WO1997036303A1 - Paste composition for preparing solid electrolyte and method for manufacturing solid electrolytic capacitor using the same - Google Patents

Paste composition for preparing solid electrolyte and method for manufacturing solid electrolytic capacitor using the same Download PDF

Info

Publication number
WO1997036303A1
WO1997036303A1 PCT/JP1997/000974 JP9700974W WO9736303A1 WO 1997036303 A1 WO1997036303 A1 WO 1997036303A1 JP 9700974 W JP9700974 W JP 9700974W WO 9736303 A1 WO9736303 A1 WO 9736303A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
forming
paste composition
manganese dioxide
electrolytic capacitor
Prior art date
Application number
PCT/JP1997/000974
Other languages
French (fr)
Japanese (ja)
Inventor
Takafumi Dohdoh
Takehiro Shimizu
Original Assignee
Hitachi Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co., Ltd. filed Critical Hitachi Chemical Co., Ltd.
Publication of WO1997036303A1 publication Critical patent/WO1997036303A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material

Definitions

  • the present invention relates to a paste composition for forming a solid electrolyte and a method for producing a solid electrolytic capacitor using the same.
  • the present invention relates to a paste composition for forming a solid electrolyte used for forming an electrode layer on an electronic component such as a capacitor, and a method for producing a solid electrolytic capacitor using the same.
  • a manganese dioxide layer or the like having an arbitrary thickness.
  • a cathode layer is formed by successively applying carbon, silver paste, and the like.
  • a manufacturing method is used in which an external lead is soldered after the application and the resin is packaged by a resin dipping method, a resin molding method, or the like.
  • the thickness of the coating layer that can be formed at one time during the thermal decomposition step of the chemical conversion treatment is extremely small. It was necessary to repeat the pyrolysis process several times to several times to form the slag, and there was a problem that the time required and the energy cost were extremely large. Also, nitric acid manga In the pyrolysis process, NO was generated due to the thermal decomposition of gas, and there were also environmental problems such as the treatment of these decomposition gases.
  • this method makes it difficult for the thickness of the manganese dioxide layer and the like to be uniform, and if this thickness is small, the carbon layer directly contacts the oxide film and leaks. There was a problem that the current easily increased.
  • the manganese dioxide layer and the like are thicker at the corners than at the other parts. There was a problem that the water resistance and moisture resistance were reduced.
  • the resin sheathing is performed by the resin dipping method, the dimensions are likely to vary, and when the resin sheath shrinks, the corners are stressed and the characteristics are likely to deteriorate.
  • Japanese Patent Application Laid-Open No. 51-76559 describes that manganese dioxide powder is mixed into volatile solvents such as water, alcohol, thinner, carbon tetrachloride, and ammonium carbonate. A method is disclosed. However, in this method, the manganese dioxide powder in the solution is difficult to disperse, and the particles agglomerate during storage. Sedimentation occurs, making it difficult to obtain a uniform coating film.
  • Japanese Patent Application Laid-Open No. 7-233298 discloses a method of replacing a part of the metal powder used for the conductive base with manganese dioxide powder. In this method, however, a solid electrolyte is used. All the properties could not be fully realized.
  • the present invention has been made to solve the above-mentioned problems, and a paste composition for forming a solid electrolyte capable of forming a uniform coating film in which manganese dioxide powder is unlikely to settle, and an electrolytic solution.
  • a method for manufacturing a solid electrolytic capacitor using the base composition which can shorten the manufacturing time of a capacitor, improve leakage current characteristics, heat resistance, moisture resistance, etc., and improve the accuracy of external dimensions.
  • the purpose is to do. Disclosure of the invention
  • the present invention has the following gist to achieve the above object.
  • a paste composition for forming a solid electrolyte comprising (A) manganese dioxide powder, (B) a dispersing resin and (C) a dispersing medium as essential components. Since this composition has excellent conductivity and can obtain a predetermined film thickness by one application, it is suitable for forming a solid electrolyte layer of a tantalum capacitor element.
  • this composition can improve the conductivity of the manganese dioxide powder itself and reduce the resistance of the coating film.
  • the dispersing resin is cellulose and its derivatives, polyglycols, polyacrylic acid, polyacrylic acid soda, polyacrylinoleamide, polyvinyl vinylidone, polydisperse resin.
  • Vinyl ether, water-soluble alk Is a water-soluble polymer resin selected from the group consisting of polymethacrylate, polymaleic acid copolymer, polyethylenimine and polyvinyl alcohol [1] to [
  • the paste composition for forming a solid electrolyte according to any one of the above.
  • a water-soluble polymer resin as the dispersing resin, the composition can be easily dispersed in a dispersing medium and can provide a stable paste composition for forming a solid electrolyte. .
  • the dispersion medium is at least one organic solvent or pure water selected from the group consisting of alcohols, ethylene glycols and propylene glycols, or a mixture thereof [1] to
  • manganese dioxide powder is easily prepared by using an organic solvent selected from alcohol, ethylene glycol, and propylene glycol, or pure water, or a mixture thereof as a dispersion medium. And a stable solid electrolyte layer can be formed.
  • This method can provide a method for manufacturing a solid electrolytic capacitor capable of shortening the manufacturing time, improving leakage current characteristics, heat resistance, moisture resistance, and improving the accuracy of external dimensions.
  • FIG. 1 shows a characteristic graph of equivalent series resistance ESR of Examples 7 and 8 of the present invention and Comparative Example 3.
  • FIG. 2 shows characteristic graphs of leakage currents of Examples 7 and 8 and Comparative Example 3 of the present invention.
  • the paste composition for forming a solid electrolyte of the present invention contains (A) manganese dioxide powder, (B) a dispersion resin and (C) a dispersion medium as essential components.
  • Examples of the (A) manganese dioxide powder used in the present invention include powders having an ⁇ -type, a type, a 7-type or a type crystal structure, and include a type crystal structure in consideration of conductivity.
  • Manganese dioxide powder is preferred.
  • Manganese dioxide containing Form 3 can be easily obtained by heating manganese dioxide at 250 ° C to 400 ° C for 1 to 5 hours.
  • the average particle size of the manganese dioxide powder is 0.01 !, considering the conductivity and the applicability of the paste. Those with a size of ⁇ 50 are preferred, and those with a value of 0.01-10 ⁇ m are more preferred.
  • the shape of the manganese dioxide powder is not limited to such a force as exemplified by a sphere, an irregular shape, and a crushed shape.
  • the blending amount of the manganese dioxide powder in the present invention is preferably 1 to 90% by weight of the total amount of (A) manganese dioxide powder (B) dispersed resin and (C) dispersion medium, and is preferably 5 to 80%. %, More preferably 20% to 70% by weight. If the content is less than 1% by weight, it is difficult to form a coating film and the solid electrolyte functions as a solid electrolyte. When the content exceeds 9-0 unit amount%, the coatability as a paste and the adhesiveness to a substrate tend to decrease.
  • the (B) dispersed resin used in the present invention is (A) one that improves the dispersibility of the manganese dioxide powder, water-soluble, and (A) one that easily binds to the manganese dioxide powder.
  • derivatives such as cenorellose, methinoresenolylose, ethylcellulose, carboxymethylcellulose, and hydroxyshethylcellulose, polyethylene glycol, and polypropylene glycol
  • Polyacrylic acid, polyacrylic acid, polyacrylic acid soda, polyacrylamide, polyvinyl borolidone, water-soluble alkyd, polyvinyl ether, polymalein Acid copolymers, polyethyleneimine and polyvinyl alcohol are exemplified as being preferred.
  • the compounding amount of (B) the dispersing resin is 0.5 to 40% by weight of the total amount of (A) manganese dioxide powder, (B) the dispersing resin and (C) the dispersing medium.
  • the content is preferably 1 to 20% by weight, more preferably 2 to 10% by weight. If the amount is less than 0.5% by weight, the dispersion of manganese dioxide tends to be insufficient. If the amount exceeds 40% by weight, the conductivity tends to decrease and the performance as a solid electrolyte tends to deteriorate. is there.
  • the (C) dispersion medium used in the present invention is not particularly limited as long as it can dissolve the (B) dispersion resin and maintain the dispersion stability of (A) manganese dioxide powder, but are not limited to alcohol-based dispersion media.
  • the preferred solvent include an ethylene glycol-based or propylene glycol-based organic solvent, or pure water or pure water in which a manganese salt such as manganese nitrate is dissolved. Is done. -.
  • organic solvents or pure water may be used alone or in a combination of two or more at any ratio.
  • the blending amount of (C) the dispersion medium is preferably 10 to 95% by weight of the total amount of (A) manganese dioxide powder, (B) the dispersion resin, and (C) the dispersion medium.
  • the content is more preferably from 20 to 90% by weight, and particularly preferably from 25 to 80% by weight. If the compounding power is less than 10% by weight, the dispersion of the manganese dioxide powder becomes insufficient, and if it exceeds 95% by weight, the film thickness of the coating film becomes too thin to obtain a sufficient film thickness at one time. Tend.
  • (D) a coupling agent as necessary in order to stably disperse (A) manganese dioxide.
  • the method of using the coupling agent is as follows: (A) manganese dioxide, (B) dispersing resin, and (C) dispersing medium by directly adding to (A) There is a method in which manganese dioxide powder is used after treatment with (D) a capping agent.
  • the method of treating manganese dioxide powder includes, for example, (A) a method of adding (D) a coupling agent directly to manganese dioxide powder and mixing with stirring (dry treatment method) and a method of hexane.
  • a coupling agent is preliminarily dissolved in a solvent such as toluene or the like, and (A) manganese dioxide powder is added thereto, mixed and stirred, and then the solvent is removed and dried (wet processing method).
  • the paste composition for forming a solid electrolyte of the present invention may be, for example, an antioxidant, a chelating agent, or an additive having various functions, as long as it does not adversely affect the properties of the cured product when the paste and the coating film are formed.
  • a modifier and the like can be added.
  • carbon black, graphite carbon, or the like can be used in combination to impart conductivity. The amount of these is preferably 0.5 to 10 parts by weight based on 100 parts by weight of the manganese dioxide powder.
  • the base composition for forming a solid electrolyte of the present invention may be prepared by mixing a predetermined amount of (A) manganese dioxide powder, (B) a dispersion resin and (C) a dispersion medium with an ordinary stirrer, triturator, three-roll or roll mill. It can be easily obtained by uniformly kneading or dispersing using a solvent or the like, and a uniform and thick coating film can be obtained by one application without changing the characteristics as a solid electrolyte. It can be suitably used as a solid electrolyte layer such as a tantalum capacitor.
  • the present invention relates to a method for producing a solid electrolytic capacitor using the paste composition for forming a solid electrolyte.
  • a solid electrolytic capacitor can be obtained by forming an anodized film on a sintered body obtained from a valve metal powder or by immersing the sintered body with the anodized film in a semiconductor mother liquor and thermally decomposing it. Immersed in the paste composition for solid electrolyte formation described above and dried Thus, a solid electrolytic capacitor is manufactured by forming a semiconductor layer.
  • a valve metal such as tantalum is embedded in one end of a tantalum lead wire or the like, the other end is drawn out, compression-molded with a press, and then pressed in a vacuum. Heat at a temperature of about 100 ° C for several 10 minutes to form a sintered body. Next, the sintered body is welded to a metal bar such as stainless steel at a place such as a tan wire, and the sintered body is formed by applying a voltage in a chemical solution such as nitric acid and phosphoric acid. , An anodic oxide film of Ta 2 O, is formed.
  • the sintered body having the anodic oxide film formed thereon is immersed in a semiconductor mother liquor such as a manganese nitrate solution to be impregnated with the solution, and then baked at a temperature of 200 ° C. to 350 ° C. to undergo thermal decomposition. Then, a semiconductor layer mainly including a manganese dioxide layer is formed inside the sintered body, and then re-formed to repair the anodized film damaged by sintering.
  • a semiconductor mother liquor such as a manganese nitrate solution to be impregnated with the solution
  • a semiconductor layer mainly including a manganese dioxide layer is formed inside the sintered body, and then re-formed to repair the anodized film damaged by sintering.
  • Manganese dioxide powder (RB-A manufactured by Mitsui Kinzoku Co., Ltd.) was heated at 350 ° C for 3 hours. (Average particle size: 2 m) 10 Q Add 60 parts by weight of n-hexane and 1 part by weight of AL-M (Ajinomoto Co., Alumino-based coupling agent) Then, the mixture was stirred and mixed with a roll mill. Thereafter, n-hexane was removed to obtain a manganese dioxide powder having a surface-treated type crystal structure.
  • AL-M Al-M
  • the conductivity was measured by forming a coating film of about 50 m on a ceramic plate by screen printing, and after curing, using a digital multimeter by a four-terminal method.
  • the dispersibility was measured using a grain gauge according to the method of JIS-K540.
  • the thickness of the coating was measured by dipping a ceramic plate of 1 ⁇ 2 cm in a paste for about 3 seconds, pulling it up, drying it, and measuring the coating thickness using a micrometer.
  • Example 1 100 parts by weight of the surface-treated manganese dioxide powder having a / 5-type crystal structure used in Example 1 was added to 5 parts by weight of sodium polyacrylate (AC_103) and the product AL— After preliminarily mixing 2 parts by weight of M and 40 parts by weight of pure water in a mortar, the mixture was kneaded with three rolls to obtain a paste composition for forming a solid electrolyte.
  • Table 1 shows the conductivity, dispersibility, and coating film thickness of this base composition.
  • Example 4 The same procedure as in Example 1 was carried out except that a 50% by weight aqueous solution of manganese nitrate was used as the dispersion medium. Table 1 shows the dispersibility and coating film thickness. [Example 4]
  • Example 1 The same procedure as in Example 1 was carried out except that the dispersing resin and polyvinylpyrrolidone (manufactured by ISBI JAPAN Co., Ltd.) were used, and the conductivity, dispersibility, Table 1 shows the coating thickness.
  • a manganese dioxide layer is formed on a ceramic substrate by a conventional method of thermally decomposing a 50% by weight aqueous solution of manganese nitrate without using a paste composition in which manganese dioxide powder is dispersed to form a conductive and coated film.
  • Table 1 shows the results of the examination.
  • the conductive paste composition of the present invention had good dispersibility and excellent conductivity, and was able to obtain a predetermined film thickness by one application. .
  • Example 1 To form a manganese dioxide layer, the sintered body was immersed in a manganese nitrate solution, and the process of thermal decomposition and re-chemical formation by chemical formation was repeated eight times, and the paste composition for forming a solid electrolyte formed in Example 1 was obtained.
  • a solid electrolytic capacitor according to a conventional method was manufactured under the same conditions as in Example 6, except that no material was used.
  • Example 6 shows the same characteristics as Comparative Example 2. That is, it was clarified that Example 6 exhibited good characteristics even when a series of steps such as immersion in a manganese nitrate solution and thermal decomposition were performed 1 to 2 times in the comparative example which is a conventional method.
  • Example 6 After repeating the series of processes of immersing the sintered body in a manganese nitrate solution, sintering, and re-forming as shown in Example 6 three times, the solid electrolyte-forming paste composition prepared in Example 1 was used as a stock solution.
  • a solid electrolytic capacitor was produced under the same conditions as in Example 6, except that the immersion and drying treatments were repeated twice to form a manganese dioxide layer.
  • An electrolytic capacitor was manufactured.
  • a solid electrolytic capacitor was produced by the conventional method under the same conditions as in Comparative Example 2, except that the sintered body was immersed in a manganese nitrate solution, and the steps of thermal decomposition and re-chemical formation by chemical conversion were repeated six times.
  • both ESR and LC have the same or better characteristics as those of Comparative Example 3. It is also clear that a range of 180 to 200 for both properties is a particularly preferred drying temperature.
  • the paste composition for forming a solid electrolyte of the present invention is suitable for uniformly forming a solid electrolyte of an electronic component such as a solid electrolytic capacitor such as an indium capacitor.
  • the method for producing a solid electrolytic capacitor using the paste composition for forming is effective for producing a solid electrolytic capacitor such as a tantalum capacitor in a short time and with high accuracy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)

Abstract

A paste composition for preparing solid electrolyte, containing (A) a manganese oxide powder, (B) a dispersion resin, and (C) a dispersion medium as essential components and a method for manufacturing a solid electrolytic capacitor using the composition. The paste composition has an excellent conductivity. A film of a prescribed thickness can be formed only by one application of this paste composition. When the method for manufacturing solid electrolytic capacitor using the paste composition is used, the manufacturing time of a solid electrolytic capacitor can be shortened. The leak current characteristic, heat resistance, and moisture resistance of the capacitor and the external size accuracy of the capacitor can be improved.

Description

明 固体電解質形成用ペース 卜組成物及びこれを用いた固体電解コ ン デンサの製造方法 技術分野  TECHNICAL FIELD The present invention relates to a paste composition for forming a solid electrolyte and a method for producing a solid electrolytic capacitor using the same.
本発明は、 コ ンデンサを初めとする電子部品に電極層を形成する ために用いられる固体電解質形成用ペース 卜組成物と、 これを用い た固体電解コ ンデンザの製造方法に関する。 背景技術  The present invention relates to a paste composition for forming a solid electrolyte used for forming an electrode layer on an electronic component such as a capacitor, and a method for producing a solid electrolytic capacitor using the same. Background art
従来タ ンタルコ ンデンサを初めとする電子部品の固体電解質の形 成には、 硝酸マ ンガン溶液を熱分解する方法が用いられている。 す なわち夕 ン夕ル等の弁作用金属の粉末からなる焼結体を陽極体と し て用いて、 この焼結体に化成処理をして T a ' 0 5 の酸化被膜を形 成する。 次に、 任意の濃度の硝酸マンガン等の水溶液中に化成後の 焼結体を浸潰し、 任意の温度で焼成することで、 硝酸マンガンを熱 分解して二酸化マンガン等を形成する。 さらに焼成後、 加熱により 損傷した酸化被膜を修復するために再化成処理をする。 そ してこの 浸漬、 焼成及び再化成の工程を数回から数 1 0回繰り返して任意の 厚さの二酸化マ ンガン層等を形成する。 二酸化マンガン層等を形成 後、 力一ボン、 銀ペース ト等を順次塗布して陰極層を形成する。 そ して塗布後に外部リー ドを半田付けして、 樹脂ディ ップ法、 樹脂モ 一ル ド法等により樹脂外装する製造方法が用いられている。 Conventionally, for forming solid electrolytes for electronic components such as tantalum capacitors, a method of thermally decomposing a manganese nitrate solution has been used. A sintered body made ie evening valve metal such as emissions Yuru powder using as the anode body, to form formed a T a '0 5 oxide coating by chemical conversion treatment on the sintered body . Next, the sintered body after chemical formation is immersed in an aqueous solution of manganese nitrate or the like at an arbitrary concentration, and baked at an arbitrary temperature to thermally decompose manganese nitrate to form manganese dioxide or the like. After firing, re-chemical conversion treatment is performed to repair the oxide film damaged by heating. Then, the steps of immersion, sintering and re-chemical conversion are repeated several to several ten times to form a manganese dioxide layer or the like having an arbitrary thickness. After forming a manganese dioxide layer, a cathode layer is formed by successively applying carbon, silver paste, and the like. Then, a manufacturing method is used in which an external lead is soldered after the application and the resin is packaged by a resin dipping method, a resin molding method, or the like.
この方法において焼結体を硝酸マンガン水溶液中に浸濱した後、 化成処理の熱分解工程の際に、 一度に形成可能な塗膜の厚さが非常 に薄いため、 所定の厚さの電解質層を形成するために熱分解工程を 数回から 1 0数回繰り返す必要があり、 それに要する時間とェネル ギ一コス トが非常に大きいという問題があつた。 また、 硝酸マンガ ンを熱分解するために、 熱分解工程で N O が発生し、 これらの分 解ガスの処理といった環境上の問題もあった。 また固体電解コ ンデ ンサの性能上、 この方法では二酸化マンガン層等の厚さが均一にな り にく く 、 この厚さが薄い場合には、 カーボン層が酸化被膜に直接 接触して漏れ電流が増大し易いという問題があった。 また、 焼結体 が角状のと きには、 角部分で二酸化マンガン層等が他の部分より も 厚く なるため、 樹脂モール ド法により樹脂外装する際に、 角部分の 外装が薄く なり耐熱性や耐湿性が低下するという問題があ った。 ま た樹脂ディ ップ法により樹脂外装する際には寸法がバラつき易く 、 樹脂外装の収縮時に角部にス ト レスがかかり特性が劣化し易いとい う問題があつた。 In this method, after the sintered body is immersed in an aqueous solution of manganese nitrate, the thickness of the coating layer that can be formed at one time during the thermal decomposition step of the chemical conversion treatment is extremely small. It was necessary to repeat the pyrolysis process several times to several times to form the slag, and there was a problem that the time required and the energy cost were extremely large. Also, nitric acid manga In the pyrolysis process, NO was generated due to the thermal decomposition of gas, and there were also environmental problems such as the treatment of these decomposition gases. Also, due to the performance of the solid electrolytic capacitor, this method makes it difficult for the thickness of the manganese dioxide layer and the like to be uniform, and if this thickness is small, the carbon layer directly contacts the oxide film and leaks. There was a problem that the current easily increased. In addition, when the sintered body is square, the manganese dioxide layer and the like are thicker at the corners than at the other parts. There was a problem that the water resistance and moisture resistance were reduced. In addition, there is a problem that when the resin sheathing is performed by the resin dipping method, the dimensions are likely to vary, and when the resin sheath shrinks, the corners are stressed and the characteristics are likely to deteriorate.
上記の諸問題について、 特開昭 5 1 — 7 6 5 5 9号公報には、 二 酸化マンガン粉末を水、 アルコール、 シ ンナー、 四塩化炭素、 炭酸 ア ンモニゥム等の揮発性溶剤中に混入する方法が開示されている。 しかし、 この方法では溶液中の二酸化マ ンガン粉末が分散しにく く 保管中に粒子同士の凝集 . 沈降が起こり、 均一な塗膜を得るのが困 Regarding the above problems, Japanese Patent Application Laid-Open No. 51-76559 describes that manganese dioxide powder is mixed into volatile solvents such as water, alcohol, thinner, carbon tetrachloride, and ammonium carbonate. A method is disclosed. However, in this method, the manganese dioxide powder in the solution is difficult to disperse, and the particles agglomerate during storage. Sedimentation occurs, making it difficult to obtain a uniform coating film.
¾E し'あった o ¾E
また特開平 7 ― 2 3 3 2 9 8号公報には導電ベース 卜に使用され ている金属粉の一部を二酸化マンガン粉末に置き換える方法が開示 されているが、 この方法では、 固体電解質と しての性質を充分に発 揮するこ とができなかった。  Also, Japanese Patent Application Laid-Open No. 7-233298 discloses a method of replacing a part of the metal powder used for the conductive base with manganese dioxide powder. In this method, however, a solid electrolyte is used. All the properties could not be fully realized.
本発明は上記の問題を解決するためになされたものであり、 二酸 化マンガン粉末が沈降しにく く かつ均一な塗膜を形成可能な固体電 解質形成用ペース ト組成物、 並びに電解コ ンデンザの製造時間の短 縮、 漏れ電流特性, 耐熱性, 耐湿性等の向上、 及び外形寸法の精度 の向上が可能な、 前記ベース 卜組成物を用いた固体電解コ ンデンサ の製造方法を提供することを目的とする。 発明の開示 上記目的を達成するため本 明は以下の要旨を有する。 The present invention has been made to solve the above-mentioned problems, and a paste composition for forming a solid electrolyte capable of forming a uniform coating film in which manganese dioxide powder is unlikely to settle, and an electrolytic solution. Provided is a method for manufacturing a solid electrolytic capacitor using the base composition, which can shorten the manufacturing time of a capacitor, improve leakage current characteristics, heat resistance, moisture resistance, etc., and improve the accuracy of external dimensions. The purpose is to do. Disclosure of the invention The present invention has the following gist to achieve the above object.
[ 1 ] (A) 二酸化マンガン粉末、 (B) 分散樹脂および (C) 分 散媒を必須成分と して含む固体電解質形成用ペース ト組成物。 この 組成物は導電性に優れ、 かつ一度の塗布で所定の膜厚を得ることが できるため、 タ ンタルコンデンサ素子の固体電解質層の形成に好適 る。  [1] A paste composition for forming a solid electrolyte, comprising (A) manganese dioxide powder, (B) a dispersing resin and (C) a dispersing medium as essential components. Since this composition has excellent conductivity and can obtain a predetermined film thickness by one application, it is suitable for forming a solid electrolyte layer of a tantalum capacitor element.
[ 2 ] ( A ) 〜 (C) の必須成分に加えて、 さ らにシラ ン系、 チタ ネー ト系、 アル ミ ニウム系またはジルコニウム系の (D) カ ツブリ ング剤を成分と して含む [ 1 ] 記載の固体電解質形成用ペース ト組 成物。 この組成物は、 [ 1 ] 記載の組成物の効果を奏し、 更に塗膜 の均一性を向上させることができ、 使用時の安定性にも優れたもの とするこ とができる。 [2] In addition to the essential components (A) to (C), further contains (D) a cutting agent of silane, titanate, aluminum or zirconium as a component. The paste composition for forming a solid electrolyte according to [1]. This composition has the effects of the composition described in [1], can further improve the uniformity of the coating film, and can have excellent stability during use.
[ 3 ] ( A ) 二酸化マ ンガン粉末の平均粒径が 0. 0 1〜 5 0 m である [ 1 ] または [ 2 ] 記載の固体電解質形成用ペース ト組成物。 この組成物は、 [ 2] の発明に加えて、 二酸化マンガン粉末の粒径 を限定することで塗膜の均一性を向上させ、 膜質の均一な塗膜を作 製するこ とができる。 [3] (A) The paste composition for forming a solid electrolyte according to [1] or [2], wherein the manganese dioxide powder has an average particle size of 0.01 to 50 m. This composition can improve the uniformity of the coating by limiting the particle size of the manganese dioxide powder in addition to the invention of [2], and can produce a coating with uniform film quality.
[ 4 ] 型の結晶構造の二酸化マ ンガン粉末を含む [ 1 ] ~ [ 3 ] のいずれかに記載の固体電解質形成用ペース 卜組成物。 この組成物 は、 ^型の結晶構造を含む二酸化マ ンガン粉末を用いるこ とで、 二 酸化マンガン粉末自体の導電性を向上させ、 塗膜の抵抗を下げるこ とができる。 The paste composition for forming a solid electrolyte according to any one of [1] to [3], comprising a manganese dioxide powder having a [4] type crystal structure. By using manganese dioxide powder having a ^ -type crystal structure, this composition can improve the conductivity of the manganese dioxide powder itself and reduce the resistance of the coating film.
~[ 5 ] ( B ) 分散樹脂がセルロースおよびその誘導体、 ポ リ グリ コ ール類、 ポリアク リル酸、 ポ リアク リル酸ソ一ダ、 ポ リアク リノレア ミ ド、 ポ リ ビニルビ口 リ ドン、 ポ リ ビニルエーテル、 水溶性アルキ ッ ド、 ポ リ マレイ ン酸共重合伴、 ポ リエチレ ンィ ミ ンならびにポ リ ビニルアルコールから選ばれる水溶性高分子樹脂である [ 1 ] 〜 [~ [5] (B) The dispersing resin is cellulose and its derivatives, polyglycols, polyacrylic acid, polyacrylic acid soda, polyacrylinoleamide, polyvinyl vinylidone, polydisperse resin. Vinyl ether, water-soluble alk Is a water-soluble polymer resin selected from the group consisting of polymethacrylate, polymaleic acid copolymer, polyethylenimine and polyvinyl alcohol [1] to [
4 ] のいずれかに記載の固体電解質形成用ペース ト組成物。 この組 成物は、 分散樹脂と して水溶性高分子樹脂を使用するこ とで、 分散 媒に容易に分散でき、 かつ安定な固体電解質形成用ペース 卜組成物 を提供する こ とができ る。 4] The paste composition for forming a solid electrolyte according to any one of the above. By using a water-soluble polymer resin as the dispersing resin, the composition can be easily dispersed in a dispersing medium and can provide a stable paste composition for forming a solid electrolyte. .
[ 6 ] ( C ) 分散媒がアルコール系、 エチレングリ コール系および プロ ピレングリ コール系からなる群から選ばれる少なく と も一種の 有機溶剤も しく は純水、 またはこれらの混合物である [ 1 ] 〜 [ 5 ] のいずれかに記載の固体電解質形成用ペース ト組成物。 この組成物 は、 分散媒と してアルコール系、 エチレングリ コール系、 およびプ ロ ビレングリ コール系から選ばれる有機溶剤も しく は純水、 または これらの混合物を用いるこ とにより、 二酸化マンガン粉末が容易に 分散でき、 かつ安定な固体電解質層を形成することができる。 [6] (C) the dispersion medium is at least one organic solvent or pure water selected from the group consisting of alcohols, ethylene glycols and propylene glycols, or a mixture thereof [1] to The paste composition for forming a solid electrolyte according to any one of [5]. In this composition, manganese dioxide powder is easily prepared by using an organic solvent selected from alcohol, ethylene glycol, and propylene glycol, or pure water, or a mixture thereof as a dispersion medium. And a stable solid electrolyte layer can be formed.
[ 7 ] [ 1 ] 〜 [ 6 ] のいずれかに記載の固体電解質形成用ペース ト組成物を用いる固体電解コ ンデンサの製造方法。 この方法は、 製 造時間の短縮、 漏れ電流特性, 耐熱性, 耐湿性の向上、 および、 外 形寸法の精度の向上が可能な固体電解コ ンデンサの製造方法を提供 することができ る。 [7] A method for producing a solid electrolytic capacitor using the paste composition for forming a solid electrolyte according to any one of [1] to [6]. This method can provide a method for manufacturing a solid electrolytic capacitor capable of shortening the manufacturing time, improving leakage current characteristics, heat resistance, moisture resistance, and improving the accuracy of external dimensions.
[ 8 ] 弁作用金属の粉末から得られる焼結体に陽極酸化皮膜を形成 した後、 または陽極酸化皮膜が形成された焼結体を半導体母液に浸 漬し熱分解した後に、 [ 1 ] 〜 [ 6 ] のいずれかに記載の固体電解 質形成用ペース ト組成物に浸漬し乾燥して半導体層を形成する固体 ¾解コ ンデンサの製造方法。 この方法は、 上記 [ 7 ] と同様の効果 を発揮するこ とができ る。 図面の簡単な説明 - . 5 [8] After forming an anodized film on the sintered body obtained from the valve metal powder, or after immersing the sintered body with the formed anodized film in a semiconductor mother liquor and thermally decomposing, [6] A method for producing a solid electrolytic capacitor, which is immersed in the paste composition for forming a solid electrolyte according to any one of [6] and dried to form a semiconductor layer. This method can exert the same effect as the above [7]. BRIEF DESCRIPTION OF THE DRAWINGS -. 5
第 1図は、 本発明の実施例 7 ; 8及び比較例 3の等価直列抵抗 E S Rの特性グラフを示す。  FIG. 1 shows a characteristic graph of equivalent series resistance ESR of Examples 7 and 8 of the present invention and Comparative Example 3.
第 2図は、 本発明の実施例 7、 8及び比較例 3の漏れ電流し じ の 特性グラフを示す。 発明を実施するための最良の形態  FIG. 2 shows characteristic graphs of leakage currents of Examples 7 and 8 and Comparative Example 3 of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下に本発明の固体電解質形成用ベース ト組成物とこれを用いた 固体電解コンデンザの製造方法について詳細に説明する。  Hereinafter, the base composition for forming a solid electrolyte of the present invention and a method for producing a solid electrolytic condenser using the same will be described in detail.
I . 固体電解質形成用ペース ト組成物  I. Paste composition for forming solid electrolyte
本発明の固体電解質形成用ペース 卜組成物は (A ) 二酸化マ ンガ ン粉末、 ( B ) 分散樹脂 および ( C ) 分散媒を必須成分と して含 むものである。  The paste composition for forming a solid electrolyte of the present invention contains (A) manganese dioxide powder, (B) a dispersion resin and (C) a dispersion medium as essential components.
1. 二酸化マンガン粉末 ( A )  1. Manganese dioxide powder (A)
本発明に用いられる (A) 二酸化マ ンガン粉末と しては、 例えば、 α型、 型、 7型または 型の結晶構造を有する粉末が挙げられる が、 導電性を考慮すると 型の結晶構造を含む二酸化マ ンガン粉末 が好ま しい。 3型を含む二酸化マ ンガンは二酸化マ ンガンを 2 5 0 °C~ 4 0 0 °Cで 1時間から 5時間加熱するこ とで容易に得ることが できる。 二酸化マ ンガン粉末の粒径は導電性およびペース 卜の塗布 性等を考慮すると、 平均粒径が 0. 0 1 !〜 5 0 の ものが好 ま しく、 0. 0 1 〜 1 0 ^ mの ものがより好ま しい。 二酸化マ ンガ ン粉末の形状は、 球状、 不定形、 破砕状などが例示される力 <、 これ らに制限される ものではない。  Examples of the (A) manganese dioxide powder used in the present invention include powders having an α-type, a type, a 7-type or a type crystal structure, and include a type crystal structure in consideration of conductivity. Manganese dioxide powder is preferred. Manganese dioxide containing Form 3 can be easily obtained by heating manganese dioxide at 250 ° C to 400 ° C for 1 to 5 hours. The average particle size of the manganese dioxide powder is 0.01 !, considering the conductivity and the applicability of the paste. Those with a size of ~ 50 are preferred, and those with a value of 0.01-10 ^ m are more preferred. The shape of the manganese dioxide powder is not limited to such a force as exemplified by a sphere, an irregular shape, and a crushed shape.
本発明における二酸化マンガン粉末の配合量は、 (A ) 二酸化マ ンガン粉末 ( B ) 分散樹脂および ( C ) 分散媒の総量の 1 〜 9 0重 畺%とすることが好ま しく 、 5〜 8 0重量%とするこ とがより好ま し く 、 2 0〜 7 0重量%とすることが特に好ま しい。 こ の配合量が 1重量%未満では、 塗膜の形成が難しく 、 固体電解質と しての機能 が低下する傾向があり、 9—0單量%を越える とペース 卜と しての塗 布性および基材との接着性が低下する傾向がある。 The blending amount of the manganese dioxide powder in the present invention is preferably 1 to 90% by weight of the total amount of (A) manganese dioxide powder (B) dispersed resin and (C) dispersion medium, and is preferably 5 to 80%. %, More preferably 20% to 70% by weight. If the content is less than 1% by weight, it is difficult to form a coating film and the solid electrolyte functions as a solid electrolyte. When the content exceeds 9-0 unit amount%, the coatability as a paste and the adhesiveness to a substrate tend to decrease.
2. 分散樹脂 ( B ) 2. Dispersion resin (B)
本発明に用いられる ( B ) 分散樹脂は、 (A ) 二酸化マンガン粉 末の分散性を向上させるものであり、 水溶性でありかつ ( A ) 二酸 化マンガン粉末と容易に結合するものであれば特に制限はないが、 セノレロース、 メ チノレセノレロース、 ェチルセルロース、 カルボキ シ メ チルセルロース、 ヒ ドロキシェチルセルロー ス等の誘導体、 ポ リ エ チ レ ング リ コール、 ポ リ プロ ピレ ングリ コール等のポ リ グ リ コール 類、 ポリ アク リ ル酸、 ポリアク リル酸ソ一ダ、 ポリ アク リ ルア ミ ド . ポ リ ビ二ル ビロ リ ドン、 水溶性アルキッ ド、 ポ リ ビニルエーテル、 ポ リマレイ ン酸共重合体、 ポ リエチレンイ ミ ンおよびポリ ビニルァ ルコールが好ま しいものと して例示される。 これらの ( B ) 分散樹 脂は単独で用いてもよ く組み合わせて用いてもよい。 本発明におけ る ( B ) 分散樹脂の配合量は、 (A ) 二酸化マ ンガ ン粉末、 ( B ) 分散樹脂および ( C) 分散媒の総量の 0. 5〜 4 0重量%とするこ とが好ま しく 、 1 〜 2 0重量%とするこ とがより好ま しく 、 2〜 1 0重量%とするこ とが特に好ま しい。 この配合量が 0. 5重量%未 満では二酸化マ ンガンの分散が不十分の傾向があり、 4 0重量%を 越えると導電性が低下して固体電解質と しての性能が劣化する傾向 がある。  The (B) dispersed resin used in the present invention is (A) one that improves the dispersibility of the manganese dioxide powder, water-soluble, and (A) one that easily binds to the manganese dioxide powder. Although there is no particular limitation, derivatives such as cenorellose, methinoresenolylose, ethylcellulose, carboxymethylcellulose, and hydroxyshethylcellulose, polyethylene glycol, and polypropylene glycol Polyacrylic acid, polyacrylic acid, polyacrylic acid soda, polyacrylamide, polyvinyl borolidone, water-soluble alkyd, polyvinyl ether, polymalein Acid copolymers, polyethyleneimine and polyvinyl alcohol are exemplified as being preferred. These (B) dispersed resins may be used alone or in combination. In the present invention, the compounding amount of (B) the dispersing resin is 0.5 to 40% by weight of the total amount of (A) manganese dioxide powder, (B) the dispersing resin and (C) the dispersing medium. The content is preferably 1 to 20% by weight, more preferably 2 to 10% by weight. If the amount is less than 0.5% by weight, the dispersion of manganese dioxide tends to be insufficient. If the amount exceeds 40% by weight, the conductivity tends to decrease and the performance as a solid electrolyte tends to deteriorate. is there.
3. 分散媒 ( C ) 3. Dispersion medium (C)
本発明に用いられる ( C ) 分散媒と しては、 ( B ) 分散樹脂を溶 解し (A ) 二酸化マ ンガン粉末の分散安定性を保持できる ものであ ば特に制限はないが、 アルコール系、 エチレングリ コール系も し く はプロ ピ レ ングリ コ一ル系の有機溶剤、 または純水も し く は硝酸 マ ンガン等のマ ンガン塩を溶解した純水が好ま しいものと して例示 される。 - . The (C) dispersion medium used in the present invention is not particularly limited as long as it can dissolve the (B) dispersion resin and maintain the dispersion stability of (A) manganese dioxide powder, but are not limited to alcohol-based dispersion media. Examples of the preferred solvent include an ethylene glycol-based or propylene glycol-based organic solvent, or pure water or pure water in which a manganese salt such as manganese nitrate is dissolved. Is done. -.
これらの有機溶剤または純水は、 一種単独で用いてもよ く 、 二種 以上を任意の割合で混合して用いてもよい。  These organic solvents or pure water may be used alone or in a combination of two or more at any ratio.
本発明における (C) 分散媒の配合量は、 (A) 二酸化マ ンガン 粉末、 ( B) 分散樹脂および (C) 分散媒の総量の 1 0〜 9 5重量 %とするこ とが好ま しく 、 2 0〜 9 0重量%とするこ とがより好ま し く 、 2 5〜 8 0重量%とすることが特に好ま しい。 この配合量力 1 0重量%未満では、 二酸化マ ンガン粉末の分散が不十分となり、 9 5重量%を越えると塗膜の膜厚が薄く なりすぎて一度に十分な膜 厚を得るこ とができない傾向がある。  In the present invention, the blending amount of (C) the dispersion medium is preferably 10 to 95% by weight of the total amount of (A) manganese dioxide powder, (B) the dispersion resin, and (C) the dispersion medium. The content is more preferably from 20 to 90% by weight, and particularly preferably from 25 to 80% by weight. If the compounding power is less than 10% by weight, the dispersion of the manganese dioxide powder becomes insufficient, and if it exceeds 95% by weight, the film thickness of the coating film becomes too thin to obtain a sufficient film thickness at one time. Tend.
4. カ ップリ ン グ剤 ( D ) 4. Coupling agent (D)
本発明においては、 必要に応じて (D) カ ップリ ング剤を用いる こ とが (A) 二酸化マ ンガンの安定的な分散を図る上で好ま しい。 ( D ) カ ップリ ング剤の使用方法と しては、 必須成分である、 ( A ) 二酸化マ ンガン, (B) 分散樹脂, および (C) 分散媒に直接添加 して用いる方法または (A) 二酸化マ ンガン粉末を (D) カ ツプリ ング剤で処理して用いる方法が挙げられる。 (A) 二酸化マ ン ガ ン 粉末を処理する方法と しては、 例えば、 (A) 二酸化マンガン粉末 に直接 ( D ) カ ップリ ング剤を添加し攪拌混合する方法 (乾式処理 法) とへキサン、 トルエン等の溶剤に ( D ) カ ップリ ング剤を予め 溶解し、 その中に (A) 二酸化マ ンガン粉末を入れ混合攪拌した後、 溶剤を除去 · 乾燥させる方法 (湿式処理法) 等が挙げられる。  In the present invention, it is preferable to use (D) a coupling agent as necessary in order to stably disperse (A) manganese dioxide. (D) The method of using the coupling agent is as follows: (A) manganese dioxide, (B) dispersing resin, and (C) dispersing medium by directly adding to (A) There is a method in which manganese dioxide powder is used after treatment with (D) a capping agent. (A) The method of treating manganese dioxide powder includes, for example, (A) a method of adding (D) a coupling agent directly to manganese dioxide powder and mixing with stirring (dry treatment method) and a method of hexane. (D) A coupling agent is preliminarily dissolved in a solvent such as toluene or the like, and (A) manganese dioxide powder is added thereto, mixed and stirred, and then the solvent is removed and dried (wet processing method). Can be
(D) カ ップリ ング剤と しては、 (A) 二酸化マ ンガン粉末を ( B ) 分散樹脂で (C) 分散媒中に分散する際に、 (A) 二酸化マ ン ガン粉末を樹脂になじみやすく 、 分散安定性を向上させるこ とがで ""きるものであれば特に制限されない力'、 シラ ン系、 アル ミ ニウ ム系、 チタネー ト系およびジルコニウム系のカ ツプリ ング剤が好ま しいも のと して例示される。 本発明における ( D ) カ ップリ ング剤の添加 量は、 ( A ) 二酸化マ ンガン粉 81 0 0重量部に対して 0 . 1 〜 1 0重量部が好ま しく、 0 . 3〜ち重量部がより好ま し く 、 0 . 5 〜 2重量部が特に好ま しい。 ( D ) カ ップリ ング剤の添加量が 0 . 1 重量部未満では (A ) 二酸化マンガン粉末の分散性が低下する傾向 があり、 1 0重量部を越えると (A ) 二酸化マンガン粉末表面の導 電性が低下する傾向がある。 (D) As a coupling agent, when (A) manganese dioxide powder is dispersed in (B) a dispersing medium with (B) a dispersing resin, (A) the manganese dioxide powder is compatible with the resin. It is not particularly limited as long as it is easy to improve the dispersion stability, and silane-based, aluminum-based, titanate-based, and zirconium-based cutting agents are preferred. It is illustrated as an example. Addition of (D) coupling agent in the present invention The amount is, (A) 0. 1 ~ 1 0 parts by weight lay favored relative to manganese dioxide powder 8 1 0 0 parts by weight, 0. 3 Chi parts by weight rather more preferable, 0.5 to 2 weight Department is particularly preferred. If (D) the amount of the coupling agent added is less than 0.1 part by weight, the dispersibility of the (A) manganese dioxide powder tends to decrease. The conductivity tends to decrease.
5 . 添加剤、 改質材 5. Additives, modifiers
本発明の固体電解質形成用ペース 卜組成物は、 ペース 卜および塗 膜にした際の硬化物特性に悪影響を及ぼさない限り、 例えば抗酸化 剤やキレ一 卜剤、 その他種々の機能を有する添加剤、 改質剤等を添 加するこ とができる。 また、 導電性を付与するためにカーボンブラ ッ ク、 グラフアイ トカ一ボン等を併用するこ と もできる。 これらの 使用量は、 二酸化マンガン粉末 1 0 0重量部に対して 0 . 5〜 1 0 重量部とするのが好ま しい。  The paste composition for forming a solid electrolyte of the present invention may be, for example, an antioxidant, a chelating agent, or an additive having various functions, as long as it does not adversely affect the properties of the cured product when the paste and the coating film are formed. , A modifier and the like can be added. In addition, carbon black, graphite carbon, or the like can be used in combination to impart conductivity. The amount of these is preferably 0.5 to 10 parts by weight based on 100 parts by weight of the manganese dioxide powder.
本発明の固体電解質形成用ベース 卜組成物は、 所定量の (A ) 二 酸化マンガン粉末、 ( B ) 分散樹脂 および ( C ) 分散媒等を通常 の攪拌機、 らいかい機、 3本ロールまたはロールミ ル等を用いて均 一に混練または分散するこ とで容易に得るこ とができ、 固体電解質 と しての特性を変えることなく 、 一度の塗布で均一かつ膜厚の厚い 塗膜を得ることができるものであり、 タ ンタルコ ンデンサ等の固体 電解質層と して好適に使用するこ とができる。  The base composition for forming a solid electrolyte of the present invention may be prepared by mixing a predetermined amount of (A) manganese dioxide powder, (B) a dispersion resin and (C) a dispersion medium with an ordinary stirrer, triturator, three-roll or roll mill. It can be easily obtained by uniformly kneading or dispersing using a solvent or the like, and a uniform and thick coating film can be obtained by one application without changing the characteristics as a solid electrolyte. It can be suitably used as a solid electrolyte layer such as a tantalum capacitor.
I I . 固体電解コ ンデンサの製造方法 I I. Manufacturing method of solid electrolytic capacitor
本発明は前記固体電解質形成用ペース 卜組成物を用いた固体電解 コ ンデンサの製造方法に関する。 例えば、 固体電解コ ンデンサは、 '弁作用金属の粉末から得られる焼結体に陽極酸化被膜を形成した後 または陽極酸化被膜が形成された焼結体を半導体母液に浸潰し熱分 解した後に、 前述の固体電解質形成用ペース ト組成物に浸潰し乾燥 して半導体層を形成して固体電解コ ンデンサが製造される。 The present invention relates to a method for producing a solid electrolytic capacitor using the paste composition for forming a solid electrolyte. For example, a solid electrolytic capacitor can be obtained by forming an anodized film on a sintered body obtained from a valve metal powder or by immersing the sintered body with the anodized film in a semiconductor mother liquor and thermally decomposing it. Immersed in the paste composition for solid electrolyte formation described above and dried Thus, a solid electrolytic capacitor is manufactured by forming a semiconductor layer.
より具体的に好ま しい製造法を説明すれば、 タ ン タル等の弁作用 金属を、 タ ンタルリー ド線等の一端に埋め、 他端を引き出してプレ スで圧縮成型し、 真空中で 2 0 0 0 °C程度の温度で数 1 0分間加熱 して焼結体を形成する。 次にこの焼結体をタ ン夕ル線等の箇所でス テンレス等の金属製バーに溶接した後、 焼結体を硝酸ゃリ ン酸等の 化成液中で電圧を印加して化成し、 T a 2 O , の陽極酸化被膜を形 成する。 または陽極酸化被膜が形成された焼結体を硝酸マンガン溶 液等の半導体母液中に浸潰して液を含浸させ、 2 0 0 °C〜 3 5 0 °C の温度で焼成して熱分解して焼結体内部に二酸化マ ンガン層等を主 と した半導体層を形成し、 再化成して焼結により損傷した陽極酸化 被膜を修復する。 そして以上の浸潰、 焼成及び再化成の工程を必要 に応じて 2〜 3回繰返す。 More specifically, a preferred manufacturing method is described below. A valve metal such as tantalum is embedded in one end of a tantalum lead wire or the like, the other end is drawn out, compression-molded with a press, and then pressed in a vacuum. Heat at a temperature of about 100 ° C for several 10 minutes to form a sintered body. Next, the sintered body is welded to a metal bar such as stainless steel at a place such as a tan wire, and the sintered body is formed by applying a voltage in a chemical solution such as nitric acid and phosphoric acid. , An anodic oxide film of Ta 2 O, is formed. Alternatively, the sintered body having the anodic oxide film formed thereon is immersed in a semiconductor mother liquor such as a manganese nitrate solution to be impregnated with the solution, and then baked at a temperature of 200 ° C. to 350 ° C. to undergo thermal decomposition. Then, a semiconductor layer mainly including a manganese dioxide layer is formed inside the sintered body, and then re-formed to repair the anodized film damaged by sintering. The above immersion, firing and re-chemical processes are repeated two or three times as necessary.
次に本発明の固体電解質形成用ペース 卜組成物中に焼結体を数秒 間浸漬した後、 まず常温で乾燥し、 次いで 1 6 0 °C〜 2 2 0 °C、 好 ま しく は 1 8 0 °C〜 2 0 0 °Cの温度で乾燥して二酸化マンガン層等 の半導体層を形成する。 尚、 この浸漬、 乾燥工程は充分な厚さの半 導体層を得るために、 必要に応じて 2回以上繰返してもよい。 半導 体層を形成後、 カーボン、 銀ペース ト等を順次塗布して陰極層を形 成し、 焼結体を リ一 ドフレームに接続するか、 端子を焼結体から引 き出したタ ンタルリー ド線等及び陰極層に接続する。 最後に樹脂デ ィ ップ法ゃ樹脂モール ド法等により樹脂外装を形成する。 実施例  Next, after immersing the sintered body in the paste composition for forming a solid electrolyte of the present invention for several seconds, it is first dried at room temperature, and then dried at 160 ° C. to 220 ° C., preferably 18 ° C. Dry at a temperature of 0 ° C. to 200 ° C. to form a semiconductor layer such as a manganese dioxide layer. This immersion and drying step may be repeated two or more times as necessary to obtain a semiconductor layer having a sufficient thickness. After the formation of the semiconductor layer, carbon and silver paste are sequentially applied to form a cathode layer, and the sintered body is connected to a lead frame or the terminal is pulled out of the sintered body. Connect to the lead wire and cathode layer. Finally, a resin exterior is formed by a resin dipping method or a resin molding method. Example
以下実施例および比較例を挙げて本発明を具体的に説明するが、 本発明の範囲はこれらに限定される ものではない。  Hereinafter, the present invention will be described specifically with reference to Examples and Comparative Examples, but the scope of the present invention is not limited thereto.
' [実施例 1 ] '[Example 1]
二酸化マンガン粉末 (三井金属社製 R B— A ) を 3 5 0 °C 3時間 で加熱処理して得られた 型結晶構造を含む二酸化マンガン粉末 ( 平均粒径 : 2 m ) 1 0 Q重暈部に n—へキサン 6 0重量部 およ びプレ ンァク ト A L— M (味の素社製、 アル ミ 系カ ップリ ン グ剤) 1重量部を添加し、 ロールミ ルで攪拌混合を行った。 その後、 n — へキサ ンを除き、 表面処理した 型の結晶構造を含む二酸化マ ンガ ン粉末を得た。 Manganese dioxide powder (RB-A manufactured by Mitsui Kinzoku Co., Ltd.) was heated at 350 ° C for 3 hours. (Average particle size: 2 m) 10 Q Add 60 parts by weight of n-hexane and 1 part by weight of AL-M (Ajinomoto Co., Alumino-based coupling agent) Then, the mixture was stirred and mixed with a roll mill. Thereafter, n-hexane was removed to obtain a manganese dioxide powder having a surface-treated type crystal structure.
上記の表面処理した ^型の結晶構造を含む二酸化マ ンガ ン粉末 1 0 0重量部に、 ポ リアク リ ル酸ソーダ A C— 1 0 3 (日本純薬社製) 5重量部および純水 4 0重量部を乳鉢中で予備混合後、 3本ロール にて混練し、 固体電解質形成用ペース 卜組成物を得た。 こ の固体電 解質形成用ペース 卜組成物の導電性、 分散性、 塗膜厚を測定した結 果を表 1 に示す。  To 100 parts by weight of the above-mentioned surface-treated manganese dioxide powder having a ^ -type crystal structure, 5 parts by weight of sodium polyacrylate AC—103 (manufactured by Nippon Pure Chemical Co., Ltd.) and 400 parts of pure water were added. The parts by weight were preliminarily mixed in a mortar and kneaded with three rolls to obtain a paste composition for forming a solid electrolyte. Table 1 shows the measurement results of the conductivity, the dispersibility, and the coating thickness of the paste composition for forming a solid electrolyte.
導電性は、 ス ク リ ー ン印刷によ り約 5 0 mの塗膜をセラ ミ ッ ク 板上に形成し、 硬化後 4端子法によりデジタルマルチメータを用い て測定した。 分散性は、 粒ゲージを用いて、 J I S — K 5 4 0 0 の 方法に準じて測定した。 また、 塗膜厚の測定は 1 X 2 c mのセラ ミ ッ ク板をペース ト中に約 3秒間ディ ップ後引き上げ、 乾燥後に塗膜 厚をマイ ク ロメ一夕を用いて測定した。  The conductivity was measured by forming a coating film of about 50 m on a ceramic plate by screen printing, and after curing, using a digital multimeter by a four-terminal method. The dispersibility was measured using a grain gauge according to the method of JIS-K540. The thickness of the coating was measured by dipping a ceramic plate of 1 × 2 cm in a paste for about 3 seconds, pulling it up, drying it, and measuring the coating thickness using a micrometer.
[実施例 2 ] [Example 2]
実施例 1で用いた表面処理した /5型の結晶構造を含む二酸化マン ガン粉末 1 0 0重量部にボ リアク リ ル酸ソーダ ( A C _ 1 0 3 ) 5 重量部およびプ レ ンァク 卜 A L— M 2重量部および純水 4 0重量部 を乳鉢中で予備混合後、 3本ロールにて混練し、 固体電解質形成用 ペース ト組成物を得た。 このベース 卜組成物の導電性、 分散性、 塗 布膜厚を表 1 に示す。  100 parts by weight of the surface-treated manganese dioxide powder having a / 5-type crystal structure used in Example 1 was added to 5 parts by weight of sodium polyacrylate (AC_103) and the product AL— After preliminarily mixing 2 parts by weight of M and 40 parts by weight of pure water in a mortar, the mixture was kneaded with three rolls to obtain a paste composition for forming a solid electrolyte. Table 1 shows the conductivity, dispersibility, and coating film thickness of this base composition.
' [実施例 3 ] '[Example 3]
分散媒と して、 5 0重量%硝酸マ ンガン水溶液を用いたこ と以外 は実施例 1 と同様に行い、 得られた導電性ペース 卜組成物の導電性、 分散性、 塗布膜厚を表 1 に示す。 [実施例 4 ] The same procedure as in Example 1 was carried out except that a 50% by weight aqueous solution of manganese nitrate was used as the dispersion medium. Table 1 shows the dispersibility and coating film thickness. [Example 4]
分散樹脂そ してポリ ビニルピロ リ ドン (アイエス ビ一 ' ジャ パ ン 社製) を用いたこ と以外は実施例 1 と同様に行い、 得られた導電性 ペース ト組成物の導電性、 分散性、 塗布膜厚を表 1 に示す。  The same procedure as in Example 1 was carried out except that the dispersing resin and polyvinylpyrrolidone (manufactured by ISBI JAPAN Co., Ltd.) were used, and the conductivity, dispersibility, Table 1 shows the coating thickness.
[実施例 5 ] [Example 5]
カ ップリ ング剤と してプレンァク ト K R T T S (味の素社製、 チタネー ト系カ ップリ ング剤) を用いたこ と以外は実施例 2 と同様 に行い、 得られた導電性ペース 卜組成物の導電性、 分散性、 塗布膜 厚を表 1 に示す。  The procedure was performed in the same manner as in Example 2 except that Plankt KRTTS (manufactured by Ajinomoto Co., Ltd., titanate-based coupling agent) was used as the coupling agent, and the conductivity of the obtained conductive paste composition was measured. Table 1 shows the dispersibility and coating film thickness.
[比較例 1 ] [Comparative Example 1]
二酸化マ ンガン粉末を分散したペース 卜組成物を用いずに 5 0重 量%硝酸マンガン水溶液を熱分解する従来法でセラ ミ ッ ク基板上に 二酸化マ ンガン層を形成し導電性および塗布膜厚を調べた結果を表 1 に示す。  A manganese dioxide layer is formed on a ceramic substrate by a conventional method of thermally decomposing a 50% by weight aqueous solution of manganese nitrate without using a paste composition in which manganese dioxide powder is dispersed to form a conductive and coated film. Table 1 shows the results of the examination.
表 1 の結果よ り、 本発明の導電性ペース 卜組成物は、 分散性が良 好でかつ導電性に優れ、 一度の塗布で所定の膜厚を得るこ とができ るこ とが判明した。 From the results in Table 1, it was found that the conductive paste composition of the present invention had good dispersibility and excellent conductivity, and was able to obtain a predetermined film thickness by one application. .
[表 1 ] [table 1 ]
Figure imgf000014_0001
Figure imgf000014_0001
* P V P (ボリ ビニルビ oリ ドン)  * P V P (polyvinyl bi- o-ridone)
* * Λ LM (» の索 HM、 アルミニウム系力 フブリ ング剤)  * * LM LM (Finding HM, aluminum-based fusing agent)
* * * T T S (««の $社 M、 チタネー ト¾力 7プリ ング剤)  * * * TTS («« $ Company M, titanate strength 7 printing agent)
* * * * P GM (ブ σ ビレングリコールモノメチルエーテル)  * * * * P GM (Bu σ bilen glycol monomethyl ether)
[実施例 6 ] [Example 6]
まず 0. 2 4 ¾ のタ ンタルリー ド線の一端を埋め、 他端を引き出 ,したタ ンタルの微粉末をブレス して 1. 9 7 mmx 2. 1 mmX 2. 8 nun角の成形体を造り、 この成形体を焼結後、 硝酸により化成して T a 0- の陽極酸化被膜を形成した。 化成後、 焼結体を硝酸マンガ ン溶液中に浸潰、 焼成、 再化成した。 そ してこの一連の処理を 4回 繰返した。 次に実施例 1で作製した固体電解質形成用ペース ト組成 物を原液と して、 純水により原液 : 純水 = 1 : 7 (容積比) に希釈 した液中に焼結体を数秒間浸潰して乾燥した。 そしてこの浸漬、 乾 燥の処理を 2回繰返して二酸化マンガン層を形成した後、 カーボン 及び銀ペース ト等を順次塗布して陰極層を形成した。 陰極層形成後 は、 焼結体をリ ー ドフ レームに接続し、 樹脂モール ド法で樹脂外装 を形成して固体電解コ ンデンサを作製した。 First, fill one end of a 0.24 mm tantalum lead wire, pull out the other end, and breathe the fine powder of tantalum to form a 1.97 mm x 2.1 mm X 2.8 nun square compact. After sintering the formed body, it was formed by nitric acid to form an anodic oxide film of Ta0-. After chemical formation, the sintered body was converted to manganese nitrate. Immersed, fired, and re-chemically formed in the solution. This series of processing was repeated four times. Next, the paste composition for forming a solid electrolyte prepared in Example 1 was used as a stock solution, and the sintered body was immersed for a few seconds in a solution diluted with pure water to a stock solution: pure water = 1: 7 (volume ratio). Crushed and dried. The immersion and drying treatments were repeated twice to form a manganese dioxide layer, and then carbon and silver paste were sequentially applied to form a cathode layer. After formation of the cathode layer, the sintered body was connected to a lead frame, and a resin exterior was formed by a resin molding method to produce a solid electrolytic capacitor.
[比較例 2 ] [Comparative Example 2]
二酸化マンガン層を形成するのに、 焼結体を硝酸マンガン溶液中 に浸漬し、 化成による熱分解、 再化成の工程を 8回繰返すだけで、 実施例 1 で作製した固体電解質形成用ペース ト組成物を使用しなか つたこと以外は、 実施例 6 と同じ条件で従来法による固体電解コ ン デンサを作製した。  To form a manganese dioxide layer, the sintered body was immersed in a manganese nitrate solution, and the process of thermal decomposition and re-chemical formation by chemical formation was repeated eight times, and the paste composition for forming a solid electrolyte formed in Example 1 was obtained. A solid electrolytic capacitor according to a conventional method was manufactured under the same conditions as in Example 6, except that no material was used.
実施例 6及び比較例 2で作製した定格 1 6 V 3 5 Fのタンタル チップ型固体電解コ ンデンサの特性を評価した結果を表 2 に示した c こ こで試料数は各々 5 0 0個と した。 表 2から明らかなように、 実 施例 6は比較例 2 と同等の特性を示している。 すなわち実施例 6 は 硝酸マンガン溶液に浸漬して熱分解する等の一連の工程を従来法で ある比較例の 1 ノ 2の回数にしても良好な特性を示すことが明らか になつた。 The results of evaluating the characteristics of the 16 V 35 F tantalum chip type solid electrolytic capacitors manufactured in Example 6 and Comparative Example 2 are shown in Table 2, where c represents 500 samples. did. As is clear from Table 2, Example 6 shows the same characteristics as Comparative Example 2. That is, it was clarified that Example 6 exhibited good characteristics even when a series of steps such as immersion in a manganese nitrate solution and thermal decomposition were performed 1 to 2 times in the comparative example which is a conventional method.
[表 2 ] [Table 2]
Figure imgf000016_0001
Figure imgf000016_0001
[実施例 Ί ] [Example Ί]
実施例 6に示した、 焼結体を硝酸マ ンガン溶液中に浸漬、 焼成、 再化成する一連の処理を 3回繰返した後、 実施例 1 で作製した固体 電解質形成用ペース ト組成物を原液と して、 純水により原液 : 純水 = 1 : 5 (容積比) に希釈した液中に焼結体を数秒間浸漬して 1 0 0 °C〜 2 8 0 °C乾燥した。 そ してこの浸漬、 乾燥の処理を 2回橾返 して二酸化マンガン層を形成したこ と以外は、 実施例 6 と同じ条件 で固体電解コ ンデンサを作製した。  After repeating the series of processes of immersing the sintered body in a manganese nitrate solution, sintering, and re-forming as shown in Example 6 three times, the solid electrolyte-forming paste composition prepared in Example 1 was used as a stock solution. The sintered body was immersed in a solution diluted with pure water to a stock solution: pure water = 1: 5 (volume ratio) for several seconds and dried at 100 ° C. to 280 ° C. A solid electrolytic capacitor was produced under the same conditions as in Example 6, except that the immersion and drying treatments were repeated twice to form a manganese dioxide layer.
[実施例 8 ] [Example 8]
実施例 1 で作製した固体電解質形成用ペース ト組成物を原液と し て、 純水により原液 : 純水 == 1 : 1 0 (容積比) に希釈した以外は 実施例 6 と同じ条件で固体電解コ ンデンサを作製した。  The paste composition for forming a solid electrolyte prepared in Example 1 was used as a stock solution, and solid solution was prepared under the same conditions as in Example 6 except that the stock solution was diluted with pure water to a stock solution: pure water == 1:10 (volume ratio). An electrolytic capacitor was manufactured.
[比較例 3 ] [Comparative Example 3]
焼結体を硝酸マ ンガン溶液中に浸漬し、 化成による熱分解、 再化 成の工程を 6回繰返すこと以外は、 比較例 2 と同じ条件で従来法に よる固体電解コ ンデンサを作製した。  A solid electrolytic capacitor was produced by the conventional method under the same conditions as in Comparative Example 2, except that the sintered body was immersed in a manganese nitrate solution, and the steps of thermal decomposition and re-chemical formation by chemical conversion were repeated six times.
実施例 Ί、 8及び比較例 3 で作製した定格 7 V 2 2 F のタ ン タ ルチ ッブ型固体電解コ ンデンサの等価直列抵抗 E S Rと漏れ電流 L Cを測定した結果を図 1及び図 2に示した。 ここで試料数は実施例 7、 8及び比較例 3 と もに各'乾 _燥温度ごとに 2 0個づつと した。 図 1から明らかなよ うに、 実施例 7及び実施例 8の等価直列抵抗 E S Rは乾燥温度が 1 6 0 °C以上の場合に比較例 3 とほぼ同一かそ れ以下となっている。 また図 2から明らかなように、 実施例 7及び 実施例 8の漏れ電流 L Cは乾燥温度が 2 0 0 °C〜 2 2 0 °Cより も低 ければ、 比較例 3 とほぼ同一かそれ以下となっている。 従って、 乾 燥温度が 1 6 0 °C以上で 2 0 0 ° ( 〜 2 2 0 °C以下であれば、 E S R 及び L C と もに比較例 3 と同等以上の特性が得られている。 そ して 両特性に対して、 1 8 0 〜 2 0 0ての範囲が特に好ま しい乾燥温 度であるこ とも明らかである。 産業上の利用可能性 Equivalent series resistance ESR and leakage current L of the 7 V 22 F rated tantalum solid electrolytic capacitors produced in Examples I and 8 and Comparative Example 3. The results of measuring C are shown in FIGS. 1 and 2. Here, the number of samples in each of Examples 7 and 8 and Comparative Example 3 was set to 20 for each drying temperature. As is clear from FIG. 1, the equivalent series resistance ESR of Examples 7 and 8 is almost the same as or less than that of Comparative Example 3 when the drying temperature is 160 ° C. or higher. Also, as is clear from FIG. 2, the leakage current LC of Examples 7 and 8 is almost the same as or less than that of Comparative Example 3 if the drying temperature is lower than 200 ° C. to 220 ° C. It has become. Therefore, if the drying temperature is above 160 ° C. and below 200 ° C. (up to 220 ° C.), both ESR and LC have the same or better characteristics as those of Comparative Example 3. It is also clear that a range of 180 to 200 for both properties is a particularly preferred drying temperature.
以上のよ うに、 本発明の固体電解質形成用ペース 卜組成物は、 夕 ンタルコ ンデンサ等の固体電解コ ンデンサを初めとする電子部品の 固体電解質を均一に形成するのに適しており、 また固体電解質形成 用ペース ト組成物を用いた固体電解コ ンデンザの製造方法は、 タ ン タルコンデンサ等の固体電解コ ンデンサを短時間で精度よ く製造す るのに有効である。  As described above, the paste composition for forming a solid electrolyte of the present invention is suitable for uniformly forming a solid electrolyte of an electronic component such as a solid electrolytic capacitor such as an indium capacitor. The method for producing a solid electrolytic capacitor using the paste composition for forming is effective for producing a solid electrolytic capacitor such as a tantalum capacitor in a short time and with high accuracy.

Claims

請求 の 範 囲 The scope of the claims
1 . ( A ) 二酸化マ ン ガン粉末、 ( B ) 分散樹脂 および ( C ) 分 散媒を必須成分と して含む固体電解質形成用ペース 卜組成物。 1. A paste composition for forming a solid electrolyte, comprising (A) manganese dioxide powder, (B) a dispersing resin and (C) a dispersing medium as essential components.
2 . ( A ) 〜 ( C ) の必須成分に加えて、 さ らにシラ ン系、 チ夕ネ — ト系、 アルミ ニウム系またはジルコニウム系の ( D ) カ ップリ ン グ剤を成分と して含む請求項 1記載の固体電解質形成用ペース ト組 成物。 2. In addition to the essential components (A) to (C), a silane-based, titanium-based, aluminum-based or zirconium-based (D) coupling agent is also included as a component. 2. The paste composition for forming a solid electrolyte according to claim 1, wherein the paste composition comprises:
3 . ( A ) 二酸化マ ン ガン粉末の平均粒径が 0 . 0 1 〜 5 0 mで ある請求項 1 または 2記載の固体電解質形成用ペース 卜組成物。 3. The paste composition for forming a solid electrolyte according to claim 1, wherein (A) the manganese dioxide powder has an average particle size of 0.01 to 50 m.
4 . 型の結晶構造の二酸化マンガン粉末を含む請求項 1 〜 3のい ずれか 1項記載の固体電解質形成用ベース 卜組成物。 4. The base composition for forming a solid electrolyte according to any one of claims 1 to 3, comprising manganese dioxide powder having a type crystal structure.
5 . ( B ) 分散樹脂がセルロースおよびその誘導体、 ポ リ グ リ コ ー ル類、 ポ リ アク リ ル酸、 ポ リ アク リ ル酸ソ一ダ、 ポ リ アク リルア ミ ド、 ポリ ビニルピロ リ ドン、 ポリ ビニルエーテル、 水溶性アルキ ッ ド、 ポ リ マ レイ ン酸共重合体、 ポ リ エチ レ ンィ ミ ンな らびにポ リ ビ ニルアルコ ールから選ばれる水溶性高分子樹脂である請求項 1 〜 4 のいずれか 1項記載の固体電解質形成用ペース 卜組成物。 5. (B) The dispersing resin is cellulose and its derivatives, polyglycols, polyacrylic acid, polyacrylic acid soda, polyacrylamide, and polyvinylpyrrolidone. A water-soluble polymer resin selected from the group consisting of poly (vinyl ether), polyvinyl ether, water-soluble alkyd, polymaleic acid copolymer, polyethylene imide and polyvinyl alcohol. 5. The paste composition for forming a solid electrolyte according to any one of 4.
6 . ( C ) 分散媒がアルコール系、 エチレングリ コール系およびプ ロ ピレ ングリ コ ール系からなる群から選ばれる少なく とも一種の有 機溶剤も しく は純水、 またはこれらの混合物である請求項 1 〜 5の いずれか 1項記載の固体電解質形成用ペース ト組成物。 6. (C) The dispersion medium is at least one kind of an organic solvent or pure water selected from the group consisting of alcohol, ethylene glycol and propylene glycol, or a mixture thereof. Item 6. The paste composition for forming a solid electrolyte according to any one of Items 1 to 5.
7 . 請求項 1 〜 6のいずれか 1項記載の固体電解質形成用ペース 卜 組成物を用いる固体電解コ ンデンザの製造方法 7. The paste for forming a solid electrolyte according to any one of claims 1 to 6. Method for producing solid electrolytic capacitor using composition
8 . 弁作用金属の粉末から得られる焼結体に陽極酸化皮膜を形成し た後、 または陽極酸化皮膜が形成された焼結体を半導体母液に浸潰 し熱分解した後に、 請求項 1 ~ 6のいずれか 1項記載の固体電解質 形成用ベース 卜組成物に浸漬し乾燥して半導体層を形成する固体電 解コ ンデンサの製造方法。 8. After forming an anodic oxide film on the sintered body obtained from the powder of valve action metal, or after immersing the sintered body with the formed anodic oxide film in a semiconductor mother liquor and thermally decomposing it, claim 1. 7. A method for producing a solid electrolytic capacitor, comprising immersing in the base composition for forming a solid electrolyte according to any one of 6 and drying to form a semiconductor layer.
PCT/JP1997/000974 1996-03-26 1997-03-24 Paste composition for preparing solid electrolyte and method for manufacturing solid electrolytic capacitor using the same WO1997036303A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP6955996 1996-03-26
JP8/69559 1996-03-26

Publications (1)

Publication Number Publication Date
WO1997036303A1 true WO1997036303A1 (en) 1997-10-02

Family

ID=13406237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/000974 WO1997036303A1 (en) 1996-03-26 1997-03-24 Paste composition for preparing solid electrolyte and method for manufacturing solid electrolytic capacitor using the same

Country Status (1)

Country Link
WO (1) WO1997036303A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2489786A (en) * 2011-04-07 2012-10-10 Avx Corp Hermetically sealed solid electrolytic capacitor assembly containing an inert gas

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59197123A (en) * 1983-04-23 1984-11-08 エルナ−株式会社 Electrolytic condenser and its producing method
JPS6047734B2 (en) * 1981-10-12 1985-10-23 日立コンデンサ株式会社 Manufacturing method of solid electrolytic capacitor
JPS63104319A (en) * 1986-10-21 1988-05-09 マルコン電子株式会社 Manufacture of laminated paper-less electrolytic capacitor
JPS63119518A (en) * 1986-11-08 1988-05-24 昭和電工株式会社 Solid electrolytic capacitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6047734B2 (en) * 1981-10-12 1985-10-23 日立コンデンサ株式会社 Manufacturing method of solid electrolytic capacitor
JPS59197123A (en) * 1983-04-23 1984-11-08 エルナ−株式会社 Electrolytic condenser and its producing method
JPS63104319A (en) * 1986-10-21 1988-05-09 マルコン電子株式会社 Manufacture of laminated paper-less electrolytic capacitor
JPS63119518A (en) * 1986-11-08 1988-05-24 昭和電工株式会社 Solid electrolytic capacitor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2489786A (en) * 2011-04-07 2012-10-10 Avx Corp Hermetically sealed solid electrolytic capacitor assembly containing an inert gas
US8947857B2 (en) 2011-04-07 2015-02-03 Avx Corporation Manganese oxide capacitor for use in extreme environments
GB2489786B (en) * 2011-04-07 2015-04-15 Avx Corp Manganese oxide capacitor for use in extreme environments
US9508492B2 (en) 2011-04-07 2016-11-29 Avx Corporation Manganese oxide capacitor for use in extreme environments
US10014120B2 (en) 2011-04-07 2018-07-03 Avx Corporation Manganese oxide capacitor for use in extreme environments

Similar Documents

Publication Publication Date Title
KR101133466B1 (en) Low temperature dryable conductive paste composite for solar cell and printing method using the same
DE102012221861A1 (en) Liquid electrolytic capacitor containing a gelled working electrolyte
JP6094489B2 (en) Solid electrolytic capacitor element and manufacturing method thereof
US6656245B2 (en) Niobium sintered body for capacitor and process for producing same
CN100339917C (en) Niobium stitered body, production method therefor, and capacitor using the same
WO2003038838A1 (en) Ag COMPOUND PASTE
JP4914769B2 (en) Conductive paste for solid electrolytic capacitor electrode and method for producing electrode of solid electrolytic capacitor using the conductive paste
CN1334957A (en) Niobium capacitor and method of manufacture thereof
EP4002405A2 (en) Dry electrode manufacture with composite binder
KR101701317B1 (en) Electro-conductive adhesive using graphene and preparation of electrode using the same
CN1539031A (en) Metal foil consiting of alloy of earth-acid metal and capacitor provided with the same
US7862852B2 (en) Manufacturing method of tantalum condenser
JPH1174158A (en) Solid electrolyte forming paste composition, solid electrolytic capacitor provided therewith, and manufacture thereof
JPH10326521A (en) Paste composition for forming solid electrolyte, and manufacture of electronic part using this paste composition
WO1997036303A1 (en) Paste composition for preparing solid electrolyte and method for manufacturing solid electrolytic capacitor using the same
JP2009094155A (en) Method for manufacturing solid electrolytic capacitor
CN100468586C (en) Tantalum sintered body
CN100338702C (en) Niobium powder for capacitor, sintered body thereof and capacitor using the sintered body
CN1478287A (en) Powder for capacitor, sintered body thereof and capacitor using sintered body
JPH08330191A (en) Solid electrolytic capacitor and its manufacture
Fischer et al. Niobium as new material for electrolyte capacitors with nanoscale dielectric oxide layers
US9704652B2 (en) Method for manufacturing tungsten-based capacitor element
CN100409385C (en) Niobium for compactor and capacitor using sintered niobium body
US9530569B2 (en) Method for manufacturing solid electrolytic capacitor element
CN1471717A (en) Powder for capacitor, sintered body and capacitor using the sintered body

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase