WO1997040416A1 - Liquid crystal display cell using phosphor emitters - Google Patents
Liquid crystal display cell using phosphor emitters Download PDFInfo
- Publication number
- WO1997040416A1 WO1997040416A1 PCT/GB1997/001091 GB9701091W WO9740416A1 WO 1997040416 A1 WO1997040416 A1 WO 1997040416A1 GB 9701091 W GB9701091 W GB 9701091W WO 9740416 A1 WO9740416 A1 WO 9740416A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- liquid crystal
- liquid
- display device
- light
- Prior art date
Links
- 239000004973 liquid crystal related substance Substances 0.000 title claims abstract description 68
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 title claims abstract description 43
- 239000000758 substrate Substances 0.000 claims abstract description 19
- 239000000463 material Substances 0.000 claims abstract description 18
- 239000011521 glass Substances 0.000 claims abstract description 12
- 229920000642 polymer Polymers 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims description 17
- 239000002245 particle Substances 0.000 claims description 9
- -1 poly(3-hexylthiophene) Polymers 0.000 claims description 8
- 238000000151 deposition Methods 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 239000010408 film Substances 0.000 claims description 5
- 239000007788 liquid Substances 0.000 claims description 5
- 239000011368 organic material Substances 0.000 claims description 5
- 239000010409 thin film Substances 0.000 claims description 5
- 238000000137 annealing Methods 0.000 claims description 4
- 239000004986 Cholesteric liquid crystals (ChLC) Substances 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 239000002105 nanoparticle Substances 0.000 claims description 3
- 239000004065 semiconductor Substances 0.000 claims description 3
- 238000005266 casting Methods 0.000 claims description 2
- 238000005049 combustion synthesis Methods 0.000 claims description 2
- 229920000359 diblock copolymer Polymers 0.000 claims description 2
- 230000008020 evaporation Effects 0.000 claims description 2
- 238000001704 evaporation Methods 0.000 claims description 2
- 239000005262 ferroelectric liquid crystals (FLCs) Substances 0.000 claims description 2
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 claims description 2
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 claims description 2
- 239000000178 monomer Substances 0.000 claims description 2
- 229920000301 poly(3-hexylthiophene-2,5-diyl) polymer Polymers 0.000 claims description 2
- 238000004549 pulsed laser deposition Methods 0.000 claims description 2
- 238000001552 radio frequency sputter deposition Methods 0.000 claims description 2
- 239000007787 solid Substances 0.000 claims description 2
- 230000003746 surface roughness Effects 0.000 claims description 2
- 238000001962 electrophoresis Methods 0.000 claims 1
- 238000007650 screen-printing Methods 0.000 claims 1
- 238000009987 spinning Methods 0.000 claims 1
- 210000004027 cell Anatomy 0.000 description 17
- UMIVXZPTRXBADB-UHFFFAOYSA-N benzocyclobutene Chemical compound C1=CC=C2CCC2=C1 UMIVXZPTRXBADB-UHFFFAOYSA-N 0.000 description 8
- 239000000975 dye Substances 0.000 description 7
- 239000011347 resin Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 238000013459 approach Methods 0.000 description 4
- 210000002858 crystal cell Anatomy 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 239000002019 doping agent Substances 0.000 description 4
- 230000003098 cholesteric effect Effects 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- CFAKWWQIUFSQFU-UHFFFAOYSA-N 2-hydroxy-3-methylcyclopent-2-en-1-one Chemical compound CC1=C(O)C(=O)CC1 CFAKWWQIUFSQFU-UHFFFAOYSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 239000005083 Zinc sulfide Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 2
- 239000001837 2-hydroxy-3-methylcyclopent-2-en-1-one Substances 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000005864 Sulphur Substances 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- SKQWEERDYRHPFP-UHFFFAOYSA-N [Y].S=O Chemical compound [Y].S=O SKQWEERDYRHPFP-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- XEVRDFDBXJMZFG-UHFFFAOYSA-N carbonyl dihydrazine Chemical compound NNC(=O)NN XEVRDFDBXJMZFG-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229920000547 conjugated polymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001652 electrophoretic deposition Methods 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000004922 lacquer Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 229910001960 metal nitrate Inorganic materials 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000005118 spray pyrolysis Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000000427 thin-film deposition Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133617—Illumination with ultraviolet light; Luminescent elements or materials associated to the cell
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/13356—Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
- G02F1/133565—Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements inside the LC elements, i.e. between the cell substrates
Definitions
- a more promising approach is that used for instance in the international application No.WO95/27920 (Crossland et al) , in which the phosphor dots are placed on top of the liquid crystal cell, so that the liquid crystal layer modulates ultraviolet light and this modified ultraviolet light then hits the phosphor dots, which are viewed more or less directly by the viewer, as with a CRT screen.
- This kind of display is clear and easy to read at almost any angle.
- a problem with it is that the thickness of the glass encapsulating the liquid crystal layer is quite large compared to the spacing of the pixels. This means that it is difficult to ensure that the ultraviolet light modulated by an element of the liquid crystal layer is accurately directed onto the corresponding phosphor dot.
- the ultraviolet light Since because of the presence of the phosphor inside the cell there is no analyser the ultraviolet light must be capable of being stopped by the liquid crystal layer itself when suitably addressed, and this is achieved by using a guest-host system, that is to say a liquid crystal "host” containing a “guest” in the form of a dichroic dye.
- This dye which may itself have a similar composition to the liquid crystal, absorbs the light in the LC cell when the cell is in the twisted state, i.e. with no voltage applied. In this state the UV light is prevented from reaching the phosphor and the cell is dark.
- the patent discusses at some length the liquid crystals and dyes to be used, there is no information on the critical question of how the phosphors are to be incorporated into the cell.
- Prior art phosphors are typically doped semiconductors.
- the semiconductor is chosen to have a band gap slightly larger than an excited state of the dopant, so that energy can be easily transferred to the dopant that will then relax with emission of a photon.
- the nature of the dopant and its concentration therefore determine the emitted light.
- Typical combinations are zinc sulphide:silver (blue) , zinc sulphide:copper (green) and yttrium oxysulphide: europium (red) , and indeed these are the phosphors mentioned in the aforementioned patent US 4830469 (Philips) .
- These phosphors are normally deposited by heating mixtures of the materials to about 1200°C, using additional fluxes of alkali and alkaline earth halides and oxides to provide a low temperature melting phase. This produces a mass with the grain size typically 5-15 ⁇ m. Liquid crystal cells are often very thin, with a thickness sometimes down to 1.5/ ⁇ m though more typically about 5 ⁇ m in the case of STN. As can be seen, this is of the same order of magnitude as the particle size of standard phosphors. Such standard phosphors cannot therefore be incorporated into the liquid crystal cell, since the unevenness in size would ruin the orientation of the liquid crystals and the uniformity of the electric field. The phosphors cannot be ground smaller without loss of efficiency because grinding processes introduce too many defects into the grain structure.
- a liquid crystal display device comprising a modulatable liquid-crystal layer adjacent to a transparent substrate, the liquid crystal layer being adapted to modulate light at a first wavelength, and further including an array of secondary emitters in between the liquid crystal layer and the substrate, for emitting or reflecting light at a second wavelength when excited by light at the first wavelength, characterised in that the array of secondary emitters is formed from a material with a surface roughness having peak-to-trough variations of less than about 5% of the cell thickness, in typical applications O.l ⁇ m, over a distance of the order of lO ⁇ m. This requirement is of the same order as that of the glass surface itself. The surface must also be flat, i.e.
- the secondary emitter layer in one embodiment contains phosphor material having a particle size less than O.l ⁇ m, embedded in a smooth material such as a polymer or gel.
- a smooth material such as a polymer or gel.
- the polymer surface then gives the required smoothness .
- the polymer layer can then be deposited on the electrode layer used to address the liquid crystal, or it can be part of it, and an alignment layer can then be deposited on the polymer layer. Alternatively, if the polymer layer is of a suitable material, it could be rubbed and itself constitute the alignment layer.
- the phosphors can be such as are described in Yu et al . Optical properties of homogeneously Mn-doped ZnS nano-particles' / presented to the First International Conference on the Science and Technology of Display Phosphors, 14-16 November 1995, San Diego. Such inorganic phosphors have a size of about 20nm and can be made into layers having the smoothness required for the invention.
- a resin in particular a resin such as Benzocyclobutene (BCB) , as offered under the trade name 'Cyclotene' by Dow Chemical Company and as used for different planarisation purposes in other types of liquid crystal display (see for example D.J. Perettie, M. McCulloch and P.E. Garrou, 'Benzocyclobutene as a planarisation resin for flat panel displays' , in Proceedings of the SPIE: Liquid Crystal Materials, Devices and applications, Vol.
- BCB Benzocyclobutene
- This material may be spin-coated onto the surface of the phosphor matrix layer and has good self- planarising properties.
- a conductive coating may subsequently be applied as the next step in the production of a cell.
- planarising effect of the additional layer means, moreover, that using a strongly self-planarising resin such as BCB, larger-particle phosphors can be incorporated into such a display.
- Examples of the formation of the phosphor layer are as follows.
- Fluorescent glass could be used in place of a phosphor coated screen. This would be inherently flat and probably not require any significant planarisation.
- the secondary emitters comprise organic fluorescent materials; these may be standard fluorescent materials, such as fluorescein.
- the emitters may comprise doped organic materials such as polystyrene-poly(3- hexylthiophene) (PS-P3HT) diblock copolymer.
- organic phosphors By the use of organic phosphors it is possible to construct a workable cell because the organic materials can be deposited by thin film processes which do not interfere either mechanically or in terms of sheer bulk with the liquid crystal layer and its electrodes.
- a thin dielectric film that transmits light of the first frequency and reflects light at the second frequency may be provided between the liquid crystal layer and the secondary emitters .
- the liquid crystal layer may comprise dichroic dyes in short-pitch chiral nematic liquid crystals which modulate ultraviolet light directly under an applied electric field.
- the liquid crystal layer may alternatively comprise dichroic dyes in nematic or (high-tilt) ferroelectric liquid crystals including short-pitch SmC* devices, in which case the liquid crystal display must also comprise a polariser.
- dichroic dyes can be operated without parallax and without collimation because either no polarisers or only one are needed, as explained in the Philips patent, and hence the phosphor can be incorporated inside the cell.
- Another way that phosphors can be incorporated into a cell is with cholesteric mirrors and a nematic- cholesteric phase change switch, but these systems need collimation because the cholesteric mirror effect depends on the angle of incidence.
- the substrate will usually have transparent electrodes for addressing the LC. If these are located underneath the phosphor layer (i.e. nearer the substrate) then it is also desirable for the phosphor layer to be thin, say less than 0.5 ⁇ m, to minimise voltage drop across it. Alternatively the electrodes can be deposited on top of the phosphor layer. This would be the normal arrangement and is feasible provided that the phosphor material can withstand the processing temperature for the ITO electrodes, i.e. about 250°C. However, even the organic phosphor materials contemplated fulfil this criterion. The small distance from liquid crystal to phosphor means that a collimator is not needed from the point of view of crosstalk, unlike the prior art structures of PCT/GB95/00770.
- the first wavelength may be in the ultra-violet (UV) , for example in the UVA region, or low wavelength visible light, which matches the characteristics of many common phosphors.
- the liquid crystal display further comprises a source of monochromatic light. This can be a backlight or a system using edge lighting of a rear optical element with means to direct that light through the display, as is done in conventional liquid crystal displays used in computers.
- the source may be collimated or uncollimated.
- a method of manufacturing a liquid-crystal cell including the step of depositing a photoluminescent material on a transparent substrate, possibly with a planarisation layer, to form a thin film having a roughness of less than 0. l ⁇ m over a distance of the order of lO ⁇ m and forming a liquid crystal layer on the photoluminescent material.
- the method of thin film deposition may be electrophoretic deposition of phosphor particles, as is known.
- RF sputtering, pulsed laser deposition or aerosol spray pyrolysis can be used, followed by high temperature annealing (above 1000°C) .
- the last-named method achieves flatness to perhaps l ⁇ m.
- a further alternative method of deposition that may be used is combustion synthesis, as described by Kingsley and Patel (Materials letters 6 pages 427-432 (1988) ) .
- An oxidiser such as a metal nitrate may be reacted with an organic fuel such as urea (CH 4 N 2 0) , carbohydrazide (CH 6 N 4 0) or glycine (C 2 H 5 N0 2 ) in a bomb that also contains phosphor precursors such as zinc and sulphur with small amounts of dopants. This produces fine particles of phosphor.
- a still further method of deposition is the use of MBE or MOCVD deposition of the phosphor, without subsequent annealing.
- nanocrystalline particles can be prepared which can then be incorporated into a liquid carrier, for instance a dissolved polymer or liquid monomer; this is then spread on the substrate to the required thickness and evaporated or polymerised to give a solid layer, which is then patterned as required.
- a liquid carrier for instance a dissolved polymer or liquid monomer
- this process is carried out three times, one for each colour, following which an alignment layer may be deposited if the polymer layer itself is not used as an alignment layer.
- the liquid crystal layer which may be for example a short-pitch chiral nematic liquid crystal, is sandwiched between two glass substrates 2, 3.
- the liquid crystal layer is modulatable in the usual way by orthogonally extending sets of electrode strips 4 and 5 of a transparent conductor such as indium tin oxide.
- Ultraviolet light 12 is directed at the underside of the first glass plate 2 and passes through the liquid-crystal layer at points where a voltage is applied between the electrodes 4 and 5, and is absorbed by the liquid crystal layer where no voltage is applied. At the points where the ultraviolet light passes through the liquid crystal it traverses the second electrode layer 5 and impinges upon phosphor dots 10, causing them to emit.
- a glass substrate is provided.
- a thin film of polymer containing one colour phosphor is deposited, on which photoresist is deposited and patterned.
- the assembly is then etched, leaving the phosphor only where required. These steps are repeated for the other two colours.
- the display is then completed by depositing indium tin oxide (ITO) layers and completing the manufacture in the usual way. If the electrical properties of the phosphor layer allow it the ITO electrodes can be underneath the phosphor layer, though this would not normally be the preferred configuration. Because the phosphor layer 10 is smooth it does not interfere with the liquid crystal layer 1, which may be of the order of 5 ⁇ m thick.
- the phosphors in question are particularly suited to use with near ultraviolet light of wavelength about 365nm. This means that in a variant of the invention the phosphors may actually be used on the outside of the glass substrate 3 even though in this configuration some collimation will need to be used.
- a light-emitting conjugated polymer such as is available from Cambridge Display Technology Ltd, GB, under the general designation Poly(p-xylene- alpha-tetrahydrothiophenium bromide) .
- the embodiments described use phosphors the "emitters” referred to could be photochromic, changing their reflective or absorptive properties in response to activation light .
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Liquid Crystal (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9537831A JP2000508788A (en) | 1996-04-19 | 1997-04-18 | Liquid crystal display cells using fluorescent emitters |
EP97919502A EP0894283A1 (en) | 1996-04-19 | 1997-04-18 | Liquid crystal display cell using phosphor emitters |
AU23947/97A AU2394797A (en) | 1996-04-19 | 1997-04-18 | Liquid crystal display cell using phosphor emitters |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB9608090.8 | 1996-04-19 | ||
GBGB9608090.8A GB9608090D0 (en) | 1996-04-19 | 1996-04-19 | Liquid crystal display cell using phosphor emitters |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1997040416A1 true WO1997040416A1 (en) | 1997-10-30 |
Family
ID=10792306
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB1997/001091 WO1997040416A1 (en) | 1996-04-19 | 1997-04-18 | Liquid crystal display cell using phosphor emitters |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP0894283A1 (en) |
JP (1) | JP2000508788A (en) |
AU (1) | AU2394797A (en) |
GB (1) | GB9608090D0 (en) |
WO (1) | WO1997040416A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002019020A1 (en) * | 2000-08-29 | 2002-03-07 | Freelight Systems Limited | Display comprising a fluorescent dye doped polymer |
WO2014065650A1 (en) * | 2012-10-24 | 2014-05-01 | Universiti Sains Malaysia | A method for adding photoluminescent pigment on glass |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2600451A1 (en) * | 1986-06-20 | 1987-12-24 | Morin Francois | Colour display device using a liquid crystal cell and a three-coloured fluorescent screen |
US4830469A (en) * | 1987-02-13 | 1989-05-16 | U.S. Philips Corporation | Liquid crystalline color display cell having a phosphorescent substrate and U.V.-absorbing dichroic dye |
-
1996
- 1996-04-19 GB GBGB9608090.8A patent/GB9608090D0/en active Pending
-
1997
- 1997-04-18 EP EP97919502A patent/EP0894283A1/en not_active Withdrawn
- 1997-04-18 AU AU23947/97A patent/AU2394797A/en not_active Abandoned
- 1997-04-18 JP JP9537831A patent/JP2000508788A/en active Pending
- 1997-04-18 WO PCT/GB1997/001091 patent/WO1997040416A1/en not_active Application Discontinuation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2600451A1 (en) * | 1986-06-20 | 1987-12-24 | Morin Francois | Colour display device using a liquid crystal cell and a three-coloured fluorescent screen |
US4830469A (en) * | 1987-02-13 | 1989-05-16 | U.S. Philips Corporation | Liquid crystalline color display cell having a phosphorescent substrate and U.V.-absorbing dichroic dye |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002019020A1 (en) * | 2000-08-29 | 2002-03-07 | Freelight Systems Limited | Display comprising a fluorescent dye doped polymer |
US7495384B2 (en) | 2000-08-29 | 2009-02-24 | Freelight Systems Limited | Display comprising a fluorescent dye doped polymer |
WO2014065650A1 (en) * | 2012-10-24 | 2014-05-01 | Universiti Sains Malaysia | A method for adding photoluminescent pigment on glass |
Also Published As
Publication number | Publication date |
---|---|
AU2394797A (en) | 1997-11-12 |
GB9608090D0 (en) | 1996-06-26 |
EP0894283A1 (en) | 1999-02-03 |
JP2000508788A (en) | 2000-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0272760B1 (en) | Display device | |
EP0646830B1 (en) | Active matrix liquid crystal display device | |
US7583335B2 (en) | Liquid crystal display device | |
US5477351A (en) | Polymer dispersed liquid crystal panel with diffraction grating and reflective counter electrode | |
KR0181985B1 (en) | Reflective liquid crystal display device | |
CN109375410A (en) | Colored optical filtering substrates and liquid crystal display device | |
JP2000267091A (en) | Liquid crystal display device | |
US6738112B1 (en) | Liquid crystal display with particular use of diffusing films | |
EP1004921A1 (en) | Liquid crystal display | |
US5521731A (en) | Reflective type liquid crystal display device and method of making the same whereby the switching MIM has its first electrode used for signal wiring and its second electrode used as pixel electrodes | |
KR100525148B1 (en) | Plasma addressed liquid crystal display | |
WO1997040416A1 (en) | Liquid crystal display cell using phosphor emitters | |
US20020067443A1 (en) | Phosphor arrangement for liquid-crystal displays | |
JPS6061725A (en) | Color liquid crystal display device | |
JP4112663B2 (en) | Liquid crystal display | |
KR20030048950A (en) | Structure for front panel of plasma display panel | |
KR101877463B1 (en) | Display device | |
JP2846943B2 (en) | Display device and method of manufacturing the same | |
JP2003021708A (en) | Reflection substrate, method for forming the same and reflective display element using the same | |
JPH10268301A (en) | Liquid crystal display device | |
JP2816686B2 (en) | Liquid crystal device | |
KR100382057B1 (en) | Plzt flat display panel and method for manufacturing the same | |
KR20010024349A (en) | Liquid crystal cell | |
JPH07230101A (en) | Liquid crystal display element and projection display device using the same | |
JP2763223B2 (en) | LCD light valve |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN YU AM AZ BY KG KZ MD RU TJ TM |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1997919502 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1997919502 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1997919502 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: CA |