WO1997044280A1 - Floating electrode for electrolysis, electrolytic apparatus and plant growing method - Google Patents

Floating electrode for electrolysis, electrolytic apparatus and plant growing method Download PDF

Info

Publication number
WO1997044280A1
WO1997044280A1 PCT/JP1996/003133 JP9603133W WO9744280A1 WO 1997044280 A1 WO1997044280 A1 WO 1997044280A1 JP 9603133 W JP9603133 W JP 9603133W WO 9744280 A1 WO9744280 A1 WO 9744280A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrolysis
electrolytic
electrodes
water
Prior art date
Application number
PCT/JP1996/003133
Other languages
French (fr)
Japanese (ja)
Inventor
Tetsuro Tojo
Minehiro Kamiyama
Osamu Yoshimoto
Original Assignee
Toyo Tanso Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co., Ltd. filed Critical Toyo Tanso Co., Ltd.
Priority to AU73371/96A priority Critical patent/AU7337196A/en
Publication of WO1997044280A1 publication Critical patent/WO1997044280A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/02Treatment of plants with carbon dioxide

Definitions

  • the present invention relates to a floating electrode for electrolysis, an electrolyzer, and a method for growing plants.
  • a positive electrode and a negative electrode are immersed in water or an aqueous solution (hereinafter simply referred to as water) to perform electrolysis.
  • the present invention relates to a plant growing method in which electrolyzed water used in the electrolysis apparatus used and carbon dioxide dissolved by the electrolysis are mainly used for growing terrestrial plants. Background art
  • an electrolysis method of immersing a positive / negative pair of electrodes in an electrolytic solution to perform electrolysis is a well-known technique.
  • a positive / negative pair of electrodes is immersed in an electrolytic solution contained in an electrolytic cell and a diaphragm is provided between both electrodes. Electrolysis is performed.
  • the electrodes are mounted on the electrode holder in parallel with the positive / negative pair, and the electrode holder is fixed to the electrolytic cell to be immersed in the electrolytic cell.
  • the conventional electrolysis method uses an electrolytic cell and an electrode fixedly provided in the cell, and usually has a fixed volume of electrolysis so as not to change the effective electrode area immersed in the electrolytic solution. Electrolysis is performed while injecting and discharging the electrolyte so that the electrolysis power is maintained at a constant level or the level of the electrolyte in the tank at all times, and stable electrolysis has been performed. .
  • the volume of electrolyzed water variable may be desirable to make the volume of electrolyzed water variable.
  • at least the anode is used. Electrolysis of water using a carbonaceous electrode for the anode Carbon dioxide is produced by the reaction to produce a solution in which carbon dioxide is dissolved, and the carbon dioxide solution is sprayed on crops and horticultural plants, and used for growing aquatic plants and the like.
  • various amounts or concentrations of carbon dioxide solution are required depending on the cultivation area of the target plant.
  • an object of the present invention is to provide a floating electrode for electrolysis and an electrolysis method capable of stably performing an electrochemical reaction on an electrode surface even when the liquid level is changed due to a change in the amount of liquid to be electrolyzed.
  • Another object of the present invention is to provide an apparatus for electrolysis, in which, in addition to the above-mentioned objects, a carbon electrode is consumed almost uniformly without collapsing or breaking in water electrolysis and can provide a stable electrolytic action.
  • the purpose is to provide a floating electrode. Disclosure of the invention
  • the floating electrode for electrolysis of the present invention is a floating electrode in which a pair of positive and negative electrodes used for electrolysis are provided on a float. This makes it possible to float the float on the electrolyte and raise and lower the electrodes following the fluctuations in the electrolyte level, so that the effective electrode area of the electrodes immersed in the electrolyte changes. Stable electrolysis can be performed by preventing changes in conditions. In addition, since electrolysis can be performed in such a form, not only when the electrolytic solution is contained in the electrolytic cell, The above-described stable electrolysis can be performed even when the liquid level fluctuates, for example, when the electrolytic solution is injected into the electrolytic cell.
  • the floating electrode for electrolysis of the present invention includes, as a float, a top plate, a bottom plate, a support connecting the top plate and the bottom plate at four corners, and a flange attached to the side of the top plate.
  • the float a material that is a lightweight insulator and is not affected by the electrolyte and does not deteriorate the electrolyte is preferable.
  • plastic, fiber-reinforced plastic, and the like can be suitably used.
  • the float volume can be calculated by taking into account the electrode weight, the electrolysis density of the electrolyte, the density of the float material, the electrode immersion depth, and the like.
  • the float shape is not particularly limited, and can be appropriately determined in consideration of the place and conditions of use.
  • the present inventors have found that the electrode (carbonaceous electrode) may be broken or broken.
  • the above phenomenon can be prevented by making the distance larger than 25. That is, in the floating electrode for electrolysis of the present invention, it is preferable that the distance between the facing surfaces of the electrodes is gradually reduced as the opposite electrode is approached. As a result, in addition to efficiently obtaining water that dissolves carbon dioxide, which helps plants grow, the electrodes (carbon electrode) are prevented from collapsing or being broken, and electrodes are almost uniformly consumed. And the service life can be improved, and the electrolysis efficiency can be improved. In order to obtain such an effect more effectively, as a carbonaceous electrode, 50 to 90% of a carbonaceous substance proposed by the present applicant in Japanese Patent Application No. Hei.
  • a substance having a substantial composition of 50% can be used, and among them, it is particularly preferable to use a composition having a composition of 50 to 80% of a carbonaceous substance and 20 to 50% of a thermosetting resin.
  • a thermosetting resin By using a thermosetting resin, the inherent resistance that occurs when a thermoplastic resin is used is increased, and there is no generation of a lightning action that occurs when the electrolytic voltage is increased.
  • the electrolytic device of the present invention comprises: an electrolytic cell; a water supply pipe attached to the electrolytic cell for supplying water; and a drainage pipe for extracting electrolytic water, at least provided in the electrolytic cell.
  • a pair of electrodes, the anode of which is a carbonaceous electrode for electrolyzing water, is provided.
  • a predetermined amount of water is supplied to the electrolytic tank from the water supply pipe, predetermined electrolysis is performed in that state, and the obtained electrolyzed water is extracted from the drain pipe, or a water pump is attached to the drain pipe to attach terrestrial plants. It is used by spraying for the growth of species. And since the use of this water reduces the amount of digestion water, supply water again from the water supply pipe to perform electrolysis. By repeating this, electrolyzed water in which carbon dioxide for plant growth is dissolved can be repeatedly and efficiently obtained.
  • the above-mentioned floating electrode for electrolysis of the present invention can be used by being suspended in electrolyzed water in an electrolytic cell. In this way, in addition to the above-mentioned repetition, electrolysis can be performed even during raising and lowering of the electrode, so that electrolyzed water in which carbon dioxide for plant growth is dissolved can be obtained more efficiently.
  • a current stabilizer and a polarity switch can be interposed between the pair of electrodes and the power supply.
  • the polarity switching device By installing a polarity switching device, it is possible to suppress the poorly soluble salt that precipitates on the cathode, so that it is possible to more efficiently obtain electrolyzed water in which carbon dioxide of ff ffl has been dissolved in plants.In this case, the polarity switching device The polarity switching cycle of the electrode .
  • the cycle be performed in a period of 1 to 12 hours inclusively. If the switching cycle is shorter than 1 hour, the graphite particles will be detached from the carbonaceous electrode, causing problems such as electrolyzed water becoming cloudy. In addition, when the switching period is longer than 12 o'clock, it is difficult to remove electrolytic products such as silica and silica generated at the cathode.
  • a water level sensor is controlled in the electrolyzer for each of a water supply pipe and a drain pipe.
  • On-off valves may be provided, and these may be connected to the electrolysis control device.
  • an electrolysis operation condition sensor is connected to the electrolysis control device. These can be expected to automate the production of electrolyzed water in which carbon dioxide for plant growth is dissolved.
  • the electrolysis operation condition sensor for example, a sensor for measuring the concentration of dissolved carbon dioxide in the electrolyzed water, a sensor for measuring weather conditions such as temperature, humidity, and atmospheric pressure can be used. These can be appropriately combined, and plants can be used.
  • By setting the type of electrolyzed water it is possible to produce electrolytic water adjusted to a carbon dioxide concentration suitable for the plant and to give it to the plant.
  • FIG. 1 is a perspective view of a floating electrode for electrolysis according to the present invention
  • FIG. 2 is a sectional view taken along the line X--X in FIG. 1,
  • FIG. 3 is a conceptual diagram showing a use state of the floating electrode for electrolysis according to the present invention
  • FIG. 4 is a perspective view of another embodiment of the floating electrode for electrolysis according to the present invention
  • FIG. 6 is a schematic diagram of an electrolytic device according to the present invention.
  • the floating electrode for electrolysis according to the present invention will be described in detail with reference to the drawings showing examples.
  • the floating electrode for electrolysis is composed of an electrode i and a float 2.
  • Electrode 1 is plate-shaped and terminal is installed A current introducing section 3 and an electrode section 4 for performing electrolysis are formed. At the boundary between both sections, the width of the current introducing section 3 is formed larger than the width of the electrode section 4, and a step section 5 is formed.
  • the float 2 is made of a lightweight thick rectangular plastic plate, and has a through hole 6 slightly larger than the cross section of the electrode portion 4 at a position symmetrical from the center. The electrode portion 4 is inserted through the through hole 6. To form a floating electrode F1 for electrolysis.
  • the floating electrode F1 for electrolysis is used by being floated on an electrolytic solution 8 contained in an electrolytic cell 7. Therefore, even if the electrolyte 8 decreases and the liquid level drops, or if the electrolyte 1 rises by replenishing the electrolyte 8, the electrode 1 moves up and down together with the float 2, so that the electrode 1 protruding below the float 2 is immersed.
  • the stable effective electrolysis can be performed without changing the effective electrode area.
  • FIG. 3 is an explanatory diagram showing an example of a use ffl form of the floating electrode F1 for electrolysis.
  • the case where the pair of positive and negative electrodes 1 is provided on the float 2 is exemplified, but not only the number but also the size of the electrodes 1 and the float 2 depends on the size of the electrolytic cell 7 to be applied. It is set to an appropriate number and size according to.
  • the shape of the electrode 1 is not limited to a plate shape, but may be a round bar, a square bar, or the like.
  • the float 2 has been described using a rectangular thick plate as an example, the float 2 may be formed as a disk-shaped thick plate with its side surface widened upward, or the lower part may be formed as a ship bottom type or a hemispherical shape. Is also good.
  • the electrolysis floating electrode P1 is effective for electrolysis while flowing the electrolytic solution 8 into and out of the electrolytic cell 7, or for electrolysis in a place where there is a flow such as a river because the resistance to the liquid flow is small.
  • the gap between the through hole (;) of the float 2 and the electrode portion 4 of the electrode 1 is filled with an adhesive, or the gap is made large, and a plate is formed there.
  • the positive / negative electrode pair 1 is provided in parallel with the through hole G is shown. It may be provided so as to narrow as it goes. In this case, electrolysis can be performed on the entire surface of the opposing electrode portion 4, and the collapse of the electrode portion 4 (particularly in the case of a carbonaceous electrode) can be prevented, and the electrode portion 4 can be consumed almost uniformly. As a result, the electrode life can be improved and the electrolysis efficiency can be improved.
  • the guide -11 may be attached so as to protrude laterally from the upper surface of the mouthpiece 2.
  • the guide bar U moves along the inner surface of the electrolytic cell 7 or along a guide rail installed in the electrolytic cell 7 (not shown) to raise and lower the floating electrode for electrolysis at a desired position in the electrolytic cell 7. Can be.
  • the floating type electrode for electrolysis is composed of an electrode 12 and a float 13.
  • the electrode 12 is a plate-like carbonaceous electrode having a width of 280 mm x a length of 560 mm x a thickness of 10 and is composed of a current introduction part 14 for mounting a terminal and an electrode part 15 for electrolysis.
  • the float 13 is composed of a top plate 16, a bottom plate 17, a column 18 connecting the top plate 16 and the bottom plate 17 at four corners, and a hollow float body 19 attached to the side of the top plate. And these are made of plastic.
  • the top plate 16 is provided with four slit-shaped through holes 20 for passing the electrode 12, and the bottom plate 17 is provided with four receiving grooves 21 for receiving the lower end of the electrode 12, respectively.
  • the electrode portion 15 of the electrode 12 is passed through the through hole 20 of the top plate 16 and the tip is placed in the receiving groove 21 of the bottom plate 17 to form a floating electrode F2 for electrolysis.
  • the floating electrode F2 for electrolysis is used, like the floating electrode F1 for electrolysis described above, by floating it on an electrolytic solution 8 contained in an electrolytic cell 7 or floating on a flow of a river or the like. Therefore, the electrode 12 moves up and down together with the float 13 even if the electrolyte 8 decreases and the liquid level drops, or if the level rises by replenishing the electrolyte 8 or the water level of a river or the like changes.
  • the effective electrode area of electrode 12 is stable without change Electrolysis can be performed. Further, in the present embodiment, the gap between the through holes 20, 20 in which the positive and negative electrode pairs 12, 12 are provided is formed to be wider than the gap between the grooves 21, 21.
  • the surface interval can be gradually narrowed, and the electrolysis can be performed on the entire surface of the opposing electrode portion 15, so that the electrode portion 15 can be prevented from being broken (particularly in the case of a carbonaceous electrode) or broken.
  • the electrode portion 15 can be consumed almost uniformly, the life of the electrode can be improved, and the electrolysis efficiency can be improved.
  • the electrolysis apparatus electrolyzes water using the floating 3′i electrode F2 for electrolysis shown in FIG. 4 and FIG.
  • This is an apparatus 31 for producing a carbon dioxide solution.
  • the apparatus 31 has two electrolytic cells 32 and 33, and each of the electrolytic cells 32 and 33 is provided with a water supply pipe 34 for supplying water.
  • the lube 35 and the water supply electromagnetic valve 36 are connected in parallel with each other, and a drain pipe 38 for extracting the electrolytic water 37 is provided with a filter check valve 39, a filter 40, and a sampling control electromagnetic valve 41. They are connected in series.
  • each of the electrolysis tanks 32 and 33 there are provided an upper water level sensor 42 and a lower water level sensor 43 for steady control of the electrolyzed water during electrolysis.
  • reference numeral 44 denotes a water supply excess water level sensor, which closes the water supply electromagnetic valve 36 when water from the water supply pipe 34 is excessively supplied beyond the water supply level sensor 42.
  • Reference numeral 45 denotes a water level abnormal drop sensor, which closes the drain control electromagnetic valve 41 when the drainage of the electrolyzed water 37 is performed at a water level lower than the sewage sensor 43 at a lower L level.
  • Reference numeral 46 denotes a drain valve for emptying the electrolytic cells 32 and 33, which is normally closed.
  • Reference numeral 47 denotes a pump for extracting the electrolytic water 37 from the electrolytic cells 32 and 33.
  • Reference numeral 48 denotes an electrolysis control device, which includes the electrolysis floating electrode F2, the water supply electromagnetic valve 36, the extraction control electromagnetic valve 41, the water level sensor 42, the sewage level sensor 43, the water level sensor 44, and the pump 44. Of the operating switches are connected.
  • the electrolysis device 31 having the above configuration is operated as follows by a control signal from the electrolysis control device 48. That is, 1: Water is supplied to each of the electrolytic cells 32 and 33. Water is supplied to the water level of the water level sensor 42 via the valve 36. 2: Floating electrode F2 for electrolysis of electrolyzers 32 and 33 is activated, electrolysis is performed for a predetermined time, and water becomes electrolyzed water 37 of carbon dioxide solution. 3: After that, open the electromagnetic valve 41 for extraction control of one electrolytic cell 32 and operate the pump 47 to extract the electrolyzed water 37 and spray it for plant growth.
  • one of the electrolytic cells 32 ( Use of only 33) is possible.
  • the number of electrolytic tanks 32 is not particularly limited, and the number of electrolytic tanks can be appropriately set to one or more depending on the implementation situation. As in the embodiment, two tanks are used alternately, and can be used by switching sequentially.
  • a current stabilizing device and a polarity switch are interposed between the pair of electrodes i2 and 12 of the floating electrode F2 for electrolysis and the power supply, and these are connected to the electrolysis control device 48. Electrolysis can be performed by switching the polarity of the pair of electrodes 12, 12 at a desired cycle by a control signal from the electrolysis controller 48. By these electrolysis, electrolyzed water in which carbon dioxide for plant growth is dissolved can be obtained stably and efficiently.
  • the floating electrode for electrolysis according to the present invention even if the liquid level changes due to a change in the amount of liquid to be electrolyzed, the liquid moves up and down following the fluctuation, Stable electrolysis can always be performed regardless of the level fluctuation.
  • the positive and negative electrode pairs In addition to the above-mentioned effects, by providing the electrodes so that the distance between the facing surfaces of the electrodes gradually decreases, the electrodes during electrolysis can be consumed almost uniformly without collapsing or breaking. And the electrolysis efficiency can be improved. It is particularly effective for carbonaceous electrodes.
  • the water supply to the electrolysis tank and the extraction of the electrolyzed water after the electrolysis can be performed alternately and efficiently, so that the carbon dioxide solution sprayed for growing terrestrial plants can be efficiently used. Is obtained.
  • the electrolysis floating electrode of the present invention in combination with the electrolysis apparatus of the present invention, it is possible to enjoy the function and effect of the electrolysis floating electrode and to obtain a stable electrolysis regardless of the fluctuation of the liquid level.
  • the carbon dioxide solution sprayed for growing terrestrial plants can be obtained more efficiently.
  • the concentration of carbon dioxide in the obtained electrolyzed water is always stable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Environmental Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Botany (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

A float (2) equipped with a pair of positive and negative electrodes (4, 4) is floated on an electrolyte (8) so that the electrodes (4, 4) may move up and down in accordance with the change of the level of the electrolyte (8). This prevents variations of electrolytic conditions such as changes in effective electrode area in contact with the electrolyte (8), and ensures stable electrolysis. Electrolysis of water is carried out by using an electrolytic apparatus that comprises an electrolytic bath (7), a water supply pipe and a drain pipe fitted to the electrolytic bath (7) and a pair of electrodes (4, 4) including a carbonaceous positive electrode, and the electrolyzed water containing carbon dioxide is sprayed for growing terrestrial plants. When the quantity of electrolyzed water decreases due to consumption, water is filled through the water supply pipe and electrolysis is repeatedly conducted. The supply of carbon dioxide solution accelerates photosynthesis in terrestrial plants such as agricultural and horticultural plants and their growth is insured.

Description

明 細 書 電解用浮遊型電極、 電解装置並びに植物類育成方法 技術分野  Description Floating electrode for electrolysis, electrolyzer and plant growing method
本発明は、 電解用浮遊型電極、 電解装置並びに植物類育成方法に関する。 そして、 特には正負対の電極を水又は水溶液 (以下単に水と言う) に浸渍し 電解を行わしめるのに用いる、 少なくとも陽極に炭素質電極を用いた電解用 浮遊型電極並びにその浮遊型電極を用いた電解装置、 さらにはこの電解によ り得られた二酸化炭素が溶解した電解水 (二酸化炭素溶液) を、 主として陸 生植物類の生育に供する植物類育成方法に関するものである。 背景技術  The present invention relates to a floating electrode for electrolysis, an electrolyzer, and a method for growing plants. In particular, a positive electrode and a negative electrode are immersed in water or an aqueous solution (hereinafter simply referred to as water) to perform electrolysis. The present invention relates to a plant growing method in which electrolyzed water used in the electrolysis apparatus used and carbon dioxide dissolved by the electrolysis are mainly used for growing terrestrial plants. Background art
従来から、 正負対の電極を電解液に浸漬して電解する電解方法は周知の技 術であって、 通常、 電解槽に収容した電解液に正負対の電極を浸潰し両極間 に隔膜を設けて電解が行われる。 この場合、 電極は電極ホルダーに正負対が 平行に取付けられ、 その電極ホルダ一を電解槽に固定して設けることで電解 槽内に浸濱される。  Conventionally, an electrolysis method of immersing a positive / negative pair of electrodes in an electrolytic solution to perform electrolysis is a well-known technique.In general, a positive / negative pair of electrodes is immersed in an electrolytic solution contained in an electrolytic cell and a diaphragm is provided between both electrodes. Electrolysis is performed. In this case, the electrodes are mounted on the electrode holder in parallel with the positive / negative pair, and the electrode holder is fixed to the electrolytic cell to be immersed in the electrolytic cell.
ところで、 從来の電解方法では電解槽とその槽に固定して設けた ¾極を用 いるとともに、 電解液に浸漬している有効電極面積が変化しないようにする ため、 通常一定の容量の電解液毎にバッチ式で電解を行う力、、 あるいは槽内 の電解液レベルを常に一定に保持するように電解液を注入及び排出させつつ 電解が行われ、 これにより安定した電解が行われてきた。  By the way, the conventional electrolysis method uses an electrolytic cell and an electrode fixedly provided in the cell, and usually has a fixed volume of electrolysis so as not to change the effective electrode area immersed in the electrolytic solution. Electrolysis is performed while injecting and discharging the electrolyte so that the electrolysis power is maintained at a constant level or the level of the electrolyte in the tank at all times, and stable electrolysis has been performed. .
し力、し、 用途によっては電解水容量を可変で行ないたい場合がある。 例え ば、 本出願人が、 先に発明提案している植物類生育用二酸化炭素溶液の製造 方法 (日本特願平 6— 257697号、 H本特願平 6 341042号参照) においては 、 少なくとも陽極に炭素質電極を用い水を電解することで、 陽極に電気化学 反応により二酸化炭素を生成させ二酸化炭素が溶解した溶液を製造し、 その 二酸化炭素溶液を農作物や園芸植物等に散布したり、 水生植物等の生育に用 いる。 しかし、 このような用途の場合には、 対象となる植物類の栽培面積に 応じて種々の量の又は濃度の二酸化炭素溶液が必要となり、 これを例えば ツチ式で電解槽を用いて製造する場合、 二酸化炭素溶液を使用する都度製造 する必要がある上に、 大量に製造するには二酸化炭素溶液を必要量順次抜き 取りながら製造する必要がある。 また電解槽の半分程度の容量 (液量) を製 造しなければならない場合もある。 このような場合、 上述した電極を電解槽 に固定した従来の電解方法を用いたこれらの製造においては、 電解槽内の電 解液量が変動し液レベルが変動するため、 電解液に浸漬している有効電極面 積が変化するなど電解条件が変化して安定した電解ができない。 また、 電解 の際、 電解液となる水の界面近くでのみ電気化学反応が進み、 当該部位のみ が消耗し電極が崩壊したり折損したりする問題も観察されている。 Depending on the application, it may be desirable to make the volume of electrolyzed water variable. For example, in the method for producing a carbon dioxide solution for plant growth proposed by the present applicant (refer to Japanese Patent Application No. 6-257697 and H Patent Application No. 341042), at least the anode is used. Electrolysis of water using a carbonaceous electrode for the anode Carbon dioxide is produced by the reaction to produce a solution in which carbon dioxide is dissolved, and the carbon dioxide solution is sprayed on crops and horticultural plants, and used for growing aquatic plants and the like. However, in such a case, various amounts or concentrations of carbon dioxide solution are required depending on the cultivation area of the target plant. In addition, it is necessary to produce the carbon dioxide solution each time it is used, and in order to produce a large amount, it is necessary to sequentially extract the required amount of the carbon dioxide solution. In some cases, it is necessary to produce about half the volume (liquid volume) of the electrolytic cell. In such a case, in the production using a conventional electrolysis method in which the above-described electrodes are fixed to an electrolytic cell, the amount of the electrolytic solution in the electrolytic cell fluctuates and the liquid level fluctuates. Stable electrolysis cannot be performed due to changes in electrolysis conditions such as changes in the effective electrode area. It has also been observed that during the electrolysis, the electrochemical reaction proceeds only near the interface of the water serving as the electrolytic solution, and that only the relevant portion is consumed and the electrode collapses or breaks.
そこで、 本発明の目的は、 電解の対象となる液量が変動するなどして液レ ベルが変勦しても電極面において電気化学反応を安定してなし得る電解用浮 遊型電極並びに電解装置を提供することであり、 また他の目的は、 前記目的 に加えて、 水の電解において炭素電極が崩壊や折损などすることなくほぼ均 一に消耗し安定した電解作用をもたらし得る電解用浮遊型電極を提供するこ とである。 発明の開示  Accordingly, an object of the present invention is to provide a floating electrode for electrolysis and an electrolysis method capable of stably performing an electrochemical reaction on an electrode surface even when the liquid level is changed due to a change in the amount of liquid to be electrolyzed. Another object of the present invention is to provide an apparatus for electrolysis, in which, in addition to the above-mentioned objects, a carbon electrode is consumed almost uniformly without collapsing or breaking in water electrolysis and can provide a stable electrolytic action. The purpose is to provide a floating electrode. Disclosure of the invention
本発明の電解用浮遊型電極は、 電解に用いられる正負一対の電極をフロー 卜に設けて浮遊型電極としたものである。 このことによって、 フロートを電 解液に浮かし電極を電解液の液レベルの変動に追随させて昇降させることが できるので、 電解液に浸漬している電極の有効電極面積が変化するなどの電 解条件の変化を防止して安定した電解が行える。 また、 このような形態で電 解ができることから、 電解液が電解槽内に収容されている場合はもとより、 電解液を電解槽に注入させている時など液面が変動して 、るときでも上記の 安定した電解が可能となる。 従って、 特に、 本出願人が、 先に発明提案して いる植物類生育用二酸化炭素溶液の製造方法においては有効な手段となる。 すなわち、 電解槽内の水面が変動しても、 あるいは河川、 池など水面が変化 5 するところでも電極の有効電極面積を維持して安定した水の電解が行なえ、 少なくとも陽極に炭素電極を用いることで、 植物の生育を助ける二酸化炭素 を溶解した水を安定して効率的に得ることができる。 The floating electrode for electrolysis of the present invention is a floating electrode in which a pair of positive and negative electrodes used for electrolysis are provided on a float. This makes it possible to float the float on the electrolyte and raise and lower the electrodes following the fluctuations in the electrolyte level, so that the effective electrode area of the electrodes immersed in the electrolyte changes. Stable electrolysis can be performed by preventing changes in conditions. In addition, since electrolysis can be performed in such a form, not only when the electrolytic solution is contained in the electrolytic cell, The above-described stable electrolysis can be performed even when the liquid level fluctuates, for example, when the electrolytic solution is injected into the electrolytic cell. Therefore, it is an effective means especially in the method for producing a carbon dioxide solution for plant growth proposed by the present applicant. That is, even if the water level in the electrolytic cell fluctuates, or where the water level changes, such as rivers and ponds, the effective electrode area of the electrode can be maintained and stable water electrolysis can be performed, and at least a carbon electrode must be used for the anode. Thus, water in which carbon dioxide that aids plant growth is dissolved can be obtained stably and efficiently.
また、 本発明の電解用浮遊型電極は、 フロートとして、 天板と、 底板と、 これら天板と底板を四隅で連結する支拄と、 天板側の側方に取付けられたフ Further, the floating electrode for electrolysis of the present invention includes, as a float, a top plate, a bottom plate, a support connecting the top plate and the bottom plate at four corners, and a flange attached to the side of the top plate.
10 ロート本体とで構成されるとともに、 天板に正負対の電極を挿通するための 貰通孔が設けられたものが使用できる。 It is possible to use one that is composed of a 10 funnel body and that has a through hole for inserting a pair of positive and negative electrodes in the top plate.
なお、 フロートとしては、 軽量な絶縁物で、 且つ、 電解液に侵されず、 ま た電解液を変質させない材質が好ましく、 例えばプラスチック、 繊維強化プ ラスチックなどが好適に使用できる。 また、 フロート容積は、 電極重量、 電 i n 解液密度、 フロート材質の密度、 電極浸潰深さなどを考慮して計算で求めら れる。 また、 フロート形状は特に限定されるものではなく、 使用される場所 や条件を考慮して適宜決めることができる。  In addition, as the float, a material that is a lightweight insulator and is not affected by the electrolyte and does not deteriorate the electrolyte is preferable. For example, plastic, fiber-reinforced plastic, and the like can be suitably used. The float volume can be calculated by taking into account the electrode weight, the electrolysis density of the electrolyte, the density of the float material, the electrode immersion depth, and the like. In addition, the float shape is not particularly limited, and can be appropriately determined in consideration of the place and conditions of use.
一方、 本発明者等は、 上述した先願の植物類生育用二酸化炭素溶液の製造 方法等を研究開発する過程で、 電極 (炭素質電極) の崩壊や折損などによる On the other hand, during the course of research and development of the method for producing a carbon dioxide solution for plant growth of the prior application described above, the present inventors have found that the electrode (carbonaceous electrode) may be broken or broken.
20 寿命の短命を問題としてその改善をなすべく研究を並行して行って来た。 そ の結果、 電極の崩壊や折損などの現象は、 電極自体の抵抗により電極の電流 導入部と先端部の間で電圧の低下が生じ電解液の界面近くと電極先端部とで は電解電位差が異なるために生じることを見出した。 そして、 更なる研究の 結果、 正負対の電極の電解液界面での電極問距離を電解液中の先端部の電極20 We have been conducting research in parallel to improve the short life. As a result, phenomena such as collapse or breakage of the electrode are caused by the resistance of the electrode itself, which causes a voltage drop between the current introduction part and the tip of the electrode, and an electrolytic potential difference between the electrolyte interface and the electrode tip. It has been found that different things happen. As a result of further research, the distance between the positive electrode and the negative electrode at the electrolyte interface was determined by measuring the distance between the electrodes at the tip of the electrolyte.
25 間距離より大きくすることにより上記現象が防止できることを見出した。 す なわち、 本発明の電解用浮遊型電極においては、 正 対の電極を先端に行く につれ電極同士の対向する表面間隔が漸次抉くなるように設けることが好ま しく、 これにより、 上 Κ植物の生育を助ける二酸化炭素を溶解した水を効率 的に得られることに加えて、 電極 (炭素 ¾電極) の崩壊や折損などを防止し て電極をほぼ均一に消耗させることができ寿命の向上が図れるとともに、 電 解効率を向上させることができる。 また、 このような作用効果をより効果的 に得るには、 炭素質電極として、 本出願人が円本特願平 G— 257697号で提案 した炭素質物質 50~90%と樹脂硬化物 10~50%との実質的組成からなるもの が使用でき、 その内でも特に炭素質物質 50〜80 %と熱硬化性樹脂 20~50 %と の組成からなるものを使用するとよく、 この組成範囲で且つ熱硬化性樹脂を 使用することにより、 熱可塑性樹脂を使用した場合に起こるところの固有抵 抗が高くなり電解電圧が高くなつて発生する電撃作用の発生が無い。 It has been found that the above phenomenon can be prevented by making the distance larger than 25. That is, in the floating electrode for electrolysis of the present invention, it is preferable that the distance between the facing surfaces of the electrodes is gradually reduced as the opposite electrode is approached. As a result, in addition to efficiently obtaining water that dissolves carbon dioxide, which helps plants grow, the electrodes (carbon electrode) are prevented from collapsing or being broken, and electrodes are almost uniformly consumed. And the service life can be improved, and the electrolysis efficiency can be improved. In order to obtain such an effect more effectively, as a carbonaceous electrode, 50 to 90% of a carbonaceous substance proposed by the present applicant in Japanese Patent Application No. Hei. A substance having a substantial composition of 50% can be used, and among them, it is particularly preferable to use a composition having a composition of 50 to 80% of a carbonaceous substance and 20 to 50% of a thermosetting resin. By using a thermosetting resin, the inherent resistance that occurs when a thermoplastic resin is used is increased, and there is no generation of a lightning action that occurs when the electrolytic voltage is increased.
次に、 本発明の電解装置は、 電解槽と、 この電解槽に取付けられた水を給 水するための給水管及び電解水を抜取るための排水管と、 電解槽内に設けら れ少なくとも陽極が水を電解するための炭素質電極である対の電極とを II備 してなる。 このことによって、 電解槽に給水管より水を所定量給水し、 その 状態で所定の電解を行 L、、 得られた電解水を排水管より抜取り、 あるいは排 水管に送水ポンプを取付けて陸生植物類の生育用に散布するなどして使用さ れる。 そしてこの使用により ¾解水が減水するので、 再度給水管より水を補 給し電解を行なう。 これを繰り返すことで植物類生育用の二酸化炭素を溶解 した電解水が繰り返し効率的に得られる。  Next, the electrolytic device of the present invention comprises: an electrolytic cell; a water supply pipe attached to the electrolytic cell for supplying water; and a drainage pipe for extracting electrolytic water, at least provided in the electrolytic cell. A pair of electrodes, the anode of which is a carbonaceous electrode for electrolyzing water, is provided. As a result, a predetermined amount of water is supplied to the electrolytic tank from the water supply pipe, predetermined electrolysis is performed in that state, and the obtained electrolyzed water is extracted from the drain pipe, or a water pump is attached to the drain pipe to attach terrestrial plants. It is used by spraying for the growth of species. And since the use of this water reduces the amount of digestion water, supply water again from the water supply pipe to perform electrolysis. By repeating this, electrolyzed water in which carbon dioxide for plant growth is dissolved can be repeatedly and efficiently obtained.
また、 本発明の電解装置では、 上述した本発明の電解用浮遊型電極を電解 槽内の電解水に浮遊させて用いることができる。 これによつて、 上記繰り返 しに加えて電極の昇降中も電解が行なえることから、 より効率的に植物類生 育用の二酸化炭素を溶解した電解水が得られる。 また、 対の電極と電源の間 に、 電流安定化装置及び極性切り替え器を介在させることができる。 極性切 り替え器の設置によって、 陰極に析出する難溶性塩を抑制できることから、 より効率的に植物類一 ff fflの二酸化炭素を溶解した電解水が得られる υ この 場合、 極性切り替え器による対の電極の極性切り替え周期は電解停止時間を . Further, in the electrolysis apparatus of the present invention, the above-mentioned floating electrode for electrolysis of the present invention can be used by being suspended in electrolyzed water in an electrolytic cell. In this way, in addition to the above-mentioned repetition, electrolysis can be performed even during raising and lowering of the electrode, so that electrolyzed water in which carbon dioxide for plant growth is dissolved can be obtained more efficiently. A current stabilizer and a polarity switch can be interposed between the pair of electrodes and the power supply. By installing a polarity switching device, it is possible to suppress the poorly soluble salt that precipitates on the cathode, so that it is possible to more efficiently obtain electrolyzed water in which carbon dioxide of ff ffl has been dissolved in plants.In this case, the polarity switching device The polarity switching cycle of the electrode .
含めて 1〜 12時間の周期で行なうとよく、 1時問より短い切り替え周期では 炭素質電極より黒鉛粒子が離脱し、 電解水が黒濁するなどの問題が生じる。 また 12時問より長い切り替え周期では陰極に生成する力ルシゥムゃシリカ等 の電解生成物が取り除きにく くなる。 It is recommended that the cycle be performed in a period of 1 to 12 hours inclusively. If the switching cycle is shorter than 1 hour, the graphite particles will be detached from the carbonaceous electrode, causing problems such as electrolyzed water becoming cloudy. In addition, when the switching period is longer than 12 o'clock, it is difficult to remove electrolytic products such as silica and silica generated at the cathode.
また、 本発明の電解装置では、 電解用浮遊型電極を電解槽内の電解水に浮 遊させて用いることに加えて、 電解槽内に水位センサ一を、 給水管及び排水 管のそれぞれに制御開閉弁を設け、 これらを電解制御装置に接続した構成と することができる。 また、 電解制御装置に電解操業条件センサ一を接続した 構成とすることもできる。 これらによって、 植物類生育用の二酸化炭素を溶 解した電解水の製造の自動化が期待できる。 電解操業条件センサ一としては 、 例えば電解水中の溶存二酸化炭素濃度を測定するセンサ—、 更には気温、 湿度、 気圧など気象条件を測定するセンサーなどが採用でき、 これらを適宜 組み合わせ、 かつ、 植物類の種類を設定することで、 その植物に適した二酸 化炭素濃度に調整した電解水を製造して植物に与えることができる。 図面の簡単な説明  In addition, in the electrolysis apparatus of the present invention, in addition to using the floating electrode for electrolysis floating in the electrolyzed water in the electrolyzer, a water level sensor is controlled in the electrolyzer for each of a water supply pipe and a drain pipe. On-off valves may be provided, and these may be connected to the electrolysis control device. Further, a configuration in which an electrolysis operation condition sensor is connected to the electrolysis control device may be employed. These can be expected to automate the production of electrolyzed water in which carbon dioxide for plant growth is dissolved. As the electrolysis operation condition sensor, for example, a sensor for measuring the concentration of dissolved carbon dioxide in the electrolyzed water, a sensor for measuring weather conditions such as temperature, humidity, and atmospheric pressure can be used. These can be appropriately combined, and plants can be used. By setting the type of electrolyzed water, it is possible to produce electrolytic water adjusted to a carbon dioxide concentration suitable for the plant and to give it to the plant. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明に係る電解用浮遊型電極の斜視図、  FIG. 1 is a perspective view of a floating electrode for electrolysis according to the present invention,
第 2図は、 第 1図の X— X断面図、  FIG. 2 is a sectional view taken along the line X--X in FIG. 1,
第 3図は、 本発明に係る電解用浮遊型電極の使用状態を示す概念図、 第 4図は、 本発明に係る電解用浮遊型電極の別の実施形態の斜視図、 第 5図は、 第 4図のの Y Y断面図、  FIG. 3 is a conceptual diagram showing a use state of the floating electrode for electrolysis according to the present invention, FIG. 4 is a perspective view of another embodiment of the floating electrode for electrolysis according to the present invention, FIG. YY sectional view of FIG. 4,
第 6図は、 本発明に係る電解装置の概要図である。 以下、 本発明に係る電解用浮遊型電極を、 その実施例を示す図面を基に詳 細に説明する。  FIG. 6 is a schematic diagram of an electrolytic device according to the present invention. Hereinafter, the floating electrode for electrolysis according to the present invention will be described in detail with reference to the drawings showing examples.
第 1図乃至第 3図を参照すると、 本発明による電解用浮遊型電極は、 電極 iとフロート 2より構成される。 電極 1は、 板状で、 ターミナルを取付ける 電流導入部 3と電解を行なう電極部 4とで構成され、 両部分の境は電流導入 部 3の幅が電極部 4の幅より大きく形成され段部 5が形成されている。 一方 、 フロート 2は、 軽量なプラスチックの矩形状厚板からなり中央から対称な 位置に電極部 4の横断面より僅かに大きい貫通孔 6が形成され、 当該貫通孔 6に電極部 4を揷通して電解用浮遊型電極 F1を構成する。 Referring to FIGS. 1 to 3, the floating electrode for electrolysis according to the present invention is composed of an electrode i and a float 2. Electrode 1 is plate-shaped and terminal is installed A current introducing section 3 and an electrode section 4 for performing electrolysis are formed. At the boundary between both sections, the width of the current introducing section 3 is formed larger than the width of the electrode section 4, and a step section 5 is formed. On the other hand, the float 2 is made of a lightweight thick rectangular plastic plate, and has a through hole 6 slightly larger than the cross section of the electrode portion 4 at a position symmetrical from the center. The electrode portion 4 is inserted through the through hole 6. To form a floating electrode F1 for electrolysis.
上記電解用浮遊型電極 F1は、 電解槽 7内に収容されている電解液 8に浮か せて使用される。 従って、 電解液 8が減少し液面が降下したり、 また電解液 8を補充することで上昇しても、 電極 1はフロート 2と共に昇降するから、 フロート 2の下に突き出た電極 1の浸渍された有効電極面積は変化せず安定 した電解が行える。 第 3図は、 上記電解用浮遊型電極 F1の使 ffl形態の一例を 示す説明図である。  The floating electrode F1 for electrolysis is used by being floated on an electrolytic solution 8 contained in an electrolytic cell 7. Therefore, even if the electrolyte 8 decreases and the liquid level drops, or if the electrolyte 1 rises by replenishing the electrolyte 8, the electrode 1 moves up and down together with the float 2, so that the electrode 1 protruding below the float 2 is immersed. The stable effective electrolysis can be performed without changing the effective electrode area. FIG. 3 is an explanatory diagram showing an example of a use ffl form of the floating electrode F1 for electrolysis.
なお、 上記実施例では、 正負対の電極 1をフロート 2に一対設けた場合を 例示したが、 その数はもとより、 電極 1やフロート 2の大きさは、 適用され る電解槽 7の大きさなどに応じて適宜の数及び大きさに設定されるものであ る。 また電極 1の形状も板状に限らず、 丸棒、 角棒などであってもよい。 また、 フロート 2を矩形状厚板を例に説明したが、 円盤状厚板で側面が上 広がりに形成されてあつてもよく、 あるいは下而が船底型や半球形等に形成 されてあってもよい。 このような形状であれば、 電解槽 7に電解液 8を流出 入させながら電解する場合、 あるいは川など流れのあるところでの電解には 液流れに対する抵抗が少なく電解用浮遊型電極 P1が効果的に使用できる。 また、 電極 1のフロート 2への取付けを、 フロー卜 2の貫通孔 6に電極 1 の電極部 4を揷通し段部 5により保持するだけの取付け構造を例に説明した 力 段部 5の無い平滑な電極 1の場合には、 図示省略するがフロート 2の ΐί 通孔(;と電極 1の電極部 4との隙間に接着剤を充塡して取付けたり、 隙間を 大きく形成しそこに板パネやくさびを差し入れて取付ける。 あるいはフロー 卜 2上に設けたブラケッ 卜にボル卜 ·ナツ 卜を用いて取付ける等々、 適宜周 知の取付け手段を用し、て取付けることができる。 また、 正負対の電極 1を貫通孔 Gに平行に設けた例を示したが、 貫通孔 6 を傾斜させて設けるなどして、 正 対の電極 1の電極間距離を電極部 4の先 端に行くにつれ狭まるように設けてもよい。 この場合、 対向する電極部 4の 全面で電解を行わせることができ、 電極部 4の崩壊 (特に炭素質電極の場合 ) ゃ折损などが防止でき電極部 4をほぼ均一に消耗させることができ電極寿 命の向上が図れるとともに、 電解効率を向上させることができる。 In the above-described embodiment, the case where the pair of positive and negative electrodes 1 is provided on the float 2 is exemplified, but not only the number but also the size of the electrodes 1 and the float 2 depends on the size of the electrolytic cell 7 to be applied. It is set to an appropriate number and size according to. The shape of the electrode 1 is not limited to a plate shape, but may be a round bar, a square bar, or the like. Also, while the float 2 has been described using a rectangular thick plate as an example, the float 2 may be formed as a disk-shaped thick plate with its side surface widened upward, or the lower part may be formed as a ship bottom type or a hemispherical shape. Is also good. With such a shape, the electrolysis floating electrode P1 is effective for electrolysis while flowing the electrolytic solution 8 into and out of the electrolytic cell 7, or for electrolysis in a place where there is a flow such as a river because the resistance to the liquid flow is small. Can be used for Also, there is no force step 5 described in the example of the mounting structure in which the electrode 1 is attached to the float 2 by simply holding the electrode part 4 of the electrode 1 through the through hole 6 of the float 2 by the step part 5. In the case of the smooth electrode 1, although not shown, the gap between the through hole (;) of the float 2 and the electrode portion 4 of the electrode 1 is filled with an adhesive, or the gap is made large, and a plate is formed there. It can be mounted by inserting a panel or wedge, or by using a well-known mounting means, such as mounting it on a bracket provided on the float 2 using a bolt or a nut. Also, an example in which the positive / negative electrode pair 1 is provided in parallel with the through hole G is shown. It may be provided so as to narrow as it goes. In this case, electrolysis can be performed on the entire surface of the opposing electrode portion 4, and the collapse of the electrode portion 4 (particularly in the case of a carbonaceous electrode) can be prevented, and the electrode portion 4 can be consumed almost uniformly. As a result, the electrode life can be improved and the electrolysis efficiency can be improved.
また、 第 1図乃至第 3図に二点鎖線で示すように、 必要であればフ口一ト 2の上面より側方に突出させてガィ ドノ - 1 1を取付けるようにしてもよい。 ガイ ドバー Uが電解槽 7の内面に沿うことで、 あるいは図示省略する電解槽 7内に設置したガイ ドレールに沿うことで電解用浮遊型電極ト Ίを電解槽 7の 所望の位置で昇降させることができる。  Also, as shown by a two-dot chain line in FIGS. 1 to 3, if necessary, the guide -11 may be attached so as to protrude laterally from the upper surface of the mouthpiece 2. . The guide bar U moves along the inner surface of the electrolytic cell 7 or along a guide rail installed in the electrolytic cell 7 (not shown) to raise and lower the floating electrode for electrolysis at a desired position in the electrolytic cell 7. Can be.
次に、 第 4図及び第 5図を参照すると、 本発明による電解用浮遊型電極は 、 電極 12とフロート 13より構成される。 電極 12は、 幅 280mm x長さ 560mm x 厚さ 10難の板状の炭素質電極で、 ターミナルを取付ける電流導入部 14と電解 を行なう電極部 15とで構成され、 本実施例では 4枚 (2対) が用いられてい る。 一方、 フロート 13は、 天板 16と、 底板 17と、 これら天板 16と底板 17を四 隅で連結する支柱 18と、 天板側の側方に取付けられた中空のフロー卜本体 19 とで構成され、 これらはプラスチックからなる。 また、 天板 16には電極 12を 揷通するための 4つのスリッ ト状の貫通孔 20が、 底板 17の上面には電極 12の 下端を受けるための 4つの受け溝 21がそれぞれ設けられ、 電極 12の電極部 15 を天板 16の貫通孔 20に揷通し先端を底板 17の受け溝 21に載置して電解用浮遊 型電極 F2を構成する。  Next, referring to FIGS. 4 and 5, the floating type electrode for electrolysis according to the present invention is composed of an electrode 12 and a float 13. The electrode 12 is a plate-like carbonaceous electrode having a width of 280 mm x a length of 560 mm x a thickness of 10 and is composed of a current introduction part 14 for mounting a terminal and an electrode part 15 for electrolysis. In this embodiment, four electrodes ( 2 pairs) are used. On the other hand, the float 13 is composed of a top plate 16, a bottom plate 17, a column 18 connecting the top plate 16 and the bottom plate 17 at four corners, and a hollow float body 19 attached to the side of the top plate. And these are made of plastic. The top plate 16 is provided with four slit-shaped through holes 20 for passing the electrode 12, and the bottom plate 17 is provided with four receiving grooves 21 for receiving the lower end of the electrode 12, respectively. The electrode portion 15 of the electrode 12 is passed through the through hole 20 of the top plate 16 and the tip is placed in the receiving groove 21 of the bottom plate 17 to form a floating electrode F2 for electrolysis.
上記電解用浮遊型電極 F2は、 上述した電解用浮遊型電極 F1と同様、 電解槽 7内に収容されている電解液 8に浮かせて、 あるいは川などの流れに浮かせ て使用される。 従って、 電解液 8が減少し液面が降下したり、 また電解液 8 を補充することで上昇しても、 あるいは川などの水位が変化しても、 電極 12 はフロート 13と共に昇降するから、 電極 12の有効電極面積は変化せず安定し た電解が行える。 また、 本実施例では正負対の電極 12, 12を設ける貫通孔 20 , 20の間隔を受け溝 21, 21の間隔より広く形成しており、 これにより、 正負 対の電極 12, 12の対向する表面間隔を漸次狭くなるように設けることができ るとともに、 対向する電極部 15の全面で電解を行わせることができ、 電極部 15の崩壊 (特に炭素質電極の場合) や折損などが防止でき電極部 15をほぼ均 一に消耗させることができ電^寿命の向上が図れるとともに、 電解効率を向 上させることができる。 The floating electrode F2 for electrolysis is used, like the floating electrode F1 for electrolysis described above, by floating it on an electrolytic solution 8 contained in an electrolytic cell 7 or floating on a flow of a river or the like. Therefore, the electrode 12 moves up and down together with the float 13 even if the electrolyte 8 decreases and the liquid level drops, or if the level rises by replenishing the electrolyte 8 or the water level of a river or the like changes. The effective electrode area of electrode 12 is stable without change Electrolysis can be performed. Further, in the present embodiment, the gap between the through holes 20, 20 in which the positive and negative electrode pairs 12, 12 are provided is formed to be wider than the gap between the grooves 21, 21. The surface interval can be gradually narrowed, and the electrolysis can be performed on the entire surface of the opposing electrode portion 15, so that the electrode portion 15 can be prevented from being broken (particularly in the case of a carbonaceous electrode) or broken. The electrode portion 15 can be consumed almost uniformly, the life of the electrode can be improved, and the electrolysis efficiency can be improved.
次に、 第 6図を参照すると、 本発明による電解装置は、 上述した第 4図及 び第 5図に示す電解用浮遊 3'i電極 F2を用い水を電気分解して、 植物類生育用 二酸化炭素溶液を製造するための装置 31であって、 本実施例では 2つの電解 槽 32, 33を有し、 電解槽 32, 33のそれぞれには、 水の給水管 34が補給水バイ パス くルブ 35と給水用電磁ノくルブ 36を並行に介在させて接続されるとともに 、 電解水 37を抜取るための排水管 38がフィルタ点検用バルブ 39、 フィル夕 40 、 抜取り制御用電磁バルブ 41を直列に介在させて接続されている。 また、 電 解槽 32, 33のそれぞれの内部には、 電解中の電解水 の定常制御用の上水面 センサ 42と下水面センサ 43が設けられている。 なお、 第 6図において、 符号 44は給水過剰水面センサであつて給水管 34からの水が上水面センサ 42を超え て過剰に給水された場合に給水用電磁バルブ 36を閉止させる。 符号 45は水位 異常低下センサであつて電解水 37の抜取りが下水 ¾センサ 43より低 L、水位で 行われた場合に抜取り制御用電磁バルブ 41を閉止させる。 符号 46は電解槽 32 , 33内を空にするための排水用バルブであって通常は閉止されている。 符号 47は電解水 37を電解槽 32. 33より抜取るためのポンプである。 符号 48は電解 制御装置であって、 前記電解用浮遊型電極 F2、 給水用電磁バルブ 36、 抜取り 制御用電磁バルブ 41、 上水面センサ 42、 下水面センサ 43、 給水過剰水面セン サ 44、 ポンプ 44の作動スィッチのそれぞれが接続されている。  Next, referring to FIG. 6, the electrolysis apparatus according to the present invention electrolyzes water using the floating 3′i electrode F2 for electrolysis shown in FIG. 4 and FIG. This is an apparatus 31 for producing a carbon dioxide solution. In this embodiment, the apparatus 31 has two electrolytic cells 32 and 33, and each of the electrolytic cells 32 and 33 is provided with a water supply pipe 34 for supplying water. The lube 35 and the water supply electromagnetic valve 36 are connected in parallel with each other, and a drain pipe 38 for extracting the electrolytic water 37 is provided with a filter check valve 39, a filter 40, and a sampling control electromagnetic valve 41. They are connected in series. Further, inside each of the electrolysis tanks 32 and 33, there are provided an upper water level sensor 42 and a lower water level sensor 43 for steady control of the electrolyzed water during electrolysis. In FIG. 6, reference numeral 44 denotes a water supply excess water level sensor, which closes the water supply electromagnetic valve 36 when water from the water supply pipe 34 is excessively supplied beyond the water supply level sensor 42. Reference numeral 45 denotes a water level abnormal drop sensor, which closes the drain control electromagnetic valve 41 when the drainage of the electrolyzed water 37 is performed at a water level lower than the sewage sensor 43 at a lower L level. Reference numeral 46 denotes a drain valve for emptying the electrolytic cells 32 and 33, which is normally closed. Reference numeral 47 denotes a pump for extracting the electrolytic water 37 from the electrolytic cells 32 and 33. Reference numeral 48 denotes an electrolysis control device, which includes the electrolysis floating electrode F2, the water supply electromagnetic valve 36, the extraction control electromagnetic valve 41, the water level sensor 42, the sewage level sensor 43, the water level sensor 44, and the pump 44. Of the operating switches are connected.
上記構成の電解装置 3 1は、 電解制御装置 48からの制御信号により次の如く して運転される。 すなわち、 ①:電解槽 32, 33のそれぞれに給水 ffl電磁バル ブ 36を介して上水面センサ 42の水位まで水が給水される。 ②:電解槽 32, 33 の電解用浮遊型電極 F2が作動し所定時間の電解が行われ、 水が二酸化炭素溶 液の電解水 37となる。 ③: この後、 一方の電解槽 32の抜取り制御用電磁バル ブ 41を開にしポンプ 47を作動して電解水 37を抜取り植物類生育用に散布する などして使用する。 ④: この使用により電解槽 32内の電解水 37の水位が低下 するが、 水位の低下に追随して電解用浮遊型電極 F2が下降するので安定した 電解が行われる。 ⑤:水位が下水面センサ 43より低下すると、 電解制御装置 力、らの制御信号により電解槽 32の抜取り制御用電磁ノ〈ルブ 41が閉じるととも に、 電解槽 32の給水用電磁バルブ 36が開となり水の供給が行われる。 また同 時に、 電解槽 33の抜取り制御用電磁バルブ 41が開となり連続して電解水 37の 抜取りができる。 ⑥: このようにして電解槽 32と 33を交互に使用することが できる。 なお、 電解制御装置 48からの制御信号により、 電解水 37の水位を上 水面センサ 42と下水面センサ 43の問で給水と排水をバランスさせるように制 御することで、 一方の電解槽 32 (33) のみの使用も可能である。 また、 電解 槽 32、 のニ槽を例に説明したが、 電解槽数を特に限定するものではなく、 実施状況により適宜ー槽又は複数槽とすることができ、 複数槽の場合には上 記実施例でニ槽を交互に使用したように、 順次切り替えて使用することがで きる。 The electrolysis device 31 having the above configuration is operated as follows by a control signal from the electrolysis control device 48. That is, ①: Water is supplied to each of the electrolytic cells 32 and 33. Water is supplied to the water level of the water level sensor 42 via the valve 36. ②: Floating electrode F2 for electrolysis of electrolyzers 32 and 33 is activated, electrolysis is performed for a predetermined time, and water becomes electrolyzed water 37 of carbon dioxide solution. ③: After that, open the electromagnetic valve 41 for extraction control of one electrolytic cell 32 and operate the pump 47 to extract the electrolyzed water 37 and spray it for plant growth. ④: With this use, the water level of the electrolyzed water 37 in the electrolysis tank 32 is lowered, but the electrolysis floating electrode F2 is lowered following the water level drop, so that stable electrolysis is performed. ⑤: When the water level falls below the sewage level sensor 43, the electromagnetic control valve for extracting the electrolytic cell 32 is closed by the control signal from the electrolysis controller and the electromagnetic valve 36 for supplying water to the electrolytic cell 32 is closed. It opens and water is supplied. At the same time, the electromagnetic valve 41 for controlling the extraction of the electrolytic cell 33 is opened, and the electrolytic water 37 can be extracted continuously. ⑥: Thus, the electrolytic cells 32 and 33 can be used alternately. In addition, by controlling the water level of the electrolyzed water 37 based on the control signal from the electrolysis control device 48 so as to balance the water supply and the drainage between the water level sensor 42 and the sewage level sensor 43, one of the electrolytic cells 32 ( Use of only 33) is possible. In addition, although two electrolytic tanks 32 were described as examples, the number of electrolytic tanks is not particularly limited, and the number of electrolytic tanks can be appropriately set to one or more depending on the implementation situation. As in the embodiment, two tanks are used alternately, and can be used by switching sequentially.
また、 上記構成の電解装置 31では、 電解用浮遊型電極 F2の対の電極 i2, 12 と電源の問に電流安定化装置及び極性切り替え器を介在させ、 これらを電解 制御装置 48に接続して対の電極 12, 12の極性を電解制御装置 48からの制御信 号により所望の周期で切り替えて電解ができる。 これら電解によって、 植物 類生育用の二酸化炭素を溶解した電解水が安定して効率的に得られる。  In the electrolysis apparatus 31 having the above configuration, a current stabilizing device and a polarity switch are interposed between the pair of electrodes i2 and 12 of the floating electrode F2 for electrolysis and the power supply, and these are connected to the electrolysis control device 48. Electrolysis can be performed by switching the polarity of the pair of electrodes 12, 12 at a desired cycle by a control signal from the electrolysis controller 48. By these electrolysis, electrolyzed water in which carbon dioxide for plant growth is dissolved can be obtained stably and efficiently.
以上説明した如く、 本発明による電解用浮遊型電極によれば、 電解の対象 となる液量が変動するなどして液レベルが変動しても、 その変動に追随して 昇降移動するので、 液レベルの変動に関係なく常に安定した電解ができる。 また、 本発明による電解用浮遊型電極において、 正負対の電極を先端に行く につれ電極同士の対向する表面間隔が漸次狭くなるように設けることで、 前 記作用効果に加えて、 電解中の電極を崩壊や折損などさせることなくほぼ均 一に消耗させることができ電極の寿命の向上が図れるとともに、 電解効率を 向上させることができる。 そして、 特に炭素質電極の場合に効果的である。 また、 本発明による電解装置によれば、 電解槽への給水と電解後の電解水 の抜取りが交互に効率的に行なえるので、 陸生植物類の生育用に散布する二 酸化炭素溶液が効率的に得られる。 また、 本発明電解装置に木発明による電 解用浮遊型電極を組み合わせて用いることで、 上記電解用浮遊型電極が有す る作用効果を享受して液レベルの変動に関係なく常に安定した電解ができ、 陸生植物類の生育用に散布する二酸化炭素溶液がより効率的に得られる。 ま た、 得られた電解水は二酸化炭素の濃度が常に安定しており、 このような二 酸化炭素溶液を陸生植物類に散布することで農作物や園芸植物等の植物類の 光合成が確実になされ育成が図られる。 As described above, according to the floating electrode for electrolysis according to the present invention, even if the liquid level changes due to a change in the amount of liquid to be electrolyzed, the liquid moves up and down following the fluctuation, Stable electrolysis can always be performed regardless of the level fluctuation. In the floating electrode for electrolysis according to the present invention, the positive and negative electrode pairs In addition to the above-mentioned effects, by providing the electrodes so that the distance between the facing surfaces of the electrodes gradually decreases, the electrodes during electrolysis can be consumed almost uniformly without collapsing or breaking. And the electrolysis efficiency can be improved. It is particularly effective for carbonaceous electrodes. Further, according to the electrolysis apparatus of the present invention, the water supply to the electrolysis tank and the extraction of the electrolyzed water after the electrolysis can be performed alternately and efficiently, so that the carbon dioxide solution sprayed for growing terrestrial plants can be efficiently used. Is obtained. In addition, by using the electrolysis floating electrode of the present invention in combination with the electrolysis apparatus of the present invention, it is possible to enjoy the function and effect of the electrolysis floating electrode and to obtain a stable electrolysis regardless of the fluctuation of the liquid level. The carbon dioxide solution sprayed for growing terrestrial plants can be obtained more efficiently. In addition, the concentration of carbon dioxide in the obtained electrolyzed water is always stable. By spraying such a carbon dioxide solution on terrestrial plants, photosynthesis of plants such as crops and horticultural plants is ensured. Training is achieved.

Claims

請 求 の 範 囲 The scope of the claims
1 . 少なくとも正負一対の電極がフロー卜に設けられてなることを特徴とす る電解用浮遊型電極。 1. A floating electrode for electrolysis, characterized in that at least a pair of positive and negative electrodes are provided on a float.
2 . フロート力 天板と、 底板と、 これら天板と底扳を四隅で連結する支柱 と、 天板側の側方に取付けられたフロー ト本体とで構成されるとともに、 天 板に正負対の電極を揷通するための B通孔が設けられてなる請求項 1記載の 電解用浮遊型電極。 2. Float force It consists of a top plate, a bottom plate, a column connecting the top plate and the bottom at four corners, and a float body attached to the side of the top plate. 2. The floating type electrode for electrolysis according to claim 1, further comprising a B through hole for passing through the electrode.
. 電極の電流導入部の横断面の大きさを電極部の横断面の大きさより大き く形成するとともに、 電極部の横断面の大きさより僅かに大きな貫通孔をフ ロー卜に形成し、 この貫通孔に電極の電極部を挿通しフロートに電極を設け てなる請求項 1又は 2記載の電解用浮遊型電極。  The cross section of the current introduction part of the electrode is formed larger than the cross section of the electrode part, and a through hole slightly larger than the cross section of the electrode part is formed in the float. 3. The floating electrode for electrolysis according to claim 1, wherein the electrode part of the electrode is inserted into the hole and the electrode is provided on the float.
4 . フロー卜力く、 プラスチック製ブロックで形成されてなる請求項 1、 2又 は 3記載の電解用浮遊型電極。  4. The floating electrode for electrolysis according to claim 1, 2 or 3, wherein the floating electrode is formed of a plastic block with a strong float.
5 . 正負対の電極が、 先端に行くにつれ電極同士の対向する表面間隔が漸次 狭くなるように設けられてなる請求项 1 7う至 4のいずれか〗項記載の電解用 浮遊型電極。  5. The floating electrode for electrolysis according to any one of claims 17 to 4, wherein the pair of positive and negative electrodes is provided such that the distance between the opposed surfaces of the electrodes gradually decreases toward the tip.
ϋ . 正負対の電極の陽極のみが炭素質電極である請求項 1乃至 5のいずれか 1項 載の電解用浮遊型電極。  The floating electrode for electrolysis according to any one of claims 1 to 5, wherein only the anode of the pair of positive and negative electrodes is a carbonaceous electrode.
7 . 正負対の電極の両方が、 炭素質電極である請求項 1乃至 5のいずれか 1 项 d載の電解用浮遊型電極。  7. The floating electrode for electrolysis according to any one of claims 1 to 5, wherein both the positive and negative electrode pairs are carbonaceous electrodes.
8 . 炭素質物質 50〜80%と熱硬化性樹脂 20〜50%との組成からなる電解用炭 素質電極。  8. Electrolytic carbonaceous electrode composed of 50 to 80% of carbonaceous material and 20 to 50% of thermosetting resin.
Π . 炭素質電極が、 請求項 8記載の電解用炭素質電極である請求項 6記載の 電解用浮遊型電極。  A floating electrode for electrolysis according to claim 6, wherein the carbonaceous electrode is the carbonaceous electrode for electrolysis according to claim 8.
10. 炭素質電極が、 請求项 8記載の電解用炭素質電極である請求項 7記載の 電解用浮遊型電極。 10. The floating electrode for electrolysis according to claim 7, wherein the carbonaceous electrode is the carbonaceous electrode for electrolysis according to claim 8.
1 1. 電解槽と、 この電解槽に取付けられた水を給水するための給水管及び電 解水を抜取るための排水管と、 電解槽内に設けられ少なくとも陽極が水を電 解するための炭素質電極である対の電極とを具備してなることを特徴とする 1 1. An electrolytic cell, a water supply pipe attached to the electrolytic cell for supplying water and a drain pipe for extracting electrolytic water, and at least an anode provided in the electrolytic cell for electrolyzing water. Characterized by comprising a pair of electrodes that are carbonaceous electrodes of
5 12. 対の電極が、 請求項 6又は 9のいずれか 1項記載の電解 ffl浮遊型電極で ある請求項 11記載の電解装置。 12. The electrolytic device according to claim 11, wherein the pair of electrodes is the electrolytic ffl floating electrode according to any one of claims 6 and 9.
13. 対の電極が、 請求項 7又は 10のいずれか 1項記載の電解用浮遊型電極で ある請求項 11記載の電解装置。  13. The electrolytic device according to claim 11, wherein the pair of electrodes is the floating electrode for electrolysis according to any one of claims 7 and 10.
14. 対の電極が、 電流安定化装置を介在させて電源に接続されるとともに、 0 電解制御装置に接続されてなる請求項 1 1又は 12記載の電解装置。  14. The electrolytic device according to claim 11, wherein the pair of electrodes is connected to a power supply through a current stabilizing device, and is connected to a zero electrolysis control device.
15. 対の電極が、 電流安定化装置及び極性切り替え器を介在させて電源に接 続されるとともに、 電解制御装置に接続されてなる請求項 1 1又は 13記載の電 解装置。  15. The electrolytic device according to claim 11, wherein the pair of electrodes is connected to a power supply via a current stabilizing device and a polarity switch, and is connected to an electrolysis control device.
I f;. 電解槽内に水位センサーを、 給水管及び排水管のそれぞれに制御開閉弁Π を設けるとともに、 これらが電解制御装置に接続されてなる請求項 1 1乃至 15 のいずれか 1項; 1己載の電解装置。  If; a water level sensor is provided in the electrolytic cell, a control opening / closing valve is provided in each of the water supply pipe and the drainage pipe, and these are connected to the electrolysis control device, any one of claims 11 to 15; 1 Electrolytic equipment on your own.
17. ¾解制御装置に、 電解操業条件センサ—が接続されてなる請求項 11乃至 16のいずれか 1項記載の電解装置。  17. The electrolytic device according to claim 11, wherein an electrolytic operation condition sensor is connected to the solution control device.
18. 炭酸同化作用を営む主として陸上の植物類に、 請求項 11乃至 17のいずれ0 力、 1項記載の電解装置によって製造された二酸化炭素溶液を散布する植物類 育成方法。  18. A method for growing a plant, comprising spraying a carbon dioxide solution produced by the electrolysis apparatus according to any one of claims 11 to 17 onto a land-based plant that mainly performs carbonic acid assimilation.
19. 請求項 18記載の植物類育成方法であって、 二酸化炭素溶液を主として植 物類の葉部に散布する植物類育成方法。  19. The method for growing plants according to claim 18, wherein the carbon dioxide solution is mainly sprayed on the leaves of the plants.
PCT/JP1996/003133 1996-05-21 1996-10-24 Floating electrode for electrolysis, electrolytic apparatus and plant growing method WO1997044280A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU73371/96A AU7337196A (en) 1996-05-21 1996-10-24 Floating electrode for electrolysis, electrolytic apparatus and plant growing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP8/125506 1996-05-21
JP12550696A JPH09310190A (en) 1996-05-21 1996-05-21 Floating electrode for electrochemical reaction and electrolytic cell using the same electrode

Publications (1)

Publication Number Publication Date
WO1997044280A1 true WO1997044280A1 (en) 1997-11-27

Family

ID=14911817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/003133 WO1997044280A1 (en) 1996-05-21 1996-10-24 Floating electrode for electrolysis, electrolytic apparatus and plant growing method

Country Status (3)

Country Link
JP (1) JPH09310190A (en)
AU (1) AU7337196A (en)
WO (1) WO1997044280A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4413410B2 (en) * 2000-10-12 2010-02-10 フジクリーン工業株式会社 Waste water treatment apparatus and waste water treatment method
JP2008056988A (en) * 2006-08-31 2008-03-13 Yokogawa Electric Corp Organic electrolytically synthetic apparatus
KR100865294B1 (en) * 2007-05-16 2008-10-27 삼성전기주식회사 Hydrogen generating apparatus and fuel cell power generation system
JP5230314B2 (en) * 2008-09-11 2013-07-10 三菱電機株式会社 Active oxygen generator
JP5444186B2 (en) * 2010-10-20 2014-03-19 株式会社東芝 Hydrogen peroxide water generator and sterilization system
JP5310772B2 (en) * 2011-04-07 2013-10-09 三菱電機株式会社 Air conditioning equipment
JP2012161798A (en) * 2012-04-27 2012-08-30 Fuji Clean Co Ltd Apparatus for treating wastewater

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6373198U (en) * 1986-10-29 1988-05-16
JPH059119Y2 (en) * 1988-05-17 1993-03-05
JPH05253409A (en) * 1992-03-10 1993-10-05 Taiko Kikai Kogyo Kk Oil separator using electrolysis method
JPH06153744A (en) * 1992-09-25 1994-06-03 Riyouyou Sangyo Kk Method for diminishing parasite of fishes and bacterium and removing living thing attached to crawl net
JPH06154760A (en) * 1992-09-24 1994-06-03 Able Kk Feeding device and method for dissolved carbon dioxide gas
JPH0884529A (en) * 1994-09-14 1996-04-02 Toyo Tanso Kk Production of carbon dioxide solution for growing plants
JPH08182433A (en) * 1994-12-29 1996-07-16 Toyo Tanso Kk Feeder for carbon dioxide solution for raising plants

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6373198U (en) * 1986-10-29 1988-05-16
JPH059119Y2 (en) * 1988-05-17 1993-03-05
JPH05253409A (en) * 1992-03-10 1993-10-05 Taiko Kikai Kogyo Kk Oil separator using electrolysis method
JPH06154760A (en) * 1992-09-24 1994-06-03 Able Kk Feeding device and method for dissolved carbon dioxide gas
JPH06153744A (en) * 1992-09-25 1994-06-03 Riyouyou Sangyo Kk Method for diminishing parasite of fishes and bacterium and removing living thing attached to crawl net
JPH0884529A (en) * 1994-09-14 1996-04-02 Toyo Tanso Kk Production of carbon dioxide solution for growing plants
JPH08182433A (en) * 1994-12-29 1996-07-16 Toyo Tanso Kk Feeder for carbon dioxide solution for raising plants

Also Published As

Publication number Publication date
JPH09310190A (en) 1997-12-02
AU7337196A (en) 1997-12-09

Similar Documents

Publication Publication Date Title
KR100393947B1 (en) Pressure-compensated electrochemical cell
RU2164219C2 (en) Method and plant for electrochemical treatment of water for its softening
JP4399221B2 (en) Hydrogen water supply equipment
CN105174384A (en) Integrated manufacturing apparatus for hydrogen-enriched water
WO1997044280A1 (en) Floating electrode for electrolysis, electrolytic apparatus and plant growing method
CN102249397A (en) Bio-electrochemical enhanced waste water treatment device
CN105164317B (en) Processing method and processing means containing Au iodine system etching solution
CN204918098U (en) Integral type hydrogen -rich water's manufacturing installation
KR100533706B1 (en) manufacturing apparatus of electrolyzed-reduced water
US20120037512A1 (en) Electrodes for electrolysis of water
US9150437B2 (en) Drop-in cell for electrolytic purification of water
CN203602402U (en) Minitype microorganism electrolytic tank
US3082160A (en) Electrolytic method
JP2000334488A (en) Device and method for water purification
US3152058A (en) Electrolytic bridge assembly for the anodic passivation of metals
US6235189B1 (en) Method of supplying dissolved carbon dioxide to plants in an aqueous medium
CN202116364U (en) Bioelectrochemistry reinforced waste water treatment device
US20130134053A1 (en) Methods and devices for the treatment of fluids
CN103633356B (en) A kind of small-sized microorganism electrolysis cell and application thereof
CN220393927U (en) Device for adjusting electrolytic quality in electrolytic tank
KR20090091878A (en) Microbial fuel cell based on adaptive electrode for changing water level
CN220201567U (en) Socket type water quality disinfection device special for steady flow compensation tank
CN203382823U (en) Electrolysed water preparation device
CN220317494U (en) Sea island electrocoagulation water treatment device
KR20030065856A (en) An chlorine-sodium hydroxide electricty decomposition apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN KR NO SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA