WO1997035027A1 - Chemokine alpha 3 - Google Patents

Chemokine alpha 3 Download PDF

Info

Publication number
WO1997035027A1
WO1997035027A1 PCT/US1996/003686 US9603686W WO9735027A1 WO 1997035027 A1 WO1997035027 A1 WO 1997035027A1 US 9603686 W US9603686 W US 9603686W WO 9735027 A1 WO9735027 A1 WO 9735027A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypeptide
polynucleotide
ckα
dna
polypeptides
Prior art date
Application number
PCT/US1996/003686
Other languages
English (en)
Inventor
Jian Ni
Haodong Li
Jeffrey Y. Su
Original Assignee
Human Genome Sciences, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Human Genome Sciences, Inc. filed Critical Human Genome Sciences, Inc.
Priority to CA002249995A priority Critical patent/CA2249995A1/fr
Priority to EP96911336A priority patent/EP0904398A4/fr
Priority to PCT/US1996/003686 priority patent/WO1997035027A1/fr
Priority to JP09515324A priority patent/JP2000506366A/ja
Priority to AU54254/96A priority patent/AU5425496A/en
Publication of WO1997035027A1 publication Critical patent/WO1997035027A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/521Chemokines
    • C07K14/522Alpha-chemokines, e.g. NAP-2, ENA-78, GRO-alpha/MGSA/NAP-3, GRO-beta/MIP-2alpha, GRO-gamma/MIP-2beta, IP-10, GCP-2, MIG, PBSF, PF-4, KC
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2799/00Uses of viruses
    • C12N2799/02Uses of viruses as vector
    • C12N2799/021Uses of viruses as vector for the expression of a heterologous nucleic acid
    • C12N2799/026Uses of viruses as vector for the expression of a heterologous nucleic acid where the vector is derived from a baculovirus

Definitions

  • This invention relates, in part, to newly identified polynucleotides and polypeptides,- variants and derivatives of the polynucleotides and polypeptides,- processes for making the polynucleotides and the polypeptides, and their variants and derivatives; agonists and antagonists of the polypeptides,- and uses of the polynucleotides, polypeptides, variants, derivatives, agonists and antagonists.
  • the invention relates to polynucleotides and polypeptides of human chemokine alpha-3, hereinafter referred to as "CK ⁇ -3.
  • chemokines are an example.
  • Chemokines also referred to as intercrine cytokines, are a subfamily of structurally and functionally related chemotactic cytokines. These molecules are 8-10 kd in size. In general, chemokines exhibit 20% to 75% homology at the amino acid level and are characterized by four conserved cysteine residues that form two disulfide bonds. Based on the arrangement of the first two cysteine residues, chemokines have been classified into two subfamilies, alpha and beta. In the alpha subfamily, the first two cysteines are separated by one amino acid and hence are referred to as the "C-X-C subfamily. In the beta subfamily, the two cysteines are in an adjacent position and are, therefore, referred to as the "C-C" subfamily. Thus far, at least eight different members of this family have been identified in humans.
  • the intercrine cytokines exhibit a wide variety of functions. A hallmark feature is their ability to elicit chemotactic migration of distinct cell types, including monocytes, neutrophils, T lymphocytes, basophils and fibroblasts. Many chemokines have pro- inflammatory activity and are involved in multiple steps during an inflammatory reaction. These activities include stimulation of histamine release, lysosomal enzyme and leukotriene release, increased adherence of target immune cells to endothelial cells, enhanced binding of complement proteins, induced expression of granulocyte adhesion molecules and complement receptors, and respiratory burst. In addition to their involvement in inflammation, certain chemokines have been shown to exhibit other activities.
  • macrophage inflammatory protein 1 is able to suppress hematopoietic stem cell proliferation
  • platelet factor-4 is a potent inhibitor of endothelial cell growth
  • Interleukin-8 IL-8 promotes proliferation of keratinocytes
  • GRO is an autocrine growth factor for melanoma cells.
  • chemokines have been implicated in a number of physiological and disease conditions, including lymphocyte trafficking, wound healing, hematopoietic regulation, angiostatis and immunological disorders such as allergy, asthma and arthritis.
  • C-C branch exert their effects on the following cells: eosinophils which destroy parasites to lessen parasitic infection and cause chronic inflammation in the airways of the respiratory system macrophages which suppress tumor formation in vertebrates; and basophils which release histamine which plays a role in allergic inflammation.
  • members of one branch may exert an effect on cells which are normally responsive to the other branch of chemokines and, therefore, no precise role can be attached to the members of the branches.
  • polypeptide of the present invention has the conserved cysteine residues of the "C-X-C" region, and have amino acid sequence homology to known chemokines.
  • the polynucleotide comprises the region encoding human CK ⁇ -3 in the sequence set out in Figure 1 (SEQ ID NO:2) .
  • an isolated nucleic acid molecule encoding a mature polypeptide expressed by the human cDNA contained in ATCC Deposit No. 97404.
  • isolated nucleic acid molecules encoding human CK ⁇ -3 including mRNAs, cDNAs, genomic DNAs and, in further embodiments of this aspect of the invention, biologically, diagnostically, clinically or therapeutically useful variants, analogs or derivatives thereof, or fragments thereof, including fragments of the variants, analogs and derivatives.
  • biologically, diagnostically, clinically or therapeutically useful variants, analogs or derivatives thereof, or fragments thereof, including fragments of the variants, analogs and derivatives are provided.
  • allelic variants of human CK ⁇ -3 are naturally occurring allelic variants of human CK ⁇ -3.
  • CK ⁇ -3 polypeptides particularly human CK ⁇ -3 polypeptides, that may be employed for therapeutic purposes, for example, to treat tumors, chronic infections, leukemia, T-cell mediated auto-immune diseases, parasitic infections, psoriasis, asthma, allergy, to regulate hematopoiesis, to stimulate growth factor activity, to inhibit angiogenesis and to promote wound healing.
  • novel polypeptides of human origin referred to herein as CK ⁇ -3 as well as biologically, diagnostically or therapeutically useful fragments, variants and derivatives thereof, variants and derivatives of the fragments, and analogs of the foregoing.
  • methods for producing the aforementioned CK ⁇ -3 polypeptides comprising culturing host cells having expre ⁇ ibly incorporated therein an exogenously-derived human CK ⁇ -3-encoding polynucleotide under conditions for expression of human CK ⁇ -3 in the host and then recovering the expressed polypeptide.
  • products, compositions and methods for, among other things: assessing CK ⁇ -3 expression in cells by determining CK ⁇ -3 polypeptides or CK ⁇ -3- encoding mRNA,- to treat tumors as an anti-neovascularizing agent, chronic infections, leukemia, T-cell mediated auto-immune diseases, parasitic infections, psoriasis, asthma, sepsis, allergy, to regulate hematopoiesis, to stimulate growth factor activity and stem cell mobilization, to inhibit angiogenesis, adult respiratory distress syndrome (ARDS) , and to promote wound healing in vitro, ex vivo or in vivo by exposing cells to CK ⁇ -3 polypeptides or polynucleotides as disclosed herein; assaying genetic variation and aberrations, such a ⁇ defects, in CK ⁇ -3 genes,- and administering a CK ⁇ -3 polypeptide or polynucleotide to an organism to augment
  • probes that hybridize to human CK ⁇ -3 sequences.
  • antibodies against CK ⁇ -3 polypeptides there are provided antibodies against CK ⁇ -3 polypeptides.
  • the antibodies are highly selective for human CK ⁇ -3.
  • CK ⁇ -3 agonists are provided.
  • preferred agonists are molecules that mimic CK ⁇ -3, that bind to CK ⁇ -3-binding molecules or receptor molecules, and that elicit or augment CK ⁇ -3-induced responses.
  • CK ⁇ -3 antagonists are those which mimic CK ⁇ -3 so as to bind to CK ⁇ -3 receptor or binding molecules but not elicit a CK ⁇ -3-induced response or more than one CK ⁇ -3-induced response.
  • molecules that bind to or interact with CK ⁇ -3 so as to inhibit an effect of CK ⁇ -3 or more than one effect of CK ⁇ -3 or which prevent expression of CK ⁇ 3.
  • compositions comprising a CK ⁇ -3 polynucleotide or a CK ⁇ -3 polypeptide for administration to cells in vitro, to cells ex vivo and to cells in vivo, or to a multicellular organism.
  • the compositions comprise a CK ⁇ -3 polynucleotide for expression of a CK ⁇ -3 polypeptide in a host organism for treatment of disease.
  • Particularly preferred in this regard is expression in a human patient for treatment of a dysfunction associated with aberrant endogenous activity of CK ⁇ -3.
  • Figure 1 shows the nucleotide and deduced amino acid sequence of human CK ⁇ -3. The underlined portion indicates the putative leader sequence.
  • Figure 2 shows the regions of similarity between amino acid sequences of CK ⁇ -3 and Human ENA-18 polypeptide (SEQ ID NO:9).
  • Figure 3 is a hydrophobicity plot of the protein of the present invention.
  • DIGESTION of DNA refers to catalytic cleavage of the DNA with a restriction enzyme that acts only at certain sequences in the DNA.
  • the various restriction enzymes referred to herein are commercially available and their reaction conditions, cofactors and other requirements for use are known and routine to the skilled artisan.
  • plasmid or DNA fragment is digested with about 2 units of enzyme in about 20 ⁇ l of reaction buffer.
  • isolating DNA fragments for plasmid construction typically 5 to 50 ⁇ g of DNA are digested with 20 to 250 units of enzyme in proportionately larger volumes.
  • GENETIC ELEMENT generally means a polynucleotide comprising a region that encodes a polypeptide or a region that regulates transcription or translation or other processes important to expression of the polypeptide in a host cell, or a polynucleotide comprising both a region that encodes a polypeptide and a region operably linked thereto that regulates expression.
  • Genetic elements may be comprised within a vector that replicates as an episomal element; that is, as a molecule physically independent of the host cell genome. They may be comprised within mini-chromosomes, such as those that arise during amplification of transfected DNA by methotrexate selection in eukaryotic cells. Genetic elements also may be comprised within a host cell genome; not in their natural state but, rather, following manipulation such as isolation, cloning and introduction into a host cell in the form of purified DNA or in a vector, among others.
  • ISOLATED means altered "by the hand of man” from its natural state; i.e., that, if it occurs in nature, it has been changed or removed from its original environment, or both.
  • a naturally occurring polynucleotide or a polypeptide naturally present in a living animal in its natural state is not “isolated, " but the same polynucleotide or polypeptide separated from the coexisting materials of its natural state is "isolated", as the term is employed herein.
  • isolated means that it is separated from the chromosome and cell in which it naturally occurs.
  • polynucleotides can be joined to other polynucleotides, such as DNAs, for mutagenesis, to form fusion proteins, and for propagation or expression in a host, for instance.
  • the isolated polynucleotides, alone or joined to other polynucleotides such as vectors, can be introduced into host cells, in culture or in whole organisms. Introduced into host cells in culture or in whole organisms, such DNAs still would be isolated, as the term is used herein, because they would not be in their naturally occurring form or environment.
  • polynucleotides and polypeptides may occur in a composition, such as a media formulations, solutions for introduction of polynucleotides or polypeptides, for example, into cells, compositions or solutions for chemical or enzymatic reactions, for instance, which are not naturally occurring compositions, and, therein remain isolated polynucleotides or polypeptides within the meaning of that term as it is employed herein.
  • a composition such as a media formulations, solutions for introduction of polynucleotides or polypeptides, for example, into cells, compositions or solutions for chemical or enzymatic reactions, for instance, which are not naturally occurring compositions, and, therein remain isolated polynucleotides or polypeptides within the meaning of that term as it is employed herein.
  • LIGATION refers to the process of forming phosphodiester bonds between two or more polynucleotides, which most often are double stranded DNAs.
  • Techniques for ligation are well known to the art and protocols for ligation are described in standard laboratory manuals and references, such as, for instance, Sambrook et al. , MOLECULAR CLONING, A LABORATORY MANUAL, 2nd Ed. ; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989) and Maniatis et al., pg. 146, as cited below.
  • OLIGONUCLEOTIDE(S) refers to relatively short polynucleotides. Often the term refers to single-stranded deoxyribonucleotides, but it can refer as well to single-or double-stranded ribonucleotides, RNA:DNA hybrids and double-stranded DNAs, among others.
  • Oligonucleotides such as single-stranded DNA probe oligonucleotides, often are synthesized by chemical methods, such as those implemented on automated oligonucleotide synthesizers. However, oligonucleotides can be made by a variety of other methods, including in vitro recombinant DNA-mediated techniques and by expression of DNAs in cells and organisms.
  • oligonucleotides typically are obtained without a 5' phosphate.
  • the 5' ends of such oligonucleotides are not substrates for phosphodiester bond formation by ligation reactions that employ DNA ligases typically used to form recombinant DNA molecules.
  • a phosphate can be added by standard techniques, such as those that employ a kinase and ATP.
  • the 3' end of a chemically synthesized oligonucleotide generally has a free hydroxyl group and, in the presence of a ligase, such as T4 DNA ligase, readily will form a phosphodiester bond with a 5' phosphate of another polynucleotide, such as another oligonucleotide. As is well known, this reaction can be prevented selectively, where desired, by removing the 5' phosphates of the other polynucleotide(s) prior to ligation.
  • a ligase such as T4 DNA ligase
  • PLASMIDS generally are designated herein by a lower case p preceded and/or followed by capital letters and/or numbers, in accordance with standard naming conventions that are familiar to those of skill in the art.
  • Starting plasmids disclosed . herein are either commercially available, publicly available on an unrestricted basis, or can be constructed from available plasmids by routine application of well known, published procedures. Many plasmids and other cloning and expression vectors that can be used in accordance with the present invention are well known and readily available to those of skill in the art. Moreover, those of skill readily may construct any number of other plasmids suitable for use in the invention. The properties, construction and use of such plasmids, as well as other vectors, in the present invention will be readily apparent to those of skill from the present disclosure.
  • POLYNUCLEOTIDE(S) generally refers to any polyribonucleotide or polydeoxribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA.
  • polynucleotides as used herein refers to, among others, single-and double-stranded DNA, DNA that is a mixture of single-and double-stranded regions, single- and double-stranded RNA, and RNA that is mixture of single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded or a mixture of single- and double-stranded regions.
  • polynucleotide as used herein refers to triple-stranded regions comprising RNA or DNA or both RNA and DNA.
  • the strands in such regions may be from the same molecule or from different molecules.
  • the regions may include all of one or more of the molecules, but more typically involve only a region of some of the molecules.
  • One of the molecules of a triple-helical region often is an oligonucleotide.
  • polynucleotide includes DNAs or RNAs as described above that contain one or more modified bases.
  • DNAs or RNAs with backbones modified for stability or for other reasons are “polynucleotides” as that term is intended herein.
  • DNAs or RNAs comprising unusual bases, such as inosine, or modified bases, such as tritylated bases, to name just two examples are polynucleotides as the term is used herein.
  • polynucleotide as it is employed herein embraces such chemically, enzymatically or metabolically modified forms of polynucleotides, as well as the chemical forms of DNA and RNA characteristic of viruses and cells, including simple and complex cells, inter alia.
  • POLYPEPTIDES includes all polypeptides as described below.
  • the basic structure of polypeptides is well known and has been described in innumerable textbooks and other publications in the art.
  • the term is used herein to refer to any peptide or protein comprising two or more amino acids joined to each other in a linear chain by peptide bonds.
  • the term refers to both short chains, which also commonly are referred to in the art as peptides, oligopeptides and oligomers, for example, and to longer chains, which generally are referred to in the art as proteins, of which there are many types.
  • polypeptides often contain amino acids other than the 20 amino acids commonly referred to as the 20 naturally occurring amino acids, and that many amino acids, including the terminal amino acids, may be modified in a given polypeptide, either by natural processes, such as processing and other post-translational modifications, but also by chemical modification techniques which are well known to the art. Even the common modifications that occur naturally in polypeptides are too numerous to list exhaustively here, but they are well described in basic texts and in more detailed monographs, as well as in a voluminous research literature, and they are well known to those of skill in the art.
  • polypeptides of the present are, to name an illustrative few, acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent cross-links, formation of cystine, formation of pyroglutamate, formylation, gamma-carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, proteolyticprocessing, phosphorylation, prenylation, racemization, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as
  • polypeptides are not always entirely linear.
  • polypeptides may be branched as a result of ubiquitination, and they may be circular, with or without branching, generally as a result of posttranslation events, including natural processing event and events brought about by human manipulation which do not occur naturally.
  • Circular, branched and branched circular polypeptides may be synthesized by non-translation natural process and by entirely synthetic methods, as well.
  • Modifications can occur anywhere in a polypeptide, including the peptide backbone, the amino acid side-chains and the amino or carboxyl termini.
  • blockage of the amino or carboxyl group in a polypeptide, or both, by a covalent modification is common in naturally occurring and synthetic polypeptides and such modifications may be present in polypeptides of the present invention, as well.
  • the amino terminal residue of polypeptides made in E. coli, prior to proteolytic processing almost invariably will be N-formylmethionine.
  • polypeptides made by expressing a cloned gene in a host for instance, the nature and extent of the modifications in large part will be determined by the host cell posttranslational modification capacity and the modification signals present in the polypeptide amino acid sequence.
  • glycosylation often does not occur in bacterial hosts such as E. coli. Accordingly, when glycosylation is desired, a polypeptide should be expressed in a glycosylating host, generally a eukaryotic cell.
  • Insect cell often carry out the same posttranslational glycosylations as mammalian cells and, for this reason, insect cell expression systems have been developed to express efficiently mammalian proteins having native patterns of glycosylation, inter alia. Similar considerations apply to other modifications.
  • polypeptide encompasses all such modifications, particularly those that are present in polypeptides synthesized by expressing a polynucleotide in a host cell.
  • VARIANT(S) of polynucleotides or polypeptides are polynucleotides or polypeptides that differ from a reference polynucleotide or polypeptide, respectively. Variants in this sense are described below and elsewhere in the present disclosure in greater detail.
  • changes in the nucleotide sequence of the variant may be silent. That is, they may not alter the amino acids encoded by the polynucleotide. Where alterations are limited to silent changes of this type a variant will encode a polypeptide with the same amino acid sequence as the reference. Also as noted below, changes in the nucleotide sequence of the variant may alter the amino acid sequence of a polypeptide encoded by the reference polynucleotide. Such nucleotide changes may result in amino acid substitutions, additions, deletions, fusions and truncations in the polypeptide encoded by the reference sequence, as discussed below.
  • a variant and reference polypeptide may differ in amino acid sequence by one or more substitutions, additions, deletions, fusions and truncations, which may be present in any combination.
  • RECEPTOR MOLECULE refers to molecules which bind or interact specifically with CK ⁇ -3 polypeptides of the present invention, including not only classic receptors, which are preferred, but also other molecules that specifically bind to or interact with polypeptides of the invention (which also may be referred to as “binding molecules” and “interaction molecules,” respectively and as “CK ⁇ -3 binding molecules” and “CK ⁇ -3 interaction molecules.
  • Binding between polypeptides of the invention and such molecules, including receptor or binding or interaction molecules may be exclusive to polypeptides of the invention, which is very highly preferred, or it may be highly specific for polypeptides of the invention, which is highly preferred, or it may be highly specific to a group of proteins that includes polypeptides of the invention, which is preferred, or it may be specific to several groups of proteins at least one of which includes polypeptides of the invention.
  • Receptors also may be non-naturally occurring, such as antibodies and antibody-derived reagents that bind specifically to polypeptides of the invention.
  • the present invention relates to novel CK ⁇ -3 polypeptides and polynucleotides, among other things, as described in greater detail below.
  • the invention relates to polypeptides and polynucleotides of a novel human CK ⁇ -3, which is related by amino acid sequence homology to human ENA-78 polypeptide.
  • the invention relates especially to CK ⁇ -3 having the nucleotide and amino acid sequences set out in Figure l (SEQ ID NO:l and 2) , and to the CK ⁇ -3 nucleotide and amino acid sequences of the human cDNA in ATCC Deposit No.
  • isolated polynucleotides which encode the CK ⁇ -3 polypeptide having the deduced amino acid sequence of Figure 1 (SBQ ID NO:2) .
  • a polynucleotide of the present invention encoding human CK ⁇ -3 polypeptide may be obtained using standard cloning and screening procedures, such as those for cloning cDNAs using mRNA from cells from microvascular endothelial tissue as starting material.
  • standard cloning and screening procedures such as those for cloning cDNAs using mRNA from cells from microvascular endothelial tissue as starting material.
  • the polynucleotide set out in Figure 1 (SEQ ID N0:1) was discovered in a cDNA library derived from cells of interleukin-1 beta induced smooth muscle tissue.
  • Human CK -3 of the invention is structurally related to other proteins of the chemokine family, as shown by the results of sequencing the cDNA encoding human CK ⁇ -3 in the deposited clone.
  • the human cDNA sequence thus obtained is set out in Figure 1 (SEQ ID NO:l) . It contains an open reading frame encoding a protein of about 113 amino acid residues with a deduced molecular weight of about 10 kDa. Approximately the first 37 amino acids represent a putative leader sequence. The protein exhibits greatest homology to human ENA-78 protein among known proteins.
  • CK ⁇ -3 of Figure 1 (SEQ ID NO:2) has about 76.991% identity and about 86.726% similarity with the amino acid sequence of human ENA-78.
  • CK ⁇ -3 contains an ELR motif N-terminal to the first two cysteines. All chemokines containing this motif bind to one or both of the known IL-8 receptors.
  • Polynucleotides of the present invention may be in the form of RNA, such as mRNA, or in the form of DNA, including, for instance, cDNA and genomic DNA obtained by cloning or produced by chemical synthetic techniques or by a combination thereof.
  • the DNA may be double-stranded or single- stranded. Single-stranded DNA may be the coding strand, also known as the sense strand, or it may be the non-coding strand, also referred to as the anti-sense strand.
  • the coding sequence which encodes the polypeptide may be identical to the coding sequence of the polynucleotide shown in Figure l (SEQ ID NO:l) . It also may be a polynucleotide with a different sequence, which, as a result of the redundancy (degeneracy) of the genetic code, encodes the polypeptide of the DNA Of Figure 1 (SEQ ID NO:l) .
  • Polynucleotides of the present invention which encode the polypeptide of Figure 1 may include, but are not limited to the coding sequence for the mature polypeptide, by itself,- the coding sequence for the mature polypeptide and additional coding sequences, such as those encoding a leader or secretory sequence, such as a pre-, or pro- or prepro- protein sequence,- the coding sequence of the mature polypeptide, with or without the aforementioned additional coding sequences, together with additional, non-coding sequences, including for example, but not limited to introns and non-coding 5' and 3 ' sequences, such as the transcribed, non-translated sequences that play a role in transcription, mRNA processing - including splicing and polyadenylation signals, for example - ribosome binding and stability of mRNA; additional coding sequence which codes for additional amino acids, such as those which provide additional functionalities.
  • the polypeptide may be fused to a marker sequence, such as a peptide, which facilitates purification of the fused polypeptide.
  • the marker sequence is a hexa-histidine peptide, such as the tag provided in the pQE vector (Qiagen, Inc.) , among others, many of which are commercially available.
  • hexa-histidine provides for convenient purification of the fusion protein.
  • the HA tag corresponds to an epitope derived of influenza hemagglutinin protein, which has been described by Wilson et al., Cell 37: 767 (1984) , for instance.
  • polynucleotide encoding a polypeptide encompasses polynucleotides which include a sequence encoding a polypeptide of the present invention, particularly the human CK ⁇ -3 having the amino acid sequence set out in Figure 1 (SEQ ID NO:2) .
  • the term encompasses polynucleotides that include a single continuous region or discontinuous regions encoding the polypeptide (for example, interrupted by introns) together with additional regions, that also may contain coding and/or non-coding sequences.
  • the present invention further relates to variants of the herein above described polynucleotides which encode for fragments, analogs and derivatives of the polypeptide having the deduced amino acid sequence of Figure 1 (SEQ ID NO:2) .
  • a variant of the polynucleotide may be a naturally occurring variant such as a naturally occurring allelic variant, or it may be a variant that is not known to occur naturally.
  • Such non-naturally occurring variants of the polynucleotide may be made by mutagenesis techniques, including those applied to polynucleotides, cells or organisms.
  • variants in this regard are variants that differ from the aforementioned polynucleotides by nucleotide substitutions, deletions or additions.
  • the substitutions, deletions or additions may involve one or more nucleotides.
  • the variants may be altered in coding or non-coding regions or both. Alterations in the coding regions may produce conservative or non-conservative amino acid substitutions, deletions or additions.
  • polypeptides having the amino acid sequence of CK ⁇ -3 set out in Figure l SEQ ID NO:2
  • variants, analogs, derivatives and fragments thereof and fragments of the variants, analogs and derivatives.
  • polynucleotides encoding CK ⁇ -3 variants, analogs, derivatives and fragments, and variants, analogs and derivatives of the fragments which have the amino acid sequence of the CK ⁇ -3 polypeptide of Figure 1 (SEQ ID NO:2) in which several, a few, 5 to 10, 1 to 5, 1 to 3, 2, 1 or no amino acid residues are substituted, deleted or added, in any combination.
  • silent substitutions, additions and deletions which do not alter the properties and activities of the CK ⁇ -3.
  • conservative substitutions are also especially preferred in this regard.
  • polynucleotides that are at least 70% identical to a polynucleotide encoding the CK ⁇ -3 polypeptide having the amino acid sequence set out in Figure l (SEQ ID NO:2), and polynucleotides which are complementary to such polynucleotides.
  • polynucleotides that comprise a region that is at least 80% identical to a polynucleotide encoding the CK ⁇ -3 polypeptide of the human cDNA of the deposited clone and polynucleotides complementary thereto.
  • polynucleotides at least 90% identical to the same are particularly preferred, and among these particularly preferred polynucleotides, those with at least 95% are especially preferred. Furthermore, those with at least 97% are highly preferred among those with at least 95%, and among these those with at least 98% and at least 99% are particularly highly preferred, with at least 99% being the more preferred.
  • Particularly preferred embodiments in this respect are polynucleotides which encode polypeptides which retain substantially the same biological function or activity as the mature polypeptide encoded by the cDNA of Figure l (SBQ ID NO;l) .
  • the present invention further relates to polynucleotides that hybridize to the herein above-described sequences.
  • the present invention especially relates to polynucleotides which hybridize under stringent conditions to the herein above-described polynucleotides.
  • stringent conditions means hybridization will occur only if there is at least 95% and preferably at least 97% identity between the sequences.
  • polynucleotides of the invention may be used as a hybridization probe for cDNA and genomic DNA to isolate full-length cDNAs and genomic clones encoding CK ⁇ -3 and to isolate cDNA and genomic clones of other genes that have a high sequence similarity to the human CK ⁇ -3 gene.
  • Such probes generally will comprise at least 15 bases.
  • such probes will have at least 30 bases and may have at least 50 bases.
  • Particularly preferred probes will have at least 30 bases and will have 50 bases or less.
  • the coding region of the CK ⁇ -3 gene may be isolated by screening using the known DNA sequence to synthesize an oligonucleotide probe.
  • a labeled oligonucleotide having a sequence complementary to that of a gene of the present invention is then used to screen a library of human cDNA, genomic DNA or mRNA to determine which members of the library the probe hybridizes to.
  • polynucleotides and polypeptides of the present invention may be employed as research reagents and materials for discovery of treatments and diagnostics to human disease, as further discussed herein relating to polynucleotide assays, inter alia.
  • the polynucleotides may encode a polypeptide which is the mature protein plus additional amino or carboxyl-terminal amino acids, or amino acids interior to the mature polypeptide (when the mature form has more than one polypeptide chain, for instance) .
  • Such sequences may play a role in processing of a protein from precursor to a mature form, may facilitate protein trafficking, may prolong or shorten protein half-life or may facilitate manipulation of a protein for assay or production, among other things.
  • the additional amino acids may be processed away from the mature protein by cellular enzymes.
  • a precursor protein, having the mature form of the polypeptide fused to one or more prosequences may be an inactive form of the polypeptide.
  • inactive precursors When prosequences are removed such inactive precursors generally are activated. Some or all of the prosequences may be removed before activation. Generally, such precursors are called proproteins.
  • a polynucleotide of the present invention may encode a mature protein, a mature protein plus a leader sequence (which may be referred to as a preprotein) , a precursor of a mature protein having one or more prosequences which are not the leader sequences of a preprotein, or a preproprotein, which is a precursor to a proprotein, having a leader sequence and one or more prosequences, which generally are removed during processing steps that produce active and mature forms of the polypeptide.
  • a leader sequence which may be referred to as a preprotein
  • a preproprotein which is a precursor to a proprotein, having a leader sequence and one or more prosequences, which generally are removed during processing steps that produce active and mature forms of the polypeptide.
  • a deposit containing a human CK ⁇ -3 cDNA has been deposited with the American Type Culture Collection, as noted above. Also as noted above, the human cDNA deposit is referred to herein as "the deposited clone" or as "the cDNA of the deposited clone.”
  • the deposited clone was deposited with the American Type Culture Collection, 12301 Park Lawn Drive, Rockville, Maryland 20852, USA, on January 2, 1996 and assigned ATCC Deposit No. 97404.
  • the deposited material is a pBluescript SK (-) plasmid (Stratagene, La Jolla, CA) that contains the full length CK ⁇ -3 cDNA, referred to as "PF251" upon deposit.
  • sequence of the polynucleotides contained in the deposited material, as well as the amino acid sequence of the polypeptide encoded thereby, are controlling in the event of any conflict with any description of sequences herein.
  • a license may be required to make, use or sell the deposited materials, and no such license is hereby granted.
  • the present invention further relates to a human CK ⁇ -3 polypeptide which has the deduced amino acid sequence of Figure 1 (SEQ ID NO:2) .
  • the invention also relates to fragments, analogs and derivatives of these polypeptides.
  • fragment when referring to the polypeptide of Figure 1 (SEQ ID NO:2) , means a polypeptide which retains essentially the same biological function or activity as such polypeptide.
  • an analog includes a proprotein which can be activated by cleavage of the proprotein portion to produce an active mature polypeptide.
  • the polypeptide of the present invention may be a recombinant polypeptide, a natural polypeptide or a synthetic polypeptide. In certain preferred embodiments it is a recombinant polypeptide.
  • the fragment, derivative or analog of the polypeptide of Figure 1 may be (i) one in which one or more of the amino acid residues are substituted with a conserved or non- conserved amino acid residue (preferably a conserved amino acid residue) and such substituted amino acid residue may or may not be one encoded by the genetic code, or (ii) one in which one or more of the amino acid residues includes a substituent group, or (iii) one in which the mature polypeptide is fused with another compound, such as a compound to increase the half-life of the polypeptide (for example, polyethylene glycol) , or (iv) one in which the additional amino acids are fused to the mature polypeptide, such as a leader or secretory sequence or a sequence which is employed for purification of the mature polypeptide or a proprotein sequence.
  • a conserved or non- conserved amino acid residue preferably a conserved amino acid residue
  • substituted amino acid residue may or may not be one encoded by the genetic code
  • particularly preferred embodiments of the invention in this regard are polypeptides having the amino acid sequence of CK ⁇ -3 set out in Figure 1 (SEQ ID NO:2) , variants, analogs, derivatives and fragments thereof, and variants, analogs and derivatives of the fragments.
  • particularly preferred embodiments of the invention in this regard are polypeptides having the amino acid sequence of the CK ⁇ -3, variants, analogs, derivatives and fragments thereof, and variants, analogs and derivatives of the fragments.
  • substitutions are those that vary from a reference by conservative amino acid substitutions. Such substitutions are those that substitute a given amino acid in a polypeptide by another amino acid of like characteristics. Typically seen as conservative substitutions are the replacements, one for another, among the aliphatic amino acids Ala, Val, Leu and lie; interchange of the hydroxyl residues Ser and Thr, exchange of the acidic residues Asp and Glu, substitution between the amide residues Asn and Gin, exchange of the basic residues Lys and Arg and replacements among the aromatic residues Phe, Tyr.
  • variants, analogs, derivatives and fragments, and variants, analogs and derivatives of the fragments having the amino acid sequence of the CK ⁇ -3 polypeptide of Figure 1 (SEQ ID NO:2) , in which several, a few, 5 to 10, 1 to 5, 1 to 3, 2, l or no amino acid residues are substituted, deleted or added, in any combination.
  • silent substitutions, additions and deletions which do not alter the properties and activities of the CK ⁇ -3.
  • conservative subs itutions are also especially preferred in this regard.
  • polypeptides and polynucleotides of the present invention are preferably provided in an isolated form, and preferably are purified to homogeneity.
  • polypeptides of the present invention include the polypeptide of SBQ ID NO:2 (in particular the mature polypeptide) as well as polypeptides which have at least 80% identity to the polypeptide of SBQ ID NO:2 and more preferably at least 90% similarity (more preferably at least 90% identity) to the polypeptide of SEQ ID NO:2 and still more preferably at least 95% similarity (still more preferably at least 95% identity) to the polypeptide of SEQ ID NO:2 and also include portions of such polypeptides with such portion of the polypeptide generally containing at least 30 amino acids and more preferably at least 50 amino acids.
  • similarity between two polypeptides is determined by comparing the amino acid sequence and its conserved amino acid substitutes of one polypeptide to the sequence of a second polypeptide.
  • Fragments or portions of the polypeptides of the present invention may be employed for producing the corresponding full- length polypeptide by peptide synthesis,- therefore, the fragments may be employed as intermediates for producing the full-length polypeptides. Fragments or portions of the polynucleotides of the present invention may be used to synthesize full-length polynucleotides of the present invention.
  • polypeptides comprising fragments of CK ⁇ -3, most particularly fragments of the CK ⁇ -3 having the amino acid set out in Figure l (SBQ ID NO:2) , and fragments of variants and derivatives of the CK ⁇ -3 of Figure 1 (SEQ ID NO:2) .
  • a fragment is a polypeptide having an amino acid sequence that entirely is the same as part but not all of the amino acid sequence of the aforementioned CK ⁇ -3 polypeptides and variants or derivatives thereof.
  • fragments may be "free-standing,” i.e., not part of or fused to other amino acids or polypeptides, or they may be comprised within a larger polypeptide of which they form a part or region.
  • the presently discussed fragments most preferably form a single continuous region.
  • several fragments may be comprised within a single larger polypeptide.
  • certain preferred embodiments relate to a fragment of a CK ⁇ -3 polypeptide of the present comprised within a precursor polypeptide designed for expression in a host and having heterologous pre and pro- polypeptide regions fused to the amino terminus of the CK ⁇ -3 fragment and an additional region fused to the carboxyl terminus of the fragment. Therefore, fragments in one aspect of the meaning intended herein, refers to the portion or portions of a fusion polypeptide or fusion protein derived from CK ⁇ -3.
  • polypeptide fragments of the invention there may be mentioned those which have from about 5-15, 10-20, 15-40, 30-55, 41-75, 41-80, 41-90, 50-100, 75-100, 90-115, 100-125, and 110-113 amino acids long.
  • about 40-90 amino acids in this context means a polypeptide fragment of 40 plus or minus several, a few, 5, 4, 3, 2 or 1 amino acids to 90 plus or minus several a few, 5, 4, 3, 2 or 1 amino acid residues, i.e., ranges as broad as 40 minus several amino acids to 90 plus several amino acids to as narrow as 40 plus several amino acids to 90 minus several amino acids.
  • Truncation mutants include CK ⁇ -3 polypeptides having the amino acid sequence of Figure l (SEQ ID NO:2) , or of variants or derivatives thereof, except for deletion of a continuous series of residues (that is, a continuous region, part or portion) that includes the amino terminus, or a continuous series of residues that includes the carboxyl terminus or, as in double truncation mutants, deletion of two continuous series of residues, one including the amino terminus and one including the carboxyl terminus.
  • Fragments having the size ranges set out about are preferred embodiments of truncation fragments, which are especially preferred among fragments generally.
  • fragments characterized by structural or functional attributes of CK ⁇ -3 are fragments characterized by structural or functional attributes of CK ⁇ -3.
  • Preferred embodiments of the invention in this regard include fragments that comprise alpha-helix and alpha-helix forming regions ("alpha-regions”) , beta-sheet and beta-sheet-forming regions (“beta-regions”) , turn and turn-forming regions (“turn-regions”) , coil and coil-forming regions (“coil-regions”) , hydrophilic regions, hydrophobic regions, alpha amphipathic regions, beta amphipathic regions, flexible regions, surface-forming regions and high antigenic index regions of CK ⁇ -3.
  • certain preferred regions in these regards include, but are not limited to, regions of the aforementioned types identified by analysis of the amino acid sequence set out in Figure 1 (SEQ ID NO:2) .
  • Such preferred regions include Garnier-Robson alpha-regions, beta-regions, turn-regions and coil-regions, Chou-Fasman alpha-regions, beta-regions and turn- regions, Kyte-Doolittle hydrophilic regions and hydrophilic regions, Eisenberg alpha and beta amphipathic regions, Karplus- Schulz flexible regions, Emini surface-forming regions and Jameson- Wolf high antigenic index regions.
  • fragments in this regard are those that comprise regions of CK ⁇ -3 that combine several structural features, such as several of the features set out above.
  • regions defined by characterized by amino acid compositions highly characteristic of turn-regions, hydrophilic regions, flexible- regions, surface-forming regions, and high antigenic index-regions are especially highly preferred regions.
  • Such regions may be comprised within a larger polypeptide or may be by themselves a preferred fragment of the present invention, as discussed above. It will be appreciated that the term "about” as used in this paragraph has the meaning set out above regarding fragments in general.
  • Further preferred regions are those that mediate activities of CK - .
  • fragments that have a chemical, biological or other activity of CK ⁇ -3 including those with a similar activity or an improved activity, or with a decreased undesirable activity.
  • SEQ ID NO:9 the related polypeptides set out in Figure 2
  • particularly preferred fragments in these regards are truncation mutants, as discussed above.
  • the invention also relates to, among others, polynucleotides encoding the aforementioned fragments, polynucleotides that hybridize to polynucleotides encoding the fragments, particularly those that hybridize under stringent conditions, and polynucleotides, such as PCR primers, for amplifying polynucleotides that encode the fragments.
  • preferred polynucleotides are those that correspondent to the preferred fragments, as discussed above.
  • the present invention also relates to vectors which include polynucleotides of the present invention, host cells which are genetically engineered with vectors of the invention and the production of polypeptides of the invention by recombinant techniques.
  • Host cells can be genetically engineered to incorporate polynucleotides and express polypeptides of the present invention.
  • polynucleotides may be introduced into host cells using well known techniques of infection, transduction, transfection, transvection and transformation.
  • the polynucleotides may be introduced alone or with other polynucleotides.
  • Such other polynucleotides may be introduced independently, co-introduced or introduced joined to the polynucleotides of the invention.
  • polynucleotides of the invention may be transfected into host cells with another, separate, polynucleotide encoding a selectable marker, using standard techniques for co- transfection and selection in, for instance, mammalian cells.
  • the polynucleotides generally will be stably incorporated into the host cell genome.
  • the polynucleotides may be joined to a vector containing a selectable marker for propagation in a host.
  • the vector construct may be introduced into host cells by the aforementioned techniques.
  • a plasmid vector is introduced as DNA in a precipitate, such as a calcium phosphate precipitate, or in a complex with a charged lipid.
  • Electroporation also may be used to introduce polynucleotides into a host. If the vector is a virus, it may be packaged in vitro or introduced into a packaging cell and the packaged virus may be transduced into cells.
  • the vector may be, for example, a plasmid vector, a single or double-stranded phage vector, a single or double-stranded RNA or DNA viral vector.
  • Such vectors may be introduced into cells as polynucleotides, preferably DNA, by well known techniques for introducing DNA and RNA into cells.
  • the vectors in the case of phage and viral vectors also may be and preferably are introduced into cells as packaged or encapsidated virus by well known techniques for infection and transduction.
  • Viral vectors may be replication competent or replication defective. In the latter case viral propagation generally will occur only in complementing host cells.
  • vectors are those for expression of polynucleotides and polypeptides of the present invention.
  • such vectors comprise cis-acting control regions effective for expression in a host operatively linked to the polynucleotide to be expressed.
  • Appropriate trans-acting factors either are supplied by the host, supplied by a complementing vector or supplied by the vector itself upon introduction into the host.
  • the vectors provide for specific expression.
  • Such specific expression may be inducible expression or expression only in certain types of cells or both inducible and cell-specific.
  • Particularly preferred among inducible vectors are vectors that can be induced for expression by environmental factors that are easy to manipulate, such as temperature and nutrient additives.
  • a variety of vectors suitable to this aspect of the invention, including constitutive and inducible expression vectors for use in prokaryotic and eukaryotic hosts, are well known and employed routinely by those of skill in the art.
  • the engineered host cells can be cultured in conventional nutrient media, which may be modified as appropriate for, inter alia, activating promoters, selecting transformants or amplifying genes.
  • Culture conditions such as temperature, pH and the like, previously used with the host cell selected for expression generally will be suitable for expression of polypeptides of the present invention as will be apparent to those of skill in the art.
  • vectors can be used to express a polypeptide of the invention.
  • Such vectors include chromosomal, episomal and virus-derived vectors e.g., vectors derived from bacterial plasmids, from bacteriophage, from yeast episomes, from yeast chromosomal elements, from viruses such as baculoviruses, papova viruses, such as SV40, vaccinia viruses, adenoviruses, fowl pox viruses, pseudorabies viruses and retroviruses, and vectors derived from combinations thereof, such as those derived from plasmid and bacteriophage genetic elements, such as cosmids and phagemids, all may be used for expression in accordance with this aspect of the present invention.
  • any vector suitable to maintain, propagate or express polynucleotides to express a polypeptide in a host may be used for expression in this regard.
  • the appropriate DNA sequence may be inserted into the vector by any of a variety of well-known and routine techniques.
  • a DNA sequence for expression is joined to an expression vector by cleaving the DNA sequence and the expression vector with one or more restriction endonucleases and then joining the restriction fragments together using T4 DNA ligase.
  • Procedures for restriction and ligation that can be used to this end are well known and routine to those of skill. Suitable procedures in this regard, and for constructing expression vectors using alternative techniques, which also are well known and routine to those skill, are set forth in great detail in Sambrook et al. cited elsewhere herein.
  • the DNA sequence in the expression vector is operatively linked to appropriate expression control sequence(s) , including, for instance, a promoter to direct mRNA transcription.
  • appropriate expression control sequence(s) including, for instance, a promoter to direct mRNA transcription.
  • promoters include the phage lambda PL promoter, the E. coli lac, trp and tac promoters, the SV40 early and late promoters and promoters of retroviral LTRs, to name just a few of the well-known promoters. It will be understood that numerous promoters not mentioned are suitable for use in this aspect of the invention are well known and readily may be employed by those of skill in the manner illustrated by the discussion and the examples herein.
  • expression constructs will contain sites for transcription initiation and termination, and, in the transcribed region, a ribosome binding site for translation.
  • the coding portion of the mature transcripts expressed by the constructs will include a translation initiating AUG at the beginning and a termination codon appropriately positioned at the end of the polypeptide to be translated.
  • constructs may contain control regions that regulate as well as engender expression.
  • control regions that regulate as well as engender expression.
  • such regions will operate by controlling transcription, such as repressor binding sites and enhancers, among others.
  • Vectors for propagation and expression generally will include selectable markers. Such markers also may be suitable for amplification or the vectors may contain additional markers for this purpose.
  • the expression vectors preferably contain one or more selectable marker genes to provide a phenotypic trait for selection of transformed host cells.
  • Preferred markers include dihydrofolate reductase or neomycin resistance for eukaryotic cell culture, and tetracycline or ampicillin resistance genes for culturing E. coli and other bacteria.
  • the vector containing the appropriate DNA sequence as described elsewhere herein, as well as an appropriate promoter, and other appropriate control sequences, may be introduced into an appropriate host using a variety of well known techniques suitable to expression therein of a desired polypeptide.
  • appropriate hosts include bacterial cells, such as E. coli, Streptomyces and Salmonella typhimurium cells,- fungal cells, such as yeast cells; insect cells such as Drosophila S2 and Spodoptera Sf9 cells,- animal cells such as CHO, COS and Bowes melanoma cells; and plant cells.
  • the present invention also includes recombinant constructs, such as expression constructs, comprising one or more of the sequences described above.
  • the constructs comprise a vector, such as a plasmid or viral vector, into which such a sequence of the invention has been inserted.
  • the sequence may be inserted in a forward or reverse orientation.
  • the construct further comprises regulatory sequences, including, for example, a promoter, operably linked to the sequence. Large numbers of suitable vectors and promoters are known to those of skill in the art, and there are many commercially available vectors suitable for use in the present invention.
  • vectors which are commercially available, are provided by way of example.
  • vectors preferred for use in bacteria are pQE70, pQE60 and pQE-9, available from Qiagen; pBS vectors, Phagescript vectors, Bluescript vectors, pNH ⁇ A, pNH16a, pNH18A, pNH46A, available from Stratagene; and ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 available from Pharmacia.
  • eukaryotic vectors are pWLNEO, pSV2CAT, pOG44, pXTl and pSG available from Stratagene,- and pSVK3, pBPV, pMSG and pSVL available from Pharmacia. These vectors are listed solely by way of illustration of the many commercially available and well known vectors that are available to those of skill in the art for use in accordance with this aspect of the present invention. It will be appreciated that any other plasmid or vector suitable for, for example, introduction, maintenance, propagation or expression of a polynucleotide or polypeptide of the invention in a host may be used in this aspect of the invention.
  • Promoter regions can be selected from any desired gene using vectors that contain a reporter transcription unit lacking a promoter region, such as a chloramphenicol acetyl transferase ("cat") transcription unit, downstream of restriction site or sites for introducing a candidate promoter fragment; i.e., a fragment that may contain a promoter.
  • a reporter transcription unit lacking a promoter region such as a chloramphenicol acetyl transferase ("cat") transcription unit, downstream of restriction site or sites for introducing a candidate promoter fragment; i.e., a fragment that may contain a promoter.
  • introduction into the vector of a promoter-containing fragment at the restriction site upstream of the cat gene engenders production of CAT activity, which can be detected by standard CAT assays.
  • Vectors suitable to this end are well known and readily available. Two such vectors are pKK232-8 and pCM7.
  • promoters for expression of polynucleotides of the present invention include not only well
  • bacterial promoters suitable for expression of polynucleotides and polypeptides in accordance with the present invention are the E. coli lad and lacZ and promoters, the T3 and T7 promoters, the gpt promoter, the lambda PR, PL promoters and the trp promoter.
  • eukaryotic promoters suitable in this regard are the CMV immediate early promoter, the HSV thymidine kinase promoter, the early and late SV40 promoters, the promoters of retroviral LTRs, such as those of the Rous sarcoma virus ("RSV”) , and metallothionein promoters, such as the mouse metallothionein-I promoter.
  • CMV immediate early promoter the HSV thymidine kinase promoter
  • the early and late SV40 promoters the promoters of retroviral LTRs, such as those of the Rous sarcoma virus (“RSV”)
  • metallothionein promoters such as the mouse metallothionein-I promoter.
  • the present invention also relates to host cells containing the above-described constructs discussed above.
  • the host cell can be a higher eukaryotic cell, such as a mammalian cell, or a lower eukaryotic cell, such as a yeast cell, or the host cell can be a prokaryotic cell, such as a bacterial cell.
  • Introduction of the construct into the host cell can be effected by calcium phosphate transfection, DEAE-dextran mediated transfection, cationic lipid-mediated transfection, electroporation, transduction, infection or other methods. Such methods are described in many standard laboratory manuals, such as Davis et al. BASIC METHODS IN MOLECULAR BIOLOGY, (1986).
  • Constructs in host cells can be used in a conventional manner to produce the gene product encoded by the recombinant sequence.
  • the polypeptides of the invention can be synthetically produced by conventional peptide synthesizers.
  • Mature proteins can be expressed in mammalian cells, yeast, bacteria, or other cells under the control of appropriate promoters. Cell-free translation systems can also be employed tc produce such proteins using RNAs derived from the DNA constructs of the present invention. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described by Sambrook et al., MOLECULAR CLONING: A LABORATORY MANUAL, 2nd Bd. , Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989) .
  • recombinant expression vectors will include origins of replication, a promoter derived from a highly-expressed gene to direct transcription of a downstream structural sequence, and a selectable marker to permit isolation of vector containing cells after exposure to the vector.
  • suitable promoters are those derived from the genes that encode glycolytic enzymes such as 3- phosphoglycerate kinase ("PGK”), a-factor, acid phosphatase, and heat shock proteins, among others.
  • PGK 3- phosphoglycerate kinase
  • Selectable markers include the ampicillin resistance gene of E. coli and the trpl gene of S. cerevisiae.
  • Enhancers are cis- acting elements of DNA, usually about from 10 to 300 bp that act to increase transcriptional activity of a promoter in a given host cell-type.
  • enhancers include the SV40 enhancer, which is located on the late side of the replication origin at bp 100 to 270, the cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers .
  • Polynucleotides of the invention encoding the heterologous structural sequence of a polypeptide of the invention generally will be inserted into the vector using standard techniques so that it is operably linked to the promoter for expression.
  • the polynucleotide will be positioned so that the transcription start site is located appropriately 5 ' to a ribosome binding site.
  • the ribosome binding site will be 5 ' to the AUG that initiates translation of the polypeptide to be expressed.
  • Al ⁇ o generally, there will be a translation stop codon at the end of the polypeptide and there will be a polyadenylation signal and a transcription termination signal appropriately disposed at the 3' end of the transcribed region.
  • appropriate secretion signals may be incorporated into the expressed polypeptide.
  • the signals may be endogenous to the polypeptide or they may be heterologous signals.
  • the polypeptide may be expressed in a modified form, such as a fusion protein, and may include not only secretion signals but also additional heterologous functional regions.
  • a region of additional amino acids, particularly charged amino acids may be added to the N-terminus of the polypeptide to improve stability and persi ⁇ tence in the ho ⁇ t cell, during purification or during subsequent handling and storage.
  • region also may be added to the polypeptide to facilitate purification. Such regions may be removed prior to final preparation of the polypeptide.
  • the addition of peptide moieties to polypeptides to engender secretion or excretion, to improve stability and to facilitate purification, among others, are familiar and routine techniques in the art.
  • Suitable prokaryotic hosts for propagation, maintenance or expression of polynucleotides and polypeptides in accordance with the invention include Escherichia coli, Bacillus subtilis and Salmonella typhimurium. Various species of Pseudomonas, Streptomyces, and Staphylococcus are suitable host ⁇ in this regard. Moreover, many other hosts also known to those of skill may be employed in this regard.
  • useful expression vectors for bacterial use can comprise a selectable marker and bacterial origin of replication derived from commercially available plasmids comprising genetic elements of the well known cloning vector pBR322 (ATCC 37017) .
  • cloning vector pBR322 ATCC 37017
  • Such commercial vectors include, for example, pKK223-3 (Pharmacia Fine Chemicals, Uppsala, Sweden) and GBM1 (Promega Biotec, Madison, WI, USA). These pBR322 "backbone" sections are combined with an appropriate promoter and the structural sequence to be expressed.
  • Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, ⁇ onication, mechanical disruption, or use of cell lysing agents, such methods are well know to those skilled in the art.
  • mammalian cell culture systems can be employed for expression, as well.
  • mammalian expression systems include the COS-7 lines of monkey kidney fibroblast, described in Gluzman et al., Cell 23: 175 (1981).
  • Other cell lines capable of expres ⁇ ing a compatible vector include for example, the C127, 3T3, CHO, HeLa, human kidney 293 and BHK cell lines.
  • Mammalian expression vectors will comprise an origin of replication, a suitable promoter and enhancer, and also any necessary ribosome binding sites, polyadenylation sites, splice donor and acceptor sites, transcriptional termination sequences, and 5' flanking non-transcribed sequences that are necessary for expression.
  • DNA sequences derived from the SV40 splice sites, and the SV40 polyadenylation sites are used for required non-transcribed genetic elements of these types.
  • the CK ⁇ -3 polypeptide can be recovered and purified from recombinant cell cultures by well-known methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Most preferably, high performance liquid chromatography ("HPLC") is employed for purification. Well known techniques for refolding protein may be employed to regenerate active conformation when the polypeptide is denatured during isolation and or purification.
  • HPLC high performance liquid chromatography
  • Polypeptides of the present invention include naturally purified products, products of chemical synthetic procedures, and products produced by recombinant techniques from a prokaryotic or eukaryotic host, including, for example, bacterial, yeast, higher plant, insect and mammalian cells. Depending upon the host employed in a recombinant production procedure, the polypeptides of the present invention may be glycosylated or may be non- glycosylated. In addition, polypeptides of the invention may also include an initial modified methionine residue, in some cases as a result of host-mediated processes.
  • CK ⁇ -3 polynucleotides and polypeptides may be used in accordance with the present invention for a variety of applications, particularly those that make use of the chemical and biological properties CK ⁇ -3. Additional applications relate to diagnosis and to treatment of disorders of cells, tissues and organisms. These aspects of the invention are illustrated further by the following discussion.
  • This invention is also related to the use of the CK ⁇ -3 polynucleotides to detect complementary polynucleotides such as, for example, as a diagnostic reagent. Detection of a mutated form of CK ⁇ -3 associated with a dysfunction will provide a diagnostic tool that can add or define a diagnosis of a disease or susceptibility to a disease which results from under-expression over-expression or altered expression of CK ⁇ -3. Individuals carrying mutations in the human CK -3 gene may be detected at the DNA level by a variety of techniques. Nucleic acids for diagnosis may be obtained from a patient's cells, such as from blood, urine, saliva, tissue biopsy and autopsy material.
  • the genomic DNA may be used directly for detection or may be amplified enzymatically by using PCR prior to analysis.
  • PCR Saiki et al., Nature, 324: 163-166 (1986)
  • RNA or cDNA may also be used in the same ways.
  • PCR primers complementary to the nucleic acid encoding CK ⁇ -3 can be u ⁇ ed to identify and analyze CK ⁇ -3 expression and mutations. For example, deletions and insertions can be detected by a change in size of the amplified product in comparison to the normal genotype.
  • Point mutations can be identified by hybridizing amplified DNA to radiolabeled CK ⁇ -3 RNA or alternatively, radiolabeled CK ⁇ -3 antisense DNA sequences. Perfectly matched sequences can be distinguished from mismatched duplexes by RNase A digestion or by differences in melting temperatures.
  • Sequence differences between a reference gene and genes having mutations also may be revealed by direct DNA sequencing.
  • cloned DNA segments may be employed as probes to detect specific DNA segments.
  • the sen ⁇ itivity of ⁇ uch methods can be greatly enhanced by appropriate use of PCR or another amplification method.
  • a sequencing primer is used with double- stranded PCR product or a single-stranded template molecule generated by a modified PCR.
  • the sequence determination is performed by conventional procedures with radiolabeled nucleotide or by automatic sequencing procedures with fluorescent-tags.
  • DNA sequence differences may be achieved by detection of alteration in electrophoretic mobility of DNA fragments in gels, with or without denaturing agents. Small sequence deletions and insertions can be visualized by high resolution gel electrophoresis. DNA fragments of different sequences may be distinguished on denaturing formamide gradient gels in which the mobilities of different DNA fragments are retarded in the gel at different po ⁇ itions according to their specific melting or partial melting temperatures ( ⁇ ee, e.g., Myer ⁇ et al., Science, 230: 1242 (1985)).
  • Sequence changes at specific locations also may be revealed by nuclease protection assays, such as RNase and Si protection or the chemical cleavage method (e.g.. Cotton et al., Proc. Natl. Acad. Sci., USA, 85: 4397-4401 (1985)).
  • the detection of a specific DNA sequence may be achieved by methods ⁇ uch a ⁇ hybridization, RNase protection, chemical cleavage, direct DNA sequencing or the use of restriction enzymes, (e.g., restriction fragment length polymorphisms ("RFLP”) and Southern blotting of genomic DNA.
  • restriction enzymes e.g., restriction fragment length polymorphisms ("RFLP") and Southern blotting of genomic DNA.
  • mutations al ⁇ o can be detected by in ⁇ itu analysis.
  • the sequences of the present invention are al ⁇ o valuable for chromosome identification.
  • the sequence is specifically targeted to and can hybridize with a particular location on an individual human chromosome.
  • Few chromosome marking reagents based on actual sequence data (repeat polymorphisms) are presently available for marking chromosomal location.
  • the mapping of DNAs to chromosomes according to the present invention is an important first step in correlating those sequences with genes associated with disease.
  • the cDNA herein disclosed is used to clone genomic DNA of a CK ⁇ -3 gene. This can be accomplished using a variety of well known techniques and libraries, which generally are available commercially.
  • the genomic DNA the is used for in situ chromosome mapping using well known techniques for this purpose. Typically, in accordance with routine procedures for chromosome mapping, some trial and error may be necessary to identify a genomic probe that gives a good in situ hybridization signal.
  • sequences can be mapped to chromosomes by preparing PCR primers (preferably 15-25 bp) from the cDNA. Computer analysis of the 3' untranslated region of the gene is used to rapidly select primers that do not span more than one exon in the genomic DNA, thus complicating the amplification process. These primers are then used for PCR screening of somatic cell hybrids containing individual human chromosomes. Only those hybrids containing the human gene corresponding to the primer will yield an amplified fragment.
  • PCR mapping of somatic cell hybrids is a rapid procedure for assigning a particular DNA to a particular chromosome.
  • sublocalization can be achieved with panels of fragments from specific chromosomes or pools of large genomic clones in an analogous manner.
  • Other mapping strategies that can similarly be used to map to its chromosome include in situ hybridization, prescreening with labeled flow- ⁇ orted chromosomes and preselection by hybridization to construct chromo ⁇ ome specific-cDNA libraries.
  • Fluorescence in situ hybridization of a cDNA clone to a metaphase chromosomal spread can be used to provide a precise chromosomal location in one step.
  • This technique can be used with cDNA as short as 50 or 60.
  • Verma et al. HUMAN CHROMOSOMES: A MANUAL OF BASIC TECHNIQUES, Pergamon Pres ⁇ , New York (1988).
  • a cDNA preci ⁇ ely localized to a chromosomal region associated with the disease could be one of between 50 and 500 potential causative genes. (This assumes l megabase mapping resolution and one gene per 20 kb) .
  • the present invention also relates to a diagnostic assays such as quantitative and diagnostic as ⁇ ay ⁇ for detecting levels of CK ⁇ -3 protein in cells and tissues, including determination of normal and abnormal levels.
  • a diagnostic assay in accordance with the invention for detecting over-expression of CK ⁇ - 3 protein compared to normal control tissue samples may be used to detect the presence of a tumor, for example.
  • Assay techniques that can be used to determine levels of a protein, such as an CK ⁇ -3 protein of the present invention, in a sample derived from a host are well-known to those of skill in the art.
  • Such assay methods include radioimmunoa ⁇ says, competitive-binding assays, WesternBlot analysis and ELISA assays.
  • An ELISA assay initially comprises preparing an antibody specific to CK ⁇ -3, preferably a monoclonal antibody.
  • a reporter antibody generally is prepared which binds to the monoclonal antibody.
  • the reporter antibody is attached a detectable reagent such as radioactive, fluorescent or enzymatic reagent, in this example horseradish peroxidase enzyme.
  • a sample is removed from a host and incubated on a solid support, e.g. a polystyrene dish, that binds the proteins in the sample. Any free protein binding sites on the dish are then covered by incubating with a non-specific protein such as bovine serum albumin.
  • a non-specific protein such as bovine serum albumin.
  • the monoclonal antibody i ⁇ incubated in the dish during which time the monoclonal antibodies attach to any CK ⁇ -3 proteins attached to the polystyrene dish. Unbound monoclonal antibody is washed out with buffer.
  • the reporter antibody linked to horseradi ⁇ h peroxida ⁇ e i ⁇ placed in the dish resulting in binding of the reporter antibody to any monoclonal antibody bound to CK ⁇ -3.
  • a competition assay may be employed wherein antibodies specific to CK ⁇ -3 attached to a solid support and labeled CK ⁇ -3 and a sample derived from the host are passed over the solid support and the amount of label detected attached to the solid support can be correlated to a quantity of CK ⁇ -3 in the sample.
  • the polypeptides, their fragments or other derivatives, or analogs thereof, or cells expressing them can be used a ⁇ an immunogen to produce antibodies thereto. These antibodies can be, for example, polyclonal or monoclonal antibodie ⁇ .
  • the pre ⁇ ent invention also includes chimeric, single chain, and humanized antibodies, a ⁇ well as Fab fragments, or the product of an Fab expression library. Various procedures known in the art may be used for the production of ⁇ uch antibodie ⁇ and fragments.
  • Antibodies generated against the polypeptides corresponding to a sequence of the pre ⁇ ent invention can be obtained by direct injection of the polypeptides into an animal or by administering the polypeptides to an animal, preferably a nonhuman.
  • the antibody ⁇ o obtained will then bind the polypeptides iteelf. In thi ⁇ manner, even a sequence encoding only a fragment of the polypeptides can be used to generate antibodies binding the whole native polypeptides.
  • Such antibodies can then be used to isolate the polypeptide from tis ⁇ ue expre ⁇ sing that polypeptide.
  • any technique which provides antibodies produced by continuou ⁇ cell line culture ⁇ can be used.
  • Examples include the hybridoma technique (Kohler, G. and Milstein, C. , Nature 256: 495-497 (1975), the trioma technique, the human B-cell hybridoma technique (Kozbor et al., Immunology Today 4: 72 (1983) and the EBV-hybridoma technique to produce human monoclonal antibodies (Cole et al., pg. 77-96 in MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R. Lis ⁇ , Inc. (1985) .
  • the above-described antibodies may be employed to isolate or to identify clones expressing the polypeptide or purify the polypeptide of the present invention by attachment of the antibody to a solid ⁇ upport for isolation and/or purification by affinity chromatography.
  • CK ⁇ -3 may be employed to inhibit bone marrow stem cell colony formation as adjunct protective treatment during cancer chemotherapy and for leukemia.
  • CK ⁇ -3 may al ⁇ o be employed to inhibit epidermal keratinocyte proliferation for treatment of psoriasis, which is characterized by keratinocyte hyper-proliferation.
  • CK ⁇ -3 may also be employed as an anti-neovascularizing agent to treat solid tumors by stimulating the invasion and activation of host defen ⁇ e cells, e.g., cytotoxic T cells and macrophages and by inhibiting the angiogenesis of tumors. They may also be employed to enhance host defenses against resistant chronic and acute infections, for example, mycobacterial infection ⁇ via the attraction and activation of microbicidal leukocytes.
  • CK ⁇ -3 may al ⁇ o be employed to inhibit T cell proliferation by the inhibition of IL-2 biosynthesis for the treatment of T-cell mediated auto-immune di ⁇ ea ⁇ es and lymphocytic leukemias.
  • Ck ⁇ -3 may also be employed to ⁇ timulate wound healing, both via the recruitment of debris clearing and connective tissue promoting inflammatory cells and also via ite control of exce ⁇ sive TGFjS-mediated fibro ⁇ i ⁇ .
  • Ck ⁇ -3 may al ⁇ o be employed to treat other fibrotic di ⁇ order ⁇ , including liver cirrho ⁇ i ⁇ , osteoarthritis and pulmonary fibrosis.
  • CK ⁇ -3 also increases the presence of eosinophils which have the distinctive function of killing the larvae of parasites that invade tissue ⁇ , a ⁇ in ⁇ chi ⁇ to ⁇ omia ⁇ i ⁇ , trichinosis and ascariasis.
  • CK ⁇ -3 may also be employed to treat sepsis.
  • Thi ⁇ invention also provides a method for identification of molecules, such as receptor molecules, that bind CK ⁇ -3.
  • Genes encoding proteins that bind CK ⁇ -3, such as receptor proteins, can be identified by numerous methods known to those of skill in the art, for example, ligand panning and FACS sorting. Such methods are described in many laboratory manuals such as, for instance, Coligan et al., Current Protocols in Immunology 1(2): Chapter 5 (1991) .
  • polyadenylated RNA is prepared from a cell respon ⁇ ive to CK ⁇ -3, a cDNA library i ⁇ created from this RNA, the library i ⁇ divided into pools and the pools are transfected individually into cells that are not responsive to CK ⁇ -3. The transfected cells then are exposed to labeled CK ⁇ -3.
  • CK ⁇ -3 can be labeled by a variety of well-known techniques including standard methods of radio-iodination or inclusion of a recognition site for a site-specific protein kinase.
  • the cells are fixed and binding of CK ⁇ -3 is determined. These procedures conveniently are carried out on glass slide ⁇ .
  • Pools are identified of cDNA that produced CK ⁇ -3-binding cells. Sub-pools are prepared from these positives, transfected into host cells and screened as described above. Using an iterative sub-pooling and re-screening process, one or more single clones that encode the putative binding molecule, such a ⁇ a receptor molecule, can be i ⁇ olated.
  • a labeled ligand can be photoaffinity linked to a cell extract, ⁇ uch as a membrane or a membrane extract, prepared from cells that express a molecule that it binds, such as a receptor molecule.
  • Cross-linked material is resolved by polyacrylamide gel electrophoresi ⁇ ("PAGE") and expo ⁇ ed to x-ray film.
  • PAGE polyacrylamide gel electrophoresi ⁇
  • the labeled complex containing the ligand-receptor can be excised, re ⁇ olved into peptide fragments, and ⁇ ubjected to protein microsequencing.
  • the amino acid sequence obtained from microsequencing can be used to design unique or degenerate oligonucleotide probes to screen cDNA libraries to identify genes encoding the putative receptor molecule.
  • Polypeptides of the invention also can be used to assess CK -3 binding capacity of CK ⁇ -3 binding molecules, such as receptor molecules, in cells or in cell-free preparations.
  • Bioassay ⁇ ⁇ uch as chemotactic assay ⁇ may be employed to determine the bioactivity of the fragments, analogues and derivatives of the polypeptide of the present invention.
  • Such assay ⁇ are known to those of skill in the art and are set forth by way of example in Matsushima, K. et al . , J Exp. Med., 169:1485-1490 (1989) and Jose, P. J., et al . , J. Exp. Med., 179:881-887 (1994).
  • Agonists and antagonists - a ⁇ ays and molecules The invention al ⁇ o provide ⁇ a method of ⁇ creening compounds to identify those which enhance or block the action of CK ⁇ -3 on cell ⁇ , ⁇ uch as its interaction with CK ⁇ -3-binding molecules such as receptor molecules.
  • An agoni ⁇ t is a compound which increases the natural biological functions of CK ⁇ -3 or which functions in a manner similar to CK ⁇ -3, while antagonists decrease or eliminate ⁇ uch functions.
  • a cellular compartment such as a membrane or a preparation thereof, such as a membrane-preparation, may be prepared from a cell that expres ⁇ e ⁇ a molecule that binds CK ⁇ -3, such as a molecule of a signaling or regulatory pathway modulated by CK ⁇ -3.
  • the preparation is incubated with labeled CK ⁇ -3 in the absence or the presence of a candidate molecule which may be a CK ⁇ - 3 agonist or antagonist.
  • the ability of the candidate molecule to bind the binding molecule i ⁇ reflected in decreased binding of the labeled ligand.
  • Molecules which bind gratuitously, i.e., without inducing the effects of CK ⁇ -3 on binding the CK ⁇ -3 binding molecule, are most likely to be good antagonists. Molecules that bind well and elicit effects that are the ⁇ arae a ⁇ or closely related to CK ⁇ -3 are agonists.
  • CK ⁇ -3-like effects of potential agonists and antagonists may by measured, for instance, by determining activity of a second me ⁇ enger system following interaction of the candidate molecule with a cell or appropriate cell preparation, and comparing the effect with that of CK ⁇ -3 or molecules that elicit the same effects as CK ⁇ -3.
  • Second mes ⁇ enger systems that may be useful in this regard include but are not limited to AMP guanylate cyclase, ion channel or pho ⁇ phoinositide hydrolysis second messenger systems.
  • an assay for CK ⁇ -3 antagonist ⁇ is a competitive as ⁇ ay that combines CK ⁇ -3 and a potential antagoni ⁇ t with membrane-bound CK ⁇ -3 receptor molecules or recombinant CK ⁇ -3 receptor molecules under appropriate conditions for a competitive inhibition a ⁇ ay.
  • CK ⁇ -3 can be labeled, ⁇ uch as by radioactivity, such that the number of CK ⁇ -3 molecules bound to a receptor molecule can be determined accurately to assess the effectiveness of the potential antagonist.
  • Potential antagonists include small organic molecules, peptides, polypeptides and antibodies that bind to a polypeptide of the invention and thereby inhibit or extinguish its activity. Potential antagonists also may be small organic molecules, a peptide, a polypeptide ⁇ uch as a closely related protein or antibody that binds the same sites on a binding molecule, such as a receptor molecule, without inducing CK ⁇ -3-induced activities, thereby preventing the action of CK ⁇ -3 by excluding CK ⁇ -3 from binding.
  • Antisense molecules can be used to control gene expression through antisense DNA or RNA or through triple-helix formation. Antisense techniques are discussed, for example, in - Okano, J. Neurochem. 56: 560 (1991); OLIGODEOXYNUCLEOTIDES AS ANTISENSE INHIBITORS OF GENE EXPRESSION, CRC Press, Boca Raton, FL (1988) . Triple helix formation is discus ⁇ ed in, for in ⁇ tance Lee et al., Nucleic Acid ⁇ Re ⁇ earch 6: 3073 (1979); Cooney et al., Science 241: 456 (1988); and Dervan et al., Science 251: 1360 (1991) .
  • the method ⁇ are based on binding of a polynucleotide to a complementary DNA or RNA.
  • the 5' coding portion of a polynucleotide that encodes the mature polypeptide of the present invention may be used to design an an isense RNA oligonucleotide of from about 10 to 40 base pairs in length.
  • a DNA oligonucleotide is designed to be complementary to a region of the gene involved in transcription thereby preventing transcription and the production of CK ⁇ -3.
  • the antisense RNA oligonucleotide hybridizes to the mRNA in vivo and block ⁇ translation of the mRNA molecule into CK -3 polypeptide.
  • the oligonucleotides described above can also be delivered to cells such that the antisense RNA or DNA may be expressed in vivo to inhibit production of CK ⁇ -3.
  • the antagonists may be employed in a composition with a pharmaceutically acceptable carrier, e.g., as hereinafter described.
  • the antagonist ⁇ may be employed for in ⁇ tance to inhibit the chemotaxi ⁇ and activation of macrophage ⁇ and their precur ⁇ or ⁇ , and of neutrophil ⁇ , basophils, B lymphocytes and some T cell subsets, e.g. , activated and CD8 cytotoxic T cells and natural killer cells, in certain auto-immune and chronic inflammatory and infective diseases.
  • auto-immune diseases include multiple sclero ⁇ is, and insulin-dependent diabetes.
  • the antagonists may also be employed to treat infectiou ⁇ diseases including silico ⁇ is, sarcoido ⁇ i ⁇ , idiopathic pulmonary fibrosis by preventing the recruitment and activation of mononuclear phagocytes. They may al ⁇ o be employed to treat idiopathic hyper-eosinophilic syndrome by preventing eosinophil production and migration. Endotoxic shock may al ⁇ o be treated by the antagonists by preventing the migration of macrophage ⁇ and their production of the human chemokine polypeptides of the present invention.
  • the antagonists may also be employed for treating atherosclero ⁇ i ⁇ , by preventing monocyte infiltration in the artery wall.
  • the antagonists may also be employed to treat histamine- mediated allergic reactions and immunological disorders including late phase allergic reactions, chronic urticaria, and atopic dermatitis by inhibiting chemokine-induced mast cell and basopbil degranulation and release of histamine.
  • IgE-mediated allergic reactions such a ⁇ allergic a ⁇ thma, rhinitis, and eczema may also be treated.
  • the antagonists may also be employed to treat chronic and acute inflammation by preventing the attraction of monocytes to a wound area. They may also be employed to regulate normal pulmonary macrophage populations, since chronic and acute inflammatory pulmonary diseases are as ⁇ ociated w th sequestration of mononuclear phagocytes in the lung.
  • Antagonists may also be employed to treat rheumatoid arthritis by preventing the attraction of monocytes into synovial fluid in the joints of patients.
  • Monocyte influx and activation plays a significant role in the pathogenesis of both degenerative and inflammatory arthropathies.
  • the antagonists may be employed to interfere with the deleterious cascades attributed primarily to IL-l and THF, which prevents the biosynthesis of other inflammatory cytokines. In this way, the antagonists may be employed to prevent inflammation.
  • the antagonists may also be employed to inhibit prostaglandin- independent fever induced by chemokines.
  • the antagonists may also be employed to treat cases of bone marrow failure, for example, aplastic anemia and myelodyspla ⁇ tic syndrome.
  • the antagonists may also be employed to treat asthma and allergy by preventing eosinophil accumulation in the lung.
  • the antagonist ⁇ may al ⁇ o be employed to treat subepithelial basement membrane fibrosis which is a prominent feature of the asthmatic lung.
  • Antibodies against CK ⁇ -3 may be employed to bind to and inhibit CK ⁇ -3 activity to treat ARDS, by preventing infiltration of neutrophils into the lung after injury.
  • the antagonists may be employed in a composition with a pharmaceutically acceptable carrier, e.g., as hereinafter described.
  • compositions comprising the polynucleotide or the polypeptides discussed above or the agonists or antagonists.
  • the polypeptides of the pre ⁇ ent invention may be employed in combination with a non-sterile or sterile carrier or carriers for use with cells, tissues or organisms, such as a pharmaceutical carrier suitable for administration to a subject.
  • a pharmaceutical carrier suitable for administration to a subject.
  • Such compositions comprise, for in ⁇ tance, a media additive or a therapeutically effective amount of a polypeptide of the invention and a pharmaceutically acceptable carrier or excipient.
  • Such carriers may include, but are not limited to, saline, buffered saline, dextrose, water, glycerol, ethanol and combinations thereof. The formulation should suit the mode of administration.
  • the invention further relates to pharmaceutical packs and kits comprising one or more containers filled with one or more of the ingredients of the aforementioned compositions of the invention.
  • Associated with such container( ⁇ ) can be a notice in the form prescribed by a governmental agency regulating the manuf cture, use or sale of pharmaceuticals or biological products, reflecting approval by the agency of the manufacture, use or sale of the product for human administration.
  • Polypeptides and other compounds of the present invention may be employed alone or in conjunction with other compounds, such as therapeutic compounds.
  • compositions may be administered in any effective, convenient manner including, for instance, administration by topical, oral, anal, vaginal, intravenous, intraperitoneal, intramuscular, subcutaneous, intranasal or intradermal routes among others.
  • compositions generally are administered in an amount effective for treatment or prophylaxis of a ⁇ pecific indication or indications.
  • the compositions are administered in an amount of at least about 10 ⁇ g/kg body weight. In most case ⁇ they will be administered in an amount not in excess of about 8 mg/kg body weight per day. Preferably, in most cases, dose is from about 10 ⁇ g/kg to about 1 mg/kg body weight, daily. It will be appreciated that optimum dosage will be determined by standard methods for each treatment modality and indication, taking into account the indication, it ⁇ ⁇ everity, route of admini ⁇ tration, complicating conditions and the like. Gene therapy
  • CK ⁇ -3 polynucleotides, polypeptides, agonists and antagonists that are polypeptides may be employed in accordance with the present invention by expression of such polypeptides in vivo, in treatment modalitie ⁇ often referred to a ⁇ "gene therapy.”
  • cells from a patient may be engineered with a polynucleotide, ⁇ uch a ⁇ a DNA or RNA, encoding a polypeptide ex vivo, and the engineered cell ⁇ then can be provided to a patient to be treated with the polypeptide.
  • cells may be engineered ex vivo by the use of a retroviral pla ⁇ mid vector containing RNA encoding a polypeptide of the pre ⁇ ent invention.
  • cells may be engineered in vivo for expression of a polypeptide in vivo by procedures known in the art.
  • a polynucleotide of the invention may be engineered for expression in a replication defective retroviral vector, as discu ⁇ ed above.
  • the retroviral expression construct then may be isolated and introduced into a packaging cell is transduced with a retroviral plasmid vector containing RNA encoding a polypeptide of the present invention such that the packaging cell now produces infectious viral particles containing the gene of interest.
  • These producer cells may be administered to a patient for engineering cells in vivo and expression of the polypeptide in vivo.
  • Retroviruses from which the retroviral plasmid vector ⁇ herein above mentioned may be derived include, but are not limited to, Moloney Murine Leukemia Virus, spleen necrosis virus, retroviruses such as Rous Sarcoma Virus, Harvey Sarcoma Virus, avian leukosi ⁇ virus, gibbon ape leukemia virus, human immunodeficiency virus, adenoviru ⁇ , Myeloproliferative Sarcoma Viru ⁇ , and mammary tumor virus.
  • the retroviral plasmid vector i ⁇ derived from Moloney Murine Leukemia Virus.
  • Such vectors well include one or more promoters for expressing the polypeptide.
  • Suitable promoters which may be employed include, but are not limited to, the retroviral LTR; the SV40 promoter; and the human cytomegalovirus (CMV) promoter described in Miller et al., Biotechniques 7: 980-990 (1989), or any other promoter (e.g., cellular promoters such as eukaryotic cellular promoters including, but not limited to, the histone, RNA polymera ⁇ e III, and ⁇ -actin promoters) .
  • CMV cytomegalovirus
  • viral promoters which may be employed include, but are not limited to, adenovirus promoters, thymidine kinase (TK) promoters, and B19 parvovirus promoters. The selection of a suitable promoter will be apparent to tho ⁇ e skilled in the art from the teachings contained herein.
  • TK thymidine kinase
  • Suitable promoters which may be employed include, but are not limited to, adenoviral promoters, ⁇ uch as the adenoviral major late promoter,- or heterologou ⁇ promoters, such as the cytomegalovirus (CMV) promoter,- the re ⁇ piratory ⁇ yncytial virus (RSV) promoter; inducible promoters, such as the MMT promoter, the metallothionein promoter; heat shock promoters; the albumin promoter,- the ApoAI promoter; human globin promoters; viral thymidine kinase promoters, ⁇ uch as the Herpes Simplex thymidine kinase promoter; retroviral LTRs (including the modified retroviral LTRs herein above described) ,- the ⁇ -actin promoter,- and human growth hormone promoters.
  • CMV cytomegalovirus
  • RSV re ⁇ piratory ⁇ yncytial virus
  • inducible promoters such
  • the retroviral plasmid vector is employed to transduce packaging cell lines to form producer cell lines.
  • packaging cells which may be transfected include, but are not limited to, the PE501, PA317, Y-2, Y-AM, PA12, T19-14X, VT-19-17- H2, YCRE, YCRIP, GP+E-86, GP+envAml2, and DAN cell lines as described in Miller, A., Human Gene Therapy 1: 5-14 (1990).
  • the vector may be transduced into the packaging cells through any means known in the art. Such means include, but are not limited to, electroporation, the use of liposomes, and CaP04 precipitation.
  • the retroviral plasmid vector may be encapsulated into a liposome, or coupled to a lipid, and then administered to a host.
  • the producer cell line will generate infectious retroviral vector particles, which include the nucleic acid sequence(s) encoding the polypeptides. Such retroviral vector particles then may be employed to transduce eukaryotic cells, either in vitro or in vivo.
  • the transduced eukaryotic cells will express the nucleic acid sequence(s) encoding the polypeptide.
  • Eukaryotic cells which may be transduced include, but are not limited to, embryonic stem cells, embryonic carcinoma cells, as well as hematopoietic stem cells, hepatocytes, fibroblasts, myoblasts, keratinocytes, endothelial cells, and bronchial epithelial cells.
  • ligations were accomplished using standard buffers, incubation temperatures and times, approximately equimolar amounts of the DNA fragments to be ligated and approximately 10 units of T4 DNA liga ⁇ e ("ligase") per 0.5 ⁇ g of DNA.
  • ligase T4 DNA liga ⁇ e
  • Example l Bxpres ⁇ ion and purification of mature human CK ⁇ -3 using bacteria The DNA sequence encoding human CK ⁇ -3 in the deposited polynucleotide is amplified using PCR oligonucleotide primers specific to the amino acid carboxyl terminal sequence of the human CK ⁇ -3 protein and to vector sequence ⁇ 3' to the gene. Additional nucleotide ⁇ containing re ⁇ triction sites to facilitate cloning are added to the 5' and 3' sequence ⁇ respectively.
  • the 5' oligonucleotide primer had the sequence 5' CCC ⁇ C ⁇ TG ⁇ 'CCTGTC-TCTGCTGTGC 3' (SEQ ID NO:3) containing the underlined Sph I restriction site, which encodes a start AUG, followed by 18 nucleotides of the human CK ⁇ -3 coding sequence set out in Figure 1 (SEQ ID N0:1) beginning with the second base of the thirty-eighth codon.
  • the 3' primer had the sequence 5' CCCGGATCCCI ⁇ rr GTTCCACT 3' (SEQ ID NO:4) containing the underlined BamHI restriction site followed by 15 nucleotides complementary to the last 15 nucleotides of the CK ⁇ -3 coding sequence set out in Figure l (SEQ ID NO:l) , preceeding the stop codon.
  • restriction sites are convenient to restriction enzyme site ⁇ in the bacterial expression vectors pQE-9 which are used for bacterial expression in these examples.
  • pQE-9 encode ⁇ ampicillin antibiotic resistance ("Ampr") and contains a bacterial origin of replication ("ori") , an IPTG inducible promoter, a ribosome binding site (“RBS”) , a 6-His tag and restriction enzyme sites.
  • the amplified human CK ⁇ -3 DNA and the vector pQE-9 both are digested with Sph I and Bam HI and the digested DNAs then are ligated together. Insertion of the CK ⁇ -3 DNA into the Sph I/Bam HI restricted.vector placed the CK ⁇ -3 coding region down ⁇ tream of and operably linked to the vector's IPTG-inducible promoter and in- frame with an initiating AUG appropriately positioned for translation of CK ⁇ -3.
  • E. coli strain M15/rep4 containing multiple copie ⁇ of the plasmid pREP4, which expres ⁇ e ⁇ lac repressor and confers kanamycin resistance (“Kanr") , is used in carrying out the illustrative example described here.
  • This strain which is only one of many that are suitable for expre ⁇ ing CK ⁇ -3, i ⁇ available commercially from Qiagen.
  • Transformants are identified by their ability to grow on LB plates in the presence of ampicillin. Pla ⁇ mid DNA is isolated from resistant colonies and the identity of the cloned DNA is confirmed by restriction analysis.
  • Clones containing the desired constructs are grown overnight ("O/N") in liquid culture in LB media supplemented with both ampicillin (100 ug/ml) and kanamycin (25 ug/ml) .
  • the O/N culture is used to inoculate a large culture, at a dilution of approximately 1:100 to 1:250.
  • the cells are grown to an optical density at 600nm ("OD600") of between 0.4 and 0.6.
  • Isopropyl-B-D-thiogalactopyrano ⁇ ide (“IPTG”) i ⁇ then added to a final concentration of 1 mM to induce tran ⁇ cription from lac repre ⁇ or ⁇ ensitive promoters, by inactivating the lad repressor.
  • IPTG Isopropyl-B-D-thiogalactopyrano ⁇ ide
  • Inclusion bodie ⁇ are purified from the disrupted cells using routine collection techniques, and protein is solubilized from the inclu ⁇ ion bodies into 8M urea.
  • the 8M urea solution containing the solubilized protein is pas ⁇ ed over a nickel-chelate column in 2X phosphate buffered saline ("PBS") , thereby removing the urea, exchanging the buffer and refolding the protein.
  • PBS 2X phosphate buffered saline
  • the protein is purified by a further ⁇ tep of chromatography to remove endotoxin. Then, it ia sterile filtered.
  • the sterile filtered protein preparation is stored in 2X PBS at a concentration of 95 micrograms per mL.
  • the cDNA sequence encoding the full length human CK ⁇ -3 protein, in the deposited clone is amplified using PCR oligonucleotide primers corresponding to the 5' and 3' sequences of the gene:
  • the 5' primer has the sequence 5' GCCGGATCCGCCATCATG AGCCTCCCGTCC 3' (SEQ ID NO:5) containing the underlined BamHI restriction enzyme ⁇ ite followed by the first 15 bases of the sequence of CK ⁇ -3 of Figure 1 (SEQ ID NO:l) . Inserted into an expression vector, as described below, the 5 * end of the amplified fragment encoding human CK ⁇ -3 provides an efficient signal peptide. An efficient signal for initiation of translation in eukaryotic cells, as described by Kozak, M. , J. Mol. Biol. 196: 947-950 (1987) is appropriately located in the primer portion of the construct.
  • the 3' primer ha ⁇ the sequence 5' GCGGGTACCTCAGT'I L'ri'G'1'rCCA CTGTC 3' (SEQ ID NO:6) containing the underlined Kpn I restriction followed by nucleotides complementary to the last 21 nucleotides of the CK ⁇ -3 coding sequence ⁇ et out in Figure 1 (SEQ ID NO:l), including the ⁇ top codon.
  • the amplified fragment is isolated from a 1% agarose gel using a commercially available kit ("Geneclean,” BIO 101 Inc., La Jolla, Ca.). The fragment then is digested with BamHI and A ⁇ p7l8 and again is purified on a 1% agarose gel. This fragment is designated herein F2.
  • the vector pRGl is used to express the CK ⁇ -3 protein in the baculovirus expres ⁇ ion system, using standard method ⁇ , such as tho ⁇ e de ⁇ cribed in Summers et al, A MANUAL OF METHODS FOR BACULOVIRUS VECTORS AND INSECT CELL CULTURE PROCEDURES, Texa ⁇ Agricultural Experimental Station Bulletin No. 1555 (1987) .
  • Thi ⁇ expression vector contains the strong polyhedrin promoter of the Autographa californica nuclear polyhedrosis virus (AcMNPV) followed by convenient restriction sites.
  • the signal peptide of AcMNPV gp67, including the N-terminal methionine, is located just upstream of a BamHI site.
  • the polyadenylation site of the simian virus 40 (“SV40") is used for efficient polyadenylation.
  • SV40 simian virus 40
  • the beta-galacto ⁇ ida ⁇ e gene from E.coli i ⁇ inserted in the same orientation as the polyhedrin promoter and is followed by the polyadenylation signal of the polyhedrin gene.
  • the polyhedrin sequences are flanked at both side ⁇ by viral sequences for cell-mediated homologous recombination with wild-type viral DNA to generate viable viru ⁇ that express the cloned polynucleotide.
  • baculovirus vectors could be used in place of pA2- GP, such as pAc373, pVL941 and pAcIMl provided, as tho ⁇ e of ⁇ kill readily will appreciate, that con ⁇ truction provide ⁇ appropriately located signals for transcription, translation, trafficking and the like, ⁇ uch as an in-frame AUG and a signal peptide, as required.
  • Such vectors are described in Luckow et al., Virology 170: 31-39, among other ⁇ .
  • the plasmid is digested with the restriction enzymes Xbal and BamHI and then is dephosphorylated using calf inte ⁇ tinal phosphatase, using routine procedures known in the art.
  • the DNA is then isolated from a 1% agarose gel using a commercially available kit ("Geneclean" BIO 101 Inc., La Jolla, Ca.). This vector DNA is designated herein "V2".
  • Fragment F2 and the dephosphorylated plasmid V2 are ligated together with T4 DNA ligase.
  • E.coli HB101 cells are transformed with ligation mix and spread on culture plates.
  • Bacteria are identified that contain the plasmid with the human CK ⁇ -3 gene by digesting DNA from individual colonies using Xbal and BamHI and then analyzing the digestion product by gel electrophoresis. The sequence of the cloned fragment is confirmed by DNA sequencing. This plasmid i ⁇ designated herein pBacCK ⁇ -3.
  • 5 ⁇ g of the plasmid pBacCK ⁇ -3 is co-transfected with 1.0 ⁇ g of a commercially available linearized baculovirus DNA ("BaculoGoldTM baculoviru ⁇ DNA", Pharmingen, San Diego, CA.), u ⁇ ing the lipofection method de ⁇ cribed by Feigner et al., Proc. Natl. Acad. Sci. USA 84: 7413-7417 (1987) .
  • l ⁇ g of BaculoGoldTM viru ⁇ DNA and 5 ⁇ g of the pla ⁇ mid pBacCK ⁇ -3 are mixed in a ⁇ terile well of a microtiter plate containing 50 ⁇ l of serum free Grace's medium (Life Technologies Inc.
  • plaque assay After four day ⁇ the supernatant is collected and a plaque assay is performed, as described by Summers and Smith, cited above.
  • An agarose gel with "Blue Gal” (Life Technologies Inc., Gaithersburg) i ⁇ used to allow easy identification and isolation of gal-expressing clones, which produce blue-stained plaques. (A detailed description of a "plaque assay" of this type can also be found in the user' ⁇ guide for insect cell culture and baculovirology distributed by Life Technologies Inc. , Gaithersburg, page 9-10) .
  • V-CK ⁇ -3 A clone containing properly in ⁇ erted CK ⁇ -3 is identified by DNA analysis including restriction mapping and sequencing. This is designated herein as V-CK ⁇ -3.
  • Sf cells are grown in Grace's medium supplemented with 10% heat-inactivated FBS.
  • the cells are infected with the recombinant baculovirus V-CK ⁇ -3 at a multiplicity of infection ("MOI") of about 2 (about l to about 3) .
  • MOI multiplicity of infection
  • the medium is removed and is replaced with SF900 II medium minus methionine and cysteine (available from Life Technologies Inc., Gaithersburg). 42 hours later, 5 ⁇ Ci of 35S-methionine and 5 ⁇ Ci 35S cysteine (available from Amersham) are added.
  • the cells are further incubated for 16 hours and then they are harvested by centrifugation, lysed and the labeled proteins are visualized by SDS-PAGE and autoradiography.
  • the growth medium was harvested on day 4 post-infection. After the removal of baculovirus cells by continuous centrifugation, tbe supernatant was applied to a cation exchange column (poro ⁇ HS 50 resin from PerSeptive Biosystem) pre- equilibrated with buffer A (IX PBS pH 7.2) . The column was washed extensively with 0.5M NaCl in the same buffer and then eluted using a 0.5 - 1.0 M NaCl gradient. The fractions containing Cka3 (or Cka2) were pooled and concentrated. The combined fractions was further purified by gel filtration chromatography (Superdex 200 or Superdex 75 from Pharmacia Biotech) .
  • Example 3 Expres ⁇ ion of CK ⁇ -3 in COS cell ⁇
  • the expression plasmid, CK ⁇ -3 HA, i ⁇ made by cloning a cDNA encoding CK ⁇ -3 into the expression vector pcDNAI/Amp (which can be obtained rom Invitrogen, Inc.) .
  • the expres ⁇ ion vector pcDNAI/amp contains: (1) an E.coli origin of replication effective for propagation in E. coli and other prokaryotic cell; (2) an ampicillin resistance gene for selection of plasmid-containing prokaryotic cells,- (3) an SV40 origin of replication for propagation in eukaryotic cells,- (4) a CMV promoter, a polylinker, an SV40 intron, and a polyadenylation signal arranged so that a cDNA conveniently can be placed under expression control of the CMV promoter and operably linked to the SV40 intron and the polyadenylation signal by means of restriction ⁇ ite ⁇ in the polylinker.
  • a DNA fragment encoding the entire CK ⁇ -3 precursor and a HA tag fu ⁇ ed in frame to it ⁇ 3' end i ⁇ cloned into the polylinker region of the vector ⁇ o that recombinant protein expre ⁇ ion is directed by the CMV promoter.
  • the HA tag corresponds to an epitope derived from the influenza hemagglutinin protein described by Wilson et al., Cell 37: 767 (1984). The fusion of the HA tag to the target protein allows ea ⁇ y detection of the recombinant protein with an antibody that recognize ⁇ the HA epitope.
  • the plasmid construction strategy i ⁇ a ⁇ follows.
  • one of the primers contains a hemagglutinin tag ("HA tag") as described above.
  • Suitable primers include that following, which are used in this example.
  • the 5' primer containing the underlined Bam HI site, an AUG start codon and 6 codons of the CK ⁇ -3 coding sequences has the following ⁇ equence 5' AAAGGATCCGCCACCATGAGCCTCCCGTCCAGC 3' (SEQ ID NO:7) .
  • the 3' primer containing the underlined Xba I ⁇ ite, a ⁇ top codon, 9 codon ⁇ forming an HA tag and 18 bp of 3' coding ⁇ equence (at the 3' end) has the following sequence; 5' AAATCTAGATCAAGCGTAGTCTGGGACG CGTATGGGTAGTTT CTTGTTCCACTGTC 3' (SEQ ID NO:8) .
  • the PCR amplified DNA fragment and the vector, pcDNAI/Amp, are digested with and then ligated.
  • the ligation mixture is transformed into E. coli strain SURE (available from Stratagene Cloning System ⁇ , 11099 North Torrey Pine ⁇ Road, La Jolla, CA 92037) the transformed culture is plated on ampicillin media plates which then are incubated to allow growth of ampicillin resistant colonies. Plasmid DNA is isolated from resistant colonies and examined by restriction analysi ⁇ and gel sizing for the presence of the CK ⁇ -3-encoding fragment.
  • COS cells are transfected with an expression vector, as described above, using DEAE-DEXTRAN, as described, for instance, in Sambrook et al., MOLECULAR CLONING: A LABORATORY MANUAL, Cold Spring Laboratory Pres ⁇ , Cold Spring Harbor, New York (1989) .
  • Cells are incubated under conditions for expres ⁇ ion of CK ⁇ -3 by the vector.
  • CK ⁇ -3 HA fusion protein is detected by radiolabelling and immunoprecipitation, usingmethods described in, for example Harlow et al., ANTIBODIES: A LABORATORY MANUAL, 2nd Ed.,- Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1988) . To this end, two days after tran ⁇ fection, the cells are labeled by incubation in media containing 35S-cysteine for 8 hours.
  • the cells and the media are collected, and the cell ⁇ are washed and the lysed with detergent-containing RIPA buffer: 150 mM NaCl, 1% NP-40, 0.1% SDS, 1% NP-40, 0.5% DOC, 50 mM TRIS, pH 7.5, as described by Wilson et al. cited above.
  • Proteins are precipitated from the cell lysate and from the culture media u ⁇ ing an HA- ⁇ pecific monoclonal antibody.
  • the precipitated protein ⁇ then are analyzed by SDS-PAGB gel ⁇ and autoradiography. An expre ⁇ sion product of the expected size is ⁇ een in the cell ly ⁇ ate, which i ⁇ not ⁇ een in negative control ⁇ .
  • Fibroblast ⁇ are obtained from a ⁇ ubject by ⁇ kin biop ⁇ y.
  • Small chunks of the tissue are placed on a wet surface of a tissue culture flask, approximately ten pieces are placed in each flask.
  • the flask is turned upside down, closed tight and left at room temperature overnight. After 24 hours at room temperature, the flask is inverted - the chunks of tissue remain fixed to the bottom of the flask - and fresh media is added (e.g. , Ham's F12 media, with 10% FBS, penicillin and streptomycin) .
  • the tissue is then incubated at 37'C for approximately one week. At this time, fresh media is added and sub ⁇ equently changed every several days. After an additional two weeks in culture, a monolayer of fibroblasts emerges. The monolayer is trypsinized and scaled into larger flasks.
  • a vector for gene therapy is digested with restriction enzymes for cloning a fragment to be expressed.
  • the digested vector is treated with calf intestinal phosphatase to prevent self-ligation.
  • the dephosphorylated, linear vector is fractionated on an agarose gel and purified.
  • CK ⁇ -3 cDNA capable of expres ⁇ ing active CK ⁇ -3, i ⁇ isolated.
  • the ends of the fragment are modified, if necessary, for cloning into the vector. For instance, 5" overhanging may be treated with DNA polymerase to create blunt ends. 3' overhanging ends may be removed using SI nuclease. Linkers may be ligated to blunt ends with T4 DNA ligase.
  • Equal quantities of the Moloney murine leukemia virus linear backbone and the CK ⁇ -3 fragment are mixed together and joined using T4 DNA ligase.
  • the ligation mixture is used to transform E. Coli and the bacteria are then plated onto agar-containing kanamycin. Kanamycin phenotype and restriction analysi ⁇ confirm that the vector has the properly inserted gene.
  • Packaging cell ⁇ are grown in tis ⁇ ue culture to confluent den ⁇ ity in Dulbecco's Modified Eagles Medium (DMBM) with 10% calf serum (CS) , penicillin and streptomycin.
  • DMBM Dulbecco's Modified Eagles Medium
  • CS calf serum
  • penicillin and streptomycin The vector containing the CK ⁇ -3 gene is introduced into the packaging cells by standard techniques. Infectious viral particle ⁇ containing the CK ⁇ -3 gene are collected from the packaging cells, which now are called producer cells.
  • Fresh media is added to the producer cells, and after an appropriate incubation period media is harvested from the plate ⁇ of confluent producer cell ⁇ .
  • the media containing the infectious viral particles, is filtered through a Millipore filter to remove detached producer cell ⁇ .
  • the filtered media then is used to infect fibroblast cells.
  • Media is removed from a sub-confluent plate of fibroblasts and quickly replaced with the filtered media.
  • Polybrene Aldrich
  • the media is removed and replaced with fresh media. If the titer of virus is high, then virtually all fibroblasts will be infected and no selection is required. If the titer is low, then it is necessary to use a retroviral vector that has a selectable marker, such as neo or his, to select out transduced cells for expansion.
  • Engineered fibrobla ⁇ t ⁇ then may be injected into rat ⁇ , either alone or after having been grown to confluence on microcarrier bead ⁇ , ⁇ uch a ⁇ cytodex 3 bead ⁇ .
  • the injected fibroblasts produce CK ⁇ -3 product, and the biological actions of the protein are conveyed to the host.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Toxicology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

La présente invention concerne les polypeptides de la chémokine Alpha-3 humaine et l'ADN (ARN) codant pour de telles cytokines chimiotactiques et une procédure pour la production de tels polypeptides par des techniques de recombinaison. L'invention se rapporte aussi à des procédés d'utilisation de telles cytokines chimiotactiques pour le traitement des pathologies suivantes : leucémie, tumeurs, infections chroniques, maladies auto-immunes, troubles fibrotiques, sepsis, psoriasis et pour la cicatrisation des blessures. De tels procédés permettent aussi de stimuler la mobilisation de la cellule souche. L'invention concerne enfin des antagonistes de telles cytokines chimiotactiques et leur utilisation thérapeutique pour traiter la polyarthrite rhumatoïde, les maladies auto-immunes et de manière générale les maladies infectieuses, inflammatoires, chroniques et aiguës, ainsi que les réactions allergiques, la fièvre non prostaglandinique, l'insuffisance respiratoire aiguë des états de choc (ARDS) et les insuffisances médullaires. S'y ajoutent également des méthodes de diagnostic pour détecter certaines maladies se rapportant à des mutations dans les séquences d'acides nucléiques et à des concentrations anormales en polypeptides. S'y ajoutent enfin des méthodes de diagnostic pour la détection de mutations dans les polynucléotides codant les cytokines chimiotactiques et pour la détection de modifications des taux de polypeptides dans un hôte.
PCT/US1996/003686 1996-03-18 1996-03-18 Chemokine alpha 3 WO1997035027A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA002249995A CA2249995A1 (fr) 1996-03-18 1996-03-18 Chemokine alpha 3
EP96911336A EP0904398A4 (fr) 1996-03-18 1996-03-18 Chemokine alpha 3
PCT/US1996/003686 WO1997035027A1 (fr) 1996-03-18 1996-03-18 Chemokine alpha 3
JP09515324A JP2000506366A (ja) 1996-03-18 1996-03-18 ケモカインアルファ3
AU54254/96A AU5425496A (en) 1996-03-18 1996-03-18 Chemokine alpha 3

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CA002249995A CA2249995A1 (fr) 1996-03-18 1996-03-18 Chemokine alpha 3
PCT/US1996/003686 WO1997035027A1 (fr) 1996-03-18 1996-03-18 Chemokine alpha 3

Publications (1)

Publication Number Publication Date
WO1997035027A1 true WO1997035027A1 (fr) 1997-09-25

Family

ID=25680556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1996/003686 WO1997035027A1 (fr) 1996-03-18 1996-03-18 Chemokine alpha 3

Country Status (4)

Country Link
EP (1) EP0904398A4 (fr)
AU (1) AU5425496A (fr)
CA (1) CA2249995A1 (fr)
WO (1) WO1997035027A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999032631A1 (fr) * 1997-12-23 1999-07-01 Hyseq, Inc. CHIMIOKINE OBTENUE A PARTIR D'UNE BANQUE D'ADNc DE FOIE-RATE DE FOETUS
US6406688B1 (en) 1996-05-14 2002-06-18 Human Genome Sciences, Inc. Method of treating sepsis and ARDS with chemokine β-4
US6410268B1 (en) * 1996-03-18 2002-06-25 Human Genome Sciences, Inc. Polynucleotides encoding chemokine alpha-3

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5504003A (en) * 1994-03-08 1996-04-02 Human Genome Sciences, Inc. Macrophage inflammatory protein-3 and -4
US5525486A (en) * 1993-01-14 1996-06-11 Tasuku Honjo Process for constructing cDNA library, and novel polypeptide and DNA coding for the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994012537A2 (fr) * 1992-11-27 1994-06-09 Rega Institute Leuven University Proteine a chimiotaxie selective pour les granulocytes

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5525486A (en) * 1993-01-14 1996-06-11 Tasuku Honjo Process for constructing cDNA library, and novel polypeptide and DNA coding for the same
US5504003A (en) * 1994-03-08 1996-04-02 Human Genome Sciences, Inc. Macrophage inflammatory protein-3 and -4

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
BIOCHEMISTRY, 1993, Vol. 32, No. 38, PROOST et al., "Human and Bovine Granulocyte Chemotactic Protein-2: Complete Amino Acid Sequence and Functional Characterization as Chemokines", pages 10170-10177. *
J. BIOL. CHEM., 02 February 1996, Vol. 271, No. 5, PROUDFOOT et al., "Extension of Recombinant Human RANTES by the Retention of the Initiating Methionine Produces a Potent Antagonist", pages 2599-2603. *
J. BIOL. CHEM., 03 May 1996, Vol. 271, No. 18, GONG et al., "RANTES and MCP-3 Antagonists Bind Multiple Chemokine Receptors", pages 10521-10527. *
J. BIOL. CHEM., 27 October 1995, Vol. 270, No. 43, SZABO et al., "Chemokine Class Differences in Binding to the Duffy Antigen-Erythrocyte Chemokine Receptor", pages 25348-25351. *
J. EXP. MED., January 1996, Vol. 183, SCHULZ-KNAPPE et al., "HCC-1, a Novel Chemokine from Human Plasma", pages 295-299. *
J. EXP. MED., November 1995, Vol. 182, No. 5, LIAO et al., "Human Mig Chemokine: Biochemical and Functional Characterization", pages 1301-1314. *
J. IMMUNOL., 01 December 1995, Vol. 155, HARA et al., "Molecular Cloning and Functional Characterization of a Novel Member of the C-C Chemokine Family", pages 5352-5358. *
J. IMMUNOL., 15 November 1994, Vol. 153, No. 10, LUO et al., "Biologic Activities of the Murine Beta-chemokine TCA3", pages 4616-4624. *
J. LEUKOCYTE BIOL., January 1996, Vol. 59, No. 1, HORUK et al., "The Duffy Antigen Receptor for Chemokines: Structural Analysis and Expression in the Brain", pages 29-38. *
J. LEUKOCYTE BIOL., January 1996, Vol. 59, WELLS et al., "Selectivity and Antagonism of Chemokine Receptors", pages 53-60. *
See also references of EP0904398A4 *
TRENDS IN BIOTECHNOLOGY, February 1996, Vol. 14, No. 2, HOWARD et al., "Chemokines: Progress Toward Identifying Molecular Targets for Therapeutic Agents", pages 46-51. *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6410268B1 (en) * 1996-03-18 2002-06-25 Human Genome Sciences, Inc. Polynucleotides encoding chemokine alpha-3
US6908986B2 (en) 1996-03-18 2005-06-21 Human Genome Sciences, Inc. Chemokine alpha 3
US7419662B2 (en) 1996-03-18 2008-09-02 Human Genome Sciences, Inc. Methods of making chemokine alpha 3 antibodies
US6406688B1 (en) 1996-05-14 2002-06-18 Human Genome Sciences, Inc. Method of treating sepsis and ARDS with chemokine β-4
WO1999032631A1 (fr) * 1997-12-23 1999-07-01 Hyseq, Inc. CHIMIOKINE OBTENUE A PARTIR D'UNE BANQUE D'ADNc DE FOIE-RATE DE FOETUS

Also Published As

Publication number Publication date
AU5425496A (en) 1997-10-10
EP0904398A1 (fr) 1999-03-31
EP0904398A4 (fr) 2004-12-01
CA2249995A1 (fr) 1997-09-25

Similar Documents

Publication Publication Date Title
EP0897390B1 (fr) Facteurs de necrose tumorale delta et epsilon chez l'homme
US5874240A (en) Human 4-1BB receptor splicing variant
US6479633B1 (en) Chemokine alpha 2
EP0832233A1 (fr) Chemokine beta-13 humaine
US5945303A (en) Human hematopoietic-specific protein
WO1996039520A1 (fr) Chemokine beta-12 humaine
WO1997034013A1 (fr) Cytokine ii chimiotactique
US7309780B2 (en) Antibodies to natural killer cell activating factor II
US6410268B1 (en) Polynucleotides encoding chemokine alpha-3
WO1997035027A1 (fr) Chemokine alpha 3
US5952197A (en) DNA encoding the chemotactic cytokine III
US20060171918A1 (en) Apoptosis inducing molecule I
AU767338B2 (en) Chemokine alpha 2
WO1997037022A1 (fr) Facteur ii d'activation de cellules tueuses naturelles chez l'homme
AU2003236393B2 (en) Methods of Treating or Preventing Inflammation or Rheumatoid Arthritis
AU753730B2 (en) Human chemokine beta-13
WO1997032993A1 (fr) Cytokine iii chimiotactique
US20040197874A1 (en) Human cytokine polypeptide
AU2004200383A1 (en) Chemokine Alpha 2

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AM AU BG BR BY CA CN CZ EE FI GE HU JP KG KP KR KZ LT LV MD MN MX NO NZ PL RO RU SG SI SK TJ TM UA US UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 2249995

Country of ref document: CA

Ref country code: CA

Ref document number: 2249995

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1996911336

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1996911336

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1996911336

Country of ref document: EP