WO1997045078A1 - Ultrasonic handpiece with multiple piezoelectric elements and heat dissipator - Google Patents
Ultrasonic handpiece with multiple piezoelectric elements and heat dissipator Download PDFInfo
- Publication number
- WO1997045078A1 WO1997045078A1 PCT/US1997/008434 US9708434W WO9745078A1 WO 1997045078 A1 WO1997045078 A1 WO 1997045078A1 US 9708434 W US9708434 W US 9708434W WO 9745078 A1 WO9745078 A1 WO 9745078A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- horn
- piezoelectric crystals
- piezoelectric
- handpiece
- heat sink
- Prior art date
Links
- 239000013078 crystal Substances 0.000 claims abstract description 82
- 238000001816 cooling Methods 0.000 claims abstract description 9
- 239000012530 fluid Substances 0.000 claims description 39
- 239000000463 material Substances 0.000 claims description 10
- 238000012546 transfer Methods 0.000 claims description 10
- 230000001052 transient effect Effects 0.000 claims description 8
- 238000010521 absorption reaction Methods 0.000 claims description 7
- 238000004891 communication Methods 0.000 claims description 5
- 239000007769 metal material Substances 0.000 claims description 5
- 230000006872 improvement Effects 0.000 claims description 2
- 210000001519 tissue Anatomy 0.000 abstract description 17
- 210000000988 bone and bone Anatomy 0.000 abstract description 7
- 210000000845 cartilage Anatomy 0.000 abstract description 7
- 230000002262 irrigation Effects 0.000 abstract description 7
- 238000003973 irrigation Methods 0.000 abstract description 7
- 206010028980 Neoplasm Diseases 0.000 abstract description 5
- 238000013021 overheating Methods 0.000 description 4
- 238000013467 fragmentation Methods 0.000 description 3
- 238000006062 fragmentation reaction Methods 0.000 description 3
- 208000002177 Cataract Diseases 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- 229910001200 Ferrotitanium Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000004308 accommodation Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000003855 balanced salt solution Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- -1 for example Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000004410 intraocular pressure Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B06—GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
- B06B—METHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
- B06B1/00—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
- B06B1/02—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
- B06B1/06—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
- B06B1/0607—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
- B06B1/0611—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements in a pile
- B06B1/0618—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements in a pile of piezo- and non-piezoelectric elements, e.g. 'Tonpilz'
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F9/00—Methods or devices for treatment of the eyes; Devices for putting in contact-lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
- A61F9/007—Methods or devices for eye surgery
- A61F9/00736—Instruments for removal of intra-ocular material or intra-ocular injection, e.g. cataract instruments
- A61F9/00745—Instruments for removal of intra-ocular material or intra-ocular injection, e.g. cataract instruments using mechanical vibrations, e.g. ultrasonic
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00005—Cooling or heating of the probe or tissue immediately surrounding the probe
- A61B2018/00011—Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
- A61B2018/00029—Cooling or heating of the probe or tissue immediately surrounding the probe with fluids open
- A61B2018/00035—Cooling or heating of the probe or tissue immediately surrounding the probe with fluids open with return means
Definitions
- the present invention generally relates to surgical instruments, and more particularly, is directed to a handpiece for selective removal of unwanted material in an animal body such as, for example, unwanted tissue, tumors, cartilage, bone, calculi or the like.
- Ultrasound has found many medical/surgical applications for the removal of tissue, such as in phacoemulsification, bone and cartilage repair and in lithotripsy, the removal of calculi. All of these procedures involve the application of appropriate ultrasound of sufficient energy to emulsify, fragment or disrupt the selected tissue, cartilage, bone or calculi. In many operations the disrupted material is aspirated from the site by a handpiece which also supplies the ultrasonic energy.
- phacoemulsification involves the fragmentation of lens tissue as is performed, for example, in cataract surgery.
- a transducer such as a piezoelectric crystal, converts an electrical signal into ultrasonic energy generally in the range of 20 to 100 KHz.
- the ultrasonic energy generated by the crystal is coupled to a horn and a needle to radiate the ultrasonic energy into eye tissue for fragmentation or phacoemulsification thereof.
- the cataratic tissue After the cataratic tissue is fragmented, it is removed from the eye by aspiration of irrigation fluid provided for maintaining intraocular pressure and for flushing of fragmented tissue.
- the aspiration of fluid is commonly conducted through the ultrasonic needle itself, which is hollow.
- the flow of fluid through the needle and horn provides a means for cooling the piezoelectric crystals which generate heat as well as the ultrasonic energy.
- the efficiency of a piezoelectric crystal in converting electrical signals to ultrasonic energy is temperature dependent. That is, overheating of piezoelectric crystals causes the significant decrease in their ultrasonic output. In fact, severe overheating may destroy the usefulness of the crystals in generating ultrasonic energy or cause permanent damage to the crystals.
- the present invention is directed to a handpiece for disruption and removal of unwanted material in an animal body.
- the handpiece includes a heat sink for maintaining piezoelectric crystal temperature during occluded and partial occluded fluid flow conditions through the handpiece.
- Handpiece apparatus in accordance with the present invention useful for the disruption (ie, fragmentation, eroding, sloughing off and emulsification) and removal of unwanted material such as tissue, tumors, cartilage, bone, calculi or the like from an animal body such as a human, generally includes a housing and a horn having a needle which provides means for radiating ultrasonic energy into a body for emulsifying or fragmenting tissue, tumors, cartilage, bone calculi or the like.
- a lumen is provided, through the needle and horn, which provides a means for passing aspiration fluid therethrough along with the fragmented material and, importantly, for cooling of the horn during fluid flow therethrough.
- Piezoelectric elements which are disposed in thermal communication with the horn, are provided for generating ultrasonic energy into the horn and a heat sink is provided and disposed in thermal communication with the horn and the piezoelectric element for providing transient heat absorption from the ' piezoelectric element during stoppage and restricted fluid flow through the lumen and horn.
- the piezoelectric crystals may be axially aligned along a longitudinal axis of the handpiece.
- the heat sink provides a means for transferring absorbed heat to the horn and the fluid during unrestricted fluid flow through the lumen.
- the heat sink means protects the piezoelectric element from undesirable heating during periods of low fluid flow through the horn thus stabilizing the efficiency of the piezoelectric elements during their continued operation.
- the horn includes a body portion which passes through a plurality of piezoelectric crystals each having a torus shape.
- the heat sink may also comprise a high Q metallic material having a torus shape.
- the heat sink is disposed between at least two of the plurality of piezoelectric elements, or crystals, and if four piezoelectric crystals are utilized, the heat sink is preferably disposed between adjacent pairs of the plurality of piezoelectric crystals.
- the horn body portion may include a center portion and a rear portion with the rear portion passing through the plurality of piezoelectric crystals.
- the horn rear portion has a diameter smaller than a diameter of the center portion and each of the plurality of the piezoelectric crystals have a torus shape with an inside diameter approximately egual to the rear portion diameter and an outside diameter approximately equal to the center portion diameter. In this manner a streamline configuration of the horn piezoelectric crystals may be maintained for easy accommodation within the housing.
- the present invention is directed to a handpiece incorporating the particular configuration of piezoelectric elements and heat sink, it is to appreciated that the invention also is directed to an improvement for a handpiece which utilize piezoelectric elements for generating ultrasonic energy.
- the present invention is particularly suited for use in phacoemulsification, ie the selective removal of eye tissue as such in cataract removal .
- FIGURE 1 is a cross-sectional view of an embodiment of the present invention utilizing three piezoelectric crystals and a heat sink disposed between and around a radiating ultrasonic horn.
- FIGURE 1 there is shown a handpiece apparatus 10 in accordance with the present invention showing a housing 12 which is formed from any suitable material disposed around a horn 16 having a body portion 18 and a needle 20 which provides means for radiating ultrasonic energy into an eye, not shown, for fragmenting eye tissue.
- a lumen 24 is established through the needle 20 and horn 16 which provides a means for aspiration fluid in fragmented eye tissue and for cooling of the horn and piezoelectric crystals 28, 30, 32 as hereinafter described in greater detail. While three piezoelectric crystals, or elements, are shown in FIGURE 1, it is to be appreciated that a greater or smaller number of elements may be utilized in combination with a heat sink 36 as hereinafter to be described in greater detail.
- the piezoelectric crystals, or elements may be of any conventional suitable design heretofore used in phacoemulsification handpieces.
- the horn 16 may be formed from any suitable material such as, for example, titanium or stainless steel and the body portion 18 may include a center portion 40 and a rear portion 42 as will be discussed hereinafter in greater detail in combination with the piezoelectric crystals 28, 30, 32.
- the lumen 24 extends through the needle 20 and horn 16 as well as through a rear body mass 46 which includes a coupling 48 for interconnection with a power supply, not shown.
- a power supply not shown.
- the apparatus shown in Figure 1 is particularly suitable for use in phacoemulsification of eye tissue and accordingly, the size of the housing 12, horn 16, needle 20 and other components are appropriately sized and arranged.
- Other handpieces made in accordance with the present invention will have specific features and be of appropriate size for the disruption of other types of tissue, tumors, bone, cartilage and/ or calculi.
- an irrigation channel 50 which communicates to a chamber 52 established around the needle 20 for providing irrigation fluid therepast as indicated by arrows 54.
- a balanced salt solution is typically utilized as the irrigation fluid and is provided to the channel 50 through an irrigation input coupling 58 from an exterior source, not shown.
- 0-rings 62, 64 provide a means for sealing the horn and rim mass within the housing 12 in the conventional manner.
- the piezoelectric crystals 28, 30, 32, as well as the heat sink 36 have a torus, or washer shape and are disposed with two piezoelectric crystals 28 and 30 in a abutting relationship and the heat sink 36 sandwiched between the pair of abutting piezoelectric crystals 28, 30 and the third piezoelectric crystal 32.
- An insulating washer provides electrical and heat insulation between the piezoelectric crystal 32 and the center portion 40 of the horn body portion 18.
- the rear portion 42 has a diameter of approximately equal to the inside diameter of the piezoelectric crystals 28, 30, 32. heat sink 36 and washer 84 with an outside diameter of these elements approximately equal to the center portion 18 of the horn 16. This configuration enables a smooth outer contour in order that the conforming housing 12 provides a uniform exterior cylindrical surface for the grasping of the handpiece apparatus 10 by physician.
- all of the piezoelectric crystals 28, 30, 32 as well as the heat sink 36 and washer 84 be a snugly fit as shown in FIGURE 1 in order to maximize heat transfer therebetween.
- the heat sink 36 is preferably made from a high Q metallic material, such as, aluminum.
- This rear portion 42 provides for a shorter heat path from the lumen to the piezoelectric crystals 28, 30, 32 to enhance heat transfer from the piezoelectric crystals 28, 30, 32 to the irrigation fluid passing through lumen 24.
- the heat sink 36 is preferably disposed between the crystals 28, 30, 32. It should be appreciated that any number of crystals may be provided along with the plurality of heat sinks, not shown, as long as the piezoelectric crystals and heat sinks are arranged for providing intimate contact therebetween to enable and promote transient heat transfer therebetween.
- the heat sink also functions to transfer the absorbed heat to the horn and fluid passing through the lumen upon resumed unrestricted fluid flow through the lumen 24.
- the heat sink acts as heat modulator, that is it functions to maintain the crystal temperature despite the rate of fluid flow to the lumen 24 and horn 16.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ophthalmology & Optometry (AREA)
- Heart & Thoracic Surgery (AREA)
- Surgery (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Mechanical Engineering (AREA)
- Surgical Instruments (AREA)
Abstract
Handpiece apparatus (10) is provided for disruption and removal of tissue, tumours, bone, cartilage, calculi or the like which includes an arrangement of piezoelectric crystals (28, 30, 32) and a heat sink (36) in order to control crystal temperature despite interruption of cooling irrigation flow through the handpiece.
Description
ULTRASONIC HANDPIECE WITH MULTIPLE PIEZOELECTRIC ELEMENTS AND HEAT DISSIPATOR
The present invention generally relates to surgical instruments, and more particularly, is directed to a handpiece for selective removal of unwanted material in an animal body such as, for example, unwanted tissue, tumors, cartilage, bone, calculi or the like.
Ultrasound has found many medical/surgical applications for the removal of tissue, such as in phacoemulsification, bone and cartilage repair and in lithotripsy, the removal of calculi. All of these procedures involve the application of appropriate ultrasound of sufficient energy to emulsify, fragment or disrupt the selected tissue, cartilage, bone or calculi. In many operations the disrupted material is aspirated from the site by a handpiece which also supplies the ultrasonic energy.
As a specific example, phacoemulsification involves the fragmentation of lens tissue as is performed, for example, in cataract surgery. A transducer such as a piezoelectric crystal, converts an electrical signal into ultrasonic energy generally in the range of 20 to 100 KHz.
The ultrasonic energy generated by the crystal is coupled to a horn and a needle to radiate the ultrasonic energy into eye tissue for fragmentation or phacoemulsification thereof.
After the cataratic tissue is fragmented, it is removed from the eye by aspiration of irrigation fluid provided for maintaining intraocular pressure and for flushing of fragmented tissue. The aspiration of fluid is commonly conducted through the ultrasonic needle itself, which is hollow.
The flow of fluid through the needle and horn provides a means for cooling the piezoelectric crystals which generate heat as well as the ultrasonic energy. Unfortunately, the efficiency of a piezoelectric crystal in converting electrical signals to ultrasonic energy is temperature dependent. That is, overheating of piezoelectric crystals causes the significant decrease in their ultrasonic output. In fact, severe overheating may destroy the usefulness of the crystals in generating ultrasonic energy or cause permanent damage to the crystals.
In order to maintain the operating temperature of the piezoelectric crystals heretofore developed handpieces for phacoemulsification have used the hollow horn needle arrangement hereinabove described.
However problems arise during aspiration when disrupted tissue occlude or partially occlude the needle resulting in restricted flow through the needle, this restricted flow provides for less heat transfer from the piezoelectric crystals into the fluid flow and concomitant undesirable temperature rise of the crystals.
The present invention is directed to a handpiece for disruption and removal of unwanted material in an animal body. The handpiece includes a heat sink for maintaining piezoelectric crystal temperature during occluded and partial occluded fluid flow conditions through the handpiece.
SUMMARY OF THE INVENTION
Handpiece apparatus in accordance with the present invention useful for the disruption (ie, fragmentation,
eroding, sloughing off and emulsification) and removal of unwanted material such as tissue, tumors, cartilage, bone, calculi or the like from an animal body such as a human, generally includes a housing and a horn having a needle which provides means for radiating ultrasonic energy into a body for emulsifying or fragmenting tissue, tumors, cartilage, bone calculi or the like. A lumen is provided, through the needle and horn, which provides a means for passing aspiration fluid therethrough along with the fragmented material and, importantly, for cooling of the horn during fluid flow therethrough.
Piezoelectric elements, which are disposed in thermal communication with the horn, are provided for generating ultrasonic energy into the horn and a heat sink is provided and disposed in thermal communication with the horn and the piezoelectric element for providing transient heat absorption from the ' piezoelectric element during stoppage and restricted fluid flow through the lumen and horn. The piezoelectric crystals may be axially aligned along a longitudinal axis of the handpiece.
Additionally, the heat sink provides a means for transferring absorbed heat to the horn and the fluid during unrestricted fluid flow through the lumen.
In this manner, the heat sink means protects the piezoelectric element from undesirable heating during periods of low fluid flow through the horn thus stabilizing the efficiency of the piezoelectric elements during their continued operation. More particularly, the horn includes a body portion which passes through a plurality of piezoelectric crystals each having a torus shape. The heat sink may also
comprise a high Q metallic material having a torus shape.
Importantly, the heat sink is disposed between at least two of the plurality of piezoelectric elements, or crystals, and if four piezoelectric crystals are utilized, the heat sink is preferably disposed between adjacent pairs of the plurality of piezoelectric crystals.
Still more particularly, the horn body portion may include a center portion and a rear portion with the rear portion passing through the plurality of piezoelectric crystals. In this embodiment, the horn rear portion has a diameter smaller than a diameter of the center portion and each of the plurality of the piezoelectric crystals have a torus shape with an inside diameter approximately egual to the rear portion diameter and an outside diameter approximately equal to the center portion diameter. In this manner a streamline configuration of the horn piezoelectric crystals may be maintained for easy accommodation within the housing.
While the present invention is directed to a handpiece incorporating the particular configuration of piezoelectric elements and heat sink, it is to appreciated that the invention also is directed to an improvement for a handpiece which utilize piezoelectric elements for generating ultrasonic energy. In addition the present invention is particularly suited for use in phacoemulsification, ie the selective removal of eye tissue as such in cataract removal .
BRIEF DESCRIPTION OF THE DRAWINGS
The present invention can be more readily understood by consideration of the following detailed description, particularly in conjunction with the accompanying drawings in which:
FIGURE 1 is a cross-sectional view of an embodiment of the present invention utilizing three piezoelectric crystals and a heat sink disposed between and around a radiating ultrasonic horn.
DETAILED DESCRIPTION OF THE INVENTION
Turning now to FIGURE 1 there is shown a handpiece apparatus 10 in accordance with the present invention showing a housing 12 which is formed from any suitable material disposed around a horn 16 having a body portion 18 and a needle 20 which provides means for radiating ultrasonic energy into an eye, not shown, for fragmenting eye tissue.
A lumen 24 is established through the needle 20 and horn 16 which provides a means for aspiration fluid in fragmented eye tissue and for cooling of the horn and piezoelectric crystals 28, 30, 32 as hereinafter described in greater detail. While three piezoelectric crystals, or elements, are shown in FIGURE 1, it is to be appreciated that a greater or smaller number of elements may be utilized in combination with a heat sink 36 as hereinafter to be described in greater detail.
It should be appreciated that the piezoelectric crystals, or elements, may be of any conventional suitable design heretofore used in phacoemulsification handpieces. The horn 16 may be formed from any suitable material such as, for example, titanium or
stainless steel and the body portion 18 may include a center portion 40 and a rear portion 42 as will be discussed hereinafter in greater detail in combination with the piezoelectric crystals 28, 30, 32.
The lumen 24 extends through the needle 20 and horn 16 as well as through a rear body mass 46 which includes a coupling 48 for interconnection with a power supply, not shown. It should be appreciated that the apparatus shown in Figure 1 is particularly suitable for use in phacoemulsification of eye tissue and accordingly, the size of the housing 12, horn 16, needle 20 and other components are appropriately sized and arranged. Other handpieces made in accordance with the present invention will have specific features and be of appropriate size for the disruption of other types of tissue, tumors, bone, cartilage and/ or calculi.
Mounted exterior to the housing 12 is an irrigation channel 50 which communicates to a chamber 52 established around the needle 20 for providing irrigation fluid therepast as indicated by arrows 54. A balanced salt solution is typically utilized as the irrigation fluid and is provided to the channel 50 through an irrigation input coupling 58 from an exterior source, not shown.
0-rings 62, 64 provide a means for sealing the horn and rim mass within the housing 12 in the conventional manner.
Electrical connection to the piezoelectric crystals 28, 30, 32 is made through terminals 70, 72 and are connected by wire 72 to a connector 78 to which a power source (not shown) is connected through a
sleeve 80 in a solid sealing material 82 deposited against the body mass 46.
As shown in FIGURE 1, the piezoelectric crystals 28, 30, 32, as well as the heat sink 36 have a torus, or washer shape and are disposed with two piezoelectric crystals 28 and 30 in a abutting relationship and the heat sink 36 sandwiched between the pair of abutting piezoelectric crystals 28, 30 and the third piezoelectric crystal 32. An insulating washer provides electrical and heat insulation between the piezoelectric crystal 32 and the center portion 40 of the horn body portion 18.
As shown, the rear portion 42 has a diameter of approximately equal to the inside diameter of the piezoelectric crystals 28, 30, 32. heat sink 36 and washer 84 with an outside diameter of these elements approximately equal to the center portion 18 of the horn 16. This configuration enables a smooth outer contour in order that the conforming housing 12 provides a uniform exterior cylindrical surface for the grasping of the handpiece apparatus 10 by physician.
It is preferable that all of the piezoelectric crystals 28, 30, 32 as well as the heat sink 36 and washer 84 be a snugly fit as shown in FIGURE 1 in order to maximize heat transfer therebetween.
The heat sink 36 is preferably made from a high Q metallic material, such as, aluminum.
In operation when unrestricted flow of fluid occurs through the lumen 28 during aspiration, cooling is provided for the piezoelectric crystals 28, 30, 32 through the rear portion 42 of the horn body portion
18. The smaller diameter of this rear portion 42
provides for a shorter heat path from the lumen to the piezoelectric crystals 28, 30, 32 to enhance heat transfer from the piezoelectric crystals 28, 30, 32 to the irrigation fluid passing through lumen 24.
Upon partial or total occlusion of the lumen by fragmented eye tissue during aspiration, not shown, significant reduction of heat transfer from the crystals 28, 30, 32 may occur. This may result in overheating of the crystals and serious reduction in their efficiency which is prevented, in accordance with the present invention, by the heat sink 36. This protection of overheating is accomplished through the use of the heat sink 36 since it provides for transient heat absorption of the excess heat generated by the crystals 28, 30, 32 during such stoppage or restricted fluid flow through the lumen.
To enhance this transient absorption of heat, the heat sink 36 is preferably disposed between the crystals 28, 30, 32. It should be appreciated that any number of crystals may be provided along with the plurality of heat sinks, not shown, as long as the piezoelectric crystals and heat sinks are arranged for providing intimate contact therebetween to enable and promote transient heat transfer therebetween.
The heat sink also functions to transfer the absorbed heat to the horn and fluid passing through the lumen upon resumed unrestricted fluid flow through the lumen 24. Thus, the heat sink acts as heat modulator, that is it functions to maintain the crystal temperature despite the rate of fluid flow to the lumen 24 and horn 16.
Although there has been hereinabove described a particular arrangement of handpiece apparatus in
accordance with the present invention for the purpose of illustrating the manner in which the invention may be used to its advantage, it should be appreciated that the invention is not limited thereto. Accordingly, any and all modifications, variations or equivalent arrangements which may occur to those skilled in the art, should be considered to be within the scope of the present invention as defined in the appended claims.
Claims
1. Handpiece apparatus for disruption and removal of unwanted material from an animal body, said handpiece apparatus comprising: a housing; a plurality of piezoelectric crystals dispersed within said housing; a horn having a body portion passing through the plurality of piezoelectric crystals and needle means for radiating ultrasonic energy into an animal body for disrupting unwanted material, said horn including lumen means, passing through the needle means and body portion, for aspiration of fluid and disrupted material and for cooling of the plurality of piezoelectric crystals during flow of the fluid therethrough; and heat sink means, disposed between at least two of said plurality of piezoelectric crystals, for providing transient heat absorption from said plurality of piezoelectric crystals during stoppage and restricted fluid flow through said lumen means and for transfer of absorbed heat to the horn and fluid during unrestricted fluid flow through said lumen means.
2. Handpiece apparatus for phacoemulsification of eye tissue, said handpiece apparatus comprising: a housing; a plurality of piezoelectric crystals dispersed within said housing; a horn having a body portion passing through the plurality of piezoelectric crystals and needle means for radiating ultrasonic energy into an eye for fragmenting eye tissue, said horn including lumen means, passing through the needle means and horn portion, for aspiration of fluid and fragmented eye tissue and for cooling of the plurality of piezoelectric crystals during flow of the fluid therethrough; and heat sink means, disposed between at least two of said plurality of piezoelectric crystals, for providing transient heat absorption form said plurality of piezoelectric crystals during stoppage and restricted fluid flow through said lumen means and for transfer of absorbed heat to the horn and fluid during unrestricted fluid flow through said lumen means.
3. The handpiece apparatus according to claim 2 wherein said plurality of piezoelectric crystals comprises three piezoelectric crystals having a torus shape and said heat sink means comprises a high metallic material having a torus shape.
4. The handpiece apparatus according to claim 2 wherein said plurality of piezoelectric crystals comprises four piezoelectric crystals and said heat sink means is disposed between adjacent pairs of said plurality of piezoelectric crystals.
5. The handpiece apparatus according to claim 4 wherein said heat sink means and each of said plurality of piezoelectric crystals have a torus shape.
6. The handpiece of apparatus according to claim 2 wherein the horn body portion includes a center portion and a rear portion with said rear portion passing through said plurality of piezoelectric crystals.
7. The handpiece apparatus according to claim 6 said horn rear portion has a diameter smaller than a diameter of said center portion, each of said plurality of piezoelectric crystals have a torus shape with an inside diameter approximately equal to the rear portion diameter and an outside diameter approximately equal to the center portion diameter.
8. In a handpiece for phacoemulsification of eye tissue having a horn and a needle for radiating ultrasonic energy into the eye tissue with a lumen passing through the needle and horn for aspiration of fluid and fragmented eye tissue and for cooling of the horn during fluid flow therethrough, the improvement comprising: piezoelectric means, dispersed in thermal communication with said horn, for generating ultrasonic energy into said horn, said piezoelectric means including a plurality of piezoelectric crystals; and heat sink means, disposed between at least two of said plurality of piezoelectric crystals, for providing transient heat absorption from said plurality of piezoelectric crystals during stoppage and restricted fluid flow through said lumen and horn and for transfer of absorbed heat to said horn and fluid during unrestricted fluid flow through said lumen and horn.
9. The handpiece apparatus according to claim 8 wherein said plurality of piezoelectric crystals comprises three piezoelectric crystals having a torus shape and said heat sink means comprises a high metallic material having a torus shape.
10. The handpiece apparatus according to claim 8 wherein said plurality of piezoelectric crystals comprises four piezoelectric crystals and said heat sink means is disposed between adjacent pairs of said plurality of piezoelectric crystals.
11. The handpiece apparatus according to claim 10 wherein said heat sink means and each of said plurality of piezoelectric crystals have a torus shape.
12. The handpiece of apparatus according to claim
8 wherein the horn comprises a center portion and a rear portion with said rear portion passing through said plurality of piezoelectric crystals.
13. The handpiece apparatus according to claim 12 said horn rear portion has a diameter smaller than a diameter of said center portion, each of said plurality of piezoelectric crystals have a torus shape with an inside diameter approximately equal to the rear portion diameter and an outside diameter approximately equal to the center portion diameter.
14. Handpiece apparatus for phacoemulsification of eye tissue, said handpiece apparatus comprising: a housing; a horn having needle means for radiating ultrasonic energy into an eye for fragmenting eye tissue and lumen means, passing through the horn and needle means, for aspiration of fluid and fragmented eye tissue and for cooling of the horn during fluid flow therethrough; piezoelectric means, disposed in thermal communication with said horn, for generating ultrasonic energy into said horn; and heat sink means, dispersed in thermal communication with said horn and piezoelectric means, for providing transient heat absorption from said piezoelectric means during stoppage and restricted fluid flow through said lumen means and horn and for transfer of absorbed heat to said horn and fluid flow through said lumen means.
15. The handpiece apparatus according to claim 14 wherein said piezoelectric means comprises a plurality to piezoelectric crystals arranged axially along a longitudinal axis of the handpiece apparatus.
16. The handpiece apparatus according to claim 15 wherein said plurality of piezoelectric crystals comprises three piezoelectric crystals having a torus shape and said heat sink means comprises a high metallic material having a torus shape.
17. The handpiece apparatus according to claim 15 wherein said plurality of piezoelectric crystals comprises four piezoelectric crystals and said heat sink means is disposed between adjacent pairs of said plurality of piezoelectric crystals.
18. The handpiece apparatus according to claim 17 wherein said heat sink means and each of said plurality of piezoelectric crystals have a torus shape.
19. The handpiece of apparatus according to claim 15 wherein the horn comprises a center portion and a rear portion with said rear portion passing through said plurality of piezoelectric crystals.
20. The handpiece apparatus according to claim 19 said horn rear portion has a diameter smaller than a diameter of said center portion, each of said plurality of piezoelectric crystals have a torus shape with an inside diameter approximately equal to the rear portion diameter and an outside diameter approximately equal to the center portion diameter.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP54261797A JP3703149B2 (en) | 1996-05-29 | 1997-05-14 | Ultrasonic wave generation handpiece comprising a plurality of piezoelectric elements and a heat radiator |
DE69723856T DE69723856T2 (en) | 1996-05-29 | 1997-05-14 | HANDPIECE FOR ULTRASONIC DEVICE WITH SEVERAL PIEZOELECTRICAL ELEMENTS AND HEAT SINK |
EP97924759A EP0942696B1 (en) | 1996-05-29 | 1997-05-14 | Ultrasonic handpiece with multiple piezoelectric elements and heat dissipator |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/654,837 US5843109A (en) | 1996-05-29 | 1996-05-29 | Ultrasonic handpiece with multiple piezoelectric elements and heat dissipator |
US08/654,837 | 1996-05-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1997045078A1 true WO1997045078A1 (en) | 1997-12-04 |
Family
ID=24626440
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1997/008434 WO1997045078A1 (en) | 1996-05-29 | 1997-05-14 | Ultrasonic handpiece with multiple piezoelectric elements and heat dissipator |
Country Status (5)
Country | Link |
---|---|
US (1) | US5843109A (en) |
EP (1) | EP0942696B1 (en) |
JP (1) | JP3703149B2 (en) |
DE (1) | DE69723856T2 (en) |
WO (1) | WO1997045078A1 (en) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000000096A1 (en) * | 1998-06-29 | 2000-01-06 | Alcon Laboratories, Inc. | Torsional ultrasonic handpiece |
WO2004075945A2 (en) | 2003-02-26 | 2004-09-10 | Flowcardia Inc. | Ultrasound catheter apparatus |
WO2007035171A1 (en) * | 2005-09-26 | 2007-03-29 | Nanyang Technological University | Ultrasonic mechanical emulsifier |
US8690819B2 (en) | 2002-08-26 | 2014-04-08 | Flowcardia, Inc. | Ultrasound catheter for disrupting blood vessel obstructions |
US8956375B2 (en) | 2002-08-26 | 2015-02-17 | Flowcardia, Inc. | Ultrasound catheter devices and methods |
US9265520B2 (en) | 2002-08-02 | 2016-02-23 | Flowcardia, Inc. | Therapeutic ultrasound system |
US9282984B2 (en) | 2006-04-05 | 2016-03-15 | Flowcardia, Inc. | Therapeutic ultrasound system |
US9381027B2 (en) | 2002-08-26 | 2016-07-05 | Flowcardia, Inc. | Steerable ultrasound catheter |
US9402646B2 (en) | 2009-06-12 | 2016-08-02 | Flowcardia, Inc. | Device and method for vascular re-entry |
US9433433B2 (en) | 2003-09-19 | 2016-09-06 | Flowcardia, Inc. | Connector for securing ultrasound catheter to transducer |
US9629643B2 (en) | 2006-11-07 | 2017-04-25 | Flowcardia, Inc. | Ultrasound catheter having improved distal end |
EP3170467A4 (en) * | 2014-07-18 | 2018-03-21 | Olympus Corporation | Ultrasonic vibrator for medical treatment |
US10004520B2 (en) | 2004-08-26 | 2018-06-26 | Flowcardia, Inc. | Ultrasound catheter devices and methods |
US10285719B2 (en) | 2005-01-20 | 2019-05-14 | Flowcardia, Inc. | Vibrational catheter devices and methods for making same |
US10357263B2 (en) | 2012-01-18 | 2019-07-23 | C. R. Bard, Inc. | Vascular re-entry device |
US10582983B2 (en) | 2017-02-06 | 2020-03-10 | C. R. Bard, Inc. | Ultrasonic endovascular catheter with a controllable sheath |
US10758256B2 (en) | 2016-12-22 | 2020-09-01 | C. R. Bard, Inc. | Ultrasonic endovascular catheter |
US10835267B2 (en) | 2002-08-02 | 2020-11-17 | Flowcardia, Inc. | Ultrasound catheter having protective feature against breakage |
US11344750B2 (en) | 2012-08-02 | 2022-05-31 | Flowcardia, Inc. | Ultrasound catheter system |
WO2022225648A1 (en) * | 2021-04-24 | 2022-10-27 | Salehi Had Hani | Devices for performing intraocular surgery and methods for using them |
US11596726B2 (en) | 2016-12-17 | 2023-03-07 | C.R. Bard, Inc. | Ultrasound devices for removing clots from catheters and related methods |
US11633206B2 (en) | 2016-11-23 | 2023-04-25 | C.R. Bard, Inc. | Catheter with retractable sheath and methods thereof |
Families Citing this family (254)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6676626B1 (en) | 1998-05-01 | 2004-01-13 | Ekos Corporation | Ultrasound assembly with increased efficacy |
US6582392B1 (en) | 1998-05-01 | 2003-06-24 | Ekos Corporation | Ultrasound assembly for use with a catheter |
US6234993B1 (en) * | 1999-11-04 | 2001-05-22 | Microsurgical Technology, Inc. | Low profile phaco handpiece |
EP1110509A1 (en) * | 1999-12-21 | 2001-06-27 | Tomaso Vercellotti | Surgical device for bone surgery |
US10835307B2 (en) | 2001-06-12 | 2020-11-17 | Ethicon Llc | Modular battery powered handheld surgical instrument containing elongated multi-layered shaft |
ATE319378T1 (en) | 2001-12-03 | 2006-03-15 | Ekos Corp | CATHETER WITH MULTIPLE ULTRASONIC EMITTING PARTS |
US7393354B2 (en) | 2002-07-25 | 2008-07-01 | Sherwood Services Ag | Electrosurgical pencil with drag sensing capability |
US6747218B2 (en) | 2002-09-20 | 2004-06-08 | Sherwood Services Ag | Electrosurgical haptic switch including snap dome and printed circuit stepped contact array |
US6852092B2 (en) | 2002-10-02 | 2005-02-08 | Advanced Medical Optics, Inc. | Handpiece system for multiple phacoemulsification techniques |
US7244257B2 (en) | 2002-11-05 | 2007-07-17 | Sherwood Services Ag | Electrosurgical pencil having a single button variable control |
AU2004212990B2 (en) | 2003-02-20 | 2009-12-10 | Covidien Ag | Motion detector for controlling electrosurgical output |
US8012136B2 (en) | 2003-05-20 | 2011-09-06 | Optimyst Systems, Inc. | Ophthalmic fluid delivery device and method of operation |
ATE501766T1 (en) | 2003-05-20 | 2011-04-15 | James F Collins | OPHTHALMIC DRUG DELIVERY SYSTEM |
US6939317B2 (en) * | 2003-08-10 | 2005-09-06 | Jaime Zacharias | Repetitive progressive axial displacement pattern for phacoemulsifier needle tip |
US7163548B2 (en) * | 2003-11-05 | 2007-01-16 | Ethicon Endo-Surgery, Inc | Ultrasonic surgical blade and instrument having a gain step |
US7879033B2 (en) | 2003-11-20 | 2011-02-01 | Covidien Ag | Electrosurgical pencil with advanced ES controls |
US7503917B2 (en) | 2003-11-20 | 2009-03-17 | Covidien Ag | Electrosurgical pencil with improved controls |
US7156842B2 (en) | 2003-11-20 | 2007-01-02 | Sherwood Services Ag | Electrosurgical pencil with improved controls |
US8182501B2 (en) | 2004-02-27 | 2012-05-22 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical shears and method for sealing a blood vessel using same |
US7846155B2 (en) | 2004-10-08 | 2010-12-07 | Ethicon Endo-Surgery, Inc. | Handle assembly having hand activation for use with an ultrasonic surgical instrument |
ITMI20051172A1 (en) * | 2005-06-21 | 2006-12-22 | Fernando Bianchetti | "PIEZOELECTRIC SURGICAL DEVICE AND METHOD FOR THE PREPARATION OF IMPLANT SITE" |
US7500974B2 (en) | 2005-06-28 | 2009-03-10 | Covidien Ag | Electrode with rotatably deployable sheath |
US7828794B2 (en) | 2005-08-25 | 2010-11-09 | Covidien Ag | Handheld electrosurgical apparatus for controlling operating room equipment |
US8380126B1 (en) | 2005-10-13 | 2013-02-19 | Abbott Medical Optics Inc. | Reliable communications for wireless devices |
US8565839B2 (en) | 2005-10-13 | 2013-10-22 | Abbott Medical Optics Inc. | Power management for wireless devices |
US20070191713A1 (en) | 2005-10-14 | 2007-08-16 | Eichmann Stephen E | Ultrasonic device for cutting and coagulating |
US8246642B2 (en) * | 2005-12-01 | 2012-08-21 | Ethicon Endo-Surgery, Inc. | Ultrasonic medical instrument and medical instrument connection assembly |
US7621930B2 (en) | 2006-01-20 | 2009-11-24 | Ethicon Endo-Surgery, Inc. | Ultrasound medical instrument having a medical ultrasonic blade |
US7854735B2 (en) | 2006-02-16 | 2010-12-21 | Ethicon Endo-Surgery, Inc. | Energy-based medical treatment system and method |
US20070260240A1 (en) | 2006-05-05 | 2007-11-08 | Sherwood Services Ag | Soft tissue RF transection and resection device |
US9522221B2 (en) | 2006-11-09 | 2016-12-20 | Abbott Medical Optics Inc. | Fluidics cassette for ocular surgical system |
US10959881B2 (en) | 2006-11-09 | 2021-03-30 | Johnson & Johnson Surgical Vision, Inc. | Fluidics cassette for ocular surgical system |
US8414534B2 (en) | 2006-11-09 | 2013-04-09 | Abbott Medical Optics Inc. | Holding tank devices, systems, and methods for surgical fluidics cassette |
US8491528B2 (en) | 2006-11-09 | 2013-07-23 | Abbott Medical Optics Inc. | Critical alignment of fluidics cassettes |
US9295765B2 (en) | 2006-11-09 | 2016-03-29 | Abbott Medical Optics Inc. | Surgical fluidics cassette supporting multiple pumps |
US10182833B2 (en) | 2007-01-08 | 2019-01-22 | Ekos Corporation | Power parameters for ultrasonic catheter |
US8226675B2 (en) | 2007-03-22 | 2012-07-24 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
US8911460B2 (en) | 2007-03-22 | 2014-12-16 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US8057498B2 (en) | 2007-11-30 | 2011-11-15 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instrument blades |
US8142461B2 (en) | 2007-03-22 | 2012-03-27 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
US20080234709A1 (en) | 2007-03-22 | 2008-09-25 | Houser Kevin L | Ultrasonic surgical instrument and cartilage and bone shaping blades therefor |
US10485699B2 (en) * | 2007-05-24 | 2019-11-26 | Johnson & Johnson Surgical Vision, Inc. | Systems and methods for transverse phacoemulsification |
US10363166B2 (en) | 2007-05-24 | 2019-07-30 | Johnson & Johnson Surgical Vision, Inc. | System and method for controlling a transverse phacoemulsification system using sensed data |
US10596032B2 (en) | 2007-05-24 | 2020-03-24 | Johnson & Johnson Surgical Vision, Inc. | System and method for controlling a transverse phacoemulsification system with a footpedal |
EP2494932B1 (en) | 2007-06-22 | 2020-05-20 | Ekos Corporation | Apparatus for treatment of intracranial hemorrhages |
US9987468B2 (en) | 2007-06-29 | 2018-06-05 | Actuated Medical, Inc. | Reduced force device for intravascular access and guidewire placement |
US10219832B2 (en) * | 2007-06-29 | 2019-03-05 | Actuated Medical, Inc. | Device and method for less forceful tissue puncture |
US8882791B2 (en) | 2007-07-27 | 2014-11-11 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US8257377B2 (en) | 2007-07-27 | 2012-09-04 | Ethicon Endo-Surgery, Inc. | Multiple end effectors ultrasonic surgical instruments |
US8523889B2 (en) | 2007-07-27 | 2013-09-03 | Ethicon Endo-Surgery, Inc. | Ultrasonic end effectors with increased active length |
US8348967B2 (en) | 2007-07-27 | 2013-01-08 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US8808319B2 (en) | 2007-07-27 | 2014-08-19 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
US8252012B2 (en) | 2007-07-31 | 2012-08-28 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instrument with modulator |
US8512365B2 (en) | 2007-07-31 | 2013-08-20 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
US9044261B2 (en) | 2007-07-31 | 2015-06-02 | Ethicon Endo-Surgery, Inc. | Temperature controlled ultrasonic surgical instruments |
US8430898B2 (en) | 2007-07-31 | 2013-04-30 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US10342701B2 (en) | 2007-08-13 | 2019-07-09 | Johnson & Johnson Surgical Vision, Inc. | Systems and methods for phacoemulsification with vacuum based pumps |
US8506565B2 (en) | 2007-08-23 | 2013-08-13 | Covidien Lp | Electrosurgical device with LED adapter |
EP2796102B1 (en) | 2007-10-05 | 2018-03-14 | Ethicon LLC | Ergonomic surgical instruments |
USD594983S1 (en) | 2007-10-05 | 2009-06-23 | Ethicon Endo-Surgery, Inc. | Handle assembly for surgical instrument |
US10010339B2 (en) | 2007-11-30 | 2018-07-03 | Ethicon Llc | Ultrasonic surgical blades |
US7901423B2 (en) | 2007-11-30 | 2011-03-08 | Ethicon Endo-Surgery, Inc. | Folded ultrasonic end effectors with increased active length |
US8235987B2 (en) | 2007-12-05 | 2012-08-07 | Tyco Healthcare Group Lp | Thermal penetration and arc length controllable electrosurgical pencil |
WO2009073859A1 (en) | 2007-12-07 | 2009-06-11 | Zevex, Inc. | Method of inducing transverse motion in langevin type transducers using split electroding of ceramic elements |
WO2009154658A1 (en) | 2008-02-22 | 2009-12-23 | Piezolnnovations | Ultrasonic torsional mode and longitudinal-torsional mode transducer systems |
US8636733B2 (en) | 2008-03-31 | 2014-01-28 | Covidien Lp | Electrosurgical pencil including improved controls |
US8632536B2 (en) | 2008-03-31 | 2014-01-21 | Covidien Lp | Electrosurgical pencil including improved controls |
US8597292B2 (en) | 2008-03-31 | 2013-12-03 | Covidien Lp | Electrosurgical pencil including improved controls |
US8162937B2 (en) | 2008-06-27 | 2012-04-24 | Tyco Healthcare Group Lp | High volume fluid seal for electrosurgical handpiece |
US8058771B2 (en) | 2008-08-06 | 2011-11-15 | Ethicon Endo-Surgery, Inc. | Ultrasonic device for cutting and coagulating with stepped output |
US9089360B2 (en) | 2008-08-06 | 2015-07-28 | Ethicon Endo-Surgery, Inc. | Devices and techniques for cutting and coagulating tissue |
US8454551B2 (en) * | 2008-08-22 | 2013-06-04 | Zevex, Inc. | Removable adapter for phacoemulsification handpiece having irrigation and aspiration fluid paths |
US9795507B2 (en) | 2008-11-07 | 2017-10-24 | Abbott Medical Optics Inc. | Multifunction foot pedal |
EP2373265B1 (en) | 2008-11-07 | 2016-03-09 | Abbott Medical Optics Inc. | Controlling of multiple pumps |
AU2009313421B2 (en) | 2008-11-07 | 2015-03-05 | Johnson & Johnson Surgical Vision, Inc. | Semi-automatic device calibraton |
CA2936454C (en) | 2008-11-07 | 2018-10-23 | Abbott Medical Optics Inc. | Adjustable foot pedal control for ophthalmic surgery |
US9005157B2 (en) * | 2008-11-07 | 2015-04-14 | Abbott Medical Optics Inc. | Surgical cassette apparatus |
US10219940B2 (en) | 2008-11-07 | 2019-03-05 | Johnson & Johnson Surgical Vision, Inc. | Automatically pulsing different aspiration levels to an ocular probe |
WO2010054146A1 (en) | 2008-11-07 | 2010-05-14 | Abbott Medical Optics Inc. | Method for programming foot pedal settings and controlling performance through foot pedal variation |
CA2743098C (en) | 2008-11-07 | 2017-08-15 | Abbott Medical Optics Inc. | Automatically switching different aspiration levels and/or pumps to an ocular probe |
US8231620B2 (en) | 2009-02-10 | 2012-07-31 | Tyco Healthcare Group Lp | Extension cutting blade |
US9492317B2 (en) | 2009-03-31 | 2016-11-15 | Abbott Medical Optics Inc. | Cassette capture mechanism |
US9700339B2 (en) | 2009-05-20 | 2017-07-11 | Ethicon Endo-Surgery, Inc. | Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments |
US8650728B2 (en) | 2009-06-24 | 2014-02-18 | Ethicon Endo-Surgery, Inc. | Method of assembling a transducer for a surgical instrument |
US9017326B2 (en) | 2009-07-15 | 2015-04-28 | Ethicon Endo-Surgery, Inc. | Impedance monitoring apparatus, system, and method for ultrasonic surgical instruments |
US8663220B2 (en) | 2009-07-15 | 2014-03-04 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US8461744B2 (en) | 2009-07-15 | 2013-06-11 | Ethicon Endo-Surgery, Inc. | Rotating transducer mount for ultrasonic surgical instruments |
US11090104B2 (en) | 2009-10-09 | 2021-08-17 | Cilag Gmbh International | Surgical generator for ultrasonic and electrosurgical devices |
US10441345B2 (en) | 2009-10-09 | 2019-10-15 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
US10172669B2 (en) | 2009-10-09 | 2019-01-08 | Ethicon Llc | Surgical instrument comprising an energy trigger lockout |
US9168054B2 (en) | 2009-10-09 | 2015-10-27 | Ethicon Endo-Surgery, Inc. | Surgical generator for ultrasonic and electrosurgical devices |
US9039695B2 (en) | 2009-10-09 | 2015-05-26 | Ethicon Endo-Surgery, Inc. | Surgical generator for ultrasonic and electrosurgical devices |
USRE47996E1 (en) | 2009-10-09 | 2020-05-19 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
US8951272B2 (en) | 2010-02-11 | 2015-02-10 | Ethicon Endo-Surgery, Inc. | Seal arrangements for ultrasonically powered surgical instruments |
US8382782B2 (en) | 2010-02-11 | 2013-02-26 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments with partially rotating blade and fixed pad arrangement |
US8419759B2 (en) | 2010-02-11 | 2013-04-16 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instrument with comb-like tissue trimming device |
US8961547B2 (en) | 2010-02-11 | 2015-02-24 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments with moving cutting implement |
US8486096B2 (en) | 2010-02-11 | 2013-07-16 | Ethicon Endo-Surgery, Inc. | Dual purpose surgical instrument for cutting and coagulating tissue |
US8531064B2 (en) | 2010-02-11 | 2013-09-10 | Ethicon Endo-Surgery, Inc. | Ultrasonically powered surgical instruments with rotating cutting implement |
US8579928B2 (en) | 2010-02-11 | 2013-11-12 | Ethicon Endo-Surgery, Inc. | Outer sheath and blade arrangements for ultrasonic surgical instruments |
US8469981B2 (en) | 2010-02-11 | 2013-06-25 | Ethicon Endo-Surgery, Inc. | Rotatable cutting implement arrangements for ultrasonic surgical instruments |
US9259234B2 (en) | 2010-02-11 | 2016-02-16 | Ethicon Endo-Surgery, Llc | Ultrasonic surgical instruments with rotatable blade and hollow sheath arrangements |
US8323302B2 (en) | 2010-02-11 | 2012-12-04 | Ethicon Endo-Surgery, Inc. | Methods of using ultrasonically powered surgical instruments with rotatable cutting implements |
AU2011224496B2 (en) | 2010-03-08 | 2016-01-07 | Johnson & Johnson Surgical Vision, Inc. | Method for using microelectromechanical systems to generate movement in a phacoemulsification handpiece |
GB2480498A (en) | 2010-05-21 | 2011-11-23 | Ethicon Endo Surgery Inc | Medical device comprising RF circuitry |
EP2579765B1 (en) * | 2010-06-13 | 2019-08-07 | Omeq Medical Ltd. | Anatomical-positioning apparatus with an expandable device |
JP5964826B2 (en) | 2010-07-15 | 2016-08-03 | アイノビア,インコーポレイティド | Drop generation device |
US10154923B2 (en) | 2010-07-15 | 2018-12-18 | Eyenovia, Inc. | Drop generating device |
EP2485691B1 (en) | 2010-07-15 | 2020-03-18 | Eyenovia, Inc. | Ophthalmic drug delivery |
CN103118643B (en) | 2010-07-15 | 2015-06-10 | 艾诺维亚股份有限公司 | Method and system for performing remote treatment and monitoring |
US8795327B2 (en) | 2010-07-22 | 2014-08-05 | Ethicon Endo-Surgery, Inc. | Electrosurgical instrument with separate closure and cutting members |
US9192431B2 (en) | 2010-07-23 | 2015-11-24 | Ethicon Endo-Surgery, Inc. | Electrosurgical cutting and sealing instrument |
US8979890B2 (en) | 2010-10-01 | 2015-03-17 | Ethicon Endo-Surgery, Inc. | Surgical instrument with jaw member |
US8888809B2 (en) | 2010-10-01 | 2014-11-18 | Ethicon Endo-Surgery, Inc. | Surgical instrument with jaw member |
US8968293B2 (en) | 2011-04-12 | 2015-03-03 | Covidien Lp | Systems and methods for calibrating power measurements in an electrosurgical generator |
US9259265B2 (en) | 2011-07-22 | 2016-02-16 | Ethicon Endo-Surgery, Llc | Surgical instruments for tensioning tissue |
USD700699S1 (en) | 2011-08-23 | 2014-03-04 | Covidien Ag | Handle for portable surgical device |
WO2013062978A2 (en) | 2011-10-24 | 2013-05-02 | Ethicon Endo-Surgery, Inc. | Medical instrument |
USD687549S1 (en) | 2011-10-24 | 2013-08-06 | Ethicon Endo-Surgery, Inc. | Surgical instrument |
JP6105621B2 (en) | 2011-12-12 | 2017-03-29 | アイノビア,インコーポレイティド | Highly elastic polymer ejector mechanism, ejector apparatus and method of using them |
JP6165780B2 (en) | 2012-02-10 | 2017-07-19 | エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. | Robot-controlled surgical instrument |
EP2825219B1 (en) | 2012-03-17 | 2023-05-24 | Johnson & Johnson Surgical Vision, Inc. | Surgical cassette |
US9237921B2 (en) | 2012-04-09 | 2016-01-19 | Ethicon Endo-Surgery, Inc. | Devices and techniques for cutting and coagulating tissue |
US9241731B2 (en) | 2012-04-09 | 2016-01-26 | Ethicon Endo-Surgery, Inc. | Rotatable electrical connection for ultrasonic surgical instruments |
US9439668B2 (en) | 2012-04-09 | 2016-09-13 | Ethicon Endo-Surgery, Llc | Switch arrangements for ultrasonic surgical instruments |
US9226766B2 (en) | 2012-04-09 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Serial communication protocol for medical device |
US9724118B2 (en) | 2012-04-09 | 2017-08-08 | Ethicon Endo-Surgery, Llc | Techniques for cutting and coagulating tissue for ultrasonic surgical instruments |
US9370321B2 (en) * | 2012-06-25 | 2016-06-21 | Empire Technology Development Llc | Ultrasound based antigen binding detection |
US20140005705A1 (en) | 2012-06-29 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Surgical instruments with articulating shafts |
US9226767B2 (en) | 2012-06-29 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Closed feedback control for electrosurgical device |
US20140005702A1 (en) | 2012-06-29 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments with distally positioned transducers |
US9393037B2 (en) | 2012-06-29 | 2016-07-19 | Ethicon Endo-Surgery, Llc | Surgical instruments with articulating shafts |
US9820768B2 (en) | 2012-06-29 | 2017-11-21 | Ethicon Llc | Ultrasonic surgical instruments with control mechanisms |
US9326788B2 (en) | 2012-06-29 | 2016-05-03 | Ethicon Endo-Surgery, Llc | Lockout mechanism for use with robotic electrosurgical device |
US9198714B2 (en) | 2012-06-29 | 2015-12-01 | Ethicon Endo-Surgery, Inc. | Haptic feedback devices for surgical robot |
US9408622B2 (en) | 2012-06-29 | 2016-08-09 | Ethicon Endo-Surgery, Llc | Surgical instruments with articulating shafts |
US9351754B2 (en) | 2012-06-29 | 2016-05-31 | Ethicon Endo-Surgery, Llc | Ultrasonic surgical instruments with distally positioned jaw assemblies |
US9283045B2 (en) | 2012-06-29 | 2016-03-15 | Ethicon Endo-Surgery, Llc | Surgical instruments with fluid management system |
IN2015DN02432A (en) | 2012-09-28 | 2015-09-04 | Ethicon Endo Surgery Inc | |
US9320648B2 (en) | 2012-10-04 | 2016-04-26 | Autocam Medical Devices, Llc | Ophthalmic surgical instrument with pre-set tip-to-shell orientation |
US10201365B2 (en) | 2012-10-22 | 2019-02-12 | Ethicon Llc | Surgeon feedback sensing and display methods |
US9095367B2 (en) | 2012-10-22 | 2015-08-04 | Ethicon Endo-Surgery, Inc. | Flexible harmonic waveguides/blades for surgical instruments |
US20140135804A1 (en) | 2012-11-15 | 2014-05-15 | Ethicon Endo-Surgery, Inc. | Ultrasonic and electrosurgical devices |
US10226273B2 (en) | 2013-03-14 | 2019-03-12 | Ethicon Llc | Mechanical fasteners for use with surgical energy devices |
US9241728B2 (en) | 2013-03-15 | 2016-01-26 | Ethicon Endo-Surgery, Inc. | Surgical instrument with multiple clamping mechanisms |
JP6192367B2 (en) * | 2013-06-04 | 2017-09-06 | オリンパス株式会社 | Ultrasonic treatment device |
US9814514B2 (en) | 2013-09-13 | 2017-11-14 | Ethicon Llc | Electrosurgical (RF) medical instruments for cutting and coagulating tissue |
US9265926B2 (en) | 2013-11-08 | 2016-02-23 | Ethicon Endo-Surgery, Llc | Electrosurgical devices |
GB2521228A (en) | 2013-12-16 | 2015-06-17 | Ethicon Endo Surgery Inc | Medical device |
GB2521229A (en) | 2013-12-16 | 2015-06-17 | Ethicon Endo Surgery Inc | Medical device |
US9795436B2 (en) | 2014-01-07 | 2017-10-24 | Ethicon Llc | Harvesting energy from a surgical generator |
US9554854B2 (en) | 2014-03-18 | 2017-01-31 | Ethicon Endo-Surgery, Llc | Detecting short circuits in electrosurgical medical devices |
US10463421B2 (en) | 2014-03-27 | 2019-11-05 | Ethicon Llc | Two stage trigger, clamp and cut bipolar vessel sealer |
US10092310B2 (en) | 2014-03-27 | 2018-10-09 | Ethicon Llc | Electrosurgical devices |
US9737355B2 (en) | 2014-03-31 | 2017-08-22 | Ethicon Llc | Controlling impedance rise in electrosurgical medical devices |
US9913680B2 (en) | 2014-04-15 | 2018-03-13 | Ethicon Llc | Software algorithms for electrosurgical instruments |
US9283113B2 (en) * | 2014-05-22 | 2016-03-15 | Novartis Ag | Ultrasonic hand piece |
US9700333B2 (en) | 2014-06-30 | 2017-07-11 | Ethicon Llc | Surgical instrument with variable tissue compression |
US10285724B2 (en) | 2014-07-31 | 2019-05-14 | Ethicon Llc | Actuation mechanisms and load adjustment assemblies for surgical instruments |
US9642640B2 (en) * | 2014-08-04 | 2017-05-09 | Gyrus Acmi, Inc. | Lithotripter with improved sterilization time |
US10285773B2 (en) | 2014-08-04 | 2019-05-14 | Gyrus Acmi, Inc. | Lithrotripter with improved sterilization time |
US10639092B2 (en) | 2014-12-08 | 2020-05-05 | Ethicon Llc | Electrode configurations for surgical instruments |
US10159524B2 (en) | 2014-12-22 | 2018-12-25 | Ethicon Llc | High power battery powered RF amplifier topology |
US10245095B2 (en) | 2015-02-06 | 2019-04-02 | Ethicon Llc | Electrosurgical instrument with rotation and articulation mechanisms |
US10321950B2 (en) | 2015-03-17 | 2019-06-18 | Ethicon Llc | Managing tissue treatment |
US10342602B2 (en) | 2015-03-17 | 2019-07-09 | Ethicon Llc | Managing tissue treatment |
US10595929B2 (en) | 2015-03-24 | 2020-03-24 | Ethicon Llc | Surgical instruments with firing system overload protection mechanisms |
US10314638B2 (en) | 2015-04-07 | 2019-06-11 | Ethicon Llc | Articulating radio frequency (RF) tissue seal with articulating state sensing |
US10656025B2 (en) | 2015-06-10 | 2020-05-19 | Ekos Corporation | Ultrasound catheter |
US10034684B2 (en) | 2015-06-15 | 2018-07-31 | Ethicon Llc | Apparatus and method for dissecting and coagulating tissue |
US11020140B2 (en) | 2015-06-17 | 2021-06-01 | Cilag Gmbh International | Ultrasonic surgical blade for use with ultrasonic surgical instruments |
US11051873B2 (en) | 2015-06-30 | 2021-07-06 | Cilag Gmbh International | Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters |
US11129669B2 (en) | 2015-06-30 | 2021-09-28 | Cilag Gmbh International | Surgical system with user adaptable techniques based on tissue type |
US10034704B2 (en) | 2015-06-30 | 2018-07-31 | Ethicon Llc | Surgical instrument with user adaptable algorithms |
US10357303B2 (en) | 2015-06-30 | 2019-07-23 | Ethicon Llc | Translatable outer tube for sealing using shielded lap chole dissector |
US11141213B2 (en) | 2015-06-30 | 2021-10-12 | Cilag Gmbh International | Surgical instrument with user adaptable techniques |
US10898256B2 (en) | 2015-06-30 | 2021-01-26 | Ethicon Llc | Surgical system with user adaptable techniques based on tissue impedance |
US10154852B2 (en) | 2015-07-01 | 2018-12-18 | Ethicon Llc | Ultrasonic surgical blade with improved cutting and coagulation features |
US10940292B2 (en) | 2015-07-08 | 2021-03-09 | Actuated Medical, Inc. | Reduced force device for intravascular access and guidewire placement |
US11033322B2 (en) | 2015-09-30 | 2021-06-15 | Ethicon Llc | Circuit topologies for combined generator |
US10959771B2 (en) | 2015-10-16 | 2021-03-30 | Ethicon Llc | Suction and irrigation sealing grasper |
US10595930B2 (en) | 2015-10-16 | 2020-03-24 | Ethicon Llc | Electrode wiping surgical device |
US10959806B2 (en) | 2015-12-30 | 2021-03-30 | Ethicon Llc | Energized medical device with reusable handle |
US10179022B2 (en) | 2015-12-30 | 2019-01-15 | Ethicon Llc | Jaw position impedance limiter for electrosurgical instrument |
US10575892B2 (en) | 2015-12-31 | 2020-03-03 | Ethicon Llc | Adapter for electrical surgical instruments |
US11229471B2 (en) | 2016-01-15 | 2022-01-25 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization |
US10716615B2 (en) | 2016-01-15 | 2020-07-21 | Ethicon Llc | Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade |
US10709469B2 (en) | 2016-01-15 | 2020-07-14 | Ethicon Llc | Modular battery powered handheld surgical instrument with energy conservation techniques |
US11129670B2 (en) | 2016-01-15 | 2021-09-28 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization |
US10555769B2 (en) | 2016-02-22 | 2020-02-11 | Ethicon Llc | Flexible circuits for electrosurgical instrument |
US10702329B2 (en) | 2016-04-29 | 2020-07-07 | Ethicon Llc | Jaw structure with distal post for electrosurgical instruments |
US10646269B2 (en) | 2016-04-29 | 2020-05-12 | Ethicon Llc | Non-linear jaw gap for electrosurgical instruments |
US10987156B2 (en) | 2016-04-29 | 2021-04-27 | Ethicon Llc | Electrosurgical instrument with electrically conductive gap setting member and electrically insulative tissue engaging members |
US10485607B2 (en) | 2016-04-29 | 2019-11-26 | Ethicon Llc | Jaw structure with distal closure for electrosurgical instruments |
US10856934B2 (en) | 2016-04-29 | 2020-12-08 | Ethicon Llc | Electrosurgical instrument with electrically conductive gap setting and tissue engaging members |
US10456193B2 (en) | 2016-05-03 | 2019-10-29 | Ethicon Llc | Medical device with a bilateral jaw configuration for nerve stimulation |
US10245064B2 (en) | 2016-07-12 | 2019-04-02 | Ethicon Llc | Ultrasonic surgical instrument with piezoelectric central lumen transducer |
US10893883B2 (en) | 2016-07-13 | 2021-01-19 | Ethicon Llc | Ultrasonic assembly for use with ultrasonic surgical instruments |
US10842522B2 (en) | 2016-07-15 | 2020-11-24 | Ethicon Llc | Ultrasonic surgical instruments having offset blades |
US10376305B2 (en) | 2016-08-05 | 2019-08-13 | Ethicon Llc | Methods and systems for advanced harmonic energy |
US10285723B2 (en) | 2016-08-09 | 2019-05-14 | Ethicon Llc | Ultrasonic surgical blade with improved heel portion |
USD847990S1 (en) | 2016-08-16 | 2019-05-07 | Ethicon Llc | Surgical instrument |
US10736649B2 (en) | 2016-08-25 | 2020-08-11 | Ethicon Llc | Electrical and thermal connections for ultrasonic transducer |
US10952759B2 (en) | 2016-08-25 | 2021-03-23 | Ethicon Llc | Tissue loading of a surgical instrument |
CN106175848A (en) * | 2016-08-31 | 2016-12-07 | 南京市鼓楼医院 | A kind of ultrasonic emulsification head based on solid needle and ultrasonic emulsification equipment |
US10751117B2 (en) | 2016-09-23 | 2020-08-25 | Ethicon Llc | Electrosurgical instrument with fluid diverter |
US10603064B2 (en) | 2016-11-28 | 2020-03-31 | Ethicon Llc | Ultrasonic transducer |
US11266430B2 (en) | 2016-11-29 | 2022-03-08 | Cilag Gmbh International | End effector control and calibration |
CN106725956A (en) * | 2016-11-30 | 2017-05-31 | 桂林市啄木鸟医疗器械有限公司 | A kind of ultrasonic dental scaler transducer and containing its tooth cleaner handgrip |
US11033325B2 (en) | 2017-02-16 | 2021-06-15 | Cilag Gmbh International | Electrosurgical instrument with telescoping suction port and debris cleaner |
US10799284B2 (en) | 2017-03-15 | 2020-10-13 | Ethicon Llc | Electrosurgical instrument with textured jaws |
US11497546B2 (en) | 2017-03-31 | 2022-11-15 | Cilag Gmbh International | Area ratios of patterned coatings on RF electrodes to reduce sticking |
CA3066408A1 (en) | 2017-06-10 | 2018-12-13 | Eyenovia, Inc. | Methods and devices for handling a fluid and delivering the fluid to the eye |
US10603117B2 (en) | 2017-06-28 | 2020-03-31 | Ethicon Llc | Articulation state detection mechanisms |
US10820920B2 (en) | 2017-07-05 | 2020-11-03 | Ethicon Llc | Reusable ultrasonic medical devices and methods of their use |
US11484358B2 (en) | 2017-09-29 | 2022-11-01 | Cilag Gmbh International | Flexible electrosurgical instrument |
US11490951B2 (en) | 2017-09-29 | 2022-11-08 | Cilag Gmbh International | Saline contact with electrodes |
US11033323B2 (en) | 2017-09-29 | 2021-06-15 | Cilag Gmbh International | Systems and methods for managing fluid and suction in electrosurgical systems |
US11369513B2 (en) * | 2017-11-22 | 2022-06-28 | Surgical Design Corporation | Low-cost disposable ultrasonic surgical handpiece |
US11266384B2 (en) | 2018-04-20 | 2022-03-08 | Johnson & Johnson Surgical Vision, Inc. | Ergonomic handpiece |
DE102019111100A1 (en) * | 2019-04-30 | 2020-11-05 | Karl Storz Se & Co. Kg | Lithotripsy device and test method for operating a lithotripsy device |
WO2020234730A1 (en) | 2019-05-17 | 2020-11-26 | Johnson & Johnson Surgical Vision, Inc. | Ergonomic phacoemulsification handpiece |
US11564732B2 (en) | 2019-12-05 | 2023-01-31 | Covidien Lp | Tensioning mechanism for bipolar pencil |
US11877953B2 (en) | 2019-12-26 | 2024-01-23 | Johnson & Johnson Surgical Vision, Inc. | Phacoemulsification apparatus |
US11779387B2 (en) | 2019-12-30 | 2023-10-10 | Cilag Gmbh International | Clamp arm jaw to minimize tissue sticking and improve tissue control |
US11660089B2 (en) | 2019-12-30 | 2023-05-30 | Cilag Gmbh International | Surgical instrument comprising a sensing system |
US11950797B2 (en) | 2019-12-30 | 2024-04-09 | Cilag Gmbh International | Deflectable electrode with higher distal bias relative to proximal bias |
US11937863B2 (en) | 2019-12-30 | 2024-03-26 | Cilag Gmbh International | Deflectable electrode with variable compression bias along the length of the deflectable electrode |
US20210196363A1 (en) | 2019-12-30 | 2021-07-01 | Ethicon Llc | Electrosurgical instrument with electrodes operable in bipolar and monopolar modes |
US11944366B2 (en) | 2019-12-30 | 2024-04-02 | Cilag Gmbh International | Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode |
US11812957B2 (en) | 2019-12-30 | 2023-11-14 | Cilag Gmbh International | Surgical instrument comprising a signal interference resolution system |
US11759251B2 (en) | 2019-12-30 | 2023-09-19 | Cilag Gmbh International | Control program adaptation based on device status and user input |
US11452525B2 (en) | 2019-12-30 | 2022-09-27 | Cilag Gmbh International | Surgical instrument comprising an adjustment system |
US11779329B2 (en) | 2019-12-30 | 2023-10-10 | Cilag Gmbh International | Surgical instrument comprising a flex circuit including a sensor system |
US11911063B2 (en) | 2019-12-30 | 2024-02-27 | Cilag Gmbh International | Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade |
US20210196359A1 (en) | 2019-12-30 | 2021-07-01 | Ethicon Llc | Electrosurgical instruments with electrodes having energy focusing features |
US11707318B2 (en) | 2019-12-30 | 2023-07-25 | Cilag Gmbh International | Surgical instrument with jaw alignment features |
US11786291B2 (en) | 2019-12-30 | 2023-10-17 | Cilag Gmbh International | Deflectable support of RF energy electrode with respect to opposing ultrasonic blade |
US12114912B2 (en) | 2019-12-30 | 2024-10-15 | Cilag Gmbh International | Non-biased deflectable electrode to minimize contact between ultrasonic blade and electrode |
US12082808B2 (en) | 2019-12-30 | 2024-09-10 | Cilag Gmbh International | Surgical instrument comprising a control system responsive to software configurations |
US12076006B2 (en) | 2019-12-30 | 2024-09-03 | Cilag Gmbh International | Surgical instrument comprising an orientation detection system |
US12064109B2 (en) | 2019-12-30 | 2024-08-20 | Cilag Gmbh International | Surgical instrument comprising a feedback control circuit |
US12053224B2 (en) | 2019-12-30 | 2024-08-06 | Cilag Gmbh International | Variation in electrode parameters and deflectable electrode to modify energy density and tissue interaction |
US12023086B2 (en) | 2019-12-30 | 2024-07-02 | Cilag Gmbh International | Electrosurgical instrument for delivering blended energy modalities to tissue |
US11986201B2 (en) | 2019-12-30 | 2024-05-21 | Cilag Gmbh International | Method for operating a surgical instrument |
US11974801B2 (en) | 2019-12-30 | 2024-05-07 | Cilag Gmbh International | Electrosurgical instrument with flexible wiring assemblies |
US11696776B2 (en) | 2019-12-30 | 2023-07-11 | Cilag Gmbh International | Articulatable surgical instrument |
DE102020105457B4 (en) | 2020-03-02 | 2022-09-01 | Karl Storz Se & Co. Kg | lithotripsy device |
USD946146S1 (en) | 2020-05-15 | 2022-03-15 | Johnson & Johnson Surgical Vision, Inc. | Surgical handpiece |
US11622886B2 (en) | 2020-05-18 | 2023-04-11 | Johnson & Johnson Surgical Vision, Inc. | Thermocouple coupled with a piezoelectric crystal for feedback on vibration frequency |
WO2022070030A1 (en) | 2020-09-30 | 2022-04-07 | Johnson & Johnson Surgical Vision, Inc. | Ergonomic phacoemulsification handpiece with rotating needle |
US11883326B2 (en) | 2020-11-03 | 2024-01-30 | Johnson & Johnson Surgical Vision, Inc. | Phacoemulsification probe stroke length maximization system |
US11969381B2 (en) | 2020-11-05 | 2024-04-30 | Johnson & Johnson Surgical Vision, Inc. | Controlling vibration patterns of a phacoemulsification needle |
US11957342B2 (en) | 2021-11-01 | 2024-04-16 | Cilag Gmbh International | Devices, systems, and methods for detecting tissue and foreign objects during a surgical operation |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3689783A (en) * | 1971-03-11 | 1972-09-05 | David A Williams | Ultrasonic transducer with half-wave separator between piezoelectric crystal means |
US3694675A (en) * | 1971-02-25 | 1972-09-26 | Eastman Kodak Co | Cooled ultrasonic transducer |
US3805787A (en) * | 1972-06-16 | 1974-04-23 | Surgical Design Corp | Ultrasonic surgical instrument |
US4032803A (en) * | 1971-09-14 | 1977-06-28 | Durr-Dental Kg. | Hand tool for creating and applying ultrasonic vibration |
EP0376562A2 (en) * | 1988-12-20 | 1990-07-04 | Valleylab, Inc. | Improved resonator for surgical handpiece |
GB2249419A (en) * | 1990-10-29 | 1992-05-06 | Teleco Oilfield Services Inc | Electromechanical transducer for acoustic telemetry system |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4169984A (en) * | 1976-11-30 | 1979-10-02 | Contract Systems Associates, Inc. | Ultrasonic probe |
US4838853A (en) * | 1987-02-05 | 1989-06-13 | Interventional Technologies Inc. | Apparatus for trimming meniscus |
DE3807004A1 (en) * | 1987-03-02 | 1988-09-15 | Olympus Optical Co | ULTRASONIC TREATMENT DEVICE |
US5163433A (en) * | 1989-11-01 | 1992-11-17 | Olympus Optical Co., Ltd. | Ultrasound type treatment apparatus |
WO1993015703A1 (en) * | 1992-02-05 | 1993-08-19 | Inventive Systems, Inc. | Improved phacoemulsification handpiece |
US5370602A (en) * | 1992-09-04 | 1994-12-06 | American Cyanamid Company | Phacoemulsification probe circuit with pulse width Modulating drive |
US5331951A (en) * | 1992-09-04 | 1994-07-26 | American Cyanamid Company | Phacoemulsification probe drive circuit |
US5388569A (en) * | 1992-09-04 | 1995-02-14 | American Cyanamid Co | Phacoemulsification probe circuit with switch drive |
FR2715588B1 (en) * | 1994-02-03 | 1996-03-01 | Aerospatiale | Ultrasonic percussion device. |
US5562610A (en) * | 1994-10-07 | 1996-10-08 | Fibrasonics Inc. | Needle for ultrasonic surgical probe |
-
1996
- 1996-05-29 US US08/654,837 patent/US5843109A/en not_active Expired - Lifetime
-
1997
- 1997-05-14 WO PCT/US1997/008434 patent/WO1997045078A1/en active IP Right Grant
- 1997-05-14 DE DE69723856T patent/DE69723856T2/en not_active Expired - Lifetime
- 1997-05-14 JP JP54261797A patent/JP3703149B2/en not_active Expired - Lifetime
- 1997-05-14 EP EP97924759A patent/EP0942696B1/en not_active Expired - Lifetime
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3694675A (en) * | 1971-02-25 | 1972-09-26 | Eastman Kodak Co | Cooled ultrasonic transducer |
US3689783A (en) * | 1971-03-11 | 1972-09-05 | David A Williams | Ultrasonic transducer with half-wave separator between piezoelectric crystal means |
US4032803A (en) * | 1971-09-14 | 1977-06-28 | Durr-Dental Kg. | Hand tool for creating and applying ultrasonic vibration |
US3805787A (en) * | 1972-06-16 | 1974-04-23 | Surgical Design Corp | Ultrasonic surgical instrument |
EP0376562A2 (en) * | 1988-12-20 | 1990-07-04 | Valleylab, Inc. | Improved resonator for surgical handpiece |
GB2249419A (en) * | 1990-10-29 | 1992-05-06 | Teleco Oilfield Services Inc | Electromechanical transducer for acoustic telemetry system |
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000000096A1 (en) * | 1998-06-29 | 2000-01-06 | Alcon Laboratories, Inc. | Torsional ultrasonic handpiece |
US10835267B2 (en) | 2002-08-02 | 2020-11-17 | Flowcardia, Inc. | Ultrasound catheter having protective feature against breakage |
US10722262B2 (en) | 2002-08-02 | 2020-07-28 | Flowcardia, Inc. | Therapeutic ultrasound system |
US10111680B2 (en) | 2002-08-02 | 2018-10-30 | Flowcardia, Inc. | Therapeutic ultrasound system |
US9265520B2 (en) | 2002-08-02 | 2016-02-23 | Flowcardia, Inc. | Therapeutic ultrasound system |
US9381027B2 (en) | 2002-08-26 | 2016-07-05 | Flowcardia, Inc. | Steerable ultrasound catheter |
US10376272B2 (en) | 2002-08-26 | 2019-08-13 | Flowcardia, Inc. | Ultrasound catheter for disrupting blood vessel obstructions |
US10285727B2 (en) | 2002-08-26 | 2019-05-14 | Flowcardia, Inc. | Steerable ultrasound catheter |
US9421024B2 (en) | 2002-08-26 | 2016-08-23 | Flowcardia, Inc. | Steerable ultrasound catheter |
US8690819B2 (en) | 2002-08-26 | 2014-04-08 | Flowcardia, Inc. | Ultrasound catheter for disrupting blood vessel obstructions |
US8956375B2 (en) | 2002-08-26 | 2015-02-17 | Flowcardia, Inc. | Ultrasound catheter devices and methods |
US10130380B2 (en) | 2003-02-26 | 2018-11-20 | Flowcardia, Inc. | Ultrasound catheter apparatus |
US11103261B2 (en) | 2003-02-26 | 2021-08-31 | C.R. Bard, Inc. | Ultrasound catheter apparatus |
EP1596733A2 (en) * | 2003-02-26 | 2005-11-23 | Flowcardia Inc. | Ultrasound catheter apparatus |
EP2471474A1 (en) * | 2003-02-26 | 2012-07-04 | Flowcardia Inc. | Ultrasound catheter apparatus |
WO2004075945A2 (en) | 2003-02-26 | 2004-09-10 | Flowcardia Inc. | Ultrasound catheter apparatus |
EP1596733A4 (en) * | 2003-02-26 | 2009-05-27 | Flowcardia Inc | Ultrasound catheter apparatus |
US7621929B2 (en) | 2003-02-26 | 2009-11-24 | Flowcardia, Inc. | Ultrasound catheter apparatus |
US9433433B2 (en) | 2003-09-19 | 2016-09-06 | Flowcardia, Inc. | Connector for securing ultrasound catheter to transducer |
US11426189B2 (en) | 2003-09-19 | 2022-08-30 | Flowcardia, Inc. | Connector for securing ultrasound catheter to transducer |
US10349964B2 (en) | 2003-09-19 | 2019-07-16 | Flowcardia, Inc. | Connector for securing ultrasound catheter to transducer |
US11109884B2 (en) | 2003-11-24 | 2021-09-07 | Flowcardia, Inc. | Steerable ultrasound catheter |
US10004520B2 (en) | 2004-08-26 | 2018-06-26 | Flowcardia, Inc. | Ultrasound catheter devices and methods |
US10682151B2 (en) | 2004-08-26 | 2020-06-16 | Flowcardia, Inc. | Ultrasound catheter devices and methods |
US10285719B2 (en) | 2005-01-20 | 2019-05-14 | Flowcardia, Inc. | Vibrational catheter devices and methods for making same |
US11510690B2 (en) | 2005-01-20 | 2022-11-29 | Flowcardia, Inc. | Vibrational catheter devices and methods for making same |
US7876025B2 (en) | 2005-09-26 | 2011-01-25 | Nanyang Technological University | Ultrasonic mechanical emulsifier |
WO2007035171A1 (en) * | 2005-09-26 | 2007-03-29 | Nanyang Technological University | Ultrasonic mechanical emulsifier |
US9282984B2 (en) | 2006-04-05 | 2016-03-15 | Flowcardia, Inc. | Therapeutic ultrasound system |
US10537712B2 (en) | 2006-11-07 | 2020-01-21 | Flowcardia, Inc. | Ultrasound catheter having improved distal end |
US9629643B2 (en) | 2006-11-07 | 2017-04-25 | Flowcardia, Inc. | Ultrasound catheter having improved distal end |
US11229772B2 (en) | 2006-11-07 | 2022-01-25 | Flowcardia, Inc. | Ultrasound catheter having improved distal end |
US9402646B2 (en) | 2009-06-12 | 2016-08-02 | Flowcardia, Inc. | Device and method for vascular re-entry |
US11191554B2 (en) | 2012-01-18 | 2021-12-07 | C.R. Bard, Inc. | Vascular re-entry device |
US10357263B2 (en) | 2012-01-18 | 2019-07-23 | C. R. Bard, Inc. | Vascular re-entry device |
US11344750B2 (en) | 2012-08-02 | 2022-05-31 | Flowcardia, Inc. | Ultrasound catheter system |
EP3170467A4 (en) * | 2014-07-18 | 2018-03-21 | Olympus Corporation | Ultrasonic vibrator for medical treatment |
US11633206B2 (en) | 2016-11-23 | 2023-04-25 | C.R. Bard, Inc. | Catheter with retractable sheath and methods thereof |
US11596726B2 (en) | 2016-12-17 | 2023-03-07 | C.R. Bard, Inc. | Ultrasound devices for removing clots from catheters and related methods |
US10758256B2 (en) | 2016-12-22 | 2020-09-01 | C. R. Bard, Inc. | Ultrasonic endovascular catheter |
US10582983B2 (en) | 2017-02-06 | 2020-03-10 | C. R. Bard, Inc. | Ultrasonic endovascular catheter with a controllable sheath |
US11638624B2 (en) | 2017-02-06 | 2023-05-02 | C.R. Bard, Inc. | Ultrasonic endovascular catheter with a controllable sheath |
WO2022225648A1 (en) * | 2021-04-24 | 2022-10-27 | Salehi Had Hani | Devices for performing intraocular surgery and methods for using them |
Also Published As
Publication number | Publication date |
---|---|
US5843109A (en) | 1998-12-01 |
EP0942696B1 (en) | 2003-07-30 |
DE69723856D1 (en) | 2003-09-04 |
EP0942696A1 (en) | 1999-09-22 |
JP3703149B2 (en) | 2005-10-05 |
DE69723856T2 (en) | 2004-05-27 |
JP2000511081A (en) | 2000-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5843109A (en) | Ultrasonic handpiece with multiple piezoelectric elements and heat dissipator | |
US5342380A (en) | Ultrasonic knife | |
US5935143A (en) | Ultrasonic knife | |
US5669922A (en) | Ultrasonically driven blade with a radial hook that defines a circular recess | |
US5222937A (en) | Ultrasonic treatment apparatus | |
AU758734B2 (en) | Improved ultrasonic surgical apparatus | |
AU636729B2 (en) | Method and apparatus for controlling ultrasonic fragmentation of body tissue | |
US4526571A (en) | Curved ultrasonic surgical aspirator | |
JP4429160B2 (en) | High efficiency medical transducer with ergonomic shape. | |
EP1793747B1 (en) | Improved ultrasound catheter devices | |
US5221282A (en) | Tapered tip ultrasonic aspirator | |
US20040158151A1 (en) | Apparatus and method for an ultrasonic probe device with rapid attachment and detachment means | |
JPH0767464B2 (en) | Device for curettage or excision of biological tissue by instruments vibrating at ultrasonic frequencies | |
US20030065263A1 (en) | Ultrasonic probe device with rapid attachment and detachment means having a line contact collet | |
JPH04152942A (en) | Ultrasonic medical treating device | |
JP2003512131A (en) | Liquefaction crush handpiece | |
US20160287277A1 (en) | Devices and methods for removing occlusions from a bodily cavity | |
Inoue et al. | Ultrasonic surgical system (SONOPET®) for microsurgical removal of brain tumors | |
RU2239383C2 (en) | Ultrasonic oscillation system applied in plastic surgery | |
JP2702991B2 (en) | Ultrasound therapy equipment | |
JPH06125914A (en) | Ultrasonic therapeutic apparatus | |
JPH06343647A (en) | Ultrasonic therapeutical device | |
JPH05305095A (en) | Ultrasonic therapeutic unit | |
JPH08308849A (en) | Percussion wave therapeutic device | |
JPS62224340A (en) | Ultrasonic probe device for endoscope |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1997924759 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1997924759 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 1997924759 Country of ref document: EP |