WO1997036217A1 - Method and apparatus for controlling operation of moving mechanism - Google Patents

Method and apparatus for controlling operation of moving mechanism Download PDF

Info

Publication number
WO1997036217A1
WO1997036217A1 PCT/JP1996/000757 JP9600757W WO9736217A1 WO 1997036217 A1 WO1997036217 A1 WO 1997036217A1 JP 9600757 W JP9600757 W JP 9600757W WO 9736217 A1 WO9736217 A1 WO 9736217A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
moving mechanism
path
moving
movement
Prior art date
Application number
PCT/JP1996/000757
Other languages
French (fr)
Japanese (ja)
Inventor
Norihisa Miyake
Toshihiro Aono
Kenjiro Fujii
Yuji Matsuda
Shintaro Hatsumoto
Takayuki Kamiya
Kazuo Kobayashi
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP1996/000757 priority Critical patent/WO1997036217A1/en
Publication of WO1997036217A1 publication Critical patent/WO1997036217A1/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0223Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving speed control of the vehicle

Definitions

  • the present invention relates to an operation control method of a moving mechanism, and more particularly to a method and apparatus for smoothly controlling an operation along a target path in a wheel moving type moving mechanism.
  • the basic control is to set the target position mane at every moment on the motion path, and to control the positioning of the return movement mechanism with respect to the set position.
  • Such an operation control method is widely used not only for mobile robots but also for multi-articulated robots and manipulators.
  • the method of sequentially repeating the positioning with respect to the target position s group (hereinafter, abbreviated as a point group) set every moment is as follows. Considering an arbitrary path, the path is broken. This corresponds to approximation and includes the possibility that the contact direction of the path changes for each target position.
  • the target command method of how to generate and command the target route, and the moving mechanism main body for the given command position g group It is necessary to consider two types of operation control methods, which are operated every moment and follow a given target path.
  • the target route As a command method, a method that cannot guarantee the continuity of the kneading direction itself is used, and the operation control is performed by setting a point cloud on the road as an instantaneous eye position. Therefore, there is a problem that smooth operation cannot be realized.
  • Various methods have been proposed to solve the above problems.
  • the method of generating a route that can perform an essentially smooth operation as a target route command method involves a problem in terms of calculation for the route generation and the like.
  • it is unavoidable that an error occurs in the actual movement position fi and attitude of the moving mechanism with respect to a given route but the method of correcting this difference and following the target route is as follows. It can be said that smooth operation cannot be realized only with the target route generation and command method.
  • a method is used in which a target position is continually set on a target path, and the operation is determined and controlled for this position.
  • this concept is a method of controlling the position and orientation of a path given by a line such as a straight line or a curve, that is, a point on the line sequentially as a target point, and controlling the movement between these points. It does not consider the relationship between sections. This is It can be said that this is also the reason for the need for improvement and ingenuity as shown in each invention.
  • the present invention relates to a method of controlling the operation by correcting the difference between the two.
  • these also have the same problem as the above, basically in that the eye position is set every moment.
  • the present invention has been made in view of this point in terms of SB, and an object of the present invention is to easily realize a method of controlling the operation of a moving mechanism along an eyeball path given by a straight line or a curve. It is to provide a way to do it. When such control is performed, it is necessary to accurately grasp the kinematic characteristics and dynamic characteristics of the moving mechanism itself, but this is generally difficult in many cases. Even if it is possible, it is unavoidable that the characteristics change over time, and there are many practical problems. Another object of the present invention is to realize stable control that does not depend on these characteristics.
  • the purpose of the above is to change the concept of giving the point of view fi, and the attitude at every moment in the conventional motion control method, i.e., to give the actual position of the moving mechanism to the target route, that is, the line itself. This is achieved by considering the amount of deviation from B and determining the amount of operation for controlling the operation of the moving mechanism based on this. In other words, instead of giving the instantaneous target position, the operation amount is obtained based on the distance to the target route, that is, the length of the perpendicular drawn from the current actual position to the route. This is a method of controlling the operation of the moving mechanism in the decreasing direction.
  • the basic technology for motion control is position servo control technology. Therefore, for example, in position control in a two-dimensional plane, for example, a moving mechanism having two degrees of freedom is used, and each of them is subjected to position servo control. In the moving mechanism composed of X axis and Y, each axis is set to the target position, At the "point". Therefore, the moving mechanism operates to converge to the target point by the position servo control for each degree of freedom.
  • control is performed so as to realize an operation of converging the moving mechanism as a whole with respect to a target path, that is, a target “line”.
  • the way of convergence in the direction orthogonal to this route is determined by the distance from the target route, and the control operation according to the original operation speed is performed in the tangential direction of the route. Therefore, the direction of the control operation changes in accordance with the change in the tangential direction of the target route, and the control operation does not depend on the degree of freedom of the moving mechanism itself.
  • this is a method that can be called linear servo with respect to position servo. According to this method, the control works so as to always converge on the target path, and as a result, an operation of being drawn to the target path by the restoring force is realized. Therefore, it is not suitable to specify and control the trajectory itself as a mathematical expression when performing this operation, but it is possible to realize a very natural and smooth operation.
  • the two variables that can be directly controlled to operate the three variables of the in-plane position (two variables) and the attitude as the operation result of the moving mechanism are the moving speed and the steering angle. Since the mechanism has a so-called nonholonomic constraint, this control method is extremely effective. The idea of a nonholonomic mechanism has begun to attract attention in recent years (eg, The Robotics Society of Japan »Vol. 1, Vol. 4, pp. 4148). In addition, the present invention is applicable not only to this type of moving mechanism but also to general mobile devices such as mobile phones.
  • FIG. 1 is an example of a wheel-type mobile robot to which the present invention is applied
  • FIG. 2 is a specific example of a control system of the mobile robot shown in FIG. 1
  • FIG. 3 is an operation control method according to the present invention.
  • FIG. 4 is a block diagram showing an example of a control device for realizing the operation control method of the present invention.
  • FIG. 5 is a block diagram of a steering angle control system as one embodiment of the present invention.
  • FIG. 6 is a diagram for explaining a method of setting a transfer route of a moving mechanism
  • FIG. 7 is a diagram for explaining another embodiment of the present invention
  • FIG. 8 is a surface image obtained by a visual sensor. This is an example. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 shows an example of a moving mechanism to which the embodiment of the present invention is applied.
  • the wheel-type moving mechanism 1 one pair of the four wheels and two wheels 101 and 102 are steered wheels for steering.
  • the present invention is not limited to this type of movement mechanism, but also includes a three-wheel transfer mechanism having only one steerable wheel, or a six-wheel transfer mechanism that performs symmetrical steering in front and rear,
  • the present invention can be applied to various moving mechanisms such as a moving mechanism in which a pair of two driving wheels are independently driven to control a posture and a moving direction. In addition, it is essentially applicable to controlling the position and posture of the hand, such as manipulators and robot arms.
  • FIG. 2 shows an outline of the control system of the moving mechanism shown in FIG.
  • the position and orientation of the moving mechanism itself are determined by the wheel rotation position detectors 101 and 102 set on the wheels 101 and 102 of the moving mechanism 1, and mounted on the moving mechanism 1. It is detected by the loaded optical fiber gyro 105 (details not shown). That is, by accumulating the wheel position signals from the wheel position fi detectors 1011 and 1021 at minute time intervals and the vehicle body posture information signal from the optical fiber gyro 105, the movement mechanism in the plane is accumulated. 1 position and And posture (the direction the car is facing) is recognized.
  • a sensor that detects the rotational speed may be used instead of the rotational position of the wheel.
  • the posture of the vehicle body can be detected even with a gyro other than the optical fiber gyro mouth. Then, it can be obtained by calculating this.
  • the method of obtaining the position and attitude with respect to the ground using only the detector mounted on the moving mechanism itself is a known method called Dead Recogning.
  • the dead reckoning process is performed by the computer 20, and as a result, the estimated position and orientation of the moving mechanism 1 are obtained.
  • the computer 20 describes the target path as, for example, a plurality of segmented guns, generates motion path information corresponding to the current section, and uses the relationship between the estimated position and posture of the moving mechanism 1.
  • the control of the steering angle corresponding to the operation direction and the control of the amount of stepping on the accelerator corresponding to the operation speed are performed based on the method of the present invention described later.
  • the command value of the operating direction is given to the operating direction adjusting mechanism servo control system 30.
  • the steering mechanism 302 is driven via the servo controller 310, and the actual actual operating direction is detected as the operating direction. It is detected by the servo unit 303 and fed back to the servo width unit 301.
  • the movement direction refers to the direction of contact of the actual movement trajectory of the moving mechanism 1. Therefore, it should be noted that the steering angle is different from the steering angle.
  • the instruction of the operation speed is given to the operation speed adjustment mechanism servo control system 40.
  • the speed adjustment mechanism 402 is destroyed through the servo width control 401, and the speed adjustment mechanism position detection is performed. The actual position is detected by 03 and fed back to the servo amplifier 401.
  • the speed adjusting mechanism 402 can be the accelerator pedal itself or the throttle of the engine. It may be a control mechanism. Such a mechanism is not necessary in the case of an electric-efficiency moving mechanism, and the operating speed command to the operating speed adjusting mechanism servo control system 40 is considered to correspond to the pressure supplied to the moving wheel drive motor. I just need. Next, generation of the target operation path of the moving mechanism 1 will be described.
  • FIG. 6 shows a route 81 through which the moving mechanism 1 moves in a section 8 such as a sports ground.
  • a route 81 an appropriate one is selected for each section from a straight line, an arc, a spline curve, a cloth curve, and the like, and determined as a combination thereof.
  • the route 81 is specified as a combination of a straight line and an arc. That is, the sections 812, 813, 815, etc. are straight lines, and the sections 812, 814, 816, etc. are arcs.
  • the end point position of each section is expressed as a relative position from the start point of the section or an absolute position fi. It is better that the coordinate system 80 representing this position is fixedly defined for the section 8 as shown in FIG.
  • the target motion path to be given to the control device fit of the moving mechanism 1 is expressed in a program language format as follows.
  • This parameter consists of two coordinate values when considered on a two-dimensional plane, and three values that match the attitude of the moving mechanism 1 at that point or the target moving direction.
  • the attitude and the target motion direction may be omitted depending on the route generation method. Both are possible.
  • VEL is an instruction that specifies that the following operation is performed using the operand, that is, V0 as the value of speed.
  • LMOVE and CMOVE use a path connected by a straight line (LMOVE) or an arc (CMOVE) from the position and orientation at the start of execution of this instruction to the target point (eg, P1) written as an operand as the target path.
  • LMOVE straight line
  • CMOVE arc
  • the CMOV E command can also be specified by explicitly adding the radius of the arc.
  • the target operation path 81 of the moving mechanism 1 is given by designating the shape, the position and orientation of the end point, and the like for each section in a language format prior to the operation.
  • the target operation path of the moving mechanism is generated by interpreting and executing each command in order. That is, in this case, the generation of the target operation path 81 is performed at the start point of the section path.
  • FIG. 3 shows the concept of the operation control method which is the main part of the present invention. From the current position 10 of the moving mechanism 1, make a perpendicular to the target motion path 9, and set the intersection with the motion path 9 to 90. In this case, the displacement S of the actual transfer mechanism 1 with respect to the original target route 9 is given as the distance between the points 10 and 90. Therefore, a vector U51 which has a direction from point 10 to point 90 and has a magnitude proportional to this distance L is considered as a restoring force for the target path.
  • the proportional coefficient is assumed to be k.
  • This restoring force acts to reduce the deviation of the moving mechanism from the target path and draw the moving mechanism toward the target path.
  • there can be various modifications such as a form in which the size of the vector U is not proportional to the distance L, but a form proportional to the square of the distance, or a form proportional to the square root of the separation.
  • the amount of operation to draw more toward the target path is considered by considering the curvature of the target path and higher-order differential values. It is also conceivable to add.
  • the target path is a circular arc
  • a method of obtaining a vector U corresponding to the restoring force for the target path by taking into account the centripetal force according to the curvature of the target path will improve the ability to follow the curve. Can be increased.
  • the correction amount according to the curvature there is a method based on another concept as described later.
  • V can be considered as a vector 50 having a direction of a tangent line 91 to a curve 9 indicating a route at a point 90. Since the moving mechanism 1 should operate at the speed V along the target path 9, the operation may be determined by the speed vector W52 that combines the two. Now, assuming that the magnitude of the vector W is instructed to coincide with the target moving speed, the following equation is given by using the above-mentioned proportional coefficient k.
  • the target operating direction 0 is given by the following equation.
  • Atan2 is the inverse tangent function with the denominator lfx and the numerator Wy, x and ly are the components of the vector If, and ⁇ is an integer.
  • FIG. 4 shows an embodiment of the control device S for realizing the above method.
  • Information from the optical fiber gyro 105 and the wheel rotation sensors 101, 101 is input to the self-position and posture estimator 201 of the moving mechanism 1, and the position and posture are determined by dead reckoning. presume.
  • information on the target section route is calculated by the target route generator 202, and this result is compared with the above estimated position and posture by the pseudo-difference calculator 203, and the line Is obtained from the point. As a result, a vector U corresponding to the restoring force for the light road is obtained.
  • the target path generator 202 outputs a target operation speed and, if necessary, curvature information of the target path, and these are given to the driving operation amount calculator 204.
  • the driving operation amount calculator 204 calculates the operation speed vector ir, which is the driving operation amount, based on the above formulas, and further calculates the operation direction calculator 310 and the operation speed calculator 4.
  • the target operation direction 0 and the operation speed ⁇ are respectively obtained by 1 0.
  • the target motion direction 0 corresponds to the tangential direction of the actual motion gauge of the moving mechanism 1, and from this and the actual posture information from the optical fiber gyro 105, the steering angle is calculated by the steering angle calculator 320. Find 0.
  • the steering mechanism 302 is driven via the servo amplifier 301.
  • FIG. 2 shows a configuration in which the steering angle 0 itself is subjected to position servo control, the posture of the moving mechanism, that is, the actual operation direction is detected by the optical fiber gyro 105, and this is compared with the target operation direction. It is also possible to build an operation direction servo system that operates to reduce the connection difference.
  • the output of the operating speed calculator 410 shown in FIG. 4 is given to the operating speed adjusting mechanism servo system 40 shown in FIG. 2 to control the operating speed.
  • FIG. 5 shows an example of a block diagram of the above-described operation direction control system.
  • the momentary movement direction of the moving mechanism 1 is nothing less than the posture of the moving mechanism 1 itself.
  • the steering angle ⁇ iW for realizing the desired motion direction 0 is affected by the structure, dynamic characteristics, and operation speed V of the moving mechanism 1, and further, characteristics such as the sliding of the vehicle.
  • the modeling error will not be avoided, and the wheel slip characteristics etc. will also depend on the condition of the running surface Is done. Therefore, these What is necessary is just to configure the servo system of the operation direction as one servo system including the above characteristics.
  • a model of an ideal mechanism in the moving mechanism 1 shown in FIG. 1 is shown by the following equation.
  • D is the distance between the axes of the two pairs of vehicles in the moving mechanism 1, that is, the wheelbase.
  • the posture, that is, the direction, of the moving mechanism 1 as a target is given from the operation direction calculator 310, and the difference from the actual posture obtained from the optical fiber gyro 105 is calculated by the comparator 315.
  • a servo control supplement such as PID is applied to the result, and a steering angle command value is obtained by a process such as adding a feed-feed supplement according to the curvature of the target path by adding, if necessary.
  • This command is transmitted to the steering mechanism 302.
  • the rudder mechanism 302 is assumed to have a servo system for the steering angle itself. As a result, an actual steering angle is realized based on the dynamic characteristics of the mechanism 302.
  • the steering angle of the moving mechanism 1 is determined by the steering angle, and the direction of the actual operation and the actual posture of the moving mechanism 1 are determined based on the kinematic characteristics of the moving mechanism 1 and the condition of the road surface. Although the actual posture and the target posture are not always the same, the feedback is performed by the comparator 315, and the operation control is performed so as to converge the real posture to the target posture.
  • the rudder characteristic 110 of the moving mechanism 1 indicates the relationship between the steering angle of the moving mechanism 1 itself and the operation direction, and does not perform calculation processing as a control algorithm. That is, even if such a mechanism model is not calculated, since the characteristic itself is included in the servo control loop, it has a stable property that it converges to the specified value. This is one of the features of this embodiment of the present invention.
  • the basic idea of the present invention that is, instead of setting a momentary target position on a route and performing location control toward it, the route itself is
  • the idea of performing servo control equivalent to the restoring force is based on the assumption that it is difficult to accurately grasp the interlocking characteristics and dynamic characteristics of the moving mechanism itself.
  • the purpose is to realize stable control that does not depend on it. In other words, the position of the moving mechanism does not always coincide with the target path.
  • the control works so that it is always drawn toward this target path, which makes it possible to control the path.
  • the path itself of the motion when being drawn to the target path by the restoring force is not calculated and generated by the calculator 20. Since the operation is performed based on the feedback control concept similar to that of the servo system, it is not necessary to define and give the trajectory of the operation geometrically. It can also be said that the convergence to can be realized.
  • FIG. 7 shows another embodiment of the present invention.
  • the moving mechanism 1 operates not along the partitioned area in FIG. 6, but along an elongated area 88 such as a road or a passage. Even in such a case, the method of specifying the target path 89 is exactly the same as that of the embodiment shown in FIG. 6, that is, the entire operation is programmed before the operation starts. It is also possible to give it. However, in this embodiment, a visual sensor (not shown) for observing the traveling direction is provided on the moving mechanism 1 operating along the route as shown in FIG. The position and orientation of the appropriate target point are determined from the passable area in front of the moving mechanism 1 by using this.
  • FIG. 8 shows an example of an image obtained by the visual sensor.
  • the vertical direction of the image corresponds to the distance in front of the moving mechanism, and the horizontal direction of the image corresponds to the left and right of the moving mechanism.
  • the area of the passage to be moved is a border Given by 7 1 and border 7 2. Therefore, the passage status in front of the constant sculpture from the moving mechanism 1 can be determined by the boundary line 7K72 at the position of the scanning line 79. Therefore, the midpoint 75 of the intersection point 73 between the scanning line 79 and the boundary lines 71 and 72 is set as the target position, and the tangents of the boundary lines 71 and 72 at the points 73 and 74.
  • the combined direction 78 of the direction vectors 76, 77 is generated as the direction corresponding to the target posture.
  • the target point P i is generated by matching the target position and orientation. By performing this processing at regular time intervals or at regular intervals, an action equivalent to the operation command given in advance in the first embodiment, that is, a command such as LMOVE, is issued according to the situation. It can be operated while generating the sound in real time during the operation of the structure.
  • P11, P12, P13, P14, etc. in FIG. 7 are the target points generated in this way. For example, P13 is a position before the moving mechanism 1 reaches the target point P12. P14 is generated before the moving mechanism 1 reaches the target point P13.
  • the operation amount corresponding to the restoring force corresponding to the deviation amount from the target path and the operation amount corresponding to the operation speed in the direction along the target path in controlling the operation of the moving mechanism are determined. And then, based on this, Adopts a method of controlling the operation by performing servo control on the kneading itself, so that it is possible to provide a method of moving the moving mechanism smoothly along the target path to the cylinder service. There is an effect that there is. Further, by adding a centripetal force according to the curvature of the target operation path, it is possible to easily follow the curve. Further, even when the actual position of the moving mechanism is not on the target road, it is possible to easily match the target operation speed with the actual operation speed.
  • the steering characteristics of the moving mechanism are improved. Even if it is not possible to accurately grasp the steering angle, it is possible to control the steering angle and operate the mechanism in the desired operation direction.

Abstract

A method of, and an apparatus for, smoothly controlling the operation of a moving mechanism, particularly a wheeled one, along a target route. The deviation of the moving mechanism from the target route is calculated, and an operation quantity for controlling the operation of the moving mechanism is decided on the basis of the calculation and a target speed. A steering angle is determined by using this operation quantity and the operation of the moving mechanism is controlled. Because the operation control is executed by using the steering angle in accordance with the deviation from the target route and the target speed, the smooth operation of the moving mechanism can be insured by a simple method.

Description

明 細 害  Harm
移動機構の動作制御方法並びに装 s  Operation control method and device for moving mechanism
技術分野 Technical field
本発明は移動機構の動作制御方法に係り、 特に車輪移動型の移動機構 において目標経路に沿った動作の制御を円滑に行うための方法および装 惺に関する。 背景技術  The present invention relates to an operation control method of a moving mechanism, and more particularly to a method and apparatus for smoothly controlling an operation along a target path in a wheel moving type moving mechanism. Background art
従来の移動機構、 特に車翰型の移動ロボッ ト に対しては、 様々な制御 方式が提案されている。 しかし、 その基本制御は、 動作経路上の時々 刻々の目標位鬣を設定し、 設定された位置に対して緣り返し移動機構を 位置決め制御するこ とである。 このよ う な動作制御方式は、 移動ロボッ トのみならず多閱節型のロボッ トやマニピュレータなどにおいても広く 用いられている ものである。 前述のよ う に時々刻々設定された目檫位 s 群 (以下、 点群と略称する) に対して順次位置決めを繰り返す方法は、 任意の綞路を対象と して考えた場合、 経路を折れ線近似して取り扱う こ とに相当し、 各目標位懨毎に径路の接镍方向が変化する可能性を含んで いる。 また、 特に車輪型の移 »機構の場合は、 一定の速度で動作を行わ せる時に、 移動機構の移動する経路の接線方向を連続とするだけでは円 滑な動作を実現できない。 例えば、 直線から、 これと接する円弧に移行 する場合には、 理論的には操舵角度を瞬間的に変化させなければならず、 現実にこのような動作を行わせることは不可能となる。  Various control methods have been proposed for conventional moving mechanisms, especially for vehicle-shaped moving robots. However, the basic control is to set the target position mane at every moment on the motion path, and to control the positioning of the return movement mechanism with respect to the set position. Such an operation control method is widely used not only for mobile robots but also for multi-articulated robots and manipulators. As described above, the method of sequentially repeating the positioning with respect to the target position s group (hereinafter, abbreviated as a point group) set every moment is as follows. Considering an arbitrary path, the path is broken. This corresponds to approximation and includes the possibility that the contact direction of the path changes for each target position. In particular, in the case of a wheel-type moving mechanism, smooth operation cannot be realized only by making the tangential direction of the moving path of the moving mechanism continuous when operating at a constant speed. For example, when transitioning from a straight line to an arc that touches the straight line, it is theoretically necessary to instantaneously change the steering angle, making it impossible to actually perform such an operation.
以上のごと く 、 移動機構の制御方式に閱しては、 目標経路をどのよ う に生成し指令するかという 目摞指令方法と、 与えられた指令位 g群に対 して移動機構本体を時々刻々動作させ、 与えられた目檩経路に追従させ る動作制御方法の二つを考える必要がある。 従来の方法では、 目標経路 の指令方法として、 その接練方向の連統性自体を保証しえない方法を用 い、 かつ柽路上の点群を時々刻々の目棵位置として動作制御を行うと言 う方法がとられており、 円滑な動作を実現できないという問題がある。 前述のような問邇を解決するために、 さまざまな方法が提案されてい る。 まず、 目標とする経路自体を、 接練方向および接線方向の変化率が 連接となるような形で指令する方法がある。 例えばェムアイティー · プ レス刊、 ロボテイクス · リサーチ論文集第 3卷の 334— 34 0ページ、 金山および三宅による 「 卜ラ ジェク ト リ ー * ジェネ レーシ ョ ン , フ ォ ー . モ ー ビノレ . ロ ボ ッ ト j (γ. anayama, N, Hiyake: Trajectory Generation for Mobile Robots, Robotics Research 3, pp334-340, MIT Press, 1986 )と題する狳文には、 ク ロソィ ド曲練(Clothoid)を用いて移動機構の経路を指令することにより、 動作の円滑化を図った例が示されている。 このクロソィ ド曲練は、 一定 速度で移動する車両において操舵角度の変化速度を一定とした場合の軌 跡として与えられるもので、 高速道路の曲線などにも用いられているも のである。 しかしながら、 前述の方法は、 経路の計画を行うために収束 澳算を要するといった難しい問 S点を有しており、 移動機構のように、 移動目標位置が作業や状況によって変化し、 その都度経路計画を行わな ければならないような場合に対しては改良の余地を残していた。 また、 例えば特開平 1一 2 9 6 3 1 8号においては、 平面の一方向と、 これと 異なる方向とに動作 ->雌し、 それぞれの方向に対して勖作のパターン を時囿関数として生成するといつた方法が提案されている。 この方法は、 勖作の経路自体を正確に生成することを考えずに、 移動機構に対して無 理のない軌道を 2次元面内の独立変数毎に対して生成し、 この合成とし て経路を定めようとするものであり、 動作の目棵となる経路を 2次元面 內の直線ないしは曲線として正確に記述することには適していないもの である。 As described above, in the control method of the moving mechanism, the target command method of how to generate and command the target route, and the moving mechanism main body for the given command position g group. It is necessary to consider two types of operation control methods, which are operated every moment and follow a given target path. In the conventional method, the target route As a command method, a method that cannot guarantee the continuity of the kneading direction itself is used, and the operation control is performed by setting a point cloud on the road as an instantaneous eye position. Therefore, there is a problem that smooth operation cannot be realized. Various methods have been proposed to solve the above problems. First, there is a method in which the target route itself is commanded in such a manner that the rate of change in the kneading direction and the tangential direction is continuous. For example, Robotics Research Transactions, Vol. 3, pp. 334-340, published by M.I.T. Press, Kanayama and Miyake, "Trajectory * Generation, Fo Movinore Robot. J j (γ. Anayama, N, Hiyake: Trajectory Generation for Mobile Robots, Robotics Research 3, pp334-340, MIT Press, 1986) contains a moving mechanism using clothoid kneading (Clothoid). An example is shown in which the movement is smoothed by instructing the path of the vehicle.This cloth kneading is performed as a trajectory when the speed of change of the steering angle is constant in a vehicle moving at a constant speed. It is also used for curves of expressways, etc. However, the above-mentioned method has a difficult point S that requires convergence calculation in order to plan a route. Mobile device There is room for improvement in cases where the target movement position changes depending on the work or situation, as in the case of a structure, and the route planning must be performed each time. No. 6 3 18 proposes a method that operates in one direction of the plane and in a different direction-> female, and generates an operation pattern for each direction as a time-zono function. In this method, a trajectory that is reasonable for the moving mechanism is generated for each independent variable in the two-dimensional plane without considering the generation of the operation path itself accurately. Which is not suitable for accurately describing the path that is the target of the movement as a straight line or a curve on a two-dimensional plane. It is.
これとは別に、 動作制御の方法によって動作の円滑化を目指すという 考え方についても数々の試みがある。 しかし、 これらはあくまでも目標 経路上の点群を対象として順次位置決めを繰り返す方法の範 I»に入るも のであると言える。 例えば、 特開平 5— 1 9 7 4 2 3号においては、 経 路上に設定される目棵点に対応して搮作量を定め、 経路方向と移動方向 との差に基づいて操作量を補正して移動機構の動作制御を行う方法が提 案されている。 またその補正量をファジィルールなどによって定める手 法が示されている。 また、 特開平 2 - 1 0 5 9 0 4号には、 走行経路を 円弧の連なりとみなし、 これに倣うように目標位置を設定して走行させ ることを操り返す方法が提案されている。 発明の開示  Apart from this, there have been many trials on the idea of aiming for smooth operation by a method of operation control. However, they can be said to fall into the range I »of the method of repeating positioning sequentially for the point cloud on the target route. For example, in Japanese Patent Application Laid-Open No. 5-1973243, an operation amount is determined in accordance with a target point set on a route, and an operation amount is corrected based on a difference between a route direction and a moving direction. A method has been proposed to control the movement of the moving mechanism. Also, a method of determining the correction amount by fuzzy rules or the like is shown. Further, Japanese Patent Application Laid-Open No. H2-159904 proposes a method in which a traveling route is regarded as a series of circular arcs, and a target position is set so as to follow the traveling route, and the vehicle is run again. Disclosure of the invention
以上、 説明したように、 目棵経路の指令方法として本質的に円滑な動作 が可能な経路を生成しょうとする方法は、 経路生成のための演算などの 点で困 »な問題を含んでいる。 また、 一般に、 与えられた経路に対して 実際の移動機構の動作位 fi、 姿勢に誤差を生じることは免れないが、 こ の珙差を補正し、 目標経路に対して追従させる方法は、 動作の制御方法 に他ならず、 目標経路の生成、 指令方法のみで円滑な動作を実現できる わけではないと言うことができる。 As described above, the method of generating a route that can perform an essentially smooth operation as a target route command method involves a problem in terms of calculation for the route generation and the like. . Also, in general, it is unavoidable that an error occurs in the actual movement position fi and attitude of the moving mechanism with respect to a given route, but the method of correcting this difference and following the target route is as follows. It can be said that smooth operation cannot be realized only with the target route generation and command method.
また動作制御の方法については、 上記の各方法に代表されるように、 時々刻々の目標位置を目棵経路上に定め、 この位置に対して動作を決定 し制御するという方法がとられている。 しかしながら、 この考え方は、 本来、 直線、 曲艨などの線で与えられる経路に対して位置および姿勢、 すなわち線上の点を順次目標点として動作制御を行う方法であり、 これ ら各点の間の区間相互の閩係を考慮するものではない。 このことが、 上 記各発明に示されるような改良や工夫を必要とする原因でもあると言え る。 特開平 1 - 2 5 9 4 0 4号、 特開平 2— 2 0 5 9 0 4号、 特開平 4 一 2 7 0 4 0 2号などは、 センサを用いて目標軌道と実際の車両位置と の珙差を補正して動作を制御する方法に関するものと言える。 しかし、 これらも基本的には時々刻々の目棵位置を設定するという意味で、 上記 と同様な問題を含むものである。 As for the method of operation control, as typified by the above-described methods, a method is used in which a target position is continually set on a target path, and the operation is determined and controlled for this position. . However, this concept is a method of controlling the position and orientation of a path given by a line such as a straight line or a curve, that is, a point on the line sequentially as a target point, and controlling the movement between these points. It does not consider the relationship between sections. This is It can be said that this is also the reason for the need for improvement and ingenuity as shown in each invention. Japanese Unexamined Patent Publication Nos. Hei 1-25-2904, Japanese Patent Laying-Open Nos. 2-259904, Hei 4-270402, etc. use a sensor to determine a target trajectory and an actual vehicle position. It can be said that the present invention relates to a method of controlling the operation by correcting the difference between the two. However, these also have the same problem as the above, basically in that the eye position is set every moment.
本発明はこのような点に SBみてなされたもので、 その目的とする課題 は、 直線、 あるいは曲線で与えられる目棟経路に沿って、 移動機構の動 作を制御する方法を箇便に実現する方法を提供することにある。 また、 このような制御を行う場合においては、 移動機構自体の運動学特性や動 特性を正確に把握することが必要であるが、 これは一般に困難であるこ とが多い。 また、 可能であったとしても、 特性の経時変化などの影響を 免れず、 実用上の問題は多いと考えられる。 本発明では、 これらの特性 に依存しない安定な制御を実現しょうとすることも目的としている。  The present invention has been made in view of this point in terms of SB, and an object of the present invention is to easily realize a method of controlling the operation of a moving mechanism along an eyeball path given by a straight line or a curve. It is to provide a way to do it. When such control is performed, it is necessary to accurately grasp the kinematic characteristics and dynamic characteristics of the moving mechanism itself, but this is generally difficult in many cases. Even if it is possible, it is unavoidable that the characteristics change over time, and there are many practical problems. Another object of the present invention is to realize stable control that does not depend on these characteristics.
上記目的は、 従来の動作制御方法における目棟点、 すなわち時々刻々 の位 fiおよび姿勢を与える、 という考え方を改め、 目標とする経路、 す なわち線そのものに対して移勖機構の実際の位 Bとのずれ量を考え、 こ れに基づいて移勖機構の動作制御のための搮作量を決定するという方法 をとることにより達成される。 すなわち、 時々刻々の目標位置を与える のではなく、 目標経路に対する距離、 すなわち現在の実位置から経路に 対しておろした垂線の長さに基づいて搡作量を求め、 これを用いて操作 量が減少する方向に移動機構の動作制御を行うという方法である。  The purpose of the above is to change the concept of giving the point of view fi, and the attitude at every moment in the conventional motion control method, i.e., to give the actual position of the moving mechanism to the target route, that is, the line itself. This is achieved by considering the amount of deviation from B and determining the amount of operation for controlling the operation of the moving mechanism based on this. In other words, instead of giving the instantaneous target position, the operation amount is obtained based on the distance to the target route, that is, the length of the perpendicular drawn from the current actual position to the route. This is a method of controlling the operation of the moving mechanism in the decreasing direction.
動作の制御に関する基本的な技術は、 位置サーボ制御技術である。 従って、 通常例えば 2次元平面内における位置制御では、 2つの自由度 を持つ移動機構を用い、 その各々を位置サーボ制御する。 X軸、 Y から 構成される移動機構では、 それぞれの軸を目標位置、 すなわち目棵とな る 「点」 に位 fi決め制御する。 従って、 移動機構はそれぞれの自由度毎 に位置サーボ制御によって目標点に収束するように動作する。 これに対 して、 本発明では、 目棵経路、 すなわち目標となる 「線」 に対して移動 機構を全体として収束させるような動作を実現するように制御する。 こ の場合、 目標経路からの钜離によってこの経路と直交する方向への収束 のさせ方を定め、 経路の接線方向に対しては本来の動作速度に応じた制 御動作を行う。 従って目標経路の接線方向の変化に応じて制御動作の方 向も変化し、 また移動機構自体の持つ自由度にも依存しない制御動作を 行うことになる。 いわば位置サーボに対して、 線サーボとでも呼べる方 法である。 この方法によれば、 目棵経路に常に収束するように制御が作 用し、 結果として目標経路に復元力により引き寄せられるような動作が 実現される。 従って、 この動作を行った際の軌跡そのものを正確に数式 として指定し、 制御することには適さないが、 極めて自然で滑らかな動 作を実現することが出来る。 The basic technology for motion control is position servo control technology. Therefore, for example, in position control in a two-dimensional plane, for example, a moving mechanism having two degrees of freedom is used, and each of them is subjected to position servo control. In the moving mechanism composed of X axis and Y, each axis is set to the target position, At the "point". Therefore, the moving mechanism operates to converge to the target point by the position servo control for each degree of freedom. On the other hand, in the present invention, control is performed so as to realize an operation of converging the moving mechanism as a whole with respect to a target path, that is, a target “line”. In this case, the way of convergence in the direction orthogonal to this route is determined by the distance from the target route, and the control operation according to the original operation speed is performed in the tangential direction of the route. Therefore, the direction of the control operation changes in accordance with the change in the tangential direction of the target route, and the control operation does not depend on the degree of freedom of the moving mechanism itself. In other words, this is a method that can be called linear servo with respect to position servo. According to this method, the control works so as to always converge on the target path, and as a result, an operation of being drawn to the target path by the restoring force is realized. Therefore, it is not suitable to specify and control the trajectory itself as a mathematical expression when performing this operation, but it is possible to realize a very natural and smooth operation.
特に車輪型の移動機構の場合、 移動機構の動作結果として平面内位置 ( 2変数) および姿勢の 3つの変数を操作するために直接制御可能な変 数が移動速度と操舵角度の 2つである、 いわゆる非ホロノ ミ ックな拘束 を有する機構であることから、 この制御方法は極めて有効である。 非ホ ロノ ミ ック機構という考え方は、 近年になって注目されはじめた (例え ば日本ロボッ ト学会 »第 1 1卷 4号、 4 1 一 4 8ページなど) ものであ る。 なお、 本発明はこの種の移動機構のみならず、 一般の移動機搆ゃマ ニピユレ一夕等に対しても適用可能である。 また、 移動機構自体の運動 学特性や動特性を正確に把握することが困難であっても、 サーボ制御系 を経路に対して構築することにより、 これらの特性に依存しない安定な 制御の実現が可能となることも、 本発明の特徴である。 図面の簡単な説明 In particular, in the case of a wheel-type moving mechanism, the two variables that can be directly controlled to operate the three variables of the in-plane position (two variables) and the attitude as the operation result of the moving mechanism are the moving speed and the steering angle. Since the mechanism has a so-called nonholonomic constraint, this control method is extremely effective. The idea of a nonholonomic mechanism has begun to attract attention in recent years (eg, The Robotics Society of Japan »Vol. 1, Vol. 4, pp. 4148). In addition, the present invention is applicable not only to this type of moving mechanism but also to general mobile devices such as mobile phones. Even if it is difficult to accurately grasp the kinematics and dynamic characteristics of the moving mechanism itself, by constructing a servo control system for the path, stable control that does not depend on these characteristics can be realized. What is possible is also a feature of the present invention. BRIEF DESCRIPTION OF THE FIGURES
第 1図は本発明の対象となる車輪型移動ロボッ 卜の一例、 第 2図は第 1図に示す移勳ロボッ トの制御系の具体例、 第 3図は本発明に係る動作 制御方法の概念を示す説明図、 第 4図は本発明の勖作制御方法を実現す るための制御装置の一例を示すブロック図、 第 5図は本発明の一実施例 としての捸舵角度制御系の構成図、 第 6図は移動機構の移勳経路の設定 方法を説明するための図、 第 7図は本発明の他の実施例を説明する図、 第 8図は視覚センサによって得られる面像例を示したものである。 発明を実施するための最良の形態  FIG. 1 is an example of a wheel-type mobile robot to which the present invention is applied, FIG. 2 is a specific example of a control system of the mobile robot shown in FIG. 1, and FIG. 3 is an operation control method according to the present invention. FIG. 4 is a block diagram showing an example of a control device for realizing the operation control method of the present invention. FIG. 5 is a block diagram of a steering angle control system as one embodiment of the present invention. FIG. 6 is a diagram for explaining a method of setting a transfer route of a moving mechanism, FIG. 7 is a diagram for explaining another embodiment of the present invention, and FIG. 8 is a surface image obtained by a visual sensor. This is an example. BEST MODE FOR CARRYING OUT THE INVENTION
第 1図に本発明の実施例の対象となる移動機構の一例を示す。 車輪型 の移動機構 1は、 4輪の内の 1対、 2輪 1 0 1、 1 0 2がステアリ ング のための操舵輪となっている。 本発明は、 このような形の移動機構のみ ならず、 操舵輪を 1轸のみとする 3輪の移勳機構、 あるいは前後に対称 に操柁を行う形式の 6輪の移勳機構、 また、 一対 2個の動輪を独立に駆 動して姿勢および移動方向の制御を行う形式の移動機構など、 さまざま な移動機構に対して適用可能である。 また、 本質的にはマニピュレータ、 ロボッ 卜アームなどの手先の位置、 姿勢の制御に対しても同様に適用可 能なものである。  FIG. 1 shows an example of a moving mechanism to which the embodiment of the present invention is applied. In the wheel-type moving mechanism 1, one pair of the four wheels and two wheels 101 and 102 are steered wheels for steering. The present invention is not limited to this type of movement mechanism, but also includes a three-wheel transfer mechanism having only one steerable wheel, or a six-wheel transfer mechanism that performs symmetrical steering in front and rear, The present invention can be applied to various moving mechanisms such as a moving mechanism in which a pair of two driving wheels are independently driven to control a posture and a moving direction. In addition, it is essentially applicable to controlling the position and posture of the hand, such as manipulators and robot arms.
第 2図に、 第 1図に示す移動機構の制御系の概要を示す。 移動機構自 体の位置および姿勢は、 移動機構 1の車輪 1 0 1および 1 0 2に設 fiさ れた車輪回転位置検出器 1 0 1 1および 1 0 2 1 と、 移動機構 1上に搭 載された光ファイバ一ジャイロ 1 0 5 (詳細は図示せず) によって検出 される。 すなわち、 微小時間間隔毎の車輪位 fi検出器 1 0 1 1、 1 0 2 1からの車輪位置信号および光ファイバジャイロ 1 0 5からの車体姿勢 情報信号を累積することによって平面内における移勖機構 1の位置およ び姿勢 (車体の向いている方向) を認識する。 ここで、 車輪の回転位置 の代わりに回転速度を検出するセンサを用いてもよい。 また、 車体の姿 勢は、 光ファイバジャィ口以外のジャイロであっても検出可能であるこ とは言うまでもなく、 また車体そのものの姿勢ではなく、 操舵車輪の方 向、 すなわちステアリ ング角度の値を検出し、 これを穑算することに よって求めることも出来る。 このように、 移勖機構自体に搭載された検 出器のみを用いて地面に対する位置、 姿勢を求める方法はデッ ドレコニ ング(Dead Recogn ing)と呼ばれる公知の方法である。 本実施例では、 このデッ ドレコニングの処理は計算機 2 0によって行い、 この結果とし て移動機構 1の推定位置および姿勢を求める。 計算機 2 0では、 目標と なる経路を例えばいくつかのセグメン卜の連銃として記述し、 現在の区 間に対応する動作経路情報を生成し、 移動機構 1の推定位置、 姿勢との 関係を用いて、 後述する本発明の方法に基づいて動作方向に対応する操 舵角度の制御および動作速度に対応するァクセル踏み込み量の制御を行 ラ。 FIG. 2 shows an outline of the control system of the moving mechanism shown in FIG. The position and orientation of the moving mechanism itself are determined by the wheel rotation position detectors 101 and 102 set on the wheels 101 and 102 of the moving mechanism 1, and mounted on the moving mechanism 1. It is detected by the loaded optical fiber gyro 105 (details not shown). That is, by accumulating the wheel position signals from the wheel position fi detectors 1011 and 1021 at minute time intervals and the vehicle body posture information signal from the optical fiber gyro 105, the movement mechanism in the plane is accumulated. 1 position and And posture (the direction the car is facing) is recognized. Here, a sensor that detects the rotational speed may be used instead of the rotational position of the wheel. In addition, it is needless to say that the posture of the vehicle body can be detected even with a gyro other than the optical fiber gyro mouth. Then, it can be obtained by calculating this. As described above, the method of obtaining the position and attitude with respect to the ground using only the detector mounted on the moving mechanism itself is a known method called Dead Recogning. In the present embodiment, the dead reckoning process is performed by the computer 20, and as a result, the estimated position and orientation of the moving mechanism 1 are obtained. The computer 20 describes the target path as, for example, a plurality of segmented guns, generates motion path information corresponding to the current section, and uses the relationship between the estimated position and posture of the moving mechanism 1. The control of the steering angle corresponding to the operation direction and the control of the amount of stepping on the accelerator corresponding to the operation speed are performed based on the method of the present invention described later.
動作方向の指令値は動作方向調整機構サーボ制御系 3 0に与えられ、 まずサーボ增幅器 3 0 1を経て操舵機構 3 0 2を駆動し、 その結果であ る実際の動作方向は動作方向検出器 3 0 3により検出されてサーボ增幅 器 3 0 1にフィードバックされる。 こで動作方向とは、 移動機構 1の 実際の動作軌跡の接被方向を措す。 したがって、 操舵角度とは異なるも のであることに注意を要する。  The command value of the operating direction is given to the operating direction adjusting mechanism servo control system 30.First, the steering mechanism 302 is driven via the servo controller 310, and the actual actual operating direction is detected as the operating direction. It is detected by the servo unit 303 and fed back to the servo width unit 301. Here, the movement direction refers to the direction of contact of the actual movement trajectory of the moving mechanism 1. Therefore, it should be noted that the steering angle is different from the steering angle.
また、 動作速度の指会值は動作速度調整機構サーボ制御系 4 0に与え られ、 まずサーボ增幅恭 4 0 1を経て速度調整機構 4 0 2を駆勦し、 速 度調整機構位置検出恭 4 0 3によりその実位置が検出されてサーボ増幅 器 4 0 1にフィー ドバックされる。 ここで、 速度調整機構 4 0 2は、 ァ クセルペダルそのものであっても、 あるいはエンジンのスロッ トル普の 制御機構であってもよい。 電気 ffi動式移勖機構の場合にはこのような機 構は必要なく、 動作速度調整機構サーボ制御系 40に対する動作速度の 指令は、 動輪駆動用 ¾動機に供給する «圧に対応させて考えればよい。 次に、 移動機構 1の目欏動作経路の生成について述べる。 The instruction of the operation speed is given to the operation speed adjustment mechanism servo control system 40. First, the speed adjustment mechanism 402 is destroyed through the servo width control 401, and the speed adjustment mechanism position detection is performed. The actual position is detected by 03 and fed back to the servo amplifier 401. Here, the speed adjusting mechanism 402 can be the accelerator pedal itself or the throttle of the engine. It may be a control mechanism. Such a mechanism is not necessary in the case of an electric-efficiency moving mechanism, and the operating speed command to the operating speed adjusting mechanism servo control system 40 is considered to correspond to the pressure supplied to the moving wheel drive motor. I just need. Next, generation of the target operation path of the moving mechanism 1 will be described.
第 6図は、 スポーツグラウン ドなどの区画 8内を移動機構 1が移動し ていく経路 8 1を示したものである。 経路 8 1は、 直線、 円弧、 スプラ ィン曲線、 クロソィ ド曲線などのうちから区間毎に適切なものを選びそ の組み合わせとして措定する。 第 6図の例では、 最も簡単な場合として 直線と円弧の組み合わせとして経路 8 1を指定している。 すなわち、 区 間 8 1 2、 8 1 3、 8 1 5などは直線、 また区間 8 1 2、 8 1 4、 8 1 6などは円弧である。 各区間の終点位置は、 その区間の始点からの相対 位置または絶対位 fiとして表現する。 この位置を表す座標系 80は、 第 6図に示すように区間 8に対して固定的に定めておく方が良い。  FIG. 6 shows a route 81 through which the moving mechanism 1 moves in a section 8 such as a sports ground. For the route 81, an appropriate one is selected for each section from a straight line, an arc, a spline curve, a cloth curve, and the like, and determined as a combination thereof. In the example of FIG. 6, as the simplest case, the route 81 is specified as a combination of a straight line and an arc. That is, the sections 812, 813, 815, etc. are straight lines, and the sections 812, 814, 816, etc. are arcs. The end point position of each section is expressed as a relative position from the start point of the section or an absolute position fi. It is better that the coordinate system 80 representing this position is fixedly defined for the section 8 as shown in FIG.
ところで、 移動機構 1の制御装 fitに与える目標動作経路は、 プログラ ム言語形式で次のように表される。  By the way, the target motion path to be given to the control device fit of the moving mechanism 1 is expressed in a program language format as follows.
V E L · V 0  V E LV 0
LMO V E P 1  LMO V E P 1
CMO V E P 2  CMO V E P 2
LMO V E P 3  LMO V E P 3
CMO V E P 4  CMO V E P 4
etc.  etc.
ここで、 P i ( i =1,2,3,4,5〜)は第 6図中の目標点に対応し、 これを座 棵系 80を用いて表現したパラメータ群である。 このパラメータは、 2 次元平面で考える場合であれば 2つの座標値、 及びその点における移動 機構 1の姿勢ないしは目標移動方向を合わせた 3つの値からなる。 但し、 姿勢、 目標動作方向については、 経路の生成方法によっては省略するこ とも可能である。 Here, P i (i = 1, 2, 3, 4, 5 to) correspond to the target point in FIG. 6, and are a group of parameters expressed using the coordinate system 80. This parameter consists of two coordinate values when considered on a two-dimensional plane, and three values that match the attitude of the moving mechanism 1 at that point or the target moving direction. However, the attitude and the target motion direction may be omitted depending on the route generation method. Both are possible.
ここで、 V E Lは、 オペラン ドすなわち V 0を速度の値として以下の 動作を行うことを指定する命令である。 また、 LMOVEおよび CMO VEはオペランドとして書かれた目標点 (例えば P1) まで、 この命令の 実行開始時における位置および姿勢から、 直線 (LMOVE) または円 弧 (CMOVE) でつないだ経路を目標経路として生成することを指定 する命令である。 なお、 CMOV E命令には、 円弧の半径を明示的に加 えて指定することも可能である。  Here, VEL is an instruction that specifies that the following operation is performed using the operand, that is, V0 as the value of speed. In addition, LMOVE and CMOVE use a path connected by a straight line (LMOVE) or an arc (CMOVE) from the position and orientation at the start of execution of this instruction to the target point (eg, P1) written as an operand as the target path. This is an instruction to generate. Note that the CMOV E command can also be specified by explicitly adding the radius of the arc.
以上に示すように、 移動機構 1の目標動作経路 8 1は、 動作に先だつ て、 言語形式で区間毎にその形状及び端点の位置姿勢などを指定するこ とによって与えるものである。  As described above, the target operation path 81 of the moving mechanism 1 is given by designating the shape, the position and orientation of the end point, and the like for each section in a language format prior to the operation.
移動機構の制御装置においては、 各命令を頫次解釈し、 実行していく ことによって移動機構の目標動作経路を生成する。 すなわち、 この場合、 目標動作経路 8 1の生成はその区間経路の開始点において行われる。 次に、 第 3図に本発明の中心となる動作制御方法の考え方を示す。 移 動機構 1の現在の位置 1 0から、 目標動作経路 9に対して垂線を下ろし、 動作経路 9との交点を 90とする。 この場合、 本来の目標経路 9に対す る実 の移勳機構 1の位置ずれ Sは点 1 0と点 90との間の距離 として 与えられる。 そこで、 点 1 0から点 90に向かう方向を持ち、 この距離 L に比例する大きさのべク トル U5 1を、 目標経路に対する復元力として考 える。 ここで、 比例係数は kとおく ものとする。 この復元力は、 移動機構 の目標経路からのずれを小さく し、 移動機構を目標経路に対して引き寄 せる作用を果たす。 ここで、 べク トル Uの大きさは距離 Lに比例する形で はなく、 距離の自乗に比例する形、 钜離の平方根に比例する形、 などの 変形例が考えられる。 また、 前述の形だけではなく、 目標経路の曲率や さらに高次の微分値を考慮し、 より目標経路に引き寄せるための操作量 を加味することも考えられる。 例えば、 目棵経路が円弧である場合には、 その曲率に応じた向心力を加味して、 目棵経路に対する復元力に相当す るべク トル Uを求める方法を採れば、 より曲線に対する追従能力を高める ことが可能である。 なお、 この曲率に応じた補正量については、 後述す るように別の考え方による方法もある。 In the control device of the moving mechanism, the target operation path of the moving mechanism is generated by interpreting and executing each command in order. That is, in this case, the generation of the target operation path 81 is performed at the start point of the section path. Next, FIG. 3 shows the concept of the operation control method which is the main part of the present invention. From the current position 10 of the moving mechanism 1, make a perpendicular to the target motion path 9, and set the intersection with the motion path 9 to 90. In this case, the displacement S of the actual transfer mechanism 1 with respect to the original target route 9 is given as the distance between the points 10 and 90. Therefore, a vector U51 which has a direction from point 10 to point 90 and has a magnitude proportional to this distance L is considered as a restoring force for the target path. Here, the proportional coefficient is assumed to be k. This restoring force acts to reduce the deviation of the moving mechanism from the target path and draw the moving mechanism toward the target path. Here, there can be various modifications such as a form in which the size of the vector U is not proportional to the distance L, but a form proportional to the square of the distance, or a form proportional to the square root of the separation. In addition to the shape described above, the amount of operation to draw more toward the target path is considered by considering the curvature of the target path and higher-order differential values. It is also conceivable to add. For example, if the target path is a circular arc, a method of obtaining a vector U corresponding to the restoring force for the target path by taking into account the centripetal force according to the curvature of the target path will improve the ability to follow the curve. Can be increased. As for the correction amount according to the curvature, there is a method based on another concept as described later.
さて、 現在の動作指令速度を Vとすれば、 Vは点 9 0における経路を示 す曲線 9の接線 9 1の方向を持つべク トル 5 0として考えることができ る。 移動機構 1は、 目棵経路 9に沿って速度 Vで動作すべきものであるか ら、 この両者を合成した速度べク トノレ W5 2によって動作を決定すればよ い。 いま、 べク トル Wの大きさが目標の移動速度と一致するように指令す るものとすれば、 前記の比例係数 kを用いて、 次式で与えられる。  Now, assuming that the current operation command speed is V, V can be considered as a vector 50 having a direction of a tangent line 91 to a curve 9 indicating a route at a point 90. Since the moving mechanism 1 should operate at the speed V along the target path 9, the operation may be determined by the speed vector W52 that combines the two. Now, assuming that the magnitude of the vector W is instructed to coincide with the target moving speed, the following equation is given by using the above-mentioned proportional coefficient k.
W=(V+kU).V/ (V+kU)  W = (V + kU) .V / (V + kU)
なお、 実際の合成動作の速さを指定速さに合わせるのではなく、 動作経 路に沿った接線方向の速度成分を指定速度と一致させるといった変形例 も考えられる。 It should be noted that there may be a modified example in which the speed of the tangential direction along the operation route is made to coincide with the specified speed, instead of adjusting the actual speed of the combining operation to the specified speed.
上記の式によって動作速度べク トル》を求める場合、 目標の動作方向 0 は次式によって与えられる。  When the operating speed vector is determined by the above equation, the target operating direction 0 is given by the following equation.
0=atan2(曹 X, 冒 y) + 2n;r  0 = atan2 (Ca X, Y) + 2n; r
ここに、 atan2は分母を lfx、 分子を Wyとする逆正接関数であり、 x、 ly はベク トル If の成分、 また πは整数である。 Where atan2 is the inverse tangent function with the denominator lfx and the numerator Wy, x and ly are the components of the vector If, and π is an integer.
次に、 第 4図に以上の方法を実現するための制御装 Sの実施例を示す。 光ファイバジャイロ 1 0 5および車輪回転センサ 1 0 1 1、 1 0 2 1か らの情報は、 移動機構 1の自己位置姿勢推定器 2 0 1に入力され、 デッ ドレコニングの手法により位置および姿勢を推定する。 一方、 目標経路 生成器 2 0 2によって目棵の区間経路に関する情報が計算され、 この結 果と上記の推定位度、 姿勢とは僞差計算器 2 0 3において比較され、 線 に対する点のずれ量が求められる。 この結果として、 軽路に対する復元 力に相当するべク トル Uが得られる。 また、 目標経路生成器 2 0 2からは、 目標動作速度、 また必要に応じて目標経路の曲率情報が出力され、 これ らは駆動搡作量計算器 2 0 4に与えられる。 駆動搮作量計算器 2 0 4で は、 上記の計算式などに基づいて駆勖操作量である動作速度べク トル irを 計算し、 さらに動作方向計算器 3 1 0、 動作速度計算器 4 1 0によりそ れぞれ目標動作方向 0と動作速度 Ϊ とを求める。 Next, FIG. 4 shows an embodiment of the control device S for realizing the above method. Information from the optical fiber gyro 105 and the wheel rotation sensors 101, 101 is input to the self-position and posture estimator 201 of the moving mechanism 1, and the position and posture are determined by dead reckoning. presume. On the other hand, information on the target section route is calculated by the target route generator 202, and this result is compared with the above estimated position and posture by the pseudo-difference calculator 203, and the line Is obtained from the point. As a result, a vector U corresponding to the restoring force for the light road is obtained. Further, the target path generator 202 outputs a target operation speed and, if necessary, curvature information of the target path, and these are given to the driving operation amount calculator 204. The driving operation amount calculator 204 calculates the operation speed vector ir, which is the driving operation amount, based on the above formulas, and further calculates the operation direction calculator 310 and the operation speed calculator 4. The target operation direction 0 and the operation speed Ϊ are respectively obtained by 1 0.
目標動作方向 0は、 移動機構 1の実際の動作軌眯の接線方向に相当し、 これと光ファイバジャイロ 1 0 5からの実姿勢情報とから、 操柁角度計 算器 3 2 0により操舵角度 0を求める。 以下サーボ増幅器 3 0 1を経て 操舵機構 3 0 2を駆動する。 なお、 第 2図においては操舵角度 0自体を 位置サーボ制御する構成を示したが、 光ファイバジャイロ 1 0 5により 移動機構の姿勢すなわち実動作方向を検出し、 これを目標動作方向と比 較して儡差を少なくするように動作する動作方向サーボ系を構築するこ とも可能である。 また、 第 4図の動作速度計算器 4 1 0の出力は、 第 2 図の動作速度調整機構サーボ系 4 0に与えられ、 動作速度の制御が行わ れる。  The target motion direction 0 corresponds to the tangential direction of the actual motion gauge of the moving mechanism 1, and from this and the actual posture information from the optical fiber gyro 105, the steering angle is calculated by the steering angle calculator 320. Find 0. Hereinafter, the steering mechanism 302 is driven via the servo amplifier 301. Although FIG. 2 shows a configuration in which the steering angle 0 itself is subjected to position servo control, the posture of the moving mechanism, that is, the actual operation direction is detected by the optical fiber gyro 105, and this is compared with the target operation direction. It is also possible to build an operation direction servo system that operates to reduce the connection difference. The output of the operating speed calculator 410 shown in FIG. 4 is given to the operating speed adjusting mechanism servo system 40 shown in FIG. 2 to control the operating speed.
図 5には、 上記の動作方向制御系のブロック図例を示す。 移動機構 1 の時々刻々の動作方向とは、 移動機構 1 自体の姿勢にほかならない。 移 動機構 1の動作方向を制御するためには、 車輪 1 0 1、 1 0 2のステア リング角、 すなわち操舵角度を駆動制御する必要がある。 しかるに、 所 望の動作方向 0を実現するための操舵角度 <iWま、 移動機構 1の構造、 動 特性、 および動作の速さ V 、 さらには車轅の滑りなどの特性に影響され る。 機構の構造、 動特性のモデルを構築し、 これに基づいて制御量の演 算を行っても、 モデル化の誤差をまぬがれない上、 車輪の滑り特性など については、 走行面の状態によっても左右される。 したがって、 これら の特性を包含する一つのサーボ系として動作方向のサーボ系を構成すれ ば良い。 なお、 念のため、 第 1図に示す移動機構 1における理想的な機 構部のモデルを示すと、 これは次式で与えられる。 FIG. 5 shows an example of a block diagram of the above-described operation direction control system. The momentary movement direction of the moving mechanism 1 is nothing less than the posture of the moving mechanism 1 itself. In order to control the operation direction of the moving mechanism 1, it is necessary to drive and control the steering angles of the wheels 101 and 102, that is, the steering angles. However, the steering angle <iW for realizing the desired motion direction 0 is affected by the structure, dynamic characteristics, and operation speed V of the moving mechanism 1, and further, characteristics such as the sliding of the vehicle. Even if a model of the structure and dynamic characteristics of the mechanism is constructed and the control amount is calculated based on this model, the modeling error will not be avoided, and the wheel slip characteristics etc. will also depend on the condition of the running surface Is done. Therefore, these What is necessary is just to configure the servo system of the operation direction as one servo system including the above characteristics. Note that a model of an ideal mechanism in the moving mechanism 1 shown in FIG. 1 is shown by the following equation.
d ^ /dt = . V/D - tan  d ^ / dt =. V / D-tan
ここに Dは移勖機構 1の 2対の車轅の軸間距離、 すなわちホイールベース である。  Here, D is the distance between the axes of the two pairs of vehicles in the moving mechanism 1, that is, the wheelbase.
目棵となる移動機構 1の姿勢、 すなわち方向は、 動作方向計算器 3 1 0より与えられ、 光ファイバジャイロ 1 0 5から得られる実姿勢との差 を比較器 3 1 5により演算する。 この結果に対して、 P I Dなどのサーボ制 御補 Λを施し、 必要に応じて目標経路の曲率に応じたフィー ドフォヮー ド補僳を加算《により加えるなどの処理によって操舵角度指令値を求め る。 この指令は操舵機構 3 0 2に伝えられる。 揀舵機構 3 0 2には操柁 角度自体のサーボ系が構成されているものとする。 この結果として、 こ の機構 3 0 2の動特性に基づき実際の搮舵角度が実現される。 この搮舵 角度によって実瞭の移動機構 1の操舵がなされ、 移動機構 1の機構運動 学特性および路面の状況に基づき、 実動作の方向、 および移動機構 1の 実姿勢が決定される。 この実姿勢と目棵の姿勢とは常に一致するもので はないが、 比較恭3 1 5によりフィードバックが作用し、 実姿勢を目棵 姿勢に収束させるよう動作制御が行われる。 移動機構 1の揀舵特性 1 1 0は、 移動機構 1 自体の搮舵角度と動作方向などの関係を示すもので、 制御アルゴリズムとして計算処理を行うものではない。 すなわち、 この ような機構モデルの計算をしなく とも、 この特性そのものがサーボ制御 ループの中に含まれているため、 指佘値に収束する、 という安定な性 ¾ を有していることが、 本発明のこの実施例の特微の一つである。  The posture, that is, the direction, of the moving mechanism 1 as a target is given from the operation direction calculator 310, and the difference from the actual posture obtained from the optical fiber gyro 105 is calculated by the comparator 315. A servo control supplement such as PID is applied to the result, and a steering angle command value is obtained by a process such as adding a feed-feed supplement according to the curvature of the target path by adding, if necessary. This command is transmitted to the steering mechanism 302. The rudder mechanism 302 is assumed to have a servo system for the steering angle itself. As a result, an actual steering angle is realized based on the dynamic characteristics of the mechanism 302. The steering angle of the moving mechanism 1 is determined by the steering angle, and the direction of the actual operation and the actual posture of the moving mechanism 1 are determined based on the kinematic characteristics of the moving mechanism 1 and the condition of the road surface. Although the actual posture and the target posture are not always the same, the feedback is performed by the comparator 315, and the operation control is performed so as to converge the real posture to the target posture. The rudder characteristic 110 of the moving mechanism 1 indicates the relationship between the steering angle of the moving mechanism 1 itself and the operation direction, and does not perform calculation processing as a control algorithm. That is, even if such a mechanism model is not calculated, since the characteristic itself is included in the servo control loop, it has a stable property that it converges to the specified value. This is one of the features of this embodiment of the present invention.
本発明の基本となる考え方、 すなわち時々刻々の目標位置を経路上に 設定しこれに向かって位匿制御をおこなうのではなく、 経路そのものに 対して復元力に相当するサーボ制御勳作を行わせるという考え方も、 移 動機構自体の機構の連動学特性や動特性を正確に把握することが困難で あることを前提とし、 これらの特性に依存しない安定な制御を実現する ことを目的としたものである。 すなわち、 時々刻々の移動機構の位置は、 必ずしも目標の経路上に一致しているわけではない。 しかし、 サーボ制 御系を経路に対して構築することにより、 常にこの目標経路に向かって 引き寄せられるように制御が作用し、 これによつて経路制御が可能とな ると言える。 また、 この場合に目標経路に対して復元力によって引き寄 せられる際の動作の経路そのものは、 計算器 2 0によって計算し、 生成 しているわけではない。 サーボ系と同様のフィードバック制御の考え方 によって動作を行わせているため、 動作の軌跡自体を幾何学的に定義し て与えるという必要はないにもかかわらず、 サーボ系の動作として滑ら かに目標経路への収束が実現できることも特微であると言える。 The basic idea of the present invention, that is, instead of setting a momentary target position on a route and performing location control toward it, the route itself is On the other hand, the idea of performing servo control equivalent to the restoring force is based on the assumption that it is difficult to accurately grasp the interlocking characteristics and dynamic characteristics of the moving mechanism itself. The purpose is to realize stable control that does not depend on it. In other words, the position of the moving mechanism does not always coincide with the target path. However, by constructing the servo control system for the path, the control works so that it is always drawn toward this target path, which makes it possible to control the path. Also, in this case, the path itself of the motion when being drawn to the target path by the restoring force is not calculated and generated by the calculator 20. Since the operation is performed based on the feedback control concept similar to that of the servo system, it is not necessary to define and give the trajectory of the operation geometrically. It can also be said that the convergence to can be realized.
次に、 第 7図に本発明の他の実施例を示す。  Next, FIG. 7 shows another embodiment of the present invention.
この例では、 移動機構 1は第 6図における区画領域内ではなく、 道路 や通路などのような細長い形状の領域 8 8に沿って動作する。 このよう な場合においても、 目棵勳作経路 8 9の指定を行う方法は、 第 6図に示 した実施例の場合と全く同様とすること、 すなわち、 動作開始前に全体 の動作をプログラミ ングして与えておく ことも可能である。 しかし、 こ の実施例においては、 第 7図のような経路に沿って動作を行う移動機構 1の上に進行方向を ¾視する視覚センサ (図示せず) を備えており、 こ のセンサを用いて、 移動機構 1の前方の通過可能領域の中から適切な目 棵点の位置、 姿勢を求める。  In this example, the moving mechanism 1 operates not along the partitioned area in FIG. 6, but along an elongated area 88 such as a road or a passage. Even in such a case, the method of specifying the target path 89 is exactly the same as that of the embodiment shown in FIG. 6, that is, the entire operation is programmed before the operation starts. It is also possible to give it. However, in this embodiment, a visual sensor (not shown) for observing the traveling direction is provided on the moving mechanism 1 operating along the route as shown in FIG. The position and orientation of the appropriate target point are determined from the passable area in front of the moving mechanism 1 by using this.
第 8図に、 視覚センサによって得られる画像の一例を示す。 画像の上 下方向は、 移動機構からの前方の距離に対応し、 画像の左右方向は移動 機構の左右に対応しているものとする。 移動すべき通路の領域は境界線 7 1及び境界線 7 2によって与えられる。 よって、 移動機構 1から一定 钜雕の前方の通路状況は、 走査線 7 9の位置における境界線 7 K 7 2 によって判断可能である。 従って、 この走査線 7 9と境界線 7 1、 7 2 との交点 7 3、 7 4の中点 7 5を目棵位置とし、 点 7 3、 7 4における 境界線 7 1、 7 2の接線方向ベク トル 7 6、 7 7の合成方向 7 8を目標 姿勢に対応する方向として生成する。 この目棵位置、 姿勢を合わせて目 標点 P i を生成する。 この処理を一定時間間隔または一定距離毎に行う ことによって、 第 1の実施例において事前に与えておいた動作命令に相 当する措会、 すなわち、 L M O V Eなどの命令を、 状況に応じて移動機 構の動作中に実時間で顯次生成して行きながら動作することができる。 第 7図における P 1 1 , P 12, P 13, P 14…などは、 このようにして生成さ れた目標点であり、 例えば、 P 13は移動機構 1が目標点 P 12に到達する 以前に生成され、 P 14は移動機構 1が目榇点 P 13に到達する以前に生成 されるものである。 FIG. 8 shows an example of an image obtained by the visual sensor. The vertical direction of the image corresponds to the distance in front of the moving mechanism, and the horizontal direction of the image corresponds to the left and right of the moving mechanism. The area of the passage to be moved is a border Given by 7 1 and border 7 2. Therefore, the passage status in front of the constant sculpture from the moving mechanism 1 can be determined by the boundary line 7K72 at the position of the scanning line 79. Therefore, the midpoint 75 of the intersection point 73 between the scanning line 79 and the boundary lines 71 and 72 is set as the target position, and the tangents of the boundary lines 71 and 72 at the points 73 and 74. The combined direction 78 of the direction vectors 76, 77 is generated as the direction corresponding to the target posture. The target point P i is generated by matching the target position and orientation. By performing this processing at regular time intervals or at regular intervals, an action equivalent to the operation command given in advance in the first embodiment, that is, a command such as LMOVE, is issued according to the situation. It can be operated while generating the sound in real time during the operation of the structure. P11, P12, P13, P14, etc. in FIG. 7 are the target points generated in this way. For example, P13 is a position before the moving mechanism 1 reaches the target point P12. P14 is generated before the moving mechanism 1 reaches the target point P13.
なお、 通路上に障害物がある場合には、 公知の画像処理技術を用いて この障害物を検出し、 これを回避するような目標位置、 姿勢を生成する ことが可能である。 また、 このような手法は第 6図に示したような区画 領域内を移動する場合においても適用可能である。 勳作に先だって与え られた、 移動経路を指定するための点群、 命令群 (以下オンライ ン経路 データと呼ぶ) との選択については、 通常時にはオンフライン経路デー 夕に基づいて生成された区間経路を目棵勖作経路とみなし、 障害物当が あると判断された場合においてのみ目標経路の修正を行う方法をとるこ とにより対応が可能である。  When there is an obstacle on the passage, it is possible to detect the obstacle using a known image processing technique and generate a target position and a posture to avoid the obstacle. In addition, such a method can be applied to a case where the user moves in a partitioned area as shown in FIG. Regarding the selection of point groups and instructions (hereinafter referred to as online route data) for specifying the travel route given prior to Shunsaku, the section route generated based on the online route data is usually used. This can be dealt with by considering the target route and correcting the target route only when it is determined that there is an obstacle.
本発明によれば、 移動機構の動作制御にあたって目棵とする経路から のずれ量に応じた復元力に相当する操作量と、 目棵経路に沿った方向の 動作速度に対応する操作量とを求め、 これに基づいて経路の直線あるい は曲練自体に対してサーボ制御を行って動作を制御するという方法を採 用しているため、 目標経路に沿って、 移動機構を円滑に動作させる方法 を筒便に提供することが可能であるという効果を有する。 また、 目標動 作経路の曲率に応じた向心力を付加することにより、 曲線への追従を容 易に実現することができる。 また実際の移動機構の位置が目棵柽路上に ない場合であっても、 目標動作速度と実動作速度とを一致させることが 容易に可能である。 さらに、 本発明の方法を基に、 さらに移動機構の姿 勢と目標動作方向との偏差に対応した搡柁角度指令を生成するフィ一ド バック制御系を構築することにより、 移動機構の操舵特性が正確に把握 できない場合であっても、 操舵角度の制御を行い、 目的の動作方向に機 構を動作させることが可能である。 According to the present invention, the operation amount corresponding to the restoring force corresponding to the deviation amount from the target path and the operation amount corresponding to the operation speed in the direction along the target path in controlling the operation of the moving mechanism are determined. And then, based on this, Adopts a method of controlling the operation by performing servo control on the kneading itself, so that it is possible to provide a method of moving the moving mechanism smoothly along the target path to the cylinder service. There is an effect that there is. Further, by adding a centripetal force according to the curvature of the target operation path, it is possible to easily follow the curve. Further, even when the actual position of the moving mechanism is not on the target road, it is possible to easily match the target operation speed with the actual operation speed. Further, based on the method of the present invention, by further constructing a feedback control system for generating a torque angle command corresponding to the deviation between the attitude of the moving mechanism and the target operation direction, the steering characteristics of the moving mechanism are improved. Even if it is not possible to accurately grasp the steering angle, it is possible to control the steering angle and operate the mechanism in the desired operation direction.

Claims

請求の範囲 The scope of the claims
1 . 目標の経路に沿って移動する物体の運動を制御する勖作制御方法に おいて、 目標経路と移動機構との間の距離と目棵移動速度から目標駆動 操作量を求め、 求められた目標駆動操作量に基づいて目標の動作方向を 1. In the operation control method that controls the motion of an object moving along the target path, the target drive operation amount is calculated from the distance between the target path and the moving mechanism and the target movement speed. Target movement direction based on target drive operation amount
5 决定することを特微とする移勖機構の動作制御方法。 5 An operation control method of the transfer mechanism, which is characterized in that it is determined.
2 . 目標の経路に沿って移動する物体の運動を制御する動作制御方法に おいて、 移動機構の位置から目棵経路に対して引いた垂線の長さと目標 移動速度から目標駆動操作量を求め、 求められた目標駆動操作量と目標 経路の局所的な曲率とに基づいて目標動作方向の指令値を決定すること0 を特徴とする移動機構の動作制御方法。  2. In the motion control method that controls the motion of the object moving along the target path, the target drive operation amount is calculated from the length of the perpendicular drawn from the position of the moving mechanism to the target path and the target moving speed. Determining a command value in a target operation direction based on the obtained target drive operation amount and local curvature of a target path.
3 . 特許請求範囲第 1項叉は第 2項に記載の移動機構の動作制御方法 において、 前記目標駆動操作量は複数の値から成るべク トルとして取扱 い、 このノルムを目標移動速度に対応して決定することを特徴とする移 動機構の動作制御方法。 3. The operation control method for a moving mechanism according to claim 1 or 2, wherein the target driving operation amount is treated as a vector including a plurality of values, and the norm corresponds to the target moving speed. A method for controlling the operation of a moving mechanism, characterized in that it is determined by the operation.
5 4 . 特許讅求範囲第 3項に記載の移動機構の動作制御方法において、 前 記目標動作方向および移動機構の実際の姿勢とに基づき目標操舵角度の 制御を行うことを特徼とする移動機構の動作制御方法。 54. In the operation control method of the moving mechanism described in the claim 3 of the patent claim, the movement is characterized in that the target steering angle is controlled based on the target operating direction and the actual posture of the moving mechanism. A mechanism operation control method.
5 . 目標の経路に沿って移動する移勳機構の運動を制御する勳作制御装 fiにおいて、 目標経路と移動体との間の钜離と目棵移動速度から目標駆0 動操作量を求める手段と、 求められた目榡駆動操作量に基づいて目棵の 動作方向を決定する手段とを備えたことを特徴とする移動機構の動 ^制 御装置。  5. In the control unit fi that controls the movement of the transfer mechanism that moves along the target path, the target drive operation amount is calculated from the separation between the target path and the moving object and the target movement speed. A movement control device for a moving mechanism, comprising: means; and means for determining an operation direction of the eye based on the obtained eye drive operation amount.
6 . 目標の経路に沿って移動する移動機構の運動を制御する動作制御装 置において、 前記移動機構の位置から目標経路に対して引いた垂線の長5 さと目標移動速度から目棵隳勖操作量を求める手段と、 求められた目標 駆動操作量と目棵経路の局所的な曲率とに基づいて目標動作方向の指令 値を決定する手段を備えたことを特徴とする移動機構の動作制御装置。 6. An operation control device for controlling the movement of a moving mechanism that moves along a target path, wherein a target operation is performed based on a length 5 of a perpendicular drawn from the position of the moving mechanism to the target path and a target moving speed. Means for calculating the amount of movement, and a command for the target operation direction based on the obtained target drive operation amount and the local curvature of the target path. An operation control device for a moving mechanism, comprising: means for determining a value.
7 . 特許請求範囲第 5項叉は第 6項に記載の移動機構の動作制御装 fi において、 前記目棵駆勳操作量を複数の値として演算する手段と、 この 値を要素とするべク トルのノルムを目標移動速度に対応して決定する手 段を備えたことを特截とする移動機構の動作制御装置。  7. In the operation control device fi of the moving mechanism according to claim 5 or 6, a means for calculating the target drive operation amount as a plurality of values, and a vector having the value as an element. An operation control device for a moving mechanism, characterized by having a means for determining a norm of torque in accordance with a target moving speed.
8 . 特許請求範囲第 7項に記載の移動機構の動作制御装置において、 前記動作方向の措令値と移動機構の実際の姿勢とに基づき目樣操咜角度 を決定し、 制御する手段を備えたことを特徴とする移動機構の動作制御 装置。  8. The operation control device for a moving mechanism according to claim 7, further comprising: means for determining and controlling a desired operation angle based on a command value of the operation direction and an actual posture of the moving mechanism. An operation control device for a moving mechanism, comprising:
PCT/JP1996/000757 1996-03-22 1996-03-22 Method and apparatus for controlling operation of moving mechanism WO1997036217A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1996/000757 WO1997036217A1 (en) 1996-03-22 1996-03-22 Method and apparatus for controlling operation of moving mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1996/000757 WO1997036217A1 (en) 1996-03-22 1996-03-22 Method and apparatus for controlling operation of moving mechanism

Publications (1)

Publication Number Publication Date
WO1997036217A1 true WO1997036217A1 (en) 1997-10-02

Family

ID=14153100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/000757 WO1997036217A1 (en) 1996-03-22 1996-03-22 Method and apparatus for controlling operation of moving mechanism

Country Status (1)

Country Link
WO (1) WO1997036217A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010211827A (en) * 1998-02-13 2010-09-24 Komatsu Ltd Vehicle guidance system
JP2015530635A (en) * 2012-07-12 2015-10-15 ルノー エス.ア.エス. Method for controlling the course of an autonomous vehicle having a handle
JP2017152051A (en) * 2017-06-07 2017-08-31 株式会社日立産機システム Traveling object attached with position detection device for outputting control command to travel control means of traveling object, and position detection device of the same
WO2018061612A1 (en) * 2016-09-29 2018-04-05 本田技研工業株式会社 Vehicle control device
US10261511B2 (en) 2013-03-28 2019-04-16 Hitachi Industrial Equipment Systems Co., Ltd. Mobile body and position detection device
WO2020049809A1 (en) * 2018-09-05 2020-03-12 日本電気株式会社 Motion control device, motion control method, non-transitory computer-readable medium, and motion control system
WO2022018826A1 (en) * 2020-07-21 2022-01-27 日本電気株式会社 Moving body control system, control device, and moving body control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0256006A (en) * 1988-08-22 1990-02-26 Meidensha Corp Running control system for unmanned car
JPH03189805A (en) * 1989-12-20 1991-08-19 Tokimec Inc Method and device for automatic steering vehicle
JPH03248210A (en) * 1990-02-27 1991-11-06 Komatsu Ltd Automatic running system for running vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0256006A (en) * 1988-08-22 1990-02-26 Meidensha Corp Running control system for unmanned car
JPH03189805A (en) * 1989-12-20 1991-08-19 Tokimec Inc Method and device for automatic steering vehicle
JPH03248210A (en) * 1990-02-27 1991-11-06 Komatsu Ltd Automatic running system for running vehicle

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010211827A (en) * 1998-02-13 2010-09-24 Komatsu Ltd Vehicle guidance system
JP2015530635A (en) * 2012-07-12 2015-10-15 ルノー エス.ア.エス. Method for controlling the course of an autonomous vehicle having a handle
US10261511B2 (en) 2013-03-28 2019-04-16 Hitachi Industrial Equipment Systems Co., Ltd. Mobile body and position detection device
WO2018061612A1 (en) * 2016-09-29 2018-04-05 本田技研工業株式会社 Vehicle control device
CN109844669A (en) * 2016-09-29 2019-06-04 本田技研工业株式会社 Controller of vehicle
CN109844669B (en) * 2016-09-29 2022-03-11 本田技研工业株式会社 Vehicle control device
JP2017152051A (en) * 2017-06-07 2017-08-31 株式会社日立産機システム Traveling object attached with position detection device for outputting control command to travel control means of traveling object, and position detection device of the same
WO2020049809A1 (en) * 2018-09-05 2020-03-12 日本電気株式会社 Motion control device, motion control method, non-transitory computer-readable medium, and motion control system
JPWO2020049809A1 (en) * 2018-09-05 2021-08-26 日本電気株式会社 Motion control device, motion control method, motion control program, and motion control system
WO2022018826A1 (en) * 2020-07-21 2022-01-27 日本電気株式会社 Moving body control system, control device, and moving body control method

Similar Documents

Publication Publication Date Title
JP3241564B2 (en) Control device and method for motion control of normal wheel type omnidirectional mobile robot
Koh et al. A smooth path tracking algorithm for wheeled mobile robots with dynamic constraints
JP3286334B2 (en) Mobile unit control device
Braunstingl et al. Fuzzy logic wall following of a mobile robot based on the concept of general perception
JPH11327641A (en) Autonomous robot moving vehicle for tracking route composed of sequence of directed straight line and directed circular arc by using feedback of position and continuous curvature and control method therefor
Faragasso et al. Vision-based corridor navigation for humanoid robots
JPH0324605A (en) Method for controlling travel of moving robot
Xiao et al. Locomotive reduction for snake robots
CN106647770A (en) Field turning path planning and control method used for farm machinery driverless driving
Sekhavat et al. Motion planning and control for Hilare pulling a trailer: experimental issues
Parhi et al. Navigational path analysis of mobile robots using an adaptive neuro-fuzzy inference system controller in a dynamic environment
CN107085432B (en) Target track tracking method of mobile robot
Vans et al. Vision based autonomous path tracking of a mobile robot using fuzzy logic
WO1997036217A1 (en) Method and apparatus for controlling operation of moving mechanism
Bui et al. A simple nonlinear control of a two-wheeled welding mobile robot
Shin et al. Explicit path tracking by autonomous vehicles
Singh et al. Control of closed-loop differential drive mobile robot using forward and reverse Kinematics
Ellekilde et al. Control of mobile manipulator using the dynamical systems approach
Vidhyaprakash et al. Positioning of two-Wheeled mobile robot to control wheelslip by using the wheel rotate planning technique
Bacha et al. Autonomous vehicle path tracking using nonlinear steering control and input-output state feedback linearization
Vilca et al. An overall control strategy based on target reaching for the navigation of an urban electric vehicle
McNinch et al. Application of a coordinated trajectory planning and real-time obstacle avoidance algorithm
Tu A linear optimal tracker designed for omnidirectional vehicle dynamics linearized based on kinematic equations
Cservenák Path and trajectory planning for an automated carrier vehicle equipped with two conveyor belts used in manufacturing supply
Dai et al. Path planning and force control of a 4wd4ws vehicle

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase