WO1997033355A1 - Modular power management system and method - Google Patents

Modular power management system and method Download PDF

Info

Publication number
WO1997033355A1
WO1997033355A1 PCT/US1996/006025 US9606025W WO9733355A1 WO 1997033355 A1 WO1997033355 A1 WO 1997033355A1 US 9606025 W US9606025 W US 9606025W WO 9733355 A1 WO9733355 A1 WO 9733355A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage battery
ground
power
management system
providing
Prior art date
Application number
PCT/US1996/006025
Other languages
French (fr)
Inventor
William G. Wilhelm
Original Assignee
Nextek Power Systems, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nextek Power Systems, Inc. filed Critical Nextek Power Systems, Inc.
Priority to DE69636461T priority Critical patent/DE69636461T2/en
Priority to AU57191/96A priority patent/AU734988B2/en
Priority to EP96915410A priority patent/EP0904621B1/en
Priority to CA002248073A priority patent/CA2248073C/en
Priority to BR9612568-3A priority patent/BR9612568A/en
Priority to JP53173197A priority patent/JP3773538B2/en
Publication of WO1997033355A1 publication Critical patent/WO1997033355A1/en
Priority to HK99105311A priority patent/HK1020236A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/02Arrangements for reducing harmonics or ripples
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/06Two-wire systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J4/00Circuit arrangements for mains or distribution networks not specified as ac or dc
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R25/00Coupling parts adapted for simultaneous co-operation with two or more identical counterparts, e.g. for distributing energy to two or more circuits
    • H01R25/006Coupling parts adapted for simultaneous co-operation with two or more identical counterparts, e.g. for distributing energy to two or more circuits the coupling part being secured to apparatus or structure, e.g. duplex wall receptacle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies

Definitions

  • Patent 5,500,561 and my prior applications are incorporated herein by reference thereto.
  • inverter or inverter means shall mean a device, circuit or system that delivers AC power when energized from a source of DC power i.e., it is the opposite of rectification; converter or converter means shall mean a device, circuit or system that both receives and provides DC power in which AC is generated as an intermediate process in the flow of energy; and the term intrinsic DC load or intrinsic DC load means shall mean a DC device, circuit or system which functions as a DC load in response to DC power input thereto.
  • My aforesaid patent 5,500,561 is directed to A CUSTOMER SIDE POWER MANAGEMENT SYSTEM AND METHOD and discloses several embodiments wherein substantial relaxation is achieved in the requirement that an electric or public utility maintain a generating capacity far exceeding the anticipated maximum demand for electricity.
  • my patent and prior applications are directed to systems wherein a direct current power supply means in the form of storage battery means is included in the power management system and operates to alleviate excessive power demands on the electric utility.
  • This CIP application relates to electrical distribution generally and in particular to electrical distribution as it applies particularly to dwellings for example, wherein it is well known that electrical energy is distributed from a public or electric utility in AC form, normally in split-phase having the meaning that two 120 V AC phases of the utility are brought into a building so as to be available as two 120 V AC circuits and a 240 V AC circuit.
  • a three-wire system involves the use of two line power conductors and a neutral wire conductor supplied by the utility. These conductors, according to usual practice, are brought into the customer's distribution box and connected therein to two line power busses through suitable circuit breaker means and directly to a neutral buss housed within the box.
  • the box also houses a ground buss which, according to normal practice, is provided with a wire connection extending externally of the box and into electrical connection with an earthing pole which establishes earth potential at the ground buss.
  • This CIP application is directed to the problem of efficiently using and/or utilizing electrical power and to the method thereof, more specifically, of efficiently utilizing DC power at the site of interest by establishing a dual voltage capability at such site.
  • An object of this invention is to permit two different power supply systems, one DC and the other AC, to reside on common building wiring as found in the United States and elsewhere in the world.
  • Another object of this invention is to provide a compatible power wiring system that allows both DC power operation and AC power operation to coexist, without modification to the power wiring system, from common building wiring power outlets.
  • This compatibility allows, for example, appliances which operate on low voltage 24 V DC, especially those which now do or in the future will function as intrinsic DC loads or intrinsic DC load means, and those which operate as conventional 120 V AC appliances, to be used within the same building space and with existing cabling or wiring.
  • Another object of this invention is to introduce the concept of ganged circuit breaker means in power wiring systems. Still another object of this invention is the provision of dual voltage capability with ganged circuit breaker means functioning to interrupt not only both the "high” and “low” sides of AC voltage circuitry but DC circuitry as well. Stated otherwise, the preceding object may utilize one circuit breaker means in an AC path and a second circuit breaker means in a DC current path as veil.
  • Still another object of this invention is to provide an intrinsic DC load means that embodies looping of the wiring through one circuit breaker means connecting to one side of the DC power source and through a second circuit breaker means to the other side of the DC power source.
  • a further object of this invention is to provide apparatus that requires only a simple input connection after the electric distribution box of living quarters or of a dwelling (either mobile or not) such that it will function in a variety of different ways which permit stand alone function with DC energy input from a plurality of DC power source means i.e., from generator means, photo-voltaic means, wind turbine means, and etc.
  • a further object of the invention is to provide the combination of filter capacitor means and storage battery means disposed in electrical parallel, the filter capacitor means functioning as a limited AC path to ground, sized, in capacitance to assure a low impedance path to ground at 60 Hz, the storage battery means functioning to conduct current in opposite directions, consistent with the requirements for AC conduction to ground. That is, the storage battery means and its associated DC power supply provide both a DC isolation path to ground and an AC continuity path to ground whereas the filter capacitor means supplies a limited AC path to ground.
  • a further object of this invention is to provide a system in conformity with the preceding object wherein the filter capacitor means is hard wired within the electrical distribution box and the storage battery means is housed within the module unit of this invention.
  • Another object of the invention is to provide the combination of an electrical distribution box housing neutral buss means, power buss means, ground buss means and filter capacitor means, the latter being of limited capacitance and little bulk so as to provide a limited AC path to ground, and a modular power system module unit which houses storage battery means of substantial capacitance and large bulk compared with said filter capacitor means so as to conduct current in opposite directions to provide for AC conduction to ground.
  • Another object of the invention is to provide a practical approach to the application of building-side DC power for intrinsic DC devices or loads.
  • Another important object of this invention is to provide a modular unit in which the modular unit comprises storage battery means for providing a battery equivalent capacitance which is very large in capacitance and bulk in combination with voltage regulator means or with converter means for controlling the charge level of the storage battery means.
  • Another object of this invention is to provide a system in accord with the preceding object in combination with intrinsic DC load means for utilizing the storage capacity of the storage battery means.
  • Another object of this invention is to provide a modular system using a rechargeable storage battery means as part of a critical conversion circuit for filtering and voltage regulation (which may involve a converter) to protect the storage battery means from damage by overcharging or undercharging and in which the storage battery means supplies power to an intrinsic DC load means.
  • Still another object of the invention is to provide the combination of an electrical distribution box housing neutral buss means, power buss means, ground buss means and filter capacitor means, the latter being of limited capacitance and little bulk so as to provide a limited AC path to ground and be DC blocking, and a modular power system module unit which houses storage battery means of substantial capacitance and large bulk compared with said filter capacitor means, and intrinsic DC load means for drawing upon the storage capacity of said storage battery means.
  • a further object of this invention involves the battery equivalent capacitance of said storage battery means being very large consistent with an ideal AC path to ground and the capacitance of said filter capacitor means being very small consistent with a limited AC path to ground but large enough to pass sufficient current to keep the worse case fault currents well below any shock hazards and to allow sufficient current flow to trip relevant circuit breakers in the event of a short circuit.
  • Fig. 1 illustrates the dual voltage concept of the invention, the ganged circuit breaker means concept and the modular concept thereof;
  • Fig. 2 illustrates the invention with regard to incorporation of the linear voltage regulator and control interface of my copending application as one means for controlling the charge level of the storage battery means;
  • Fig. 3 illustrates the use of circuit breaker means and the looping of a DC lighting circuit as well as auxiliary DC equipment and an inverter associated with a simplified illustration of the electric distribution box; and
  • Fig. 4 illustrates a converter fed by the DC supply from a rectifier and providing an output to storage battery means illustrated as having a filter capacitor in electrical parallel therewith.
  • FIG. 1 shows a partial circuit diagram of this invention, illustrating a conventional three-wire or split-phase system comprised of the electric utility power line wires LI and L2 and the neutral wire N as may be supplied from an electric utility EU and extending into the electrical distribution box EDB of an abode, dwelling or the like
  • the box EDB is provided with conventional knock-out openings through which the cables or wires from the utility or to and from other entities are passed, the wires LI and L2 being connected to the power company or electric utility circuit breakers 10 and 12 whereby the internal power busses PI and P2 and the dwelling circuits AL in the AC distribution box DBA and the dwelling circuit intrinsic load means LM in the DC distribution box DBD to which they are connected are protected from excessive voltages or surges emanating from the utility EU.
  • the neutral wire N is connected internally to the neutral buss NB which is isolated from direct connection to the internal ground buss GB of the distribution box EDB.
  • a conventional electrical outlet EOl is shown whose electrical plug openings 20, 22 and 24 are shown to be connected by wires W20,
  • the circuit breakers 10 and 12 referenced above are of conventional type in that they snap into place when the conventional hinged front panel of the box EDB is swung aside to expose any circuit breakers housed within the box. This is much preferred to the older screw-threaded fuse receptacles.
  • the modular feature of this invention involves the use of the storage battery means SB having its positive terminal connected by the wiring B26 having a junction Jl with the ground buss wiring
  • the prongs 20', 22' and 24' of the electric plug PLl may be used to feed the AC loads AL powered by the box DBA.
  • the electric plug PL2 may be used to feed the intrinsic DC load means LM powered by the box DBD.
  • Fig. 1 illustrates a basic modular unit M which is external to the box EDB and therefore attains some surprising advantages which will now be explained.
  • the basic modular unit M comprises the rechargeable storage battery means SB which represents the battery storage capacity to be drawn upon when DC power is not otherwise available to the consuming load.
  • the storage battery means SB is chargeable in deep cycle fashion to a charge value at which an incipient electrolyte boiling point is reached and the battery charging means employed must be capable of effecting such charge value as will ensure this level of charge without either overcharging or undercharging.
  • An important aspect of this invention resides in the compound use of the "battery equivalent capacitance", inherent with the storage battery means SB, in conjunction with the filter capacitor FC.
  • the magnitude of the "battery equivalent capacitance" gain per unit volume exhibited by the storage battery means SB is outstanding.
  • a standard filter capacitor FC might have a capacitance measured in microfarads (say 50 microfarads) and be of a bulk or volume to fit easily within the box DB.
  • the storage battery means will have a battery equivalent capacitance of at least 10,000 Farads.
  • the high battery equivalent capacitance of the storage battery means is highly effective for AC ripple filtering but the bulk is too high for incorporation within the box EDB and, more importantly, it provides an ideal AC path to ground.
  • the storage battery means SB were to be removed, even temporarily, the limited AC path to ground supplied by the filter capacitor FC would be inadequate to provide an adequate AC path to ground, however, the presence of the DC power source DCPS, or its equivalent, provides the adequate path.
  • the relative "battery equivalent capacitance" would be at least 10,000 Farads. Stated otherwise, such storage battery means SB would provide a very large and adequate AC path to ground commensurate with the load current being drawn and the limited AC path to ground afforded by the filter capacitor FC would still be essential to comply with local electrical codes.
  • the two capacitors operate in conjunction with one another and both are essential for complying with local codes, the means SB conducting current in opposite directions consistent with the requirements for AC conduction to ground and its associated DC power supply additionally providing a DC isolation path from ground, and the means FC providing a second, but limited, AC path to ground in the event that the means SB becomes disabled.
  • the means FC is sized in capacitance wherein the capacitive reactance Xc is low enough to pass sufficient current to keep both the worst case fault currents well below any shock hazards and to allow sufficient current flow to trip the relevant circuit breaker(s) in the event of an appliance short circuit.
  • filter capacitor FC normally would be hard wired within the box EDB, it could be incorporated within the module M in parallel with the storage battery'means.
  • the plug openings 20 and 22 may be connected to the AC load means AL of the distribution box DBA through the prongs 20' and 22' of the electric plug PL1 and the plug openings 22 and 24 may be connected to the intrinsic DC load means LM of the electric distribution box DBD through the prongs 22" and 24" of the electric plug PL2.
  • FIG. 1 is somewhat simplified because only one AC power buss P2 is connected although other and different connections could be illustrated and only one DC power availability is illustrated between the wirings W22 and W24 although the electrical outlet E01 could be much more complex and offer a great deal more in the way of AC and DC power capabilities. Such will be illustrated in greater detail hereinafter.
  • FIG. 2 is somewhat simplified because only one AC power buss P2 is connected although other and different connections could be illustrated and only one DC power availability is illustrated between the wirings W22 and W24 although the electrical outlet E01 could be much more complex and offer a great deal more in the way of AC and DC power capabilities. Such will be illustrated in greater detail hereinafter.
  • FIG. 2 is somewhat simplified because only one AC power buss P2 is connected although other and different connections could be illustrated and only one DC power availability is illustrated between the wirings W22 and W24 although the electrical outlet E01 could be much more complex and offer a great deal more in the way of AC and DC power capabilities. Such will be illustrated in greater detail hereinafter.
  • FIG. 2
  • the voltage regulator function illustrated in Fig. 2 is one means for maintaining the charge level of the storage battery means SB, contained within the module M and which is connected to the junctions Jl and J2 (see Fig. 1) .
  • the lighting load 46 is, of course, an intrinsic DC load means such as the looped LIGHTS circuits FL looped between the ground buss GB and the circuit breakers B5 and B6 which are connected to the neutral buss NB as in Fig. 3.
  • the DC power source DCPS of Fig. 1 is the photo-voltaic panel means PV of Fig. 2 and the inverter means INV is shown in both Figs. 1 & 2. It will also be understood that although the electric distribution box EDB is not illustrated fully in Fig. 2, this is done for simplicity to avoid overcrowding of the Figure.
  • FIG. 3 Fig. 3 shows the electric distribution box EDB in simplified and uncluttered form and is principally directed to illustrating the concept of ganged circuit breakers and of looping of an intrinsic DC load means as well the use of a load source means.
  • the box EDB is outlined and the ground buss GB, the neutral buss NB and the power buss P2 are all designated.
  • the DC ballasted fluorescent lighting intrinsic DC load means FL comprises an example of a distributor box DBD emanating from the box EDB.
  • Each looping WDBD54 and WDBD56 is between the neutral buss NB (-DC) through the circuit breaker means B5 and B6 to the ground buss GB (+DC) .
  • the DC power sources DCPS are illustrated as the DC generator and the photo-voltaic panel means PV which, after regulation at the regulator 40, passes through the isolating diode D2 to the junction A to which the positive side of the DC generator DCPS is connected through the isolating diode Dl.
  • the junction A is connected to the ground buss GB through the circuit breaker B8 whereas the AC input from the inverter 50 is connected to the neutral buss NB by means of the wiring W50 and to the circuit breaker B7 through the wiring W52.
  • the looping of the intrinsic DC load means effectively doubles the current carrying capacities of the associated wirings whereas the ganging of the AC and DC paths as to circuit breaker means allows the dual voltage aspect to be carried out with increased safety.
  • the modular concept of this invention is very important in that it involves the provision of separate entities which are the storage battery means SB and the filter capacitor means FC.
  • the storage battery means SB has a very large battery equivalent capacitance consistent with an excellent AC path to ground and the filter capacitor means FC has a very small capacitance consistent with a limited AC path to ground and being sized in capacitance wherein the capacitive reactance Xc is low enough to pass sufficient current to keep both the worst case fault currents well below any shock hazards and to allow sufficient current flow to trip the relevant circuit breaker(s) in the event of an appliance short circuit.
  • the capacitance of the filter capacitor FC should be in the order of 50 microfarads.
  • Fig. 4 is directed to a circuit which embodies a switching type converter of very high efficiency and is a preferred form of converter because this type of DC-to-DC power supply represents high efficiency contemporaneously possible.
  • Fig. 4 illustrates input mechanisms, some of which are not designated by reference characters but which are designated as to function, and also illustrates output mechanisms, none of which are designated by reference characters but which are designated as to function. In all such cases, the meanings should be clear and the additional descriptive material detailing the mechanisms and reference characters are believed to be unnecessary.
  • the block enclosed in dashed lines and designated by the reference character 501 is a typical full wave rectifier bridge circuit (i.e., the opposite of an inverter) feeding the capacitor 505 at the junction 501* and whose purpose is to reduce the rectified ripple component of the circuit 501 and provide filtered DC input voltage, present between the junction 501' and the conductor 50lv, to the converter means.
  • a typical full wave rectifier bridge circuit i.e., the opposite of an inverter
  • the converter circuit shown downstream of and as fed by filtered DC from the rectifier circuit 501, has junctions 521' and 521' • within the section 521 between which the resistor/capacitor pair 52lr and 521c are connected and which pair provide the further junction 521'''.
  • the junction 521''' is connected to the conductor 52lv which supplies the pulse width modulator 503 with positive voltage Vcc, and this junction feeds the diode 521dl having junctions with the parallel resistor/capacitor pair which are connected between the diode 521d2 and the junction 521' '.
  • the converter employs a pulse width modulator PWM, indicated at 503, controlling the switching transistor circuit 508 to impress transient voltage spikes present on the conductor 508v through the primary of the transformer 506 to cycle current to the primary windings LI and L2 of the transformer 506 whereby "ac is generated as an intermediate process in the flow of energy" as is defined in the above definition of "converter".
  • PWM pulse width modulator
  • the secondary side of the transformer 506 is represented by the windings L3 and L4.
  • the circuit 509 is an optical isolation link between the pulse width modulator 503 and the control means 522 on the secondary side of the transformer 506 which allows control voltage on the conductor 509v emanating from the pulse width modulator 503 on the primary side of the transformer 506 to provide an input to the control means 522 on the secondary side to influence the pulse width modulator PWM 503 without current leakage back from the secondary circuit.
  • the frequency of conversion effected by the transformer 506 will be 20,000-100,000 Hz which dictates the need for the special capacitor 517 to absorb these transients, the capacitance of the capacitor 517 being typically about 1 microfarad when used.
  • a secondary winding L4 drives the circuit 514 which, similarly to the rectifier 501 plus the filtering of the capacitor 505, provides a DC output, in this case the proper DC input to the control means 522 at the conductor 514v.
  • the control means 522 has an output conductor 522o connected to the optical link 510 for controlling the three modes of operation of voltage control in accord with the principles of my prior applications. That is to say, when the optical isolator 510 link is "on”, modes which permit DC current to flow from the photovoltaic means 520 are operative, i.e., either or both DC power input from the means 520 alone and partial or shared DC power input from the means 520. When the optical isolator 510 link is "off”, the remaining mode, DC power input solely from another source, (i.e., no photovoltaic input) is effected.
  • the modes are controlled by the DC voltage prevailing across the junctions Jl and J2 (or the presence of a rechargeable DC mechanism such as a storage battery means connected to these junctions) in which case, mode 1, DC power input to the rechargeable DC mechanism alone, mode 2, shared DC power input, and mode 3 no DC power input to the rechargeable DC mechanism are the order of the day. That is to say, when the conductors 523 and 524 are connected to one of the DC sources illustrated in Fig. 4, or to a DC power source such as DCPS in Fig. 1 or in Fig. 3, the system will be fully operative for the purposes intended.
  • the DC voltage applied to the storage means will depend upon the feed back influenced by the resistors 36, 42, 43, 44, 45, 68, 70, 74 and 76 in Fig. 2 or by the resistors including 511, 512, 513 and 515 in Fig 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

An electrical distribution system and method has storage battery mechanism (M) of very large equivalent capacitance providing excellent ripple filtering and an ideal path to ground, a filter capacitor mechanism (FC) of microfarad size providing DC blocking and limited AC path to ground. The storage battery entity (SB) is maintained as to its charge by DC supply which provides regulated DC power in which switching regulation may be involved. The system and method provides dual voltage capability, both DC and AC in which circuit breakers (10, 12, 14 and 15) may be ganged for simultaneous tripping, and in which intrinsic DC circuit(s) (DBD) may be looped to increase current-carrying capability.

Description

MODULAR POWER MANAGEMENT SYSTEM AND METHOD CROSS REFERENCE TO RELATED APPLICATIONS
This application is a continuation-in-part of my copending application Serial No. 08/328,574 filed 10/24/94 and which will issue as Patent 5,500,561 on 03/19/96; which was a file-wrapper continuing application of application Serial No. 08/129,575 filed 9/29/93, now abandoned; which in turn was a file-wrapper continuing application of application Serial No. 07/944,786 filed 9/14/92, now abandoned; which in turn was a file-wrapper continuing application of my original application Serial No. 07/638,637 filed 1/18/91 and now abandoned.
The disclosures of Patent 5,500,561 and my prior applications are incorporated herein by reference thereto.
BACKGROUND AND BRIEF SUMMARY OF THE INVENTION In view of the confusion and oft-times misleading and even incorrect usage of some electrical terms in the patent as well as the technical literature, and to distinguish even from terms which may have been loosely employed in my Patent 5,500,561, the terms "inverter" or inverter means, "converter" or converter means, and "intrinsic DC load" or intrinsic DC load means shall now be defined insofar as usage in this CIP disclosure is concerned. That is to say, inverter or inverter means shall mean a device, circuit or system that delivers AC power when energized from a source of DC power i.e., it is the opposite of rectification; converter or converter means shall mean a device, circuit or system that both receives and provides DC power in which AC is generated as an intermediate process in the flow of energy; and the term intrinsic DC load or intrinsic DC load means shall mean a DC device, circuit or system which functions as a DC load in response to DC power input thereto.
My aforesaid patent 5,500,561 is directed to A CUSTOMER SIDE POWER MANAGEMENT SYSTEM AND METHOD and discloses several embodiments wherein substantial relaxation is achieved in the requirement that an electric or public utility maintain a generating capacity far exceeding the anticipated maximum demand for electricity. Generally speaking, my patent and prior applications are directed to systems wherein a direct current power supply means in the form of storage battery means is included in the power management system and operates to alleviate excessive power demands on the electric utility.
Briefly stated, the problem addressed in my copending applications is, at its heart, based upon the fact that power demands placed upon the electric utilities by consumers fluctuate enormously dependent upon the time of day, the day of the week, the season of the year and/or any other factor which may affect demand, including the type of consumer. So-called uninterruptible power supplies have been proposed but are generally inadequate to alleviate the problem in a proper and efficient manner. Such a system is exemplified by the Lavin et al patent 5,289,045 of Feb. 22, 1994 and attention is called to the references cited as prior art against my aforesaid prior applications.
This CIP application relates to electrical distribution generally and in particular to electrical distribution as it applies particularly to dwellings for example, wherein it is well known that electrical energy is distributed from a public or electric utility in AC form, normally in split-phase having the meaning that two 120 V AC phases of the utility are brought into a building so as to be available as two 120 V AC circuits and a 240 V AC circuit. Such a three-wire system involves the use of two line power conductors and a neutral wire conductor supplied by the utility. These conductors, according to usual practice, are brought into the customer's distribution box and connected therein to two line power busses through suitable circuit breaker means and directly to a neutral buss housed within the box. The box also houses a ground buss which, according to normal practice, is provided with a wire connection extending externally of the box and into electrical connection with an earthing pole which establishes earth potential at the ground buss.
This CIP application is directed to the problem of efficiently using and/or utilizing electrical power and to the method thereof, more specifically, of efficiently utilizing DC power at the site of interest by establishing a dual voltage capability at such site. An object of this invention is to permit two different power supply systems, one DC and the other AC, to reside on common building wiring as found in the United States and elsewhere in the world.
Another object of this invention is to provide a compatible power wiring system that allows both DC power operation and AC power operation to coexist, without modification to the power wiring system, from common building wiring power outlets. This compatibility allows, for example, appliances which operate on low voltage 24 V DC, especially those which now do or in the future will function as intrinsic DC loads or intrinsic DC load means, and those which operate as conventional 120 V AC appliances, to be used within the same building space and with existing cabling or wiring.
Another object of this invention is to introduce the concept of ganged circuit breaker means in power wiring systems. Still another object of this invention is the provision of dual voltage capability with ganged circuit breaker means functioning to interrupt not only both the "high" and "low" sides of AC voltage circuitry but DC circuitry as well. Stated otherwise, the preceding object may utilize one circuit breaker means in an AC path and a second circuit breaker means in a DC current path as veil.
Still another object of this invention is to provide an intrinsic DC load means that embodies looping of the wiring through one circuit breaker means connecting to one side of the DC power source and through a second circuit breaker means to the other side of the DC power source.
A further object of this invention is to provide apparatus that requires only a simple input connection after the electric distribution box of living quarters or of a dwelling (either mobile or not) such that it will function in a variety of different ways which permit stand alone function with DC energy input from a plurality of DC power source means i.e., from generator means, photo-voltaic means, wind turbine means, and etc. A further object of the invention is to provide the combination of filter capacitor means and storage battery means disposed in electrical parallel, the filter capacitor means functioning as a limited AC path to ground, sized, in capacitance to assure a low impedance path to ground at 60 Hz, the storage battery means functioning to conduct current in opposite directions, consistent with the requirements for AC conduction to ground. That is, the storage battery means and its associated DC power supply provide both a DC isolation path to ground and an AC continuity path to ground whereas the filter capacitor means supplies a limited AC path to ground.
A further object of this invention is to provide a system in conformity with the preceding object wherein the filter capacitor means is hard wired within the electrical distribution box and the storage battery means is housed within the module unit of this invention.
Another object of the invention is to provide the combination of an electrical distribution box housing neutral buss means, power buss means, ground buss means and filter capacitor means, the latter being of limited capacitance and little bulk so as to provide a limited AC path to ground, and a modular power system module unit which houses storage battery means of substantial capacitance and large bulk compared with said filter capacitor means so as to conduct current in opposite directions to provide for AC conduction to ground.
Another object of the invention is to provide a practical approach to the application of building-side DC power for intrinsic DC devices or loads.
It is a further object of this invention to minimize a customer's peak power demands by using a storage battery means for peak clipping and valley filling purposes.
Another important object of this invention is to provide a modular unit in which the modular unit comprises storage battery means for providing a battery equivalent capacitance which is very large in capacitance and bulk in combination with voltage regulator means or with converter means for controlling the charge level of the storage battery means.
Another object of this invention is to provide a system in accord with the preceding object in combination with intrinsic DC load means for utilizing the storage capacity of the storage battery means.
Another object of this invention is to provide a modular system using a rechargeable storage battery means as part of a critical conversion circuit for filtering and voltage regulation (which may involve a converter) to protect the storage battery means from damage by overcharging or undercharging and in which the storage battery means supplies power to an intrinsic DC load means. Still another object of the invention is to provide the combination of an electrical distribution box housing neutral buss means, power buss means, ground buss means and filter capacitor means, the latter being of limited capacitance and little bulk so as to provide a limited AC path to ground and be DC blocking, and a modular power system module unit which houses storage battery means of substantial capacitance and large bulk compared with said filter capacitor means, and intrinsic DC load means for drawing upon the storage capacity of said storage battery means.
A further object of this invention involves the battery equivalent capacitance of said storage battery means being very large consistent with an ideal AC path to ground and the capacitance of said filter capacitor means being very small consistent with a limited AC path to ground but large enough to pass sufficient current to keep the worse case fault currents well below any shock hazards and to allow sufficient current flow to trip relevant circuit breakers in the event of a short circuit.
It is an object of this invention to provide an arrangement in accord with the preceding object in combination with converter means in which high frequency AC is generated as an intermediate process in the flow of energy and in which special capacitor means is provided for absorbing voltage spikes of said high frequency AC. BRIEF DESCRIPTION OF THE DRAWING FIGURES
Fig. 1 illustrates the dual voltage concept of the invention, the ganged circuit breaker means concept and the modular concept thereof;
Fig. 2 illustrates the invention with regard to incorporation of the linear voltage regulator and control interface of my copending application as one means for controlling the charge level of the storage battery means; Fig. 3 illustrates the use of circuit breaker means and the looping of a DC lighting circuit as well as auxiliary DC equipment and an inverter associated with a simplified illustration of the electric distribution box; and
Fig. 4 illustrates a converter fed by the DC supply from a rectifier and providing an output to storage battery means illustrated as having a filter capacitor in electrical parallel therewith.
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 Reference is had at this time to Fig. 1 which shows a partial circuit diagram of this invention, illustrating a conventional three-wire or split-phase system comprised of the electric utility power line wires LI and L2 and the neutral wire N as may be supplied from an electric utility EU and extending into the electrical distribution box EDB of an abode, dwelling or the like
(which m?ιy be mobile or not) , which box is shown in rather simplified form. Suffice it to say that the box EDB is provided with conventional knock-out openings through which the cables or wires from the utility or to and from other entities are passed, the wires LI and L2 being connected to the power company or electric utility circuit breakers 10 and 12 whereby the internal power busses PI and P2 and the dwelling circuits AL in the AC distribution box DBA and the dwelling circuit intrinsic load means LM in the DC distribution box DBD to which they are connected are protected from excessive voltages or surges emanating from the utility EU. The neutral wire N is connected internally to the neutral buss NB which is isolated from direct connection to the internal ground buss GB of the distribution box EDB. A conventional electrical outlet EOl is shown whose electrical plug openings 20, 22 and 24 are shown to be connected by wires W20,
W22 and W24 passing through suitable knock-out openings in the box
EDB and into connection with the circuit breaker 14, the neutral buss NB and the ground buss GB, respectively. It will be appreciated that the circuit breakers 10 and 12 referenced above are of conventional type in that they snap into place when the conventional hinged front panel of the box EDB is swung aside to expose any circuit breakers housed within the box. This is much preferred to the older screw-threaded fuse receptacles. At any rate, the modular feature of this invention involves the use of the storage battery means SB having its positive terminal connected by the wiring B26 having a junction Jl with the ground buss wiring
GB30 which passes into the box EDB into connection with the ground buss GB as illustrated. The negative terminal of the storage battery means SB is connected by the wiring B28 whose junction J2 with the neutral buss wiring NB32 connects internally of the box
EDB to the neutral buss NB as shown.
Since the wire connections W20, W22 and 24 are as shown, the prongs 20', 22' and 24' of the electric plug PLl may be used to feed the AC loads AL powered by the box DBA. Similarly, the electric plug PL2 may be used to feed the intrinsic DC load means LM powered by the box DBD.
Fig. 1 illustrates a basic modular unit M which is external to the box EDB and therefore attains some surprising advantages which will now be explained. The basic modular unit M comprises the rechargeable storage battery means SB which represents the battery storage capacity to be drawn upon when DC power is not otherwise available to the consuming load. The storage battery means SB is chargeable in deep cycle fashion to a charge value at which an incipient electrolyte boiling point is reached and the battery charging means employed must be capable of effecting such charge value as will ensure this level of charge without either overcharging or undercharging. An important aspect of this invention resides in the compound use of the "battery equivalent capacitance", inherent with the storage battery means SB, in conjunction with the filter capacitor FC. The magnitude of the "battery equivalent capacitance" gain per unit volume exhibited by the storage battery means SB is outstanding. To illustrate this point, a standard filter capacitor FC might have a capacitance measured in microfarads (say 50 microfarads) and be of a bulk or volume to fit easily within the box DB. The storage battery means will have a battery equivalent capacitance of at least 10,000 Farads. The high battery equivalent capacitance of the storage battery means is highly effective for AC ripple filtering but the bulk is too high for incorporation within the box EDB and, more importantly, it provides an ideal AC path to ground. If the storage battery means SB were to be removed, even temporarily, the limited AC path to ground supplied by the filter capacitor FC would be inadequate to provide an adequate AC path to ground, however, the presence of the DC power source DCPS, or its equivalent, provides the adequate path. By substituting a 12 volt deep cycle lead-acid battery means SB of say, 1 cubic foot volume, the relative "battery equivalent capacitance" would be at least 10,000 Farads. Stated otherwise, such storage battery means SB would provide a very large and adequate AC path to ground commensurate with the load current being drawn and the limited AC path to ground afforded by the filter capacitor FC would still be essential to comply with local electrical codes. The two capacitors operate in conjunction with one another and both are essential for complying with local codes, the means SB conducting current in opposite directions consistent with the requirements for AC conduction to ground and its associated DC power supply additionally providing a DC isolation path from ground, and the means FC providing a second, but limited, AC path to ground in the event that the means SB becomes disabled. In regard to the latter, the means FC is sized in capacitance wherein the capacitive reactance Xc is low enough to pass sufficient current to keep both the worst case fault currents well below any shock hazards and to allow sufficient current flow to trip the relevant circuit breaker(s) in the event of an appliance short circuit.
It will be appreciated that although the filter capacitor FC normally would be hard wired within the box EDB, it could be incorporated within the module M in parallel with the storage battery'means.
As will be seen, AC potential is available at the wirings W20 and W22 because the power buss P2 is supplied with AC power and DC potential is available at the wirings W22 and W24 because of the presence of the storage battery means SB. Therefore, the plug openings 20 and 22 may be connected to the AC load means AL of the distribution box DBA through the prongs 20' and 22' of the electric plug PL1 and the plug openings 22 and 24 may be connected to the intrinsic DC load means LM of the electric distribution box DBD through the prongs 22" and 24" of the electric plug PL2.
As noted before, the illustration of Fig. 1 is somewhat simplified because only one AC power buss P2 is connected although other and different connections could be illustrated and only one DC power availability is illustrated between the wirings W22 and W24 although the electrical outlet E01 could be much more complex and offer a great deal more in the way of AC and DC power capabilities. Such will be illustrated in greater detail hereinafter. FIG. 2
With reference to Fig. 2, note that the circuit shown largely parallels Fig. 3 of my copending application wherein rectification is effected by the diodes 82 and 84. They feed the TEE circuit 94, 90, 92 of the voltage regulator section (so labelled) operating in conjunction with the control interface (so labelled) to output DC at the junction A. Thus, an important objective of this invention is realized, namely, that the charge level of the storage battery means SB to service an intrinsic DC load means such as 46 in Fig. 2 or the electronically (DC) ballasted fluorescent lighting circuit FL in Fig. 3, is maintained at the desired level. Note that the three modes of operation as disclosed in Patent 5,500,501 obtain.
When AC input is present, the voltage regulator function illustrated in Fig. 2 is one means for maintaining the charge level of the storage battery means SB, contained within the module M and which is connected to the junctions Jl and J2 (see Fig. 1) . The lighting load 46 is, of course, an intrinsic DC load means such as the looped LIGHTS circuits FL looped between the ground buss GB and the circuit breakers B5 and B6 which are connected to the neutral buss NB as in Fig. 3. The DC power source DCPS of Fig. 1 is the photo-voltaic panel means PV of Fig. 2 and the inverter means INV is shown in both Figs. 1 & 2. It will also be understood that although the electric distribution box EDB is not illustrated fully in Fig. 2, this is done for simplicity to avoid overcrowding of the Figure.
FIG. 3 Fig. 3 shows the electric distribution box EDB in simplified and uncluttered form and is principally directed to illustrating the concept of ganged circuit breakers and of looping of an intrinsic DC load means as well the use of a load source means. The box EDB is outlined and the ground buss GB, the neutral buss NB and the power buss P2 are all designated. The DC ballasted fluorescent lighting intrinsic DC load means FL comprises an example of a distributor box DBD emanating from the box EDB. Each looping WDBD54 and WDBD56 is between the neutral buss NB (-DC) through the circuit breaker means B5 and B6 to the ground buss GB (+DC) . Four electrical outlet means EOl, E02, E03 and E04 are illustrated, all identical, with the two wirings W20 connected with the power buss P2 through the respective circuit breaker means Bl and B3. Similarly, the two wirings W22 are connected with the neutral buss NB through the respective circuit breaker means B2 and B4. The two circuit breakers Bl and B3 each correspond to the circuit breaker 14 in Fig. 1 whereas the two circuit breakers B2 and B4 each correspond to the circuit breaker 13 in Fig. 1. The circuit breakers Bl and B2 "belong" to an AC path and a DC path, respectively, and the circuit breakers B3 and B4 similarly "belong" . Electric plugs PL1 and/or PL2 may be plugged in to the electric outlets with their prongs 20', 22', 24' and/or 20", 22", 24" as previously described.
The DC power sources DCPS are illustrated as the DC generator and the photo-voltaic panel means PV which, after regulation at the regulator 40, passes through the isolating diode D2 to the junction A to which the positive side of the DC generator DCPS is connected through the isolating diode Dl. The junction A is connected to the ground buss GB through the circuit breaker B8 whereas the AC input from the inverter 50 is connected to the neutral buss NB by means of the wiring W50 and to the circuit breaker B7 through the wiring W52. The looping of the intrinsic DC load means effectively doubles the current carrying capacities of the associated wirings whereas the ganging of the AC and DC paths as to circuit breaker means allows the dual voltage aspect to be carried out with increased safety.
To reiterate some of the above, the modular concept of this invention is very important in that it involves the provision of separate entities which are the storage battery means SB and the filter capacitor means FC. The storage battery means SB has a very large battery equivalent capacitance consistent with an excellent AC path to ground and the filter capacitor means FC has a very small capacitance consistent with a limited AC path to ground and being sized in capacitance wherein the capacitive reactance Xc is low enough to pass sufficient current to keep both the worst case fault currents well below any shock hazards and to allow sufficient current flow to trip the relevant circuit breaker(s) in the event of an appliance short circuit. As noted, the capacitance of the filter capacitor FC should be in the order of 50 microfarads. FIG. 4
Fig. 4 is directed to a circuit which embodies a switching type converter of very high efficiency and is a preferred form of converter because this type of DC-to-DC power supply represents high efficiency contemporaneously possible. Fig. 4 illustrates input mechanisms, some of which are not designated by reference characters but which are designated as to function, and also illustrates output mechanisms, none of which are designated by reference characters but which are designated as to function. In all such cases, the meanings should be clear and the additional descriptive material detailing the mechanisms and reference characters are believed to be unnecessary.
The block enclosed in dashed lines and designated by the reference character 501 is a typical full wave rectifier bridge circuit (i.e., the opposite of an inverter) feeding the capacitor 505 at the junction 501* and whose purpose is to reduce the rectified ripple component of the circuit 501 and provide filtered DC input voltage, present between the junction 501' and the conductor 50lv, to the converter means.
The converter circuit shown, downstream of and as fed by filtered DC from the rectifier circuit 501, has junctions 521' and 521' • within the section 521 between which the resistor/capacitor pair 52lr and 521c are connected and which pair provide the further junction 521'''. The junction 521''' is connected to the conductor 52lv which supplies the pulse width modulator 503 with positive voltage Vcc, and this junction feeds the diode 521dl having junctions with the parallel resistor/capacitor pair which are connected between the diode 521d2 and the junction 521' '.
The converter employs a pulse width modulator PWM, indicated at 503, controlling the switching transistor circuit 508 to impress transient voltage spikes present on the conductor 508v through the primary of the transformer 506 to cycle current to the primary windings LI and L2 of the transformer 506 whereby "ac is generated as an intermediate process in the flow of energy" as is defined in the above definition of "converter". The secondary side of the transformer 506 is represented by the windings L3 and L4.
The circuit 509 is an optical isolation link between the pulse width modulator 503 and the control means 522 on the secondary side of the transformer 506 which allows control voltage on the conductor 509v emanating from the pulse width modulator 503 on the primary side of the transformer 506 to provide an input to the control means 522 on the secondary side to influence the pulse width modulator PWM 503 without current leakage back from the secondary circuit. Typically, the frequency of conversion effected by the transformer 506 will be 20,000-100,000 Hz which dictates the need for the special capacitor 517 to absorb these transients, the capacitance of the capacitor 517 being typically about 1 microfarad when used.
A secondary winding L4 drives the circuit 514 which, similarly to the rectifier 501 plus the filtering of the capacitor 505, provides a DC output, in this case the proper DC input to the control means 522 at the conductor 514v. The control means 522 has an output conductor 522o connected to the optical link 510 for controlling the three modes of operation of voltage control in accord with the principles of my prior applications. That is to say, when the optical isolator 510 link is "on", modes which permit DC current to flow from the photovoltaic means 520 are operative, i.e., either or both DC power input from the means 520 alone and partial or shared DC power input from the means 520. When the optical isolator 510 link is "off", the remaining mode, DC power input solely from another source, (i.e., no photovoltaic input) is effected.
The modes are controlled by the DC voltage prevailing across the junctions Jl and J2 (or the presence of a rechargeable DC mechanism such as a storage battery means connected to these junctions) in which case, mode 1, DC power input to the rechargeable DC mechanism alone, mode 2, shared DC power input, and mode 3 no DC power input to the rechargeable DC mechanism are the order of the day. That is to say, when the conductors 523 and 524 are connected to one of the DC sources illustrated in Fig. 4, or to a DC power source such as DCPS in Fig. 1 or in Fig. 3, the system will be fully operative for the purposes intended.
Stated another way, the DC voltage applied to the storage means will depend upon the feed back influenced by the resistors 36, 42, 43, 44, 45, 68, 70, 74 and 76 in Fig. 2 or by the resistors including 511, 512, 513 and 515 in Fig 4.
This is true even if the system according to this invention is operated on the barest of input. For example, in locations where either AC or DC power is available only part of the time, or is available on site only from mechanism thereat, some configuration disclosed in the drawing Figures herein will be effective to provide DC power supply to the storage battery means.

Claims

WHAT TS CLAIMED IS:
1. In a modular power management system; an electrical distribution panel; a system of busses housed within the panel and including electrical power buss means, neutral buss means and ground buss means; a module unit including storage battery means external to the panel and having connections to said neutral buss means and said ground buss means; external circuit means for servicing by said distribution panel; and circuit breaker means associated with said external circuit means and including at least one pair of circuit breakers which are ganged for simultaneous tripping.
2. In a modular power management system as defined in claim 1 wherein one of said pair of circuit breakers is connected with a DC external circuit means and the other is connected with an AC external circuit means.
3. In a modular power management system as defined in claim 2 including DC power supply means connected to said module unit for supplying said storage battery means with DC power.
4. In a modular power management system as defined in claim 3 wherein said DC power supply means is voltage regulator means for maintaining said storage battery means within a desired voltage range.
5. In a modular power management system as defined in claim 3 wherein said DC power supply means is converter means.
6. In a modular power management system as defined in claim 3 wherein one of said external circuits is an intrinsic DC load means .
7. In a modular power management system as defined in claim 1 wherein one of said pair of circuit breakers is connected with a DC external circuit and the other is connected with an AC external circuit.
8. In a modular power management system as defined in claim 7 wherein one of said pair of circuit breakers is connected with a DC external circuit and the other is connected with an AC external circuit.
9. In a modular power management system as defined in claim 8 wherein one of said external circuits is an intrinsic DC load means.
10. The method of managing power at a site which comprises providing both an AC and a DC power capability at said site, providing storage battery means for storing DC energy, supplying said storage battery means with DC power for maintaining the voltage level of said storage battery means not greater than fully charged, and providing circuit breaker means in the AC and DC power paths and ganging said circuit breaker means for simultaneous tripping.
11. The method of managing power at a site as defined in claim 10 including the step of providing filter capacitor means in electrical parallel with said storage battery means, the battery equivalent capacitance of said storage battery means being very large consistent with an ideal AC path to ground and the capacitance of said filter capacitor means being very small consistent with a limited AC path to ground but large enough to pass sufficient current to keep the worst case fault currents well below any shock hazards and to allow sufficient current flow to trip relevant circuit breakers in the event of a short circuit.
12. The method of managing power at a site which comprises providing storage battery means for storing DC energy, supplying said storage battery means with DC power, providing filter capacitor means in electrical parallel with said storage battery means, the battery equivalent capacitance of said storage battery means being very large consistent with an ideal AC path to ground and the capacitance of said filter capacitor means being very small consistent with a limited AC path to ground but large enough to pass sufficient current to keep the worst case fault currents well below any shock hazards and to allow sufficient current flow to trip relevant circuit breakers in the event of a short circuit.
13. The method of managing power at a site as defined in claim 12 and providing circuit breaker means in the AC and DC power paths and ganging said circuit breaker means for simultaneous tripping.
14. In a power management system, the combination of storage battery means and filter capacitor means for providing both an AC conduction path to ground and a DC isolation path from ground, and means for controlling the charge level of said storage battery means, said filter capacitor means providing a capacitance sized to insure a low impedance path to ground at 60 Hz and said storage battery means providing a capacitance sized to insure conduction to ground in either direction of current flow therethrough.
15. In a power management system as defined in claim 14 wherein said means for controlling the charge level of said storage battery means is a voltage regulator means with rectifier means providing DC input to said voltage regulator means.
16. In a power management system as defined in claim 14 wherein said means for controlling the charge level of said storage battery means is a converter means with rectifier means providing DC input to said converter means.
17. A power management system comprising the combination of an electrical distribution box and a modular unit, said box housing power buss means, neutral buss means, ground buss means and an AC bypass filter capacitor means of relatively small capacitance and bulk connected between said neutral buss means and said ground buss means; said modular unit housing storage battery means for providing a battery equivalent capacitance and bulk which is very much greater than the capacitance and bulk of said AC bypass filter capacitor means and said storage battery means being housed within said modular unit and connected across said neutral buss means and said ground buss means.
18. The combination as defined in claim 17 including DC power supply means for supplying said storage battery means with DC energy, and intrinsic DC load means connected between said ground buss means and said neutral buss means for supply by said storage battery means.
19. The combination as defined in claim 18 including ganged circuit breaker means ganged for simultaneous tripping.
20. The combination as defined in claim 19 wherein said DC power supply means includes a device selected from the group consisting of electrical power generating means, photo-voltaic means, and alternate DC sources.
21. The combination as defined in claim 17 including voltage regulator means for maintaining a charge level on said storage battery means and rectifier means for providing DC input to said regulator means.
22. The combination as defined in claim 17 including converter means for maintaining a charge level on said storage battery means and rectifier means for providing DC input to said converter means.
23. The combination as defined in claim 21 including ganged circuit breaker means ganged for simultaneous tripping.
24. The combination as defined in claim 23 wherein said DC power supply means includes a device selected from the group consisting of power generating means, photo-voltaic means, and alternate DC sources.
25. The combination as defined in claim 22 including ganged circuit breaker means ganged for simultaneous tripping.
26. The combination as defined in claim 25 wherein said DC power supply means includes a device selected from the group consisting of power generating means, photo-voltaic means, and alternate DC sources.
27. In a power management system, the combination of storage battery means and filter capacitor means for providing both an AC conduction path to ground and a DC isolation path from ground, and means for controlling the charge level of said storage battery means, said filter capacitor means providing a capacitance sized to insure a low impedance path to ground at 60 Hz and said storage battery means providing a capacitance sized to insure conduction to ground in either direction of current flow therethrough, said means for controlling the charge level of said storage battery means being effective to maintain said AC conduction path to ground in the event that said storage battery means is removed from the system.
28. In a power management system as defined in claim 27 wherein said means for controlling the charge level comprising DC power source means.
29. In a power management system as defined in claim 28 wherein said means for controlling the charge level includes voltage regulator means.
30. In a power management system as defined in claim 28 wherein said means for controlling the charge level includes converter means in which high frequency AC is generated as an intermediate process in the flow of energy.
31. In a power management system as defined in claim 30 including special filter capacitor means for absorbing voltage spikes of said high frequency AC.
PCT/US1996/006025 1996-03-07 1996-03-18 Modular power management system and method WO1997033355A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE69636461T DE69636461T2 (en) 1996-03-07 1996-03-18 MODULAR POWER CONTROL SYSTEM AND METHOD
AU57191/96A AU734988B2 (en) 1996-03-07 1996-03-18 Modular power management system and method
EP96915410A EP0904621B1 (en) 1996-03-07 1996-03-18 Modular power management system and method
CA002248073A CA2248073C (en) 1996-03-07 1996-03-18 Modular power management system and method
BR9612568-3A BR9612568A (en) 1996-03-07 1996-03-18 Modular power management system and method
JP53173197A JP3773538B2 (en) 1996-03-07 1996-03-18 Modular power management system and method
HK99105311A HK1020236A1 (en) 1996-03-07 1999-11-17 Modular power management system.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/606,219 US5786642A (en) 1991-01-08 1996-03-07 Modular power management system and method
US08/606,219 1996-03-07

Publications (1)

Publication Number Publication Date
WO1997033355A1 true WO1997033355A1 (en) 1997-09-12

Family

ID=24427077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1996/006025 WO1997033355A1 (en) 1996-03-07 1996-03-18 Modular power management system and method

Country Status (16)

Country Link
US (1) US5786642A (en)
EP (1) EP0904621B1 (en)
JP (1) JP3773538B2 (en)
KR (1) KR100399649B1 (en)
CN (1) CN1171369C (en)
AT (1) ATE336820T1 (en)
AU (1) AU734988B2 (en)
BR (1) BR9612568A (en)
CA (1) CA2248073C (en)
DE (1) DE69636461T2 (en)
ES (1) ES2273348T3 (en)
HK (1) HK1020236A1 (en)
MY (1) MY118359A (en)
SG (1) SG50799A1 (en)
TW (1) TW291619B (en)
WO (1) WO1997033355A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1017150A2 (en) * 1998-12-30 2000-07-05 Euroiset Italia s.r.l. Improvement to power supply systems, particularly for telephone plants
WO2003015238A1 (en) * 2001-08-10 2003-02-20 Siemens Ag Österreich Household system comprising a connection to an alternating current
EP2301135A2 (en) * 2008-07-02 2011-03-30 Nnw Ventures, Llc Uninterruptible power supplies, solar power kits for uninterruptible power supplies and related methods

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5939798A (en) * 1997-06-17 1999-08-17 General Electric Company Hybrid energy storage system
US6252310B1 (en) * 1999-07-28 2001-06-26 Nextek Power Systems, Inc. Balanced modular power management system and method
US6433444B1 (en) 2000-02-18 2002-08-13 General Electric Company Modular fault tolerant power distribution system
GB2376819A (en) * 2001-06-21 2002-12-24 Ericsson Telefon Ab L M Electronic circuit having series connected circuit blocks
JP4082657B2 (en) * 2001-07-19 2008-04-30 ヤマハモーターパワープロダクツ株式会社 Inverter generator
JP2006217780A (en) * 2005-02-07 2006-08-17 Yamaha Motor Co Ltd Inverter ac power plant
US7274975B2 (en) 2005-06-06 2007-09-25 Gridpoint, Inc. Optimized energy management system
US7276807B2 (en) * 2006-01-19 2007-10-02 General Electric Company Wind turbine dump load system and method
US8103389B2 (en) 2006-05-18 2012-01-24 Gridpoint, Inc. Modular energy control system
KR100809910B1 (en) * 2006-07-05 2008-03-06 박기주 Digital cabinet panel
US8008808B2 (en) * 2009-01-16 2011-08-30 Zbb Energy Corporation Method and apparatus for controlling a hybrid power system
ITBO20090684A1 (en) * 2009-10-22 2011-04-23 Stilrossi S A S Di Lino Rossi & C Servizi Per UPS'
CN102570597A (en) * 2010-12-27 2012-07-11 华北电力科学研究院有限责任公司 Remote monitoring system of direct current power supply
TWI463757B (en) * 2011-08-29 2014-12-01 Univ Ishou Intelligent power management systems, devices and modules
TWI451644B (en) * 2012-01-06 2014-09-01 Nat Univ Tsing Hua Extension cord with ac and dc outputs for coupling ac and dc sources
AU2013219892B2 (en) * 2012-02-15 2015-12-24 Pineapple Energy Llc Electrical combiner box with improved functionality
TWI460958B (en) * 2012-03-22 2014-11-11 Atomic Energy Council Integrated generation control system
US9650879B2 (en) 2012-11-16 2017-05-16 Us Well Services Llc Torsional coupling for electric hydraulic fracturing fluid pumps
US8941961B2 (en) 2013-03-14 2015-01-27 Boulder Wind Power, Inc. Methods and apparatus for protection in a multi-phase machine
CN112103967B (en) * 2013-07-09 2024-07-09 香港大学 Adaptive AC and/or DC power supply
CN104734138A (en) * 2013-12-24 2015-06-24 珠海格力电器股份有限公司 Pure direct current modular electrical system
WO2021022048A1 (en) * 2019-08-01 2021-02-04 U.S. Well Services, LLC High capacity power storage system for electric hydraulic fracturing
US11009162B1 (en) 2019-12-27 2021-05-18 U.S. Well Services, LLC System and method for integrated flow supply line
US11183851B1 (en) * 2020-07-09 2021-11-23 Entrantech Inc. Apparatus and method for AC and DC power co-distribution
US11476657B2 (en) 2020-07-09 2022-10-18 Entrantech Inc. DC power attachment device
US11605970B2 (en) 2020-08-13 2023-03-14 Entrantech Inc. Persistent DC power and control switch
US11489455B2 (en) 2020-08-13 2022-11-01 Entrantech Inc. AC and persistent DC co-distritbution
US11777323B2 (en) 2020-08-13 2023-10-03 Entrantech Inc. Sequential power discharge for batteries in a power system
US11831167B2 (en) 2021-08-13 2023-11-28 Entrantech Inc. Persistent Dc circuit breaker

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4426587A (en) * 1981-07-10 1984-01-17 Societe Anonyme Dite: Compagnie Industrielle Des Telecommunications Cit-Alcatel Power supply distribution system
US4860185A (en) * 1987-08-21 1989-08-22 Electronic Research Group, Inc. Integrated uninterruptible power supply for personal computers
US5164609A (en) * 1990-06-08 1992-11-17 Donnelly Corporation Controllable power distribution system
US5268850A (en) * 1991-05-07 1993-12-07 Skoglund Robert A Automatic power-failure and auxiliary generator control
US5532525A (en) * 1994-06-02 1996-07-02 Albar, Inc. Congeneration power system

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2194822A (en) * 1939-04-24 1940-03-26 Es B Es Co Ltd Emergency power system
US4065676A (en) * 1976-06-02 1977-12-27 Honeywell Inc. Battery backup for AC powered DC supply
US4206608A (en) * 1978-06-21 1980-06-10 Bell Thomas J Natural energy conversion, storage and electricity generation system
US4349863A (en) * 1980-04-21 1982-09-14 Tork, Inc. Emergency lighting system
US4508996A (en) * 1980-06-23 1985-04-02 Brigham Young University High frequency supply system for gas discharge lamps and electronic ballast therefor
US4315163A (en) * 1980-09-16 1982-02-09 Frank Bienville Multipower electrical system for supplying electrical energy to a house or the like
US4464724A (en) * 1981-06-17 1984-08-07 Cyborex Laboratories, Inc. System and method for optimizing power shed/restore operations
US4630005A (en) * 1982-05-03 1986-12-16 Brigham Young University Electronic inverter, particularly for use as ballast
JPS5974873A (en) * 1982-10-19 1984-04-27 三菱電機株式会社 Device for estimating demand
US4551980A (en) * 1983-03-25 1985-11-12 Ormat Turbines, Ltd. Hybrid system for generating power
US4524338A (en) * 1984-02-03 1985-06-18 Westinghouse Electric Corp. Ganged circuit breaker arrangement
US4682078A (en) * 1985-01-28 1987-07-21 Radiant Illumination, Inc. Wireless emergency lighting unit
US4742291A (en) * 1985-11-21 1988-05-03 Bobier Electronics, Inc. Interface control for storage battery based alternate energy systems
US4731547A (en) * 1986-12-12 1988-03-15 Caterpillar Inc. Peak power shaving apparatus and method
DE3722337A1 (en) * 1987-07-07 1989-01-19 Philips Patentverwaltung CIRCUIT ARRANGEMENT FOR TRANSMITTING ELECTRICAL ENERGY
US4894764A (en) * 1988-04-08 1990-01-16 Omnion Power Engineering Corporation Modular AC output battery load levelling system
US4918562A (en) * 1989-01-30 1990-04-17 Pulizzi Engineering, Inc. Power controller with voltage-controlled circuit breaker
US5053635A (en) * 1989-04-28 1991-10-01 Atlas Energy Systems, Inc. Uninterruptible power supply with a variable speed drive driving a synchronous motor/generator
IE75374B1 (en) * 1989-11-13 1997-09-10 Nat Csf Corp Uninterruptible power supply
US5089937A (en) * 1990-07-20 1992-02-18 V Band Corporation Power interface apparatus for a DC power distribution system
JPH0439088U (en) * 1990-07-26 1992-04-02
US5500561A (en) * 1991-01-08 1996-03-19 Wilhelm; William G. Customer side power management system and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4426587A (en) * 1981-07-10 1984-01-17 Societe Anonyme Dite: Compagnie Industrielle Des Telecommunications Cit-Alcatel Power supply distribution system
US4860185A (en) * 1987-08-21 1989-08-22 Electronic Research Group, Inc. Integrated uninterruptible power supply for personal computers
US5164609A (en) * 1990-06-08 1992-11-17 Donnelly Corporation Controllable power distribution system
US5268850A (en) * 1991-05-07 1993-12-07 Skoglund Robert A Automatic power-failure and auxiliary generator control
US5532525A (en) * 1994-06-02 1996-07-02 Albar, Inc. Congeneration power system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1017150A2 (en) * 1998-12-30 2000-07-05 Euroiset Italia s.r.l. Improvement to power supply systems, particularly for telephone plants
EP1017150A3 (en) * 1998-12-30 2002-01-16 Euroiset Italia s.r.l. Improvement to power supply systems, particularly for telephone plants
WO2003015238A1 (en) * 2001-08-10 2003-02-20 Siemens Ag Österreich Household system comprising a connection to an alternating current
EP2301135A2 (en) * 2008-07-02 2011-03-30 Nnw Ventures, Llc Uninterruptible power supplies, solar power kits for uninterruptible power supplies and related methods
EP2301135A4 (en) * 2008-07-02 2013-08-07 Nnw Ventures Llc Uninterruptible power supplies, solar power kits for uninterruptible power supplies and related methods

Also Published As

Publication number Publication date
JP2001504318A (en) 2001-03-27
CN1217096A (en) 1999-05-19
KR100399649B1 (en) 2003-11-15
EP0904621A1 (en) 1999-03-31
DE69636461D1 (en) 2006-09-28
ATE336820T1 (en) 2006-09-15
AU5719196A (en) 1997-09-22
EP0904621A4 (en) 2000-05-10
CN1171369C (en) 2004-10-13
SG50799A1 (en) 1998-07-20
JP3773538B2 (en) 2006-05-10
BR9612568A (en) 1999-12-28
CA2248073C (en) 2008-06-17
MY118359A (en) 2004-10-30
KR19990087580A (en) 1999-12-27
AU734988B2 (en) 2001-06-28
HK1020236A1 (en) 2000-03-31
DE69636461T2 (en) 2007-06-06
EP0904621B1 (en) 2006-08-16
US5786642A (en) 1998-07-28
ES2273348T3 (en) 2007-05-01
TW291619B (en) 1996-11-21
CA2248073A1 (en) 1997-09-12

Similar Documents

Publication Publication Date Title
CA2248073C (en) Modular power management system and method
US6252310B1 (en) Balanced modular power management system and method
US7701083B2 (en) Portable hybrid applications for AC/DC load sharing
EP0919077B1 (en) High efficiency lighting system
US5548504A (en) Power line linking apparatus for linking a power generator to a commercial power line
US7733069B2 (en) Power converting apparatus and power generating apparatus
EP0476431B1 (en) External backup power supply
US20110148213A1 (en) 380 volt direct current power distribution system for information and communication technology systems and facilities
US5708574A (en) Adaptive power direct current preregulator
JP4405654B2 (en) Power converter and power generator
EP4068548B1 (en) Direct current power supply system, photovoltaic system and energy storage system
US6636405B2 (en) Mitigation of 3rd harmonic currents in electrical power distribution systems
Akerlund et al. One year operation of a 9 kW HVDC UPS 350 v at Gnesta municipality data center
Gumhalter Power supply in telecommunications
CA2255707C (en) High efficiency lighting system
CN118713136A (en) Static power generation device and related system
CN2133971Y (en) Three-phase ac motor protector
Russo et al. Distribution power quality improvements using DC links with battery storage in existing networks
Hutchinson Inverter buying guide
Robert et al. Power Quality
Griffith et al. Working with waveform distortion micro computers to main frames
Gumhalter et al. General and Introduction

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96180268.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU JP KE KG KP KR KZ LK LR LT LU LV MD MG MN MW MX NO NZ PL PT RO RU SD SE SI SK TJ TT UA UZ VN AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 2248073

Country of ref document: CA

Ref document number: 2248073

Country of ref document: CA

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 1997 531731

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1019980707020

Country of ref document: KR

Ref document number: PA/A/1998/007254

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1996915410

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1996915410

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019980707020

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019980707020

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1996915410

Country of ref document: EP