WO1997041192A1 - Catalyst and its use for dehydrogenating paraffinic/naphtenic hydrocarbons - Google Patents

Catalyst and its use for dehydrogenating paraffinic/naphtenic hydrocarbons Download PDF

Info

Publication number
WO1997041192A1
WO1997041192A1 PCT/EP1997/002040 EP9702040W WO9741192A1 WO 1997041192 A1 WO1997041192 A1 WO 1997041192A1 EP 9702040 W EP9702040 W EP 9702040W WO 9741192 A1 WO9741192 A1 WO 9741192A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
catalyst according
compound
carbon atoms
branched
Prior art date
Application number
PCT/EP1997/002040
Other languages
German (de)
French (fr)
Inventor
Daniel Heineke
Alfred Hagemeyer
Joachim Wulff-Döring
Christopher William Rieker
Werner Schnurr
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to EP97920738A priority Critical patent/EP0907696A1/en
Publication of WO1997041192A1 publication Critical patent/WO1997041192A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/373Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen with simultaneous isomerisation
    • C07C5/393Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen with simultaneous isomerisation with cyclisation to an aromatic six-membered ring, e.g. dehydrogenation of n-hexane to benzene
    • C07C5/41Catalytic processes
    • C07C5/412Catalytic processes with metal oxides or metal sulfides
    • B01J35/613
    • B01J35/647
    • B01J35/66
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the alkali- or alkaline earth metals or beryllium
    • C07C2523/04Alkali metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/08Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of rare earths

Definitions

  • the invention relates to a catalyst and its use for the dehydrogenation of paraffinic / naphthenic hydrocarbons which have straight-chain, branched or cyclic alkyl or alkylene radicals having 6 to 8 carbon atoms.
  • the invention relates in particular to the production of aromatic compounds having 6 to 8 carbon atoms.
  • the most important source of technically important C ⁇ to Ca aromatics such as benzene, xylenes or ethylbenzene is large-scale reforming.
  • straight-chain paraffin hydrocarbons are converted into branched paraffin hydrocarbons and aliphatic-aromatic and aromatic hydrocarbons.
  • This process is used on the one hand to increase the knock resistance of petrol fuels, i.e. the reaction mixtures obtained remain essentially unchanged; on the other hand, the aromatic compounds formed are e.g. separated by distillation and found as intermediates and synthesis building blocks e.g. for the production of synthetic rubbers and synthetic fibers.
  • the ethylbenzene formed from components of the Cs fraction is used, for example, to obtain styrene, the starting material for polystyrene.
  • Catalytic reforming finds a variety of
  • Catalysts which contain other metals besides platinum, such as Pt-Re / Al 2 ⁇ 3 .Si0 2 or Pt / Sn / Al 2 0 3 .Si0 2 are also known; for example, a catalyst based on Pt / Sn / Al 2 0 3 in J. Mol. Catal. .88. (1994) 359-376.
  • the carrier materials are mostly aluminosilicates or zeolites.
  • Pt catalysts on L-zeolites (cf. Energy Progress 1, (1987), 215-222) achieve a high aromatic selectivity, which is attributed to the shape selectivity of the support, but with a low space-time yield.
  • multi-stage catalysts such as Pt / Co / Nd (US Pat. No. 4,136,130) or Pt / Co / Re / Ge (US Pat. No. 4,136,017) on non-zeolitic chlorinated Al 2 O 3 supports develop higher activity, but tend to do so to Formation of crack products and thus less aromatic selectivity, especially with regard to the formation of C ⁇ aromatics (ethyl- 'benzene;styrene; xylenes).
  • the aforementioned catalysts have the disadvantage of being precious metal catalysts, i.e. they are expensive, especially if they have to contain other, also rare, components such as rhenium or palladium. It is also disadvantageous that catalysts containing noble metals do not achieve a long service life because the active constituent, which is in elemental form, tends to agglomerate at a process temperature of 450 to 550 ° C. and possibly subsequently to sintering, that is to say to the loss of an effective surface, and is therefore rapid loses activity. Finally, it is disadvantageous that platinum catalysts promote coking and therefore from time to time - usually in a reductive atmosphere, i.e. using hydrogen - must be regenerated to remove the deposited carbon.
  • the object of the invention is to create a catalyst which does not have the disadvantages mentioned and can convert C 6 to Cs hydrocarbon streams to aromatics in high yield.
  • This object was achieved by using a noble metal-free catalyst based on an oxide of a metal from group IV B of the periodic table, in particular Zr0 2 and Ti0 2 .
  • the oxide according to the invention also acts as a catalyst and as a carrier, so that ideally no other carrier auxiliary has to be used.
  • a particularly favorable result is achieved if the metal oxide from group IV B together with one or more compounds from the third main or subgroup of the periodic Stems or combined with basic additives such as alkali or alkaline earth metal compounds, rare earth or zinc "compounds which are converted into the corresponding oxides by calcining at a higher temperature.
  • basic additives such as alkali or alkaline earth metal compounds, rare earth or zinc "compounds which are converted into the corresponding oxides by calcining at a higher temperature.
  • the catalysts according to the invention are considerably cheaper than the known noble metal catalysts and their selectivity, i.e. the preference for the conversion of aliphatic to aromatic hydrocarbons is very good. In particular, however, they are very insensitive to coking and, if necessary, can be regenerated either reductively, for example with hydrogen, or oxidatively, for example with air. Regeneration with air in particular is cheaper than conventional regeneration, e.g. with hydrogen. It also proves to be an advantage that the processes can be operated using the catalysts according to the invention without adding hydrogen to the reaction mixture. Other advantages are high mechanical strength, long service life and easy shaping.
  • amphoteric oxides of the IV-B metals in question or mixtures thereof or suitable precursors which can be converted into the oxides by calcining can be used.
  • Known elements such as the sol-gel process, precipitation of the salts, dewatering of the corresponding acids, dry mixing, slurrying and spray drying can be used to carry out the individual steps of the production process.
  • the doping can be carried out during production, for example by co-precipitation or subsequently, for example by impregnating the catalyst oxide with a dissolved alkali metal or alkaline earth metal compound or a compound of the 3rd subgroup or a rare earth metal compound and, if appropriate, re-calcining happen.
  • the catalyst can be in the form of shaped articles such as grit, tablets or spheres or as an extrudate with a suitable cross section, e.g. in the form of wagon wheels, stars, monoliths or rings.
  • the content of additives can be up to 20% by weight, preferably between 1 and 15% by weight, particularly preferably between 1 and 10% by weight. -% lie.
  • alkali and alkaline earth metal supplier use is generally made of compounds which can be converted into the corresponding oxides by calcining. For example, hydroxides, carbonates, oxalates, Acetates, nitrates or mixed hydroxycarbonates of the alkali and alkaline earth metals.
  • group IV-B support is additionally or exclusively doped with a metal from the third main or subgroup, then one should also start from compounds which can be converted into the corresponding oxides by calcining.
  • lanthanum for example lanthanum oxide carbonate, La (OH) 3 , La 3 (C0 3 ) 2 , La (N0 3 ) 3 or lanthanum compounds containing organic anions, such as La acetate, La formate or Suitable for la-oxalate.
  • the catalysts of the invention have a high BET surface area. Depending on the production, a BET surface area of up to 500 m 2 / g, usually up to 300 m 2 / g, is observed. Are suitable
  • the pore volume is generally between 0.1 and 1 ml / g, mostly between 0.1 to 0.6 ml / g, pore volumes of 0.15 to 0.5 ml / g are particularly preferred.
  • the average pore diameter which can be determined by mercury penetration analysis, is between 0.008 and 0.06 ⁇ m, mostly between 0.01 and 0.04 ⁇ m.
  • reaction temperatures of 300 to 800 ° C, preferably 400 to 600 ° C at pressures from 100 mbar to 100 bar, preferably 1 bar to 40 bar with an LHSV (Liquid Hourly Space Velocity) of 0.01 to 100 h 1, preferably 0.1 to 20 h " 1.
  • LHSV Liquid Hourly Space Velocity
  • hydrogen can be added, the molar ratio of hydrogen to hydrocarbons being 0.1 to 100, but usually less than 20.
  • a particular advantage of the catalyst according to the invention is that the regeneration of the catalyst can be carried out in one step, both reductively and oxidatively. Regardless of the process chosen, the regeneration takes place in the range from 300 to 900, preferably 400 to 800 ° C. and can take place at reduced, atmospheric or elevated pressure. Pressures in the range of 500 mbar to 100 bar are suitable. Examples
  • Strands with a diameter of 3 mm were produced from commercial Zr0 2 (commercial product XZ 16075 from Norton; largely monoclinic), which had a BET surface area of 46 m 2 / g, a pore volume of 0.23 ml / g (Hg porosimetry ) and had a proportion of pores with more than 20 nm of about 15%.
  • the reactions were carried out in a microfixed bed pulse reactor through which helium as the carrier gas flowed at 450 (example 2) or 500 ° C. (remaining examples).
  • helium as the carrier gas flowed at 450 (example 2) or 500 ° C. (remaining examples).
  • about 0.6 g of catalyst was weighed into a fixed micro-bed and the carrier gas was pulsed with pure n-octane at atmospheric pressure and a flow rate of approx. 21.5 ml / min.
  • a single pulse contains approx. 100 ⁇ g n-octane.
  • the reaction products were quantified for each pulse on-line by gas spectrometry (GC-MS) evaluated by mass spectrometry.
  • GC-MS gas spectrometry
  • Table 1 relate to the point in time when the maximum turnover was reached.
  • the noble metal-free catalyst according to the invention achieves a significantly better overall selectivity (proportion of aromatics formed) than the commercially available comparative catalyst. Particularly noteworthy is the high proportion of C 8 aromatics, which indicates that side reactions which lead to crack products are suppressed.

Abstract

This invention concerns a catalyst, particularly for producing aromatic compounds with 6 to 8 atoms from non-aromatic hydrocarbons with straight-chained, branched and/or cyclic alkyl or alkylene chains, respectively, with 6 to 8 carbon atoms containing essentially at least one oxide of a transition metal of the IVB group of the periodic system and, optionally, one alkaline metal or alkaline earth metal compound and/or a compound of the third main or secondary group of the periodic system and/or a rare earth metal zinc compound or a mixture thereof, with the condition that the compounds change into the corresponding oxides upon calcination.

Description

Katalysator und seine Verwendung zur Dehydrierung von paraffini- schen/naphthenischen KohlenwasserstoffenCatalyst and its use for the dehydrogenation of paraffinic rule / naphthenic hydrocarbons
Beschreibungdescription
Die Erfindung betrifft einen Katalysator und seine Verwendung zur Dehydrierung von paraffinischen/naphthenisehen Kohlenwasserstof¬ fen, die geradkettige, verzweigte oder cyclische Alkyl- bzw. Alkylenreste mit 6 bis 8 Kohlenstoffatomen aufweisen. Die Erfin¬ dung betrifft insbesondere die Herstellung aromatischer Verbindungen mit 6 bis 8 Kohlenstoffatomen.The invention relates to a catalyst and its use for the dehydrogenation of paraffinic / naphthenic hydrocarbons which have straight-chain, branched or cyclic alkyl or alkylene radicals having 6 to 8 carbon atoms. The invention relates in particular to the production of aromatic compounds having 6 to 8 carbon atoms.
Die wichtigste Quelle für technisch wichtige Cε- bis Ca-Aromaten wie Benzol, Xylole oder Ethylbenzol ist das großtechnisch betrie¬ bene Reformieren (sog. Reforming) . Beim Reforming werden gerad¬ kettige Paraffinkohlenwasserstoffe in verzweigte Paraffinkohlen¬ wasserstoffe und aliphatisch-aromatische und aromatische Kohlen¬ wasserstoffe überführt. Dieses Verfahren wird einerseits zur Er- höhung der Klopffestigkeit von Otto-Kraftstoffen eingesetzt, d.h. die erhaltenen Reaktionsgemische bleiben im wesentlichen unverän¬ dert; andererseits werden die entstandenen aromatischen Verbindungen z.B. durch Destillation getrennt und finden als Zwischenprodukte und Synthesebausteine z.B. zur Herstellung von Synthesekautschuken und Synthesefasern Verwendung. Das aus Be¬ standteilen der Cs-Fraktion gebildete Ethylbenzol wird beispiels¬ weise zur Gewinnung von Styrol, dem Ausgangsstoff für Polystyrol gebraucht.The most important source of technically important Cε to Ca aromatics such as benzene, xylenes or ethylbenzene is large-scale reforming. In the reforming, straight-chain paraffin hydrocarbons are converted into branched paraffin hydrocarbons and aliphatic-aromatic and aromatic hydrocarbons. This process is used on the one hand to increase the knock resistance of petrol fuels, i.e. the reaction mixtures obtained remain essentially unchanged; on the other hand, the aromatic compounds formed are e.g. separated by distillation and found as intermediates and synthesis building blocks e.g. for the production of synthetic rubbers and synthetic fibers. The ethylbenzene formed from components of the Cs fraction is used, for example, to obtain styrene, the starting material for polystyrene.
Beim katalytischen Reformieren findet eine Vielzahl vonCatalytic reforming finds a variety of
Umsetzungen statt wie Isomerisierung, Aromatisierung (Dehydrie¬ rung) und Cyclisierung. Der bei Temperaturen von 450 bis 550°C und Drucken von 15 bis 70 bar stattfindende Prozeß wird meist von Platin-Katalysatoren auf Trägern gesteuert.Reactions instead of like isomerization, aromatization (dehydration) and cyclization. The process, which takes place at temperatures from 450 to 550 ° C and pressures from 15 to 70 bar, is usually controlled by supported platinum catalysts.
Katalysatoren, die außer Platin noch andere Metalle enthalten, wie Pt-Re/Al2θ3.Si02 oder Pt/Sn/Al203.Si02 (sog. bimetallische Katalysatoren) sind ebenfalls bekannt; z.B. ist ein Katalysator auf Basis Pt/Sn/Al203 in J. Mol. Catal. .88. (1994) 359-376 be- schrieben. Bei den Trägermaterialien handelt es sich meist um Alumosilikate oder Zeolithe. Pt-Katalysatoren auf L-Zeolithen (vgl. Energy Progress 1, (1987), 215-222) erzielen eine hohe Aro- matenselektivität, die der Formselektivität des Trägers zuge¬ schrieben wird, bei allerdings geringer Raum-Zeit-Ausbeute. Mul- timetallische Katalysatoren wie Pt/Co/Nd (US-PS 4 136 130) oder Pt/Co/Re/Ge (US-PS 4 136 017) auf nichtzeolithischen chlorierten Al2θ3~Trägern entwickeln dagegen höhere Aktivität, neigen aber zur Bildung von Crackprodukten und damit zu geringerer Aromatenselek- tivität, insbesondere was die Bildung von Cβ-Aromaten (Ethyl- ' benzol; Styrol; Xylole) angeht.Catalysts which contain other metals besides platinum, such as Pt-Re / Al 2 θ 3 .Si0 2 or Pt / Sn / Al 2 0 3 .Si0 2 (so-called bimetallic catalysts) are also known; for example, a catalyst based on Pt / Sn / Al 2 0 3 in J. Mol. Catal. .88. (1994) 359-376. The carrier materials are mostly aluminosilicates or zeolites. Pt catalysts on L-zeolites (cf. Energy Progress 1, (1987), 215-222) achieve a high aromatic selectivity, which is attributed to the shape selectivity of the support, but with a low space-time yield. In contrast, multi-stage catalysts such as Pt / Co / Nd (US Pat. No. 4,136,130) or Pt / Co / Re / Ge (US Pat. No. 4,136,017) on non-zeolitic chlorinated Al 2 O 3 supports develop higher activity, but tend to do so to Formation of crack products and thus less aromatic selectivity, especially with regard to the formation of Cβ aromatics (ethyl- 'benzene;styrene; xylenes).
Vor allem haben die vorgenannten Katalysatoren den Nachteil, eben Edelmetall-Katalysatoren zu sein, d.h. sie sind teuer, ins¬ besondere wenn sie weitere, ebenfalls seltene Bestandteile wie Rhenium oder Palladium enthalten müssen. Von Nachteil ist auch, daß edelmetallhaltige Katalysatoren keine hohe Standzeit errei- chen, weil der in elementarer Form vorliegende aktive Bestandteil bei einer Verfahrenstemperatur von 450 bis 550°C zur Agglomeration und möglicherweise anschließend zum Sintern, also zum Verlust an wirksamer Oberfläche neigt und dadurch rasch an Aktivität ein¬ büßt. Schließlich ist nachteilig, daß Platinkatalysatoren die Verkokung fördern und daher von Zeit zu Zeit - in der Regel in reduktiver Atmosphäre, d.h. unter Verwendung von Wasserstoff - regeneriert werden müssen, um den abgeschiedenen Kohlenstoff zu entfernen. Um die Verkokung hintanzuhalten, werden auch den umzu¬ setzenden Kohlenwasserstoffen große Wasserstoffmengen zugesetzt, die - bei Dehydrierungsreaktionen wie der Bildung von Ethylbenzol oder gar Styrol - der Bildung des Zielprodukts entgegenwirken und die hydrierende Spaltung zu niedermolekularen Bruchstücken för¬ dern.Above all, the aforementioned catalysts have the disadvantage of being precious metal catalysts, i.e. they are expensive, especially if they have to contain other, also rare, components such as rhenium or palladium. It is also disadvantageous that catalysts containing noble metals do not achieve a long service life because the active constituent, which is in elemental form, tends to agglomerate at a process temperature of 450 to 550 ° C. and possibly subsequently to sintering, that is to say to the loss of an effective surface, and is therefore rapid loses activity. Finally, it is disadvantageous that platinum catalysts promote coking and therefore from time to time - usually in a reductive atmosphere, i.e. using hydrogen - must be regenerated to remove the deposited carbon. In order to prevent coking, large amounts of hydrogen are also added to the hydrocarbons to be reacted, which counteract the formation of the target product in the case of dehydrogenation reactions such as the formation of ethylbenzene or even styrene and promote the hydrolytic cleavage to give low-molecular fragments.
Edelmetallfreie Katalysatoren sind in der DD-PatentschriftPrecious metal-free catalysts are in the DD patent
149 210 beschrieben. Es handelt sich um konventionelle Dehydrier- Katalysatoren auf Basis K20/Cr2θ3/Al203/Si02, die aber das wegen seiner Toxizität inzwischen unbeliebte Chrom enthalten. Zudem handelt es sich bei dem verwendeten Träger wiederum um einen Zeo- lithen, der erfahrungsgemäß nur geringe Raum-Zeit-Ausbeute ermög¬ licht.149 210. These are conventional dehydrogenation catalysts based on K 2 0 / Cr 2 θ 3 / Al 2 0 3 / Si0 2 , but which contain chromium, which is now unpopular due to its toxicity. In addition, the carrier used is again a zeolite, which experience has shown allows only a low space-time yield.
Die Erfindung hat sich die Aufgabe gestellt, einen Katalysator zu schaffen, der die genannten Nachteile nicht aufweist und C6- bis Cs-Kohlenwasserstoffströme mit hoher Ausbeute zu Aromaten umsetzen kann.The object of the invention is to create a catalyst which does not have the disadvantages mentioned and can convert C 6 to Cs hydrocarbon streams to aromatics in high yield.
Diese Aufgabe wurde gelöst durch die Verwendung eines edelmetall- freien Katalysators auf der Grundlage eines Oxids eines Metalls der Gruppe IV B des Periodensystems, insbesondere Zr02 und Ti02. Das erfindungsgemäße Oxid wirkt zugleich als Katalysator wie als Träger, sodaß im Idealfall kein anderer Träger-Hilfsstoff verwendet werden muß.This object was achieved by using a noble metal-free catalyst based on an oxide of a metal from group IV B of the periodic table, in particular Zr0 2 and Ti0 2 . The oxide according to the invention also acts as a catalyst and as a carrier, so that ideally no other carrier auxiliary has to be used.
Ein besonders günstiges Ergebnis wird erzielt, wenn das Metall- oxid aus der Gruppe IV B zusammen mit einer oder mehreren Verbindungen der dritten Haupt- oder Nebengruppe des Periodensy- stems oder mit basischen Zuschlägen verbunden wird wie Alkali¬ oder Erdalkalimetall-Verbindungen, Seltenerdmetall- oder Zink- " Verbindungen, die durch Calcinieren bei höherer Temperatur in die entsprechenden Oxide übergehen. Es können gleichzeitig mehrere der genannten Verbindungskiassen verwendet werden.A particularly favorable result is achieved if the metal oxide from group IV B together with one or more compounds from the third main or subgroup of the periodic Stems or combined with basic additives such as alkali or alkaline earth metal compounds, rare earth or zinc "compounds which are converted into the corresponding oxides by calcining at a higher temperature. Several of the compound classes mentioned can be used simultaneously.
Die erfindungsgemäßen Katalysatoren sind wesentlich preiswerter als die bekannten Edelmetallkatalysatoren und ihre Selektivität, d.h. die Bevorzugung der Umsetzung von aliphatischen zu aromati- sehen Kohlenwasserstoffen ist sehr gut. Insbesondere sind sie aber sehr unempfindlich gegen Verkoken und können bei Bedarf so¬ wohl reduktiv, beispielsweise mit Wasserstoff als auch oxidativ, beispielsweise mit Luft regeneriert werden. Insbesondere die Regenerierung mit Luft ist preiswerter als die übliche Regenerierung z.B. mit Wasserstoff. Außerdem erweist sich als Vorteil, daß die Verfahren mit den erfindungsgemäßen Katalysatoren ohne Zusatz von Wasserstoff zum Reaktionsgemisch betrieben werden können. Weitere Vorteile sind hohe mechanische Festigkeit, hohe Standzeit und leichte Formgebung.The catalysts according to the invention are considerably cheaper than the known noble metal catalysts and their selectivity, i.e. the preference for the conversion of aliphatic to aromatic hydrocarbons is very good. In particular, however, they are very insensitive to coking and, if necessary, can be regenerated either reductively, for example with hydrogen, or oxidatively, for example with air. Regeneration with air in particular is cheaper than conventional regeneration, e.g. with hydrogen. It also proves to be an advantage that the processes can be operated using the catalysts according to the invention without adding hydrogen to the reaction mixture. Other advantages are high mechanical strength, long service life and easy shaping.
Zur Herstellung der erfindungsgemäßen Katalysatoren können ampho¬ tere Oxide der betreffenden IV-B-Metalle oder deren Mischungen oder geeignete Vorprodukte eingesetzt werden, die sich durch Calcinieren in die Oxide umwandeln lassen. Zur Ausführung der einzelnen Schritte des Herstellungsverfahrens können die bekann¬ ten Elemente wie das Sol-Gel-Verfahren, Fällung der Salze, Ent¬ wässern der entsprechenden Säuren, Trockenmischen, Aufschlämmen und Sprühtrocknen benutzt werden. Die Dotierung kann im Falle der basischen Verbindung schon während der Herstellung, zum Beispiel durch gemeinsame Fällung oder nachträglich zum Beispiel durch Tränken des Katalysatoroxids mit einer gelösten Alkali- oder Erdalkalimetallverbindung oder einer Verbindung der 3. Neben- gruppe oder einer Seltenerdmetall-Verbindung und gegebenenfalls Nachcalcinieren geschehen.To prepare the catalysts according to the invention, amphoteric oxides of the IV-B metals in question or mixtures thereof or suitable precursors which can be converted into the oxides by calcining can be used. Known elements such as the sol-gel process, precipitation of the salts, dewatering of the corresponding acids, dry mixing, slurrying and spray drying can be used to carry out the individual steps of the production process. In the case of the basic compound, the doping can be carried out during production, for example by co-precipitation or subsequently, for example by impregnating the catalyst oxide with a dissolved alkali metal or alkaline earth metal compound or a compound of the 3rd subgroup or a rare earth metal compound and, if appropriate, re-calcining happen.
Der Katalysator kann als Formkörper wie Splitt, Tabletten oder Kugeln oder als Extrudat mit geeignetem Querschnitt z.B. in Form von Wagenrädern, Sternen, Monolithen oder Ringen eingesetzt wer¬ den.The catalyst can be in the form of shaped articles such as grit, tablets or spheres or as an extrudate with a suitable cross section, e.g. in the form of wagon wheels, stars, monoliths or rings.
Der Gehalt an Zusatzstoffen (Alkali-, Erdalkalimetall, Metall der dritten Haupt- oder Nebengruppe, Seltenerdmetall, Zink) kann bei bis zu 20 Gew.-%, bevorzugt zwischen 1 und 15 Gew.-%, besonders bevorzugt zwischen 1 und 10 Gew.-% liegen. Als Alkali- und Erdal- kalimetall-Lieferanten verwendet man in der Regel Verbindungen, die sich durch Calcinieren in die entsprechenden Oxide umwandeln lassen. Geeignet sind zum Beispiel Hydroxide, Carbonate, Oxalate, Acetate, Nitrate oder gemischte Hydroxycarbonate der Alkali- und Erdalkalimetalle.The content of additives (alkali metal, alkaline earth metal, metal of the third main or subgroup, rare earth metal, zinc) can be up to 20% by weight, preferably between 1 and 15% by weight, particularly preferably between 1 and 10% by weight. -% lie. As an alkali and alkaline earth metal supplier, use is generally made of compounds which can be converted into the corresponding oxides by calcining. For example, hydroxides, carbonates, oxalates, Acetates, nitrates or mixed hydroxycarbonates of the alkali and alkaline earth metals.
Wird der Gruppe-IV-B-Träger zusätzlich oder ausschließlich mit einem Metall der dritten Haupt- oder Nebengruppe dotiert, so sollte man auch in diesem Fall von Verbindungen ausgehen, die sich durch Calcinieren in die entsprechenden Oxide umwandeln las¬ sen. Wird Lanthan verwendet, so sind beispielsweise Lanthan-Oxid- Carbonat, La(OH)3, La3(C03)2, La(N03)3 oder Lanthanverbindungen, die organische Anionen enthalten, wie La-Acetat, La-Formiat oder La-Oxalat geeignet.If the group IV-B support is additionally or exclusively doped with a metal from the third main or subgroup, then one should also start from compounds which can be converted into the corresponding oxides by calcining. If lanthanum is used, then for example lanthanum oxide carbonate, La (OH) 3 , La 3 (C0 3 ) 2 , La (N0 3 ) 3 or lanthanum compounds containing organic anions, such as La acetate, La formate or Suitable for la-oxalate.
Die erfindungsgemäßen Katalysatoren weisen eine hohe BET-Oberfla¬ che auf. Beobachtet wird je nach Herstellung eine BET-Oberflache von bis zu 500 m2/g, meist bis 300 m2/g. Geeignet sindThe catalysts of the invention have a high BET surface area. Depending on the production, a BET surface area of up to 500 m 2 / g, usually up to 300 m 2 / g, is observed. Are suitable
Katalysatoren schon bei einer Oberfläche von 10-100 m2/g. Das Porenvolumen liegt in Regel zwischen 0.1 und 1 ml/g, meist zwi¬ schen 0.1 bis 0.6 ml/g, besonders bevorzugt sind Porenvolumina von 0.15 bis 0.5 ml/g. Der mittlere, durch Hg-Penetrationsanalyse bestimmbare Porendurchmesser liegt zwischen 0.008 und 0.06 μm, meist zwischen 0.01 und 0.04 μm.Catalysts with a surface of 10-100 m 2 / g. The pore volume is generally between 0.1 and 1 ml / g, mostly between 0.1 to 0.6 ml / g, pore volumes of 0.15 to 0.5 ml / g are particularly preferred. The average pore diameter, which can be determined by mercury penetration analysis, is between 0.008 and 0.06 μm, mostly between 0.01 and 0.04 μm.
Die bestimmungsgemäße Verwendung erfordert Reaktionstemperaturen von 300 bis 800°C, bevorzugt 400 bis 600°C bei Drucken von 100 mbar bis 100 bar,bevorzugt 1 bar bis 40 bar mit einer LHSV (Li¬ quid Hourly Space Velocity) von 0.01 bis 100 h- 1, bevorzugt 0.1 bis 20 h"1. Neben dem zu dehydrierenden Cβ-Cβ Kohlenwasserstoff- Gemisch können Verdünnungsmittel wie C02, N2, Edelgase oder Dampf zugegen sein. Wenn bei fortschreitender Reaktionsdauer auf der Oberfläche des Katalysators sich durch Verkokung Kohlenstoff ab¬ scheidet, kann Wasserstoff zugegeben werden, wobei das molare Verhältnis von Wasserstoff zu Kohlenwasserstoffen 0.1 bis 100, meistens jedoch unter 20 betragen kann.The intended use requires reaction temperatures of 300 to 800 ° C, preferably 400 to 600 ° C at pressures from 100 mbar to 100 bar, preferably 1 bar to 40 bar with an LHSV (Liquid Hourly Space Velocity) of 0.01 to 100 h 1, preferably 0.1 to 20 h " 1. In addition to the Cβ-Cβ hydrocarbon mixture to be dehydrogenated, diluents such as C0 2 , N 2 , noble gases or steam may be present separates, hydrogen can be added, the molar ratio of hydrogen to hydrocarbons being 0.1 to 100, but usually less than 20.
Neben der kontinuierlichen Zugabe eines Gases, welches die Verko¬ kung während der Reaktion verhindert, gibt es die Möglichkeit, den Katalysator durch Überleiten von Wasserstoff oder Sauerstoff, d.h. z.B. Luft, von Zeit zu Zeit zu regenerieren. Ein besonderer Vorteil des erfindungsgemäßen Katalysators liegt wie schon er- wähnt darin, daß die Regenerierung des Katalysators sowohl reduktiv als auch oxidativ in einem Schritt möglich ist. Die Regenerierung findet, unabhängig vom gewählten Verfahren, im Be¬ reich von 300 bis 900, bevorzugt 400 bis 800°C statt und kann bei vermindertem, atmosphärischem oder erhöhtem Druck stattfinden. Geeignet sind Drucke im Bereich 500 mbar bis 100 bar. BeispieleIn addition to the continuous addition of a gas which prevents coking during the reaction, there is the possibility of regenerating the catalyst from time to time by passing hydrogen or oxygen, for example air. As already mentioned, a particular advantage of the catalyst according to the invention is that the regeneration of the catalyst can be carried out in one step, both reductively and oxidatively. Regardless of the process chosen, the regeneration takes place in the range from 300 to 900, preferably 400 to 800 ° C. and can take place at reduced, atmospheric or elevated pressure. Pressures in the range of 500 mbar to 100 bar are suitable. Examples
' Katalysatorherstellung:'' Catalyst production:
Es wurden aus handelsüblichem Zr02 (Handelsprodukt XZ 16075 der Fa. Norton; weitgehend monoklin) Stränge mit einem Durchmesser von 3 mm hergestellt, die eine BET-Oberflache von 46 m2/g, ein Porenvolumen von 0.23 ml/g (Hg-Porosimetrie) und einen Anteil von Poren mit mehr als 20 nm von etwa 15% aufwiesen.Strands with a diameter of 3 mm were produced from commercial Zr0 2 (commercial product XZ 16075 from Norton; largely monoclinic), which had a BET surface area of 46 m 2 / g, a pore volume of 0.23 ml / g (Hg porosimetry ) and had a proportion of pores with more than 20 nm of about 15%.
Das Aufnahmevermögen dieser Stränge für Wasser wurde bestimmt und jeweils 70 g mit der erforderlichen Menge entsprechend konzen¬ trierter Lösungen von La(N03)3 in Wasser getränkt, sodaß der Kata¬ lysator schließlich ca.l bzw. 3 bzw. 5% Lanthan enthielt. Zur Herstellung eines Katalysators mit etwa 3% Lanthan wurden z.B. 6.75 g La(N03)3 in 19.1 ml Wasser gebraucht. Die getränkten Stränge ließ man 2 h bei Raumtemperatur stehen, trocknete 16 h bei 120° und calcinierte 4 h bei 600°C. Ferner wurde ein makro¬ poröses Zr02 (BET-Oberflache ca. 10 m2/g) und ein kommerziell er- hältliches Ti02 (Finnti S140, Firma Kemira) eingesetzt.The absorption capacity of these strands for water was determined and in each case 70 g were soaked in water with the required amount of correspondingly concentrated solutions of La (NO 3 ) 3 , so that the catalyst finally contained approx. 1 or 3 or 5% lanthanum . To produce a catalyst with about 3% lanthanum, for example, 6.75 g of La (N0 3 ) 3 in 19.1 ml of water were used. The soaked strands were left to stand at room temperature for 2 hours, dried at 120 ° for 16 hours and calcined at 600 ° C. for 4 hours. A macroporous Zr0 2 (BET surface area approx. 10 m 2 / g) and a commercially available Ti0 2 (Finnti S140, Kemira) were also used.
PulsreaktorPulse reactor
Die Umsetzungen wurden in einem mit Helium als Trägergas durch- strömten Mikrofestbett-Pulsreaktor bei 450 (Beispiel 2) bzw. 500°C (restliche Beispiele) durchgeführt. Dazu wurden jeweils etwa 0.6 g Katalysator in ein Mikrofestbett eingewogen und das Träger¬ gas bei atmosphärischem Druck und einer Strömungsgeschwindigkeit von ca. 21,5 ml/min pulsierend mit reinem n-Oktan beaufschlagt. Ein einzelner Puls enthält dabei ca. 100 μg n-Oktan. Die Re¬ aktionsprodukte wurden für jeden Puls on-line durch massenspek- troskopisch ausgewertete Gaschromatographie (GC-MS) quantitativ erfaßt. Die Ergebnisse (vgl. Tabelle 1) beziehen sich auf den Zeitpunkt, zu dem der maximale Umsatz erreicht wurde. The reactions were carried out in a microfixed bed pulse reactor through which helium as the carrier gas flowed at 450 (example 2) or 500 ° C. (remaining examples). For this purpose, about 0.6 g of catalyst was weighed into a fixed micro-bed and the carrier gas was pulsed with pure n-octane at atmospheric pressure and a flow rate of approx. 21.5 ml / min. A single pulse contains approx. 100 μg n-octane. The reaction products were quantified for each pulse on-line by gas spectrometry (GC-MS) evaluated by mass spectrometry. The results (see Table 1) relate to the point in time when the maximum turnover was reached.
Tabelle 1: Zusammenstellung der ErgebnisseTable 1: Summary of the results
Figure imgf000008_0001
Figure imgf000008_0001
* handelsüblicher Vergleichskatalysator a) Umsatz, bezogen auf n-Oktan (GC-Flächen) b) Summe m- und p-Xylol c) Summe aller erfaßten Aromaten d) Summe aller Cβ-Aromaten* Commercially available comparative catalyst a) conversion, based on n-octane (GC areas) b) sum of m- and p-xylene c) sum of all aromatics recorded d) sum of all Cβ-aromatics
Bei gleicher Reaktionstemperatur erreicht der erfindungsgemäße edelmetallfreie Katalysator eine wesentlich bessere Gesamt- Selektivität (Anteil an gebildeten Aromaten) als der kommerziell erhältliche Vergleichskatalysator. Besonders bemerkenswert ist der hohe Anteil an C8-Aromaten, der darauf hindeutet, daß Neben- reaktionen unterdrückt werden, die zu Crackprodukten führen. At the same reaction temperature, the noble metal-free catalyst according to the invention achieves a significantly better overall selectivity (proportion of aromatics formed) than the commercially available comparative catalyst. Particularly noteworthy is the high proportion of C 8 aromatics, which indicates that side reactions which lead to crack products are suppressed.

Claims

Patentansprüche claims
1. Katalysator, insbesondere zur Herstellung von aromatischen1. Catalyst, especially for the production of aromatic
Verbindungen mit 6 bis 8 C-Atomen aus nicht-aromatischen Koh¬ lenwasserstoffen mit geradkettigen, verzweigten und/oder cyc¬ lischen Alkyl- bzw. Alkylenketten mit 6 bis 8 Kohlenstoff- atomen, enthaltend im wesentlichen mindestens ein Oxid eines Übergangsmetalls der Gruppe IVB des Periodensystems.Compounds with 6 to 8 carbon atoms from non-aromatic hydrocarbons with straight-chain, branched and / or cyclic alkyl or alkylene chains with 6 to 8 carbon atoms, containing essentially at least one oxide of a transition metal from group IVB of the Periodic table.
2. Katalysator nach Anspruch 1 oder dessen Vorläufer, enthaltend eine Alkali- oder Erdalkalimetallverbindung und/oder eine Verbindung der dritten Haupt- oder Nebengruppe des Perioden¬ systems und/oder eine Seltenerdmetall- oder Zinkverbindung oder deren Gemische, mit der Maßgabe daß die Verbindungen beim Calcinieren in die entsprechenden Oxide übergehen.2. Catalyst according to claim 1 or its precursor, containing an alkali or alkaline earth metal compound and / or a compound of the third main or subgroup of the periodic table and / or a rare earth or zinc compound or mixtures thereof, with the proviso that the compounds at Calcinate into the corresponding oxides.
3. Katalysator nach Anspruch 1, im wesentlichen frei von Metal¬ len der 8. Nebengruppe des Periodensystems.3. Catalyst according to claim 1, essentially free of metals from subgroup 8 of the periodic table.
4. Katalysator nach Anspruch 1, enthaltend Zirkon oder Titan bzw. deren Oxide.4. Catalyst according to claim 1, containing zirconium or titanium or their oxides.
5. Katalysator nach Anspruch 2, enthaltend Lithium, Natrium, Kalium oder Cäsium bzw. deren Oxide.5. Catalyst according to claim 2, containing lithium, sodium, potassium or cesium or their oxides.
6. Katalysator nach Anspruch 2, enthaltend als Verbindung der dritten Haupt- oder Nebengruppe eine Lanthan-, Yttrium-, Gal¬ lium-, Indium- oder Thalliumverbindung.6. A catalyst according to claim 2, containing a lanthanum, yttrium, gallium, indium or thallium compound as the compound of the third main or subgroup.
Katalysator nach Anspruch 2, enthaltend eine Verbindung des Samariums und/oder des Lanthans.Catalyst according to claim 2, comprising a compound of the samarium and / or the lanthanum.
8. Katalysator nach Anspruch 1, dadurch gekennzeichnet, daß die BET-Oberflache des Katalysators 10 bis 100 m2/g beträgt.8. A catalyst according to claim 1, characterized in that the BET surface area of the catalyst is 10 to 100 m 2 / g.
9. Verwendung des Katalysators nach Anspruch 1 zur Herstellung von Aromaten aus Kohlenwasserstoffströmen mit geradkettigen, verzweigten oder cyclischen Alkyl- bzw. Alkylenketten mit 6 bis 8 Kohlenstoffatomen.9. Use of the catalyst according to claim 1 for the production of aromatics from hydrocarbon streams with straight-chain, branched or cyclic alkyl or alkylene chains having 6 to 8 carbon atoms.
10. Verwendung des Katalysators nach Anspruch 1 zur Herstellung eines Gemisches aus Ethylbenzol und Isomeren des Xylols aus nicht-aromatischen Kohlenwasserstoffen mit geradkettigen, verzweigten und/oder cyclischen Alkyl- bzw. Alkylenketten mit 6 bis 8 Kohlenstoffatomen. 10. Use of the catalyst according to claim 1 for the production of a mixture of ethylbenzene and isomers of xylene from non-aromatic hydrocarbons with straight-chain, branched and / or cyclic alkyl or alkylene chains with 6 to 8 carbon atoms.
PCT/EP1997/002040 1996-04-26 1997-04-23 Catalyst and its use for dehydrogenating paraffinic/naphtenic hydrocarbons WO1997041192A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP97920738A EP0907696A1 (en) 1996-04-26 1997-04-23 Catalyst and its use for dehydrogenating paraffinic/naphtenic hydrocarbons

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19616738.8 1996-04-26
DE19616738A DE19616738A1 (en) 1996-04-26 1996-04-26 Catalyst and its use for the dehydrogenation of paraffinic / naphthenic hydrocarbons

Publications (1)

Publication Number Publication Date
WO1997041192A1 true WO1997041192A1 (en) 1997-11-06

Family

ID=7792548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1997/002040 WO1997041192A1 (en) 1996-04-26 1997-04-23 Catalyst and its use for dehydrogenating paraffinic/naphtenic hydrocarbons

Country Status (3)

Country Link
EP (1) EP0907696A1 (en)
DE (1) DE19616738A1 (en)
WO (1) WO1997041192A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11680029B2 (en) 2020-03-06 2023-06-20 Exxonmobil Chemical Patents Inc. Processes for upgrading alkanes and alkyl aromatic hydrocarbons
US11859136B2 (en) 2020-03-06 2024-01-02 Exxonmobil Chemical Patents Inc. Processes for upgrading alkanes and alkyl aromatic hydrocarbons

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2279198A (en) * 1938-01-18 1942-04-07 Union Oil Co Catalytic conversion of hydrocarbons
US3884834A (en) * 1971-09-24 1975-05-20 Exxon Research Engineering Co Process catalyst
US4263133A (en) * 1980-02-28 1981-04-21 Phillips Petroleum Company Catalytic reforming and hydrocracking of organic compounds employing zinc titanate as the catalytic agent
EP0311515A1 (en) * 1987-10-09 1989-04-12 Rhone-Poulenc Chimie Titanium oxide with stabilized properties
DE19516318A1 (en) * 1995-04-28 1996-10-31 Inst Angewandte Chemie Berlin Selective aromatization catalyst, process for its manufacture and use

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2279198A (en) * 1938-01-18 1942-04-07 Union Oil Co Catalytic conversion of hydrocarbons
US3884834A (en) * 1971-09-24 1975-05-20 Exxon Research Engineering Co Process catalyst
US4263133A (en) * 1980-02-28 1981-04-21 Phillips Petroleum Company Catalytic reforming and hydrocracking of organic compounds employing zinc titanate as the catalytic agent
EP0311515A1 (en) * 1987-10-09 1989-04-12 Rhone-Poulenc Chimie Titanium oxide with stabilized properties
DE19516318A1 (en) * 1995-04-28 1996-10-31 Inst Angewandte Chemie Berlin Selective aromatization catalyst, process for its manufacture and use

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11680029B2 (en) 2020-03-06 2023-06-20 Exxonmobil Chemical Patents Inc. Processes for upgrading alkanes and alkyl aromatic hydrocarbons
US11859136B2 (en) 2020-03-06 2024-01-02 Exxonmobil Chemical Patents Inc. Processes for upgrading alkanes and alkyl aromatic hydrocarbons

Also Published As

Publication number Publication date
DE19616738A1 (en) 1997-10-30
EP0907696A1 (en) 1999-04-14

Similar Documents

Publication Publication Date Title
EP0948475B1 (en) Method for producing olefins, in particular propylenes, by dehydrogenation
EP0714872B1 (en) Catalyst for the dehydrogenation of C6-C15 paraffins
EP1074301B1 (en) Catalyst with bimodal pore size distribution
DE10060099A1 (en) Regeneration of a dehydrogenation catalyst
DE19756292A1 (en) Catalyst for the conversion of paraffinic hydrocarbons into corresponding olefins
DD300536A5 (en) Double perovskite catalysts for oxidative coupling
DE10047642A1 (en) Process for the dehydrogenation of hydrocarbons
WO1990006907A1 (en) Process and catalyst for dehydration or dehydrocyclization of hydrocarbons
DE19512618A1 (en) Supported catalysts containing platinum metal and process for the preparation of diaryl carbonates
DE19937106A1 (en) Multicomponent catalysts
DE60035449T2 (en) Catalyst with good reachability and with elements of groups 8, 9 and 10, and its use in a process for the dehydration of paraffins
DE3318802A1 (en) NEW CATALYSTS FOR HYDROCARBON CONVERSION
DE19937105A1 (en) Oxide catalysts
WO1997040931A1 (en) Catalyst for selective aromatization
DE19600741A1 (en) Catalyst for catalytic oxidative dehydrogenation of alkyl aromatic(s) and paraffin(s)
WO2007051852A2 (en) Method for the dealkylation of alkyl-substituted aromatic hydrocarbons using water vapour
WO2007051855A2 (en) Method for producing benzol and alkylaromatics by autothermal water-vapour dealkylation
EP1351765B1 (en) Catalyst with bimodal pore radius distribution
EP0907696A1 (en) Catalyst and its use for dehydrogenating paraffinic/naphtenic hydrocarbons
EP1052280B1 (en) Method for isomerization of hydrocarbon, and solid acid catalyst and isomerization system for use therein
EP0953558A1 (en) Process for the preparation of aromatic compounds containing hydroxyl groups
DE19727021A1 (en) Ethyl-benzene and ortho-xylene production with high yield and selectivity from olefin mixture
WO1996033802A1 (en) Catalyst for the selective dehydration and aromatisation of aliphatic or alicyclic hydrocarbons, process for producing it and its use
WO2002051543A1 (en) Multiple component catalysts
WO2002051540A1 (en) Oxide catalysts containing at least silica and a group ivb oxide

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997920738

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 97538543

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1997920738

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1997920738

Country of ref document: EP