WO1997035984A1 - Plant phosphate transporter gene and method of regulating plant growth with said gene - Google Patents

Plant phosphate transporter gene and method of regulating plant growth with said gene Download PDF

Info

Publication number
WO1997035984A1
WO1997035984A1 PCT/JP1997/000975 JP9700975W WO9735984A1 WO 1997035984 A1 WO1997035984 A1 WO 1997035984A1 JP 9700975 W JP9700975 W JP 9700975W WO 9735984 A1 WO9735984 A1 WO 9735984A1
Authority
WO
WIPO (PCT)
Prior art keywords
ala
leu
phe
gly
thr
Prior art date
Application number
PCT/JP1997/000975
Other languages
French (fr)
Japanese (ja)
Inventor
Norihiro Mitsukawa
Satoru Okumura
Yumiko Shirano
Daisuke Shibata
Original Assignee
Mitsui Plant Biotechnology Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Plant Biotechnology Research Institute filed Critical Mitsui Plant Biotechnology Research Institute
Priority to AU19450/97A priority Critical patent/AU1945097A/en
Priority to JP53424197A priority patent/JP3474882B2/en
Publication of WO1997035984A1 publication Critical patent/WO1997035984A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Definitions

  • the present invention relates to the field of genetic engineering. In particular, it relates to the production of useful transgenic plants using genetic engineering.
  • Plant growth such as germination, flower bud formation, and flowering, can be said to be controlled by various environmental factors such as daylight hours, hormonal conditions, temperature, and nutritional conditions. Therefore, it is possible to regulate the growth of plants by regulating these environmental factors, and various techniques have been considered based on this idea.
  • short-day plants such as chrysanthemums and kalanchoe are illuminated after sunset or midnight to suppress flowering.
  • Techniques for blocking and promoting flowering are being implemented in flower cultivation.
  • the early flowering time has been applied to lilies and tulips by low-temperature treatment.
  • the promotion of flowering by gibberellin treatment for long-day plants has been put to practical use.
  • the genes for the inorganic phosphate transport protein localized in the plasma membrane are expressed in yeast (Bun-ya M. et al. Mol. Cell. Biol. 11, 3229-3238 (1991)) and erawaw. WK Gene 153, 135-139 (1995)) and VA mycorrhizal fungi (Harrison MJ et al. Nature, 378, 626-629 (1995)) confirmed the function of the gene product. Furthermore, a partial cDNA showing homology with the amino acid sequence of yeast inorganic phosphate transposase was isolated in rice (GenBank D25132 and D25087) and Arabidopsis (GenBank Z33763), and cDNA was isolated from potato. (Leggewie G. et al. Abstracts of 10th International Workshop on Plant Membrane Biology (1995) p.R32).
  • Phosphate is an important nutrient for plants and is closely related to plant growth, so isolating the gene and elucidating its structure is important in establishing technologies to control plant growth. It will be a great step. Furthermore, if the gene can be introduced into a plant and expressed in the plant, it will be an important technique for controlling plant growth.
  • an object of the present invention is to isolate a novel phosphate transport protein gene and elucidate its structure.
  • Another object of the present invention is to introduce the gene into a plant to improve the ability of the plant to absorb phosphate, thereby increasing the growth of the plant.
  • the present inventors have remarkably enhanced the phosphate absorption capacity of the transformed tobacco cultured cells by incorporating the gene into a high expression vector and transforming the tobacco cultured cells, and Was successfully increased.
  • (6) a protein described in any of SEQ ID NOs: 9 to 13 or a protein in which a part of the amino acid sequence of the protein has been mutated by deletion, substitution, or insertion of another amino acid;
  • a method for producing a transformed plant comprising the steps of: introducing the DNA according to any one of (1) to (3) into a cell; and producing a plant from the transformed cell.
  • a method for promoting phosphate uptake in a plant or a plant cell comprising introducing the DNA according to any one of (1) to (3) into a plant cell.
  • the amino acid sequence of IPT1 is shown in SEQ ID NO: 9
  • the amino acid sequence of IPT4 is shown in SEQ ID NO: 10
  • the amino acid sequence of IPT3 is shown in SEQ ID NO: 11
  • the amino acid sequence of IPT2 is shown in SEQ ID NO: 12.
  • SEQ ID NO: 13 describes the amino acid sequence of IPT5.
  • the DNA (eg, cDNA and genomic DNA) of the present invention may be, for example, a nucleotide sequence encoding a phosphate transporter or a deduced amino acid sequence of a phosphate transporter (eg, SEQ ID NOs: 1 to 6).
  • mRNA was extracted from Arabidopsis thaliana plants two weeks after germination without excessive administration of phosphate
  • cDNA was synthesized using reverse transcriptase, and double-stranded by polymerase reaction. Is inserted into a commercially available vector to transform Escherichia coli, thereby preparing a cDNA library.
  • Probes used for screening include partial-length cDNAs of transgenic plants such as Arabidopsis registered in sequence databases such as GenBank and DDBJ, and Arabidopsis Biological Resource Centerj (in the US, Ohio State University). Or using a pair of oligonucleotide primers based on the partial length cDNA sequence to amplify the DNA fragment by the PCR method using Arabidopsis chromosome DNA etc. .
  • the base sequence can be appropriately determined by a conventional method such as the Maxam-Gilbert method or the Sanger method.
  • the nucleotide sequences of the DNA of the present invention thus obtained are shown in SEQ ID NO: 1 and SEQ ID NO: 2.
  • the gene shown in SEQ ID NO: 1 was named IPT1, and the gene shown in SEQ ID NO: 2 was named # 4.
  • Translation product of the gene of SEQ ID NO: 1 include yeast (Bun-ya M. et al. Mol. Cell. Biol. 11, 3229-3238 (1991)), Neurospora crassa (Versaw WK Gene 153, 135-139 (1995)), and VA bacteria. Shows 34%, 34%, and 43 homology with the amino acid sequence of the phosphate transporter gene isolated from the root fungus (Harrison MJ et al. Nature, 378, 626-629 (1995)), respectively. Was.
  • the translation product of the gene of SEQ ID NO: 2 (the protein described in SEQ ID NO: 10) is 32%, 30%, and 40%, respectively, of the amino acid sequence of the yeast transport protein of yeast, Akapankabi, and VA mycorrhizal fungi. Showed homology.
  • the hybridisation method using these cDNA sequences is used to obtain DNA from the chromosomal DN DN library prepared using the P1 phage vector, ⁇ phage vector, etc.
  • the phosphotransport gene can be isolated from the chromosomal DNA by PCR using chromosomal DNA and the like with a pair of oligonucleotide primers based on the PCR.
  • a region that controls the expression of the gene of the present invention is included upstream of the coding region of the gene of the present invention.
  • These regions include at least a part of the sequence represented by base numbers 1 to 1944 of SEQ ID NO: 3, and at least a part of the sequence represented by base numbers 1 to 2560 of SEQ ID NO: 4.
  • a region including at least a part of the sequence represented by 80 is exemplified.
  • the protein of the present invention can be prepared as a recombinant protein by, for example, inserting the DNA of the present invention into an appropriate vector, introducing the vector into a host, and purifying from the host.
  • Examples of the host used for producing the protein of the present invention include Escherichia coli and yeast.
  • the vector used for producing the protein of the present invention is not particularly limited.
  • the host is rspodoptera frugiperdaj
  • pBacPAK8 manufactured by Clontech
  • the host is a strain derived from Escherichia coli BL21.
  • pET vector series (Stratagene)
  • pESP-1 (Stratagene) when the host is yeast SP-Q01.
  • Purification of the recombinant protein of the present invention from the transformant thus obtained is performed, for example, when the protein of the present invention is expressed as a fusion protein with a label such as 6X histidine- ⁇ -glu-thione S-transferase.
  • the labeling can be performed by affinity chromatography for the label.
  • Phosphoric acid is converted using the active hydrogen ion concentration gradient inside and outside the cell.
  • the function of transporting from outside the cell to the inside of the cell can be detected, for example, by the method described in the literature (Berhe, A., et al. Eur. J. Biochem. 227, 566-572 (1995)). is there.
  • All or a part of the DNA of the present invention is ligated so as to be transcribed in the forward direction with a promoter that can be expressed in plants, such as the CaMV (cauliflower mosaic virus) 35S promoter.
  • a promoter that can be expressed in plants
  • CaMV cauliflower mosaic virus
  • By transforming a plant with recombinant DNA containing the protein it is possible to produce a plant that expresses the phosphotransport protein, and it is also possible to produce so-called co-repression (a gene encoding a protein is transcribed in the forward direction).
  • a method in which the expression of the endogenous protein is suppressed by introducing a recombinant DNA to produce a plant in which the expression level of the protein is suppressed.
  • a vector used for plant transformation is a vector such as PBI121.
  • all or a part of the DNA of the present invention is bromo-ligated so as to be transcribed in the reverse direction, and a recombinant DNA containing the DNA is transformed into a plant to express so-called antisense RNA, Plants in which the amount of phosphate transport protein expression is suppressed can be produced.
  • the gene of the present invention can be introduced into, for example, herbaceous dicotyledonous plants such as Arabidopsis tobacco, monocotyledonous plants such as rice and corn, and woody plants such as lucifera poplar.
  • herbaceous dicotyledonous plants such as Arabidopsis tobacco
  • monocotyledonous plants such as rice and corn
  • woody plants such as lucifera poplar.
  • Transformation of plant cells can be carried out by conventional methods such as particle gun method, electoral poration method (electroporation method), and agropacterium infection method such as vacuum infiltration. This can be done by introducing DNA into the body.
  • Transformed plants or transformed plant cells incorporate a drug resistance gene for kanamycin or hygromycin into the recombinant DNA used for transformation, and are cultivated or cultured in a solid agar medium or liquid medium containing these drugs. To do It is possible to maintain more stable.
  • FIG. 1 shows the analysis of the copy number of the Arabidopsis thaliana phosphate transporter overnight gene.
  • the IPT1 gene cDNA (pIPTC19) was used as a probe and washed under conditions that hybridize with the homolog gene.
  • FIG. 2 shows a restriction enzyme map of an Arabidopsis thaliana phosphate transporter gene genomic clone. From the top, the restriction maps of the IPT1, IPT3, and IPT2, IPT4, and IPT5 genes are shown. The box indicates the position of the code area.
  • Figure 3 shows the location of the phosphate transporter gene on the Arabidopsis chromosome. Each gene sits at the position of the arrow. The numbers at the top indicate chromosome numbers, and the horizontal lines indicate the positions of known RFLP markers.
  • FIG. 4 shows the expression analysis of the phosphate transport gene (IPT1) in each organ of Arabidopsis thaliana. The tissue from which RNA was extracted is shown at the top, and the position of the transcript is indicated by an arrow ( ⁇ ).
  • IPT1 phosphate transport gene
  • FIG. 5 shows a transformation construct containing the phosphate transbo overnight gene (IPT1 gene).
  • the upper panel shows the restriction enzyme map and gene structure of the IPT1 gene.
  • the black portions indicate the untranslated transcription regions, and the white boxes indicate the coding regions.
  • the lower part shows the structure of the T-DNA region of P35S-IPT1.
  • pnos indicates nopaline synthase gene promoter
  • indicates neomycin phosphotransferase (kanamycin resistance gene)
  • tnos indicates nopaline synthase gene terminator.
  • FIG. 6 shows the relationship between the expression level of the phosphate transgenic protein and the phosphate absorption rate.
  • PCR Polymerase Chain Reaction
  • pIPT-PCil pBluescript II SK + (Stratagene)
  • the nucleotide sequence was determined from both ends using "ABI 373A DM sequencer ⁇ (Perkin-Elmer)" according to the attached instructions. As a result, a 251 bp PCil product and a partial cDNA of Arabidopsis thaliana were determined. It was confirmed that 248 bp of the nucleotide sequence was matched.
  • Arabidopsis inorganic phosphate transporter hereinafter simply referred to as "IPT"
  • IPT Arabidopsis inorganic phosphate transporter
  • the hybridization was performed using the insert (251 bp) of pIPT-PCR as a probe.
  • the hybridization was performed according to the method of Liu et al. (Liu Y.-G. et al. Theor. Apple. Genet. 84, 535-543 (1992)).
  • the washing conditions were as follows: 0.1X SSC, 0.1, SDS, 62 ° C. / 00975
  • pIPTC19 11 cDNA clones were obtained (hereinafter, this clone is referred to as “pIPTC19”) (SEQ ID NO: 1).
  • Arabidopsis Coldup stage
  • P1 genomic library Liu Y.-G. et al. Plant J. 7, 351-358 (1995)
  • Arabidopsis thaliana Colombia strain
  • ZapII Genome library-1 (Stratagene) was used.
  • screening was performed again using the PIPTC19 insert as a probe.
  • the screening conditions were hybridization at 55 ° C, and washing was performed under conditions of 0.2X SSC, 0.1% SDS and 42 ° C to select positive clones. Screening about 200,000 plaques resulted in 10 positive clones.
  • Genome Southern blotting was performed on Arabidopsis thaliana Columbia strains (lane 1, 3, 5, 7, 9) and Landsberg erecta strain (lane 2, 4, 6, 8, 10). DNA prepared from BamHI (lanes 1, 2), Dral (lanes 3, 4), EcoRI (lanes 5, 6), EcoRV (lanes 7, 8), and Hindi II (lanes 9, 10) went. Both ends in the figure are size markers. As a result, it was confirmed that Arabidopsis thaliana IPT has a large number of homologous genes (Fig. 1).
  • Figure 2 shows the restriction map of the whole genome clone.
  • the entire nucleotide sequences of PIPTGZ33 and pIPTGZ37 were determined.
  • SEQ ID NO: 3 shows the determined nucleotide sequence of the IPT1 gene.
  • pIPTGP2 is a subclone obtained by inserting a fragment of about 7.5 kb obtained by cutting the insert of 92C10 with Pstl into pBluescript.
  • the determined nucleotide sequences of the IPT2 gene and the IPT3 gene are shown in SEQ ID NO: 4. As expected, each had at least one intron at each location.
  • the 0RF of IPT2 was located in the same direction downstream of the 0RF of IPT3, and the distance between the ORFs of both genes was about 5 kb.
  • the base sequence of pIPTGZ20 was determined for the portion including the upstream of the coding region and the entire 0RF.
  • the nucleotide sequence of the determined IPT4 gene is shown in SEQ ID NO: 5. No intron was found in the translated region, but an approximately lkbp intron was present in the untranslated region.
  • the upstream of the coding region was about 2 kbp.
  • the entire nucleotide sequence of pIPTGZ32 was determined.
  • the base of the determined IPT5 gene The 14 sequence is shown in SEQ ID NO: 6.
  • No cDNA has been isolated for the IPT5 gene, but at least two introns may be present in 0RF.
  • the upstream of the coding region of the PIPTGZ32 clone was about 2 kb.
  • the amino acid sequence of each gene deduced from the analysis of cDNA and genomic clones was compared with the amino acid sequence of the phosphoric acid transport gene of yeast, A. niger and VA mycorrhizal fungi.
  • the homology of the amino acid sequences of the Arabidopsis thaliana genes to the yeast and A. niger genes was around 30%.
  • the amino acid sequences of the Arabidopsis thaliana showed homology of about 75% or more. In particular, the homology between IPT1 and IPT2 was high, at 983 ⁇ 4.
  • chromosome mapping was performed to determine the distribution of the five isolated IPT genes on the chromosome.
  • the three IPT genes (IPT1, ⁇ 2, ⁇ 3) are located on the lower arm of chromosome 5, and the ⁇ 4 and ⁇ 5 genes are located on the lower arm of chromosome 2. Then t. The distance between the two genes, IPT4 and IPT5, was 5.4 cM ( Figure 3). This locus does not match the locus of pho2 (Delhaize E. et al., Plant Physiol, 107 (1995) 207-213), which has been reported as an absorption mutant that over-absorbs phosphate. It was close.
  • Example 5 Expression analysis of phosphate transporter gene in plant tissue Among the genes of the present invention, cDNA was isolated, and Northern blot analysis was also performed on the IPT1 ⁇ gene that is surely expressed in plants.
  • RNA was prepared from the roots, rosette leaves, stems, cowline leaves, and flowers of Arabidopsis thaliana grown for 6 weeks, electrophoresed, and transferred to a nylon membrane to prepare a fill.
  • PIPTC19 which is the cDNA of the IPT1 gene
  • hybridization was performed, and washing was performed under conditions of 0.1X SSC, 0.13 ⁇ 4SDS, and 65 ° C. Transcripts were detected.
  • the IPT1 gene was specifically expressed in the root (FIG. 4).
  • the construct for overexpression was obtained by inserting the Sstl l-EcoRI fragment of pKI121 (pBI121 (Clonetech)) into the Sstl and EcoRI sites of pGA643 (Pharmacia), and the intermediate product
  • the GUS gene of the Brassmid constructed by inserting the Sail fragment of pACYC177 (accession no.
  • the blunted Sac I-Hind 111 fragment (including exon 2, intron 2, and exon 3) of the genomic clone was ligated (Fig. 5) ⁇
  • the coding region of the IPT1 gene containing the second intron was placed downstream of the cauliflower mosaic virus 35S (CaMV35S) promoter. 16 and transferred to cultured tobacco BY-2 cells. Gene transfer was performed using a particle gun, and the vector PKI121 was also introduced into cultured cells as a control. Transformants were selected on a medium containing kanamycin to obtain a large number of transgenic strains. In order to select a cultured cell line in which the introduced gene was expressed, 16 P35SIPT1-introduced lines were cultivated in turbidity and Northern analysis was performed using IPTlcDNA as a probe.
  • CaMV35S cauliflower mosaic virus 35S
  • the transformed tobacco BY-2 cultured cells were cultured in suspension, and 100 ml of a modified MS medium (2.5 mM pho sphate, 0.1 mg / il myo-inositol, 33 ⁇ 4 sucrose, pg / mithiamine-HC1, 0.2 ⁇ g / g Rotational culture at 25 ° C and 100 pm in ml 2,4-D and 2 ⁇ g / ml glycine, 50 ig / ml kanamycine, pH 5.7), and subculture 3 ml of a saturated culture solution every 7 days did.
  • a modified MS medium 2.5 mM pho sphate, 0.1 mg / il myo-inositol, 33 ⁇ 4 sucrose, pg / mithiamine-HC1, 0.2 ⁇ g / g Rotational culture at 25 ° C and 100 pm in ml 2,4-D and 2 ⁇ g / ml glycine, 50
  • Cultured cells used for the measurement of phosphate absorption were obtained by transferring the cells 7 to 9 days after the passage into the above medium without kanamycin to a new MS liquid medium and having passed 23 to 27 hours. Cell culture and more attracted to the natural sedimentation, free phosphoric acid medium containing squeaking de cyclohexane of 100 ⁇ M (5mM MES-Tris (pH6.0) , 20.6mM NH, N0., 18.8mM 3.0mM CaCb ⁇ H 2 0 , 1.5 mM MgSO. ⁇ H! 0, 100 iM cycroheximide, 3% sucrose) 4 times.
  • the amount of Pi in the medium was measured by liquid scintillation counting (Beckman), and the amount of Pi absorbed by the cultured cells was calculated.
  • the cell concentration (g fwt / ml) of the cell suspension was measured using a 0.45 im centrifugal filtration tube (UFC40HV25, manufactured by Millipore) from 2 ml of the cell suspension after the absorption measurement, and the wet weight was measured. was calculated.
  • UOC40HV25 0.45 im centrifugal filtration tube
  • the phosphate absorption rate was measured, and the expression of the introduced phosphate transpo-yuichi gene was performed by Northern analysis (Fig. 6).
  • the phosphate absorption rate of the cultured cells was measured at the initial phosphate concentration of 100 M in pre-culture in a high phosphate medium and in the presence of a protein synthesis inhibitor. As a result, the phosphate absorption rate of the overexpressing cells was 193 to 596 nmol Pi / h / g fwt, and the absorption activity was correlated with the expression level of IPTlmRNA.
  • the phosphate absorption rates of the control cells ranged from 101 to 203 nniol Pi / h / g fwt (Fig. 6).
  • the cultured cells of the stationary leaf aids are filtered with a cell strainer (Cell Strainer), and 0.5 g of the cells are weighed into a 60-thigh disposable dish. This was subcultured in a modified MS medium (-Km, 100 ml). After 24 hours, the culture was filtered through a cell filter, washed with 10 ml of a phosphate-free MS medium (phosphate-starved medium), weighed and filtered into a phosphate-starved medium (-Km , 100ml). Subculture was performed by flowing 15 ml of the medium from the opposite side of the cell strainer into the flask. Thereafter, the weight of the cell strainer was measured again to calculate the amount of cells that had been transferred.
  • a cell strainer Cell Strainer
  • the cell weight was measured by the following method.
  • Set “ADVANTEC” made by T0Y0) ⁇ .3 filter paper (55 thighs) in the filter holder (glass filter base), moisten the filter paper with 10 ml of fresh phosphoric acid starvation medium, and aspirate and then moisten the filter paper.
  • the weight of the filter paper was measured.
  • the filter paper was set again, and the culture solution cultured for 4 days was subjected to suction filtration, and the weight of the filter paper was measured. From this value, the cell growth amount (wet weight) was calculated.
  • the weight of the filter paper after drying overnight in a desiccator was measured, and the weight of the dried filter paper was subtracted to obtain the dry weight.
  • the measurement was performed on the growth amount of the cells under the phosphate starvation state for two lines (Pll, P38) and one control line (C3) of the cells into which the phosphate transfer gene was introduced.
  • the amount of phosphoric acid absorbed before the phosphate starvation treatment affected the cell growth amount after the phosphate starvation treatment. From studies on conventional cultured cells, it is known that the increase in the weight of cultured cells and the amount of nitrogen and carbon absorbed are in parallel. It is also known that phosphate absorption rapidly absorbs phosphoric acid in the culture medium at the initial stage of growth and does not absorb phosphate during the latter half of growth. In the transformant produced in this example, the phosphate absorption rate was remarkably increased, so that when the transformant was cultured for 24 hours in a medium containing a normal amount of phosphate, more phosphate was obtained than in the control cells. It was considered that this absorbed and accumulated, and this reflected the growth amount after transplantation to the phosphate-starved medium. According to this example, it was found that it is possible to increase the growth amount of a plant by manipulating one gene.
  • a phosphate transport protein gene of Arabidopsis thaliana was isolated and its structure was elucidated. Further, according to the present invention, it has become possible to increase the phosphate absorption capacity of tobacco cultured cells by introducing the Arabidopsis phosphate transport protein gene into tobacco cultured cells. Therefore, according to the present invention, for example, it is possible to improve the growth of a plant in a poorly phosphate-neutral soil such as an acidic soil with a small amount of phosphoric acid in a form usable by the plant.
  • Sequence type nucleic acid
  • Organism name Arabidopsis thaliana
  • Sequence type nucleic acid
  • Organism name Arabidopsis thai i ana
  • ATA ATC CTG ATG GCT GGT GCT ATC CCT GCG GCT ATG ACG TAT TAC TCA 726 lie lie Leu Met Ala Gly Ala lie Pro Ala Ala Met Thr Tyr Tyr Ser
  • Sequence type nucleic acid
  • Organism name Arabidopsis thal iana
  • Trp Arg lie He Val Met Phe Gly Ala Leu Pro Ala Ala Leu Thr
  • GGC TAC TGG TTC ACA GTT GCG TTT ATT GAT ACC ATT GGA AGG TTT AAG 3495 Gly Tyr Trp Phe Thr Val Ala Phe lie Asp Thr lie Gly Arg Phe Lys
  • Sequence type nucleic acid
  • IPT2 Characteristic symbol CDS 40 Location: 9662.. 10832
  • IPT2 Characteristic symbol intron
  • GCTCGAGAGA TTAGTCACTA TTTCGACCTA GATTATGGTT ACTTAAGATA CTGATATCTA 3071 GACGATTATA TATAG G TTT TGG CTC GGG TTT GGC ATT GGA GGT GAC TAC 3120
  • Trp Arg lie Val Met Phe Gly Ala Leu Pro
  • GCG ATT GTC ATC GCC GGT ATG GGT TTC TTT ACC GAT GCG TAC GAT CTT 9227 Ala lie Val lie Ala Gly Met Gly Phe Phe Thr Asp Ala Tyr Asp Leu
  • TTTAATTCGG TTCTTTAGTC AAACCGTTTA ATTATACCAG ATATCATAAA TTCTAAACTT 12572
  • Sequence type nucleic acid
  • Organism name Arabidopsis thai i ana
  • GAATTCCTAC AATGTTGAAT AAACGTAGGT AGTGGCTACT TAATTTCTTC GATTTCTTAA 60 GTGCTTAGTA CTTTTCAACA TTAAAAATGT TGTTACCAAG TCTAAATTTT CTTCACAACT 120 TGTAACTAAA CTTTTCATTA TGTGTAATCG TAAAGGATTA GCGCTACAAA TAGATGGTGA 180
  • AAGAA ACTAATTT AATAGGA CTTCTCT CTTCA TTTCTAACCTTACCCG- AAGTCA TCAC TTCCATT TTTTTTAC ATAGCCTCCCTC CCCACAT TTTCCCC
  • AGT AGA ACG GTC CCA ATA GTT TAGGTGATAT AATACGCCTT TTGTAATAAT 4635 Ser Arg Thr Val Pro lie Val
  • TTTCGTTTTT TCTTTCTCCT TGTCTCTAGC AACTCAAGTT GTTCTTTGTG TAATCCATTG 4695 ATACCTAATT AATGCTAGAG AAATCAAAAT TTTCATGAGT CGATTTTAAA TCAGCTCCTA 4755 AATTGAAGAT TTATTAGACT TGACGAAGCC GCGCAAGTTG TGCATGACGATCATACGATCATGACCATGCATCATGACT
  • Sequence type nucleic acid
  • Organism name Arabidopsis thal iana
  • TCTTTCTCTA GATATGCCTT AAGCAATAAA AGGGGGAAAA ACATTTTTTG ATGACAAATT 480
  • TTAATTGAT TCTAACGTT AAGCG '' AAAGG ATTAGATT TTTCGG
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • J3 ⁇ 4 ⁇ is ⁇ o ng BV ⁇ ⁇ ⁇ ⁇ usv ⁇ 3 ⁇ 4 ⁇ B IV ⁇ TV 3 ⁇ 4IV ⁇ ⁇ ⁇ SIH OJ ⁇ OJJ
  • Gly Arg Phe Lys lie Gin Leu Asn Gly Phe Phe Met Met Thr Val Phe 370 375 380 385
  • Lys Asn Ser Leu lie Met Leu Gly Val Leu Asn Phe lie Gly Met Leu
  • 205 210 215 lie lie Leu Met Ala Gly Ala lie Pro Ala Ala Met Thr Tyr Tyr Ser

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

A gene encoding a phosphate transporter protein has been isolated from Arabidopsis thaliana and its structure has been elucidated. By integrating the gene into a highly active expression vector to effect transformation into cultured tobacco cells, it has become possible to remarkably enhance the phosphate absorption by the transgenic cultured tobacco cells and to increase the growth rate of the cells. This technique is expected to be widely applicable to plants.

Description

明細書 植物のリン酸トランスポータ一遺伝子及び該遺伝子を用いた  Description Plant phosphate transporter gene and use of the gene
植物の成長を制御する方法 技術分野  How to control plant growth
本発明は、 遺伝子工学の分野に関する。 特に遺伝子工学を用いた有用な形質転 換植物の作出に関する。  The present invention relates to the field of genetic engineering. In particular, it relates to the production of useful transgenic plants using genetic engineering.
植物の成長、 例えば、 発芽、 花芽形成、 開花などは、 日照時間、 ホルモン条件 、 温度、 栄養条件など様々な環境要因の下に制御されているといえる。 従って、 これらの環境要因を調節することにより植物の成長を調節することが可能であり 、 このような考えを基に、 これまで様々な技術が考えられてきた。 Plant growth, such as germination, flower bud formation, and flowering, can be said to be controlled by various environmental factors such as daylight hours, hormonal conditions, temperature, and nutritional conditions. Therefore, it is possible to regulate the growth of plants by regulating these environmental factors, and various techniques have been considered based on this idea.
例えば、 日照時間を調節するものとして、 キク、 カランコェ等の短日植物に対 し、 日没後や夜半に照明を与えて開花を抑制する技術や、 ストック等の長日植物 を被覆して光を遮り、 開花を促進する技術が花卉栽培において実施されている。 また、 温度条件を調節するものとして、 低温処理により、 開花時期を早めること がユリやチューリップ等に適用されてきた。 さらに、 ホルモン条件を調節するも のとして、 長日植物にジベレリン処理による開花促進が実用化され、 (以上、 花 卉栽培と絰営、 養賢堂、 横木清太郎、 渡部弘共著、 (昭和 42年) ) 、 ジベレリン 生合成阻害剤の投与は成長抑制に効果があり、 同時に植物の光合成速度が向上す ることが知られている (関本均ら、 日本土壌肥料学雑誌、 66 ( 1995 ) 681-682) ) 。 しかし、 いずれも適用可能な植物種が限られたり、 実施に労力、 資材等のコス 卜が必要であるなどの欠点があった。 また、 花卉、 園芸作物を対象とする技術で あるために、 大規模な農地、 森林等での適用が事実上不可能である。 栄養条件を調節するものとしては、 一般には、 窒素肥料を過剰に施肥すること により、 開花が抑制されたり、 窒素欠乏時に窒素を投与することで開花を促進す ることが知られているが (Walter R., 園芸植物の開花生理と栽培, 誠文堂新光社 (1978)) 、 シロイヌナズナでは全養分の投与量を減少させることにより開花が遅 延するとの報告 (Myerscough P.J" et al., 72 (1973) 595-617) もあり、 養分 と開花時期に一般則は成立しないと考えられる。 For example, to control the daylight hours, short-day plants such as chrysanthemums and kalanchoe are illuminated after sunset or midnight to suppress flowering. Techniques for blocking and promoting flowering are being implemented in flower cultivation. In order to control the temperature conditions, the early flowering time has been applied to lilies and tulips by low-temperature treatment. Furthermore, as a means of regulating hormonal conditions, the promotion of flowering by gibberellin treatment for long-day plants has been put to practical use. (The above is the cultivation and management of flowers, Yokendo, Seitaro Yokogi, Hiroshi Watanabe, Hiroshi Watanabe, )), It is known that administration of a gibberellin biosynthesis inhibitor is effective in suppressing growth, and at the same time, increases the photosynthetic rate of plants (Hitoshi Sekimoto, Journal of Soil Fertilizer Science, 66 (1995) 681-681). 682)). However, there were drawbacks such as limitations on applicable plant species and the need for labor and materials for implementation. In addition, since the technology is for flowers and horticultural crops, it is virtually impossible to apply it to large-scale farmland and forests. It is generally known that nutrient conditions are regulated by excessively applying nitrogen fertilizer to suppress flowering or to promote flowering by administering nitrogen when nitrogen is deficient ( Walter R., Flowering Physiology and Cultivation of Horticultural Plants, Seibundo Shinkosha (1978)) In Arabidopsis, flowering is delayed by reducing the total nutrient dose (Myerscough PJ "et al., 72). (1973) 595-617), and it is considered that general rules do not hold for nutrients and flowering time.
また、 近年の遺伝子工学技術の発展に伴い、 植物に遺伝子導入を行い、 植物の 形質を転換することにより、 植物の生長を制御することも僅かながら報告されて いる。  In addition, with the recent development of genetic engineering technology, it has been reported, to a small extent, that plant growth is controlled by introducing genes into plants and transforming plant traits.
例えば、 タバコを西洋わさび (horseradish) のペルォキシターゼで形質転換す ることにより、 タバコの成長速度を向上させ、 ひいてはタバコの開花時期を早め ることが行われている (Yoshida K. et al. Abstracts 6th International Meet ing on Arabidopsis Research, (1995) p.337 ) 。 しかし、 シロイヌナズナ (Ar abidopsis thaliana) のベルォキシ夕—ゼで形質転換した場合には、 同様の結果 は得られないなど、 その応用範囲は狭いものとなっている。  For example, transformation of tobacco with horseradish peroxidase has been used to increase the growth rate of tobacco and, consequently, to accelerate the flowering time of tobacco (Yoshida K. et al. Abstracts 6th International Meeting on Arabidopsis Research, (1995) p.337). However, when transformed with Arabidopsis thaliana beloxylase, similar results cannot be obtained, and its application range is narrow.
一方、 原形質膜に局在する無機リン酸の輸送タンパク質の遺伝子が、 酵母 (Bu n-ya M. et al. Mol. Cell. Biol. 11, 3229-3238 (1991)) 、 ァカパンカビ (Ve rsaw W.K. Gene 153, 135-139 (1995))、 VA菌根菌 (Harrison M.J. et al. Nat ure, 378, 626-629(1995)) で単離され、 遺伝子産物の機能が確認された。 さらに 、 酵母無機リン酸トランスボー夕一とアミノ酸配列で相同性を示す部分 cDN A が、 イネ (GenBank D25132および D25087) とシロイヌナズナ (GenBank Z33763) で単離され、 ジャガイモからは cDN Aが単離された (Leggewie G. et al. Abs tracts of 10th International Workshop on Plant Membrane Biology (1995) p .R32) 。  On the other hand, the genes for the inorganic phosphate transport protein localized in the plasma membrane are expressed in yeast (Bun-ya M. et al. Mol. Cell. Biol. 11, 3229-3238 (1991)) and erawaw. WK Gene 153, 135-139 (1995)) and VA mycorrhizal fungi (Harrison MJ et al. Nature, 378, 626-629 (1995)) confirmed the function of the gene product. Furthermore, a partial cDNA showing homology with the amino acid sequence of yeast inorganic phosphate transposase was isolated in rice (GenBank D25132 and D25087) and Arabidopsis (GenBank Z33763), and cDNA was isolated from potato. (Leggewie G. et al. Abstracts of 10th International Workshop on Plant Membrane Biology (1995) p.R32).
しかし、 植物においてリン酸輸送タンパク質遺伝子の構造は明らかになつてお らず、 また単離された c DNAがコードするタンパク質の機能は確認されていな い < 発明の開示 However, the structure of the phosphate transport protein gene in plants has not been clarified, and the function of the protein encoded by the isolated cDNA has not been confirmed. <<Disclosure of the Invention
リン酸は植物にとって重要な栄養素であり植物の成長と密接に関与しているた め、 該遺伝子を単離してその構造を解明することは、 植物の成長を制御する技術 を確立する上で重要なステップとなると考えられる。 さらに、 該遺伝子を植物へ 導入し植物内で発現させることが可能となれば、 植物の成長を制御する上で重要 な技術となるといえる。  Phosphate is an important nutrient for plants and is closely related to plant growth, so isolating the gene and elucidating its structure is important in establishing technologies to control plant growth. It will be a great step. Furthermore, if the gene can be introduced into a plant and expressed in the plant, it will be an important technique for controlling plant growth.
そこで本発明は、 新規なリン酸輸送タンパク質遺伝子を単離し、 その構造を解 明することを課題とする。 また、 本発明は、 該遺伝子を植物へ導入して植物のリ ン酸吸収能を向上させ、 これにより植物の生長量を増大させることを課題とする 本発明者らは、 上記課題を解決すべく鋭意研究を行った結果、 シロイヌナズナ からリン酸の輸送タンパク質の遺伝子を単離することに成功し、 さらに構造を解 明することに成功した。  Therefore, an object of the present invention is to isolate a novel phosphate transport protein gene and elucidate its structure. Another object of the present invention is to introduce the gene into a plant to improve the ability of the plant to absorb phosphate, thereby increasing the growth of the plant. As a result of intensive research, we succeeded in isolating the gene for the phosphate transport protein from Arabidopsis, and succeeded in elucidating the structure.
さらに本発明者らは、 該遺伝子を高発現ベクターに組み込み、 タバコの培養細 胞への形質転換を行うことにより、 形質転換されたタバコ培養細胞のリン酸吸収 能を顕著に高め、 さらに生長量を増大させることに成功した。  Furthermore, the present inventors have remarkably enhanced the phosphate absorption capacity of the transformed tobacco cultured cells by incorporating the gene into a high expression vector and transforming the tobacco cultured cells, and Was successfully increased.
即ち、 本発明は、  That is, the present invention
( 1 ) 植物由来の、 細胞内外の能動的に作られた水素イオン濃度勾配を利用し て、 リン酸を細胞外から細胞内へ輸送する機能を有するタンパク質をコ一ドする (1) Using a plant-derived protein that has the function of transporting phosphate from outside to inside a cell by utilizing the actively created hydrogen ion concentration gradient inside and outside the cell
D N A、 D N A,
( 2 ) 配列番号: 9〜 1 3のいずれかに記載されたタンパク質、 または該タン パク質のアミノ酸配列の一部が欠失、 置換または他のァミノ酸の挿入などによつ て変異したタンパク質であって細胞内外の能動的に作られた水素イオン濃度勾配 を利用して、 リン酸を細胞外から細胞内へ輸送する機能を有するタンパク質をコ 一ドする DNA、 (2) the protein of any one of SEQ ID NOs: 9 to 13, or a protein in which a part of the amino acid sequence of the protein has been mutated by deletion, substitution, or insertion of another amino acid Therefore, a protein that has the function of transporting phosphate from outside the cell to the inside of the cell by utilizing the actively created hydrogen ion concentration gradient inside and outside the cell DNA,
(3) シロイヌナズナに由来するタンパク質をコードする (1) または (2) に記載の DNA、  (3) the DNA of (1) or (2), which encodes a protein derived from Arabidopsis thaliana;
(4) (1) 〜 (3) のいずれかに記載の DNAを含むベクタ一、  (4) A vector containing the DNA according to any one of (1) to (3),
(5) (1) 〜 (3) のいずれかに記載の DN Aが導入された植物細胞、 (5) a plant cell into which the DNA according to any one of (1) to (3) has been introduced,
(6) 配列番号: 9〜 13のいずれかに記載されたタンパク質、 または該夕ン パク質のアミノ酸配列の一部が欠失、 置換または他のアミノ酸の挿入などによつ て変異したタンパク質であって細胞内外の能動的に作られた水素イオン濃度勾配 を利用して、 リン酸を細胞外から細胞内へ輸送する機能を有するタンパク質。(6) a protein described in any of SEQ ID NOs: 9 to 13 or a protein in which a part of the amino acid sequence of the protein has been mutated by deletion, substitution, or insertion of another amino acid; A protein that has the function of transporting phosphate from outside the cell to the inside of the cell by utilizing the active hydrogen ion concentration gradient inside and outside the cell.
(7) ( 1) 〜 (3) のいずれかに記載の DNAが導入された細胞を含む植物 (7) A plant containing a cell into which the DNA according to any one of (1) to (3) has been introduced.
(8) ( 1) 〜 (3) のいずれかに記載の DN Aを細胞に導入し、 形質転換さ れた細胞から植物体を製造する工程を含む、 形質転換植物の製造方法、 (8) A method for producing a transformed plant, comprising the steps of: introducing the DNA according to any one of (1) to (3) into a cell; and producing a plant from the transformed cell.
(9) (1) 〜 (3) のいずれかに記載の DNAを植物細胞に導入することを 含む、 植物または植物細胞においてリン酸の取り込みを促進する方法、 に関する。  (9) A method for promoting phosphate uptake in a plant or a plant cell, comprising introducing the DNA according to any one of (1) to (3) into a plant cell.
なお、 配列番号: 9には IPT1のアミノ酸配列が、 配列番号: 10には IPT4のァ ミノ酸配列が、 配列番号: 1 1には IPT3のアミノ酸配列が、 配列番号: 12には IPT2のアミノ酸配列が、 配列番号: 13には IPT5のアミノ酸配列がそれそれ記載 されている。  The amino acid sequence of IPT1 is shown in SEQ ID NO: 9, the amino acid sequence of IPT4 is shown in SEQ ID NO: 10, the amino acid sequence of IPT3 is shown in SEQ ID NO: 11, and the amino acid sequence of IPT2 is shown in SEQ ID NO: 12. SEQ ID NO: 13 describes the amino acid sequence of IPT5.
以下に説明されている DNAの切断、 連結、 大腸菌の形質転換、 遺伝子の塩基 配列決定、 ハイブリダィゼ一シヨン等一般の遺伝子組換えに必要な方法は、 各操 作に使用する市販の試薬、 機械装置等に添付されている説明書や、 実験書 (例え ば 厂 Molecular cloning (Maniatis T. et al. Cold Spring Harbor Laboratory Press) 」 参照) の記載に従って行うことができる。  The methods required for general gene recombination such as DNA cleavage and ligation, E. coli transformation, gene sequencing, hybridization, etc. described below are commercially available reagents and machinery used for each operation. And the like, and the description in an experimental manual (for example, see “Molecular Cloning (Maniatis T. et al., Cold Spring Harbor Laboratory Press)”).
く 1〉リン酸トランスポーター遺伝子の単離 ·同定 本発明の DNA (例えば、 cDNAおよびゲノム DNAなど) は、 例えば、 リ ン酸トランスポーターをコ一ドする塩基配列またはリン酸トランスポー夕一の推 定アミノ酸配列 (例えば、 配列番号: 1〜6に記載の塩基配列または配列番号: 9〜13に記載のアミノ酸配列) に基づいて作製した、 一対のオリゴヌクレオチ ドをプライマーとする P CR法、 あるいは前記配列またはアミノ酸配列を基に作 製したォリゴヌクレオチドをプローブとするハイプリダイゼ一シヨン法により、 植物細胞、 例えばシロイヌナズナの植物組織から単離することが可能である。 また、 以下の方法により調製することも可能である。 例えば、 リン酸を過剰に 投与していない発芽後 2週間目のシロイヌナズナ植物体から mRNAを抽出し、 逆 転写酵素を用いて cDN Aを合成し、 ポリメラ一ゼ反応によって 2本鎖化したも のを、 市販のベクタ一に挿入し、 大腸菌を形質転換することにより、 cDNAラ イブラリーを作製する。 スクリーニングに用いるプローブは、 GenBank、 DDBJなど の配列データベースに登録されているシロイヌナズナ等のリン酸卜ランスポ一夕 一の部分長 cDNAを、 「Arabidopsis Biological Resource Centerj (ァメリ 力合衆国、 オハイオ州立大学内) 等から入手するか、 あるいは、 部分長 cDNA の配列に基づいて一対のオリゴヌクレオチドプライマ一を用いて、 シロイヌナズ ナ染色体 DN Aなどを錶型に用いた P CR法によって DN A断片を増幅すること ができる。 1) Isolation and identification of phosphate transporter gene The DNA (eg, cDNA and genomic DNA) of the present invention may be, for example, a nucleotide sequence encoding a phosphate transporter or a deduced amino acid sequence of a phosphate transporter (eg, SEQ ID NOs: 1 to 6). A PCR method using a pair of oligonucleotides as primers, or a method based on the sequence or amino acid sequence described above. It can be isolated from plant cells, for example, plant tissues of Arabidopsis thaliana, by the hybridization method using a lignonucleotide as a probe. It can also be prepared by the following method. For example, mRNA was extracted from Arabidopsis thaliana plants two weeks after germination without excessive administration of phosphate, cDNA was synthesized using reverse transcriptase, and double-stranded by polymerase reaction. Is inserted into a commercially available vector to transform Escherichia coli, thereby preparing a cDNA library. Probes used for screening include partial-length cDNAs of transgenic plants such as Arabidopsis registered in sequence databases such as GenBank and DDBJ, and Arabidopsis Biological Resource Centerj (in the US, Ohio State University). Or using a pair of oligonucleotide primers based on the partial length cDNA sequence to amplify the DNA fragment by the PCR method using Arabidopsis chromosome DNA etc. .
そして、 これにより得られたプローブを用いたコロニーハイプリダイゼ一ショ ンまたはブラ一クハイブリダィゼ一シヨンにより、 作製した cDN Aライブラリ 一から、 ハイプリダイゼ一ション陽性のクローンを選択して本発明の DNAを調 製することが可能である。 また、 マキサムギルバート法やサンガー法などの常法 により、 適宜塩基配列を決定することができる。  Then, by colony hybridization or black hybridization using the obtained probe, a clone positive for hybridization is selected from the prepared cDNA library to prepare the DNA of the present invention. It is possible to manufacture. In addition, the base sequence can be appropriately determined by a conventional method such as the Maxam-Gilbert method or the Sanger method.
なお、 このようにして得られた本発明の DNAの塩基配列を、 配列番号: 1と 配列番号: 2に示す。 配列番号: 1に示した遺伝子を IPT1、 配列番号: 2に示し た遺伝子を ΙΡΤ4と命名した。 配列番号: 1の遺伝子の翻訳産物 (配列番号: 9に 記載のタンパク質) は、 酵母 (Bun-ya M. et al. Mol. Cell. Biol. 11, 3229-3 238 (1991)) 、 アカバンカビ (Versaw W.K. Gene 153, 135-139 (1995)) 、 VA菌 根菌 (Harrison M.J. et al. Nature, 378, 626-629(1995)) から単離された、 リ ン酸トランスポーター遺伝子のアミノ酸配列と、 それぞれ、 34%、 34%、 43 の相同 性を示した。 The nucleotide sequences of the DNA of the present invention thus obtained are shown in SEQ ID NO: 1 and SEQ ID NO: 2. The gene shown in SEQ ID NO: 1 was named IPT1, and the gene shown in SEQ ID NO: 2 was named # 4. Translation product of the gene of SEQ ID NO: 1 (in SEQ ID NO: 9 Described proteins) include yeast (Bun-ya M. et al. Mol. Cell. Biol. 11, 3229-3238 (1991)), Neurospora crassa (Versaw WK Gene 153, 135-139 (1995)), and VA bacteria. Shows 34%, 34%, and 43 homology with the amino acid sequence of the phosphate transporter gene isolated from the root fungus (Harrison MJ et al. Nature, 378, 626-629 (1995)), respectively. Was.
配列番号: 2の遺伝子の翻訳産物 (配列番号: 10に記載のタンパク質) は、 酵母、 ァカパンカビ、 VA菌根菌のリン酸トランスポー夕一遺伝子のアミノ酸配列 と、 それぞれ 32%、 30¾、 40%の相同性を示した。  The translation product of the gene of SEQ ID NO: 2 (the protein described in SEQ ID NO: 10) is 32%, 30%, and 40%, respectively, of the amino acid sequence of the yeast transport protein of yeast, Akapankabi, and VA mycorrhizal fungi. Showed homology.
さらに、 一旦 c DNAが得られれば、 これらの c DN A配列を用いたハイプリ ダイゼーシヨン法によって、 P1ファージベクターや λファージベクター等を用い て作製した染色体 DN Αライブラリ一から、 あるいは、 これらの cDNA配列に 基づく一対のオリゴヌクレオチドプライマ一を用いる染色体 DN Aなどを錡型に 用いた P CR法によって、 染色体 DN Aからリン酸トランスポ一夕一遺伝子を単 離することができる。  Furthermore, once the cDNA is obtained, the hybridisation method using these cDNA sequences is used to obtain DNA from the chromosomal DN DN library prepared using the P1 phage vector, λ phage vector, etc. The phosphotransport gene can be isolated from the chromosomal DNA by PCR using chromosomal DNA and the like with a pair of oligonucleotide primers based on the PCR.
このようにして得られたシロイヌナズナのリン酸トランスポーターの遺伝子を 含む DN A断片の配列を、 配列番号: 3、 配列番号: 4、 配列番号: 5、 配列番 号: 6に示す。 また、 後述の実施例で得られた、 配列番号: 3と配列番号: 4の DNA断片を含んむ P1ゲノムクローン(92C10)を保持する大腸菌(92C10 XLl-blue )を平成 8年 3月 14日、 〒305日本国茨城県つくば市東 1丁目 1番 3号の通商 産業省工業技術院生命工学工業技術研究所に国際寄託した (受託番号 FEHM BP- 5474) 。  The sequences of the thus obtained DNA fragment containing the gene for the Arabidopsis phosphate transporter are shown in SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, and SEQ ID NO: 6. Further, Escherichia coli (92C10 XLl-blue) carrying the P1 genomic clone (92C10) containing the DNA fragments of SEQ ID NO: 3 and SEQ ID NO: 4 obtained in the below-described Examples was isolated on March 14, 1996. 〒 305, Tsukuba City, Ibaraki Prefecture, Japan 1-3-1, Higashi Tsumo International deposit with the Institute of Biotechnology and Industrial Technology, Ministry of Industry and Industry (Accession No. FEHM BP-5474).
なお、 本発明の遺伝子のコード領域の上流には、 本発明の遺伝子の発現を制御 する領域が含まれる。 これらの領域としては、 配列番号: 3の塩基番号 1〜1944 で表される配列の少なくとも一部を含む領域、 配列番号: 4の塩基番号 1〜2560 で表される配列の少なくとも一部を含む領域、 配列番号: 4の塩基番号 4249〜91 10で表される配列の少なくとも一部を含む領域、 配列番号: 5の塩基番号 1〜18 差替え用紙 (規則 26) 6/ 1 Note that a region that controls the expression of the gene of the present invention is included upstream of the coding region of the gene of the present invention. These regions include at least a part of the sequence represented by base numbers 1 to 1944 of SEQ ID NO: 3, and at least a part of the sequence represented by base numbers 1 to 2560 of SEQ ID NO: 4. Region, a region containing at least a part of the sequence represented by base numbers 4249 to 9110 of SEQ ID NO: 4, base numbers 1 to 18 of SEQ ID NO: 5 Replacement sheet (Rule 26) 6/1
75で表される配列の少なくとも一部を含む領域、 配列番号: 6の塩基番号 1〜19 差替え用紙 (規則 26) P97/00975 A region containing at least a part of the sequence represented by 75, base numbers 1 to 19 of SEQ ID NO: 6 Replacement paper (Rule 26) P97 / 00975
80で表される配列の少なくとも一部を含む領域があげられる。 A region including at least a part of the sequence represented by 80 is exemplified.
< 2 >リン酸トランスポータータンパク質の調製  <2> Preparation of phosphate transporter protein
本発明のタンパク質は、 例えば、 本発明の DNAを適当なベクターに挿入し、 該 ベクターを宿主に導入することにより、 該宿主から精製することにより組み換え タンパク質として調製することが可能である。  The protein of the present invention can be prepared as a recombinant protein by, for example, inserting the DNA of the present invention into an appropriate vector, introducing the vector into a host, and purifying from the host.
本発明のタンパク質の生産に用いられる宿主としては、 例えば、 大腸菌、 酵母 などが挙げられる。  Examples of the host used for producing the protein of the present invention include Escherichia coli and yeast.
本発明のタンパク質の生産ために用いられるベクタ一としては、 特に制限はな いが、 例えば、 宿主が rspodoptera frugiperdaj であれば 「pBacPAK8」 (Clont ech社製) が、 宿主が大腸菌 BL21由来株であれば 「pETベクタ一シリーズ」 (Stra tagene社製) が、 宿主が酵母 SP-Q01であれば pESP-1 (Stratagene社製) が挙げら れる。  The vector used for producing the protein of the present invention is not particularly limited. For example, if the host is rspodoptera frugiperdaj, “pBacPAK8” (manufactured by Clontech) may be used, and if the host is a strain derived from Escherichia coli BL21. For example, “pET vector series” (Stratagene) and pESP-1 (Stratagene) when the host is yeast SP-Q01.
これにより得られた形質転換体からの本発明の組み換えタンパク質の精製は、 例えば、 本発明の夕ンパク質を 6Xヒスチジンゃグル夕チオン S-トランスフェラー ゼなどの標識との融合タンパク質として発現させた場合には、 該標識に対するァ フィニティ一クロマトグラフィーなどにより行うことが可能である。  Purification of the recombinant protein of the present invention from the transformant thus obtained is performed, for example, when the protein of the present invention is expressed as a fusion protein with a label such as 6X histidine- ゃ -glu-thione S-transferase. The labeling can be performed by affinity chromatography for the label.
なお、 当業者にとっては、 配列番号: 9 ~ 1 3に記載の本発明のタンパク質中 のアミノ酸を適宜置換などすることにより本発明のタンパク質の機能的同等物を 得ることは常套手段である。 従って、 配列番号: 9〜 1 3に記載のタンパク中の アミノ酸配列の一部が欠失、 置換または他のアミノ酸の挿入などによって変異し たアミノ酸配列を有し、 細胞内外の能動的に作られた水素イオン濃度勾配を利用 して、 リン酸を細胞外から細胞内へ輸送する機能を有するタンパク質も本発明の 範囲に含まれる。 常套手段としては、 例えば、 部位特異的変異誘発法 (例えば、 Zol ler,M.J. and Smith, M. ( 1983 ) Methods in Enzymology 100,p468) などが挙げ られる。  It is common practice for those skilled in the art to obtain a functional equivalent of the protein of the present invention by appropriately substituting amino acids in the protein of the present invention described in SEQ ID NOs: 9 to 13. Therefore, a part of the amino acid sequence of the protein described in SEQ ID NOs: 9 to 13 has an amino acid sequence mutated by deletion, substitution, insertion of another amino acid, etc. A protein having a function of transporting phosphate from the outside of a cell to the inside of a cell by utilizing the hydrogen ion concentration gradient is also included in the scope of the present invention. Conventional methods include, for example, site-directed mutagenesis (for example, Zoller, M.J. and Smith, M. (1983) Methods in Enzymology 100, p468).
なお、 「胞内外の能動的に作られた水素イオン濃度勾配を利用して、 リン酸を 細胞外から細胞内へ輸送する機能」 は、 例えば、 文献 (Berhe,A. , et al . Eur. J. Biochem.227, 566-572( 1995) ) に記載の方法で検出することが可能である。 In addition, "Phosphoric acid is converted using the active hydrogen ion concentration gradient inside and outside the cell. The function of transporting from outside the cell to the inside of the cell "can be detected, for example, by the method described in the literature (Berhe, A., et al. Eur. J. Biochem. 227, 566-572 (1995)). is there.
< 3 >本発明の遺伝子を導入した形質転換植物の作製  <3> Preparation of transgenic plant into which the gene of the present invention has been introduced
本発明の D N Aの全部あるいは一部を、 例えば、 C a MV (カリフラワーモザ イクウィルス) 3 5 Sプロモーター等の植物で発現可能なプロモ一夕一と順方向 に転写されるように結合し、 これを含む組換え D N Aを植物に形質転換すること によって、 リン酸トランスポー夕一タンパク質を髙発現する植物を作製すること ができ、 また、 いわゆるコサブレッシヨン (あるタンパク質をコードする遺伝子 が順方向に転写される組換え D N Aを導入し、 内在性の該タンパク質の発現が抑 制される方法) によって前記タンパク質の発現量を抑制させた植物を作製するこ とができる。 植物の形質転換に用いられるベクタ一としては、 例えば、 PBI 121な どのベクターが挙げられる。  All or a part of the DNA of the present invention is ligated so as to be transcribed in the forward direction with a promoter that can be expressed in plants, such as the CaMV (cauliflower mosaic virus) 35S promoter. By transforming a plant with recombinant DNA containing the protein, it is possible to produce a plant that expresses the phosphotransport protein, and it is also possible to produce so-called co-repression (a gene encoding a protein is transcribed in the forward direction). (A method in which the expression of the endogenous protein is suppressed by introducing a recombinant DNA) to produce a plant in which the expression level of the protein is suppressed. One example of a vector used for plant transformation is a vector such as PBI121.
また、 本発明の D N Aの全部あるいは一部を逆方向に転写されるようにブロモ 一夕一に結合し、 これを含む組換え D N Aを植物に形質転換して、 いわゆるアン チセンス R N Aを発現させ、 リン酸トランスポー夕一夕ンパク質の発現量を抑制 させた植物を作製することができる。  Further, all or a part of the DNA of the present invention is bromo-ligated so as to be transcribed in the reverse direction, and a recombinant DNA containing the DNA is transformed into a plant to express so-called antisense RNA, Plants in which the amount of phosphate transport protein expression is suppressed can be produced.
本発明の遺伝子は、 例えば、 シロイヌナズナゃタバコ等の草本性双子葉植物、 イネやトウモロコシ等の単子葉植物、 ュ一力リゃポプラ等の木本性植物に遺伝子 導入が可能である。  The gene of the present invention can be introduced into, for example, herbaceous dicotyledonous plants such as Arabidopsis tobacco, monocotyledonous plants such as rice and corn, and woody plants such as lucifera poplar.
植物細胞の形質転換は、 パ一ティクルガン法、 エレク ト口ポーレーシヨン法 ( 電気的穿孔法) 、 バキュームインフィルトレーシヨン等のァグロパクテリゥム感 染法等の常法によって、 植物細胞、 あるいは直接植物体に D N Aを導入すること により行うことが可能である。  Transformation of plant cells can be carried out by conventional methods such as particle gun method, electoral poration method (electroporation method), and agropacterium infection method such as vacuum infiltration. This can be done by introducing DNA into the body.
形質転換植物体、 または形質転換植物細胞は、 形質転換に用いる組換え DNA中に カナマイシンやハイグロマイシン等に対する薬剤耐性遺伝子を組み込み、 これら の薬剤を含む寒天固体培地、 あるいは液体培地中で栽培あるいは培養することに より安定的に維持することが可能である。 図面の簡単な説明 Transformed plants or transformed plant cells incorporate a drug resistance gene for kanamycin or hygromycin into the recombinant DNA used for transformation, and are cultivated or cultured in a solid agar medium or liquid medium containing these drugs. To do It is possible to maintain more stable. BRIEF DESCRIPTION OF THE FIGURES
図 1はシロイヌナズナリン酸トランスポ一夕一遺伝子のコピー数の解析を示 す。 IPT1遺伝子 cDNA (pIPTC19) をブローブに用い、 ホモログ遺伝子とハイブリダ ィズする条件で洗浄した。  FIG. 1 shows the analysis of the copy number of the Arabidopsis thaliana phosphate transporter overnight gene. The IPT1 gene cDNA (pIPTC19) was used as a probe and washed under conditions that hybridize with the homolog gene.
図 2はシロイヌナズナリン酸トランスポーター遺伝子ゲノムクローンの制限 酵素地図を示す。 上段より、 IPT1遺伝子、 IPT3遺伝子と IPT2遺伝子、 IPT4遺伝子 、 IPT5遺伝子の制限酵素地図を示す。 ボックス部はコード領域の位置を示す。  FIG. 2 shows a restriction enzyme map of an Arabidopsis thaliana phosphate transporter gene genomic clone. From the top, the restriction maps of the IPT1, IPT3, and IPT2, IPT4, and IPT5 genes are shown. The box indicates the position of the code area.
図 3はリン酸トランスポ一タ一遺伝子のシロイヌナズナ染色体上での位置を 示す。 矢印の位置に各遺伝子が座乗する。 上部の数字は染色体番号を、 横線は既 知の RFLPマーカーの位置を示す。  Figure 3 shows the location of the phosphate transporter gene on the Arabidopsis chromosome. Each gene sits at the position of the arrow. The numbers at the top indicate chromosome numbers, and the horizontal lines indicate the positions of known RFLP markers.
図 4はシロイヌナズナ各器官でのリン酸トランスポー夕一遺伝子 (IPT1) の 発現解析を示す。 RNAを抽出した組織を上部に示し、 転写産物の位置を矢印 (→) で示した。  FIG. 4 shows the expression analysis of the phosphate transport gene (IPT1) in each organ of Arabidopsis thaliana. The tissue from which RNA was extracted is shown at the top, and the position of the transcript is indicated by an arrow (→).
図 5はリン酸トランスボ一夕一遺伝子 (IPT1遺伝子) を含む形質転換用コン ストラク 卜を示す。 上段は IPT1遺伝子の制限酵素地図と遺伝子構造を示す。 黒塗 り部位は非翻訳転写領域を白抜きボックスはコード領域を示す。 下部は P35S-IPT 1のうち、 T-DNA領域の構造を示す。 pnosはノパリン合成酵素遺伝子プロモータ一 、 ΝΡΤΠはネオマイシンホスホトランスフェラ一ゼ (カナマイシン耐性遺伝子) 、 tnosはノパリン合成酵素遺伝子ターミネータ一を表す。  FIG. 5 shows a transformation construct containing the phosphate transbo overnight gene (IPT1 gene). The upper panel shows the restriction enzyme map and gene structure of the IPT1 gene. The black portions indicate the untranslated transcription regions, and the white boxes indicate the coding regions. The lower part shows the structure of the T-DNA region of P35S-IPT1. pnos indicates nopaline synthase gene promoter, ΝΡΤΠ indicates neomycin phosphotransferase (kanamycin resistance gene), and tnos indicates nopaline synthase gene terminator.
図 6はリン酸トランスボー夕一遺伝子の発現量とリン酸吸収速度との関係を 示す。 発明を実施するための最良の形態  FIG. 6 shows the relationship between the expression level of the phosphate transgenic protein and the phosphate absorption rate. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 実施例により本発明をさらに具体的に説明するが本発明はこれら実施例 10 に制限されるものではない。 Hereinafter, the present invention will be described more specifically with reference to Examples. It is not limited to 10.
[実施例 1 ] リン酸トランスポー夕一 c DN Aクローンの単離  [Example 1] Isolation of Phosphotransport Yuichi cDNA clone
酵母無機リン酸トランスポーター遺伝子 (PH084) (Bun-ya M. et al. Mol. C ell. Biol. 11, 3229-3238 (1991)) と相同性を示すシロイヌナズナの部分 c D N A (GenBank Z33763) の塩基配列から、 その塩基配列に基づき、 オリゴヌクレオ チドプライマ一を合成した (グライナ一ジャパン社に合成を委託) 。 5,側のブラ イマ一には Hind III、 3,側のプライマーには Pst I認識部位を付加した。 ブライマ —の配列は、  A part of the Arabidopsis thaliana cDNA (GenBank Z33763) showing homology to the yeast inorganic phosphate transporter gene (PH084) (Bun-ya M. et al. Mol. Cell. Biol. 11, 3229-3238 (1991)). Based on the base sequence, an oligonucleotide primer was synthesized based on the base sequence (synthesis was outsourced to Glyna Japan). Hind III was added to the primer on the fifth side, and a Pst I recognition site was added to the primer on the third side. The array of Brimers —
2854F1: 5, -AAAGCTTCAAAACTATGGCTTGTTCTC -3, (5'側ブライマ一)  2854F1: 5, -AAAGCTTCAAAACTATGGCTTGTTCTC -3, (5 'side primer)
2854R1: 5, - ACTGCAGAACTGTGAACCAGTACCCTG -3, ( 3,側プライマ一) とした (それそれ配列番号: 7、 配列番号: 8に示す) 。テンプレートとして、 シロイヌナズナ (コロンビア(Columbia)株) の根から、 文献 (Cell, 35(1983)) に記載の尿素フエノール法等により調製したゲノム DNAを用い、 「AmpliTaq DM」 2854R1: 5,-ACTGCAGAACTGTGAACCAGTACCCTG-3, (3, side primer) (sequence numbers: 7 and 8, respectively). As a template, "AmpliTaq DM" was used using genomic DNA prepared from the roots of Arabidopsis thaliana (Columbia strain) by the urea-phenol method described in the literature (Cell, 35 (1983)).
(Perkin- Elmer社製) を用いて酵素に添付のブロトコールに従って PCR (ポリメラ ーゼチェインリアクション) を行った。 増幅した PCR産物を Hind IIIと Pst Iで切 断後、 pBluescript II SK+ (Stratagene社製) の Hind IIIと Pst Iにクロ一ニング して(以下、 このクローニングされたものを 「pIPT-PCil」 と称する)両末端から 「 ABI 373A DM sequencer^ (Perkin-Elmer社製) を使用して、 添付の説明書に従 い塩基配列を決定した。 この結果、 251bpの PCil産物とシロイヌナズナの部分 cD N Aの塩基配列のうち、 248bpがー致することを確認した。 PCR (Polymerase Chain Reaction) was performed using (Perkin-Elmer) according to the protocol attached to the enzyme. After the amplified PCR product is cut with Hind III and Pst I, it is cloned into Hind III and Pst I of pBluescript II SK + (Stratagene) (hereinafter, this cloned product is called “pIPT-PCil”). The nucleotide sequence was determined from both ends using "ABI 373A DM sequencer ^ (Perkin-Elmer)" according to the attached instructions. As a result, a 251 bp PCil product and a partial cDNA of Arabidopsis thaliana were determined. It was confirmed that 248 bp of the nucleotide sequence was matched.
シロイヌナズナ無機リン酸トランスポーター (以下単に 「IPT」 と称する) 遺伝 子の cDNAクローンは、 「Arabidopsis cDNA Library in the Uni-ZIP™ XR V ectorj (Stratagene社製) を用い、 4.0X105個の組み換え体から、 pIPT- PCRのイン サート (251bp) をプローブとしてスクリーニングした。 ハイブリダィゼ一シヨン は Liuらの方法 (Liu Y.-G. et al. Theor. Apple. Genet. 84, 535-543 (1992)) に従い、 洗浄条件は、 0.1X SSC, 0.1¾ SDS, 62°Cで行った。 この結果、 1755bpの /00975 Arabidopsis inorganic phosphate transporter (hereinafter simply referred to as "IPT") cDNA clones of genes uses the "Arabidopsis cDNA Library in the Uni-ZIP ™ XR V ectorj (Stratagene , Inc.), 4.0 × 10 5 pieces of recombinants The hybridization was performed using the insert (251 bp) of pIPT-PCR as a probe.The hybridization was performed according to the method of Liu et al. (Liu Y.-G. et al. Theor. Apple. Genet. 84, 535-543 (1992)). The washing conditions were as follows: 0.1X SSC, 0.1, SDS, 62 ° C. / 00975
11 cDNAクローンが得られた (以下、 このクローンを 「pIPTC19」 と称する) (配 列番号: 1 ) 。  11 cDNA clones were obtained (hereinafter, this clone is referred to as “pIPTC19”) (SEQ ID NO: 1).
また、 後述の IPT4遺伝子のゲノムクローンである PIPTGZ7の Eco RI-Xho I断片を プローブに使用して、 スクリーニングを行った。 ハイブリダィゼーシヨンは Liuら の方法に従い、 0.1X SSC,0.1¾ SDS,65°Cの条件で、 洗浄を行って陽性クローンを 選抜し、 5個の陽性クローンを得た。 これらのクローンうち、 全長 cDNAクロ ーンは無かったが、 5'側のクローン (以下、 このクローンを 「pIPTC402」 と称す る) と、 3,側のクローン (以下、 このクローンを 「pIPTC403」 と称する) により 、 オープンリーディングフレーム (以下、 「0RF」 と称する) 全体をカバ一するこ とができた (配列番号: 2) 。  In addition, screening was performed using the EcoRI-XhoI fragment of PIPTGZ7, a genomic clone of the IPT4 gene described below, as a probe. According to the method of Liu et al., The hybridization was washed under the conditions of 0.1X SSC, 0.1 ° SDS, and 65 ° C, and positive clones were selected to obtain 5 positive clones. Among these clones, there was no full-length cDNA clone, but a clone on the 5 'side (hereinafter, this clone is referred to as “pIPTC402”) and a clone on the third side (hereinafter, this clone is referred to as “pIPTC403”). As a result, the entire open reading frame (hereinafter, referred to as “0RF”) could be covered (SEQ ID NO: 2).
[実施例 2 ] リン酸卜ランスポーターゲノムクローンの単離  [Example 2] Isolation of phosphate transporter genomic clone
ゲノムクローンの単離には、 シロイヌナズナ (コロンビア株) P1ゲノムライブ ラリー (Liu Y.-G. et al. Plant J. 7, 351-358 (1995) ) 、 および、 シロイ ヌナズナ (コロンビア株) 人 ZapII ゲノムライブラリ一 (Stratagene社製)を用い た。  For isolation of genomic clones, Arabidopsis (Columbia strain) P1 genomic library (Liu Y.-G. et al. Plant J. 7, 351-358 (1995)) and Arabidopsis thaliana (Colombia strain) ZapII Genome library-1 (Stratagene) was used.
上記 P1ゲノムライブラリーのスクリ一ニングは、 P1クローンを保持する大腸菌 1万株の DNAをナイロンメンブレンに固定し、 フィルターを作製した。 上記フィル 夕一に対して32 Pでラベルした pIPT-PCRのィンサートをプローブに使用して、 Liu らの方法 (Liu Y.-G. et al. Theor. Apple. Genet. 84, 535-543 (1992)) に従 つてハイブリダィゼーシヨンを行った。 洗浄条件は、 0.1X SSC, 0.1¾ SDS, 62°C で行ない、 「バイオ .イメージアナライザ一 BAS2000」 (富士写真フィルム社製) でシグナルを検出した。 この結果、 1個の陽性クローン (以下、 このクローンを 「92C10」 と称する) が得られた。 For screening of the P1 genomic library, DNA of 10,000 strains of Escherichia coli holding the P1 clone was immobilized on a nylon membrane to prepare a filter. The Insato of PIPT-PCR was labeled with 32 P with respect to the fill evening one using a probe, Liu et al. Method (Liu Y.-G. et al. Theor. Apple. Genet. 84, 535-543 ( 1992)). The washing conditions were 0.1X SSC, 0.1¾ SDS, 62 ° C, and the signal was detected with “Bio Image Analyzer I BAS2000” (manufactured by Fuji Photo Film Co., Ltd.). As a result, one positive clone (hereinafter, this clone is referred to as “92C10”) was obtained.
え ZapII ゲノムライブラリーのスクリーニングは、 40万個の入ファージを大腸 菌ホスト XLl-Blue (Stratagene社製) に感染させ、 これによりプラーク形成させ て、 ナイロンメンブランに転写した。 プローブには pIPT-PCRのインサートを使用 W For screening of the ZapII genomic library, 400,000 entered phages were infected with the E. coli host XL1-Blue (Stratagene), thereby plaque-forming, and transferred to a nylon membrane. Probes use pIPT-PCR inserts W
12 した。 スクリーニングの条件は、 55°Cでハイブリダィズを行い、 0.2X SS 0. 1¾ SDS、 42。Cの条件で洗浄を行った。 その結果、 4個の陽性クローン (以下、 これ らのクローンを 「pIPTGZl」 、 「pIPTGZ2j 、 「pIPTGZ4」 、 「pIPTGZ7」 と称する ) が得られた。 クローン末端の塩基配列決定と制限酵素断片の解析から、 これら のクローンは、 互いに重複しない別の遺伝子のゲノムクローンであることが明ら かとなつた。  12 Screening conditions were hybridization at 55 ° C, 0.2X SS 0.1¾ SDS, 42. Washing was performed under the conditions of C. As a result, four positive clones (hereinafter, these clones are referred to as “pIPTGZl”, “pIPTGZ2j”, “pIPTGZ4”, and “pIPTGZ7”) were obtained. Determination of the nucleotide sequence of the ends of the clones and analysis of the restriction enzyme fragments revealed that these clones were genomic clones of different genes that did not overlap with each other.
しかし、 これらのクローンは遺伝子全体を含んでいないため、 PIPTC19のインサ —卜をプローブに使用して再度スクリーニングを行った。 スクリ一ニングの条件 は、 55°Cでハイブリダィズを行い、 0.2X SSC,0. 1% SDS,42°Cの条件で、 洗浄を行 つて陽性クローンを選抜した。 約 20万のプラークをスクリーニングした結果、 10 個の陽性クローンが得られた。  However, since these clones did not contain the entire gene, screening was performed again using the PIPTC19 insert as a probe. The screening conditions were hybridization at 55 ° C, and washing was performed under conditions of 0.2X SSC, 0.1% SDS and 42 ° C to select positive clones. Screening about 200,000 plaques resulted in 10 positive clones.
クローン末端の塩基配列決定と制限酵素断片の解析から、 2クローン (GZ33、 GZ37) がーつの無機リン酸トランスポーター遺伝子 (以下単に、 「IPT1遺伝子」 と称する) 、 1クローン (GZ36) が、 他の無機リン酸トランスポーター遺伝子 ( 以下単に、 「ΙΡΤ2遺伝子 j と称する) 、 6クローン (GZ34、 GZ35、 GZ38、 GZ39、 GZ40、 GZ41 ) が、 さらに他の無機リン酸トランスポー夕一遺伝子 (以下単に、 「 IPT3遺伝子」 と称する) 、 1クローン (GZ32) がさらに他の無機リン酸トランス ポーター遺伝子 (以下単に、 ΠΡΤ5遺伝子」 と称する) のゲノムクローンであつ た。 また、 P1クローン 92C10には前記の 4種の IPT遺伝子のうち 3種の IPT遺伝子 ( IPT1、 ΙΡΤ2、 ΙΡΤ3) が含まれていた。  From the nucleotide sequence determination of the clone ends and the analysis of restriction enzyme fragments, two clones (GZ33 and GZ37) showed one inorganic phosphate transporter gene (hereinafter simply referred to as “IPT1 gene”) and one clone (GZ36) Of the inorganic phosphate transporter gene (hereinafter simply referred to as “ΙΡΤ2 gene j”), 6 clones (GZ34, GZ35, GZ38, GZ39, GZ40, GZ41) One clone (GZ32) was a genomic clone of another inorganic phosphate transporter gene (hereinafter, simply referred to as ΠΡΤ5 gene). Also, P1 clone 92C10 contained three of the four IPT genes described above (IPT1, ΙΡΤ2, ΙΡΤ3).
PIPTGZ7の全長クローンが得られなかったので、 再度、 PIPTGZ7の Eco RI-Xho I 断片をプローブとして、 人 ZapI I ゲノムライブラリ一の約 16万のプラークを対象 に、 スクリーニングを行った。 ハイブリダィズは 55°Cで行い、 0. 1X SSC, 0. 1¾ SD S, 65°Cの条件で、 洗浄し、 陽性クローンを選抜した。 この結果、 1つの陽性クロ ーン (PIPTGZ20) を単離した。  Since a full-length clone of PIPTGZ7 could not be obtained, screening was again performed on about 160,000 plaques of the human ZapI I genomic library using the EcoRI-XhoI fragment of PIPTGZ7 as a probe. Hybridization was performed at 55 ° C, washing was performed under the conditions of 0.1X SSC, 0.1 0SDS, and 65 ° C, and positive clones were selected. As a result, one positive clone (PIPTGZ20) was isolated.
また、 IPT1をプローブとした、 ゲノムサザンプロティングを行った (図 1 ) 。 13 ゲノムサザンブロティングは、 シロイヌナズナのコロンビア (Columbia) 株 (レ ーン 1、 3、 5、 7、 9) およびランズバーグエレクタ (Landsberg erecta) 株 (レー ン 2、 4、 6、 8、 10) から調製した DNAを BamHI (レーン 1、 2) 、 Dral (レーン 3、 4 ) 、 EcoRI (レーン 5、 6) 、 EcoRV (レーン 7、 8) 、 Hindi I I (レーン 9、 10) で切 断して行った。 なお、 図中の両端はサイズマ一カーである。 この結果、 シロイヌ ナズナの IPTには、 多数のホモログ遺伝子があることが確認した (図 1 ) 。 In addition, genomic Southern printing was performed using IPT1 as a probe (Fig. 1). 13 Genome Southern blotting was performed on Arabidopsis thaliana Columbia strains (lane 1, 3, 5, 7, 9) and Landsberg erecta strain (lane 2, 4, 6, 8, 10). DNA prepared from BamHI (lanes 1, 2), Dral (lanes 3, 4), EcoRI (lanes 5, 6), EcoRV (lanes 7, 8), and Hindi II (lanes 9, 10) went. Both ends in the figure are size markers. As a result, it was confirmed that Arabidopsis thaliana IPT has a large number of homologous genes (Fig. 1).
このことからも、 IPT遺伝子は少なくとも 5種以上の遺伝子から構成される多重 遺伝子族を形成していると考えられた。 全ゲノムクローンの制限酵素地図を図 2に 示す。  This suggests that the IPT gene forms a multigene family composed of at least five or more types of genes. Figure 2 shows the restriction map of the whole genome clone.
[実施例 3 ] リン酸トランスポー夕一ゲノムクローンの解析  [Example 3] Analysis of phosphate transport Yuichi genomic clone
IPT1遺伝子については、 PIPTGZ33と pIPTGZ37の全塩基配列を決定した。 決定し た IPT1遺伝子の塩基配列を配列番号: 3に示す。 配列番号: 1記載の IPT1遺伝子 cDNAクローンである pIPTC19の塩基配列との比較から、 5'の非翻訳領域とオーブン リーディングフレーム (以下、 「0RF」 と称する) 中にあわせて 2力所にイントロ ンが存在した。  For the IPT1 gene, the entire nucleotide sequences of PIPTGZ33 and pIPTGZ37 were determined. SEQ ID NO: 3 shows the determined nucleotide sequence of the IPT1 gene. Comparison with the nucleotide sequence of pIPTC19, which is the IPT1 gene cDNA clone described in SEQ ID NO: 1, shows that the 5 'untranslated region and the intron reading frame (hereinafter referred to as "0RF") have two introns. There was.
IPT2遺伝子と IPT3遺伝子については、 pIPTGZ34、 pIPTGZ36、 pIPTGZ38、 pIPTGP 2の全塩基配列を決定した。 なお、 pIPTGP2は、 前記 92C10のインサー トを Pstlで切 断した約 7.5kbの断片を pBluescriptに挿入したサブクローンである。 決定した IP T2遗伝子と IPT3遺伝子の塩基配列を配列番号: 4に示す。 推定ではあるが、 いず れも少なくともそれぞれ 1力所にィントロンが存在した。 IPT3の 0RFの下流に IPT 2の 0RFが同方向に位置しており、 両遺伝子の ORF間の距離は約 5 kbであつた。  For the IPT2 gene and the IPT3 gene, the entire nucleotide sequences of pIPTGZ34, pIPTGZ36, pIPTGZ38 and pIPTGP2 were determined. Note that pIPTGP2 is a subclone obtained by inserting a fragment of about 7.5 kb obtained by cutting the insert of 92C10 with Pstl into pBluescript. The determined nucleotide sequences of the IPT2 gene and the IPT3 gene are shown in SEQ ID NO: 4. As expected, each had at least one intron at each location. The 0RF of IPT2 was located in the same direction downstream of the 0RF of IPT3, and the distance between the ORFs of both genes was about 5 kb.
IPT4遺伝子については、 pIPTGZ20のうち、 コード領域の上流と 0RF全体を含む部 分の塩基配列を決定した。 決定した IPT4遺伝子の塩基配列を配列番号: 5に示す 。 翻訳領域にはイントロンは見つからなかったが、 非翻訳領域に約 lkbpのイント ロンが存在した。 またコード領域の上流は約 2kbpであった。  For the IPT4 gene, the base sequence of pIPTGZ20 was determined for the portion including the upstream of the coding region and the entire 0RF. The nucleotide sequence of the determined IPT4 gene is shown in SEQ ID NO: 5. No intron was found in the translated region, but an approximately lkbp intron was present in the untranslated region. The upstream of the coding region was about 2 kbp.
IPT5については pIPTGZ32の全塩基配列を決定した。 決定した IPT5遺伝子の塩基 14 配列を配列番号: 6に示す。 IPT5遺伝子に関しても cDNAが単離されていないが、 少なくとも 0RF中に 2力所のイントロンが存在すると考えられる。 また、 PIPTGZ3 2クローンのコ一ド領域の上流は約 2kbであった。 For IPT5, the entire nucleotide sequence of pIPTGZ32 was determined. The base of the determined IPT5 gene The 14 sequence is shown in SEQ ID NO: 6. No cDNA has been isolated for the IPT5 gene, but at least two introns may be present in 0RF. The upstream of the coding region of the PIPTGZ32 clone was about 2 kb.
cDNAとゲノムクローンの解析から推定した各遺伝子のァミノ酸配列を酵母とァ 力パンカビと VA菌根菌のリン酸トランスポー夕一遺伝子のァミノ酸配列と比較し た。 シロイヌナズナの遺伝子に対する酵母、 アカバンカビの遺伝子のアミノ酸配 列の相同性がいずれも 30%前後であった。 シロイヌナズナ遺伝子のアミノ酸配列相 互では約 75¾以上の相同性を示した。 特に IPT1と IPT2の相同性が高く、 98¾であつ た。  The amino acid sequence of each gene deduced from the analysis of cDNA and genomic clones was compared with the amino acid sequence of the phosphoric acid transport gene of yeast, A. niger and VA mycorrhizal fungi. The homology of the amino acid sequences of the Arabidopsis thaliana genes to the yeast and A. niger genes was around 30%. The amino acid sequences of the Arabidopsis thaliana showed homology of about 75% or more. In particular, the homology between IPT1 and IPT2 was high, at 98¾.
[実施例 4 ] リン酸トランスポータ一遺伝子の染色体マッビング  [Example 4] Chromosome mapping of phosphate transporter gene
シロイヌナズナは 5本の染色体を持つが、 単離した 5種の IPT遺伝子の染色体上 での分布を知ることを目的に、 染色体マッピングを行った。  Although Arabidopsis has five chromosomes, chromosome mapping was performed to determine the distribution of the five isolated IPT genes on the chromosome.
染色体マツビングを実施するためには、 RFLP (制限酵素断片長多型) を検出す る必要があり、 そのプローブには、 P1クローン 92C10に含まれる 3種の遗伝子 (I PT1、 ΙΡΤ2、 ΙΡΤ3) に対しては pIPT-PCRのインサートを用い、 IPT4遺伝子と IPT5に ついては再度 P1クローンを単離して用いた。 単離した P1クローンは 83A1 ( IPT4遺 伝子) 、 88C10 ( IPT5遺伝子) と命名した。 これらのプローブを用い、 コロンビア (Columbia)株とランズバーグェレク夕(Landsberg etrecta)株から調製したゲノム DNAを制限酵素で切断した後、 電気泳動し、 ナイロンメンブレンに DNAを転写した フィルターを用い、 両株間で多型を示す制限酵素断片を検索した。 RFLPを示した 制限酵素で切断した 100 ラインの RI l ine (コロンビア株とランズバーグエレクタ 株を交雑した F8世代) (Lister et al ., Plant J, 4( 1993)745-750) フィルターを 使用して各 RI lineの遺伝子型を決定した。 この分離データを 「Mapmaker Macint osh V2.0」 (Lander et al . genomics, 1 ( 1987)174-181 ) を用いて LODスコア 6.0、 rKosambi mapping function j ( osambi D,D,Ann, Eugen, 12( 1944) 172-175) (こよ つて解析した。 15 この結果、 3種の IPT遺伝子 (IPT1、 ΙΡΤ2、 ΙΡΤ3) の染色体上での位置は、 第 5 染色体の下腕部、 ΙΡΤ 4遺伝子と ΙΡΤ5遺伝子は第 2染色体の下腕部にに座乗して t、 た。 IPT4と IPT5の両遺伝子間距離は 5.4cMであった (図 3 ) 。 またこの遺伝子座は リン酸を過剰に吸収する吸収の変異体として報告されている pho2 (Delhaize E. et al ., Plant Physiol, 107 ( 1995 ) 207-213) の遺伝子座と一致はしないが、 近 い位置であった。 In order to perform chromosome mapping, it is necessary to detect RFLP (restriction fragment length polymorphism), and its probes include three genes (IPT1, ΙΡΤ2, ΙΡΤ3) contained in P1 clone 92C10. ), The insert of pIPT-PCR was used. For IPT4 gene and IPT5, P1 clone was isolated and used again. The isolated P1 clones were named 83A1 (IPT4 gene) and 88C10 (IPT5 gene). Using these probes, genomic DNA prepared from Columbia and Landsberg etrecta strains was digested with restriction enzymes, electrophoresed, and a filter was used to transfer the DNA to a nylon membrane. Restriction enzyme fragments showing polymorphism between both strains were searched. A 100-line RI line (F8 generation crossing a Colombian strain and a Ransberg erecta strain) cut with a restriction enzyme showing RFLP (Lister et al., Plant J, 4 (1993) 745-750) filter was used. Genotype of each RI line was determined. Using the separated data, `` Mapmaker Macint osh V2.0 '' (Lander et al. Genomics, 1 (1987) 174-181), LOD score 6.0, rKosambi mapping function j (osambi D, D, Ann, Eugen, 12 ( 1944) 172-175) (This was analyzed. 15 As a result, the three IPT genes (IPT1, ΙΡΤ2, ΙΡΤ3) are located on the lower arm of chromosome 5, and the ΙΡΤ4 and ΙΡΤ5 genes are located on the lower arm of chromosome 2. Then t. The distance between the two genes, IPT4 and IPT5, was 5.4 cM (Figure 3). This locus does not match the locus of pho2 (Delhaize E. et al., Plant Physiol, 107 (1995) 207-213), which has been reported as an absorption mutant that over-absorbs phosphate. It was close.
[実施例 5 ] リン酸卜ランスポーター遺伝子の植物組織における発現解析 本発明の遺伝子のうち、 cDNAを単離し、 植物体内で発現していることが確実な IPT1遗伝子についてもノーザンブロッ ト分析を行った。 6週間生育させたシロイ ヌナズナの根、 ロゼッ ト葉、 茎、 カウライン葉、 花から RNAを調製して、 電気泳動 し、 ナイロンメンブレンに転写してフィル夕一を作製した。 このフィル夕一に対 して, IPT1遺伝子 cDNAである PIPTC19のィンサ一トをブローブに用い、 ハイプリダ ィゼーシヨンを行い、 0. 1X SSC, 0.1¾ SDS,65°Cの条件で、 洗浄を行って、 転写産 物を検出した。 この結果、 IPT1遺伝子は根で特異的に発現していた (図 4 ) 。  [Example 5] Expression analysis of phosphate transporter gene in plant tissue Among the genes of the present invention, cDNA was isolated, and Northern blot analysis was also performed on the IPT1 遗 gene that is surely expressed in plants. Was done. RNA was prepared from the roots, rosette leaves, stems, cowline leaves, and flowers of Arabidopsis thaliana grown for 6 weeks, electrophoresed, and transferred to a nylon membrane to prepare a fill. For this filter, using the insert of PIPTC19, which is the cDNA of the IPT1 gene, as a probe, hybridization was performed, and washing was performed under conditions of 0.1X SSC, 0.1¾SDS, and 65 ° C. Transcripts were detected. As a result, the IPT1 gene was specifically expressed in the root (FIG. 4).
[実施例 6 ] リン酸トランスポーター遺伝子の発現量とリン酸吸収速度との関 [Example 6] Relationship between expression level of phosphate transporter gene and phosphate absorption rate
Ά Ά
( 1 ) 形質転換培養細胞の作出  (1) Production of transformed cultured cells
過剰発現用のコンストラク ト (P35SIPT1) は、 pKI 121 (pBI 121(Clonetech社製 )の Sstl l-EcoRI断片を pGA643(Pharmac ia社製)の Sstl lと EcoRIサイ 卜に挿入し、 こ の中間産物の Sai l断片を pACYC177(accession no.X06402 )の Sai lサイ 卜に挿入して 構築したブラスミ ド) の GUS geneを BainHIと Saclで切断し除去した部分をブラント 化し、 IPT1の 0RFを含む p IPTGZ2ゲノムクローンのブラント化した Sac I -Hind 111断 片 (ェクソン 2、 イントロン 2、 ェクソン 3を含む) をライゲ一シヨンした (図 5 ) ο  The construct for overexpression (P35SIPT1) was obtained by inserting the Sstl l-EcoRI fragment of pKI121 (pBI121 (Clonetech)) into the Sstl and EcoRI sites of pGA643 (Pharmacia), and the intermediate product The GUS gene of the Brassmid constructed by inserting the Sail fragment of pACYC177 (accession no. The blunted Sac I-Hind 111 fragment (including exon 2, intron 2, and exon 3) of the genomic clone was ligated (Fig. 5) ο
リン酸輸送遺伝子の機能を解析するために第 2イントロンを含む IPT1遺伝子の コード領域をカリフラワーモザイクウィルス 35S (CaMV35S) プロモーターの下流 16 に結合してタバコ BY-2培養細胞に導入した。 遺伝子導入はパーティクルガンを用 い、 コントロールとしてベクター PKI 121も培養細胞に導入した。 カナマイシンを 含む培地で形質転換体を選抜し多数の遺伝子導入株を得た。 導入した遺伝子が発 現している培養細胞系統を選抜するために、 16系統の P35SIPT1導入系統を想濁培 養化し、 IPTlcDNAをプローブとするノーザン分析を実施した。 分析した 16系統の うち、 10系統 (P2、 P3、 P10、 Pll、 P20、 P27、 P29、 P33、 P34、 P38) で mRNAの発 現が見られた。 PKI121導入培養細胞を GUS活性染色した。 分析した 30系統のうち、 12系統のカルスで GUS遺伝子が機能しており、 カナマイシン耐性カルスのうち 40% のカルスが隣接する GUS遺伝子も正常に発現するように導入されていることが判明 した。 このうち 6系統 (C3、 C8、 Cll、 C16、 C18、 C23) の pKI 121導入培養細胞を 想濁培養化した。 To analyze the function of the phosphate transport gene, the coding region of the IPT1 gene containing the second intron was placed downstream of the cauliflower mosaic virus 35S (CaMV35S) promoter. 16 and transferred to cultured tobacco BY-2 cells. Gene transfer was performed using a particle gun, and the vector PKI121 was also introduced into cultured cells as a control. Transformants were selected on a medium containing kanamycin to obtain a large number of transgenic strains. In order to select a cultured cell line in which the introduced gene was expressed, 16 P35SIPT1-introduced lines were cultivated in turbidity and Northern analysis was performed using IPTlcDNA as a probe. Of the 16 lines analyzed, 10 lines (P2, P3, P10, Pll, P20, P27, P29, P33, P34, P38) showed mRNA expression. The PKI121-introduced cultured cells were stained for GUS activity. Of the 30 lines analyzed, the GUS gene was functional in 12 calli, and 40% of the kanamycin-resistant calli were found to have introduced the adjacent GUS gene so that the adjacent GUS gene was also expressed normally. Of these, pKI121-introduced cultured cells of 6 lines (C3, C8, Cll, C16, C18, C23) were subjected to turbid culture.
( 2 ) タバコ培養細胞の維持とリン酸吸収速度の測定  (2) Maintenance of tobacco cultured cells and measurement of phosphate absorption rate
形質転換タバコ BY-2培養細胞は懸濁培養化し、 100mlの改変 MS培地 (2.5mM pho sphate , 0. 1 mg/il myo- inositol , 3¾ sucrose, p.g/mi thiamine - HC1, 0.2 μ. g/ml 2,4-D and 2^g/ml glyc ine, 50 ig/ml kanamyc ine, pH5. 7) で 25°C、 lOOr pmで回転培養し、 7日毎に 3mlの飽和培養細胞液を継代した。 リン酸吸収の測定に 用いる培養細胞は、 カナマイシンを含まない上記培地に継代後 7-9日目の細胞を新 たな MS液体培地に移し、 23-27時間経過したものを用いた。 培養細胞は自然沈降に より集め、 100〃Mのシクロへキシミ ドを含む無リン酸培地 (5mM MES-Tris(pH6.0 ) ,20.6mM NH,N0., 18.8mM 3.0mM CaCb · H20, 1.5mM MgSO. · H!0, 100 iM cy croheximide, 3% sucrose) で 4回洗浄した。 最終濃度が約 0. lg/mlになるように上 記培地に想濁し、 9. 5 m 1の細胞!!濁液を 5 Οιη 1のブラスチックチューブ中で 2時間、 250C、 200rpmで前培養した。 50 zCiの" P-phosphate (Amersham社製, 500 mCi/mm ol final concentraton)を含む 2mMリン酸を終濃度が 100〃Mとなるよう 0.5ml加え 反応を開始した。 適時 250〃1をサンプリングし、 直ちに 0.22〃mの遠心濾過チュー ブウルトラフリー C3GV (UFC30GVOO, MILLIP0RE社製) で細胞を除去し、 濾液のう W 984 JP97/00975 The transformed tobacco BY-2 cultured cells were cultured in suspension, and 100 ml of a modified MS medium (2.5 mM pho sphate, 0.1 mg / il myo-inositol, 3¾ sucrose, pg / mithiamine-HC1, 0.2 μg / g Rotational culture at 25 ° C and 100 pm in ml 2,4-D and 2 ^ g / ml glycine, 50 ig / ml kanamycine, pH 5.7), and subculture 3 ml of a saturated culture solution every 7 days did. Cultured cells used for the measurement of phosphate absorption were obtained by transferring the cells 7 to 9 days after the passage into the above medium without kanamycin to a new MS liquid medium and having passed 23 to 27 hours. Cell culture and more attracted to the natural sedimentation, free phosphoric acid medium containing squeaking de cyclohexane of 100〃M (5mM MES-Tris (pH6.0) , 20.6mM NH, N0., 18.8mM 3.0mM CaCb · H 2 0 , 1.5 mM MgSO. · H! 0, 100 iM cycroheximide, 3% sucrose) 4 times. Imagine the above medium to a final concentration of about 0.1 lg / ml, 9.5 ml cells! 2 hours Nigoeki in 5 Οιη 1 brass tick tube, 25 0 C, and pre-cultured at 200 rpm. The reaction was started by adding 0.5 ml of 2 mM phosphoric acid containing 50 zCi "P-phosphate (500 mCi / mol final concentraton, manufactured by Amersham) to a final concentration of 100 µM. Immediately, remove cells with a 0.22〃m centrifugal filtration tube Ultrafree C3GV (UFC30GVOO, manufactured by Millipore) and filter the filtrate. W 984 JP97 / 00975
17 ち 1を液体シンチレーションカウン夕一で測定して培地中の Piの減少量を液体 シンチレ一シヨンスぺク トロメー夕一( Beckman社製)により測定し、 培養細胞の P i吸収量を算出した。 また、 細胞懸濁液の細胞濃度 (g fwt/ml ) は吸収測定後の細 胞懋濁液 2mlから、 0.45 imの遠心濾過チューブ (UFC40HV25、 MILLIPORE社製) で 細胞を集め、 湿重量を測定して算出した。 また、 遺伝子発現量とリン酸吸収速度 の関係を解析するために、 リン酸吸収速度を測定し、 導入したリン酸トランスポ —夕一遺伝子の発現をノーザン分析により実施した (図 6 ) 。 なお、 培養細胞の リン酸吸収速度は、 高リン酸培地中での前培養とタンパク質合成阻害剤存在下で リン酸初濃度 100 Mで測定した。 この結果、 過剰発現細胞のリン酸吸収速度は 19 3から 596nmol Pi/h/g fwtで吸収活性は IPTlmRNAの発現量と相関があった。 コン卜 ロール細胞のリン酸吸収速度は 101から 203nniol Pi/h/g fwtであった (図 6 ) 。  The amount of Pi in the medium was measured by liquid scintillation counting (Beckman), and the amount of Pi absorbed by the cultured cells was calculated. The cell concentration (g fwt / ml) of the cell suspension was measured using a 0.45 im centrifugal filtration tube (UFC40HV25, manufactured by Millipore) from 2 ml of the cell suspension after the absorption measurement, and the wet weight was measured. Was calculated. In addition, to analyze the relationship between the gene expression level and the phosphate absorption rate, the phosphate absorption rate was measured, and the expression of the introduced phosphate transpo-yuichi gene was performed by Northern analysis (Fig. 6). The phosphate absorption rate of the cultured cells was measured at the initial phosphate concentration of 100 M in pre-culture in a high phosphate medium and in the presence of a protein synthesis inhibitor. As a result, the phosphate absorption rate of the overexpressing cells was 193 to 596 nmol Pi / h / g fwt, and the absorption activity was correlated with the expression level of IPTlmRNA. The phosphate absorption rates of the control cells ranged from 101 to 203 nniol Pi / h / g fwt (Fig. 6).
[実施例 7 ] IPT 1遺伝子の発現によるリン酸吸収活性の上昇に対する Pfl害剤の 醒  [Example 7] Awakening of Pfl harmful agent against increase in phosphate absorption activity due to expression of IPT1 gene
タバコ培養細胞の内在性のリン酸吸収活性とシロイヌナズナリン酸トランスポ —夕一遺伝子 IPT1の過剰発現により上昇したリン酸吸収活性の阻害剤に対する性 質を解析した (表 1 ) 。 なお、 下記の基質のうち、 「リン酸(100//Μ)」 、 「リン 酸 (2mM)」 以外は、 リン酸濃度を 100 zMとした。 The endogenous phosphate-absorbing activity of cultured tobacco cells and the activity of the Arabidopsis thaliana phosphate transporter—an inhibitor of phosphate-absorbing activity increased by overexpression of the Yuichi gene IPT1—were analyzed (Table 1). In addition, among the following substrates, except for “phosphoric acid (100 // Μ)” and “phosphoric acid (2 mM)”, the phosphoric acid concentration was 100 zM.
18 18
リン酸の相対的吸収 ) Relative absorption of phosphoric acid)
PKI121 P35SIPT1 なし 100 100  PKI121 P35SIPT1 None 100 100
100 ί/Μの 2,4-D 0 17  2, 4-D 0 17 at 100 ί / Μ
の CCCP 15 12 CCCP 15 12
100 zMのジェチルスチルべス トロール 24 18 100 zM Getyl Still Vestrol 24 18
リン酸(100〃M) 39 39  Phosphoric acid (100〃M) 39 39
リン酸(2mM) 10 9  Phosphoric acid (2mM) 10 9
100〃Mのヒ酸塩 63 61  100〃M arsenate 63 61
2mMのヒ酸塩 21 20  2 mM arsenate 21 20
この結果、 プロ 卜ノフォアである 2, 4-ジニトロフエノール(2, 4-DNP )とシァニド m-クロ口フエニルヒドラゾン(CCCP ) はいずれもリン酸吸収を強く阻害した。 原 形質膜の H+-ATPase活性の阻害剤であるスチルぺス卜ロールも強い阻害を示した。 また、 リン酸やその類似体であるヒ酸によつていずれの細胞でも同程度のリン酸 吸収が阻害された。 これらの結果から、 シロイヌナズナリン酸トランスポーター 遺伝子 IPT1の遺伝子産物のリン酸吸収機構はプロ トンとリン酸との共輸送である こと、 および IPT1遺伝子産物の活性が、 タバコ培養細胞の内在性のリン酸吸収活 性と阻害剤に対する反応が類似していることが示された。 As a result, both 2,4-dinitrophenol (2,4-DNP) and cyanide m-clomouth phenylhydrazone (CCCP), which are protonophores, strongly inhibited phosphate absorption. Stilditrol, an inhibitor of plasma membrane H + -ATPase activity, also showed strong inhibition. Phosphoric acid and its analog, arsenate, inhibited the absorption of phosphate to a similar extent in all cells. These results indicate that the phosphate absorption mechanism of the Arabidopsis thaliana phosphate transporter gene IPT1 gene product is cotransportation of proton and phosphate, and that the activity of the IPT1 gene product is dependent on the endogenous phosphorylation of cultured tobacco cells. It was shown that the acid absorption activity and the response to the inhibitor were similar.
[実施例 8 ] IPT1遺伝子導入のタバコ培養細胞の生長量への影響  [Example 8] Effect of IPT1 gene transfer on growth of cultured tobacco cells
植え継ぎ後 1週間経過したステーショナリーフエーズの培養細胞を細胞濾過器 (Cell Strainer) でろ過し、 60腿ディスポペトリディッシュに 0.5gの細胞を秤取 19 り、 これを改変 MS培地 (- Km,100ml) に植え継いだ。 2 4時間後、 培養液を細胞濾 過器でろ過しリン酸を含まない MS培地 (リン酸飢餓培地) 10mlで洗って、 細胞濾 過器の重量を測定後、 リン酸飢餓培地 (-Km, 100ml )に植え継いだ。 植え継ぎは培地 15mlを細胞濾過器の反対側から流してフラスコに流し込んで行った。 この後再度 、 細胞濾過器の重量を測定して植え継いだ細胞量を計算した。 リン酸飢餓培地で 4日間培養を続けた後、 以下の方法で細胞重量を測定した。 フィル夕一ホルダー (ガラスフィルタ一ベース) に 「ADVANTEC」 (T0Y0社製) ^.3濾紙(55腿)をセッ 卜 し、 新鮮なリン酸飢餓培地 10mlで濾紙を湿らせて吸引ろか後湿らせた濾紙の重量 を測定した。 濾紙を再度セッ 卜して 4日間培養した培養液を吸引濾過し、 濾紙の 重量を測定した。 この値から細胞の生育量 (湿重量) を計算した。 さらにこの濾 紙をデシケ一ターで一晩乾燥させた後の重量を測定し、 乾燥した濾紙の重さを引 いて乾燥重量とした。 なお、 測定はリン酸輸送遺伝子導入細胞 2ライン (Pll、 P 38) 、 コントロール 1ライン (C3) についてリン酸飢餓状態下での細胞の生育量 について行った。 この結果、 最初にリン酸を豊富に含む通常培地で一日処理した 後の湿重量はリン酸輸送遺伝子導入細胞 'コントロール細胞で有為な差はなかつ た。 しかし、 リン酸欠乏培地植え継ぎ後 4日目では、 コントロール株と比較して 、 湿重量 ·乾燥重量共にリン酸輸送遺伝子導入株が約 40%高かった (表 2 ) 。 One week after passage, the cultured cells of the stationary leaf aids are filtered with a cell strainer (Cell Strainer), and 0.5 g of the cells are weighed into a 60-thigh disposable dish. This was subcultured in a modified MS medium (-Km, 100 ml). After 24 hours, the culture was filtered through a cell filter, washed with 10 ml of a phosphate-free MS medium (phosphate-starved medium), weighed and filtered into a phosphate-starved medium (-Km , 100ml). Subculture was performed by flowing 15 ml of the medium from the opposite side of the cell strainer into the flask. Thereafter, the weight of the cell strainer was measured again to calculate the amount of cells that had been transferred. After culturing in a phosphate-starved medium for 4 days, the cell weight was measured by the following method. Set “ADVANTEC” (made by T0Y0) ^ .3 filter paper (55 thighs) in the filter holder (glass filter base), moisten the filter paper with 10 ml of fresh phosphoric acid starvation medium, and aspirate and then moisten the filter paper. The weight of the filter paper was measured. The filter paper was set again, and the culture solution cultured for 4 days was subjected to suction filtration, and the weight of the filter paper was measured. From this value, the cell growth amount (wet weight) was calculated. Further, the weight of the filter paper after drying overnight in a desiccator was measured, and the weight of the dried filter paper was subtracted to obtain the dry weight. In addition, the measurement was performed on the growth amount of the cells under the phosphate starvation state for two lines (Pll, P38) and one control line (C3) of the cells into which the phosphate transfer gene was introduced. As a result, there was no significant difference between the wet weight after the first day of treatment with a normal medium rich in phosphate and that of the phosphate transfer gene-transfected cells ′ control cells. However, on day 4 after the passage of the phosphate-deficient medium, the phosphate transfer gene-transferred strain was about 40% higher in both wet weight and dry weight compared to the control strain (Table 2).
20 表 2 細胞ライン 初期重量 (a〉 4曰後 (b) 割合 (b/a) 20 Table 2 Initial weight of cell line (a> 4) (b) Ratio (b / a)
(g) (g) (g)  (g) (g) (g)
Pll 0.70±0.05 1.52±0.01 2.19 0.15±0.00 P38 0.80±0.08 1.65±0.05 2.07 0.16±0.00Pll 0.70 ± 0.05 1.52 ± 0.01 2.19 0.15 ± 0.00 P38 0.80 ± 0.08 1.65 ± 0.05 2.07 0.16 ± 0.00
C3 0.73±0.04 1.09±0.01 1.51 0. 10±0.01 C3 0.73 ± 0.04 1.09 ± 0.01 1.51 0.10 ± 0.01
これはリン酸飢餓処理前に吸収したリン酸量がリン酸飢餓処理後の細胞生育量 に影響したものと考えられる。 従来の培養細胞についての研究から、 培養細胞の 重量の増加と窒素 ·炭素の吸収量は平行関係にあることが知られている。 また、 リン酸吸収については生育の初期段階で培地中のリン酸を速やかに吸収して生育 の後半ではリン酸吸収をしないで生育することが知られている。 本実施例におレヽ て作出した形質転換株はリン酸吸収速度が顕著に上昇したためにリン酸を通常量 含む培地で 24時間培養したときにコン卜ロール細胞と比較してより多くのリン酸 を吸収して蓄積したと考えられ、 これがリン酸飢餓培地への移植後の生育量に反 映したと考えられる。 本実施例により一遺伝子を操作することにより植物の生長 量を増大させることが可能であることが判明した。 It is considered that the amount of phosphoric acid absorbed before the phosphate starvation treatment affected the cell growth amount after the phosphate starvation treatment. From studies on conventional cultured cells, it is known that the increase in the weight of cultured cells and the amount of nitrogen and carbon absorbed are in parallel. It is also known that phosphate absorption rapidly absorbs phosphoric acid in the culture medium at the initial stage of growth and does not absorb phosphate during the latter half of growth. In the transformant produced in this example, the phosphate absorption rate was remarkably increased, so that when the transformant was cultured for 24 hours in a medium containing a normal amount of phosphate, more phosphate was obtained than in the control cells. It was considered that this absorbed and accumulated, and this reflected the growth amount after transplantation to the phosphate-starved medium. According to this example, it was found that it is possible to increase the growth amount of a plant by manipulating one gene.
[実施例 9 ] 過剰発現形質転換植物の作製  [Example 9] Production of overexpressing transformed plant
シロイヌナズナの形質転換法は 「改良 vacuum infiltration法」 (Shirano, un publised,Bechtold et al ., 1993)を用いて、 p35S-IPTlと pKI 121を導入した。 形 質転換体は 75〃g/mlのカナマイシンを含む 1/2 B5, 1/1000 HYP0Nex(pH 5.7)の0. 8¾ァガ一プレート上で 2週間生育させ、 耐性個体を選抜した。 植物体は 20°Cまた は、 23°C、 16L/8Dまたは 「continuous l ight j で 1/1000 HYPONexを与えて育成し 21 た, 産業上の利用可能性 As the transformation method of Arabidopsis thaliana, p35S-IPTl and pKI121 were introduced using "improved vacuum infiltration method" (Shirano, unpublised, Bechtold et al., 1993). Transformants were grown for 2 weeks on 0.8 Paga plate containing 1/2 B5, 1/1000 HYP0Nex (pH 5.7) containing 75 μg / ml kanamycin, and resistant individuals were selected. Plants are grown at 20 ° C or 23 ° C, 16L / 8D or `` continuous light j with 1/1000 HYPONex. 21 Industrial Applicability
本発明により、 シロイヌナズナのリン酸輸送タンパク質遺伝子が単離され、 そ の構造が解明された。 さらに本発明により、 シロイヌナズナのリン酸輸送タンパ ク質遺伝子をタバコ培養細胞へ導入してタバコ培養細胞のリン酸吸収能を高める ことが可能となった。 従って、 本発明によれば、 例えば、 植物が利用可能な形態 のリン酸が少ない酸性土壌などの貧リン酸栄養土壌における植物の生育を改善す ることが可能である。 また、 環境の変化が激しい自然界では、 土壌中のリン酸量 は絶えず変化しているが、 本発明の遺伝子が導入された植物はリン酸が存在する 時期に迅速にリン酸を吸収し蓄積することが可能であるため、 本発明により、 環 境の変化に対し強い植物の作出も可能である。 本発明において、 シロイヌナズナ のリン酸輸送タンパク質遺伝子がタバコの培養細胞で機能することが明らかとな つたことから、 本発明は広く植物において適用されることが期待される。 According to the present invention, a phosphate transport protein gene of Arabidopsis thaliana was isolated and its structure was elucidated. Further, according to the present invention, it has become possible to increase the phosphate absorption capacity of tobacco cultured cells by introducing the Arabidopsis phosphate transport protein gene into tobacco cultured cells. Therefore, according to the present invention, for example, it is possible to improve the growth of a plant in a poorly phosphate-neutral soil such as an acidic soil with a small amount of phosphoric acid in a form usable by the plant. In the natural environment where the environment is rapidly changing, the amount of phosphoric acid in the soil is constantly changing.However, plants into which the gene of the present invention has been introduced rapidly absorb and accumulate phosphate in the presence of phosphoric acid. Therefore, according to the present invention, it is possible to produce a plant that is resistant to environmental changes. In the present invention, it has been found that the Arabidopsis phosphate transfer protein gene functions in cultured tobacco cells, and thus the present invention is expected to be widely applied to plants.
22 配列表 配列番号 : 1 22 Sequence Listing SEQ ID NO: 1
配列の長さ : 1755 Array length: 1755
配列の型 : 核酸 Sequence type: nucleic acid
鎖の数 : 二本鎖 Number of chains: double strand
トポロジー : 直鎖状  Topology: linear
配列の種類 : cDNA to iRNA Sequence type: cDNA to iRNA
起源 Origin
生物名 : Arabidopsis thaliana  Organism name: Arabidopsis thaliana
株名 : Colombia  Stock Name: Colombia
配列の特徴 Array features
特徴を表す記号 : CDS  Characteristic symbol: CDS
存在位置 : 55 . . 1626 配列  Location: 55.. 1626 sequence
CTCTCCAGAG AAGTTCTTAA TTTCTCCTGC CAAGCTGATT AAGAGCTCTA GGAA ATG 57  CTCTCCAGAG AAGTTCTTAA TTTCTCCTGC CAAGCTGATT AAGAGCTCTA GGAA ATG 57
Met  Met
1  1
GCC GAA CAA CAA CTA GGA GTG CTA AAG GCA CTC GAT GTT GCG AAG ACG 105 Ala Glu Gin Gin Leu Gly Val Leu Lys Ala Leu Asp Val Ala Lys Thr  GCC GAA CAA CAA CTA GGA GTG CTA AAG GCA CTC GAT GTT GCG AAG ACG 105 Ala Glu Gin Gin Leu Gly Val Leu Lys Ala Leu Asp Val Ala Lys Thr
5 10 15  5 10 15
CAA CTT TAT CAT TTC ACG GCG ATT GTC ATC GCC GGT ATG GGT TTC TTT 153 Gin Leu Tyr His Phe Thr Ala l ie Val l ie Ala Gly Met Gly Phe Phe  CAA CTT TAT CAT TTC ACG GCG ATT GTC ATC GCC GGT ATG GGT TTC TTT 153 Gin Leu Tyr His Phe Thr Ala lie Val lie Ala Gly Met Gly Phe Phe
20 25 30  20 25 30
ACC GAT GCC TAC GAT CTT TTT TGC GTG TCC TTG GTG ACG AAA CTC CTT 201 991ACC GAT GCC TAC GAT CTT TTT TGC GTG TCC TTG GTG ACG AAA CTC CTT 201 991
MI m ^ΐο ^19 W BIV BIV BIV 3Π 8Md MI m ^ ΐο ^ 19 W BIV BIV BIV 3Π 8Md
S8S DXX 31V 103 010 loo oiv αοο IDO VOO OXV 3X1 IDO 039 S8S DXX 31V 103 010 loo oiv αοο IDO VOO OXV 3X1 IDO 039
091 991 091 091 991 091
2jy jqi s q sX usy ¾IV J nio J9S m Biv J3s 2jy jqi s q sX usy ¾IV J nio J9S m Biv J3s
L2 XDD 30V OW 9W OW VDO DVX WO 131 OIV OIV OOV 033 131 1X0 VDO  L2 XDD 30V OW 9W OW VDO DVX WO 131 OIV OIV OOV 033 131 1X0 VDO
O t get OS I O t get OS I
J dsy ^19 Xl9 3Md Say aqd aqd J dsy ^ 19 Xl9 3Md Say aqd aqd
3VI 0V9 I3D V33 XIV IDO III V99 XXX DOV J山 J* 。丄丄  3VI 0V9 I3D V33 XIV IDO III V99 XXX DOV J Mountain J *.丄 丄
0^1 9Π ΐ^Λ BIV nig s i H 3 Π9Ί  0 ^ 1 9Π ΐ ^ Λ BIV nig s i H 3 Π9Ί
ODV DOV 91V 313 I9D 9W 039 WD DD9 013 100  ODV DOV 91V 313 I9D 9W 039 WD DD9 013 100
0Π 901 ΟΟΐ  0Π 901 ΟΟΐ
311 W Π31 丄  311 W Π31 丄
3X0 X3X 0 JX oxx OXV OXV 9XV VID 0X1 XOV 010 139 OVl 9X3 VW VW  3X0 X3X 0 JX oxx OXV OXV 9XV VID 0X1 XOV 010 139 OVl 9X3 VW VW
96 06 98  96 06 98
dsv ^IO UIO  dsv ^ IO UIO
390 V09 313 VW OVD IOD 313 931 L JJIL OiL ) WD 103 XOX X 08  390 V09 313 VW OVD IOD 313 931 L JJIL OiL) WD 103 XOX X 08
sXo Π9ΐ ¾iv usy FA STH ojj ojj sXo Π9ΐ ¾iv usy FA STH ojj ojj
LQZ OOV V9D 191 113 ODO 0X0 109 OW 019 ODD 333 930 丄丄 3 IVO 100 300 LQZ OOV V9D 191 113 ODO 0X0 109 OW 019 ODD 333 930 丄 丄 3 IVO 100 300
S9 09 99 OS ojd sXq ¾iv J9S nio ojj usy sqd 丄 911 SJV ^ίθ S9 09 99 OS ojd sXq ¾iv J9S nio ojj usy sqd 丄 911 SJV ^ ίθ
1X3 VOX 339 133 OW 939 VOX OVD 030 IW 3丄丄 IVI OVl DXV 303 D99 1X3 VOX 339 133 OW 939 VOX OVD 030 IW 3 丄 丄 IVI OVl DXV 303 D99
S S
ΠΘΙ s q J¾ Ι¾Λ noq s Ι¾Λ nai dsy J BIV dsy J ΠΘΙ s q J¾ Ι¾Λ noq s Ι¾Λ nai dsy J BIV dsy J
E2 E2
SL6O0/L6d£/lDd t^86S£/ .6 OAV 24 SL6O0 / L6d £ / lDd t ^ 86S £ / .6 OAV twenty four
GCT GGA GGT TTC GTG GCA CTC GCA GTA TCT TCT ATA TTC GAC AAA AAG 633 Ala Gly Gly Phe Val Ala Leu Ala Val Ser Ser He Phe Asp Lys Lys GCT GGA GGT TTC GTG GCA CTC GCA GTA TCT TCT ATA TTC GAC AAA AAG 633 Ala Gly Gly Phe Val Ala Leu Ala Val Ser Ser He Phe Asp Lys Lys
180 185 190  180 185 190
TTC CCA GCT CCA ACA TAT GCA GTA AAC AGG GCC CTC TCA ACG CCT CCT 681 Phe Pro Ala Pro Thr Tyr Ala Val Asn Arg Ala Leu Ser Thr Pro Pro  TTC CCA GCT CCA ACA TAT GCA GTA AAC AGG GCC CTC TCA ACG CCT CCT 681 Phe Pro Ala Pro Thr Tyr Ala Val Asn Arg Ala Leu Ser Thr Pro Pro
195 200 205  195 200 205
CAA GTT GAC TAC ATT TGG CGA ATC ATC GTC ATG TTT GGT GCT TTA CCC 729 Gin Val Asp Tyr lie Trp Arg lie lie Val Met Phe Gly Ala Leu Pro CAA GTT GAC TAC ATT TGG CGA ATC ATC GTC ATG TTT GGT GCT TTA CCC 729 Gin Val Asp Tyr lie Trp Arg lie lie Val Met Phe Gly Ala Leu Pro
210 215 220 225 210 215 220 225
GCA GCT TTG ACT TAC TAC TGG CGT ATG AAG ATG CCT GAA ACT GCC CGT 777 Ala Ala Leu Thr Tyr Tyr Trp Arg Met Lys Met Pro Glu Thr Ala Arg  GCA GCT TTG ACT TAC TAC TGG CGT ATG AAG ATG CCT GAA ACT GCC CGT 777 Ala Ala Leu Thr Tyr Tyr Trp Arg Met Lys Met Pro Glu Thr Ala Arg
230 235 240  230 235 240
TAC ACC GCT TTG GTT GCC AAG AAC ATC AAA CAA GCC ACA GCC GAC ATG 825 Tyr Thr Ala Leu Val Ala Lys Asn lie Lys Gin Ala Thr Ala Asp Met  TAC ACC GCT TTG GTT GCC AAG AAC ATC AAA CAA GCC ACA GCC GAC ATG 825 Tyr Thr Ala Leu Val Ala Lys Asn lie Lys Gin Ala Thr Ala Asp Met
245 250 255  245 250 255
TCC AAG GTC TTA CAA ACA GAT ATC GAG CTT GAG GAA AGG GTG GAG GAT 873 Ser Lys Val Leu Gin Thr Asp l ie Glu Leu Glu Glu Arg Val Glu Asp  TCC AAG GTC TTA CAA ACA GAT ATC GAG CTT GAG GAA AGG GTG GAG GAT 873 Ser Lys Val Leu Gin Thr Asp lie Glu Leu Glu Glu Arg Val Glu Asp
260 265 270  260 265 270
GAC GTC AAA GAC CCC AAA CAA AAC TAT GGC TTG TTC TCC AAG GAA TTC 921 Asp Val Lys Asp Pro Lys Gin Asn Tyr Gly Leu Phe Ser Lys Glu Phe  GAC GTC AAA GAC CCC AAA CAA AAC TAT GGC TTG TTC TCC AAG GAA TTC 921 Asp Val Lys Asp Pro Lys Gin Asn Tyr Gly Leu Phe Ser Lys Glu Phe
275 280 285  275 280 285
CTT AGA CGC CAT 6GG CTT CAT CTC CTT GGA ACT ACC TCC ACA TGG TTT 969 Leu Arg Arg His Gly Leu His Leu Leu Gly Thr Thr Ser Thr Trp Phe CTT AGA CGC CAT 6GG CTT CAT CTC CTT GGA ACT ACC TCC ACA TGG TTT 969 Leu Arg Arg His Gly Leu His Leu Leu Gly Thr Thr Ser Thr Trp Phe
290 295 300 305 290 295 300 305
TTG CTT GAC ATT GCC TTC TAC AGC CAA AAC TTG TTC CAG AAG GAT ATT 1017 Leu Leu Asp lie Ala Phe Tyr Ser Gin Asn Leu Phe Gin Lys Asp He 6^ΐ VDX m X39 339 IVX VXD Oil 93911103D VOO XID IIV 33D V99丄:) 3 TTG CTT GAC ATT GCC TTC TAC AGC CAA AAC TTG TTC CAG AAG GAT ATT 1017 Leu Leu Asplie Ala Phe Tyr Ser Gin Asn Leu Phe Gin Lys Asp He 6 ^ ΐ VDX m X39 339 IVX VXD Oil 93911103D VOO XID IIV 33D V99 丄 :) 3
on  on
s q {9 ¾iv ¾TV Biv J3s 3ΐΙ ^ΐθ STH sXo jqi s §jy rial Say BIV 簡 OW 193 IIDDDD 333300 D39 VOX VIV V90 IV3101 VOV 131 OOV V1390V 330  s q (9 ¾iv ¾TV Biv J3s 3ΐΙ ^ ΐθ STH sXo jqi s §jy rial Say BIV Simple OW 193 IIDDDD 333 300 D39 VOX VIV V90 IV3101 VOV 131 OOV V1390V 330
911 nio 八 HI aqd Jqi J¾ BIV usy ojj 911 nio eight HI aqd Jqi J¾ BIV usy ojj
C9CI DOO Oil VXV 9V3 IDS 10D 310 JIV 111 I3V 30V V30 V33 JiOO Ji丄丄  C9CI DOO Oil VXV 9V3 IDS 10D 310 JIV 111 I3V 30V V30 V33 JiOO Ji 丄 丄
Si 0  Si 0
usy BIV r\9q jag J 13W  usy BIV r \ 9q jag J 13W
90CT IW 33D DXX I3V DVI 01V XXD D O 丄丄丄 V33 DIV IDO  90CT IW 33D DXX I3V DVI 01V XXD D O 丄 丄 丄 V33 DIV IDO
96ε 06ε  96ε 06ε
usy nio STH usy 9ii ¾iv W9 VOO VW DIV 091 OVO OW ovi丄:)) oxx ODD JIV 339丄 JLiL O / S8S 08ε  usy nio STH usy 9ii ¾iv W9 VOO VW DIV 091 OVO OW ovi 丄 :)) oxx ODD JIV 339 丄 JLiL O / S8S 08ε
^ d Λ usy Π9ΐ UT9 911 s aqd SJV XID  ^ d Λ usy Π9ΐ UT9 911 s aqd SJV XID
60^1 XXX 0X0 D3V 31V 9XV on III V09 XW VXD wo oxv 3W XiX 09V V99 60 ^ 1 XXX 0X0 D3V 31V 9XV on III V09 XW VXD wo oxv 3W XiX 09V V99
09C 99S dsy 3U J ^19 jqi J9S 09C 99S dsy 3U J ^ 19 jqi J9S
Γ9Π XIV OOV IV9 IXV XXX 3f)丄丄 9 VOV OXX DO OVI 090 VOO 019 VOV 10V Γ9Π XIV OOV IV9 IXV XXX 3f) 丄 丄 9 VOV OXX DO OVI 090 VOO 019 VOV 10V
OSS  OSS
"TO BIV Say T3IV 3¾d A niD STH ειπ 3D0 OiV 110 IOV OVO 10D 30V XOD丄丄 V ODV 3XX XXD DVD XVO  "TO BIV Say T3IV 3¾d A niD STH ειπ 3D0 OiV 110 IOV OVO 10D 30V XOD 丄 丄 V ODV 3XX XXD DVD XVO
9CC oec 9CC oec
Figure imgf000028_0001
Figure imgf000028_0001
990Ϊ ODV 030 OW 9XV VD9 OW V3031V 991 VOO OIV 0D3 丄 OXX oze SIS  990Ϊ ODV 030 OW 9XV VD9 OW V3031V 991 VOO OIV 0D3 丄 OXX oze SIS
52 52
SL600/L6dfiL3d P96S£/L6 OAS. 26 SL600 / L6dfiL3d P96S £ / L6 OAS. 26
Ala Gly Ala l ie Val Gly Ala Phe Gly Phe Leu Tyr Ala Ala Gin Ser Ala Gly Ala lie Val Gly Ala Phe Gly Phe Leu Tyr Ala Ala Gin Ser
450 455 460 465  450 455 460 465
CAA GAC AAG GCC AAG GTA GAC GCA GGA TAC CCA CCA GGC ATC GGA GTT 1497 CAA GAC AAG GCC AAG GTA GAC GCA GGA TAC CCA CCA GGC ATC GGA GTT 1497
Gin Asp Lys Ala Lys Val Asp Ala Gly Tyr Pro Pro Gly l ie Gly Val Gin Asp Lys Ala Lys Val Asp Ala Gly Tyr Pro Pro Gly lie Gly Val
470 475 480  470 475 480
AAG AAC TCA TTG ATC ATG CTT GGT GTT CTT AAC TTT ATC GGT ATG CTC 1545 Lys Asn Ser Leu l ie Met Leu Gly Val Leu Asn Phe l ie Gly Met Leu  AAG AAC TCA TTG ATC ATG CTT GGT GTT CTT AAC TTT ATC GGT ATG CTC 1545 Lys Asn Ser Leu lie Met Leu Gly Val Leu Asn Phe lie Gly Met Leu
485 490 495  485 490 495
TTC ACC TTC CTT GTC CCA GAG CCC AAA GGC AAG TCC CTT GAA GAA CTC 1593 Phe Thr Phe Leu Val Pro Glu Pro Lys Gly Lys Ser Leu Glu Glu Leu  TTC ACC TTC CTT GTC CCA GAG CCC AAA GGC AAG TCC CTT GAA GAA CTC 1593 Phe Thr Phe Leu Val Pro Glu Pro Lys Gly Lys Ser Leu Glu Glu Leu
500 505 510  500 505 510
TCT GGT GAG GCT GAG GTT AGC CAT GAC GAG AAA TAATTATGTA TGTTTATTTT 1646 Ser Gly Glu Ala Glu Val Ser His Asp Glu Lys  TCT GGT GAG GCT GAG GTT AGC CAT GAC GAG AAA TAATTATGTA TGTTTATTTT 1646 Ser Gly Glu Ala Glu Val Ser His Asp Glu Lys
515 520  515 520
GTTATTTGGA GTGCGATGTT TGGTTTTGTT TTCATTTTAT TGGCTCGTTG ACCTTAAGTT 1706 ATGATGTTAT AAGAATATTT ATGATAAAAA AAAAAAAAAA AAAAAAAAA 1755 配列番号 : 2 GTTATTTGGA GTGCGATGTT TGGTTTTGTT TTCATTTTAT TGGCTCGTTG ACCTTAAGTT 1706 ATGATGTTAT AAGAATATTT ATGATAAAAA AAAAAAAAAA AAAAAAAAA 1755 SEQ ID NO: 2
配列の長さ : 1766 Sequence length: 1766
配列の型 : 核酸 Sequence type: nucleic acid
鎖の数 : 二本鎖 Number of chains: double strand
トポロジー : 直鎖状  Topology: linear
配列の種類 : cDNA to mRNA Sequence type: cDNA to mRNA
起源 Origin
生物名 : Arabidopsis thai i ana  Organism name: Arabidopsis thai i ana
株名 : Colombia 001 36 06 jqi ^3W ^19 丄 ΐ¾ s l SJV ^T9 naq s^i dsy 9 na cUxStock Name: Colombia 001 36 06 jqi ^ 3W ^ 19 丄 ΐ¾ sl SJV ^ T9 naq s ^ i dsy 9 na cUx
I D3V 9IV 199 3VI 110 VW 9W ODV 030 313 OW XV9 109 IID DDI 300 I D3V 9IV 199 3VI 110 VW 9W ODV 030 313 OW XV9 109 IID DDI 300
98 08 Sム  98 08 S
9qd 9qd Π91 ui9 {ο BIV ^ J ^ s ai^ ¾iv ΐ¾Λ ^ΐθ usy ΐ¾Λ 9qd 9qd Π91 ui9 (ο BIV ^ J ^ s ai ^ ¾iv ΐ¾Λ ^ ΐθ usy ΐ¾Λ
ΠΖ Oil m 310 OVD 109 ODO αΐθ XDV 033 IOX Oil 300 XXD ODD IW DID ΠΖ Oil m 310 OVD 109 ODO αΐθ XDV 033 IOX Oil 300 XXD ODD IW DID
OA 99 09  OA 99 09
Tsiv ¾IV ¾IV ΐ¾Λ usy ojj oaj ns J OJJ s q uio B{y ^ID n^g 3DD 330 V30 DIO OW 333 X33 DIO IDV 393 XOD 9W WO VOO 000 WC SS 09 9^ siH J J an SJV Π9ΐ na s q J¾ Ι¾Λ S ΠΙ SXQ 861 919 3V0 3VI IVI IJ.V 130 109 310 310 DW 93V VXD 310 131 3XV DDI  Tsiv ¾IV ¾IV ΐ¾Λ usy ojj oaj ns J OJJ sq uio B {y ^ ID n ^ g 3DD 330 V30 DIO OW 333 X33 DIO IDV 393 XOD 9W WO VOO 000 WC SS 09 9 ^ siH JJ an SJV Π9ΐ na sq J¾ Ι¾Λ S SX SXQ 861 919 3V0 3VI IVI IJ.V 130 109 310 310 DW 93V VXD 310 131 3XV DDI
Of' SC OG  Of 'SC OG
9Md ne dsy 1 BIV dsy J¾ ^IS WW ¾iV 3Π an 9Md ne dsy 1 BIV dsy J¾ ^ IS WW ¾iV 3Π an
OS I III 010 1V9 OVl IDO IVO IOV 311 Oil VD9 91V VOO 030 DXV VIV DIV OS I III 010 1V9 OVl IDO IVO IOV 311 Oil VD9 91V VOO 030 DXV VIV DIV
QZ 9ΐ OT QZ 9ΐ OT
BIV J¾ sin sin 丄 dJl u 9 J¾ SX7 ¾IV dsv ¾IV usy Π97 201 ODO 00V 0X1 IVO OVX C01 WO ODV OW 339 319 0V9 1X0 VOO IW 9X1 BIV J¾ sin sin 丄 dJl u 9 JSX SX7 ¾IV dsv ¾IV usy Π97 201 ODO 00V 0X1 IVO OVX C01 WO ODV OW 339 319 0V9 1X0 VOO IW 9X1
S ΐ  S ΐ
ΙΒΛ ui9 Π8ΐ ufg nig Say  ΙΒΛ ui9 Π8ΐ ufg nig Say
^ 919 WO VII WO ODV V33 9XV V9W9W0V0 9VIDI1I0W VIVOVDDDiV urn zc9i * · τε : m^ ^ sao : ^ ^-w^  ^ 919 WO VII WO ODV V33 9XV V9W9W0V0 9VIDI1I0W VIVOVDDDiV urn zc9i * · τε: m ^ ^ sao: ^ ^ -w ^
LZLZ
SL600/L6dT/ L3d S6S£IL6 ΟΛλ 28 SL600 / L6dT / L3d S6S £ IL6 ΟΛλ 28
TTG ATG GTC ATG GTC CTT TGT TCA ATA GCC TCT GGT CTC TCT TTC GGA 390TTG ATG GTC ATG GTC CTT TGT TCA ATA GCC TCT GGT CTC TCT TTC GGA 390
Leu Met Val Met Val Leu Cys Ser l ie Ala Ser Gly Leu Ser Phe Gly Leu Met Val Met Val Leu Cys Ser lie Ala Ser Gly Leu Ser Phe Gly
105 110 115 120  105 110 115 120
CAT GAG CCA AAA GCT GTG ATG GCC ACG CTC TGT TTT TTT CGG TTT TGG 438 CAT GAG CCA AAA GCT GTG ATG GCC ACG CTC TGT TTT TTT CGG TTT TGG 438
His Glu Pro Lys Ala Val Met Ala Thr Leu Cys Phe Phe Arg Phe Trp His Glu Pro Lys Ala Val Met Ala Thr Leu Cys Phe Phe Arg Phe Trp
125 130 135  125 130 135
CTT GGA TTT GGC ATC GGT GGT GAC TAC CCT TTA TCC GCA ACC ATC ATG 486 Leu Gly Phe Gly He Gly Gly Asp Tyr Pro Leu Ser Ala Thr He Met  CTT GGA TTT GGC ATC GGT GGT GAC TAC CCT TTA TCC GCA ACC ATC ATG 486 Leu Gly Phe Gly He Gly Gly Asp Tyr Pro Leu Ser Ala Thr He Met
140 145 150  140 145 150
TCT GAA TAT GCG AAC AAG AAG ACT CGC GGA GCC TTT GTC TCT GCG GTT 534 Ser Glu Tyr Ala Asn Lys Lys Thr Arg Gly Ala Phe Val Ser Ala Val  TCT GAA TAT GCG AAC AAG AAG ACT CGC GGA GCC TTT GTC TCT GCG GTT 534 Ser Glu Tyr Ala Asn Lys Lys Thr Arg Gly Ala Phe Val Ser Ala Val
155 160 165  155 160 165
TTT GCT ATG C GGG TTC GGA ATC ATG GCT GGT GGT ATT TTC GCT ATT 582 Phe Ala Met Gin Gly Phe Gly l ie Met Ala Gly Gly l ie Phe Ala l ie  TTT GCT ATG C GGG TTC GGA ATC ATG GCT GGT GGT ATT TTC GCT ATT 582 Phe Ala Met Gin Gly Phe Gly lie Met Ala Gly Gly lie Phe Ala lie
170 175 180  170 175 180
ATA ATT TCC TCT GCT TTT GAA GCT AAG TTT CCA TCC CCG GCC TAT GCG 630 l ie l ie Ser Ser Ala Phe Glu Ala Lys Phe Pro Ser Pro Ala Tyr Ala  ATA ATT TCC TCT GCT TTT GAA GCT AAG TTT CCA TCC CCG GCC TAT GCG 630 l ie l ie Ser Ser Ala Phe Glu Ala Lys Phe Pro Ser Pro Ala Tyr Ala
185 190 195 200 185 190 195 200
GAT GAT GCC TTG GGA TCC ACG ATT CCT C GCT GAT TTG GTA TGG CGG 678 Asp Asp Ala Leu Gly Ser Thr He Pro Gin Ala Asp Leu Val Trp Arg  GAT GAT GCC TTG GGA TCC ACG ATT CCT C GCT GAT TTG GTA TGG CGG 678 Asp Asp Ala Leu Gly Ser Thr He Pro Gin Ala Asp Leu Val Trp Arg
205 210 215  205 210 215
ATA ATC CTG ATG GCT GGT GCT ATC CCT GCG GCT ATG ACG TAT TAC TCA 726 l ie l ie Leu Met Ala Gly Ala l ie Pro Ala Ala Met Thr Tyr Tyr Ser  ATA ATC CTG ATG GCT GGT GCT ATC CCT GCG GCT ATG ACG TAT TAC TCA 726 lie lie Leu Met Ala Gly Ala lie Pro Ala Ala Met Thr Tyr Tyr Ser
220 225 230  220 225 230
AGG TCG AAG ATG CCT GAG ACC GCA AGG TAC ACG GCT TTG GTT GCT AAG 774 Arg Ser Lys Met Pro Glu Thr Ala Arg Tyr Thr Ala Leu Val Ala Lys 29 AGG TCG AAG ATG CCT GAG ACC GCA AGG TAC ACG GCT TTG GTT GCT AAG 774 Arg Ser Lys Met Pro Glu Thr Ala Arg Tyr Thr Ala Leu Val Ala Lys 29
235 240 245 235 240 245
GAC GCA AAG CAG GCA GCT TCG GAC ATG TCT AAG GTT CTG CAA GTG GAG 822 Asp Ala Lys Gin Ala Ala Ser Asp Met Ser Lys Val Leu Gin Val Glu  GAC GCA AAG CAG GCA GCT TCG GAC ATG TCT AAG GTT CTG CAA GTG GAG 822 Asp Ala Lys Gin Ala Ala Ser Asp Met Ser Lys Val Leu Gin Val Glu
250 255 260  250 255 260
ATA GAG CCA GAA CAA CAG AAA TTG GAA GAG ATC TCA AAG GAG AAG TCC 870 l ie Glu Pro Glu Gin Gin Lys Leu Glu Glu l ie Ser Lys Glu Lys Ser ATA GAG CCA GAA CAA CAG AAA TTG GAA GAG ATC TCA AAG GAG AAG TCC 870 lie Glu Pro Glu Gin Gin Lys Leu Glu Glu lie Ser Lys Glu Lys Ser
265 270 275 280 265 270 275 280
AAG GCC TTT GGA TTG TTC TCA AAG GAA TTC ATG AGT CGC CAT GGG CTT 918 Lys Ala Phe Gly Leu Phe Ser Lys Glu Phe Met Ser Arg His Gly Leu  AAG GCC TTT GGA TTG TTC TCA AAG GAA TTC ATG AGT CGC CAT GGG CTT 918 Lys Ala Phe Gly Leu Phe Ser Lys Glu Phe Met Ser Arg His Gly Leu
285 290 295  285 290 295
CAT TTG CTA GGC ACT ACA TCG ACA TGG TTC CTT CTC GAC ATT GCT TTC 966 His Leu Leu Gly Thr Thr Ser Thr Trp Phe Leu Leu Asp He Ala Phe  CAT TTG CTA GGC ACT ACA TCG ACA TGG TTC CTT CTC GAC ATT GCT TTC 966 His Leu Leu Gly Thr Thr Ser Thr Trp Phe Leu Leu Asp He Ala Phe
300 305 310  300 305 310
TAC AGT CAA AAC CTT TTC CAA AAG GAT ATT TTC AGC GCG ATC GGA TGG 1014 Tyr Ser Gin Asn Leu Phe Gin Lys Asp l ie Phe Ser Ala l ie Gly Trp  TAC AGT CAA AAC CTT TTC CAA AAG GAT ATT TTC AGC GCG ATC GGA TGG 1014 Tyr Ser Gin Asn Leu Phe Gin Lys Asp lie Phe Ser Ala lie Gly Trp
315 320 325  315 320 325
ATT CCT CCC GCG CAA AGC ATG AAC GCA ATT CAA GAG GTT TTC AAG ATT 1062 l ie Pro Pro Ala Gin Ser Met Asn Ala l ie Gin Glu Val Phe Lys l ie  ATT CCT CCC GCG CAA AGC ATG AAC GCA ATT CAA GAG GTT TTC AAG ATT 1062 l ie Pro Ala Gin Ser Met Asn Ala lie Gin Glu Val Phe Lys l ie
330 335 340  330 335 340
GCC CGT GCG CAA ACG CTA ATC GCC TTG TGT AGC ACG GTA CCT GGT TAC 1110 Ala Arg Ala Gin Thr Leu He Ala Leu Cys Ser Thr Val Pro Gly Tyr GCC CGT GCG CAA ACG CTA ATC GCC TTG TGT AGC ACG GTA CCT GGT TAC 1110 Ala Arg Ala Gin Thr Leu He Ala Leu Cys Ser Thr Val Pro Gly Tyr
345 350 355 360 345 350 355 360
TGG TTC ACA GTT GCG TTC ATC GAC GTC ATT GGA AGA TTT GCG ATT CAG 1158 Trp Phe Thr Val Ala Phe l ie Asp Val l ie Gly Arg Phe Ala l ie Gin  TGG TTC ACA GTT GCG TTC ATC GAC GTC ATT GGA AGA TTT GCG ATT CAG 1158 Trp Phe Thr Val Ala Phe lie Asp Val lie Gly Arg Phe Ala lie Gin
365 370 375  365 370 375
ATG ATG GGT TTC TTT TTC ATG ACG GTC TTT ATG TTT GCT CTG GCT ATT 1206 02S 9Γ9 019 90S dsy nig usy nio s W nig ng jas sA^ A\ Q s J9s nigATG ATG GGT TTC TTT TTC ATG ACG GTC TTT ATG TTT GCT CTG GCT ATT 1206 02S 9Γ9 019 90S dsy nig usy nio s W nig ng jas sA ^ A \ Q s J9s nig
06SI 3V0 W3 XW W9 丄 33 331 DIV W9 9V9 DID VOL OW 109 VW 131 W9 06SI 3V0 W3 XW W9 丄 33 331 DIV W9 9V9 DID VOL OW 109 VW 131 W9
009 06^ 009 06 ^
0Jd naq gqd J¾ 9¾d na 3Π naq aqd usy ΐ^Λ ^IO Π3ΐ SI 133 V13 3LL Oil 13V Oil 013 3IV 139 VII 0X1 3W 113 VIO 丄 33 9U 0Jd naq gqd J¾ 9¾d na 3Π naq aqd usy ΐ ^ Λ ^ IO Π3ΐ SI 133 V13 3LL Oil 13V Oil 013 3IV 139 VII 0X1 3W 113 VIO 丄 33 9U
ΙΒΛ m J9s usv say ^το m ^19 ojd OJd J BIV dsy i 913 IIV XID 331 3W 03V 310 DDO IIV 030 VDO 133 3VI VOD VOD 3V0 ΙΒΛ m J9s usv say ^ το m ^ 19 ojd OJd J BIV dsy i 913 IIV XID 331 3W 03V 310 DDO IIV 030 VDO 133 3VI VOD VOD 3V0
Ji{丄 dsy sAi dsy OJJ usy u^g ¾|v BIV 9 33V 9W 3V9 9W OVD VOD DW 9V0 J.D9 911 DVl 900 Oil SOD Ji {丄 dsy sAi dsy OJJ usy u ^ g ¾ | v BIV 9 33V 9W 3V9 9W OVD VOD DW 9V0 J.D9 911 DVl 900 Oil SOD
^ 09  ^ 09
ΙΒΛ 9W BIV ίιο Π9 sXi tyg J9S SIH s ΙΒΛ 9W BIV ίιο Π9 sXi tyg J9S SIH s
86Si 199 110 91V VD9 VOO VII VW V90 VDl VOO VD9 131 DIV ISO DVD ODl on 86Si 199 110 91V VD9 VOO VII VW V90 VDl VOO VD9 131 DIV ISO DVD ODl on
jqi J9S 2JV aqd Sjy ¾TV OJJ 9qd ΘΠ 9Md J¾ OSS I 00V VDl VOV 3XX 09V DD9 V30 Oil 3XV W9 330 9DD 0X3 110 3X1 ODV  jqi J9S 2JV aqd Sjy ¾TV OJJ 9qd ΘΠ 9Md J¾ OSS I 00V VDl VOV 3XX 09V DD9 V30 Oil 3XV W9 330 9DD 0X3 110 3X1 ODV
S 0  S 0
J¾ BIV usy OJJ tig sqa usy ¾IV sqd S J iX ZOil VDV 100 XW 303 VOO ILL OW 300 Oil XXX L)OJ VDV VII ODl DVl 9IV  J¾ BIV usy OJJ tig sqa usy ¾IV sqd S J iX ZOil VDV 100 XW 303 VOO ILL OW 300 Oil XXX L) OJ VDV VII ODl DVl 9IV
S6S  S6S
911 9iid i!D 9Π Sjy usy nig sA^ siH J¾ dJi SIH usy J OJJ m\ DXV 119 III VDD DIV V9D OW 9V9 SW OVD XDV 931 DVO OW DVl 1DD  911 9iid i! D 9Π Sjy usy nig sA ^ siH J¾ dJi SIH usy J OJJ m \ DXV 119 III VDD DIV V9D OW 9V9 SW OVD XDV 931 DVO OW DVl 1DD
06G 98C 08S  06G 98C 08S
3ΐΙ Biv ηθΐ ¾ιν 9qd WW 9¾d ϊ¾ J¾ ^9W 9i|d aqd sqd Xig ;9W ^9W  3ΐΙ Biv ηθΐ ¾ιν 9qd WW 9¾d ϊ¾ J¾ ^ 9W 9i | d aqd sqd Xig; 9W ^ 9W
OSOS
SL6O0/L6dr/JDd t-86Se/^6 O 5 SL6O0 / L6dr / JDd t-86Se / ^ 6 O Five
31  31
AAT GAG AAT AGC AAC AAT GAT AGT AGA ACG GTC CCA ATA GTT 1632 Asn Glu Asn Ser Asn Asn Asp Ser Arg Thr Val Pro l ie Val AAT GAG AAT AGC AAC AAT GAT AGT AGA ACG GTC CCA ATA GTT 1632 Asn Glu Asn Ser Asn Asn Asp Ser Arg Thr Val Pro lie Val
525 530  525 530
TAGGTGATAT AATACGCCTT TTGTAATAAT TTTCGTTTTT TCTTTCTCCT TGTCTCTAGC 1692 TAGGTGATAT AATACGCCTT TTGTAATAAT TTTCGTTTTT TCTTTCTCCT TGTCTCTAGC 1692
AACTCAAGTT GTTCTTTGTG TAATCCATTG ATACCTAATT AATGCTAGAG AAATCAAAAA 1752AACTCAAGTT GTTCTTTGTG TAATCCATTG ATACCTAATT AATGCTAGAG AAATCAAAAA 1752
AAAAAAAAAA AAAA 1766 配列番号 : 3 AAAAAAAAAA AAAA 1766 SEQ ID NO: 3
配列の長さ : 5810 Array length: 5810
配列の型 : 核酸 Sequence type: nucleic acid
鎖の数 : 二本鎖 Number of chains: double strand
トポロジー : 直鎖状  Topology: linear
配列の種類 : Genomic DNA Sequence type: Genomic DNA
起源 Origin
生物名 : Arabidopsis thal iana  Organism name: Arabidopsis thal iana
配列の特徴 Array features
特徴を表す記号 : CDS  Characteristic symbol: CDS
存在位置 : 2226 · · 2626 特徴を表す記号 : CDS  Location: 2226 · · 2626 Character code: CDS
存在位置 : 2778 3948 特徴を表す記号 : exon  Location: 2778 3948 Characteristic code: exon
存在位置 : 1945 . . 1978 特徴を表す記号 : intron 32 存在位置 : 1979 . . 2214 特徴を表す記号 : exon Location: 1945.. 1978 Characteristic symbol: intron 32 Location: 1979.. 2214 Characteristic code: exon
存在位置 : 2215 . . 2626 特徴を表す記号 : intron  Location: 2215.. 2626 Characteristic symbol: intron
存在位置 : 2627 . . 2777 特徴を表す記号 : exon  Location: 2627.. 2777 Characteristic symbol: exon
存在位置 : 2778 . . 4054 配列  Location: 2778 ... 4054 sequence
GAATTCCCTG ATAAGTTTTT TTTCTTTACT TCTTAATCAT TGTTTCTTCA TAAAAACAAC 60 ATATGAAGGA TATGATAGAA ATTTGACTAA AAAAAACTTG ATGGATGAGT CTACGTACAT 120 ATATAAATGC AAGGAATATC ATATATAAAA ATTGCATTGA TCTTTGATGC TTTAATACTT 180 GAATTCCCTG ATAAGTTTTT TTTCTTTACT TCTTAATCATCAT TGTTTCTTCA TAAAAACAAC 60 ATATGAAGGA TATGATAGAA ATTTGACTAA AAAAAACTTG ATGGATGAGT CTACGTACAT 120 ATATAAATGC AAGGAATATC ATATATAAAA ATTGCATTGA TCTTTGATGC TTTAATACTT 180
TTAGTGCTTT TTTTAAACAT AACCAATTTT ATATTTTGTT TGATCACACT TTTTTATACT 240TTAGTGCTTT TTTTAAACAT AACCAATTTT ATATTTTGTT TGATCACACT TTTTTATACT 240
ATGAACATGT GTAAAGAGGC TTTTTTTATA TTATGAACAT GTGTAAAATA TCCTCTCTTT 300ATGAACATGT GTAAAGAGGC TTTTTTTATA TTATGAACAT GTGTAAAATA TCCTCTCTTT 300
TTTTTTTACT ATAAGCATGT GTTAAGTGGC CTTTTCTTTT TCTTTGCTTG TAGCCTTGTA 360TTTTTTTACT ATAAGCATGT GTTAAGTGGC CTTTTCTTTT TCTTTGCTTG TAGCCTTGTA 360
AATAATAGGA ATGCCCAAGG GCAAGTCCCT TGAAGAGCTC TCCGGTGAGG CTGAGGTTGA 420AATAATAGGA ATGCCCAAGG GCAAGTCCCT TGAAGAGCTC TCCGGTGAGG CTGAGGTTGA 420
GAAATGATTA CGCCATAATA TTTTCAAATT CTTAATTGGT TCGATGAATT ACATCTTCTA 480GAAATGATTA CGCCATAATA TTTTCAAATT CTTAATTGGT TCGATGAATT ACATCTTCTA 480
TTACGATTTA CTTTATTTTT GCGATGCGTA ATGTGATATT TCATGTTCGT AATGGTGGAT 540TTACGATTTA CTTTATTTTT GCGATGCGTA ATGTGATATT TCATGTTCGT AATGGTGGAT 540
CTCTACATTT ATTTTTTTGT GTGACAAAAT GTAATCAATC GATATTTAGT GGTCATTTAT 600CTCTACATTT ATTTTTTTGT GTGACAAAAT GTAATCAATC GATATTTAGT GGTCATTTAT 600
GATATTTATT TGACTGCTTA TCTCTACTAC ACAGCTACTA TCAAATTCCT AATCTTTGTT 660GATATTTATT TGACTGCTTA TCTCTACTAC ACAGCTACTA TCAAATTCCT AATCTTTGTT 660
GTTATTATGG TTATATTTAA TTTATGCATG TAATACCTCT CGTATAACAA CAAAACATTC 720GTTATTATGG TTATATTTAA TTTATGCATG TAATACCTCT CGTATAACAA CAAAACATTC 720
AAACCATTTA AAACATTAAC GTGTACATAT CGAAGTCCAG AAAACCCGTC ATTTAAAACA 780AAACCATTTA AAACATTAAC GTGTACATAT CGAAGTCCAG AAAACCCGTC ATTTAAAACA 780
AATACAATCC TCACATTTAT ATATATATAT GGTCTGAGCT GGATTGGTTG ATATTAAATC 840 3 AATACAATCC TCACATTTAT ATATATATAT GGTCTGAGCT GGATTGGTTG ATATTAAATC 840 Three
Figure imgf000036_0001
誠3E93 VV 3033i030VWVUV 3VV ε )ϋi9- 。讓vJ。J-v V
Figure imgf000036_0001
Makoto 3E93 VV 3033i030VWVUV 3VV ε) ϋi9-. JvvJ. Jv V
E3ilJ,vvv VJ- 誠 3 V  E3ilJ, vvv VJ- Makoto 3 V
3麵3面麵13麵3 麵 3 麵 13 麵
331 δ 11 sis v39V 33 W393 VV¥ ¥ s 9LLZ VI90VIIV3D WVIVXVIVX XXIIIX9VW CV01X13XXI IXVI93VIIX VDXOWOOXX 9TA2 300V3XDV11 3WWXXII3 W39XW03V VIWXOXWX WOOWIXVD IWOVOVIVI 331 δ 11 sis v39V 33 W393 VV ¥ ¥ s 9LLZ VI90VIIV3D WVIVXVIVX XXIIIX9VW CV01X13XXI IXVI93VIIX VDXOWOOXX 9TA2 300V3XDV11 3WWXXII3 W39XW03V VIWXOXWX WOOWIXVD IWOVOVIVI
3JV 9iid s n^^ j¾ j¾ 999 VIVIXVIWD VX1WD3IV0 X1I1W0VX9 OV OIX 0X1 301 110 D3V 03V 3JV 9iid s n ^^ j¾ j¾ 999 VIVIXVIWD VX1WD3IV0 X1I1W0VX9 OV OIX 0X1 301 110 D3V 03V
S2T OZT SII S2T OZT SII
W Ι^Λ s Biv nig S IH S S ^ IV ί^Λ 909Z 91V 0X9 ID9 OW 330 W9 0V3 309 III XOJ, 013 199 IDI 130 DI9 131  W Ι ^ Λ s Biv nig S IH S S ^ IV ί ^ Λ 909Z 91V 0X9 ID9 OW 330 W9 0V3 309 III XOJ, 013 199 IDI 130 DI9 131
0Π 90 ΐ 001  0Π 90 ΐ 001
sXo Π9ΐ an ;3K ;3W A ngq J¾ na ig J Ι¾Λ s s q Sjy Xig sXo Π9ΐ an; 3K; 3W A ngq J¾ na ig J Ι¾Λ s s q Sjy Xig
8 SZ 391 Oil 31V OIV 9XV VX3 OIX I3V 013 XDD 3VI DID VW VW 990 VDD 8 SZ 391 Oil 31V OIV 9XV VX3 OIX I3V 013 XDD 3VI DID VW VW 990 VDD
36 06 98 08 naq s dsy lD naq dJi
Figure imgf000037_0001
aqa aqd naq u ig J9S naq jqi 9
36 06 98 08 naq s dsy lD naq dJi
Figure imgf000037_0001
aqa aqd naq u ig J9S naq jqi 9
012Z 310 VW 3V0 ID9 3X3 991 139 3X1 Oil OID WO 139 131 110 ODV V99 012Z 310 VW 3V0 ID9 3X3 991 139 3X1 Oil OID WO 139 131 110 ODV V99
9A OL 99 sy¾ naq B^V t¾A ^IS usv ΐ¾ ¾IV ^IV ^IV ΙΒΛ siH 0J<i 0Jd J9S Z 191 110 030 013 109 OW DID 930 030 030 X19 IVO 13D ODD 110 V3丄 9A OL 99 sy¾ naq B ^ V t¾A ^ IS usv ΐ¾ ¾IV ^ IV ^ IV Ι Β Λ s iH 0J <i 0J d J9S Z 191 110 030 013 109 OW DID 930 030 030 030 X19 IVO 13D ODD 110 V3 丄
09 99 OS  09 99 OS
^ίΰ sX ¾iv J3S n{3 OJJ usy sqd J I J an SJy ^ΐΰ ^ ίΰ sX ¾iv J3S n {3 OJJ usy sqd J I J an SJy ^ ΐΰ
Π 30ΰ 133 9W 039 V31 ΟΥΰ 930丄 W DII IVl DV1 3IV 300 039 113 010 Π 30 ΰ 133 9W 039 V31 ΟΥΰ 930 丄 W DII IVl DV1 3IV 300 039 113 010
S se  S se
s^l Jiu ΪΒΑ 1191 J9S Ι¾Λ S Q aqa na dsy J Cl ¾ IV dsy J¾ aqj aqj s ^ l Jiu ΪΒΑ 1191 J9S Ι¾Λ S Q aqa na dsy J Cl ¾ IV dsy J¾ aqj aqj
VW 03V OXD Oil 301 OID 001 III 113 IVO DV1 330 IVO 33V 1X1 iiVW 03V OXD Oil 301 OID 001 III 113 IVO DV1 330 IVO 33V 1X1 ii
OS 92 QZ OS 92 QZ
W ^ID ¾IV l 911 ¾IV J¾ 9Md S T H 1 u]0 J¾ s^i W ^ ID ¾IV l 911 ¾IV J¾ 9Md S T H 1 u] 0 J¾ s ^ i
81CZ 199 91V X3D DOD OIV OID 11V 930 OOV Oil IVO IVl 110 WD DDV OW 81CZ 199 91V X3D DOD OIV OID 11V 930 OOV Oil IVO IVl 110 WD DDV OW
Sム 600/"df /丄0 J fr86SC/i6 OAV 35 S m 600 / "df / 丄 0 J fr86SC / i6 OAV 35
G G TTT TGG TTG GGA TTT GGT ATT GGA GGT GAC TAC CCA CTT TCT GCC 2823 Phe Trp Leu Gly Phe Gly l ie Gly Gly Asp Tyr Pro Leu Ser Ala G G TTT TGG TTG GGA TTT GGT ATT GGA GGT GAC TAC CCA CTT TCT GCC 2823 Phe Trp Leu Gly Phe Gly lie Gly Gly Asp Tyr Pro Leu Ser Ala
135 140 145  135 140 145
ACC ATC ATG TCT GAA TAC GCA AAC AAG AAG ACC CGT GGG GCT TTC ATC 2871 Thr He Met Ser Glu Tyr Ala Asn Lys Lys Thr Arg Gly Ala Phe l ie  ACC ATC ATG TCT GAA TAC GCA AAC AAG AAG ACC CGT GGG GCT TTC ATC 2871 Thr He Met Ser Glu Tyr Ala Asn Lys Lys Thr Arg Gly Ala Phe lie
150 155 160 165 150 155 160 165
GCA GCT GTC TTC GCC ATG CAA GGT GTC GGT ATC TTG GCT GGA GGT TTC 2919 Ala Ala Val Phe Ala Met Gin Gly Val Gly l ie Leu Ala Gly Gly Phe  GCA GCT GTC TTC GCC ATG CAA GGT GTC GGT ATC TTG GCT GGA GGT TTC 2919 Ala Ala Val Phe Ala Met Gin Gly Val Gly lie Leu Ala Gly Gly Phe
170 175 180  170 175 180
GTG GCA CTC GCA GTA TCT TCT ATA TTC GAC AAA AAG TTC CCA GCT CCA 2967 Val Ala Leu Ala Val Ser Ser l ie Phe Asp Lys Lys Phe Pro Ala Pro  GTG GCA CTC GCA GTA TCT TCT ATA TTC GAC AAA AAG TTC CCA GCT CCA 2967 Val Ala Leu Ala Val Ser Ser lie Phe Asp Lys Lys Phe Pro Ala Pro
185 190 195  185 190 195
ACA TAT GCA GTA AAC AGG GCC CTC TCA ACG CCT CCT CAA GTT GAC TAC 3015 Thr Tyr Ala Val Asn Arg Ala Leu Ser Thr Pro Pro Gin Val Asp Tyr  ACA TAT GCA GTA AAC AGG GCC CTC TCA ACG CCT CCT CAA GTT GAC TAC 3015 Thr Tyr Ala Val Asn Arg Ala Leu Ser Thr Pro Pro Gin Val Asp Tyr
200 205 210  200 205 210
ATT TGG CGA ATC ATC GTC ATG TTT GGT GCT TTA CCC GCA GCT TTG ACT 3063 l ie Trp Arg l ie He Val Met Phe Gly Ala Leu Pro Ala Ala Leu Thr  ATT TGG CGA ATC ATC GTC ATG TTT GGT GCT TTA CCC GCA GCT TTG ACT 3063 lie Trp Arg lie He Val Met Phe Gly Ala Leu Pro Ala Ala Leu Thr
215 220 225  215 220 225
TAC TAC TGG CGT ATG AAG ATG CCT GAA ACT GCC CGT TAC ACC GCT TTG 3111 Tyr Tyr Trp Arg Met Lys Met Pro Glu Thr Ala Arg Tyr Thr Ala Leu  TAC TAC TGG CGT ATG AAG ATG CCT GAA ACT GCC CGT TAC ACC GCT TTG 3111 Tyr Tyr Trp Arg Met Lys Met Pro Glu Thr Ala Arg Tyr Thr Ala Leu
230 235 240 245 230 235 240 245
GTT GCC AAG AAC ATC AAA CAA GCC ACA GCC GAC ATG TCC AAG GTC TTA 3159 Val Ala Lys Asn l ie Lys Gin Ala Thr Ala Asp Met Ser Lys Val Leu  GTT GCC AAG AAC ATC AAA CAA GCC ACA GCC GAC ATG TCC AAG GTC TTA 3159 Val Ala Lys Asn l ie Lys Gin Ala Thr Ala Asp Met Ser Lys Val Leu
250 255 260  250 255 260
CAA ACA GAT ATC GAG CTT GAG GAA AGG GTG GAG GAT GAC GTC AAA GAC 3207 Gin Thr Asp He Glu Leu Glu Glu Arg Val Glu Asp Asp Val Lys Asp 36 CAA ACA GAT ATC GAG CTT GAG GAA AGG GTG GAG GAT GAC GTC AAA GAC 3207 Gin Thr Asp He Glu Leu Glu Glu Arg Val Glu Asp Asp Val Lys Asp 36
265 270 275 265 270 275
CCC AAA CAA AAC TAT GGC TTG TTC TCC AAG GAA TTC CTT AGA CGC CAT 3255 Pro Lys Gin Asn Tyr Gly Leu Phe Ser Lys Glu Phe Leu Arg Arg His  CCC AAA CAA AAC TAT GGC TTG TTC TCC AAG GAA TTC CTT AGA CGC CAT 3255 Pro Lys Gin Asn Tyr Gly Leu Phe Ser Lys Glu Phe Leu Arg Arg His
280 285 290  280 285 290
GGG CTT CAT CTC CTT GGA ACT ACC TCC ACA TGG TTT TTG CTT GAC ATT 3303 Gly Leu His Leu Leu Gly Thr Thr Ser Thr Trp Phe Leu Leu Asp lie  GGG CTT CAT CTC CTT GGA ACT ACC TCC ACA TGG TTT TTG CTT GAC ATT 3303 Gly Leu His Leu Leu Gly Thr Thr Ser Thr Trp Phe Leu Leu Asplie
295 300 305  295 300 305
GCC TTC TAC AGC CAA AAC TTG TTC CAG AAG GAT ATT TTC TCG GCC ATC 3351 Ala Phe Tyr Ser Gin Asn Leu Phe Gin Lys Asp lie Phe Ser Ala lie  GCC TTC TAC AGC CAA AAC TTG TTC CAG AAG GAT ATT TTC TCG GCC ATC 3351 Ala Phe Tyr Ser Gin Asn Leu Phe Gin Lys Asp lie Phe Ser Ala lie
310 315 320 325 310 315 320 325
GGA TGG ATC CCA AAG GCA GCC ACC ATG AAC GCC ACC CAT GAG GTT TTC 3399 Gly Trp lie Pro Lys Ala Ala Thr Met Asn Ala Thr His Glu Val Phe  GGA TGG ATC CCA AAG GCA GCC ACC ATG AAC GCC ACC CAT GAG GTT TTC 3399 Gly Trp lie Pro Lys Ala Ala Thr Met Asn Ala Thr His Glu Val Phe
330 335 340  330 335 340
AGG ATT GCT AGG GCT CAG ACT CTT ATC GCC CTT TGC AGT ACA GTC CCA 3447 Arg He Ala Arg Ala Gin Thr Leu lie Ala Leu Cys Ser Thr Val Pro  AGG ATT GCT AGG GCT CAG ACT CTT ATC GCC CTT TGC AGT ACA GTC CCA 3447 Arg He Ala Arg Ala Gin Thr Leu lie Ala Leu Cys Ser Thr Val Pro
345 350 355  345 350 355
GGC TAC TGG TTC ACA GTT GCG TTT ATT GAT ACC ATT GGA AGG TTT AAG 3495 Gly Tyr Trp Phe Thr Val Ala Phe lie Asp Thr lie Gly Arg Phe Lys  GGC TAC TGG TTC ACA GTT GCG TTT ATT GAT ACC ATT GGA AGG TTT AAG 3495 Gly Tyr Trp Phe Thr Val Ala Phe lie Asp Thr lie Gly Arg Phe Lys
360 365 370  360 365 370
ATC CAA CTA AAT GGA TTT TTC ATG ATG ACC GTG TTT ATG TTT GCC ATT 3543 He Gin Leu Asn Gly Phe Phe Met Met Thr Val Phe Met Phe Ala He  ATC CAA CTA AAT GGA TTT TTC ATG ATG ACC GTG TTT ATG TTT GCC ATT 3543 He Gin Leu Asn Gly Phe Phe Met Met Thr Val Phe Met Phe Ala He
375 380 385  375 380 385
GCC TTC CCT TAC AAC CAC TGG ATC AAA CCA GAA AAC CGT ATC GGA TTT 3591 Ala Phe Pro Tyr Asn His Trp lie Lys Pro Glu Asn Arg lie Gly Phe  GCC TTC CCT TAC AAC CAC TGG ATC AAA CCA GAA AAC CGT ATC GGA TTT 3591 Ala Phe Pro Tyr Asn His Trp lie Lys Pro Glu Asn Arg lie Gly Phe
390 395 400 405 390 395 400 405
GTG GTT ATG TAC TCT CTT ACT TTC TTC TTC GCC AAT TTT GGT CCA AAT 3639 89ΐ^ 10VIX1DDI9 VI3IVDVIIV VWXX30W3 0WWD3IDV 31IVXVIVIJ, 3DWDVW90 860^ I3IIVI0V3X 3V0O1VW00 IIIVIWIOI 3II0IWVIJ, 1V3IVXV91V IIXVIWOW 8 0^ IVllOiVOIV IIOWIIOOV 9XX03IDD9I IVXXXXVOIX 1I0IIII99X 119XV930I9 s q nig dsy S TH s m njg VDOmVlXO IXIIVIIXOI VXOIVXIWI VW OVD DVO IVD D3V 119 OVDGTG GTT ATG TAC TCT CTT ACT TTC TTC TTC GCC AAT TTT GGT CCA AAT 3639 89ΐ ^ 10VIX1DDI9 VI3IVDVIIV VWXX30W3 0WWD3IDV 31IVXVIVIJ, 3DWDVW90 860 ^ I3IIVI0V3X 3V0O1VW00 IIIVIWIOI 3II0IWVIJ, 1V3IVXV91V IIXVIWOW 8 0 ^ IVllOiVOIV IIOWIIOOV 9XX03IDD9I IVXXXXVOIX 1I0IIII99X 119XV930I9 sq nig dsy S TH sm njg VDOmVlXO IXIIVIIXOI VXOIVXIWI VW OVD DVO IVD D3V 119 OVD
SI9 0Ϊ3 S09 SI9 0Ϊ3 S09
BIV nig i J9 Π9ΐ nig nig naq s yiig sXq OJJ OJJ 八 6S 130 DV3 iOO IDX 010 WO W9 113 D3I OW 399 VW D03 0V9 VOO 019  BIV nig i J9 Π9ΐ nig nig naq s yiig sXq OJJ OJJ 8 6S 130 DV3 iOO IDX 010 WO W9 113 D3I OW 399 VW D03 0V9 VOO 019
OOS 96^ 06t  OOS 96 ^ 06t
Π91 J¾ 8qd naq ^ d usy na 八 ^ιο na d \ 110 OXJ, 30V OXI 310 9IV XOO QXV 1IX 3W IXD 110 199 110 9IV OIV S8 08 S 0 naq JGS USV sXq
Figure imgf000040_0001
s tS8S 911 V01 DW OW 1X9 V09 3IV 009 VOO VDO 3V1 V99 VOO 3V9 VXD OW
Π91 J¾ 8qd naq ^ d usy na eight ^ ιο na d \ 110 OXJ, 30V OXI 310 9IV XOO QXV 1IX 3W IXD 110 199 110 9IV OIV S8 08 S 0 naq JGS USV sXq
Figure imgf000040_0001
s tS8S 911 V01 DW OW 1X9 V09 3IV 009 VOO VDO 3V1 V99 VOO 3V9 VXD OW
S9^ 09^ SS  S9 ^ 09 ^ SS
BIV s dsv UI9 uig ¾iv ¾IV J ^ΐθ 9Md ^TV ^ΪΟ ΐ¾Λ 309 9W 3VD WO VOX WO XDO 930 LYl VIO Oil 309 III 3DD VOO 110  BIV s dsv UI9 uig ¾iv ¾IV J ^ ΐθ 9Md ^ TV ^ ΪΟ 309 309 9W 3VD WO VOX WO XDO 930 LYl VIO Oil 309 III 3DD VOO 110
OSfr St^ O^  OSfr St ^ O ^
9 Π ^IV T31V sXq iio ¾iv ¾IV ¾iv s 9 Π S I H s J S S XXV 033 V90 I3D 3W 100 130 000 ODD VOX VIV V09 IVO 101 V3V XOX  9 Π ^ IV T31V sXq iio ¾iv ¾IV ¾iv s 9 Π S I H s J S S XXV 033 V90 I3D 3W 100 130 000 ODD VOX VIV V09 IVO 101 V3V XOX
QZ^ Z  QZ ^ Z
SJV na SJV B IV OJJ aqj an nig ν\ OJJ 八 9 U aqd J¾ J¾ BJV 89S 99V V10 OOV 039 000 Oil VIV OVO XOO 103 013 IIV 111 1DV OOV V39 SJ V na SJV B IV OJJ aqj an nig ν \ OJJ 8 9 U aqd J¾ J¾ BJV 89S 99V V10 OOV 039 000 Oil VIV OVO XOO 103 013 IIV 111 1DV OOV V39
oz s oi  oz s oi
usv QJd sqd usv ¾TV ^Md sqd 9qd J¾ na s J W ΐ¾ ΐ¾Λ ム ε  usv QJd sqd usv ¾TV ^ Md sqd 9qd J¾ na s J W ΐ¾ ΐ¾Λ
S^600/ ,6df/X3d f86S£/L6 OAV
Figure imgf000041_0001
S ^ 600 /, 6df / X3d f86S £ / L6 OAV
Figure imgf000041_0001
SU 3V. SU 3V.
39 39
AACATATATT AACTAATTGA CGAAAAATGT GTGGGTTCAA CATCCCGCAA CGAATAAAAT 5778 CTTTTGACAA TGATTCATAA ACATAGGAAT TC 5810 配列番号 : 4 AACATATATT AACTAATTGA CGAAAAATGT GTGGGTTCAA CATCCCGCAA CGAATAAAAT 5778 CTTTTGACAA TGATTCATAA ACATAGGAAT TC 5810 SEQ ID NO: 4
配列の長さ : 12987 Sequence length: 12987
配列の型 : 核酸 Sequence type: nucleic acid
鎖の数 : 二本鎖 Number of chains: double strand
トポロジー : 直鎖状  Topology: linear
配列の種類 : Genomic DNA Sequence type: Genomic DNA
起源 Origin
玍物名 : Arabidopsis thaliana  Animal name: Arabidopsis thaliana
株名 : Colombia  Stock Name: Colombia
配列の特徴 Array features
特徴を表す記号 : CDS  Characteristic symbol: CDS
存在位置 : 2561 . . 2961  Location: 2561.. 2961
他の情報 : IPT3 特徴を表す記号 : CDS  Other information: IPT3 Characteristic symbol: CDS
存在位置 : 3087 .. 4248  Location: 3087 .. 4248
他の倩報 : IPT3 特徴を表す記号 : CDS  Other information: IPT3 Characteristic symbol: CDS
存在位置 : 9111 . . 9511  Location: 9111.. 9511
他の情報 : IPT2 特徴を表す記号 : CDS 40 存在位置 : 9662 . . 10832 Other information: IPT2 Characteristic symbol: CDS 40 Location: 9662.. 10832
他の情報 : IPT2 特徴を表す記号 : intron  Other information: IPT2 Characteristic symbol: intron
存在位置 : 2962 . . 3086 特徴を表す記号 : intron  Location: 2962.. 3086 Characteristic symbol: intron
存在位置 : 4249 . . 9110 配列  Location: 4249.. 9110 sequence
GCTTTTAAAA AATTTACAAA GATTTTTAAA AGCATTTTTT TGGCTGGGAA AAAAATTTTA 60 CGAGAAAACA TTTTTGGCGG GAAATTTTTT TTTTGGCGGG AAAAAAAGTT TGGCGGAAAT 120 TTTTTGTTTG GCGGGAAAAA TAAATTTTGG TACATGTTAT TATTAAATGA GGGTAATTTG 180 GCTTTTAAAA AATTTACAAA GATTTTTAAA AGCATTTTTT TGGCTGGGAA AAAAATTTTA 60 CGAGAAAACA TTTTTGGCGG GAAATTTTTT TTTTGGCGGG AAAAAAAGTT TGGCGGAAAT 120 TTTTTGTTTG GCGGGAAAAA TAAATTTTGG TACATGTTAT TATTAAATGA GGGATT
GTCATTCTGT TCAATAGAAG GGATATTTTT AAAAATAAAC AATATAAAAT GGTATTGTTA 240GTCATTCTGT TCAATAGAAG GGATATTTTT AAAAATAAAC AATATAAAAT GGTATTGTTA 240
CAAAAGGGTA GTAAAAAAAG GGTAGTTTTG CAAATCTCCC TCGAGAATTT GCAATTTCTC 300CAAAAGGGTA GTAAAAAAAG GGTAGTTTTG CAAATCTCCC TCGAGAATTT GCAATTTCTC 300
TCTCATAGCA TAACATGTCT TTTTTTTAGT AAATTTCAAG ATGACAAAAA GAAAAAAAAA 360TCTCATAGCA TAACATGTCT TTTTTTTAGT AAATTTCAAG ATGACAAAAA GAAAAAAAAA 360
ACATAAAGAA ACAAATTGAA AGCAACATCT ATTTTTCTGA CTTGTAAAAA TGTGGTGTTA 420ACATAAAGAA ACAAATTGAA AGCAACATCT ATTTTTCTGA CTTGTAAAAA TGTGGTGTTA 420
CTAGCAAATA TCAAATTTTT GTATCTATAA ACTAGATTTT AACCCGCGGT ATACTAGGAG 480CTAGCAAATA TCAAATTTTT GTATCTATAA ACTAGATTTT AACCCGCGGT ATACTAGGAG 480
AACGATTTAT TTTTTAAAGT TAATATATAT ACAAGTTTAC AAATTGAATA TATTTATAAA 540AACGATTTAT TTTTTAAAGT TAATATATAT ACAAGTTTAC AAATTGAATA TATTTATAAA 540
AAAAATAAAT TTTTTAGTTT ACAATTATTA TTAGGTAACA TCCCGCCAAA TCTGTTCCAT 600AAAAATAAAT TTTTTAGTTT ACAATTATTA TTAGGTAACA TCCCGCCAAA TCTGTTCCAT 600
CAAAAAGCTT ATTAATTTTA TTAATGTTAA CCTTAGTTAT GATATGATTC TAAATCATTG 660CAAAAAGCTT ATTAATTTTA TTAATGTTAA CCTTAGTTAT GATATGATTC TAAATCATTG 660
TCTAGATATT TTAGCCAATG TTAGGACGTT GAACCCACAT AGTTTTCGTC AATTGAATAA 720TCTAGATATT TTAGCCAATG TTAGGACGTT GAACCCACAT AGTTTTCGTC AATTGAATAA 720
TATATGTTCG TTTTATAAAT TTCGAATCAC AATTTATGCA GAAAATGTTT TGAAATTTTT 780TATATGTTCG TTTTATAAAT TTCGAATCAC AATTTATGCA GAAAATGTTT TGAAATTTTT 780
CTTAACHTA CATATTATAC AATAAAAAAT CAAACAAAGA TGATAGGAAA TTCATAGTTT 840CTTAACHTA CATATTATAC AATAAAAAAT CAAACAAAGA TGATAGGAAA TTCATAGTTT 840
TAAATCTTAA TCAAATCTTC TAAATATCAA TATTGTTAAA TATAGAAGTA ATGAGTATAA 900TAAATCTTAA TCAAATCTTC TAAATATCAA TATTGTTAAA TATAGAAGTA ATGAGTATAA 900
GAGTTGGGTT TTATTTGAAC CAACCCAACT AAGATTTAAT GAACATCATA AACTAATGGG 960 M&A 6 S卜 600/卜. GAGTTGGGTT TTATTTGAAC CAACCCAACT AAGATTTAAT GAACATCATA AACTAATGGG 960 M & A 6 S
O ( O (
O CO ( l OO 寸寸 O o0o0 寸寸 o o co <  O CO (l OO dimensions O o0 o0 dimensions o o co <
— CV3 C C 寸寸 t m co o t- o oo oo σ  — CV3 C C Dimensions t m co o t- o oo oo σ
OJ C  OJ C
Figure imgf000044_0001
Figure imgf000044_0001
cloud
Clouds
義v Righteousness
09 aqd s d s na jqx J¾ 八 {9 s ¾iv J8S usy ΐΰ ΠΘΊ jas 6S6Z Oil Oil 301 110 I3V 93V 9IV OXD 103 9W 300 931 IW 333 Oil 331 09 aqd sds na jqx J¾8 (9 s ¾iv J8S usy ΐΰ ΠΘΊ jas 6S6Z Oil Oil 301 110 I3V 93V 9IV OXD 103 9W 300 931 IW 333 Oil 331
SII 0Π SOI  SII 0Π SOI
na J8S ¾iV ΐ¾Λ s na an %^ Q \ l J¾ 3Π ^13 Π6Ζ iiO 1D0 331 1D9 110 VOX 001 310 XXV OXV OXV OIV 911 I3V 3IV 109  na J8S ¾iV ΐ¾Λ s na an% ^ Q \ l J¾ 3Π ^ 13 Π6Ζ iiO 1D0 331 1D9 110 VOX 001 310 XXV OXV OXV OIV 911 I3V 3IV 109
001 96 06  001 96 06
J^l ΐ¾Λ sX^ sX Say io na sXi dsy Χΐθ nai dJi {g ai^ aqj naq J ^ l ΐ¾Λ sX ^ sX Say io na sXi dsy Χΐθ nai dJi (g ai ^ aqj naq
C98Z OVX DX9 3W VW D30 VOO 310 VW 0V9 133 1X3 991 Y90 311 3XX 3X0 C98Z OVX DX9 3W VW D30 VOO 310 VW 0V9 133 1X3 991 Y90 311 3XX 3X0
98 08 Si 0ム 98 08 Si 0
"ID ^19 BIV nai J¾ ig s naq Έ\γ 八 λϊθ «sy BIV ¾IV ¾IV WO 199 303 110 03V V99 191 iXO 339 919 XDO OW 31D VD9 139 339 "ID ^ 19 BIV nai J¾ ig s naq Έ \ γ eight λϊθ« sy BIV ¾IV ¾IV WO 199 303 110 03V V99 191 iXO 339 919 XDO OW 31D VD9 139 339
39 09 S9 ΐ¾Λ sin 0Jd ojj Π97 J9S I9 OJJ s q B【V Jas J¾ OJJ usy 3¾j j im 119 IVD 133 ODD 110 VDl 099 I0D OW V09 VOl 3DV V30 XW 0X1 OVl  39 09 S9 ΐ¾Λ sin 0Jd ojj Π97 J9S I9 OJJ s q B [V Jas J¾ OJJ usy 3¾j j im 119 IVD 133 ODD 110 VDl 099 I0D OW V09 VOl 3DV V30 XW 0X1 OVl
OS O OS O
JX nsq Say XIO nai 3Ί s α¾ Ι¾Λ ΠΘΊ jas Ι¾Λ s o aqj na dsyJX nsq Say XIO nai 3Ί s α¾ Ι¾Λ ΠΘΊ jas Ι¾Λ s o aqj na dsy
6U2 OVX 3X0 033 000 1X0 110 DW 03V 9XD DIX DDI 9Ιί> 131 ILL 010 IVD se oe Z 6U2 OVX 3X0 033 000 1X0 110 DW 03V 9XD DIX DDI 9Ιί> 131 ILL 010 IVD se oe Z
j BIV dsy J¾ 9qa ^io o ¾iv ι ¾τν J¾ a a j BIV dsy J¾ 9qa ^ io o ¾iv ι ¾τν J¾ a a
OVI 909 OVO 93V III 0X1 ODD 3XV X9D 309 IIV 013 IIV X3D 90V OilOVI 909 OVO 93V III 0X1 ODD 3XV X9D 309 IIV 013 IIV X3D 90V Oil
OZ SI 01 OZ SI 01
STH Π9Ί u{g jqx sXq BIV Ι¾Λ dsy ngq Btv s q naq Ι¾Λ ^ΐθ naq STH Π9Ί u {g jqx sXq BIV Ι¾Λ dsy ngq Btv s q naq Ι¾Λ ^ ΐθ naq
IVO OVX XIO WO 90V 9W 909 113 IVO IXO VOO 9W VXD 3X0 VOO VIOIVO OVX XIO WO 90V 9W 909 113 IVO IXO VOO 9W VXD 3X0 VOO VIO
S I S I
"Ϊ9 «Ϊ0 dsy ^TV "Ϊ9« Ϊ0 dsy ^ TV
,9Z OVO WO IVO 009 DIV 9V913VD10V 9WWV3VW W9W9V9V9 9VIVWVD91  , 9Z OVO WO IVO 009 DIV 9V913VD10V 9WWV3VW W9W9V9V9 9VIVWVD91
SL600/ .6df/X3d P86St/L6 OAV 43 SL600 / .6df / X3d P86St / L6 OAV 43
120 125 130 120 125 130
AG GTACAATTTA TTTAGCCACA AACCTAATAT CACATACGTC ACAGATACAA 3011 Arg  AG GTACAATTTA TTTAGCCACA AACCTAATAT CACATACGTC ACAGATACAA 3011 Arg
GCTCGAGAGA TTAGTCACTA TTTCGACCTA GATTATGGTT ACTTAAGATA CTGATATCTA 3071 GACGATTATA TATAG G TTT TGG CTC GGG TTT GGC ATT GGA GGT GAC TAC 3120  GCTCGAGAGA TTAGTCACTA TTTCGACCTA GATTATGGTT ACTTAAGATA CTGATATCTA 3071 GACGATTATA TATAG G TTT TGG CTC GGG TTT GGC ATT GGA GGT GAC TAC 3120
Phe Trp Leu Gly Phe Gly lie Gly Gly Asp Tyr  Phe Trp Leu Gly Phe Gly lie Gly Gly Asp Tyr
135 140 145  135 140 145
CCT CTA TCT GCC ACC ATC ATG TCT GAA TAC GCT AAC AAG AAG ACT CGT 3168 CCT CTA TCT GCC ACC ATC ATG TCT GAA TAC GCT AAC AAG AAG ACT CGT 3168
Pro Leu Ser Ala Thr l ie Met Ser Glu Tyr Ala Asn Lys Lys Thr Arg Pro Leu Ser Ala Thr lie Met Ser Glu Tyr Ala Asn Lys Lys Thr Arg
150 155 160  150 155 160
GGG GCT TTC ATC GCG GCA GTG TTC GCC ATG CAA GGT GTA GGT ATC TTG 3216 GGG GCT TTC ATC GCG GCA GTG TTC GCC ATG CAA GGT GTA GGT ATC TTG 3216
Gly Ala Phe He Ala Ala Val Phe Ala Met Gin Gly Val Gly He Leu Gly Ala Phe He Ala Ala Val Phe Ala Met Gin Gly Val Gly He Leu
165 170 175  165 170 175
GCG GGA GGT TTT GTG GCA CTT GCA GTT TCT TCC ATA TTT GAC AAA AAG 3264 GCG GGA GGT TTT GTG GCA CTT GCA GTT TCT TCC ATA TTT GAC AAA AAG 3264
Ala Gly Gly Phe Val Ala Leu Ala Val Ser Ser l ie Phe Asp Lys Lys Ala Gly Gly Phe Val Ala Leu Ala Val Ser Ser lie Phe Asp Lys Lys
180 185 190  180 185 190
TTC CCA TCG CCG ACG TAT GAG CAA GAC AGG TTT CTA TCA ACG CCT CCT 3312 TTC CCA TCG CCG ACG TAT GAG CAA GAC AGG TTT CTA TCA ACG CCT CCT 3312
Phe Pro Ser Pro Thr Tyr Glu Gin Asp Arg Phe Leu Ser Thr Pro Pro Phe Pro Ser Pro Thr Tyr Glu Gin Asp Arg Phe Leu Ser Thr Pro Pro
195 200 205  195 200 205
CAA GCT GAT TAC ATT TGG CGA ATC ATC GTC ATG TTT GGT GCT TTA CCC 3360 CAA GCT GAT TAC ATT TGG CGA ATC ATC GTC ATG TTT GGT GCT TTA CCC 3360
Gin Ala Asp Tyr lie Trp Arg l ie lie Val Met Phe Gly Ala Leu Pro Gin Ala Asp Tyr lie Trp Arg lie lie Val Met Phe Gly Ala Leu Pro
210 215 ' 220 225 210 215 '220 225
GCA GCT TTG ACT TAC TAT TGG CGT ATG AAG ATG CCT GAA ACA GCC CGT 3408 GCA GCT TTG ACT TAC TAT TGG CGT ATG AAG ATG CCT GAA ACA GCC CGT 3408
Ala Ala Leu Thr Tyr Tyr Trp Arg Met Lys Met Pro Glu Thr Ala Arg Ala Ala Leu Thr Tyr Tyr Trp Arg Met Lys Met Pro Glu Thr Ala Arg
230 235 240  230 235 240
TAC ACC GCT TTA GTT GCC AAG AAC ATC AAA CAA GCC ACA GCA GAC ATG 3456 3 TAC ACC GCT TTA GTT GCC AAG AAC ATC AAA CAA GCC ACA GCA GAC ATG 3456 Three
44  44
Tyr Thr Ala Leu Val Ala Lys Asn He Lys Gin Ala Thr Ala Asp Met Tyr Thr Ala Leu Val Ala Lys Asn He Lys Gin Ala Thr Ala Asp Met
245 250 255  245 250 255
TCC AAG GTC TTA CAA ACA GAT CTC GAG CTT GAG GAA AGG GTG GAG GAT 3504 Ser Lys Val Leu Gin Thr Asp Leu Glu Leu Glu Glu Arg Val Glu Asp  TCC AAG GTC TTA CAA ACA GAT CTC GAG CTT GAG GAA AGG GTG GAG GAT 3504 Ser Lys Val Leu Gin Thr Asp Leu Glu Leu Glu Glu Arg Val Glu Asp
260 265 270  260 265 270
GAC GTC AAG GAC CCC AAA AAA AAC TAT GGC TTG TTC TCC AAG GAA TTC 3552 Asp Val Lys Asp Pro Lys Lys Asn Tyr Gly Leu Phe Ser Lys Glu Phe  GAC GTC AAG GAC CCC AAA AAA AAC TAT GGC TTG TTC TCC AAG GAA TTC 3552 Asp Val Lys Asp Pro Lys Lys Asn Tyr Gly Leu Phe Ser Lys Glu Phe
275 280 285  275 280 285
CTT AGA CGC CAT GGG CTT CAT CTC CTT GGG ACT ACC TCC ACT TGG TTT 3600 Leu Arg Arg His Gly Leu His Leu Leu Gly Thr Thr Ser Thr Trp Phe  CTT AGA CGC CAT GGG CTT CAT CTC CTT GGG ACT ACC TCC ACT TGG TTT 3600 Leu Arg Arg His Gly Leu His Leu Leu Gly Thr Thr Ser Thr Trp Phe
290 295 300 305 290 295 300 305
TTG CTT GAC ATC GCC TTC TAC AGC CAA AAC TTG TTC CAA AAG GAT ATT 3648 Leu Leu Asp l ie Ala Phe Tyr Ser Gin Asn Leu Phe Gin Lys Asp l ie  TTG CTT GAC ATC GCC TTC TAC AGC CAA AAC TTG TTC CAA AAG GAT ATT 3648 Leu Leu Asp lie Ala Phe Tyr Ser Gin Asn Leu Phe Gin Lys Asp lie
310 315 320  310 315 320
TTC TCG GCC ATT GGA TGG ATC CCA AAG GCA GCC ACT ATG AAC GCC ATC 3696 Phe Ser Ala l ie Gly Trp He Pro Lys Ala Ala Thr Met Asn Ala He  TTC TCG GCC ATT GGA TGG ATC CCA AAG GCA GCC ACT ATG AAC GCC ATC 3696 Phe Ser Ala lie Gly Trp He Pro Lys Ala Ala Thr Met Asn Ala He
325 330 335  325 330 335
CAT GAG GTT TTC AAG ATT GCT AGG GCT CAG ACT CTC ATT GCC CTC TGC 3744 His Glu Val Phe Lys He Ala Arg Ala Gin Thr Leu l ie Ala Leu Cys  CAT GAG GTT TTC AAG ATT GCT AGG GCT CAG ACT CTC ATT GCC CTC TGC 3744 His Glu Val Phe Lys He Ala Arg Ala Gin Thr Leu lie Ala Leu Cys
340 345 350  340 345 350
ACT ACA GTC CCA GGT TAC TGG TTC ACA GTA GCC TTT ATT GAT ATC ATT 3792 Ser Thr Val Pro Gly Tyr Trp Phe Thr Val Ala Phe l ie Asp l ie l ie  ACT ACA GTC CCA GGT TAC TGG TTC ACA GTA GCC TTT ATT GAT ATC ATT 3792 Ser Thr Val Pro Gly Tyr Trp Phe Thr Val Ala Phe lie Asp lie lie
355 360 365  355 360 365
GGA AGG TTT GCG ATC CAA CTA ATG GGA TTT TTC ATG ATG ACC GTT TTT 3840 Gly Arg Phe Ala He Gin Leu Met Gly Phe Phe Met Met Thr Val Phe  GGA AGG TTT GCG ATC CAA CTA ATG GGA TTT TTC ATG ATG ACC GTT TTT 3840 Gly Arg Phe Ala He Gin Leu Met Gly Phe Phe Met Met Thr Val Phe
370 375 380 385 s dsy \ "ID ¾IV J9s 370 375 380 385 s dsy \ "ID ¾IV J9s
8AZ 9IIV310I1X 9IVXVIVD19 33DIV1IVOI WV IVO 113 9V0 13D DVO DDD 331 8AZ 9IIV310I1X 9IVXVIVD19 33DIV1IVOI WV IVO 113 9V0 13D DVO DDD 331
OTS SOS 009 OTS SOS 009
Figure imgf000048_0001
naq J9S s q {0 sXq OJJ nyg OJJ Ϊ¾Λ naq aqj J¾ aqj ZZf Old W9 WO 1X3 DDI OW 390 OW ODD OVO IDO DIO 010 3X1 DDV 311
Figure imgf000048_0001
naq J9S sq (0 sXq OJJ nyg OJJ Ϊ¾Λ naq aqj J¾ aqj ZZf Old W9 WO 1X3 DDI OW 390 OW ODD OVO IDO DIO 010 3X1 DDV 311
96 06fr S8  96 06fr S8
nai ^3H ΐθ ΙΒΛ aqd usy 9Π [¾Λ ^ID naq 9{ i ngq J9S usy s q nai ^ 3H ΐθ ΙΒΛ aqd usy 9Π [¾Λ ^ ID naq 9 {i ngq J9S usy s q
U\ did 9IV IDS 1X0 XXI OW IXV 310 IDO 113 OIV DXV 9X1 VOX OW OW U \ did 9IV IDS 1X0 XXI OW IXV 310 IDO 113 OIV DXV 9X1 VOX OW OW
08 9Afr 0ム  08 9Afr 0 m
ΙΒΛ 9ΐ Ι ^ΐΰ ojj ojd dAi iio ¾iv dsy J sXq J¾ s q dsy UIQ ΙΒΛ 9ΐ Ι ^ ΐΰ ojj ojd dAi iio ¾iv dsy J sXq J¾ s q dsy UIQ
82t^ 310 V03 D1V 390 ODD VDD 3V1 V99 VOO DVO VDV 9W 3DV 9W IVO 9V0 82t ^ 310 V03 D1V 390 ODD VDD 3V1 V99 VOO DVO VDV 9W 3DV 9W IVO 9V0
S9 09^ S9fr OSt S9 09 ^ S9fr OSt
0Jd "TO ¾iv J Π9ΐ {g 9 d ¾IV ΐ¾Λ 91 1 ^IV0Jd "TO ¾iv J Π9ΐ (g 9 d ¾IV ΐ¾Λ 91 1 ^ IV
OSO V3D WO IDO 133 IVX VXD Oil 309 311 339 V09 XXO 3IV 330 V99 130 ge s vtig am ¾iv ¾IV J9S ^T I ^ΐΰ S T H S^O J¾ J9S Say naq §jy ¾IV Z Oi^ 9W 109 XOV V33 309 VOX VXV VD3 IVO 001 SDV X01 OOV VIO 99V VD9 OSO V3D WO IDO 133 IVX VXD Oil 309 311 339 V09 XXO 3IV 330 V99 130 ge s vtig am ¾iv ¾IV J9S ^ TI ^ ΐΰ STHS ^ O J¾ J9S Say naq §jy ¾IV Z Oi ^ 9W 109 XOV V33 309 VOX VXV VD3 IVO 001 SDV X01 OOV VIO 99V VD9
OCt' SZt OZfr  OCt 'SZt OZfr
0Jd 9Md 3Π nig BIV OJJ 八 9 Π 9qd Jqi J¾ ¾iV usv OJ^ ai m VDO m DXV WD IDO VDO DID IXV 0X1 10V 10V V30 XW D03 V99 XII  0Jd 9Md 3Π nig BIV OJJ 8 9Π 9qd Jqi J¾ ¾iV usv OJ ^ ai m VDO m DXV WD IDO VDO DID IXV 0X1 10V 10V V30 XW D03 V99 XII
o got'  o got '
usv BIV 8Md aqd J¾ naq JSS J
Figure imgf000048_0002
A I 9Md 3JV
usv BIV 8Md aqd J¾ naq JSS J
Figure imgf000048_0002
AI 9Md 3JV
9C6G OW 339 311 3X1 XII V3V DID VDI OVI 31V XIO 010 Oil V30 OXV 133 9C6G OW 339 311 3X1 XII V3V DID VDI OVI 31V XIO 010 Oil V30 OXV 133
OOt 96£ 06S  OOt 96 £ 06S
usy dsy ojd ηθ an dJi STH usy αλ OJJ aqj ¾iv 911 ^TV %^ 88S IW 1V3 VDD VII IIV 901 DVO 3W OVI VDO 311 ODD LLV I3D 1X1 91V  usy dsy ojd ηθ an dJi STH usy αλ OJJ aqj ¾iv 911 ^ TV% ^ 88S IW 1V3 VDD VII IIV 901 DVO 3W OVI VDO 311 ODD LLV I3D 1X1 91V
9f-9f-
SL60WL6dT/I d mtlL6 OfA OO
Figure imgf000049_0001
TMA2478ATTGA TGMTTAT AT T CG5 AGTAGCGMAAAAAC CTGC ATA 45 AG, ATAAGCTAGAT78GGA GTGGTGTAA sAAATA AAACT TT CTTGTG
SL60WL6dT / I d mtlL6 OfA OO
Figure imgf000049_0001
TMA2478ATTGA TGMTTAT AT T CG5 AGTAGCGMAAAAAC CTGC ATA 45 AG, ATAAGCTAGAT78GGA GTGGTGTAA sAAATA AAACT TT CTTGTG
M3TTTTiAA TA GCGMMTA¾ GAAAGGCC AA ATTTGCAG_ M3TTTTiAA TA GCGMMTA¾ GAAAGGCC AA ATTTGCAG_
MAA GCGTC CTTTAAA TTAA 44GTGGT.A CTA AACTA58GC T2TATGGTC ATACTAGTTGTCI MAA GCGTC CTTTAAA TTAA 44GTGGT.A CTA AACTA58GC T2TATGGTC ATACTAGTTGTCI
ATGCGAGT AAT GGTTATATT GM ATAT 43TG GTTATTCTTT AATGTGGT98CG ACCTG CTTTTTG_- GAAT TTTAAT TATCTTT 43ATA TTAT38TTACTCTT. ΊΤ TCG iG -
Figure imgf000050_0001
ATGCGAGT AAT GGTTATATT GM ATAT 43TG GTTATTCTTT AATGTGGT98CG ACCTG CTTTTTG_- GAAT TTTAAT TATCTTT 43ATA TTAT38TTACTCTT.ΊΤ TCG iG-
Figure imgf000050_0001
Figure imgf000051_0001
Figure imgf000051_0001
- --, 49 --, 49
ATAGTTGTTT ATATCAATAG AAACTTTTGT TTCTAAATTG TAATCGCTTA AATTATTTGA 8958 TTTATGTATA GGTTTAATTA TAAATGTTAT TCTGTTGGTT GTATTGGTAC TAAACTAAAA 9018 TAATTTAGTA GCATCTTTCC AATATTATTA TAAAATTATA GTTAAGATAT TTATTTTTAC 9078 TTCATGAAGC AGGAAAGACA AGAGAGGCTT AG ATG GCT GAA CAA CAA CTA GGA 9131 ATAGTTGTTT ATATCAATAG AAACTTTTGT TTCTAAATTG TAATCGCTTA AATTATTTGA 8958 TTTATGTATA GGTTTAATTA TAAATGTTAT TCTGTTGGTT GTATTGGTAC TAAACTAAAA 9018 TAATTTAGTA GCATCTTTCC AATATTATTA TAAAATTATA GTTAAGATAT GATCGA AGGA GATCATA GAGA GATCATA GAGA GAGA TGA
Met Ala Glu Gin Gin Leu Gly  Met Ala Glu Gin Gin Leu Gly
1 5  1 5
GTG CTA AAG GCA CTC GAT GTT GCG AAG ACG CAA CTT TAT CAT TTC ACG 9179 Val Leu Lys Ala Leu Asp Val Ala Lys Thr Gin Leu Tyr His Phe Thr  GTG CTA AAG GCA CTC GAT GTT GCG AAG ACG CAA CTT TAT CAT TTC ACG 9179 Val Leu Lys Ala Leu Asp Val Ala Lys Thr Gin Leu Tyr His Phe Thr
10 15 20  10 15 20
GCG ATT GTC ATC GCC GGT ATG GGT TTC TTT ACC GAT GCG TAC GAT CTT 9227 Ala l ie Val l ie Ala Gly Met Gly Phe Phe Thr Asp Ala Tyr Asp Leu  GCG ATT GTC ATC GCC GGT ATG GGT TTC TTT ACC GAT GCG TAC GAT CTT 9227 Ala lie Val lie Ala Gly Met Gly Phe Phe Thr Asp Ala Tyr Asp Leu
25 30 35  25 30 35
TTT TGC GTG TCC TTG GTA ACA AAG CTC CTT GGC CGC ATC TAC TAC TTC 9275 Phe Cys Val Ser Leu Val Thr Lys Leu Leu Gly Arg l ie Tyr Tyr Phe  TTT TGC GTG TCC TTG GTA ACA AAG CTC CTT GGC CGC ATC TAC TAC TTC 9275 Phe Cys Val Ser Leu Val Thr Lys Leu Leu Gly Arg lie Tyr Tyr Phe
40 45 50 55  40 45 50 55
AAT CCG GAG TCA GCG AAG CCT GGC TCA CTT CCC CCT CAT GTT GCG GCC 9323 Asn Pro Glu Ser Ala Lys Pro Gly Ser Leu Pro Pro His Val Ala Ala  AAT CCG GAG TCA GCG AAG CCT GGC TCA CTT CCC CCT CAT GTT GCG GCC 9323 Asn Pro Glu Ser Ala Lys Pro Gly Ser Leu Pro Pro His Val Ala Ala
60 65 70  60 65 70
GCT GTC AAT GGT GTG GCC CTT TGT GGA ACC CTT TCT GGT CAA CTC TTC 9371 Ala Val Asn Gly Val Ala Leu Cys Gly Thr Leu Ser Gly Gin Leu Phe  GCT GTC AAT GGT GTG GCC CTT TGT GGA ACC CTT TCT GGT CAA CTC TTC 9371 Ala Val Asn Gly Val Ala Leu Cys Gly Thr Leu Ser Gly Gin Leu Phe
75 80 85  75 80 85
TTC GGT TGG CTC GGT GAC AAA CTC GGA CGG AAA AAA GTG TAC GGT CTT 9419 Phe Gly Trp Leu Gly Asp Lys Leu Gly Arg Lys Lys Val Tyr Gly Leu  TTC GGT TGG CTC GGT GAC AAA CTC GGA CGG AAA AAA GTG TAC GGT CTT 9419 Phe Gly Trp Leu Gly Asp Lys Leu Gly Arg Lys Lys Val Tyr Gly Leu
90 95 100  90 95 100
ACT TTG ATC ATG ATG ATC TTA TGC TCT GTC GCT TCT GGC CTC TCT TTT 9467 Thr Leu l ie Met Met He Leu Cys Ser Val Ala Ser Gly Leu Ser Phe OJd %3 s SJV dJX
Figure imgf000053_0001
yg U66 X00 SIV 9W OIV 190 991 DVI OVX XOV OU 130 V33 303 VII XD9 100
ACT TTG ATC ATG ATG ATC TTA TGC TCT GTC GCT TCT GGC CTC TCT TTT 9467 Thr Leu lie Met Met He Leu Cys Ser Val Ala Ser Gly Leu Ser Phe OJd% 3 s SJV dJX
Figure imgf000053_0001
yg U66 X00 SIV 9W OIV 190 991 DVI OVX XOV OU 130 V33 303 VII XD9 100
QZZ SIZ 0ΪΖ  QZZ SIZ 0ΪΖ
aqd ^9W A 3 U 311 SJV ail J dsy i u{g ojj ojj j J3S C266 111 OXV 0X0 QXV 3IV V33 901 IXV OVX IVO 110 WO X33 X3D 00V VOX  aqd ^ 9W A 3 U 311 SJV ail J dsy i u {g ojj ojj j J3S C266 111 OXV 0X0 QXV 3IV V33 901 IXV OVX IVO 110 WO X33 X3D 00V VOX
S02 00Z S6I 06T naq B v SJV usy Ι¾Λ BIV 丄 丄 0<1<1 ^TV °JJ 9Md sXq dsy aqj 9 86 010 ODD 99V OW VXD VOD IVX V3V VDO IDS VOO 3XX OW VW OVO Oil S02 00Z S6I 06T naq B v SJV usy Ι¾Λ B IV 丄<0 <1 <1 ^ TV ° JJ 9Md sXq dsy aqj 9 86 010 ODD 99V OW VXD VOD IVX V3V VDO IDS VOO 3XX OW VW OVO Oil
081 L\ 081 L \
9 Π J3S J9S BIV nai ¾ιγ Ι¾Λ 9qd ^ΪΟ ^ίθ BTV ^ίθ ΐ¾Λ9 Π J3S J9S BIV nai ¾ιγ Ι¾Λ 9qd ^ ΪΟ ^ ίθ B TV ^ ίθ ΐ¾Λ
LZSG V丄 V 131 ΧΟΧ VXD V39 013 V3D 913 311 丄 33 V99 139 9ΙΧ OIV 193 DID LZSG V 丄 V 131 ΧΟΧ VXD V39 013 V3D 913 311 丄 33 V99 139 9ΙΧ OIV 193 DID
0L\ S9T 091  0L \ S9T 091
^10 UTO ^3W BIV aqd ΙΒΛ BIV BIV 9Π aqd ¾iv Xig 3JV J¾ s sXq 6ZA6 190 WD OIV 339 DLL 019 I3D V33 OXV Oil 139 999 100 DOV OW OW  ^ 10 UTO ^ 3W BIV aqd ΙΒΛ BIV BIV 9Π aqd ¾iv Xig 3JV J¾ s sXq 6ZA6 190 WD OIV 339 DLL 019 I3D V33 OXV Oil 139 999 100 DOV OW OW
9SI 091  9SI 091
usy BIV J nio J9S 9W 3Π Jqi ¾TV J3S naq OJJ J dsy ^ID ^IS \ZLQ DW VOD WO 131 OIV DIV 03V 000 101 IID V03 DVI OVO IOS V09  usy BIV J nio J9S 9W 3Π Jqi ¾TV J3S naq OJJ J dsy ^ ID ^ IS \ ZLQ DW VOD WO 131 OIV DIV 03V 000 101 IID V03 DVI OVO IOS V09
911 9 {g nsq d 9qj 911 9 (g nsq d 9qj
C896 IIV IDS 111 V09 0Π 991 III 9 DVIODVIIVO DVWiVXVlV II1XI1I0W IG96 V0V91.LIDII IliVXOSVII XV010W9D1 IODOVOI0V1 IDWWllll DWD3IWD3 US6 WIWXOIW丄 33 UV D1V3VDV0V1 VIVIIVXWD VIXWOOXVO I1IX3V3VI9 C896 IIV IDS 111 V09 0Π 991 III 9 DVIODVIIVO DVWiVXVlV II1XI1I0W IG96 V0V91.LIDII IliVXOSVII XV010W9D1 IODOVOI0V1 IDWWllll DWD3IWD3 US6 WIWXOIW 丄 33 UV D1V3VDVVIXIX
oei 9Zi ozi oei 9Zi ozi
SJV aqd 9Md S io nai J¾ J¾ ^SW ί¾Λ 9 sXq ¾τν nyg usy io Π96 DV Oil 0X1 001 1X3 DOV OOV DIV 013 199 9W 039 WO OW 09D SJV aqd 9Md S io nai J¾ J¾ ^ SW ί¾Λ 9 sXq ¾τν nyg usy io Π96 DV Oil 0X1 001 1X3 DOV OOV DIV 013 199 9W 039 WO OW 09D
9Π 0Π 901  9Π 0Π 901
OS OS
S ,600/ .6JT/XD<I »« Se/L6 O W 51 S, 600 / .6JT / XD <I »« Se / L6 OW 51
225 230 235 225 230 235
GAA ACT GCC CGT TAC ACC GCT TTG GTT GCC AAG AAC ATC AAA CAA GCC 10019 Glu Thr Ala Arg Tyr Thr Ala Leu Val Ala Lys Asn He Lys Gin Ala  GAA ACT GCC CGT TAC ACC GCT TTG GTT GCC AAG AAC ATC AAA CAA GCC 10019 Glu Thr Ala Arg Tyr Thr Ala Leu Val Ala Lys Asn He Lys Gin Ala
240 245 250  240 245 250
ACA GCC GAC ATG TCC AAG GTC TTA CAA ACA GAT ATC GAG CTT GAG GAA 10067 Thr Ala Asp Met Ser Lys Val Leu Gin Thr Asp lie Glu Leu Glu Glu  ACA GCC GAC ATG TCC AAG GTC TTA CAA ACA GAT ATC GAG CTT GAG GAA 10067 Thr Ala Asp Met Ser Lys Val Leu Gin Thr Asp lie Glu Leu Glu Glu
255 260 265  255 260 265
AGG GTG GAG GAT GAC GTC AAA GAC CCC AGA CAA AAC TAT GGC TTG TTC 10115 Arg Val Glu Asp Asp Val Lys Asp Pro Arg Gin Asn Tyr Gly Leu Phe  AGG GTG GAG GAT GAC GTC AAA GAC CCC AGA CAA AAC TAT GGC TTG TTC 10115 Arg Val Glu Asp Asp Val Lys Asp Pro Arg Gin Asn Tyr Gly Leu Phe
270 275 280 285 270 275 280 285
TCC AAG GAA TTC CTT AGA CGC CAT GGA CTT CAT CTC CTT GGA ACT ACC 10163 Ser Lys Glu Phe Leu Arg Arg His Gly Leu His Leu Leu Gly Thr Thr  TCC AAG GAA TTC CTT AGA CGC CAT GGA CTT CAT CTC CTT GGA ACT ACC 10163 Ser Lys Glu Phe Leu Arg Arg His Gly Leu His Leu Leu Gly Thr Thr
290 295 300  290 295 300
TCC ACT TGG TTT TTG CTT GAC ATT GCC TTC TAC AGC CAA AAC TTG TTC 10211 Ser Thr Trp Phe Leu Leu Asp l ie Ala Phe Tyr Ser Gin Asn Leu Phe  TCC ACT TGG TTT TTG CTT GAC ATT GCC TTC TAC AGC CAA AAC TTG TTC 10211 Ser Thr Trp Phe Leu Leu Asp lie Ala Phe Tyr Ser Gin Asn Leu Phe
305 310 315  305 310 315
CAG AAG GAT ATT TTC TCG GCC ATC GGA TGG ATC CCA AAG GCA GCC ACC 10259 Gin Lys Asp l ie Phe Ser Ala He Gly Trp l ie Pro Lys Ala Ala Thr  CAG AAG GAT ATT TTC TCG GCC ATC GGA TGG ATC CCA AAG GCA GCC ACC 10259 Gin Lys Asp lie Phe Ser Ala He Gly Trp lie Pro Lys Ala Ala Thr
320 325 330  320 325 330
ATG AAC GCC ACC CAT GAG GTT TTC AGG ATT GCT AGG GCT CAG ACT CTT 10307 Met Asn Ala Thr His Glu Val Phe Arg He Ala Arg Ala Gin Thr Leu  ATG AAC GCC ACC CAT GAG GTT TTC AGG ATT GCT AGG GCT CAG ACT CTT 10307 Met Asn Ala Thr His Glu Val Phe Arg He Ala Arg Ala Gin Thr Leu
335 340 345  335 340 345
ATC GCC CTT TGC AGT ACA GTC CCA GGC TAC TGG TTC ACA GTT GCG TTT 10355 He Ala Leu Cys Ser Thr Val Pro Gly Tyr Trp Phe Thr Val Ala Phe  ATC GCC CTT TGC AGT ACA GTC CCA GGC TAC TGG TTC ACA GTT GCG TTT 10355 He Ala Leu Cys Ser Thr Val Pro Gly Tyr Trp Phe Thr Val Ala Phe
350 355 360 365 350 355 360 365
ATT GAT ACC ATT GGA AGG TTT AAG ATC CAA CTA AAT GGA TTT TTC ATG 10403 S09 009 96^ATT GAT ACC ATT GGA AGG TTT AAG ATC CAA CTA AAT GGA TTT TTC ATG 10403 S09 009 96 ^
J9S s Aio sAi ojj nig OJJ 八 nsq 3qa J¾ sq^ na ^ΐΐ i8A0I 3313W 3009W 0300V0 VOO 319 D Oil 33V Oil 31D 91V 19901V J9S s Aio sAi ojj nig OJJ 8 nsq 3qa J¾ sq ^ na ^ ΐΐ i8A0I 3313W 3009W 0300V0 VOO 319 D Oil 33V Oil 31D 91V 19901V
06 98^ 08t a lid usv nai i¾ ^ΪΟ na \^s d\\ n9q s usy Ji\Q an y oi Oil 0W 113 XIC XOO 1X3010 OXV 911 VDI OW OW 119 V93 OIV ID9  06 98 ^ 08t a lid usv nai i¾ ^ ΪΟ na \ ^ s d \\ n9q s usy Ji \ Q an y oi Oil 0W 113 XIC XOO 1X3010 OXV 911 VDI OW OW 119 V93 OIV ID9
OA S9  OA S9
oJd ojd d i ig ¾iv dsy t¾A s^i ¾tV s dsy u^o usy u|g ¾tv ¾[V 1690Ϊ VDD VOD OVX V90 VOO 1VD DIO 9W 109 OW 3V0 WO IW WD 139039  oJd ojd d i ig ¾iv dsy t¾A s ^ i ¾tV s dsy u ^ o usy u | g ¾tv ¾ [V 1690Ϊ VDD VOD OVX V90 VOO 1VD DIO 9W109 OW 3V0 WO IW WD 139039
09t S9 OSt- nai ^TD 9Md BIV 9Π 3Π Biv BIV sXq BIV \ XVI VII Oil m il 009 V09 UV OXV DOD VDD lOO OW lOO XOO 939 09t S9 OSt-nai ^ TD 9Md BIV 9Π 3Π Biv B IV sXq BIV \ XVI VII Oil mil 009 V09 UV OXV DOD VDD lOO OW lOO XOO 939
O Z Oif O Z Oif
BIV J3 9ΪΙ ^ΐΰ sin s jqi J9 Sjy na Say ¾IV OJJ aqj an nig S6901 333 m VIV V93 IVO IDX VDV VDI 99V VIO D9V ODD 9303Ii VXV 9V0 BIV J3 9 ΪΙ ^ ΐΰ sin s jqi J9 Sjy na Say ¾IV OJJ aqj an nig S6901 333 m VIV V93 IVO IDX VDV VDI 99V VIO D9V ODD 9303Ii VXV 9V0
S2 0 9I  S2 0 9I
BIV ojd ΙΒΛ ΘΠ 8qd aqi jqi BIV usy OJJ Ctg a d usy ¾IV 9qd 9 d ^SOI 130130319 IXV XXI XDV 00V V39 XW VDO 199 XXI XW 330311 Oil  BIV ojd ΙΒΛ ΘΠ 8qd aqi jqi BIV usy OJJ Ctg a d usy ¾IV 9qd 9 d ^ SOI 130 130 319 IXV XXI XDV 00V V39 XW VDO 199 XXI XW 330311 Oil
o got' oo  o got 'oo
J¾ naq J8S J^I WW ΐΒΛ 〖ΒΛ sqd ^T9 an Say usy nyg OJJ s o\ oxx lav xxo m oxv IID 9X9 ILL VDS OIV XOD DW WD VDD WV  J¾ naq J8S J ^ I WW ΐΒΛ 〖ΒΛ sqd ^ T9 an Say usy nyg OJJ s o \ oxx lav xxo m oxv IID 9X9 ILL VDS OIV XOD DW WD VDD WV
96C 06C 98£  96C 06C 98 £
9ii dJi sin usy J OJd 9 BIV ^II ^IV WW Ϊ^Λ J¾ W 19ίΌΐ DIV 0313V33W 3VI 13D DII D09 UV 339 Hi SIV 1110133DV OIV
Figure imgf000055_0001
9ii dJi sin usy J OJd 9 BIV ^ II ^ IV WW Ϊ ^ Λ J¾ W 19ίΌΐ DIV 0313V33W 3VI 13D DII D09 UV 339 Hi SIV 1110133DV OIV
Figure imgf000055_0001
9qd 3Md usy naq 9Π s q aqj Say I99Π J¾ dsy 8Π zs 4 1 3 ( J <N3 I CM C^J CJ 0 9qd 3Md usy naq 9Π sq aqj Say I99Π J¾ dsy 8Π zs 4 1 3 (J <N3 I CM C ^ J CJ 0
CO 10 OS ト CO I O CO 10 OS G CO I O
s3 CO CO 寸 to CO O I - OO  s3 CO CO Dimension to CO O I-OO
( o E w (o E w
3 EOOEJ.EV3 3 EOOEJ.EV3
Figure imgf000056_0001
Figure imgf000056_0001
SJLDWi V-WV iwDSSJ-V SJLDWi V-WV iwDSSJ-V
JJ-lvVv JJ-lvVv
Figure imgf000056_0002
a 1¾lvfBli S30V1 。U33.T 。vw 1V V §1 J,麵1
Figure imgf000056_0002
a 1¾lvfBli S30V1. U33.T. vw 1V V §1 J, 麵 1
麵 UV3 sUD;VUIW V  麵 UV3 sUD; VUIW V
:麵画 W一loV lvw - Ef lli一 ui - , , W : Picture WichiloV lvw-Ef lliichi ui-,, W
54  54
GTTAACATTT AAAATTATGA TTTTTCTATC ATTTTTTTTA TTTTTTAAAC TACTTTGAAT 12272GTTAACATTT AAAATTATGA TTTTTCTATC ATTTTTTTTA TTTTTTAAAC TACTTTGAAT 12272
CATCATATAA TACATAACAC TAATTAAAAT CTAATTTTTT CTGGATATAT TGTGATTCGG 12332CATCATATAA TACATAACAC TAATTAAAAT CTAATTTTTT CTGGATATAT TGTGATTCGG 12332
ATGTTTGAAA ACAGCCATAT ATTACTCACA TAATGAAATA AAATTATTTG TGTTCAAAGT 12392ATGTTTGAAA ACAGCCATAT ATTACTCACA TAATGAAATA AAATTATTTG TGTTCAAAGT 12392
CTCACATCAG CTAAAACTTT GTGTCCAAAA TCTCATAAAT AAGACCAAAT TGAACCCAAA 12452CTCACATCAG CTAAAACTTT GTGTCCAAAA TCTCATAAAT AAGACCAAAT TGAACCCAAA 12452
GAAATATGAG TGAGTAGGAA TCCTAACTTA ACAAACATCC AAATTTAAAT ATTTGTTCAG 12512GAAATATGAG TGAGTAGGAA TCCTAACTTA ACAAACATCC AAATTTAAAT ATTTGTTCAG 12512
TTTAATTCGG TTCTTTAGTC AAACCGTTTA ATTATACCAG ATATCATAAA TTCTAAACTT 12572TTTAATTCGG TTCTTTAGTC AAACCGTTTA ATTATACCAG ATATCATAAA TTCTAAACTT 12572
TTTAAAAAAT TAAAATATTA TAATTGATCT ATTTAAAGTG TATAAAAACT TCAAAATATT 12632TTTAAAAAAT TAAAATATTA TAATTGATCT ATTTAAAGTG TATAAAAACT TCAAAATATT 12632
ATCAACGTTT AACTTATAAA AAGTTTAAAA TATCACGGTA TGGGTTATAT GGTTTGACGA 12692ATCAACGTTT AACTTATAAA AAGTTTAAAA TATCACGGTA TGGGTTATAT GGTTTGACGA 12692
GTTTGAATCT TCATTAATAT AAATTTAAAT ATCATTAACT CGGTGGTACA ACATGGGTAA 12752GTTTGAATCT TCATTAATAT AAATTTAAAT ATCATTAACT CGGTGGTACA ACATGGGTAA 12752
GTCATCATTT TAATATTTTG TTAACACTAG CAATATTATA ATGATATGTC AAGTTAAATT 12812GTCATCATTT TAATATTTTG TTAACACTAG CAATATTATA ATGATATGTC AAGTTAAATT 12812
GATTCAATTA TGATTATGTA TTAAAACAAG ATATATAAGT ATTAGTTTTC TAGGTATCTG 12872GATTCAATTA TGATTATGTA TTAAAACAAG ATATATAAGT ATTAGTTTTC TAGGTATCTG 12872
CAATATTAGA AACCAGATAT CCAAAAGTCA CGGATCTGGA TTGTTAAAGC ACAGTTCTGA 12932CAATATTAGA AACCAGATAT CCAAAAGTCA CGGATCTGGA TTGTTAAAGC ACAGTTCTGA 12932
ATACTTTTCA AATTCTAGGA TATCCGGATC CATTCTACCA ATTACAATCC TGCAG 12987 配列番号 : 5 ATACTTTTCA AATTCTAGGA TATCCGGATC CATTCTACCA ATTACAATCC TGCAG 12987 SEQ ID NO: 5
配列の長さ : 4864 Array length: 4864
配列の型 : 核酸 Sequence type: nucleic acid
鎖の数 : 二本鎖 Number of chains: double strand
トポロジー : 直鎖状  Topology: linear
配列の種類 : Genomic DNA Sequence type: Genomic DNA
起源 Origin
生物名 : Arabidopsis thai i ana  Organism name: Arabidopsis thai i ana
株名 : Colombia  Stock Name: Colombia
配列の特徴 Array features
特徴を表す記号 : CDS  Characteristic symbol: CDS
存在位置 : 3004 · · 4605 55 Location: 3004 · · 4605 55
特徴を表す記号 : exon Characteristic symbol: exon
存在位置 : 1876 .. 1893 特徴を表す記号 : intron  Location: 1876 .. 1893 Characteristic symbol: intron
存在位置 : 1894 .. 2991 特徴を表す記号 : exon  Location: 1894 .. 2991 Characteristic symbol: exon
存在位置 : 2992 .. 4724 配列  Location: 2992 .. 4724 Sequence
GAATTCCTAC AATGTTGAAT AAACGTAGGT AGTGGCTACT TAATTTCTTC GATTTCTTAA 60 GTGCTTAGTA CTTTTCAACA TTAAAAATGT TGTTACCAAG TCTAAATTTT CTTCACAACT 120 TGTAACTAAA CTTTTCATTA TGTGTAATCG TAAAGGATTA GCGCTACAAA TAGATGGTGA 180 GAATTCCTAC AATGTTGAAT AAACGTAGGT AGTGGCTACT TAATTTCTTC GATTTCTTAA 60 GTGCTTAGTA CTTTTCAACA TTAAAAATGT TGTTACCAAG TCTAAATTTT CTTCACAACT 120 TGTAACTAAA CTTTTCATTA TGTGTAATCG TAAAGGATTA GCGCTACAAA TAGATGGTGA 180
TTCCCTTCTA ATGGACGAGT TGACATTGAC GCATTATGTC TCTGGTTAGC TAGTCCGACG 240TTCCCTTCTA ATGGACGAGT TGACATTGAC GCATTATGTC TCTGGTTAGC TAGTCCGACG 240
TTTGAACAAG TACTCTTACC GCTCTCGAAA CAAAATTAAA ACCAAAATTT TATAGATCTA 300TTTGAACAAG TACTCTTACC GCTCTCGAAA CAAAATTAAA ACCAAAATTT TATAGATCTA 300
TTAGTAAAAT CTACTATTGT TAATTTTATC ACATAGTCCA TGTGTGTGTT AATATTAAGG 360TTAGTAAAAT CTACTATTGT TAATTTTATC ACATAGTCCA TGTGTGTGTT AATATTAAGG 360
ATGAAGTCAA TGTATATATA TATATCAAAT CTCTATTCCT ACTAGATATG GGAATCACCT 420ATGAAGTCAA TGTATATATA TATATCAAAT CTCTATTCCT ACTAGATATG GGAATCACCT 420
ACTTGTATAA ATGGCAAACT CATTCAACGA GCTACACACG ACTTTTCCAA CTTATTTCAG 480ACTTGTATAA ATGGCAAACT CATTCAACGA GCTACACACG ACTTTTCCAA CTTATTTCAG 480
TGTTTGAGAT CATTTTAATG CAACAACTAT ATGTTAAAGG GAAATTGGTC TAGAAGCGGC 540TGTTTGAGAT CATTTTAATG CAACAACTAT ATGTTAAAGG GAAATTGGTC TAGAAGCGGC 540
TATTTCTTGG TCTTGAAATC ATATTGTTCT TCTATAGTGT AGTGACATTT CCTATAATTA 600TATTTCTTGG TCTTGAAATC ATATTGTTCT TCTATAGTGT AGTGACATTT CCTATAATTA 600
ATTTGAAAAA AGGAAGAAAT TGTGTTGGCA ATGAAAACAT CATATGTATG GTGTGAAGTA 660ATTTGAAAAA AGGAAGAAAT TGTGTTGGCA ATGAAAACAT CATATGTATG GTGTGAAGTA 660
TATACAAAAA AAAAATCCCA TTCGTGAATG AAAACTACGG TGTATATATG TGAAAGACAT 720TATACAAAAA AAAAATCCCA TTCGTGAATG AAAACTACGG TGTATATATG TGAAAGACAT 720
ATATGGAGCC TTCACTATAC GGTGTAGTTC ATTTACATAA GAATGGTTGG AAATGGAGAT 780ATATGGAGCC TTCACTATAC GGTGTAGTTC ATTTACATAA GAATGGTTGG AAATGGAGAT 780
GCCATATTTT TTTTATTTTT TTTTTCCACA ATGGAGATGC CATATCTATA AAAAAAGAAA 840GCCATATTTT TTTTATTTTT TTTTTCCACA ATGGAGATGC CATATCTATA AAAAAAGAAA 840
AGAGGTTGAA CTAGTTGGGT CGGCGCGACG AAAAGAGAAA ATACAACTTG CTGGGCTAAA 900 TCAGTGTCTTCTAC CAAG ATAGAGGTTGAA CTAGTTGGGT CGGCGCGACG AAAAGAGAAA ATACAACTTG CTGGGCTAAA 900 TCAGTGTCTTCTAC CAAG AT
GTAATGTGTT TGCAAC AATG GTAATGTGTT TGCAAC AATG
T 234AGTAA0T ACTCTCATG TCGC  T 234AGTAA0T ACTCTCATG TCGC
—3 —3
2TT 280 TTGTTCTTTGTTAAT TGT 2TT 280 TTGTTCTTTGTTAAT TGT
2 220TCTTT TC  2 220TCTTT TC
!-3 ! -3
-3 -3
-3 -3
AATCAA ATCGCC AAT TT TACTTTCGCAAACTTTCTTTI一A AT_ AATCAA ATCGCC AAT TT TACTTTCGCAAACTTTCTTTI-A AT_
AAGAA ACTAATTT AATAGGA CTTCTCT CTTCA TTTCTAACCTTACCCG- AAGTCA TCAC TTCCATT TTTTTTAC ATAGCCTCCCTC CCCACAT TTTCCCC  AAGAA ACTAATTT AATAGGA CTTCTCT CTTCA TTTCTAACCTTACCCG- AAGTCA TCAC TTCCATT TTTTTTAC ATAGCCTCCCTC CCCACAT TTTCCCC
CT3 tCT3 t
^ CO tsD  ^ CO tsD
C 5 o o CO oo to m C 5 o o CO oo to m
O O C O CD O C3 O O C O CD O C3
A GG ACCACT CTTTACCT TATCiTAT, TACCGG TTTTCC G GGATTT CCGC-A GG ACCACT CTTTACCT TATCiTAT, TACCGG TTTTCC G GGATTT CCGC-
TCTAGTAT TATTTTCCCcGTTΑ ic ΊΑ CTTiΊ GTCATTT TA Π91 sX dsy {C naq dJi 9qa 9qd naq uio ^ΐθ J¾ ^IOTCTAGTAT TATTTTCCCcGTTΑ ic ΊΑ CTTiΊ GTCATTT TA Π91 sX dsy (C naq dJi 9qa 9qd naq uio ^ ΐθ J¾ ^ IO
88ZC DID OW XVO 193 110 ODI 399 3IX 111 310 OVD X03 339 3X3 IDV 9D9 88ZC DID OW XVO 193 110 ODI 399 3IX 111 310 OVD X03 339 3X3 IDV 9D9
S , OA S9 s alia Biv ϊ¾Λ usv A Biv ¾TV ^IV ¾Λ usy na  S, OA S9 s alia Biv ϊ¾Λ usv A Biv ¾TV ^ IV ¾Λ usy na
OtZS 19X 3X1 303 IXD 3D9 IW 010 3D9 003 V39 3X3 3W 330 133 0X0 IDV  OtZS 19X 3X1 303 IXD 3D9 IW 010 3D9 003 V39 3X3 3W 330 133 0X0 IDV
09 99 09  09 99 09
ojj sxq ui9 ¾iv 9 Ι¾Λ STH J J 9Π Say naq naqojj sxq ui9 ¾iv 9 Ι¾Λ STH JJ 9 Π Say naq naq
D00 133 9W WO V39 39D W9 319 OVO OVl IVX XIV 100 I3D DID DID D00 133 9W WO V39 39D W9 319 OVO OVl IVX XIV 100 I3D DID DID
9G  9G
sX J X i¾ naq J3S 911 9ΐ¾ ndi dsy 丄 ¾TV dsy J¾ 3 aqj sX J X i¾ naq J3S 911 9ΐ¾ ndi dsy 丄 ¾TV dsy J¾ 3 aqj
Η^ε OW 03V V丄 3 3 IDI OIV 391 III 313 XV9 3VI X30 IVO 13V 311 Oil Η ^ ε OW 03V V 丄 3 3 IDI OIV 391 III 313 XV9 3VI X30 IVO 13V 311 Oil
OS 9Z OZ  OS 9Z OZ
^TD ^IV 3Π 9Π 9 Π Βΐν 丄 3qd stH J dJi uig j sXq 960ε V99 OIV VD3 309 OIV VIV OIV 903 90V Oil IVD OVl 031 WD 90V OW  ^ TD ^ IV 3Π 9Π 9 Π Βΐν 丄 3qd stH J dJi uig j sXq 960ε V99 OIV VD3 309 OIV VIV OIV 903 90V Oil IVD OVl 031 WD 90V OW
91 OT S I 91 OT S I
¾IV ΐΒΛ dsy na BJV usy naq ^IC ^9! u g n^g Sjy ¾iv Ί^ϋ S O 330 9ID 3V9 113 V39 IW Oil DID WD Vll WO W9 DDV V09 OIV V9V ΟΟθε V0W9V00V9 VOOXIVWW D1V3X3I3I1 I1II1IDW9 0X3XVXVX1D VI099WUI 0 VIIDV9XWI OXIiOlXVII 13VI0WI3V VIVXD33IXD WOXIXVXIO WI0D0I3W SSZ WIIJLXOOXI XVX3XIWI3 I9D9V3DVW IVIVI0V1V9 XXWllOXW IXIXV1V9IV 丄 LL WSVi VWJ.XVWW 0V9IVWD1V VDIV9V9I9X XWI3II090 IIVIXIDVIV 09 3WiU3i)3ェ丄 S i ViU 330IIVIWI OIIIXXVIIO IVDVOVIVOV VWWIOXVD OOLZ IXOVXOWOV νΐΙΰΟΙΟΙΙΟ W9V9XV3W 99V3VI3XVI V3V1V3XV09 WIOWIWO 9II0IDXII0 9IVIVI010V 1VXV301VXV V9II33IX9V 0IIIV3XI0V DIVIIV11IX 089Z 3V0II9V9II V1W1DV03I DIDVOOWU WWDIXIVI VWIWXVXV I03W0W9V 0Z92 VIWXIVWO VIXIOXVWD W1IXI0WI WI19001VI VOIOXIXXOX WDVWIWO ¾IV ΐ Β Λ dsy na BJV usy naq ^ IC ^ 9 ! Ugn ^ g Sjy ¾iv Ί ^ ϋ SO 330 9ID 3V9 113 V39 IW Oil DID WD Vll WO W9 DDV V09 OIV V9V ΟΟθε V0W9V00V9 VOOXIVWW D1V3X3X1V1 VOXIVWW D1V3X3I3V1 VIVXD33IXD WOXIXVXIO WI0D0I3W SSZ WIIJLXOOXI XVX3XIWI3 I9D9V3DVW IVIVI0V1V9 XXWllOXW IXIXV1V9IV 丄 LL WSVi VWJ.XVWW 0V9IVWD1V VDIV9V9I9X XWI3II090 IIVIXIDVIV 09 3WiU3i) 3 E 丄 S i ViU 330IIVIWI OIIIXXVIIO IVDVOVIVOV VWWIOXVD OOLZ IXOVXOWOV νΐΙΰΟΙΟΙΙΟ W9V9XV3W 99V3VI3XVI V3V1V3XV09 WIOWIWO 9II0IDXII0 9IVIVI010V 1VXV301VXV V9II33IX9V 0IIIV3XI0V DIVIIV11IX 089Z 3V0II9V9II V1W1DV03I DIDVOOWU WWDIXIVI VWIWXVXV I03W0W9V 0Z92 VIWXIVWO VIXIOXVWD W1IXI0WI WI19001VI VOIOXIXXOX WDVWIWO
L9 L9
SL600/L6dT/±Dd f86S£/^6 OM. z αον ovo IDO OIV SW OOI DOV vox DVl DOV OIV ID9 033 133 31VSL600 / L6dT / ± Dd f86S £ / ^ 6 OM. z αον ovo IDO OIV SW OOI DOV vox DVl DOV OIV ID9 033 133 31V
1Z OIZ  1Z OIZ
BIV nai an 3Π Sjy dj丄 Ι¾Λ Π91 dsy BIV «ID 0Jd 9{ I ZL XOO 190 X39 91V 0X0 OXV VIV 930 301 ViD 0X1 XVO X3D WO 100 IIV  BIV nai an 3Π Sjy dj 丄 Ι¾Λ Π91 dsy BIV «ID 0Jd 9 {I ZL XOO 190 X39 91V 0X0 OXV VIV 930 301 ViD 0X1 XVO X3D WO 100 IIV
SOZ 00Z 961  SOZ 00Z 961
jqi J9S Xi9 na B{v dsy dsy ¾IV 丄 iv 0Jd J3S °Jd aqd sXi BIV jqi J9S Xi9 na B {v dsy dsy ¾IV iv iv 0Jd J3S ° Jd aqd sXi BIV
^Z9C 3DV 33X V09 Oil 030 XVO IVO 000 IVI ODD 930 03J, VOO U丄 9W ID9 ^ Z9C 3DV 33X V09 Oil 030 XVO IVO 000 IVI ODD 930 03J, VOO U 丄 9W ID9
061 98t 081 061 98t 081
"is BIV jas J9S an an ni BIV n\ ^io ^ιο ^iv %"is BIV jas J9S an an ni BIV n \ ^ io ^ ιο ^ iv%
W9 III 130 101 301 XIV VXV UV 100 3X1 XXV 130 103 XOO 01V OIV 9 I Oil 991 091 aiid Xio utg BiV a d ΐ¾ BIV J9S ΡΛ 9Md Sjy Jqi V09 Oil 000 W3 OXV 103 III IXD 93D 131 0X9 111 33D VOO 033 XDV W9 III 130 101 301 XIV VXV UV 100 3X1 XXV 130 103 XOO 01V OIV 9 I Oil 991 091 aiid Xio utg BiV a d ΐ¾ BIV J9S ΡΛ 9Md Sjy Jqi V09 Oil 000 W3 OXV 103 III IXD 93D 131 0X9 111 33D VOO 033 XDV
991 091 S t sXl s usy ^IV J njg s 3« ai l J¾ v J9S Π9Ί ojj J dsy 08 S 9W GW 3W 009 IVI W9 1DI OIV DIV ODV VOO 331 VIX 133 OVI OVO on 9GT OEI  991 091 S t sXl s usy ^ IV J njg s 3 «ai l J¾ v J9S Π9Ί ojj J dsy 08 S 9W GW 3W 009 IVI W9 1DI OIV DIV ODV VOO 331 VIX 133 OVI OVO on 9GT OEI
^19 ^ΐθ 3Π ^IO 8¾d ^ΐθ Π3ΐ dJX difd Sjy diid aqd SAQ ns J¾ ¾IV Ζί 109 XD9 DXV 090 丄丄 V03 XIO 091 XXI 303 XXX XIX 101 313 OOV 030  ^ 19 ^ ΐθ 3Π ^ IO 8¾d ^ ΐθ Π3ΐ dJX difd Sjy diid aqd SAQ ns J¾ ¾IV Ζί 109 XD9 DXV 090 丄 丄 V03 XIO 091 XXI 303 XXX XIX 101 313 OOV 030
2ZI OZJ 91Ϊ  2ZI OZJ 91Ϊ
ΐ^Λ BIV s odd nig STH diid J9S Π87 J8S BIV 3\\ J9S m£ OIV 31D 139 WV V33 CVO IVO V90 311 X3X OLD i09 13X 339 VIV V3I  ΐ ^ Λ BIV s odd nig STH diid J9S Π87 J8S BIV 3 \\ J9S m £ OIV 31D 139 WV V33 CVO IVO V90 311 X3X OLD i09 13X 339 VIV V3I
0Π SOT OOt  0Π SOT OOt
s nai Ι¾Λ Ϊ¾Λ WW naq J¾
Figure imgf000061_0001
S ii Sjy Xig
s nai Ι¾Λ WW WW naq J¾
Figure imgf000061_0001
S ii Sjy Xig
9εεε ιοι no oio oxv oio DXV OXI OOV DXV 133 OVX XI3 VW OW OOV 099 9εεε ιοι no oio oxv oio DXV OXI OOV DXV 133 OVX XI3 VW OW OOV 099
96 06 98 08  96 06 98 08
8S 8S
SL600/L6dT/13d t^6S IL6 OA\ 59 l ie Pro Ala Ala Met Thr Tyr Tyr Ser Arg Ser Lys Met Pro Glu Thr SL600 / L6dT / 13d t ^ 6S IL6 OA \ 59 l ie Pro Ala Ala Met Thr Tyr Tyr Ser Arg Ser Lys Met Pro Glu Thr
225 230 235  225 230 235
GCA AGG TAC ACG GCT TTG GTT GCT AAG GAC GCA AAG CAG GCA GCT TCG 3768 Ala Arg Tyr Thr Ala Leu Val Ala Lys Asp Ala Lys Gin Ala Ala Ser  GCA AGG TAC ACG GCT TTG GTT GCT AAG GAC GCA AAG CAG GCA GCT TCG 3768 Ala Arg Tyr Thr Ala Leu Val Ala Lys Asp Ala Lys Gin Ala Ala Ser
240 245 250 255 240 245 250 255
GAC ATG TCT AAG GTT CTG CAA GTG GAG ATA GAG CCA GAA CAA CAG AAA 3816 Asp Met Ser Lys Val Leu Gin Val Glu l ie Glu Pro Glu Gin Gin Lys  GAC ATG TCT AAG GTT CTG CAA GTG GAG ATA GAG CCA GAA CAA CAG AAA 3816 Asp Met Ser Lys Val Leu Gin Val Glu lie Glu Pro Glu Gin Gin Lys
260 265 270  260 265 270
TTG GAA GAG ATC TCA AAG GAG AAG TCC AAG GCC TTT GGA TTG TTC TCA 3864 Leu Glu Glu l ie Ser Lys Glu Lys Ser Lys Ala Phe Gly Leu Phe Ser  TTG GAA GAG ATC TCA AAG GAG AAG TCC AAG GCC TTT GGA TTG TTC TCA 3864 Leu Glu Glu lie Ser Lys Glu Lys Ser Lys Ala Phe Gly Leu Phe Ser
275 280 285  275 280 285
AAG GAA TTC ATG AGT CGC CAT GGG CTT CAT TTG CTA GGC ACT ACA TCG 3912 Lys Glu Phe Met Ser Arg His Gly Leu His Leu Leu Gly Thr Thr Ser  AAG GAA TTC ATG AGT CGC CAT GGG CTT CAT TTG CTA GGC ACT ACA TCG 3912 Lys Glu Phe Met Ser Arg His Gly Leu His Leu Leu Gly Thr Thr Ser
290 295 300  290 295 300
ACA TGG TTC CTT CTC GAC ATT GCT TTC TAC AGT CAA AAC CTT TTC CAA 3960 Thr Trp Phe Leu Leu Asp l ie Ala Phe Tyr Ser Gin Asn Leu Phe Gin  ACA TGG TTC CTT CTC GAC ATT GCT TTC TAC AGT CAA AAC CTT TTC CAA 3960 Thr Trp Phe Leu Leu Asp lie Ala Phe Tyr Ser Gin Asn Leu Phe Gin
305 310 315  305 310 315
AAG GAT ATT TTC AGC GCG ATC GGA TGG ATT CCT CCC GCG CAA AGC ATG 4008 Lys Asp l ie Phe Ser Ala l ie Gly Trp l ie Pro Pro Ala Gin Ser Met AAG GAT ATT TTC AGC GCG ATC GGA TGG ATT CCT CCC GCG CAA AGC ATG 4008 Lys Asp lie Phe Ser Ala lie Gly Trp lie Pro Pro Ala Gin Ser Met
320 325 330 335 320 325 330 335
AAC GCA ATT CAA GAG GTT TTC AAG ATT GCC CGT GCG CAA ACG CTA ATC 4056 Asn Ala He Gin Glu Val Phe Lys He Ala Arg Ala Gin Thr Leu He  AAC GCA ATT CAA GAG GTT TTC AAG ATT GCC CGT GCG CAA ACG CTA ATC 4056 Asn Ala He Gin Glu Val Phe Lys He Ala Arg Ala Gin Thr Leu He
340 345 350  340 345 350
GCC TTG TGT AGC ACG GTA CCT GGT TAC TGG TTC ACA GTT GCG TTC ATC 4104 Ala Leu Cys Ser Thr Val Pro Gly Tyr Trp Phe Thr Val Ala Phe He  GCC TTG TGT AGC ACG GTA CCT GGT TAC TGG TTC ACA GTT GCG TTC ATC 4104 Ala Leu Cys Ser Thr Val Pro Gly Tyr Trp Phe Thr Val Ala Phe He
355 360 365 Π91 J9S s q Xio sXi jas n^g OJJ naq 9qd J¾ sqj n^i an 9 313 VOX 9W 100 VW 131 WO 130 VX9 Oil Oil I3V Oil 31331V 100 355 360 365 Π91 J9S sq Xio sXi jas n ^ g OJJ naq 9qd J¾ sqj n ^ i an 9 313 VOX 9W 100 VW 131 WO 130 VX9 Oil Oil I3V Oil 31331V 100
06 58^ 08 06 58 ^ 08
Π3Ί 9¾d usy ΙΒΛ Ι¾Λ ^ΐθ ΠΘ Ι¾Λ 3Π USV Say ΐ¾Λ ^Ϊ9 ^ΙΙΠ3Ί 9¾d usy ΙΒΛ Ι¾Λ ^ ΐθ ΠΘ Ι¾Λ 3Π US V Say ΐ¾Λ ^ Ϊ9 ^ ΙΙ
88 VII Oil 3W XIO VIO XD3 DXX 0X3 XIV 113931 OW 09V 310393 IXV88 VII Oil 3W XIO VIO XD3 DXX 0X3 XIV 113931 OW 09V 310393 IXV
L O 9 OJJ ojj j
Figure imgf000063_0001
dsy OJJ usy u g B|V
LO 9 OJJ ojj j
Figure imgf000063_0001
dsy OJJ usy ug B | V
O^ ^ 993 V03130 OVX V09 V330V93DV 9W DV9 OW OVD VOO OW DVD 130 O ^ ^ 993 V03130 OVX V09 V330V93DV 9W DV9 OW OVD VOO OW DVD 130
09 9 ^ OS ηθΊ J Π3ΐ gqj g aqj ¾iv ^Ϊ9 ΐ¾Λ WW ^iV ^19 s o jas 09 9 ^ OS ηθΊ J Π3ΐ gqj g aqj ¾iv ^ Ϊ9 ΐ¾Λ WW ^ iV ^ 19 s o jas
Z Oil OVl 3IX 311099 Oil 333103 XX99XV V09 VDO VXX VW V09 V3丄 Z Oil OVl 3IX 311099 Oil 333103 XX99XV V09 VDO VXX VW V09 V3 丄
9^ m  9 ^ m
BIV BIV J9S 3Π siH SXD jqx ass §jy aqd S y ¾iv OJJ aqa an V39 VOD 101 OXV I9D DVD 3DI D3V V3I VOV 3X1 D9V 300 VOD Oil 3XV o ^z  BIV BIV J9S 3Π siH SXD jqx ass §jy aqd S y ¾iv OJJ aqa an V39 VOD 101 OXV I9D DVD 3DI D3V V3I VOV 3X1 D9V 300 VOD Oil 3XV o ^ z
nio ¾IV OJJ Ι¾Λ A ^Md J¾ J¾ ^IV usv oJd ai^ usy ¾iv 9¾d 96Z W93399330101133113DV VOV 103 IW 333 VOO III 3W DDO OU  nio ¾IV OJJ Ι¾Λ A ^ Md J¾ J¾ ^ IV usv oJd ai ^ usy ¾iv 9¾d 96Z W93399330101133113DV VOV 103 IW 333 VOO III 3W DDO OU
9T 0 00 aqd 9Md J¾ S m Ϊ¾Λ aqd 9Π SJV usy nio sxq 9T 0 00 aqd 9Md J¾ S m Ϊ¾Λ aqd 9Π SJV usy nio sxq
8 ^ III DXX VOV VXX 9DX 3VI 9IV OXV 119 III VOD OIV VOO DW 9VD 3W 8 ^ III DXX VOV VXX 9DX 3VI 9IV OXV 119 III VOD OIV VOO DW 9VD 3W
96C 06ε 98E siH J¾ dJi siH usy α OJJ an ¾IV n9l BIV aqd 3qd Jqi 96C 06ε 98E siH J¾ dJi siH usy α OJJ an ¾IV n9l BIV aqd 3qd Jqi
QQZ OVO 13V 9913V3 OW DVl 100 IIV 13001D 10D 11191V III 01090V QQZ OVO 13V 9913V3 OW DVl 100 IIV 13001D 10D 11191V III 01090V
08C iC OAC 08C iC OAC
W aqd aqd aqj ^ig «19 ^I I BIV 9Md 3jy ^ID 9ΐΙ Ι¾Λ dsy OIV Oil III 3Π ID3 SIV 9IV OVD IXV 939 III VDV V03 IIV 3X00V9  W aqd aqd aqj ^ ig «19 ^ I I BIV 9Md 3jy ^ ID 9ΐΙ Ι¾Λ dsy OIV Oil III 3Π ID3 SIV 9IV OVD IXV 939 III VDV V03 IIV 3X00V9
0909
L600IL6d£l∑DA t-86S€/L6 ΟΛ\ 61 L600IL6d £ l∑DA t-86S € / L6 ΟΛ \ 61
500 505 510 500 505 510
GAG GAA ATG TCC GGT GAA AAT GAA GAC AAT GAG AAT AGC AAC AAT GAT 4584 Glu Glu Met Ser Gly Glu Asn Glu Asp Asn Glu Asn Ser Asn Asn Asp  GAG GAA ATG TCC GGT GAA AAT GAA GAC AAT GAG AAT AGC AAC AAT GAT 4584 Glu Glu Met Ser Gly Glu Asn Glu Asp Asn Glu Asn Ser Asn Asn Asp
515 520 525  515 520 525
AGT AGA ACG GTC CCA ATA GTT TAGGTGATAT AATACGCCTT TTGTAATAAT 4635 Ser Arg Thr Val Pro l ie Val  AGT AGA ACG GTC CCA ATA GTT TAGGTGATAT AATACGCCTT TTGTAATAAT 4635 Ser Arg Thr Val Pro lie Val
530  530
TTTCGTTTTT TCTTTCTCCT TGTCTCTAGC AACTCAAGTT GTTCTTTGTG TAATCCATTG 4695 ATACCTAATT AATGCTAGAG AAATCAAAAT TTTCATGAGT CGATTTTAAA TCAGCTCCTA 4755 AATTGAAGAT TTATTAGACT TGACGAAGCC GCGCAAGTTG TGCAGTATAT ATGTTAACTC 4815 ACAACTTCAT GCGTCGCGGG GAAGTTGACA ACACAGATAA TGGCTTCAC 4864 配列番号 : 6  TTTCGTTTTT TCTTTCTCCT TGTCTCTAGC AACTCAAGTT GTTCTTTGTG TAATCCATTG 4695 ATACCTAATT AATGCTAGAG AAATCAAAAT TTTCATGAGT CGATTTTAAA TCAGCTCCTA 4755 AATTGAAGAT TTATTAGACT TGACGAAGCC GCGCAAGTTG TGCATGACGATCATACGATCATGACCATGCATCATGACT
配列の長さ : 4249 Sequence length: 4249
配列の型 : 核酸 Sequence type: nucleic acid
鎖の数 : 二本鎖 Number of chains: double strand
トポロジー : 直鎖状  Topology: linear
配列の種類 : Genomic DNA Sequence type: Genomic DNA
起源 Origin
生物名 : Arabidopsis thal iana  Organism name: Arabidopsis thal iana
株名 : Colombia  Stock Name: Colombia
配列の特徴 Array features
特徴を表す記号 : CDS  Characteristic symbol: CDS
存在位置 : 1677 . . 1980 特徴を表す記号 : CDS 62 存在位置 : 2158 . . 2630 特徴を表す記号 : CDS Location: 1677.. 1980 Characteristic symbol: CDS 62 Location: 2158.. 2630 Characteristic code: CDS
存在位置 : 2729 . . 3577 特徴を表す記号 : intron  Location: 2729.. 3577 Characteristic symbol: intron
存在位置 : 1981 . . 2157 特徴を表す記号 : intron  Location: 1981.. 2157 Characteristic symbol: intron
存在位置 : 2631 . . 2728 配列  Location: 2631.. 2728 array
GAATTCCGGC ATGTGGCTAT AAAAACCCCA ATTCATGTGT CAAACAACCA GTTAACCATT 60 ACCATAGAGG TTGTGAAAAA ATTACCAGGT GTGCTCGTGA TGCTGCTCGT TATACTGAAT 120 CCTTCAATGT CGATGACGAT GAAAGTCCCA TTATTAATCT CCATTGAAAT TTAATCTTTA 180 GAATTCCGGC ATGTGGCTAT AAAAACCCCA ATTCATGTGT CAAACAACCA GTTAACCATT 60 ACCATAGAGG TTGTGAAAAA ATTACCAGGT GTGCTCGTGA TGCTGCTCGT TATACTGAAT 120 CCTTCAATGT CGATGACGAT GAAAGTCCCA TTATTAATCT CCATTGAAAT TTAATCTTTA 180
ATTTACTTTC GTTGATACTA CAAAGATTCA TGTATTTATA CGTCGTGTAG CTTGAATATA 240ATTTACTTTC GTTGATACTA CAAAGATTCA TGTATTTATA CGTCGTGTAG CTTGAATATA 240
TTCATATACC TAATTATCAG TCTATTAAAA TGTGAAAGAT TATATTTTAT TAATTTGTGT 300TTCATATACC TAATTATCAG TCTATTAAAA TGTGAAAGAT TATATTTTAT TAATTTGTGT 300
TTTTATGTAA AGTCACTAAT TGTTGTCTTA AATTTTTATG TATTCTATGC TTTTCCTGAG 360TTTTATGTAA AGTCACTAAT TGTTGTCTTA AATTTTTATG TATTCTATGC TTTTCCTGAG 360
ATTATTTATT TATTTGTTTA TAATTTTTTT TTAATTAAAA AATAAATTAT GTGTGACTAC 420ATTATTTATT TATTTGTTTA TAATTTTTTT TTAATTAAAA AATAAATTAT GTGTGACTAC 420
TCTTTCTCTA GATATGCCTT AAGCAATAAA AGGGGGAAAA ACATTTTTTG ATGACAAATT 480TCTTTCTCTA GATATGCCTT AAGCAATAAA AGGGGGAAAA ACATTTTTTG ATGACAAATT 480
AGTTTGTCAT ATGAATGAAA TTGTGGTTTA GATGAATTTC ATCCAAGAAT TCTTAATAGA 540AGTTTGTCAT ATGAATGAAA TTGTGGTTTA GATGAATTTC ATCCAAGAAT TCTTAATAGA 540
ACCGAAAATC TCTTTAAGTT TTAACATAAT CAACAAAGAT AAATTCTATG AACATTCCTA 600ACCGAAAATC TCTTTAAGTT TTAACATAAT CAACAAAGAT AAATTCTATG AACATTCCTA 600
ATATTTCCTT TAAGATTACT CAATGAATTC TTGTCCGAGC GCTTGCATTT GTCTAATCAT 660ATATTTCCTT TAAGATTACT CAATGAATTC TTGTCCGAGC GCTTGCATTT GTCTAATCAT 660
CAACATAGAC GAATCATACA TTTGCTTGCG GCTAACGTCA CCTTCCTTTC CTCCTTCCTC 720CAACATAGAC GAATCATACA TTTGCTTGCG GCTAACGTCA CCTTCCTTTC CTCCTTCCTC 720
TTCGAAGAGC CTACCATCCA ATATACTCAG CACATAGACA AAAATCTATA TGAGTTACAA 780TTCGAAGAGC CTACCATCCA ATATACTCAG CACATAGACA AAAATCTATA TGAGTTACAA 780
AAATTCATCC ATTGAGTTGT TACAATTTAA TTTGATTGAA AATTGTTCAT TAGACATTAG 840 C73 •-3 > C¾ AAATTCATCC ATTGAGTTGT TACAATTTAA TTTGATTGAA AATTGTTCAT TAGACATTAG 840 C73 • -3> C¾
j  j
P  P
o O ΰε: o O ΰε:
w CD >  w CD>
era  era
> 3 >→  > 3> →
•—9 C-3  • —9 C-3
> - w  >-w
•-3 CTi  • -3 CTi
wコ -3 w  w -3 w
s - —3、  s--3,
"-3  "-3
o o
>—*  > — *
a ■"3  a ■ "3
- - o> —3  --o> —3
C Γ ―  C Γ ―
CD CD  CD CD
-3 CD —3 C  -3 CD —3 C
> > 一 >  >> One>
O 3  O 3
CD o  CD o
O —3 CD  O —3 CD
C j CD ►—3 d C j CD ►—3 d
D •-3 D  D • -3 D
c— tr- c— tr-
CD . 、 C - , CD., C-,
-3 —3  -3 —3
4^  4 ^
t 3 C 3  t 3 C 3
►-3 ►-3
o 3: > >  o 3:>>
C j •—3  C j • —3
r+ >  r +>
era cn ― O C3  era cn ― O C3
> >-3  >> -3
CO —9  CO —9
trATA CMTATC TGCGTTC  trATA CMTATC TGCGTTC
*-3  * -3
et) -3 t —3  et) -3 t —3
•-3  • -3
C3 ACAAATC TTG  C3 ACAAATC TTG
CD C CD C
CD CD
r+ era TGATCGT TTCTTGGCCT CA GGG LTATTAAACCTCT TCCTTGAC AGAC一  r + era TGATCGT TTCTTGGCCT CA GGG LTATTAAACCTCT TCCTTGAC AGAC
TTAATTGAT TCTAACGTT AAGCG』AAAGG ATTAGATT TTTCGG  TTAATTGAT TCTAACGTT AAGCG '' AAAGG ATTAGATT TTTCGG
oo CO oo CO
to to ο *. οο ι>ο σ¾ ^ οο Γ σ¾ ο O - 1 to to ο *. οο ι> ο σ¾ ^ οο Γ σ¾ ο O-1
TATATAAT TTATTT GGAT GATTAAT.ΤΤΤΑ AATAAAA C ίGG一, TATATAAT TTATTT GGAT GATTAAT.ΤΤΤΑ AATAAAA C ίGG
AAGTATAT2TATTTT AACAC TCTAT AATTA AAAAA TAAAGGAA TTTTTGTAACCGGTGG AAGTATAT2TATTTT AACAC TCTAT AATTA AAAAA TAAAGGAA TTTTTGTAACCGGTGG
TATATTTATTTAATATTTATGT TGGG GC CTTCTATATTATGAA ATCA TCCTTTTT TCGCT GCATCTGAAATTTTC ATCAT TCG CTCCTTATT iTTTC ACC ;CGCG TT CM AGGC一_- TATATTTATTTAATATTTATGT TGGG GC CTTCTATATTATGAA ATCA TCCTTTTT TCGCT GCATCTGAAATTTTC ATCAT TCG CTCCTTATT iTTTC ACC; CGCG TT CM AGGC-
TAAGT TATATTTTTGAATATAT TTTTTCTGGGCAAT T TTTT TTAGcCGTAAGT TATATTTTTGAATATAT TTTTTCTGGGCAAT T TTTT TTAGcCG
AAATTGG C ACMGAATC CAG C- TCTT LTT,TATATATC TCCGCAC G AAAAATTAAATCTTTT CCCG TATTATATC CCGT AAAATCGTGAGGTG CAAGTTGT TTACT TTGAT GTGGAGTTAAAT TTAAT ACTGCAGTTAC z VII 3IV VD9 Oil 009 WO 9XV 133 3X1 OID 339 V30 VXV Oil 030000 091 9SI 091 AAATTGG C ACMGAATC CAG C- TCTT LTT, TATATATC TCCGCAC G AAAAATTAAATCTTTT CCCG TATTATATC CCGT AAAATCGTGAGGTG CAAGTTGT TTACT TTGAT GTGGAGTTAAAT TTAAT ACTGCAGTTAC z VII 3IV VD9 Oil 009 WO 9XV 133 3X1 OID 339 V30 VXV Oil 030000 091 9SI 091
SJV J sXq sAi usy BIV J nyo s aw 911 J ¾TV S naq OJJ 19D V3V VW OW DW DD9 OVl WD 9D191V OIV DOV ODD VD13X0 XDO  SJV J sXq sAi usy BIV J nyo s aw 911 J ¾TV Snaq OJJ 19D V3V VW OW DW DD9 OVl WD 9D191V OIV DOV ODD VD13X0 XDO
SSI OSI  SSI OSI
J dsy ^10 311 aqj ns aqj Say aqd naq 88 DVX 3VD 399 DOS VIV DDO Oil 100 DID 901 Oil 03D Oil 3X1101  J dsy ^ 10 311 aqj ns aqj Say aqd naq 88 DVX 3VD 399 DOS VIV DDO Oil 100 DID 901 Oil 03D Oil 3X1101
9ΖΪ ΟΖΐ 9Π 9ΖΪ ΟΖΐ 9Π
J¾ BIV ΙΒΛ usy BTV J9S STH T9 ^Md s ng J3s ^O O^Z V3V ODD DXV VID VSO OW IOD VOX 0V3109 XIX V3I VIO 139 131099 J¾ BIV ΙΒΛ usy BTV J9S STH T9 ^ Md sng J3s ^ O O ^ Z V3V ODD DXV VID VSO OW IOD VOX 0V3109 XIX V3I VIO 139 131099
0Π 901  0Π 901
n91 J3S sxo na 八 n9 %d\{ am 9Π  n91 J3S sxo na eight n9% d \ {am 9Π
2612 313131101 VXD VIO 3丄 V 310 OIV Oil 03V IIV 139VXV3V0 VXW33XXVX QHZ IWWOIWI VXVI90IWX 3W1IWVI099J,9VI1IVI 9VIVXIWXX VX0W9VI0V 080Z 1W19DIIV03IVDI1XVI0 VWOIIWU V9VI0IVI01 VOIWWIil ODVllllDVl  2612 313 131 101 VXD VIO 3 丄 V 310 OIV Oil 03V IIV 139VXV3V0 VXW33XXVX QHZ IWWOIWI VXVI90IWX 3W1IWVI099J, 9VI1IVI 9VIVXIWXX VX0W9VI0V 080Z 1W19DIIV03IVDI1UVIOVIOVIOV
00Ϊ  00Ϊ
JTC丄 i Sii Si JTC 丄 i Sii Si
0202 DVI11I3IVI V3WXX309D XiOlIXWID 911I30W100 3VI 110 VW 9W 0202 DVI11I3IVI V3WXX309D XiOlIXWID 911I30W100 3VI 110 VW 9W
96 06 98  96 06 98
3JV «ID ndi s dsy ^13 naq dJi io 8¾ na uyg ^ig ¾iv ngq 3JV «ID ndi s dsy ^ 13 naq dJi io 8¾ na uyg ^ ig ¾iv ngq
Ζ96Ϊ 0000093109W DVD 10901090113D 0X13XX DID 9V03D0 V09 VIX Ζ96Ϊ 0000093109W DVD 10901090113D 0X13XX DID 9V03D0 V09 VIX
08 Si Oi  08 Si Oi
J¾ ^TD syCQ sqa ¾iv A usy Ι¾Λ ¾IV ¾IV ¾IV usy OJJ OJJ 6Ϊ6Τ 33V I9D 301 DII 339913 IDS IW 119 IDO 039109 XXO IW 100丄  J¾ ^ TD syCQ sqa ¾iv A usy ¾ ¾IV ¾IV ¾IV usy OJJ OJJ 6Ϊ6Τ 33V I9D 301 DII 339913 IDS IW 119 IDO 039109 XXO IW 100 丄
99 09 99 09 n9i jqi X{9 ojd s q s q jas J as dsy ]¾Λ STH J^I J^l SJV l9 600/.6dT/X3d mSC/Z.60A\ Zm 103 303 130 DIX W9 V9V 33V 311 VII 133 311 33V 3IX IW 133 3W 99 09 99 09 n9i jqi X {9 ojd sqsq jas J as dsy] ¾Λ STH J ^ IJ ^ l SJV l9 600 / .6dT / X3d mSC / Z.60A \ Zm 103 303 130 DIX W9 V9V 33V 311 VII 133 311 33V 3IX IW 133 3W
OLZ S9Z  OLZ S9Z
J8S J3s usv J3S usv J3S «10 B IV nig nig ¾τν 311 ΠΘΊ dsy Ι¾Λ VOI VOX IW V31 IW VOX WO V39 WO WD WO V39 丄丄 V V13 IVO 910  J8S J3s usv J3S usv J3S «10 B IV nig nig ¾τν 311 ΠΘΊ dsy Ι¾Λ VOI VOX IW V31 IW VOX WO V39 WO WD WO V39 丄 丄 V V13 IVO 910
09Z  09Z
«19 A  «19 A
ZS Z WO 113 0X0 OVOWOVO VIIXVIIVU WIDWWI9 13V1XVDIVD 1V30VW13V  ZS Z WO 113 0X0 OVOWOVO VIIXVIIVU WIDWWI9 13V1XVDIVD 1V30VW13V
089Z IVDIVDIVW 13VIV1V31V 3I1IWII0V IWI3W1I0 3I19DVDV10 DW 丄;)丄 089Z IVDIVDIVW 13VIV1V31V 3I1IWII0V IWI3W1I0 3I19DVDV10 DW 丄;) 丄
SSZ OSZ Si'Z  SSZ OSZ Si'Z
^9W dsy J9S E IV B IV uiD s^i α¾ usy SJV ¾ IV ΐΒΛ ¾ IV «i¾ J ^292 OIV IVD 331 330 330 WO VW 33V IW 903 IOD VIO lid ID9 30V IVl ^ 9W dsy J9S E IV B IV uiD s ^ i α¾ usy SJV ¾ IV ΐ Β Λ ¾ IV «i¾ J ^ 292 OIV IVD 331 330 330 WO VW 33V IW 903 IOD VIO lid ID9 30V IVl
O Z 9C2 OZZ  O Z 9C2 OZZ
SJV BiV J¾ njg ojd s 2JV dJi J I J jqi naq na ¾iy SJV BiV J¾ njg ojd s 2JV dJi J I J jqi naq na ¾iy
990 X09 IOV WO 003 91V VW 91V 933 001 IVl IVl XOV 110 VII 丄) i) m OZZ 9tZ ΟΪΖ990 X09 IOV WO 003 91V VW 91V 933 001 IVl IVl XOV 110 VII 丄) i) m OZZ 9tZ ΟΪΖ
0Jd 91 1 Biv ^13 aqd Π3ΐ Ι¾Λ 9Π SJV dJJ, ΐ¾Λ J^l dsy ¾IV UTO V30 DIV 1DD V30 111 31V 3ID 010 IIV 930 901 919 3VX IV9 9DD WD 0Jd 91 1 Biv ^ 13 aqd Π3ΐ Ι¾Λ 9Π SJV dJJ, ΐ¾Λ J ^ l dsy ¾IV UTO V30 DIV 1DD V30 111 31V 3ID 010 IIV 930 901 919 3VX IV9 9DD WD
SOZ OOZ 961 SOZ OOZ 961
0Jd ΐ¾Λ J¾ J as ^ΐθ Λ OJJ dsy Ι¾Λ nig J J¾ OJJ ¾iv s aqj J.DO U9 IDV D01 ODD 119 100 XVO 119 9V0 OVi DOV 000 309 VW Oil 0J d ΐ¾Λ J¾ J as ^ ΐθ Λ OJJ dsy Ι¾Λ nig J J¾ OJJ ¾iv s aqj J.DO U9 IDV D01 ODD 119 100 XVO 119 9V0 OVi DOV 000 309 VW Oil
061 981 081  061 981 081
Biv sin dsv J¾ J9S J9 naq J9S 八 d\ \ ¾iv Biv sin dsv J¾ J9S J9 naq J9S eight d \ \ ¾iv
ZZ 009 IVO DVO III VOV 13V 031 0X0 31V 010 丄 3丄 319 OIV V09 V99 030 ZZ 009 IVO DVO III VOV 13V 031 0X0 31V 010 丄 3 丄 319 OIV V09 V99 030
9 I Oil 991 9 I Oil 991
Figure imgf000068_0001
Figure imgf000068_0001
5959
600/ .6dT/XDd f86S£/ .6 OAV s o600 / .6dT / XDd f86S £ / .6 OAV so
OJJ ΐ9 3 d usv ¾TV 3Md sqd WW naq s J^l ^9W m L lZi 103 V09 111 IW 130 Oil Oil OXV I3V Oil 031 IVl OIV IXV 9X1 XIIOJJ ΐ9 3 d usv ¾TV 3Md sqd WW naq s J ^ l ^ 9W m L lZi 103 V09 111 IW 130 Oil Oil OXV I3V Oil 031 IVl OIV IXV 9X1 XII
0^ OOfr 96C  0 ^ OOfr 96C
^IO 9 Π Sjy usy nig Say S TH SJV da S I H dsy dAi OJJ 3 Π ¾IV nai ^ IO 9 Π Sjy usy nig Say S TH SJV da S I H dsy dAi OJJ 3 Π ¾IV nai
69iC IDD XXV V90 XW OVO VOV XVO VDV 901 IVD IVD IVl IDD IXV 909 VII 69iC IDD XXV V90 XW OVO VOV XVO VDV 901 IVD IVD IVl IDD IXV 909 VII
06ε 98ε 08ε gz 06ε 98ε 08ε gz
Biv 3qd 9W 9¾d 9 Ϊ Ι Jqi 9¾ 9 Π 9qd XlO ^9W ΠΘΊ uio an 9qdBiv 3qd 9W 9¾d 9 Ϊ Ι Jqi 9¾ 9 Π 9qd XlO ^ 9W ΠΘΊ uio an 9qd
Ϊ2ΐε IDO Oil DIV 111 OIV DDV 01V 311 31V 111 VOO 31Y 911 OVO OIV Oil Ϊ2ΐε IDO Oil DIV 111 OIV DDV 01V 311 31V 111 VOO 31Y 911 OVO OIV Oil
Oi 99S 09S Oi 99S 09S
3qd SJV ΑΐΟ ng on dsy an 9qj ^ I V ί¾Λ J¾ 9Md dJX J ^ig OJJ εζοε on VOD 丄 33 oxo viv ivs axv on vao 3丄 3 oov on oox ovi IDO 丄) 3 3qd SJV ΑΐΟ ng on dsy an 9qj ^ I V ί¾Λ J¾ 9Md dJX J ^ ig OJJ εζοε on VOD 丄 33 oxo viv ivs axv on vao 3 丄 3 oov on oox ovi IDO 丄) 3
ggc osc s½ ggc osc s½
A J¾ ^ig s ηθΊ BIV na J¾ ujg ¾iv s JGS 八 J¾ 9i|d 5Ζ0ε 3X3 DOV 390 39X 010 X3D OIV VIO 03V WD 133 VW V3I 010 33V 3X1  A J¾ ^ ig s ηθΊ BIV na J¾ ujg ¾iv s JGS 8 J¾ 9i | d 5Ζ0ε 3X3 DOV 390 39X 010 X3D OIV VIO 03V WD 133 VW V3I 010 33V 3X1
o e sec o £  o e sec o £
Ϊ^Λ nig SIH 311 ^TV usy J¾ n^g ¾iv ^IV OJ^ ΘΠ άαχ an LL6Z 3XD WD OVO OXV VOO 3W CIV VOV W9 339 039 D03 XIV 031 VOD DXV Ϊ ^ Λ nig SIH 311 ^ TV usy J¾ n ^ g ¾iv ^ IV OJ ^ ΘΠ άαχ an LL6Z 3XD WD OVO OXV VOO 3W CIV VOV W9 339 039 D03 XIV 031 VOD DXV
Z OZZ 9T9 J¾ J^I an dsy uio 9iw η9Ί usv J9s J9s j ^iv mZ OZZ 9T9 J¾ J ^ I an dsy uio 9i w η9 Ί us v J9 s J9 s j ^ iv m
V03 VDV OVI OIV 0V9 VW WD 3X1 DXO DW 33V OOV 3VI IVl 000 DIV οιε 9oe οοε %z dsv naq 9qj djj, jqi J¾ J¾ J¾ naq nai S T H Π3ΐ ΐ9 S TH 3V9 VIO 010 DII 901 V3V OOV OOV VOV 099 3X3 110 3V3 013 190 OVO V03 VDV OVI OIV 0V9 VW WD 3X1 DXO DW 33V OOV 3VI IVl 000 DIV οιε 9oe οοε% z dsv naq 9qj djj, jqi J¾ J¾ J¾ naq nai STH Π3ΐ ΐ9 S TH 3V9 VIO 010 3V 0100 V3 010V3 013 190 OVO
062 982 08Z 062 982 08Z
SJV SJV ¾tV sqd nig Say J¾ aqd na ^tg aqj J¾ aqd usv OJ^ usy SJV SJV ¾tV sqd nig Say J¾ aqd na ^ tg aqj J¾ aqd usv OJ ^ usy
9999
L600IL6d£/±Dd f¾6S£V厶 6 OAV / 75 L600IL6d £ / ± Dd f¾6S £ V m 6 OAV / 75
67  67
AAT GCG ACG ACG TTT GTT GTT CCT GCT GAG ATA TTT CCG GCG AGG TTG 3265 Asn Ala Thr Thr Phe Val Val Pro Ala Glu l ie Phe Pro Ala Arg Leu AAT GCG ACG ACG TTT GTT GTT CCT GCT GAG ATA TTT CCG GCG AGG TTG 3265 Asn Ala Thr Thr Phe Val Val Pro Ala Glu lie Phe Pro Ala Arg Leu
425 430 435  425 430 435
AGA TCG ACT TGT CAT GGG ATA TCG GCG GCG AGT GGT AAG GCG GGA GCG 3313 Arg Ser Thr Cys His Gly l ie Ser Ala Ala Ser Gly Lys Ala Gly Ala  AGA TCG ACT TGT CAT GGG ATA TCG GCG GCG AGT GGT AAG GCG GGA GCG 3313 Arg Ser Thr Cys His Gly lie Ser Ala Ala Ser Gly Lys Ala Gly Ala
440 445 450  440 445 450
ATT GTT GGA GCG TTT GGG TTT CTT TAC GCG GCG CAG AGT TCG GAT TCG 3361 l ie Val Gly Ala Phe Gly Phe Leu Tyr Ala Ala Gin Ser Ser Asp Ser  ATT GTT GGA GCG TTT GGG TTT CTT TAC GCG GCG CAG AGT TCG GAT TCG 3361 l ie Val Gly Ala Phe Gly Phe Leu Tyr Ala Ala Gin Ser Ser Asp Ser
455 460 465 470 455 460 465 470
GAG AAG ACT GAT GCT GGT TAT CCT CCT GGG ATT GGT GTT AGG AAT TCG 3409 Glu Lys Thr Asp Ala Gly Tyr Pro Pro Gly l ie Gly Val Arg Asn Ser  GAG AAG ACT GAT GCT GGT TAT CCT CCT GGG ATT GGT GTT AGG AAT TCG 3409 Glu Lys Thr Asp Ala Gly Tyr Pro Pro Gly lie Gly Val Arg Asn Ser
475 480 485 475 480 485
TTG TTG ATG CTT GCT TGT GTT AAT TTC TTG GGG ATT GTT TTT ACT CTG 3457 Leu Leu Met Leu Ala Cys Val Asn Phe Leu Gly l ie Val Phe Thr Leu TTG TTG ATG CTT GCT TGT GTT AAT TTC TTG GGG ATT GTT TTT ACT CTG 3457 Leu Leu Met Leu Ala Cys Val Asn Phe Leu Gly lie Val Phe Thr Leu
490 495 500  490 495 500
TTG GTT CCG GAG TCT AAA GGG AAG TCT TTG GAA GAG ATT TCG AGA GAA 3505 Leu Val Pro Glu Ser Lys Gly Lys Ser Leu Glu Glu l ie Ser Arg Glu  TTG GTT CCG GAG TCT AAA GGG AAG TCT TTG GAA GAG ATT TCG AGA GAA 3505 Leu Val Pro Glu Ser Lys Gly Lys Ser Leu Glu Glu lie Ser Arg Glu
505 510 515  505 510 515
GAT GAG GAA C AGC GGC GGA GAT ACG GTG GTG GAG ATG ACT GTG GCA 3553 Asp Glu Glu Gin Ser Gly Gly Asp Thr Val Val Glu Met Thr Val Ala  GAT GAG GAA C AGC GGC GGA GAT ACG GTG GTG GAG ATG ACT GTG GCA 3553 Asp Glu Glu Gin Ser Gly Gly Asp Thr Val Val Glu Met Thr Val Ala
520 525 530  520 525 530
AAT TCC GGT AGA AAA GTC CCG GTT TGATTATTTT GTGTTACTCA TTTTGTAAAT 3607 Asn Ser Gly Arg Lys Val Pro Val  AAT TCC GGT AGA AAA GTC CCG GTT TGATTATTTT GTGTTACTCA TTTTGTAAAT 3607 Asn Ser Gly Arg Lys Val Pro Val
535 540 535 540
TTACTCTATA TATGAAAGTC CCTTGCATAA AGTTTTTCGA TACTCAATAT ATCAGAATAA 3667 CAGTTTTGCT GGAACTTTGC AACCAAATTA CTCTGTGAAT TGGAAAGTAT TATCTTACTT 3727 68 TTACTCTATA TATGAAAGTC CCTTGCATAA AGTTTTTCGA TACTCAATAT ATCAGAATAA 3667 CAGTTTTGCT GGAACTTTGC AACCAAATTA CTCTGTGAAT TGGAAAGTAT TATCTTACTT 3727 68
CTTCCTATAA AGCACCAGTG ATCTTTTTGT AAAGAGATTC ATAAGTCTAT TGGTTTATGG 3787CTTCCTATAA AGCACCAGTG ATCTTTTTGT AAAGAGATTC ATAAGTCTAT TGGTTTATGG 3787
AACAATGCCT TCACATGCAA GTCATATTAT TTGTCCAGAC GACGAAGAGG AAGAATTTGT 3847AACAATGCCT TCACATGCAA GTCATATTAT TTGTCCAGAC GACGAAGAGG AAGAATTTGT 3847
TGAACTAGAA AGCAGTGGCG ATAGAATCGT TCATTAAGAT AAATGGTTCG TATAAAACCA 3907TGAACTAGAA AGCAGTGGCG ATAGAATCGT TCATTAAGAT AAATGGTTCG TATAAAACCA 3907
TTAGGATAAA TTCTATGTTT TGTGTTTCAT CATTGAATAT CTACCAGACC AAATGATTTT 3967TTAGGATAAA TTCTATGTTT TGTGTTTCAT CATTGAATAT CTACCAGACC AAATGATTTT 3967
ATTTGGTTTT AGTTTCTTTT GTAAATCCCA AAAAAGGTAA AGTTATATCA AAACCAAACT 4027ATTTGGTTTT AGTTTCTTTT GTAAATCCCA AAAAAGGTAA AGTTATATCA AAACCAAACT 4027
ACAAACCAGA TGTTAATCCC TATTGTATTA ACCACAAACA TGTTACCAGA ATATATCAAA 4087ACAAACCAGA TGTTAATCCC TATTGTATTA ACCACAAACA TGTTACCAGA ATATATCAAA 4087
AGTGTATCAG TTTCAGTTTG CTACTAAGTA AAGACTTTCA TCTTTGTGTT GCTTAGGCTT 4147AGTGTATCAG TTTCAGTTTG CTACTAAGTA AAGACTTTCA TCTTTGTGTT GCTTAGGCTT 4147
CAAGTTCGTT TTATCTTGTC TTCTCTGTTT TACTCTGCTT TATGATGATG ATAAATAACG 4207CAAGTTCGTT TTATCTTGTC TTCTCTGTTT TACTCTGCTT TATGATGATG ATAAATAACG 4207
ATGGAACACA AGAGAGAAGA GCTCCATTAT GCACAAGAAT TC 4249 配列番号 : 7 ATGGAACACA AGAGAGAAGA GCTCCATTAT GCACAAGAAT TC 4249 SEQ ID NO: 7
配列の長さ : 27 Array length: 27
配列の型 : 核酸 Sequence type: nucleic acid
鎖の数 : 一本鎖 Number of chains: single strand
トポロジー : 直鎖状  Topology: linear
配列の種類 : 他の核酸 合成 DNA Sequence type: Other nucleic acid Synthetic DNA
配列 Array
AAAGCTTCAA AACTATGGCT TGTTCTC 27 配列番号 : 8  AAAGCTTCAA AACTATGGCT TGTTCTC 27 SEQ ID NO: 8
配列の長さ : 27 Array length: 27
配列の型 : 核酸 Sequence type: nucleic acid
鎖の数 : 一本鎖 Number of chains: single strand
トポロジー : 直鎖状  Topology: linear
配列の種類 : 他の核酸 合成 DNA Sequence type: Other nucleic acid Synthetic DNA
配列 SZI QZ\ 9ΠArray SZI QZ \ 9Π
J¾ Jqi ^9W ΐ¾Λ 9 ^IV Wf) SIH ^19 s nsq jQ J3S BIV J¾ Jqi ^ 9W ΐ¾Λ 9 ^ IV Wf) SIH ^ 19 s nsq jQ J3S BIV
0Π SOI 001  0Π SOI 001
Ι¾Λ J3S SAQ naq W J η8Ί TO J 1¾Λ s i Ι¾Λ J3S SAQ naq W J η8 Ί TO J 1¾Λ si
S6 06 38  S6 06 38
SJV ^ID ηθΊ dsy ^io n9q sqj 9qj u{0 ^IO S SJV ^ ID ηθΊ dsy ^ io n9q sqj 9qj u {0 ^ IO S
08 9A Oi 08 9A Oi
J¾ ^i s^o ng B V Ι^Λ ^ΐθ usv Ι¾Λ BIV ^TV ¾IV ΐ^Λ SIH OJ^ OJJJ¾ ^ is ^ o ng BV Ι ^ Λ ^ ΐθ usv Ι¾Λ B IV ^ TV ¾IV ΐ ^ Λ SIH OJ ^ OJJ
99 09 S9 09 n9i J9S yg ojd s ? ¾iv J9S nio OJJ usy sqd Jil J^l 9Π SJV ^ϊθ 99 09 S9 09 n9i J9S yg ojd s? ¾iv J9S nio OJJ usy sqd Jil J ^ l 9Π SJV ^ ϊθ
9^ Of- SG nai nai s^i jq i¾ J3S Ι¾Λ s ^Md dsy 1 ¾iv dsy J¾  9 ^ Of- SG nai nai s ^ i jq i¾ J3S Ι¾Λ s ^ Md dsy 1 ¾iv dsy J¾
OC 92  OC 92
3^d ic ^ID ¾iv 311 m ^τν JMI ^qd SIH  3 ^ d ic ^ ID ¾iv 311 m ^ τν JMI ^ qd SIH
SI Ot 9  SI Ot 9
jqi sX BIV Ι¾Λ DSV na ¾iv s q na Ι¾Λ ^19 naq u^g u^g nig ¾iv t jqi sX BIV Ι¾Λ DS V na ¾iv sq na Ι¾Λ ^ 19 naq u ^ gu ^ g nig ¾iv t
涎 : coii Salivation: coii
6 : ½§½2Ι a 9X003VI DVD3W9I9I DWOVOOXOV 6: ½§½2Ι a 9X003VI DVD3W9I9I DWOVOOXOV
69 69
S.600/.6dT/X3d[ 70 S.600 / .6dT / X3d [ 70
Leu Cys Phe Phe Arg Phe Trp Leu Gly Phe Gly l ie Gly Gly Asp Tyr 130 135 140 145Leu Cys Phe Phe Arg Phe Trp Leu Gly Phe Gly lie Gly Gly Asp Tyr 130 135 140 145
Pro Leu Ser Ala Thr He Met Ser Glu Tyr Ala Asn Lys Lys Thr Arg Pro Leu Ser Ala Thr He Met Ser Glu Tyr Ala Asn Lys Lys Thr Arg
150 155 160 150 155 160
Gly Ala Phe He Ala Ala Val Phe Ala Met Gin Gly Val Gly l ie Leu Gly Ala Phe He Ala Ala Val Phe Ala Met Gin Gly Val Gly lie Leu
165 170 175  165 170 175
Ala Gly Gly Phe Val Ala Leu Ala Val Ser Ser l ie Phe Asp Lys Lys  Ala Gly Gly Phe Val Ala Leu Ala Val Ser Ser lie Phe Asp Lys Lys
180 185 190  180 185 190
Phe Pro Ala Pro Thr Tyr Ala Val Asn Arg Ala Leu Ser Thr Pro Pro Phe Pro Ala Pro Thr Tyr Ala Val Asn Arg Ala Leu Ser Thr Pro Pro
195 200 205 195 200 205
Gin Val Asp Tyr l ie Trp Arg l ie He Val Met Phe Gly Ala Leu Pro 210 215 220 225 Gin Val Asp Tyr l ie Trp Arg lie He Val Met Phe Gly Ala Leu Pro 210 215 220 225
Ala Ala Leu Thr Tyr Tyr Trp Arg Met Lys Met Pro Glu Thr Ala Arg Ala Ala Leu Thr Tyr Tyr Trp Arg Met Lys Met Pro Glu Thr Ala Arg
230 235 240 230 235 240
Tyr Thr Ala Leu Val Ala Lys Asn l ie Lys Gin Ala Thr Ala Asp Met Tyr Thr Ala Leu Val Ala Lys Asn lye Lys Gin Ala Thr Ala Asp Met
245 250 255  245 250 255
Ser Lys Val Leu Gin Thr Asp l ie Glu Leu Glu Glu Arg Val Glu Asp  Ser Lys Val Leu Gin Thr Asp lie Glu Leu Glu Glu Arg Val Glu Asp
260 265 270  260 265 270
Asp Val Lys Asp Pro Lys Gin Asn Tyr Gly Leu Phe Ser Lys Glu Phe Asp Val Lys Asp Pro Lys Gin Asn Tyr Gly Leu Phe Ser Lys Glu Phe
275 280 285 275 280 285
Leu Arg Arg His Gly Leu His Leu Leu Gly Thr Thr Ser Thr Trp Phe 290 295 300 305 Leu Arg Arg His Gly Leu His Leu Leu Gly Thr Thr Ser Thr Trp Phe 290 295 300 305
Leu Leu Asp l ie Ala Phe Tyr Ser Gin Asn Leu Phe Gin Lys Asp He Leu Leu Asp lie Ala Phe Tyr Ser Gin Asn Leu Phe Gin Lys Asp He
310 315 320 310 315 320
Phe Ser Ala l ie Gly Trp l ie Pro Lys Ala Ala Thr Met Asn Ala Thr Phe Ser Ala lie Gly Trp lie Pro Lys Ala Ala Thr Met Asn Ala Thr
325 330 335 71 325 330 335 71
His Glu Val Phe Arg lie Ala Arg Ala Gin Thr Leu l ie Ala Leu Cys His Glu Val Phe Arg lie Ala Arg Ala Gin Thr Leu lie Ala Leu Cys
340 345 350  340 345 350
Ser Thr Val Pro Gly Tyr Trp Phe Thr Val Ala Phe lie Asp Thr lie Ser Thr Val Pro Gly Tyr Trp Phe Thr Val Ala Phe lie Asp Thr lie
355 360 365 355 360 365
Gly Arg Phe Lys lie Gin Leu Asn Gly Phe Phe Met Met Thr Val Phe 370 375 380 385 Gly Arg Phe Lys lie Gin Leu Asn Gly Phe Phe Met Met Thr Val Phe 370 375 380 385
Met Phe Ala l ie Ala Phe Pro Tyr Asn His Trp l ie Lys Pro Glu Asn Met Phe Ala lie Ala Phe Pro Tyr Asn His Trp lie Lys Pro Glu Asn
390 395 400 390 395 400
Arg He Gly Phe Val Val Met Tyr Ser Leu Thr Phe Phe Phe Ala Asn Arg He Gly Phe Val Val Met Tyr Ser Leu Thr Phe Phe Phe Ala Asn
405 410 415  405 410 415
Phe Gly Pro Asn Ala Thr Thr Phe l ie Val Pro Ala Glu l ie Phe Pro  Phe Gly Pro Asn Ala Thr Thr Phe lie Val Pro Ala Glu lie Phe Pro
420 425 430  420 425 430
Ala Arg Leu Arg Ser Thr Cys His Gly lie Ser Ala Ala Ala Gly Lys Ala Arg Leu Arg Ser Thr Cys His Gly lie Ser Ala Ala Ala Gly Lys
435 440 445 435 440 445
Ala Gly Ala l ie Val Gly Ala Phe Gly Phe Leu Tyr Ala Ala Gin Ser 450 455 460 465 Ala Gly Ala lie Val Gly Ala Phe Gly Phe Leu Tyr Ala Ala Gin Ser 450 455 460 465
Gin Asp Lys Ala Lys Val Asp Ala Gly Tyr Pro Pro Gly l ie Gly Val Gin Asp Lys Ala Lys Val Asp Ala Gly Tyr Pro Pro Gly lie Gly Val
470 475 480 470 475 480
Lys Asn Ser Leu lie Met Leu Gly Val Leu Asn Phe lie Gly Met Leu Lys Asn Ser Leu lie Met Leu Gly Val Leu Asn Phe lie Gly Met Leu
485 490 495  485 490 495
Phe Thr Phe Leu Val Pro Glu Pro Lys Gly Lys Ser Leu Glu Glu Leu  Phe Thr Phe Leu Val Pro Glu Pro Lys Gly Lys Ser Leu Glu Glu Leu
500 505 510  500 505 510
Ser Gly Glu Ala Glu Val Ser His Asp Glu Lys  Ser Gly Glu Ala Glu Val Ser His Asp Glu Lys
515 520 配列番号 10 72 配列の長さ : 534 515 520 SEQ ID NO: 10 72 Sequence length: 534
配列の型 : アミノ酸 Sequence type: amino acid
トポロジー : 直鎖状  Topology: linear
配列の種類 : タンパク質 Sequence type: Protein
配列 Array
Met Ala Arg Glu Gin Leu Gin Val 1 5  Met Ala Arg Glu Gin Leu Gin Val 1 5
Leu Asn Ala Leu Asp Val Ala Lys Thr Gin Trp Tyr His Phe Thr AlaLeu Asn Ala Leu Asp Val Ala Lys Thr Gin Trp Tyr His Phe Thr Ala
10 15 20 10 15 20
lie lie He Ala Gly Met Gly Phe Phe Thr Asp Ala Tyr Asp Leu Phe 25 30 35 40lie lie He Ala Gly Met Gly Phe Phe Thr Asp Ala Tyr Asp Leu Phe 25 30 35 40
Cys lie Ser Leu Val Thr Lys Leu Leu Gly Arg l ie Tyr Tyr His Val Cys lie Ser Leu Val Thr Lys Leu Leu Gly Arg lie Tyr Tyr His Val
45 50 55 45 50 55
Glu Gly Ala Gin Lys Pro Gly Thr Leu Pro Pro Asn Val Ala Ala Ala Glu Gly Ala Gin Lys Pro Gly Thr Leu Pro Pro Asn Val Ala Ala Ala
60 65 70  60 65 70
Val Asn Gly Val Ala Phe Cys Gly Thr Leu Ala Gly Gin Leu Phe Phe  Val Asn Gly Val Ala Phe Cys Gly Thr Leu Ala Gly Gin Gin Leu Phe Phe
75 80 85  75 80 85
Gly Trp Leu Gly Asp Lys Leu Gly Arg Lys Lys Val Tyr Gly Met Thr Gly Trp Leu Gly Asp Lys Leu Gly Arg Lys Lys Val Tyr Gly Met Thr
90 95 100 90 95 100
Leu Met Val Met Val Leu Cys Ser He Ala Ser Gly Leu Ser Phe Gly 105 110 115 120 Leu Met Val Met Val Leu Cys Ser He Ala Ser Gly Leu Ser Phe Gly 105 110 115 120
His Glu Pro Lys Ala Val Met Ala Thr Leu Cys Phe Phe Arg Phe Trp His Glu Pro Lys Ala Val Met Ala Thr Leu Cys Phe Phe Arg Phe Trp
125 130 135 125 130 135
Leu Gly Phe Gly lie Gly Gly Asp Tyr Pro Leu Ser Ala Thr l ie Met Leu Gly Phe Gly lie Gly Gly Asp Tyr Pro Leu Ser Ala Thr lie Met
140 145 150  140 145 150
Ser Glu Tyr Ala Asn Lys Lys Thr Arg Gly Ala Phe Val Ser Ala Val 73 Ser Glu Tyr Ala Asn Lys Lys Thr Arg Gly Ala Phe Val Ser Ala Val 73
155 160 165 155 160 165
Phe Ala Met Gin Gly Phe Gly l ie Met Ala Gly Gly lie Phe Ala lie Phe Ala Met Gin Gly Phe Gly lie Met Ala Gly Gly lie Phe Ala lie
170 175 180 170 175 180
lie lie Ser Ser Ala Phe Glu Ala Lys Phe Pro Ser Pro Ala Tyr Ala 185 190 195 200lie lie Ser Ser Ala Phe Glu Ala Lys Phe Pro Ser Pro Ala Tyr Ala 185 190 195 200
Asp Asp Ala Leu Gly Ser Thr l ie Pro Gin Ala Asp Leu Val Trp Arg Asp Asp Ala Leu Gly Ser Thr lie Pro Gin Ala Asp Leu Val Trp Arg
205 210 215 lie lie Leu Met Ala Gly Ala lie Pro Ala Ala Met Thr Tyr Tyr Ser  205 210 215 lie lie Leu Met Ala Gly Ala lie Pro Ala Ala Met Thr Tyr Tyr Ser
220 225 230  220 225 230
Arg Ser Lys Met Pro Glu Thr Ala Arg Tyr Thr Ala Leu Val Ala Lys  Arg Ser Lys Met Pro Glu Thr Ala Arg Tyr Thr Ala Leu Val Ala Lys
235 240 245  235 240 245
Asp Ala Lys Gin Ala Ala Ser Asp Met Ser Lys Val Leu Gin Val Glu Asp Ala Lys Gin Ala Ala Ser Asp Met Ser Lys Val Leu Gin Val Glu
250 255 260 250 255 260
l ie Glu Pro Glu Gin Gin Lys Leu Glu Glu l ie Ser Lys Glu Lys Ser 265 270 275 280l ie Glu Pro Glu Gin Gin Lys Leu Glu Glu lie Ser Lys Glu Lys Ser 265 270 275 280
Lys Ala Phe Gly Leu Phe Ser Lys Glu Phe Met Ser Arg His Gly Leu Lys Ala Phe Gly Leu Phe Ser Lys Glu Phe Met Ser Arg His Gly Leu
285 290 295 285 290 295
His Leu Leu Gly Thr Thr Ser Thr Trp Phe Leu Leu Asp l ie Ala Phe His Leu Leu Gly Thr Thr Ser Thr Trp Phe Leu Leu Asp lie Ala Phe
300 305 310  300 305 310
Tyr Ser Gin Asn Leu Phe Gin Lys Asp He Phe Ser Ala l ie Gly Trp  Tyr Ser Gin Asn Leu Phe Gin Lys Asp He Phe Ser Ala lie Gly Trp
315 320 325  315 320 325
lie Pro Pro Ala Gin Ser Met Asn Ala lie Gin Glu Val Phe Lys Helie Pro Pro Ala Gin Ser Met Asn Ala lie Gin Glu Val Phe Lys He
330 335 340 330 335 340
Ala Arg Ala Gin Thr Leu lie Ala Leu Cys Ser Thr Val Pro Gly Tyr 345 350 355 360 Ala Arg Ala Gin Thr Leu lie Ala Leu Cys Ser Thr Val Pro Gly Tyr 345 350 355 360
Trp Phe Thr Val Ala Phe l ie Asp Val l ie Gly Arg Phe Ala He Gin 74 Trp Phe Thr Val Ala Phe lie Asp Val lie Gly Arg Phe Ala He Gin 74
365 370 375365 370 375
Met Met Gly Phe Phe Phe Met Thr Val Phe Met Phe Ala Leu Ala lie Met Met Gly Phe Phe Phe Met Thr Val Phe Met Phe Ala Leu Ala lie
380 385 390  380 385 390
Pro Tyr Asn His Trp Thr His Lys Glu Asn Arg l ie Gly Phe Val l ie  Pro Tyr Asn His Trp Thr His Lys Glu Asn Arg lie Gly Phe Val lie
395 400 405  395 400 405
Met Tyr Ser Leu Thr Phe Phe Phe Ala Asn Phe Gly Pro Asn Ala Thr Met Tyr Ser Leu Thr Phe Phe Phe Ala Asn Phe Gly Pro Asn Ala Thr
410 415 420 410 415 420
Thr Phe Val Val Pro Ala Glu l ie Phe Pro Ala Arg Phe Arg Ser Thr 425 430 435 440 Thr Phe Val Val Pro Ala Glu lie Phe Pro Ala Arg Phe Arg Ser Thr 425 430 435 440
Cys His Gly l ie Ser Ala Ala Ser Gly Lys Leu Gly Ala Met Val Gly Cys His Gly lie Ser Ala Ala Ser Gly Lys Leu Gly Ala Met Val Gly
445 450 455 445 450 455
Ala Phe Gly Phe Leu Tyr Leu Ala Gin Asn Pro Asp Lys Asp Lys Thr Ala Phe Gly Phe Leu Tyr Leu Ala Gin Asn Pro Asp Lys Asp Lys Thr
460 465 470  460 465 470
Asp Ala Gly Tyr Pro Pro Gly l ie Gly Val Arg Asn Ser Leu l ie Val  Asp Ala Gly Tyr Pro Pro Gly lie Gly Val Arg Asn Ser Leu lie Val
475 480 485  475 480 485
Leu Gly Val Val Asn Phe Leu Gly He Leu Phe Thr Phe Leu Val Pro Leu Gly Val Val Asn Phe Leu Gly He Leu Phe Thr Phe Leu Val Pro
490 495 500 490 495 500
Glu Ser Lys Gly Lys Ser Leu Glu Glu Met Ser Gly Glu Asn Glu Asp 505 510 515 520 Glu Ser Lys Gly Lys Ser Leu Glu Glu Met Ser Gly Glu Asn Glu Asp 505 510 515 520
Asn Glu Asn Ser Asn Asn Asp Ser Arg Thr Val Pro l ie Val Asn Glu Asn Ser Asn Asn Asp Ser Arg Thr Val Pro lie Val
525 530 配列番号 : 11  525 530 SEQ ID NO: 11
配列の長さ : 521 Sequence length: 521
配列の型 : アミノ酸 Sequence type: amino acid
トポロジー : 直鎖状 75 配列の種類 : タンパク質 Topology: linear 75 Sequence type: Protein
配列 Array
Met Ala Asp Gin Gin 1 5 Leu Gly Val Leu Lys Ala Leu Asp Val Ala Lys Thr Gin Leu Tyr His  Met Ala Asp Gin Gin 1 5 Leu Gly Val Leu Lys Ala Leu Asp Val Ala Lys Thr Gin Leu Tyr His
10 15 20 10 15 20
Phe Thr Ala l ie Val lie Ala Gly Met Gly Phe Phe Thr Asp Ala Tyr Phe Thr Ala lie Val lie Ala Gly Met Gly Phe Phe Thr Asp Ala Tyr
25 30 35  25 30 35
Asp Leu Phe Cys Val Ser Leu Val Thr Lys Leu Leu Gly Arg Leu Tyr  Asp Leu Phe Cys Val Ser Leu Val Thr Lys Leu Leu Gly Arg Leu Tyr
40 45 50  40 45 50
Tyr Phe Asn Pro Thr Ser Ala Lys Pro Gly Ser Leu Pro Pro His Val Tyr Phe Asn Pro Thr Ser Ala Lys Pro Gly Ser Leu Pro Pro His Val
55 60 65 55 60 65
Ala Ala Ala Val Asn Gly Val Ala Leu Cys Gly Thr Leu Ala Gly Gin 70 75 80 85 Ala Ala Ala Val Asn Gly Val Ala Leu Cys Gly Thr Leu Ala Gly Gin 70 75 80 85
Leu Phe Phe Gly Trp Leu Gly Asp Lys Leu Gly Arg Lys Lys Val Tyr Leu Phe Phe Gly Trp Leu Gly Asp Lys Leu Gly Arg Lys Lys Val Tyr
90 95 100 90 95 100
Gly l ie Thr Leu lie Met Met l ie Leu Cys Ser Val Ala Ser Gly Leu Gly lie Thr Leu lie Met Met lie Leu Cys Ser Val Ala Ser Gly Leu
105 110 115  105 110 115
Ser Leu Gly Asn Ser Ala Lys Gly Val Met Thr Thr Leu Cys Phe Phe  Ser Leu Gly Asn Ser Ala Lys Gly Val Met Thr Thr Leu Cys Phe Phe
120 125 130  120 125 130
Arg Phe Trp Leu Gly Phe Gly l ie Gly Gly Asp Tyr Pro Leu Ser Ala Arg Phe Trp Leu Gly Phe Gly lie Gly Gly Asp Tyr Pro Leu Ser Ala
135 140 145 135 140 145
Thr l ie Met Ser Glu Tyr Ala Asn Lys Lys Thr Arg Gly Ala Phe He 150 155 160 165 Thr lie Met Ser Glu Tyr Ala Asn Lys Lys Thr Arg Gly Ala Phe He 150 155 160 165
Ala Ala Val Phe Ala Met Gin Gly Val Gly He Leu Ala Gly Gly Phe Ala Ala Val Phe Ala Met Gin Gly Val Gly He Leu Ala Gly Gly Phe
170 175 180 76 170 175 180 76
Val Ala Leu Ala Val Ser Ser He Phe Asp Lys Lys Phe Pro Ser Pro Val Ala Leu Ala Val Ser Ser He Phe Asp Lys Lys Phe Pro Ser Pro
185 190 195  185 190 195
Thr Tyr Glu Gin Asp Arg Phe Leu Ser Thr Pro Pro Gin Ala Asp Tyr  Thr Tyr Glu Gin Asp Arg Phe Leu Ser Thr Pro Pro Gin Ala Asp Tyr
200 205 210  200 205 210
He Trp Arg He lie Val Met Phe Gly Ala Leu Pro Ala Ala Leu Thr He Trp Arg He lie Val Met Phe Gly Ala Leu Pro Ala Ala Leu Thr
215 220 225 215 220 225
Tyr Tyr Trp Arg Met Lys Met Pro Glu Thr Ala Arg Tyr Thr Ala Leu 230 235 240 245 Tyr Tyr Trp Arg Met Lys Met Pro Glu Thr Ala Arg Tyr Thr Ala Leu 230 235 240 245
Val Ala Lys Asn l ie Lys Gin Ala Thr Ala Asp Met Ser Lys Val Leu Val Ala Lys Asn lie Lys Gin Ala Thr Ala Asp Met Ser Lys Val Leu
250 255 260 250 255 260
Gin Thr Asp Leu Glu Leu Glu Glu Arg Val Glu Asp Asp Val Lys Asp Gin Thr Asp Leu Glu Leu Glu Glu Arg Val Glu Asp Asp Val Lys Asp
265 270 275  265 270 275
Pro Lys Lys Asn Tyr Gly Leu Phe Ser Lys Glu Phe Leu Arg Arg His  Pro Lys Lys Asn Tyr Gly Leu Phe Ser Lys Glu Phe Leu Arg Arg His
280 285 290  280 285 290
Gly Leu His Leu Leu Gly Thr Thr Ser Thr Trp Phe Leu Leu Asp l ie Gly Leu His Leu Leu Gly Thr Thr Ser Thr Trp Phe Leu Leu Asp lie
295 300 305 295 300 305
Ala Phe Tyr Ser Gin Asn Leu Phe Gin Lys Asp l ie Phe Ser Ala He 310 315 320 325 Ala Phe Tyr Ser Gin Asn Leu Phe Gin Lys Asp lie Phe Ser Ala He 310 315 320 325
Gly Trp He Pro Lys Ala Ala Thr Met Asn Ala l ie His Glu Val Phe Gly Trp He Pro Lys Ala Ala Thr Met Asn Ala lie His Glu Val Phe
330 335 340 330 335 340
Lys l ie Ala Arg Ala Gin Thr Leu l ie Ala Leu Cys Ser Thr Val Pro Lys lie Ala Arg Ala Gin Thr Leu lie Ala Leu Cys Ser Thr Val Pro
345 350 355  345 350 355
Gly Tyr Trp Phe Thr Val Ala Phe He Asp l ie l ie Gly Arg Phe Ala  Gly Tyr Trp Phe Thr Val Ala Phe He Asp lie lie Gly Arg Phe Ala
360 365 370  360 365 370
l ie Gin Leu Met Gly Phe Phe Met Met Thr Val Phe Met Phe Ala l ie 375 380 385 77 l ie Gin Leu Met Gly Phe Phe Met Met Thr Val Phe Met Phe Ala l ie 375 380 385 77
Ala Phe Pro Tyr Asn His Trp l ie Leu Pro Asp Asn Arg l ie Gly Phe 390 395 400 405Ala Phe Pro Tyr Asn His Trp lie Leu Pro Asp Asn Arg lie Gly Phe 390 395 400 405
Val Val Met Tyr Ser Leu Thr Phe Phe Phe Ala Asn Phe Gly Pro Asn Val Val Met Tyr Ser Leu Thr Phe Phe Phe Ala Asn Phe Gly Pro Asn
410 415 420 410 415 420
Ala Thr Thr Phe He Val Pro Ala Glu l ie Phe Pro Ala Arg Leu Arg Ala Thr Thr Phe He Val Pro Ala Glu lie Phe Pro Ala Arg Leu Arg
425 430 435  425 430 435
Ser Thr Cys His Gly l ie Ser Ala Ala Thr Gly Lys Ala Gly Ala l ie  Ser Thr Cys His Gly lie Ser Ala Ala Thr Gly Lys Ala Gly Ala lie
440 445 450  440 445 450
Val Gly Ala Phe Gly Phe Leu Tyr Ala Ala Gin Pro Gin Asp Lys Thr Val Gly Ala Phe Gly Phe Leu Tyr Ala Ala Gin Pro Gin Asp Lys Thr
455 460 465 455 460 465
Lys Thr Asp Ala Gly Tyr Pro Pro Gly l ie Gly Val Lys Asn Ser Leu 470 475 480 485 l ie Met Leu Gly Val l ie Asn Phe Val Gly Met Leu Phe Thr Phe Leu  Lys Thr Asp Ala Gly Tyr Pro Pro Gly lie Gly Val Lys Asn Ser Leu 470 475 480 485 lie Met Leu Gly Val lie Asn Phe Val Gly Met Leu Phe Thr Phe Leu
490 495 500 490 495 500
Val Pro Glu Pro Lys Gly Lys Ser Leu Glu Glu Leu Ser Gly Glu Ala Val Pro Glu Pro Lys Gly Lys Ser Leu Glu Glu Leu Ser Gly Glu Ala
505 510 515  505 510 515
Glu Val Asp Lys  Glu Val Asp Lys
520 配列番号 : 12  520 SEQ ID NO: 12
配列の長さ : 524 Sequence length: 524
配列の型 : アミノ酸 Sequence type: amino acid
トポロジー : 直鎖状  Topology: linear
配列の種類 : タンパク質 Sequence type: Protein
配列 Array
Met Ala Glu Gin Gin Leu Gly Val Leu Lys Ala Leu Asp 78 Met Ala Glu Gin Gin Leu Gly Val Leu Lys Ala Leu Asp 78
1 5 101 5 10
Val Ala Lys Thr Gin Leu Tyr His Phe Thr Ala lie Val lie Ala GlyVal Ala Lys Thr Gin Leu Tyr His Phe Thr Ala lie Val lie Ala Gly
15 20 25 15 20 25
Met Gly Phe Phe Thr Asp Ala Tyr Asp Leu Phe Cys Val Ser Leu Val 30 35 40 45 Met Gly Phe Phe Thr Asp Ala Tyr Asp Leu Phe Cys Val Ser Leu Val 30 35 40 45
Thr Lys Leu Leu Gly Arg l ie Tyr Tyr Phe Asn Pro Glu Ser Ala Lys Thr Lys Leu Leu Gly Arg lie Tyr Tyr Phe Asn Pro Glu Ser Ala Lys
50 55 60 50 55 60
Pro Gly Ser Leu Pro Pro His Val Ala Ala Ala Val Asn Gly Val Ala Pro Gly Ser Leu Pro Pro His Val Ala Ala Ala Val Asn Gly Val Ala
65 70 75  65 70 75
Leu Cys Gly Thr Leu Ser Gly Gin Leu Phe Phe Gly Trp Leu Gly Asp  Leu Cys Gly Thr Leu Ser Gly Gin Leu Phe Phe Gly Trp Leu Gly Asp
80 85 90  80 85 90
Lys Leu Gly Arg Lys Lys Val Tyr Gly Leu Thr Leu l ie Met Met lie Lys Leu Gly Arg Lys Lys Val Tyr Gly Leu Thr Leu lie Met Met lie
95 100 105 95 100 105
Leu Cys Ser Val Ala Ser Gly Leu Ser Phe Gly Asn Glu Ala Lys Gly 110 115 120 125 Leu Cys Ser Val Ala Ser Gly Leu Ser Phe Gly Asn Glu Ala Lys Gly 110 115 120 125
Val Met Thr Thr Leu Cys Phe Phe Arg Phe Trp Leu Gly Phe Gly He Val Met Thr Thr Leu Cys Phe Phe Arg Phe Trp Leu Gly Phe Gly He
130 135 140 130 135 140
Gly Gly Asp Tyr Pro Leu Ser Ala Thr lie Met Ser Glu Tyr Ala Asn Gly Gly Asp Tyr Pro Leu Ser Ala Thr lie Met Ser Glu Tyr Ala Asn
145 150 155  145 150 155
Lys Lys Thr Arg Gly Ala Phe l ie Ala Ala Val Phe Ala Met Gin Gly  Lys Lys Thr Arg Gly Ala Phe lie Ala Ala Val Phe Ala Met Gin Gly
160 165 170  160 165 170
Val Gly lie Leu Ala Gly Gly Phe Val Ala Leu Ala Val Ser Ser He Val Gly lie Leu Ala Gly Gly Phe Val Ala Leu Ala Val Ser Ser He
175 180 185 175 180 185
Phe Asp Lys Lys Phe Pro Ala Pro Thr Tyr Ala Val Asn Arg Ala Leu 190 195 200 205 Phe Asp Lys Lys Phe Pro Ala Pro Thr Tyr Ala Val Asn Arg Ala Leu 190 195 200 205
Ser Thr Pro Pro Gin Val Asp Tyr l ie Trp Arg l ie l ie Val Met Phe 79 Ser Thr Pro Pro Gin Val Asp Tyr l ie Trp Arg lie lie Val Met Phe 79
210 215 220210 215 220
Gly Ala Leu Pro Ala Ala Leu Thr Tyr Tyr Trp Arg Met Lys Met Pro Gly Ala Leu Pro Ala Ala Leu Thr Tyr Tyr Trp Arg Met Lys Met Pro
225 230 235  225 230 235
Glu Thr Ala Arg Tyr Thr Ala Leu Val Ala Lys Asn lie Lys Gin Ala  Glu Thr Ala Arg Tyr Thr Ala Leu Val Ala Lys Asn lie Lys Gin Ala
240 245 250  240 245 250
Thr Ala Asp Met Ser Lys Val Leu Gin Thr Asp lie Glu Leu Glu Glu Thr Ala Asp Met Ser Lys Val Leu Gin Thr Asp lie Glu Leu Glu Glu
255 260 265 255 260 265
Arg Val Glu Asp Asp Val Lys Asp Pro Arg Gin Asn Tyr Gly Leu Phe 270 275 280 285 Arg Val Glu Asp Asp Val Lys Asp Pro Arg Gin Asn Tyr Gly Leu Phe 270 275 280 285
Ser Lys Glu Phe Leu Arg Arg His Gly Leu His Leu Leu Gly Thr Thr Ser Lys Glu Phe Leu Arg Arg His Gly Leu His Leu Leu Gly Thr Thr
290 295 300 290 295 300
Ser Thr Trp Phe Leu Leu Asp He Ala Phe Tyr Ser Gin Asn Leu Phe Ser Thr Trp Phe Leu Leu Asp He Ala Phe Tyr Ser Gin Asn Leu Phe
305 310 315  305 310 315
Gin Lys Asp l ie Phe Ser Ala lie Gly Trp l ie Pro Lys Ala Ala Thr  Gin Lys Asp lie Phe Ser Ala lie Gly Trp lie Pro Lys Ala Ala Thr
320 325 330  320 325 330
Met Asn Ala Thr His Glu Val Phe Arg l ie Ala Arg Ala Gin Thr Leu Met Asn Ala Thr His Glu Val Phe Arg lie Ala Arg Ala Gin Thr Leu
335 340 345 335 340 345
He Ala Leu Cys Ser Thr Val Pro Gly Tyr Trp Phe Thr Val Ala Phe 350 355 360 365 l ie Asp Thr He Gly Arg Phe Lys He Gin Leu Asn Gly Phe Phe Met  He Ala Leu Cys Ser Thr Val Pro Gly Tyr Trp Phe Thr Val Ala Phe 350 355 360 365 l ie Asp Thr He Gly Arg Phe Lys He Gin Leu Asn Gly Phe Phe Met
370 375 380 370 375 380
Met Thr Val Phe Met Phe Ala He Ala Phe Pro Tyr Asn His Trp He Met Thr Val Phe Met Phe Ala He Ala Phe Pro Tyr Asn His Trp He
385 390 395  385 390 395
Lys Pro Glu Asn Arg He Gly Phe Val Val Met Tyr Ser Leu Thr Phe  Lys Pro Glu Asn Arg He Gly Phe Val Val Met Tyr Ser Leu Thr Phe
400 405 410  400 405 410
Phe Phe Ala Asn Phe Gly Pro Asn Ala Thr Thr Phe He Val Pro Ala 9C οε Z Phe Phe Ala Asn Phe Gly Pro Asn Ala Thr Thr Phe He Val Pro Ala 9C οε Z
dsv J^X ¾IV dsy J¾ 9qj ^19 ^IV Ι^Λ 3Π ^IV J¾  dsv J ^ X ¾IV dsy J¾ 9qj ^ 19 ^ IV Ι ^ Λ 3Π ^ IV J¾
ΟΖ 9Ϊ 01  ΟΖ 9Ϊ 01
aqd siH J u[g J¾ s ¾iv ^TV dsy na ¾iv usy Π9 j¾ n^g aqd siH J u [g J¾ s ¾iv ^ TV dsy na ¾iv usy Π9 j¾ n ^ g
S tS t
Figure imgf000083_0001
べ : mco^
Figure imgf000083_0001
Be: mco ^
0Z9 St9 0Ϊ9 sXl n[g dsy SIR J8S Ι¾Λ ntO ^TV nio J9S nig nig naq 0Z9 St9 0Ϊ9 sXl n (g dsy SIR J8S Ι¾Λ ntO ^ TV nio J9S nig nig naq
SOS 009 6^ jas s [9 s OJJ nig OJJ Ι¾Λ naq aqa J¾ 9 ngi ^193Π  SOS 009 6 ^ jas s (9 s OJJ nig OJJ Ι¾Λ naq aqa J¾ 9 ngi ^ 193Π
06 S8 Οδί' aqj usy na ΪΒΛ io na Ι¾Λ ^II na J9S usy svCq Ι¾Λ ^ΐ9 m ^Ϊ3  06 S8 Οδί 'aqj usy na ΪΒΛ io na Ι¾Λ ^ II na J9S usy svCq Ι¾Λ ^ ΐ9 m ^ Ϊ3
SAt 0 S9t  SAt 0 S9t
ojj OJJ α BIV dsy i¾A s^I ^IV s q dsy uig usy u g BIV ¾IV ojj OJJ α BIV dsy i¾A s ^ I ^ IV s q dsy uig usy u g BIV ¾IV
09 9G^ 09^ 09 9G ^ 09 ^
J nai ana 9¾ Biv ΐΟ 911 911 Βΐν ^19 ¾IV s l ¾IV ¾IV m c^ oc^ iBIV J8S 9{I iig siH StQ j¾ J9S SJV naq Say ¾IV 0Jd aqd ^II nig  J nai ana 9¾ Biv ΐΟ 911 911 Βΐν ^ 19 ¾IV s l ¾IV ¾IV m c ^ oc ^ iBIV J8S 9 {I iig siH StQ j¾ J9S SJV naq Say ¾IV 0Jd aqd ^ II nig
9Z s  9Z s
08 08
iL6Q0/L60T/∑Dd r86S£/.6 OAV m sz iL6Q0 / L60T / ∑Dd r86S £ / .6 OAV m sz
[ΒΛ na ¾tv J¾ J丄 SJV ¾IV J¾ n[g OJJ W s aw SJV dJi 丄 [ΒΛ na ¾tv J¾ J 丄 SJV ¾IV J¾ n [g OJJ W s aw SJV dJi 丄
ZZ OZZ SIZ  ZZ OZZ SIZ
j J¾ Π9 n9i ¾iv OJd 9Π BIV ^ΐθ 9qd W Π91 ΙΒΛ an 2JV dJi j J Π n9 n9i ¾iv OJd 9Π BIV ^ ΐθ 9qd W Π91 ΙΒΛ an 2JV dJi
Q\Z SOZ 002 J^I dsy ¾IV UI9 OJd i¾ J¾ J9S ^19 ΙΒΛ OJd dsy n^g αΧχ Q \ Z SOZ 002 J ^ I dsy ¾IV UI9 OJd i¾ J¾ J9S ^ 19 Ι Β Λ OJd dsy n ^ g αΧχ
S61 06Ϊ 381 jq丄 ojj T3iv s 9i|d ¾iv SIH dsy aqj J¾ J9S J9S Λ ail naq J9S  S61 06Ϊ 381 jq 丄 ojj T3iv s 9i | d ¾iv SIH dsy aqj J¾ J9S J9S Λ ail naq J9S
08 Ϊ 9it 0ΑΪ  08 Ϊ 9it 0ΑΪ
m m ^19 ^13 ¾IV naq an ^ig aqd JQ UT9 W ^iV 9Md ΐ¾Λ ¾IVmm m ^ 19 ^ 13 ¾IV naq an ^ ig aqd JQ UT9 W ^ iV 9Md ΐ¾Λ ¾IV
S9t 091 99Ϊ S9t 091 99Ϊ
BIV 9Π 3Md ¾IV ^TD SJV Jqi s s usy ¾IV 丄 nio J9S 911 osi on ει BIV 9Π 3Md ¾IV ^ TD SJV Jqi s s usy ¾IV 丄 nio J9S 911 osi on ει
J¾ ¾TV J9 n3q OJJ J dsy ^io ^ίθ 3Π ^10 ^19 naq dJi 9qj J¾ ¾TV J9 n3q OJJ J dsy ^ io ^ ίθ 3Π ^ 10 ^ 19 naq dJi 9qj
OSI 9ZT OZI SJV 8Md 9Md SXQ J¾ ¾iv ΘΗ A ilD usy ¾IV J8S STH 9 aqd OSI 9ZT OZI SJV 8Md 9Md SXQ J¾ ¾iv ΘΗ A ilD usy ¾IV J8S STH 9 aqd
9Π 0Π 90Ϊ  9Π 0Π 90Ϊ
J9s Π97 [9 J9S ^13 na J9S s nsi Ι¾Λ naq ^aw naq J¾ 9fi  J9s Π97 [9 J9S ^ 13 na J9S s nsi Ι¾Λ naq ^ aw naq J¾ 9fi
001 96 06 001 96 06
ilD J^J, ΪΒΛ s sJii Say ig ngq sX dsy ^10 naq dJi 3 9¾ 9¾d ilD J ^ J, ΪΒΛ s sJii Say ig ngq sX dsy ^ 10 naq dJi 3 9¾ 9¾d
98 08 SZ  98 08 SZ
nai uio 。 v\ ngq J¾ s ana ΐ¾Λ usy 八 ¾IV ¾1Vnai uio. v \ ngq J¾ s ana ΐ¾Λ usy eight ¾IV ¾1V
0Z 99 09 S90Z 99 09 S9
BIV ΙΒΛ usy OJd ojj J¾ tg OJJ sX J9S J9S dsy \^ STH BIV ΙΒΛ usy OJd ojj J¾ tg OJJ sX J9S J9S dsy \ ^ STH
09 ^ O j ΛΑι an SJV na naq s J 八 naq J9S 9Π J9S 9¾d  09 ^ O j ΛΑι an SJV na naq s J eight naq J9S 9Π J9S 9¾d
1818
A PS6S£/L6 Oz¾V 82 A PS6S £ / L6 Oz¾V 82
Ala Arg Asn Thr Lys Gin Ala Ala Ser Asp Met Ser Lys Val Leu Gin Ala Arg Asn Thr Lys Gin Ala Ala Ser Asp Met Ser Lys Val Leu Gin
250 255 260  250 255 260
Val Asp Leu l ie Ala Glu Glu Glu Ala Gin Ser Asn Ser Asn Ser Ser  Val Asp Leu lie Ala Glu Glu Glu Ala Gin Ser Asn Ser Asn Ser Ser
265 270 275  265 270 275
Asn Pro Asn Phe Thr Phe Gly Leu Phe Thr Arg Glu Phe Ala Arg Arg Asn Pro Asn Phe Thr Phe Gly Leu Phe Thr Arg Glu Phe Ala Arg Arg
280 285 290 280 285 290
His Gly Leu His Leu Leu Gly Thr Thr Thr Thr Trp Phe Leu Leu Asp 295 300 305 310 l ie Ala Tyr Tyr Ser Ser Asn Leu Phe Gin Lys Asp l ie Tyr Thr Ala  His Gly Leu His Leu Leu Gly Thr Thr Thr Thr Trp Phe Leu Leu Asp 295 300 305 310 l ie Ala Tyr Tyr Ser Ser Asn Leu Phe Gin Lys Asp lie Tyr Thr Ala
315 320 325 l ie Gly Trp l ie Pro Ala Ala Glu Thr Met Asn Ala l ie His Glu Val  315 320 325 lie Gly Trp lie Pro Ala Ala Glu Thr Met Asn Ala lie His Glu Val
330 335 340  330 335 340
Phe Thr Val Ser Lys Ala Gin Thr Leu l ie Ala Leu Cys Gly Thr Val  Phe Thr Val Ser Lys Ala Gin Thr Leu lie Ala Leu Cys Gly Thr Val
345 350 355  345 350 355
Pro Gly Tyr Trp Phe Thr Val Ala Phe l ie Asp l ie Leu Gly Arg Phe Pro Gly Tyr Trp Phe Thr Val Ala Phe lie Asp lie Leu Gly Arg Phe
360 365 370 360 365 370
Phe lie Gin Leu Met Gly Phe He Phe Met Thr He Phe Met Phe Ala 375 380 385 390 Phe lie Gin Leu Met Gly Phe He Phe Met Thr He Phe Met Phe Ala 375 380 385 390
Leu Ala He Pro Tyr Asp His Trp Arg His Arg Glu Asn Arg l ie Gly Leu Ala He Pro Tyr Asp His Trp Arg His Arg Glu Asn Arg lie Gly
395 400 405 395 400 405
Phe Leu l ie Met Tyr Ser Leu Thr Met Phe Phe Ala Asn Phe Gly Pro Phe Leu lie Met Tyr Ser Leu Thr Met Phe Phe Ala Asn Phe Gly Pro
410 415 420  410 415 420
Asn Ala Thr Thr Phe Val Val Pro Ala Glu l ie Phe Pro Ala Arg Leu  Asn Ala Thr Thr Phe Val Val Pro Ala Glu lie Phe Pro Ala Arg Leu
425 430 435  425 430 435
Arg Ser Thr Cys His Gly l ie Ser Ala Ala Ser Gly Lys Ala Gly Ala 440 445 450 Arg Ser Thr Cys His Gly lie Ser Ala Ala Ser Gly Lys Ala Gly Ala 440 445 450
S8B S8B
[ΒΛ odd Ι^Λ sXq Say J^S USV[ΒΛ odd Ι ^ Λ sXq Say J ^ S US V
OSS 9ZS 0ZOSS 9ZS 0Z
BIV ΐ¾Λ J¾ nig ΐ¾Λ ΐ^Λ J¾ dsy λΐθ Jas u{g nig dsy BIV ΐ¾Λ J¾ nig ΐ¾Λ ΐ ^ Λ J¾ dsy λΐθ Jas u {g nig dsy
9T9 0Ϊ9 909 ni9 SJV J9S 3Π jas s sXq J3S nio OJJ naq  9T9 0Ϊ9 909 ni9 SJV J9S 3Π jas s sXq J3S nio OJJ naq
009 96^ 06^  009 96 ^ 06 ^
η9Ί J¾ aqd Ι^Λ ^ll ^TO naq aqj usy 1¾Λ s ^ eiv ngq nsq 8^ 08^ SZi'η 9 Ί J¾ aqd Ι ^ Λ ^ ll ^ TO naq aqj usy 1¾Λ s ^ eiv ngq nsq 8 ^ 08 ^ SZi '
J9S usv SJV «l3 an Xio OJJ OJJ J {g ¾iv dsy J¾ s q nig J 9S usv SJV «l3 an Xio OJJ OJJ J (g ¾iv dsy J¾ sq nig
OL 09 SStOL 09 SSt
J9S dsy J3s Jas «ID Υ naq aqd ig aqd B〖V ^19 八 J9 S dsy J3s Jas «ID Υ naq aqd ig aqd B 〖V ^ 19 eight
C8 C8
S厶 600/ 6dTALDd t86S£ 6 ΟΛλ  Sm 600 / 6dTALDd t86S £ 6 ΟΛλ

Claims

84 請求の範囲 84 Claims
1 . 植物由来の、 細胞内外の能動的に作られた水素イオン濃度勾配を利用して、 リン酸を細胞外から細胞内へ輸送する機能を有するタンパク質をコ一ドする D N A。 1. A DNA derived from a plant that encodes a protein that has the function of transporting phosphate from the outside to the inside of a cell by using an actively created hydrogen ion concentration gradient inside and outside the cell.
2 . 配列番号 9〜 1 3のいずれかに記載されたタンパク質、 または該タンパク質 のアミノ酸配列の一部が欠失、 置換または他のアミノ酸の挿入などによって変異 したタンパク質であって細胞内外の能動的に作られた水素イオン濃度勾配を利用 して、 リン酸を細胞外から細胞内へ輸送する機能を有するタンパク質をコードす る D N A。  2. A protein described in any of SEQ ID NOs: 9 to 13 or a protein in which a part of the amino acid sequence of the protein has been mutated by deletion, substitution, insertion of another amino acid, etc. DNA that encodes a protein that has the function of transporting phosphate from outside to inside the cell using the hydrogen ion concentration gradient created in the cell.
3 . シロイヌナズナに由来するタンパク質をコードする請求の範囲第 1項または 第 2項に記載の D N A。  3. The DNA according to claim 1 or 2, which encodes a protein derived from Arabidopsis thaliana.
4 . 請求の範囲第 1項〜第 3項のいずれかに記載の D N Aを含むベクター。 4. A vector comprising the DNA according to any one of claims 1 to 3.
5 . 請求の範囲第 1項〜第 3項のいずれかに記載の D N Aが導入された植物細胞 5. The plant cell into which the DNA according to any one of claims 1 to 3 has been introduced.
6 . 配列番号 9〜 1 3のいずれかに記載されたタンパク質、 または該タンパク質 のアミノ酸配列の一部が欠失、 置換または他のアミノ酸の挿入などによって変異 したタンパク質であって細胞内外の能動的に作られた水素イオン濃度勾配を利用 して、 リン酸を細胞外から細胞内へ輸送する機能を有するタンパク質。 6. A protein described in any of SEQ ID NOs: 9 to 13 or a protein in which a part of the amino acid sequence of the protein has been mutated by deletion, substitution, insertion of another amino acid, etc. A protein that has the function of transporting phosphate from outside to inside cells using the hydrogen ion concentration gradient created in the cell.
7 . 請求の範囲第 1項〜第 3項のいずれかに記載の D N Aが導入された細胞を含 む植物。  7. A plant comprising a cell into which the DNA according to any one of claims 1 to 3 has been introduced.
8 . 請求の範囲第 1項〜第 3項のいずれかに記載の D N Aを細胞に導入し、 形 K 転換された細胞から植物体を製造する工程を含む、 形質転換植物の製造方法。 8. A method for producing a transformed plant, comprising the step of introducing the DNA according to any one of claims 1 to 3 into a cell, and producing a plant from the K-converted cell.
9 . 請求の範囲第 1項〜第 3項のいずれかに記載の D N Aを植物細胞に導入する ことを含む、 植物または植物細胞においてリン酸の取り込みを促進する方法。 9. A method for promoting phosphate uptake in a plant or plant cell, comprising introducing the DNA according to any one of claims 1 to 3 into a plant cell.
PCT/JP1997/000975 1996-03-25 1997-03-24 Plant phosphate transporter gene and method of regulating plant growth with said gene WO1997035984A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU19450/97A AU1945097A (en) 1996-03-25 1997-03-24 Plant phosphate transporter gene and method of regulating plant growth with said gene
JP53424197A JP3474882B2 (en) 1996-03-25 1997-03-24 Plant phosphate transporter gene and method for controlling plant growth using the gene

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9479096 1996-03-25
JP8/94790 1996-03-25

Publications (1)

Publication Number Publication Date
WO1997035984A1 true WO1997035984A1 (en) 1997-10-02

Family

ID=14119883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/000975 WO1997035984A1 (en) 1996-03-25 1997-03-24 Plant phosphate transporter gene and method of regulating plant growth with said gene

Country Status (3)

Country Link
JP (1) JP3474882B2 (en)
AU (1) AU1945097A (en)
WO (1) WO1997035984A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998005760A3 (en) * 1996-07-31 1998-10-08 Univ Kingston Phosphate starvation-inducible proteins
WO1999058657A2 (en) * 1998-05-13 1999-11-18 Pioneer Hi-Bred International, Inc. Zea mays phosphate transporter genes and uses thereof
KR100401007B1 (en) * 2000-08-11 2003-10-08 윤성중 Phosphate transporter cDNA from tobacco (Nicotiana tabacum L)

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
EMBO J., 3(12), 1984, INGO POTRYKUS et al., "Direct Gene Transfer to Plants", p. 2717-2722. *
GENE, 153, 1995, WAYNE K. VERSAW et al., "A Phosphate-Repressible, High-Affinity Phosphate Permease is Encoded by the Pho-5+ Gene of Neurospora Crassa", p. 135-139. *
MOL. CELL. BIOL., 11, 1991, YASUJI OSHIMA et al., "The PH084 Gene of Saccharomyces Cerevisiae Encodes an Inorganic Phosphate Transporter", p. 3229-3238. *
NATURE, 327(7), 1987, T.M. KLEIN et al., "High-Velocity Microprojectiles for Delivering Nucleic Acids Into Living Cells", p. 70-73. *
NATURE, 378(7), 1995, MARIA J. HARRISON et al., "A Phosphate Transporter from the Mycorrhizal Fungus Glomus Versiforme", p. 626-629. *
PLANT MOL. BIOL., 24, 1994, ANNELI RITALA et al., "Fertile Transgenic Barley by Particle Bombardment of Immature Embryos", p. 317-325. *
PLANT PHYSIOL., 97, 1991, YVES POIRIER et al., "A Mutant of Arabidopsis deficient in Xylem Loading of Phosphate", p. 1087-1093. *
PROC. NATL. ACAD. SCI. U.S.A., 83, 1986, CAREN CHANG et al., "Molecular Cloning and DNA Sequence of the Arabidopsis Thaliana Alcohol Dehydrogenase", p. 1408-1412. *
PROC. NATL. ACAD. SCI. U.S.A., 93(19), 1996, MUCHHAL, UMESH S. et al., "Phosphate Transporters from the Higher Plant Arabidopsis Thaliana", p. 10519-10523. *
THEOR. APPL. GENET., 84, 1992, Y.G. LIU et al., "Moderately Repeated, Dispersed and Highly Variable (MRDHV) Genomic Sequences of Common Wheat Usable For Cultivar Identification", p. 535-543. *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998005760A3 (en) * 1996-07-31 1998-10-08 Univ Kingston Phosphate starvation-inducible proteins
WO1999058657A2 (en) * 1998-05-13 1999-11-18 Pioneer Hi-Bred International, Inc. Zea mays phosphate transporter genes and uses thereof
WO1999058657A3 (en) * 1998-05-13 2000-07-27 Pioneer Hi Bred Int Zea mays phosphate transporter genes and uses thereof
KR100401007B1 (en) * 2000-08-11 2003-10-08 윤성중 Phosphate transporter cDNA from tobacco (Nicotiana tabacum L)

Also Published As

Publication number Publication date
AU1945097A (en) 1997-10-17
JP3474882B2 (en) 2003-12-08

Similar Documents

Publication Publication Date Title
Shi et al. The Arabidopsis salt overly sensitive 4 mutants uncover a critical role for vitamin B6 in plant salt tolerance
US7102058B2 (en) Phytic acid biosynthetic enzymes
TWI280279B (en) Gene encoding acetolactic acid synthase gene
Hesse et al. Molecular cloning and expression analyses of mitochondrial and plastidic isoforms of cysteine synthase (O-acetylserine (thiol) lyase) from Arabidopsis thaliana
MXPA06002155A (en) Rice plants having increased tolerance to imidazolinone herbicides.
JPH11512618A (en) Novel polypeptides and polynucleotides related to the α- and β-subunits of glutamate dehydrogenase, and uses thereof
HUT76376A (en) Nucleic acid fragments, chimeric genes and methods for increasing the methionine content of the seeds of plants
Kirik et al. Two novel MYB homologues with changed expression in late embryogenesis-defective Arabidopsis mutants
WO2009157000A1 (en) TOMATO SlMYB12 TRANSCRIPTION FACTOR AND GENETIC SELECTION THEREOF
Bernacchia et al. Carrot DNA‐methyltransferase is encoded by two classes of genes with differing patterns of expression
US6838276B2 (en) Isolated nucleic acids encoding methylenetetrahydrofolate dehydrogenase enzymes
Senecoff et al. De novo purine synthesis in Arabidopsis thaliana (II. the PUR7 gene encoding 5 [prime]-phosphoribosyl-4-(N-succinocarboxamide)-5-aminoimidazole synthetase is expressed in rapidly dividing tissues)
CA2505688A1 (en) Herbicidal compound resistant plant
CN111801423A (en) Modulating amino acid content in plants
US20070011763A1 (en) Nitrogen transport metabolism
US7195887B2 (en) Rice 1-deoxy-D-xylulose 5-phosphate synthase and DNA encoding thereof
JP6639382B2 (en) Brassica plant comprising mutant DA1 allele
JPH0568544A (en) Protein and dna of histidinol dehydrogenase, mutant and transgenic plant thereof
EP1151110A2 (en) Maize glutathione-s-transferase enzymes
WO1997035984A1 (en) Plant phosphate transporter gene and method of regulating plant growth with said gene
US20090144851A1 (en) Plant amino acid biosynthetic enzymes
WO2000000601A2 (en) Production of low-temperature, salt-and drought-tolerant transgenic cereal plants
JPWO2006126294A1 (en) Muginate iron complex selective transporter gene
JP2003511049A (en) Method for increasing crop yield or biomass using protoporphyrinogen oxidase gene
KR101825219B1 (en) NtROS2a gene involved in demethylation from Nicotiana tabacum and uses thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU IL IS JP KE KG KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN YU AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA