough.
  • Piezoelectric elements which are disposed in thermal communication with the horn, are provided for generating ultrasonic energy into the horn and a heat sink is provided and disposed in thermal communication with the horn and the piezoelectric element for providing transient heat absorption from the ' piezoelectric element during stoppage and restricted fluid flow through the lumen and horn.
  • the piezoelectric crystals may be axially aligned along a longitudinal axis of the handpiece.
  • the heat sink provides a means for transferring absorbed heat to the horn and the fluid during unrestricted fluid flow through the lumen.
  • the heat sink means protects the piezoelectric element from undesirable heating during periods of low fluid flow through the horn thus stabilizing the efficiency of the piezoelectric elements during their continued operation.
  • the horn includes a body portion which passes through a plurality of piezoelectric crystals each having a torus shape.
  • the heat sink may also comprise a high Q metallic material having a torus shape.
  • the heat sink is disposed between at least two of the plurality of piezoelectric elements, or crystals, and if four piezoelectric crystals are utilized, the heat sink is preferably disposed between adjacent pairs of the plurality of piezoelectric crystals.
  • the horn body portion may include a center portion and a rear portion with the rear portion passing through the plurality of piezoelectric crystals.
  • the horn rear portion has a diameter smaller than a diameter of the center portion and each of the plurality of the piezoelectric crystals have a torus shape with an inside diameter approximately egual to the rear portion diameter and an outside diameter approximately equal to the center portion diameter. In this manner a streamline configuration of the horn piezoelectric crystals may be maintained for easy accommodation within the housing.
  • the present invention is directed to a handpiece incorporating the particular configuration of piezoelectric elements and heat sink, it is to appreciated that the invention also is directed to an improvement for a handpiece which utilize piezoelectric elements for generating ultrasonic energy.
  • the present invention is particularly suited for use in phacoemulsification, ie the selective removal of eye tissue as such in cataract removal .
  • FIGURE 1 is a cross-sectional view of an embodiment of the present invention utilizing three piezoelectric crystals and a heat sink disposed between and around a radiating ultrasonic horn.
  • FIGURE 1 there is shown a handpiece apparatus 10 in accordance with the present invention showing a housing 12 which is formed from any suitable material disposed around a horn 16 having a body portion 18 and a needle 20 which provides means for radiating ultrasonic energy into an eye, not shown, for fragmenting eye tissue.
  • a lumen 24 is established through the needle 20 and horn 16 which provides a means for aspiration fluid in fragmented eye tissue and for cooling of the horn and piezoelectric crystals 28, 30, 32 as hereinafter described in greater detail. While three piezoelectric crystals, or elements, are shown in FIGURE 1, it is to be appreciated that a greater or smaller number of elements may be utilized in combination with a heat sink 36 as hereinafter to be described in greater detail.
  • the piezoelectric crystals, or elements may be of any conventional suitable design heretofore used in phacoemulsification handpieces.
  • the horn 16 may be formed from any suitable material such as, for example, titanium or stainless steel and the body portion 18 may include a center portion 40 and a rear portion 42 as will be discussed hereinafter in greater detail in combination with the piezoelectric crystals 28, 30, 32.
  • the lumen 24 extends through the needle 20 and horn 16 as well as through a rear body mass 46 which includes a coupling 48 for interconnection with a power supply, not shown.
  • a power supply not shown.
  • the apparatus shown in Figure 1 is particularly suitable for use in phacoemulsification of eye tissue and accordingly, the size of the housing 12, horn 16, needle 20 and other components are appropriately sized and arranged.
  • Other handpieces made in accordance with the present invention will have specific features and be of appropriate size for the disruption of other types of tissue, tumors, bone, cartilage and/ or calculi.
  • an irrigation channel 50 which communicates to a chamber 52 established around the needle 20 for providing irrigation fluid therepast as indicated by arrows 54.
  • a balanced salt solution is typically utilized as the irrigation fluid and is provided to the channel 50 through an irrigation input coupling 58 from an exterior source, not shown.
  • 0-rings 62, 64 provide a means for sealing the horn and rim mass within the housing 12 in the conventional manner.
  • the piezoelectric crystals 28, 30, 32, as well as the heat sink 36 have a torus, or washer shape and are disposed with two piezoelectric crystals 28 and 30 in a abutting relationship and the heat sink 36 sandwiched between the pair of abutting piezoelectric crystals 28, 30 and the third piezoelectric crystal 32.
  • An insulating washer provides electrical and heat insulation between the piezoelectric crystal 32 and the center portion 40 of the horn body portion 18.
  • the rear portion 42 has a diameter of approximately equal to the inside diameter of the piezoelectric crystals 28, 30, 32. heat sink 36 and washer 84 with an outside diameter of these elements approximately equal to the center portion 18 of the horn 16. This configuration enables a smooth outer contour in order that the conforming housing 12 provides a uniform exterior cylindrical surface for the grasping of the handpiece apparatus 10 by physician.
  • all of the piezoelectric crystals 28, 30, 32 as well as the heat sink 36 and washer 84 be a snugly fit as shown in FIGURE 1 in order to maximize heat transfer therebetween.
  • the heat sink 36 is preferably made from a high Q metallic material, such as, aluminum.
  • This rear portion 42 provides for a shorter heat path from the lumen to the piezoelectric crystals 28, 30, 32 to enhance heat transfer from the piezoelectric crystals 28, 30, 32 to the irrigation fluid passing through lumen 24.
  • the heat sink 36 is preferably disposed between the crystals 28, 30, 32. It should be appreciated that any number of crystals may be provided along with the plurality of heat sinks, not shown, as long as the piezoelectric crystals and heat sinks are arranged for providing intimate contact therebetween to enable and promote transient heat transfer therebetween.
  • the heat sink also functions to transfer the absorbed heat to the horn and fluid passing through the lumen upon resumed unrestricted fluid flow through the lumen 24.
  • the heat sink acts as heat modulator, that is it functions to maintain the crystal temperature despite the rate of fluid flow to the lumen 24 and horn 16.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ophthalmology & Optometry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Mechanical Engineering (AREA)
  • Surgical Instruments (AREA)

Abstract

Handpiece apparatus (10) is provided for disruption and removal of tissue, tumours, bone, cartilage, calculi or the like which includes an arrangement of piezoelectric crystals (28, 30, 32) and a heat sink (36) in order to control crystal temperature despite interruption of cooling irrigation flow through the handpiece.

Description

ULTRASONIC HANDPIECE WITH MULTIPLE PIEZOELECTRIC ELEMENTS AND HEAT DISSIPATOR
The present invention generally relates to surgical instruments, and more particularly, is directed to a handpiece for selective removal of unwanted material in an animal body such as, for example, unwanted tissue, tumors, cartilage, bone, calculi or the like.
Ultrasound has found many medical/surgical applications for the removal of tissue, such as in phacoemulsification, bone and cartilage repair and in lithotripsy, the removal of calculi. All of these procedures involve the application of appropriate ultrasound of sufficient energy to emulsify, fragment or disrupt the selected tissue, cartilage, bone or calculi. In many operations the disrupted material is aspirated from the site by a handpiece which also supplies the ultrasonic energy.
As a specific example, phacoemulsification involves the fragmentation of lens tissue as is performed, for example, in cataract surgery. A transducer such as a piezoelectric crystal, converts an electrical signal into ultrasonic energy generally in the range of 20 to 100 KHz.
The ultrasonic energy generated by the crystal is coupled to a horn and a needle to radiate the ultrasonic energy into eye tissue for fragmentation or phacoemulsification thereof.
After the cataratic tissue is fragmented, it is removed from the eye by aspiration of irrigation fluid provided for maintaining intraocular pressure and for flushing of fragmented tissue. The aspiration of fluid is commonly conducted through the ultrasonic needle itself, which is hollow. The flow of fluid through the needle and horn provides a means for cooling the piezoelectric crystals which generate heat as well as the ultrasonic energy. Unfortunately, the efficiency of a piezoelectric crystal in converting electrical signals to ultrasonic energy is temperature dependent. That is, overheating of piezoelectric crystals causes the significant decrease in their ultrasonic output. In fact, severe overheating may destroy the usefulness of the crystals in generating ultrasonic energy or cause permanent damage to the crystals.
In order to maintain the operating temperature of the piezoelectric crystals heretofore developed handpieces for phacoemulsification have used the hollow horn needle arrangement hereinabove described.
However problems arise during aspiration when disrupted tissue occlude or partially occlude the needle resulting in restricted flow through the needle, this restricted flow provides for less heat transfer from the piezoelectric crystals into the fluid flow and concomitant undesirable temperature rise of the crystals.
The present invention is directed to a handpiece for disruption and removal of unwanted material in an animal body. The handpiece includes a heat sink for maintaining piezoelectric crystal temperature during occluded and partial occluded fluid flow conditions through the handpiece.
SUMMARY OF THE INVENTION
Handpiece apparatus in accordance with the present invention useful for the disruption (ie, fragmentation, eroding, sloughing off and emulsification) and removal of unwanted material such as tissue, tumors, cartilage, bone, calculi or the like from an animal body such as a human, generally includes a housing and a horn having a needle which provides means for radiating ultrasonic energy into a body for emulsifying or fragmenting tissue, tumors, cartilage, bone calculi or the like. A lumen is provided, through the needle and horn, which provides a means for passing aspiration fluid therethrough along with the fragmented material and, importantly, for cooling of the horn during fluid flow therethrough.
Piezoelectric elements, which are disposed in thermal communication with the horn, are provided for generating ultrasonic energy into the horn and a heat sink is provided and disposed in thermal communication with the horn and the piezoelectric element for providing transient heat absorption from the ' piezoelectric element during stoppage and restricted fluid flow through the lumen and horn. The piezoelectric crystals may be axially aligned along a longitudinal axis of the handpiece.
Additionally, the heat sink provides a means for transferring absorbed heat to the horn and the fluid during unrestricted fluid flow through the lumen.
In this manner, the heat sink means protects the piezoelectric element from undesirable heating during periods of low fluid flow through the horn thus stabilizing the efficiency of the piezoelectric elements during their continued operation. More particularly, the horn includes a body portion which passes through a plurality of piezoelectric crystals each having a torus shape. The heat sink may also comprise a high Q metallic material having a torus shape.
Importantly, the heat sink is disposed between at least two of the plurality of piezoelectric elements, or crystals, and if four piezoelectric crystals are utilized, the heat sink is preferably disposed between adjacent pairs of the plurality of piezoelectric crystals.
Still more particularly, the horn body portion may include a center portion and a rear portion with the rear portion passing through the plurality of piezoelectric crystals. In this embodiment, the horn rear portion has a diameter smaller than a diameter of the center portion and each of the plurality of the piezoelectric crystals have a torus shape with an inside diameter approximately egual to the rear portion diameter and an outside diameter approximately equal to the center portion diameter. In this manner a streamline configuration of the horn piezoelectric crystals may be maintained for easy accommodation within the housing.
While the present invention is directed to a handpiece incorporating the particular configuration of piezoelectric elements and heat sink, it is to appreciated that the invention also is directed to an improvement for a handpiece which utilize piezoelectric elements for generating ultrasonic energy. In addition the present invention is particularly suited for use in phacoemulsification, ie the selective removal of eye tissue as such in cataract removal .
BRIEF DESCRIPTION OF THE DRAWINGS The present invention can be more readily understood by consideration of the following detailed description, particularly in conjunction with the accompanying drawings in which:
FIGURE 1 is a cross-sectional view of an embodiment of the present invention utilizing three piezoelectric crystals and a heat sink disposed between and around a radiating ultrasonic horn.
DETAILED DESCRIPTION OF THE INVENTION
Turning now to FIGURE 1 there is shown a handpiece apparatus 10 in accordance with the present invention showing a housing 12 which is formed from any suitable material disposed around a horn 16 having a body portion 18 and a needle 20 which provides means for radiating ultrasonic energy into an eye, not shown, for fragmenting eye tissue.
A lumen 24 is established through the needle 20 and horn 16 which provides a means for aspiration fluid in fragmented eye tissue and for cooling of the horn and piezoelectric crystals 28, 30, 32 as hereinafter described in greater detail. While three piezoelectric crystals, or elements, are shown in FIGURE 1, it is to be appreciated that a greater or smaller number of elements may be utilized in combination with a heat sink 36 as hereinafter to be described in greater detail.
It should be appreciated that the piezoelectric crystals, or elements, may be of any conventional suitable design heretofore used in phacoemulsification handpieces. The horn 16 may be formed from any suitable material such as, for example, titanium or stainless steel and the body portion 18 may include a center portion 40 and a rear portion 42 as will be discussed hereinafter in greater detail in combination with the piezoelectric crystals 28, 30, 32.
The lumen 24 extends through the needle 20 and horn 16 as well as through a rear body mass 46 which includes a coupling 48 for interconnection with a power supply, not shown. It should be appreciated that the apparatus shown in Figure 1 is particularly suitable for use in phacoemulsification of eye tissue and accordingly, the size of the housing 12, horn 16, needle 20 and other components are appropriately sized and arranged. Other handpieces made in accordance with the present invention will have specific features and be of appropriate size for the disruption of other types of tissue, tumors, bone, cartilage and/ or calculi.
Mounted exterior to the housing 12 is an irrigation channel 50 which communicates to a chamber 52 established around the needle 20 for providing irrigation fluid therepast as indicated by arrows 54. A balanced salt solution is typically utilized as the irrigation fluid and is provided to the channel 50 through an irrigation input coupling 58 from an exterior source, not shown.
0-rings 62, 64 provide a means for sealing the horn and rim mass within the housing 12 in the conventional manner.
Electrical connection to the piezoelectric crystals 28, 30, 32 is made through terminals 70, 72 and are connected by wire 72 to a connector 78 to which a power source (not shown) is connected through a sleeve 80 in a solid sealing material 82 deposited against the body mass 46.
As shown in FIGURE 1, the piezoelectric crystals 28, 30, 32, as well as the heat sink 36 have a torus, or washer shape and are disposed with two piezoelectric crystals 28 and 30 in a abutting relationship and the heat sink 36 sandwiched between the pair of abutting piezoelectric crystals 28, 30 and the third piezoelectric crystal 32. An insulating washer provides electrical and heat insulation between the piezoelectric crystal 32 and the center portion 40 of the horn body portion 18.
As shown, the rear portion 42 has a diameter of approximately equal to the inside diameter of the piezoelectric crystals 28, 30, 32. heat sink 36 and washer 84 with an outside diameter of these elements approximately equal to the center portion 18 of the horn 16. This configuration enables a smooth outer contour in order that the conforming housing 12 provides a uniform exterior cylindrical surface for the grasping of the handpiece apparatus 10 by physician.
It is preferable that all of the piezoelectric crystals 28, 30, 32 as well as the heat sink 36 and washer 84 be a snugly fit as shown in FIGURE 1 in order to maximize heat transfer therebetween.
The heat sink 36 is preferably made from a high Q metallic material, such as, aluminum.
In operation when unrestricted flow of fluid occurs through the lumen 28 during aspiration, cooling is provided for the piezoelectric crystals 28, 30, 32 through the rear portion 42 of the horn body portion
18. The smaller diameter of this rear portion 42 provides for a shorter heat path from the lumen to the piezoelectric crystals 28, 30, 32 to enhance heat transfer from the piezoelectric crystals 28, 30, 32 to the irrigation fluid passing through lumen 24.
Upon partial or total occlusion of the lumen by fragmented eye tissue during aspiration, not shown, significant reduction of heat transfer from the crystals 28, 30, 32 may occur. This may result in overheating of the crystals and serious reduction in their efficiency which is prevented, in accordance with the present invention, by the heat sink 36. This protection of overheating is accomplished through the use of the heat sink 36 since it provides for transient heat absorption of the excess heat generated by the crystals 28, 30, 32 during such stoppage or restricted fluid flow through the lumen.
To enhance this transient absorption of heat, the heat sink 36 is preferably disposed between the crystals 28, 30, 32. It should be appreciated that any number of crystals may be provided along with the plurality of heat sinks, not shown, as long as the piezoelectric crystals and heat sinks are arranged for providing intimate contact therebetween to enable and promote transient heat transfer therebetween.
The heat sink also functions to transfer the absorbed heat to the horn and fluid passing through the lumen upon resumed unrestricted fluid flow through the lumen 24. Thus, the heat sink acts as heat modulator, that is it functions to maintain the crystal temperature despite the rate of fluid flow to the lumen 24 and horn 16.
Although there has been hereinabove described a particular arrangement of handpiece apparatus in accordance with the present invention for the purpose of illustrating the manner in which the invention may be used to its advantage, it should be appreciated that the invention is not limited thereto. Accordingly, any and all modifications, variations or equivalent arrangements which may occur to those skilled in the art, should be considered to be within the scope of the present invention as defined in the appended claims.

Claims

WHAT IS CLAIMED IS:
1. Handpiece apparatus for disruption and removal of unwanted material from an animal body, said handpiece apparatus comprising: a housing; a plurality of piezoelectric crystals dispersed within said housing; a horn having a body portion passing through the plurality of piezoelectric crystals and needle means for radiating ultrasonic energy into an animal body for disrupting unwanted material, said horn including lumen means, passing through the needle means and body portion, for aspiration of fluid and disrupted material and for cooling of the plurality of piezoelectric crystals during flow of the fluid therethrough; and heat sink means, disposed between at least two of said plurality of piezoelectric crystals, for providing transient heat absorption from said plurality of piezoelectric crystals during stoppage and restricted fluid flow through said lumen means and for transfer of absorbed heat to the horn and fluid during unrestricted fluid flow through said lumen means.
2. Handpiece apparatus for phacoemulsification of eye tissue, said handpiece apparatus comprising: a housing; a plurality of piezoelectric crystals dispersed within said housing; a horn having a body portion passing through the plurality of piezoelectric crystals and needle means for radiating ultrasonic energy into an eye for fragmenting eye tissue, said horn including lumen means, passing through the needle means and horn portion, for aspiration of fluid and fragmented eye tissue and for cooling of the plurality of piezoelectric crystals during flow of the fluid therethrough; and heat sink means, disposed between at least two of said plurality of piezoelectric crystals, for providing transient heat absorption form said plurality of piezoelectric crystals during stoppage and restricted fluid flow through said lumen means and for transfer of absorbed heat to the horn and fluid during unrestricted fluid flow through said lumen means.
3. The handpiece apparatus according to claim 2 wherein said plurality of piezoelectric crystals comprises three piezoelectric crystals having a torus shape and said heat sink means comprises a high metallic material having a torus shape.
4. The handpiece apparatus according to claim 2 wherein said plurality of piezoelectric crystals comprises four piezoelectric crystals and said heat sink means is disposed between adjacent pairs of said plurality of piezoelectric crystals.
5. The handpiece apparatus according to claim 4 wherein said heat sink means and each of said plurality of piezoelectric crystals have a torus shape.
6. The handpiece of apparatus according to claim 2 wherein the horn body portion includes a center portion and a rear portion with said rear portion passing through said plurality of piezoelectric crystals.
7. The handpiece apparatus according to claim 6 said horn rear portion has a diameter smaller than a diameter of said center portion, each of said plurality of piezoelectric crystals have a torus shape with an inside diameter approximately equal to the rear portion diameter and an outside diameter approximately equal to the center portion diameter.
8. In a handpiece for phacoemulsification of eye tissue having a horn and a needle for radiating ultrasonic energy into the eye tissue with a lumen passing through the needle and horn for aspiration of fluid and fragmented eye tissue and for cooling of the horn during fluid flow therethrough, the improvement comprising: piezoelectric means, dispersed in thermal communication with said horn, for generating ultrasonic energy into said horn, said piezoelectric means including a plurality of piezoelectric crystals; and heat sink means, disposed between at least two of said plurality of piezoelectric crystals, for providing transient heat absorption from said plurality of piezoelectric crystals during stoppage and restricted fluid flow through said lumen and horn and for transfer of absorbed heat to said horn and fluid during unrestricted fluid flow through said lumen and horn.
9. The handpiece apparatus according to claim 8 wherein said plurality of piezoelectric crystals comprises three piezoelectric crystals having a torus shape and said heat sink means comprises a high metallic material having a torus shape.
10. The handpiece apparatus according to claim 8 wherein said plurality of piezoelectric crystals comprises four piezoelectric crystals and said heat sink means is disposed between adjacent pairs of said plurality of piezoelectric crystals.
11. The handpiece apparatus according to claim 10 wherein said heat sink means and each of said plurality of piezoelectric crystals have a torus shape.
12. The handpiece of apparatus according to claim
8 wherein the horn comprises a center portion and a rear portion with said rear portion passing through said plurality of piezoelectric crystals.
13. The handpiece apparatus according to claim 12 said horn rear portion has a diameter smaller than a diameter of said center portion, each of said plurality of piezoelectric crystals have a torus shape with an inside diameter approximately equal to the rear portion diameter and an outside diameter approximately equal to the center portion diameter.
14. Handpiece apparatus for phacoemulsification of eye tissue, said handpiece apparatus comprising: a housing; a horn having needle means for radiating ultrasonic energy into an eye for fragmenting eye tissue and lumen means, passing through the horn and needle means, for aspiration of fluid and fragmented eye tissue and for cooling of the horn during fluid flow therethrough; piezoelectric means, disposed in thermal communication with said horn, for generating ultrasonic energy into said horn; and heat sink means, dispersed in thermal communication with said horn and piezoelectric means, for providing transient heat absorption from said piezoelectric means during stoppage and restricted fluid flow through said lumen means and horn and for transfer of absorbed heat to said horn and fluid flow through said lumen means.
15. The handpiece apparatus according to claim 14 wherein said piezoelectric means comprises a plurality to piezoelectric crystals arranged axially along a longitudinal axis of the handpiece apparatus.
16. The handpiece apparatus according to claim 15 wherein said plurality of piezoelectric crystals comprises three piezoelectric crystals having a torus shape and said heat sink means comprises a high metallic material having a torus shape.
17. The handpiece apparatus according to claim 15 wherein said plurality of piezoelectric crystals comprises four piezoelectric crystals and said heat sink means is disposed between adjacent pairs of said plurality of piezoelectric crystals.
18. The handpiece apparatus according to claim 17 wherein said heat sink means and each of said plurality of piezoelectric crystals have a torus shape.
19. The handpiece of apparatus according to claim 15 wherein the horn comprises a center portion and a rear portion with said rear portion passing through said plurality of piezoelectric crystals.
20. The handpiece apparatus according to claim 19 said horn rear portion has a diameter smaller than a diameter of said center portion, each of said plurality of piezoelectric crystals have a torus shape with an inside diameter approximately equal to the rear portion diameter and an outside diameter approximately equal to the center portion diameter.
PCT/US1997/008434 1996-05-29 1997-05-14 Ultrasonic handpiece with multiple piezoelectric elements and heat dissipator WO1997045078A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP54261797A JP3703149B2 (en) 1996-05-29 1997-05-14 Ultrasonic wave generation handpiece comprising a plurality of piezoelectric elements and a heat radiator
DE69723856T DE69723856T2 (en) 1996-05-29 1997-05-14 HANDPIECE FOR ULTRASONIC DEVICE WITH SEVERAL PIEZOELECTRICAL ELEMENTS AND HEAT SINK
EP97924759A EP0942696B1 (en) 1996-05-29 1997-05-14 Ultrasonic handpiece with multiple piezoelectric elements and heat dissipator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/654,837 US5843109A (en) 1996-05-29 1996-05-29 Ultrasonic handpiece with multiple piezoelectric elements and heat dissipator
US08/654,837 1996-05-29

Publications (1)

Publication Number Publication Date
WO1997045078A1 true WO1997045078A1 (en) 1997-12-04

Family

ID=24626440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1997/008434 WO1997045078A1 (en) 1996-05-29 1997-05-14 Ultrasonic handpiece with multiple piezoelectric elements and heat dissipator

Country Status (5)

Country Link
US (1) US5843109A (en)
EP (1) EP0942696B1 (en)
JP (1) JP3703149B2 (en)
DE (1) DE69723856T2 (en)
WO (1) WO1997045078A1 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000000096A1 (en) * 1998-06-29 2000-01-06 Alcon Laboratories, Inc. Torsional ultrasonic handpiece
WO2004075945A2 (en) 2003-02-26 2004-09-10 Flowcardia Inc. Ultrasound catheter apparatus
WO2007035171A1 (en) * 2005-09-26 2007-03-29 Nanyang Technological University Ultrasonic mechanical emulsifier
US8690819B2 (en) 2002-08-26 2014-04-08 Flowcardia, Inc. Ultrasound catheter for disrupting blood vessel obstructions
US8956375B2 (en) 2002-08-26 2015-02-17 Flowcardia, Inc. Ultrasound catheter devices and methods
US9265520B2 (en) 2002-08-02 2016-02-23 Flowcardia, Inc. Therapeutic ultrasound system
US9282984B2 (en) 2006-04-05 2016-03-15 Flowcardia, Inc. Therapeutic ultrasound system
US9381027B2 (en) 2002-08-26 2016-07-05 Flowcardia, Inc. Steerable ultrasound catheter
US9402646B2 (en) 2009-06-12 2016-08-02 Flowcardia, Inc. Device and method for vascular re-entry
US9433433B2 (en) 2003-09-19 2016-09-06 Flowcardia, Inc. Connector for securing ultrasound catheter to transducer
US9629643B2 (en) 2006-11-07 2017-04-25 Flowcardia, Inc. Ultrasound catheter having improved distal end
EP3170467A4 (en) * 2014-07-18 2018-03-21 Olympus Corporation Ultrasonic vibrator for medical treatment
US10004520B2 (en) 2004-08-26 2018-06-26 Flowcardia, Inc. Ultrasound catheter devices and methods
US10285719B2 (en) 2005-01-20 2019-05-14 Flowcardia, Inc. Vibrational catheter devices and methods for making same
US10357263B2 (en) 2012-01-18 2019-07-23 C. R. Bard, Inc. Vascular re-entry device
US10582983B2 (en) 2017-02-06 2020-03-10 C. R. Bard, Inc. Ultrasonic endovascular catheter with a controllable sheath
US10758256B2 (en) 2016-12-22 2020-09-01 C. R. Bard, Inc. Ultrasonic endovascular catheter
US10835267B2 (en) 2002-08-02 2020-11-17 Flowcardia, Inc. Ultrasound catheter having protective feature against breakage
US11344750B2 (en) 2012-08-02 2022-05-31 Flowcardia, Inc. Ultrasound catheter system
WO2022225648A1 (en) * 2021-04-24 2022-10-27 Salehi Had Hani Devices for performing intraocular surgery and methods for using them
US11596726B2 (en) 2016-12-17 2023-03-07 C.R. Bard, Inc. Ultrasound devices for removing clots from catheters and related methods
US11633206B2 (en) 2016-11-23 2023-04-25 C.R. Bard, Inc. Catheter with retractable sheath and methods thereof

Families Citing this family (254)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6676626B1 (en) 1998-05-01 2004-01-13 Ekos Corporation Ultrasound assembly with increased efficacy
US6582392B1 (en) 1998-05-01 2003-06-24 Ekos Corporation Ultrasound assembly for use with a catheter
US6234993B1 (en) * 1999-11-04 2001-05-22 Microsurgical Technology, Inc. Low profile phaco handpiece
EP1110509A1 (en) * 1999-12-21 2001-06-27 Tomaso Vercellotti Surgical device for bone surgery
US10835307B2 (en) 2001-06-12 2020-11-17 Ethicon Llc Modular battery powered handheld surgical instrument containing elongated multi-layered shaft
ATE319378T1 (en) 2001-12-03 2006-03-15 Ekos Corp CATHETER WITH MULTIPLE ULTRASONIC EMITTING PARTS
US7393354B2 (en) 2002-07-25 2008-07-01 Sherwood Services Ag Electrosurgical pencil with drag sensing capability
US6747218B2 (en) 2002-09-20 2004-06-08 Sherwood Services Ag Electrosurgical haptic switch including snap dome and printed circuit stepped contact array
US6852092B2 (en) 2002-10-02 2005-02-08 Advanced Medical Optics, Inc. Handpiece system for multiple phacoemulsification techniques
US7244257B2 (en) 2002-11-05 2007-07-17 Sherwood Services Ag Electrosurgical pencil having a single button variable control
AU2004212990B2 (en) 2003-02-20 2009-12-10 Covidien Ag Motion detector for controlling electrosurgical output
US8012136B2 (en) 2003-05-20 2011-09-06 Optimyst Systems, Inc. Ophthalmic fluid delivery device and method of operation
ATE501766T1 (en) 2003-05-20 2011-04-15 James F Collins OPHTHALMIC DRUG DELIVERY SYSTEM
US6939317B2 (en) * 2003-08-10 2005-09-06 Jaime Zacharias Repetitive progressive axial displacement pattern for phacoemulsifier needle tip
US7163548B2 (en) * 2003-11-05 2007-01-16 Ethicon Endo-Surgery, Inc Ultrasonic surgical blade and instrument having a gain step
US7879033B2 (en) 2003-11-20 2011-02-01 Covidien Ag Electrosurgical pencil with advanced ES controls
US7503917B2 (en) 2003-11-20 2009-03-17 Covidien Ag Electrosurgical pencil with improved controls
US7156842B2 (en) 2003-11-20 2007-01-02 Sherwood Services Ag Electrosurgical pencil with improved controls
US8182501B2 (en) 2004-02-27 2012-05-22 Ethicon Endo-Surgery, Inc. Ultrasonic surgical shears and method for sealing a blood vessel using same
US7846155B2 (en) 2004-10-08 2010-12-07 Ethicon Endo-Surgery, Inc. Handle assembly having hand activation for use with an ultrasonic surgical instrument
ITMI20051172A1 (en) * 2005-06-21 2006-12-22 Fernando Bianchetti "PIEZOELECTRIC SURGICAL DEVICE AND METHOD FOR THE PREPARATION OF IMPLANT SITE"
US7500974B2 (en) 2005-06-28 2009-03-10 Covidien Ag Electrode with rotatably deployable sheath
US7828794B2 (en) 2005-08-25 2010-11-09 Covidien Ag Handheld electrosurgical apparatus for controlling operating room equipment
US8380126B1 (en) 2005-10-13 2013-02-19 Abbott Medical Optics Inc. Reliable communications for wireless devices
US8565839B2 (en) 2005-10-13 2013-10-22 Abbott Medical Optics Inc. Power management for wireless devices
US20070191713A1 (en) 2005-10-14 2007-08-16 Eichmann Stephen E Ultrasonic device for cutting and coagulating
US8246642B2 (en) * 2005-12-01 2012-08-21 Ethicon Endo-Surgery, Inc. Ultrasonic medical instrument and medical instrument connection assembly
US7621930B2 (en) 2006-01-20 2009-11-24 Ethicon Endo-Surgery, Inc. Ultrasound medical instrument having a medical ultrasonic blade
US7854735B2 (en) 2006-02-16 2010-12-21 Ethicon Endo-Surgery, Inc. Energy-based medical treatment system and method
US20070260240A1 (en) 2006-05-05 2007-11-08 Sherwood Services Ag Soft tissue RF transection and resection device
US9522221B2 (en) 2006-11-09 2016-12-20 Abbott Medical Optics Inc. Fluidics cassette for ocular surgical system
US10959881B2 (en) 2006-11-09 2021-03-30 Johnson & Johnson Surgical Vision, Inc. Fluidics cassette for ocular surgical system
US8414534B2 (en) 2006-11-09 2013-04-09 Abbott Medical Optics Inc. Holding tank devices, systems, and methods for surgical fluidics cassette
US8491528B2 (en) 2006-11-09 2013-07-23 Abbott Medical Optics Inc. Critical alignment of fluidics cassettes
US9295765B2 (en) 2006-11-09 2016-03-29 Abbott Medical Optics Inc. Surgical fluidics cassette supporting multiple pumps
US10182833B2 (en) 2007-01-08 2019-01-22 Ekos Corporation Power parameters for ultrasonic catheter
US8226675B2 (en) 2007-03-22 2012-07-24 Ethicon Endo-Surgery, Inc. Surgical instruments
US8911460B2 (en) 2007-03-22 2014-12-16 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8057498B2 (en) 2007-11-30 2011-11-15 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument blades
US8142461B2 (en) 2007-03-22 2012-03-27 Ethicon Endo-Surgery, Inc. Surgical instruments
US20080234709A1 (en) 2007-03-22 2008-09-25 Houser Kevin L Ultrasonic surgical instrument and cartilage and bone shaping blades therefor
US10485699B2 (en) * 2007-05-24 2019-11-26 Johnson & Johnson Surgical Vision, Inc. Systems and methods for transverse phacoemulsification
US10363166B2 (en) 2007-05-24 2019-07-30 Johnson & Johnson Surgical Vision, Inc. System and method for controlling a transverse phacoemulsification system using sensed data
US10596032B2 (en) 2007-05-24 2020-03-24 Johnson & Johnson Surgical Vision, Inc. System and method for controlling a transverse phacoemulsification system with a footpedal
EP2494932B1 (en) 2007-06-22 2020-05-20 Ekos Corporation Apparatus for treatment of intracranial hemorrhages
US9987468B2 (en) 2007-06-29 2018-06-05 Actuated Medical, Inc. Reduced force device for intravascular access and guidewire placement
US10219832B2 (en) * 2007-06-29 2019-03-05 Actuated Medical, Inc. Device and method for less forceful tissue puncture
US8882791B2 (en) 2007-07-27 2014-11-11 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8257377B2 (en) 2007-07-27 2012-09-04 Ethicon Endo-Surgery, Inc. Multiple end effectors ultrasonic surgical instruments
US8523889B2 (en) 2007-07-27 2013-09-03 Ethicon Endo-Surgery, Inc. Ultrasonic end effectors with increased active length
US8348967B2 (en) 2007-07-27 2013-01-08 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8808319B2 (en) 2007-07-27 2014-08-19 Ethicon Endo-Surgery, Inc. Surgical instruments
US8252012B2 (en) 2007-07-31 2012-08-28 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument with modulator
US8512365B2 (en) 2007-07-31 2013-08-20 Ethicon Endo-Surgery, Inc. Surgical instruments
US9044261B2 (en) 2007-07-31 2015-06-02 Ethicon Endo-Surgery, Inc. Temperature controlled ultrasonic surgical instruments
US8430898B2 (en) 2007-07-31 2013-04-30 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US10342701B2 (en) 2007-08-13 2019-07-09 Johnson & Johnson Surgical Vision, Inc. Systems and methods for phacoemulsification with vacuum based pumps
US8506565B2 (en) 2007-08-23 2013-08-13 Covidien Lp Electrosurgical device with LED adapter
EP2796102B1 (en) 2007-10-05 2018-03-14 Ethicon LLC Ergonomic surgical instruments
USD594983S1 (en) 2007-10-05 2009-06-23 Ethicon Endo-Surgery, Inc. Handle assembly for surgical instrument
US10010339B2 (en) 2007-11-30 2018-07-03 Ethicon Llc Ultrasonic surgical blades
US7901423B2 (en) 2007-11-30 2011-03-08 Ethicon Endo-Surgery, Inc. Folded ultrasonic end effectors with increased active length
US8235987B2 (en) 2007-12-05 2012-08-07 Tyco Healthcare Group Lp Thermal penetration and arc length controllable electrosurgical pencil
WO2009073859A1 (en) 2007-12-07 2009-06-11 Zevex, Inc. Method of inducing transverse motion in langevin type transducers using split electroding of ceramic elements
WO2009154658A1 (en) 2008-02-22 2009-12-23 Piezolnnovations Ultrasonic torsional mode and longitudinal-torsional mode transducer systems
US8636733B2 (en) 2008-03-31 2014-01-28 Covidien Lp Electrosurgical pencil including improved controls
US8632536B2 (en) 2008-03-31 2014-01-21 Covidien Lp Electrosurgical pencil including improved controls
US8597292B2 (en) 2008-03-31 2013-12-03 Covidien Lp Electrosurgical pencil including improved controls
US8162937B2 (en) 2008-06-27 2012-04-24 Tyco Healthcare Group Lp High volume fluid seal for electrosurgical handpiece
US8058771B2 (en) 2008-08-06 2011-11-15 Ethicon Endo-Surgery, Inc. Ultrasonic device for cutting and coagulating with stepped output
US9089360B2 (en) 2008-08-06 2015-07-28 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US8454551B2 (en) * 2008-08-22 2013-06-04 Zevex, Inc. Removable adapter for phacoemulsification handpiece having irrigation and aspiration fluid paths
US9795507B2 (en) 2008-11-07 2017-10-24 Abbott Medical Optics Inc. Multifunction foot pedal
EP2373265B1 (en) 2008-11-07 2016-03-09 Abbott Medical Optics Inc. Controlling of multiple pumps
AU2009313421B2 (en) 2008-11-07 2015-03-05 Johnson & Johnson Surgical Vision, Inc. Semi-automatic device calibraton
CA2936454C (en) 2008-11-07 2018-10-23 Abbott Medical Optics Inc. Adjustable foot pedal control for ophthalmic surgery
US9005157B2 (en) * 2008-11-07 2015-04-14 Abbott Medical Optics Inc. Surgical cassette apparatus
US10219940B2 (en) 2008-11-07 2019-03-05 Johnson & Johnson Surgical Vision, Inc. Automatically pulsing different aspiration levels to an ocular probe
WO2010054146A1 (en) 2008-11-07 2010-05-14 Abbott Medical Optics Inc. Method for programming foot pedal settings and controlling performance through foot pedal variation
CA2743098C (en) 2008-11-07 2017-08-15 Abbott Medical Optics Inc. Automatically switching different aspiration levels and/or pumps to an ocular probe
US8231620B2 (en) 2009-02-10 2012-07-31 Tyco Healthcare Group Lp Extension cutting blade
US9492317B2 (en) 2009-03-31 2016-11-15 Abbott Medical Optics Inc. Cassette capture mechanism
US9700339B2 (en) 2009-05-20 2017-07-11 Ethicon Endo-Surgery, Inc. Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
US8650728B2 (en) 2009-06-24 2014-02-18 Ethicon Endo-Surgery, Inc. Method of assembling a transducer for a surgical instrument
US9017326B2 (en) 2009-07-15 2015-04-28 Ethicon Endo-Surgery, Inc. Impedance monitoring apparatus, system, and method for ultrasonic surgical instruments
US8663220B2 (en) 2009-07-15 2014-03-04 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8461744B2 (en) 2009-07-15 2013-06-11 Ethicon Endo-Surgery, Inc. Rotating transducer mount for ultrasonic surgical instruments
US11090104B2 (en) 2009-10-09 2021-08-17 Cilag Gmbh International Surgical generator for ultrasonic and electrosurgical devices
US10441345B2 (en) 2009-10-09 2019-10-15 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US10172669B2 (en) 2009-10-09 2019-01-08 Ethicon Llc Surgical instrument comprising an energy trigger lockout
US9168054B2 (en) 2009-10-09 2015-10-27 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US9039695B2 (en) 2009-10-09 2015-05-26 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
USRE47996E1 (en) 2009-10-09 2020-05-19 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US8951272B2 (en) 2010-02-11 2015-02-10 Ethicon Endo-Surgery, Inc. Seal arrangements for ultrasonically powered surgical instruments
US8382782B2 (en) 2010-02-11 2013-02-26 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with partially rotating blade and fixed pad arrangement
US8419759B2 (en) 2010-02-11 2013-04-16 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument with comb-like tissue trimming device
US8961547B2 (en) 2010-02-11 2015-02-24 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with moving cutting implement
US8486096B2 (en) 2010-02-11 2013-07-16 Ethicon Endo-Surgery, Inc. Dual purpose surgical instrument for cutting and coagulating tissue
US8531064B2 (en) 2010-02-11 2013-09-10 Ethicon Endo-Surgery, Inc. Ultrasonically powered surgical instruments with rotating cutting implement
US8579928B2 (en) 2010-02-11 2013-11-12 Ethicon Endo-Surgery, Inc. Outer sheath and blade arrangements for ultrasonic surgical instruments
US8469981B2 (en) 2010-02-11 2013-06-25 Ethicon Endo-Surgery, Inc. Rotatable cutting implement arrangements for ultrasonic surgical instruments
US9259234B2 (en) 2010-02-11 2016-02-16 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments with rotatable blade and hollow sheath arrangements
US8323302B2 (en) 2010-02-11 2012-12-04 Ethicon Endo-Surgery, Inc. Methods of using ultrasonically powered surgical instruments with rotatable cutting implements
AU2011224496B2 (en) 2010-03-08 2016-01-07 Johnson & Johnson Surgical Vision, Inc. Method for using microelectromechanical systems to generate movement in a phacoemulsification handpiece
GB2480498A (en) 2010-05-21 2011-11-23 Ethicon Endo Surgery Inc Medical device comprising RF circuitry
EP2579765B1 (en) * 2010-06-13 2019-08-07 Omeq Medical Ltd. Anatomical-positioning apparatus with an expandable device
JP5964826B2 (en) 2010-07-15 2016-08-03 アイノビア,インコーポレイティド Drop generation device
US10154923B2 (en) 2010-07-15 2018-12-18 Eyenovia, Inc. Drop generating device
EP2485691B1 (en) 2010-07-15 2020-03-18 Eyenovia, Inc. Ophthalmic drug delivery
CN103118643B (en) 2010-07-15 2015-06-10 艾诺维亚股份有限公司 Method and system for performing remote treatment and monitoring
US8795327B2 (en) 2010-07-22 2014-08-05 Ethicon Endo-Surgery, Inc. Electrosurgical instrument with separate closure and cutting members
US9192431B2 (en) 2010-07-23 2015-11-24 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instrument
US8979890B2 (en) 2010-10-01 2015-03-17 Ethicon Endo-Surgery, Inc. Surgical instrument with jaw member
US8888809B2 (en) 2010-10-01 2014-11-18 Ethicon Endo-Surgery, Inc. Surgical instrument with jaw member
US8968293B2 (en) 2011-04-12 2015-03-03 Covidien Lp Systems and methods for calibrating power measurements in an electrosurgical generator
US9259265B2 (en) 2011-07-22 2016-02-16 Ethicon Endo-Surgery, Llc Surgical instruments for tensioning tissue
USD700699S1 (en) 2011-08-23 2014-03-04 Covidien Ag Handle for portable surgical device
WO2013062978A2 (en) 2011-10-24 2013-05-02 Ethicon Endo-Surgery, Inc. Medical instrument
USD687549S1 (en) 2011-10-24 2013-08-06 Ethicon Endo-Surgery, Inc. Surgical instrument
JP6105621B2 (en) 2011-12-12 2017-03-29 アイノビア,インコーポレイティド Highly elastic polymer ejector mechanism, ejector apparatus and method of using them
JP6165780B2 (en) 2012-02-10 2017-07-19 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Robot-controlled surgical instrument
EP2825219B1 (en) 2012-03-17 2023-05-24 Johnson & Johnson Surgical Vision, Inc. Surgical cassette
US9237921B2 (en) 2012-04-09 2016-01-19 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US9241731B2 (en) 2012-04-09 2016-01-26 Ethicon Endo-Surgery, Inc. Rotatable electrical connection for ultrasonic surgical instruments
US9439668B2 (en) 2012-04-09 2016-09-13 Ethicon Endo-Surgery, Llc Switch arrangements for ultrasonic surgical instruments
US9226766B2 (en) 2012-04-09 2016-01-05 Ethicon Endo-Surgery, Inc. Serial communication protocol for medical device
US9724118B2 (en) 2012-04-09 2017-08-08 Ethicon Endo-Surgery, Llc Techniques for cutting and coagulating tissue for ultrasonic surgical instruments
US9370321B2 (en) * 2012-06-25 2016-06-21 Empire Technology Development Llc Ultrasound based antigen binding detection
US20140005705A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Surgical instruments with articulating shafts
US9226767B2 (en) 2012-06-29 2016-01-05 Ethicon Endo-Surgery, Inc. Closed feedback control for electrosurgical device
US20140005702A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with distally positioned transducers
US9393037B2 (en) 2012-06-29 2016-07-19 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9820768B2 (en) 2012-06-29 2017-11-21 Ethicon Llc Ultrasonic surgical instruments with control mechanisms
US9326788B2 (en) 2012-06-29 2016-05-03 Ethicon Endo-Surgery, Llc Lockout mechanism for use with robotic electrosurgical device
US9198714B2 (en) 2012-06-29 2015-12-01 Ethicon Endo-Surgery, Inc. Haptic feedback devices for surgical robot
US9408622B2 (en) 2012-06-29 2016-08-09 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9351754B2 (en) 2012-06-29 2016-05-31 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments with distally positioned jaw assemblies
US9283045B2 (en) 2012-06-29 2016-03-15 Ethicon Endo-Surgery, Llc Surgical instruments with fluid management system
IN2015DN02432A (en) 2012-09-28 2015-09-04 Ethicon Endo Surgery Inc
US9320648B2 (en) 2012-10-04 2016-04-26 Autocam Medical Devices, Llc Ophthalmic surgical instrument with pre-set tip-to-shell orientation
US10201365B2 (en) 2012-10-22 2019-02-12 Ethicon Llc Surgeon feedback sensing and display methods
US9095367B2 (en) 2012-10-22 2015-08-04 Ethicon Endo-Surgery, Inc. Flexible harmonic waveguides/blades for surgical instruments
US20140135804A1 (en) 2012-11-15 2014-05-15 Ethicon Endo-Surgery, Inc. Ultrasonic and electrosurgical devices
US10226273B2 (en) 2013-03-14 2019-03-12 Ethicon Llc Mechanical fasteners for use with surgical energy devices
US9241728B2 (en) 2013-03-15 2016-01-26 Ethicon Endo-Surgery, Inc. Surgical instrument with multiple clamping mechanisms
JP6192367B2 (en) * 2013-06-04 2017-09-06 オリンパス株式会社 Ultrasonic treatment device
US9814514B2 (en) 2013-09-13 2017-11-14 Ethicon Llc Electrosurgical (RF) medical instruments for cutting and coagulating tissue
US9265926B2 (en) 2013-11-08 2016-02-23 Ethicon Endo-Surgery, Llc Electrosurgical devices
GB2521228A (en) 2013-12-16 2015-06-17 Ethicon Endo Surgery Inc Medical device
GB2521229A (en) 2013-12-16 2015-06-17 Ethicon Endo Surgery Inc Medical device
US9795436B2 (en) 2014-01-07 2017-10-24 Ethicon Llc Harvesting energy from a surgical generator
US9554854B2 (en) 2014-03-18 2017-01-31 Ethicon Endo-Surgery, Llc Detecting short circuits in electrosurgical medical devices
US10463421B2 (en) 2014-03-27 2019-11-05 Ethicon Llc Two stage trigger, clamp and cut bipolar vessel sealer
US10092310B2 (en) 2014-03-27 2018-10-09 Ethicon Llc Electrosurgical devices
US9737355B2 (en) 2014-03-31 2017-08-22 Ethicon Llc Controlling impedance rise in electrosurgical medical devices
US9913680B2 (en) 2014-04-15 2018-03-13 Ethicon Llc Software algorithms for electrosurgical instruments
US9283113B2 (en) * 2014-05-22 2016-03-15 Novartis Ag Ultrasonic hand piece
US9700333B2 (en) 2014-06-30 2017-07-11 Ethicon Llc Surgical instrument with variable tissue compression
US10285724B2 (en) 2014-07-31 2019-05-14 Ethicon Llc Actuation mechanisms and load adjustment assemblies for surgical instruments
US9642640B2 (en) * 2014-08-04 2017-05-09 Gyrus Acmi, Inc. Lithotripter with improved sterilization time
US10285773B2 (en) 2014-08-04 2019-05-14 Gyrus Acmi, Inc. Lithrotripter with improved sterilization time
US10639092B2 (en) 2014-12-08 2020-05-05 Ethicon Llc Electrode configurations for surgical instruments
US10159524B2 (en) 2014-12-22 2018-12-25 Ethicon Llc High power battery powered RF amplifier topology
US10245095B2 (en) 2015-02-06 2019-04-02 Ethicon Llc Electrosurgical instrument with rotation and articulation mechanisms
US10321950B2 (en) 2015-03-17 2019-06-18 Ethicon Llc Managing tissue treatment
US10342602B2 (en) 2015-03-17 2019-07-09 Ethicon Llc Managing tissue treatment
US10595929B2 (en) 2015-03-24 2020-03-24 Ethicon Llc Surgical instruments with firing system overload protection mechanisms
US10314638B2 (en) 2015-04-07 2019-06-11 Ethicon Llc Articulating radio frequency (RF) tissue seal with articulating state sensing
US10656025B2 (en) 2015-06-10 2020-05-19 Ekos Corporation Ultrasound catheter
US10034684B2 (en) 2015-06-15 2018-07-31 Ethicon Llc Apparatus and method for dissecting and coagulating tissue
US11020140B2 (en) 2015-06-17 2021-06-01 Cilag Gmbh International Ultrasonic surgical blade for use with ultrasonic surgical instruments
US11051873B2 (en) 2015-06-30 2021-07-06 Cilag Gmbh International Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters
US11129669B2 (en) 2015-06-30 2021-09-28 Cilag Gmbh International Surgical system with user adaptable techniques based on tissue type
US10034704B2 (en) 2015-06-30 2018-07-31 Ethicon Llc Surgical instrument with user adaptable algorithms
US10357303B2 (en) 2015-06-30 2019-07-23 Ethicon Llc Translatable outer tube for sealing using shielded lap chole dissector
US11141213B2 (en) 2015-06-30 2021-10-12 Cilag Gmbh International Surgical instrument with user adaptable techniques
US10898256B2 (en) 2015-06-30 2021-01-26 Ethicon Llc Surgical system with user adaptable techniques based on tissue impedance
US10154852B2 (en) 2015-07-01 2018-12-18 Ethicon Llc Ultrasonic surgical blade with improved cutting and coagulation features
US10940292B2 (en) 2015-07-08 2021-03-09 Actuated Medical, Inc. Reduced force device for intravascular access and guidewire placement
US11033322B2 (en) 2015-09-30 2021-06-15 Ethicon Llc Circuit topologies for combined generator
US10959771B2 (en) 2015-10-16 2021-03-30 Ethicon Llc Suction and irrigation sealing grasper
US10595930B2 (en) 2015-10-16 2020-03-24 Ethicon Llc Electrode wiping surgical device
US10959806B2 (en) 2015-12-30 2021-03-30 Ethicon Llc Energized medical device with reusable handle
US10179022B2 (en) 2015-12-30 2019-01-15 Ethicon Llc Jaw position impedance limiter for electrosurgical instrument
US10575892B2 (en) 2015-12-31 2020-03-03 Ethicon Llc Adapter for electrical surgical instruments
US11229471B2 (en) 2016-01-15 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US10716615B2 (en) 2016-01-15 2020-07-21 Ethicon Llc Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade
US10709469B2 (en) 2016-01-15 2020-07-14 Ethicon Llc Modular battery powered handheld surgical instrument with energy conservation techniques
US11129670B2 (en) 2016-01-15 2021-09-28 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
US10555769B2 (en) 2016-02-22 2020-02-11 Ethicon Llc Flexible circuits for electrosurgical instrument
US10702329B2 (en) 2016-04-29 2020-07-07 Ethicon Llc Jaw structure with distal post for electrosurgical instruments
US10646269B2 (en) 2016-04-29 2020-05-12 Ethicon Llc Non-linear jaw gap for electrosurgical instruments
US10987156B2 (en) 2016-04-29 2021-04-27 Ethicon Llc Electrosurgical instrument with electrically conductive gap setting member and electrically insulative tissue engaging members
US10485607B2 (en) 2016-04-29 2019-11-26 Ethicon Llc Jaw structure with distal closure for electrosurgical instruments
US10856934B2 (en) 2016-04-29 2020-12-08 Ethicon Llc Electrosurgical instrument with electrically conductive gap setting and tissue engaging members
US10456193B2 (en) 2016-05-03 2019-10-29 Ethicon Llc Medical device with a bilateral jaw configuration for nerve stimulation
US10245064B2 (en) 2016-07-12 2019-04-02 Ethicon Llc Ultrasonic surgical instrument with piezoelectric central lumen transducer
US10893883B2 (en) 2016-07-13 2021-01-19 Ethicon Llc Ultrasonic assembly for use with ultrasonic surgical instruments
US10842522B2 (en) 2016-07-15 2020-11-24 Ethicon Llc Ultrasonic surgical instruments having offset blades
US10376305B2 (en) 2016-08-05 2019-08-13 Ethicon Llc Methods and systems for advanced harmonic energy
US10285723B2 (en) 2016-08-09 2019-05-14 Ethicon Llc Ultrasonic surgical blade with improved heel portion
USD847990S1 (en) 2016-08-16 2019-05-07 Ethicon Llc Surgical instrument
US10736649B2 (en) 2016-08-25 2020-08-11 Ethicon Llc Electrical and thermal connections for ultrasonic transducer
US10952759B2 (en) 2016-08-25 2021-03-23 Ethicon Llc Tissue loading of a surgical instrument
CN106175848A (en) * 2016-08-31 2016-12-07 南京市鼓楼医院 A kind of ultrasonic emulsification head based on solid needle and ultrasonic emulsification equipment
US10751117B2 (en) 2016-09-23 2020-08-25 Ethicon Llc Electrosurgical instrument with fluid diverter
US10603064B2 (en) 2016-11-28 2020-03-31 Ethicon Llc Ultrasonic transducer
US11266430B2 (en) 2016-11-29 2022-03-08 Cilag Gmbh International End effector control and calibration
CN106725956A (en) * 2016-11-30 2017-05-31 桂林市啄木鸟医疗器械有限公司 A kind of ultrasonic dental scaler transducer and containing its tooth cleaner handgrip
US11033325B2 (en) 2017-02-16 2021-06-15 Cilag Gmbh International Electrosurgical instrument with telescoping suction port and debris cleaner
US10799284B2 (en) 2017-03-15 2020-10-13 Ethicon Llc Electrosurgical instrument with textured jaws
US11497546B2 (en) 2017-03-31 2022-11-15 Cilag Gmbh International Area ratios of patterned coatings on RF electrodes to reduce sticking
CA3066408A1 (en) 2017-06-10 2018-12-13 Eyenovia, Inc. Methods and devices for handling a fluid and delivering the fluid to the eye
US10603117B2 (en) 2017-06-28 2020-03-31 Ethicon Llc Articulation state detection mechanisms
US10820920B2 (en) 2017-07-05 2020-11-03 Ethicon Llc Reusable ultrasonic medical devices and methods of their use
US11484358B2 (en) 2017-09-29 2022-11-01 Cilag Gmbh International Flexible electrosurgical instrument
US11490951B2 (en) 2017-09-29 2022-11-08 Cilag Gmbh International Saline contact with electrodes
US11033323B2 (en) 2017-09-29 2021-06-15 Cilag Gmbh International Systems and methods for managing fluid and suction in electrosurgical systems
US11369513B2 (en) * 2017-11-22 2022-06-28 Surgical Design Corporation Low-cost disposable ultrasonic surgical handpiece
US11266384B2 (en) 2018-04-20 2022-03-08 Johnson & Johnson Surgical Vision, Inc. Ergonomic handpiece
DE102019111100A1 (en) * 2019-04-30 2020-11-05 Karl Storz Se & Co. Kg Lithotripsy device and test method for operating a lithotripsy device
WO2020234730A1 (en) 2019-05-17 2020-11-26 Johnson & Johnson Surgical Vision, Inc. Ergonomic phacoemulsification handpiece
US11564732B2 (en) 2019-12-05 2023-01-31 Covidien Lp Tensioning mechanism for bipolar pencil
US11877953B2 (en) 2019-12-26 2024-01-23 Johnson & Johnson Surgical Vision, Inc. Phacoemulsification apparatus
US11779387B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Clamp arm jaw to minimize tissue sticking and improve tissue control
US11660089B2 (en) 2019-12-30 2023-05-30 Cilag Gmbh International Surgical instrument comprising a sensing system
US11950797B2 (en) 2019-12-30 2024-04-09 Cilag Gmbh International Deflectable electrode with higher distal bias relative to proximal bias
US11937863B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Deflectable electrode with variable compression bias along the length of the deflectable electrode
US20210196363A1 (en) 2019-12-30 2021-07-01 Ethicon Llc Electrosurgical instrument with electrodes operable in bipolar and monopolar modes
US11944366B2 (en) 2019-12-30 2024-04-02 Cilag Gmbh International Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode
US11812957B2 (en) 2019-12-30 2023-11-14 Cilag Gmbh International Surgical instrument comprising a signal interference resolution system
US11759251B2 (en) 2019-12-30 2023-09-19 Cilag Gmbh International Control program adaptation based on device status and user input
US11452525B2 (en) 2019-12-30 2022-09-27 Cilag Gmbh International Surgical instrument comprising an adjustment system
US11779329B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Surgical instrument comprising a flex circuit including a sensor system
US11911063B2 (en) 2019-12-30 2024-02-27 Cilag Gmbh International Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade
US20210196359A1 (en) 2019-12-30 2021-07-01 Ethicon Llc Electrosurgical instruments with electrodes having energy focusing features
US11707318B2 (en) 2019-12-30 2023-07-25 Cilag Gmbh International Surgical instrument with jaw alignment features
US11786291B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Deflectable support of RF energy electrode with respect to opposing ultrasonic blade
US12114912B2 (en) 2019-12-30 2024-10-15 Cilag Gmbh International Non-biased deflectable electrode to minimize contact between ultrasonic blade and electrode
US12082808B2 (en) 2019-12-30 2024-09-10 Cilag Gmbh International Surgical instrument comprising a control system responsive to software configurations
US12076006B2 (en) 2019-12-30 2024-09-03 Cilag Gmbh International Surgical instrument comprising an orientation detection system
US12064109B2 (en) 2019-12-30 2024-08-20 Cilag Gmbh International Surgical instrument comprising a feedback control circuit
US12053224B2 (en) 2019-12-30 2024-08-06 Cilag Gmbh International Variation in electrode parameters and deflectable electrode to modify energy density and tissue interaction
US12023086B2 (en) 2019-12-30 2024-07-02 Cilag Gmbh International Electrosurgical instrument for delivering blended energy modalities to tissue
US11986201B2 (en) 2019-12-30 2024-05-21 Cilag Gmbh International Method for operating a surgical instrument
US11974801B2 (en) 2019-12-30 2024-05-07 Cilag Gmbh International Electrosurgical instrument with flexible wiring assemblies
US11696776B2 (en) 2019-12-30 2023-07-11 Cilag Gmbh International Articulatable surgical instrument
DE102020105457B4 (en) 2020-03-02 2022-09-01 Karl Storz Se & Co. Kg lithotripsy device
USD946146S1 (en) 2020-05-15 2022-03-15 Johnson & Johnson Surgical Vision, Inc. Surgical handpiece
US11622886B2 (en) 2020-05-18 2023-04-11 Johnson & Johnson Surgical Vision, Inc. Thermocouple coupled with a piezoelectric crystal for feedback on vibration frequency
WO2022070030A1 (en) 2020-09-30 2022-04-07 Johnson & Johnson Surgical Vision, Inc. Ergonomic phacoemulsification handpiece with rotating needle
US11883326B2 (en) 2020-11-03 2024-01-30 Johnson & Johnson Surgical Vision, Inc. Phacoemulsification probe stroke length maximization system
US11969381B2 (en) 2020-11-05 2024-04-30 Johnson & Johnson Surgical Vision, Inc. Controlling vibration patterns of a phacoemulsification needle
US11957342B2 (en) 2021-11-01 2024-04-16 Cilag Gmbh International Devices, systems, and methods for detecting tissue and foreign objects during a surgical operation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3689783A (en) * 1971-03-11 1972-09-05 David A Williams Ultrasonic transducer with half-wave separator between piezoelectric crystal means
US3694675A (en) * 1971-02-25 1972-09-26 Eastman Kodak Co Cooled ultrasonic transducer
US3805787A (en) * 1972-06-16 1974-04-23 Surgical Design Corp Ultrasonic surgical instrument
US4032803A (en) * 1971-09-14 1977-06-28 Durr-Dental Kg. Hand tool for creating and applying ultrasonic vibration
EP0376562A2 (en) * 1988-12-20 1990-07-04 Valleylab, Inc. Improved resonator for surgical handpiece
GB2249419A (en) * 1990-10-29 1992-05-06 Teleco Oilfield Services Inc Electromechanical transducer for acoustic telemetry system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4169984A (en) * 1976-11-30 1979-10-02 Contract Systems Associates, Inc. Ultrasonic probe
US4838853A (en) * 1987-02-05 1989-06-13 Interventional Technologies Inc. Apparatus for trimming meniscus
DE3807004A1 (en) * 1987-03-02 1988-09-15 Olympus Optical Co ULTRASONIC TREATMENT DEVICE
US5163433A (en) * 1989-11-01 1992-11-17 Olympus Optical Co., Ltd. Ultrasound type treatment apparatus
WO1993015703A1 (en) * 1992-02-05 1993-08-19 Inventive Systems, Inc. Improved phacoemulsification handpiece
US5370602A (en) * 1992-09-04 1994-12-06 American Cyanamid Company Phacoemulsification probe circuit with pulse width Modulating drive
US5331951A (en) * 1992-09-04 1994-07-26 American Cyanamid Company Phacoemulsification probe drive circuit
US5388569A (en) * 1992-09-04 1995-02-14 American Cyanamid Co Phacoemulsification probe circuit with switch drive
FR2715588B1 (en) * 1994-02-03 1996-03-01 Aerospatiale Ultrasonic percussion device.
US5562610A (en) * 1994-10-07 1996-10-08 Fibrasonics Inc. Needle for ultrasonic surgical probe

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3694675A (en) * 1971-02-25 1972-09-26 Eastman Kodak Co Cooled ultrasonic transducer
US3689783A (en) * 1971-03-11 1972-09-05 David A Williams Ultrasonic transducer with half-wave separator between piezoelectric crystal means
US4032803A (en) * 1971-09-14 1977-06-28 Durr-Dental Kg. Hand tool for creating and applying ultrasonic vibration
US3805787A (en) * 1972-06-16 1974-04-23 Surgical Design Corp Ultrasonic surgical instrument
EP0376562A2 (en) * 1988-12-20 1990-07-04 Valleylab, Inc. Improved resonator for surgical handpiece
GB2249419A (en) * 1990-10-29 1992-05-06 Teleco Oilfield Services Inc Electromechanical transducer for acoustic telemetry system

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000000096A1 (en) * 1998-06-29 2000-01-06 Alcon Laboratories, Inc. Torsional ultrasonic handpiece
US10835267B2 (en) 2002-08-02 2020-11-17 Flowcardia, Inc. Ultrasound catheter having protective feature against breakage
US10722262B2 (en) 2002-08-02 2020-07-28 Flowcardia, Inc. Therapeutic ultrasound system
US10111680B2 (en) 2002-08-02 2018-10-30 Flowcardia, Inc. Therapeutic ultrasound system
US9265520B2 (en) 2002-08-02 2016-02-23 Flowcardia, Inc. Therapeutic ultrasound system
US9381027B2 (en) 2002-08-26 2016-07-05 Flowcardia, Inc. Steerable ultrasound catheter
US10376272B2 (en) 2002-08-26 2019-08-13 Flowcardia, Inc. Ultrasound catheter for disrupting blood vessel obstructions
US10285727B2 (en) 2002-08-26 2019-05-14 Flowcardia, Inc. Steerable ultrasound catheter
US9421024B2 (en) 2002-08-26 2016-08-23 Flowcardia, Inc. Steerable ultrasound catheter
US8690819B2 (en) 2002-08-26 2014-04-08 Flowcardia, Inc. Ultrasound catheter for disrupting blood vessel obstructions
US8956375B2 (en) 2002-08-26 2015-02-17 Flowcardia, Inc. Ultrasound catheter devices and methods
US10130380B2 (en) 2003-02-26 2018-11-20 Flowcardia, Inc. Ultrasound catheter apparatus
US11103261B2 (en) 2003-02-26 2021-08-31 C.R. Bard, Inc. Ultrasound catheter apparatus
EP1596733A2 (en) * 2003-02-26 2005-11-23 Flowcardia Inc. Ultrasound catheter apparatus
EP2471474A1 (en) * 2003-02-26 2012-07-04 Flowcardia Inc. Ultrasound catheter apparatus
WO2004075945A2 (en) 2003-02-26 2004-09-10 Flowcardia Inc. Ultrasound catheter apparatus
EP1596733A4 (en) * 2003-02-26 2009-05-27 Flowcardia Inc Ultrasound catheter apparatus
US7621929B2 (en) 2003-02-26 2009-11-24 Flowcardia, Inc. Ultrasound catheter apparatus
US9433433B2 (en) 2003-09-19 2016-09-06 Flowcardia, Inc. Connector for securing ultrasound catheter to transducer
US11426189B2 (en) 2003-09-19 2022-08-30 Flowcardia, Inc. Connector for securing ultrasound catheter to transducer
US10349964B2 (en) 2003-09-19 2019-07-16 Flowcardia, Inc. Connector for securing ultrasound catheter to transducer
US11109884B2 (en) 2003-11-24 2021-09-07 Flowcardia, Inc. Steerable ultrasound catheter
US10004520B2 (en) 2004-08-26 2018-06-26 Flowcardia, Inc. Ultrasound catheter devices and methods
US10682151B2 (en) 2004-08-26 2020-06-16 Flowcardia, Inc. Ultrasound catheter devices and methods
US10285719B2 (en) 2005-01-20 2019-05-14 Flowcardia, Inc. Vibrational catheter devices and methods for making same
US11510690B2 (en) 2005-01-20 2022-11-29 Flowcardia, Inc. Vibrational catheter devices and methods for making same
US7876025B2 (en) 2005-09-26 2011-01-25 Nanyang Technological University Ultrasonic mechanical emulsifier
WO2007035171A1 (en) * 2005-09-26 2007-03-29 Nanyang Technological University Ultrasonic mechanical emulsifier
US9282984B2 (en) 2006-04-05 2016-03-15 Flowcardia, Inc. Therapeutic ultrasound system
US10537712B2 (en) 2006-11-07 2020-01-21 Flowcardia, Inc. Ultrasound catheter having improved distal end
US9629643B2 (en) 2006-11-07 2017-04-25 Flowcardia, Inc. Ultrasound catheter having improved distal end
US11229772B2 (en) 2006-11-07 2022-01-25 Flowcardia, Inc. Ultrasound catheter having improved distal end
US9402646B2 (en) 2009-06-12 2016-08-02 Flowcardia, Inc. Device and method for vascular re-entry
US11191554B2 (en) 2012-01-18 2021-12-07 C.R. Bard, Inc. Vascular re-entry device
US10357263B2 (en) 2012-01-18 2019-07-23 C. R. Bard, Inc. Vascular re-entry device
US11344750B2 (en) 2012-08-02 2022-05-31 Flowcardia, Inc. Ultrasound catheter system
EP3170467A4 (en) * 2014-07-18 2018-03-21 Olympus Corporation Ultrasonic vibrator for medical treatment
US11633206B2 (en) 2016-11-23 2023-04-25 C.R. Bard, Inc. Catheter with retractable sheath and methods thereof
US11596726B2 (en) 2016-12-17 2023-03-07 C.R. Bard, Inc. Ultrasound devices for removing clots from catheters and related methods
US10758256B2 (en) 2016-12-22 2020-09-01 C. R. Bard, Inc. Ultrasonic endovascular catheter
US10582983B2 (en) 2017-02-06 2020-03-10 C. R. Bard, Inc. Ultrasonic endovascular catheter with a controllable sheath
US11638624B2 (en) 2017-02-06 2023-05-02 C.R. Bard, Inc. Ultrasonic endovascular catheter with a controllable sheath
WO2022225648A1 (en) * 2021-04-24 2022-10-27 Salehi Had Hani Devices for performing intraocular surgery and methods for using them

Also Published As

Publication number Publication date
US5843109A (en) 1998-12-01
EP0942696B1 (en) 2003-07-30
DE69723856D1 (en) 2003-09-04
EP0942696A1 (en) 1999-09-22
JP3703149B2 (en) 2005-10-05
DE69723856T2 (en) 2004-05-27
JP2000511081A (en) 2000-08-29

Similar Documents

Publication Publication Date Title
US5843109A (en) Ultrasonic handpiece with multiple piezoelectric elements and heat dissipator
US5342380A (en) Ultrasonic knife
US5935143A (en) Ultrasonic knife
US5669922A (en) Ultrasonically driven blade with a radial hook that defines a circular recess
US5222937A (en) Ultrasonic treatment apparatus
AU758734B2 (en) Improved ultrasonic surgical apparatus
AU636729B2 (en) Method and apparatus for controlling ultrasonic fragmentation of body tissue
US4526571A (en) Curved ultrasonic surgical aspirator
JP4429160B2 (en) High efficiency medical transducer with ergonomic shape.
EP1793747B1 (en) Improved ultrasound catheter devices
US5221282A (en) Tapered tip ultrasonic aspirator
US20040158151A1 (en) Apparatus and method for an ultrasonic probe device with rapid attachment and detachment means
JPH0767464B2 (en) Device for curettage or excision of biological tissue by instruments vibrating at ultrasonic frequencies
US20030065263A1 (en) Ultrasonic probe device with rapid attachment and detachment means having a line contact collet
JPH04152942A (en) Ultrasonic medical treating device
JP2003512131A (en) Liquefaction crush handpiece
US20160287277A1 (en) Devices and methods for removing occlusions from a bodily cavity
Inoue et al. Ultrasonic surgical system (SONOPET®) for microsurgical removal of brain tumors
RU2239383C2 (en) Ultrasonic oscillation system applied in plastic surgery
JP2702991B2 (en) Ultrasound therapy equipment
JPH06125914A (en) Ultrasonic therapeutic apparatus
JPH06343647A (en) Ultrasonic therapeutical device
JPH05305095A (en) Ultrasonic therapeutic unit
JPH08308849A (en) Percussion wave therapeutic device
JPS62224340A (en) Ultrasonic probe device for endoscope

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997924759

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1997924759

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1997924759

Country of ref document: EP