WO1997033329A1 - Electrically insulating layer for connection of electrically conductive components of a high-temperature fuel cell - Google Patents

Electrically insulating layer for connection of electrically conductive components of a high-temperature fuel cell Download PDF

Info

Publication number
WO1997033329A1
WO1997033329A1 PCT/DE1997/000330 DE9700330W WO9733329A1 WO 1997033329 A1 WO1997033329 A1 WO 1997033329A1 DE 9700330 W DE9700330 W DE 9700330W WO 9733329 A1 WO9733329 A1 WO 9733329A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating layer
electrically insulating
layer
fuel cell
temperature fuel
Prior art date
Application number
PCT/DE1997/000330
Other languages
German (de)
French (fr)
Inventor
Horst Greiner
Edgar Friedl
Manfred Wohlfart
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to AU22862/97A priority Critical patent/AU2286297A/en
Publication of WO1997033329A1 publication Critical patent/WO1997033329A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to an electrically insulating layer for connecting electrically conductive components of a high-temperature fuel cell and to high-temperature fuel cells.
  • a method for joining components of a high-temperature fuel cell is known from the published patent application DE 43 34 438 A1, for example, in which the components are joined by means of a composite glass solder.
  • the glass and composite components are present in a powder which is arranged between the components and heated to a soldering temperature together with the components and is then held there for a soldering period.
  • the Components heated and thus included directly in the manufacturing process of the joining layer For the production of this joining layer, the Components heated and thus included directly in the manufacturing process of the joining layer.
  • components from a composite glass solder are known from published patent application DE 42 42 728 AI. However, these components are only used for supplying equipment for the high-temperature fuel cells. They are not used to assemble the components of the high-temperature fuel cells.
  • a problem with the manufacturing methods known from the prior art for electrical insulation with the additional property of gas impermeability proves that the components to be joined are actively involved in the manufacturing process of the insulating layer.
  • the properties of the components to be joined are partially changed, at least for a short time, or the components must be at least mechanically incorporated into the manufacturing process for the manufacture of the electrically insulating layer, which in turn leads to considerable expenditure on equipment.
  • the invention is therefore based on the object of specifying an electrically insulating layer for connecting electrically conductive components of a high-temperature fuel cell which is impermeable to gases and in which the production of the electrically insulating layer is largely independent of the electrically conductive components to be joined. Furthermore, high-temperature fuel lines are specified in which such an electrically insulating layer is used.
  • the first-mentioned object is achieved according to the invention by an electrically insulating layer for connecting electrically conductive components of a high-temperature fuel cell, the electrically insulating layer containing at least two layers of a glass solder and a layer of one between these layers Ceramic is arranged.
  • the second object is achieved according to the invention on the one hand by a high-temperature fuel cell in which an electrically insulating layer is arranged between two bipolar plates, the electrically insulating layer containing at least two layers of a glass solder and a layer between these layers a ceramic is arranged.
  • the second object is achieved according to the invention by a high-temperature fuel cell, in which an electrically insulating layer is arranged between a bipolar plate and an electrolyte, the electrically insulating layer containing at least two layers of a glass solder and between a layer of ceramic is arranged in these layers.
  • the layers of the electrically insulating layer are produced independently of one another and decoupled from the electrically conductive components to be joined.
  • the layers of the electrically insulated the layer largely individually made depending on the geometric boundary conditions of the electrically conductive components to be joined.
  • a template of the electrically insulating layer is created which corresponds to the desired area to be used.
  • the layers of the electrically insulating layer are then produced in accordance with the template and, in the finished state, are fitted into the high-temperature fuel cell arrangement, without the need to make any changes to the electrically conductive components to be joined.
  • the electrically insulating layer additionally fulfills the property of gas impermeability, gas-conducting channels can also be integrated into the electrically insulating layer, which channels are gas-insulated from the environment due to the nature of the insulating layer.
  • this electrically insulating layer acts as a supporting element between the bipolar plates of the high-temperature fuel cell. If several high-temperature fuel cells are stacked on top of one another for the assembly of a high-temperature fuel cell stack, a considerable weight arises, which is intercepted by these electrically insulating layers between the bipolar plates.
  • the outer layers of the electrically insulating layer preferably consist of an alkali-free glass solder with the highest possible transformation temperature.
  • the temperature at which the glass solder changes from the liquid to the glass state or vice versa is defined as the transformation temperature.
  • the glass solder AF45 is suitable as a glass solder, which experts also call thin glass. is drawn.
  • AF45 is a modified borosilicate glass with high proportions of BaO and Al 2 0 3 . Its synthesis is alkali-free and, in the finished embodiment, has fire-polished surfaces which are achieved by a special drawing process. This special glass is easy to process and is therefore suitable for the desired application.
  • the ceramic layer consists of sintered MgO.
  • Sintered MgO is particularly suitable for electrically conductive components to be connected made of alloys based on Fe and Ni.
  • the ceramic layer consists of the spinel MgO / Al 2 0 3 or an MgO / Al 2 0 3 mixture.
  • MgO / Al 2 0 3 spinel in other words magnesium aluminate, is particularly suitable for joining together electrically conductive components which consist of a Cr-based alloy.
  • the thickness of the layer of ceramic is preferably selected such that the layers of glass solder are between 100 and 200 ⁇ m thick. If the thickness of the electrically insulating layer is predetermined, due to the geometric structure of the electrically conductive components to be connected, the bulk of the electrically insulating layer is filled out of the ceramic by the volume of the layer.
  • the layer made of ceramic has a thickness between
  • the ceramic layer has a thickness between 200 and 300 ⁇ m.
  • FIG. 1 shows an electrically insulating layer for connecting electrically conductive components of a high-temperature fuel cell in a cross section in a schematic representation
  • FIG. 2 shows a section of a high-temperature fuel cell in a cross section in a schematic representation.
  • the electrically insulating layer 4 consists of three layers 8, 10, 12 arranged one above the other.
  • the two outer layers 8, 12 of the electrically insulating layer 4 consist of a glass solder and ensure an integral gas-insulating connection with the electrically conductive components 2, 6 to be joined together.
  • the layers 8, 12 of the electrically insulating layer 4 preferably consist of an alkali-free glass solder with a transformation temperature as high as possible, for example from the glass solder with the designation AF45.
  • the layer 10 of the electrically insulating layer 4 is arranged between the two layers 8, 12 and consists of one Ceramics. If the electrically conductive components 2, 6 are composed of an Fe or a Ni-based alloy, then a suitable material for the layer 10 of the electrically insulating layer 4 is sintered ceramic foil made of MgO. If a material made of a Cr-based alloy is selected for the electrically conductive components 2, 6, MgO / Al 2 O 3 Spi ⁇ nell or a MgO / Al 2 0 3 mixture are preferred as the material for the layer 10 of the electrically insulating layer suitable. For example, 63% by weight MgO and 37% by weight A1 2 0 3 are selected as the mixture.
  • the thickness of the layer 10 of the electrically insulating layer 4 is selected such that the layers 8, 12 of the electrically insulating layer 4 made of the glass solder are between 100 and 200 ⁇ m thick. Depending on the geometrically predetermined distance between the electrically conductive components 2, 6, which is to be filled by the electrically insulating layer 4, the thickness of the layers 8, 12 of the electrically insulating layer 4 remains approximately constant and that with a larger selected distance The area to be filled between the electrically conductive components 2, 6 is thus filled by the layer 10 from the ceramic.
  • FIG. 2 shows a section of a high-temperature fuel cell 20 with a solid electrolyte arrangement 22 which has two electrodes 24, 26.
  • An electrolyte 28 is arranged between the electrodes 24, 26.
  • An electrically conductive contact element 30 is arranged between the electrodes 24, 26 and the bipolar plates 32 and 34, respectively.
  • the solid electrolyte arrangement 22 is arranged in a gap 36 between the two bipolar plates 32, 34.
  • the solid electrolyte arrangement 22 is supplied with an operating medium via a feed 40 and the bipolar plates 32, 34.
  • An electrically insulating layer 42 connects the two bipolar plates 32, 34 to one another in a material-tight and gas-impermeable manner. Furthermore, an electrically insulating layer 44 connects the bipolar plate 34 to the electrolyte 28 in a cohesive and gas-impermeable manner. Both the electrically insulating layer 42 and the electrically insulating layer 44 are composed of the layers 8, 10, 12 known from FIG.
  • the feed 40 is thus gas-tight against an atmosphere outside the high-temperature fuel cell 20 and against at least one of the electrodes 24, 26.
  • the layer 10 of the electrically insulating layer 42 has a thickness between 400 and 800 ⁇ m in this embodiment.
  • the layer 10 of the electrically insulating layer 44 is between 200 and 300 ⁇ m thick.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

The invention relates to an electrically insulating layer (4) for connection of electrically conductive components (2, 6) of a high-temperature fuel cell. The electrically insulating layer (4) contains at least two strata (8, 12) consisting of a glass solder. One stratum (10) consisting of ceramic is arranged between the strata (8, 12), thereby simplifying production of the electrically insulating layer (4).

Description

Beschreibungdescription
ELEKTRISCH ISOLIERENDE SCHICHT ZUM VERBINDEN VON ELEKTRISCH LEITENDEN BAUELEMENTEN EINER HOCHTEMPERATUR-BRENNSTOFFZELLEELECTRICALLY INSULATING LAYER FOR CONNECTING ELECTRICALLY CONDUCTIVE COMPONENTS OF A HIGH TEMPERATURE FUEL CELL
Die Erfindung bezieht sich auf eine elektrisch isolierende Schicht zum Verbinden von elektrisch leitenden Bauelementen einer Hochtemperatur-Brennstoffzelle und auf Hochtemperatur- Brennstoffzellen.The invention relates to an electrically insulating layer for connecting electrically conductive components of a high-temperature fuel cell and to high-temperature fuel cells.
Es ist bekannt, daß bei einer Hochtemperatur-Brennstoffzelle die elektrisch leitenden Bauelemente teilweise elektrisch isoliert miteinander verbunden sein müssen. Desweiteren wird je nach Anwendungsfall von dieser Isolierung gefordert, daß sie ebenfalls für Gase undurchlässig ist. Bei der hohen Ein¬ satztemperatur der Hochtemperatur-Brennstoffzelle von über 800°C werden diese Anforderungen durch den Einsatz von glas¬ artigen und keramischen Substanzen erfüllt.It is known that in a high-temperature fuel cell, the electrically conductive components must be connected to one another in an electrically insulated manner. Furthermore, depending on the application, this insulation is required to also be impermeable to gases. With the high operating temperature of the high-temperature fuel cell of over 800 ° C., these requirements are met through the use of glassy and ceramic substances.
Aus der Offenlegungsschrift DE 43 34 438 AI ist beispiels¬ weise ein Verfahren zum Fügen von Bauelementen einer Hochtem¬ peratur-Brennstoffzelle bekannt, bei dem die Bauelemente mit¬ tels eines Composit-Glaslotes zusammengefügt werden. Dabei liegen die Glas- und die Compositkomponente in einem Pulver vor, das zwischen den Bauelementen angeordnet und gemeinsam mit den Bauelementen auf eine Löttemperatur erwärmt wird und anschließend für eine Lötdauer auf dieser gehalten wird. Zur Herstellung dieser Fügeschicht werden somit zugleich auch die Bauelemente erhitzt und somit direkt in den Herstellungspro¬ zeß der Fügeschicht miteinbezogen.A method for joining components of a high-temperature fuel cell is known from the published patent application DE 43 34 438 A1, for example, in which the components are joined by means of a composite glass solder. The glass and composite components are present in a powder which is arranged between the components and heated to a soldering temperature together with the components and is then held there for a soldering period. For the production of this joining layer, the Components heated and thus included directly in the manufacturing process of the joining layer.
Desweiteren sind aus der Offenlegungsschrift DE 42 42 728 AI Bauelemente aus einem Composit-Glaslot bekannt. Diese Bauele¬ mente werden allerdings nur zum Zuführen von Betriebsmitteln für die Hochtemperatur-Brennstoffzellen verwendet. Sie werden nicht zum Zusammenfügen der Bauelemente der Hochtemperatur- Brennstoffzellen benutzt.Furthermore, components from a composite glass solder are known from published patent application DE 42 42 728 AI. However, these components are only used for supplying equipment for the high-temperature fuel cells. They are not used to assemble the components of the high-temperature fuel cells.
Als Problem erweist sich bei den aus dem Stand der Technik bekannten Herstellungsverfahren für eine elektrische Isolie¬ rung mit der zusätzlichen Eigenschaft der Gasundurchlässig¬ keit, daß die zusammenzufügenden Bauelemente aktiv an dem Herstellungsprozeß der isolierenden Schicht beteiligt sind. Die Eigenschaften der zusammenzufügenden Bauelemente werden wenigstens kurzfristig teilweise verändert oder die Bauele¬ mente müssen für die Herstellung der elektrisch isolierenden Schicht direkt in den Herstellungsprozeß zumindest mechanisch mit eingebracht werden, was wiederum zu einem erheblichen ap¬ parativen Aufwand führt.A problem with the manufacturing methods known from the prior art for electrical insulation with the additional property of gas impermeability proves that the components to be joined are actively involved in the manufacturing process of the insulating layer. The properties of the components to be joined are partially changed, at least for a short time, or the components must be at least mechanically incorporated into the manufacturing process for the manufacture of the electrically insulating layer, which in turn leads to considerable expenditure on equipment.
Der Erfindung liegt somit die Aufgabe zugrunde, eine elek¬ trisch isolierende Schicht zum Verbinden von elektrisch lei- tenden Bauelementen einer Hochtemperatur-Brennstoffzelle an¬ zugeben, die für Gase undurchlässig ist und bei der die Her¬ stellung der elektrisch isolierenden Schicht weitgehend unab¬ hängig von den zusammenzufügenden elektrisch leitenden Bau¬ elementen ist. Desweiteren sollen Hochtemperatur-Brennstoff- zeilen angegeben werden, bei denen eine solche elektrisch isolierende Schicht verwendet wird.The invention is therefore based on the object of specifying an electrically insulating layer for connecting electrically conductive components of a high-temperature fuel cell which is impermeable to gases and in which the production of the electrically insulating layer is largely independent of the electrically conductive components to be joined. Furthermore, high-temperature fuel lines are specified in which such an electrically insulating layer is used.
Die erstegenannte Aufgabe wird gemäß der Erfindung gelöst durch eine elektrisch isolierende Schicht zum Verbinden von elektrisch leitenden Bauelementen einer Hochtemperatur-Brenn¬ stoffzelle, wobei die elektrisch isolierende Schicht wenig¬ stens zwei Lagen aus einem Glaslot enthält und zwischen die¬ sen Lagen eine Lage aus einer Keramik angeordnet ist .The first-mentioned object is achieved according to the invention by an electrically insulating layer for connecting electrically conductive components of a high-temperature fuel cell, the electrically insulating layer containing at least two layers of a glass solder and a layer of one between these layers Ceramic is arranged.
Die zweitgenannte Aufgabe wird gemäß der Erfindung zum einen gelöst durch eine Hochtemperatur-Brennstoffzelle, bei der ei¬ ne elektrisch isolierende Schicht zwischen zwei bipolaren Platten angeordnet ist, wobei die elektrisch isolierende Schicht wenigstens zwei Lagen aus einem Glaslot enthält und zwischen diesen Lagen eine Lage aus einer Keramik angeordnet ist .The second object is achieved according to the invention on the one hand by a high-temperature fuel cell in which an electrically insulating layer is arranged between two bipolar plates, the electrically insulating layer containing at least two layers of a glass solder and a layer between these layers a ceramic is arranged.
Die zweitgenannte Aufgabe wird gemäß der Erfindung zum ande- ren gelöst durch eine Hochtemperatur-Brennstoffzelle, bei der eine elektrisch isolierende Schicht zwischen einer bipolaren Platte und einem Elektrolyten angeordnet ist, wobei die elek¬ trisch isolierende Schicht wenigstens zwei Lagen aus einem Glaslot enthält und zwischen diesen Lagen eine Lage aus einer Keramik angeordnet ist.The second object is achieved according to the invention by a high-temperature fuel cell, in which an electrically insulating layer is arranged between a bipolar plate and an electrolyte, the electrically insulating layer containing at least two layers of a glass solder and between a layer of ceramic is arranged in these layers.
Dabei werden die Lagen der elektrisch isolierenden Schicht unabhängig voneinander und entkoppelt von den zusammenzufü¬ genden elektrisch leitenden Bauelementen hergestellt. Vor- teilhafterweise werden so die Lagen der elektrisch isolieren- den Schicht weitgehend individuell in Abhängigkeit von den geometrischen Randbedingungen der zusammenzufügenden elek¬ trisch leitenden Bauelemente gefertigt. Es wird dabei eine Schablone der elektrisch isolierenden Schicht erstellt, die dem gewünschten einzusetzenden Bereich entspricht. Anschlie¬ ßend werden die Lagen der elektrisch isolierenden Schicht entsprechend der Schablone gefertigt und im bereits fertigen Zustand in die Hochtemperatur-BrennstoffZellenanordnung ein¬ gepaßt, ohne daß dabei Veränderungen an den zusammenzufügen- den elektrisch leitenden Bauelementen vorgenommen werden müs¬ sen. Da die elektrisch isolierende Schicht zusätzlich die Ei¬ genschaft der Gasundurchlässigkeit erfüllt, können zusätzlich in die elektrisch isolierende Schicht gasführende Kanäle in¬ tegriert werden, die aufgrund der Beschaffenheit der isolie- renden Schicht gegenüber der Umgebung gasisoliert sind. Au¬ ßerdem wirkt diese elektrisch isolierende Schicht als stüt¬ zendes Element zwischen den bipolaren Platten der Hochtempe¬ ratur-Brennstoffzelle. Werden mehrere Hochtemperatur-Brenn¬ stoffzellen für den Verbund eines Hochtemperatur-Brennstoff- zellenstapels übereinandergestapelt, so entsteht ein be¬ trächtliches Gewicht, was durch diese elektrisch isolierenden Schichten zwischen den bipolaren Platten abgefangen wird.The layers of the electrically insulating layer are produced independently of one another and decoupled from the electrically conductive components to be joined. Advantageously, the layers of the electrically insulated the layer largely individually made depending on the geometric boundary conditions of the electrically conductive components to be joined. A template of the electrically insulating layer is created which corresponds to the desired area to be used. The layers of the electrically insulating layer are then produced in accordance with the template and, in the finished state, are fitted into the high-temperature fuel cell arrangement, without the need to make any changes to the electrically conductive components to be joined. Since the electrically insulating layer additionally fulfills the property of gas impermeability, gas-conducting channels can also be integrated into the electrically insulating layer, which channels are gas-insulated from the environment due to the nature of the insulating layer. In addition, this electrically insulating layer acts as a supporting element between the bipolar plates of the high-temperature fuel cell. If several high-temperature fuel cells are stacked on top of one another for the assembly of a high-temperature fuel cell stack, a considerable weight arises, which is intercepted by these electrically insulating layers between the bipolar plates.
Vorzugsweise bestehen die äußeren Lagen der elektrisch iso- lierenden Schicht aus einem alkalifreien Glaslot mit einer möglichst hohen Transformationstemperatur. Als Transformati¬ onstemperatur wird dabei diejenige Temperatur definiert, bei der das Glaslot aus dem flüssigen in den Glaszustand übergeht oder umgekehrt. Beispielsweise eignet sich als Glaslot das Glaslot AF45, welches in Fachkreisen auch als Dünnglas be- zeichnet wird. AF45 ist ein modifiziertes Borosilikatglas mit hohen Anteilen an BaO und Al203. Es ist von der Synthese her alkalifrei und hat in der fertigen Ausführungsform feuerpo¬ lierte Oberflächen, die durch ein spezielles Ziehverfahren erreicht werden. Dieses hergestellte Spezialglas läßt sich einfach verarbeiten und ist somit für den gewünschten Einsatz geeignet .The outer layers of the electrically insulating layer preferably consist of an alkali-free glass solder with the highest possible transformation temperature. The temperature at which the glass solder changes from the liquid to the glass state or vice versa is defined as the transformation temperature. For example, the glass solder AF45 is suitable as a glass solder, which experts also call thin glass. is drawn. AF45 is a modified borosilicate glass with high proportions of BaO and Al 2 0 3 . Its synthesis is alkali-free and, in the finished embodiment, has fire-polished surfaces which are achieved by a special drawing process. This special glass is easy to process and is therefore suitable for the desired application.
Insbesondere besteht die keramische Lage aus gesintertem MgO. Gesintertes MgO ist besonders geeignet für zu verbindende elektrisch leitende Bauelemente aus Legierungen auf Fe- und Ni-Basis.In particular, the ceramic layer consists of sintered MgO. Sintered MgO is particularly suitable for electrically conductive components to be connected made of alloys based on Fe and Ni.
In einer weiteren Ausgestaltung besteht die keramische Lage aus dem Spinell MgO/Al203 oder einem MgO/Al203 Gemisch.In a further embodiment, the ceramic layer consists of the spinel MgO / Al 2 0 3 or an MgO / Al 2 0 3 mixture.
MgO/Al203 Spinell, mit anderen Worten Magnesiumaluminat, ist besonders geeignet zum Zusammenfügen elektrisch leitender Bauelemente, die aus einer Cr-Basislegierung bestehen.MgO / Al 2 0 3 spinel, in other words magnesium aluminate, is particularly suitable for joining together electrically conductive components which consist of a Cr-based alloy.
Vorzugsweise wird die Dicke der Lage aus der Keramik so ge¬ wählt, daß die Lagen aus dem Glaslot zwischen 100 und 200μ dick sind. Ist die Dicke der elektrisch isolierenden Schicht vorgegeben, bedingt durch den geometrischen Aufbau der zu verbindenden elektrisch leitenden Bauelemente, so wird der Hauptanteil der elektrisch isolierenden Schicht durch das Volumen der Lage aus der Keramik ausgefüllt.The thickness of the layer of ceramic is preferably selected such that the layers of glass solder are between 100 and 200 μm thick. If the thickness of the electrically insulating layer is predetermined, due to the geometric structure of the electrically conductive components to be connected, the bulk of the electrically insulating layer is filled out of the ceramic by the volume of the layer.
Insbesondere hat die Lage aus der Keramik eine Dicke zwischenIn particular, the layer made of ceramic has a thickness between
400 und 800μm. In einer weiteren Ausgestaltung hat die Lage aus der Keramik eine Dicke zwischen 200 und 300μm.400 and 800μm. In a further embodiment, the ceramic layer has a thickness between 200 and 300 μm.
Zur weiteren Erläuterung der Erfindung wird auf die Ausfüh- rungsbeispiele der Zeichnung verwiesen. Es zeigen:For a further explanation of the invention, reference is made to the exemplary embodiments of the drawing. Show it:
FIG 1 eine elektrisch isolierende Schicht zum Verbinden von elektrisch leitenden Bauelementen einer Hochtempera¬ tur-Brennstoffzelle in einem Querschnitt in schema- tischer Darstellung,-1 shows an electrically insulating layer for connecting electrically conductive components of a high-temperature fuel cell in a cross section in a schematic representation,
FIG 2 einen Ausschnitt aus einer Hochtemperatur-Brennstoff¬ zelle in einem Querschnitt in schematischer Darstel¬ lung.2 shows a section of a high-temperature fuel cell in a cross section in a schematic representation.
Gemäß FIG 1 sind zwei elektrisch leitende Bauelemente 2, 6 durch eine elektrisch isolierende Schicht 4 zusammengefügt. Dabei besteht die elektrisch isolierende Schicht 4 aus drei übereinander angeordneten Lagen 8, 10, 12.According to FIG. 1, two electrically conductive components 2, 6 are joined together by an electrically insulating layer 4. The electrically insulating layer 4 consists of three layers 8, 10, 12 arranged one above the other.
Die beiden äußeren Lagen 8, 12 der elektrisch isolierenden Schicht 4 bestehen aus einem Glaslot und sorgen für eine stoffschlüssige gasisolierende Verbindung mit den zusammenzu¬ fügenden elektrisch leitenden Bauelementen 2, 6. Die Lagen 8, 12 der elektrisch isolierenden Schicht 4 bestehen vorzugs- weise aus einem alkalifreien Glaslot mit einer möglichst ho¬ hen Transformationstemperatur, beispielsweise aus dem Glaslot mit der Bezeichnung AF45.The two outer layers 8, 12 of the electrically insulating layer 4 consist of a glass solder and ensure an integral gas-insulating connection with the electrically conductive components 2, 6 to be joined together. The layers 8, 12 of the electrically insulating layer 4 preferably consist of an alkali-free glass solder with a transformation temperature as high as possible, for example from the glass solder with the designation AF45.
Die Lage 10 der elektrisch isolierenden Schicht 4 ist zwisch- en den beiden Lagen 8, 12 angeordnet und besteht aus einer Keramik. Setzen sich die elektrisch leitenden Bauelemente 2, 6 aus einer Fe- oder einer Ni-Basislegierung zusammen, so eignet sich als Material für die Lage 10 der elektrisch iso¬ lierenden Schicht 4 gesinterte Keramikfolie aus MgO. Wird für die elektrisch leitenden Bauelemente 2, 6 ein Material aus einer Cr-Basislegierung gewählt, so sind als Material für die Lage 10 der elektrisch isolierenden Schicht 4 MgO/Al203 Spi¬ nell oder ein MgO/Al203 Gemisch bevorzugt geeignet. Beispiels¬ weise werden als Gemisch 63Gew% MgO und 37Gew% A1203 gewählt.The layer 10 of the electrically insulating layer 4 is arranged between the two layers 8, 12 and consists of one Ceramics. If the electrically conductive components 2, 6 are composed of an Fe or a Ni-based alloy, then a suitable material for the layer 10 of the electrically insulating layer 4 is sintered ceramic foil made of MgO. If a material made of a Cr-based alloy is selected for the electrically conductive components 2, 6, MgO / Al 2 O 3 Spi¬ nell or a MgO / Al 2 0 3 mixture are preferred as the material for the layer 10 of the electrically insulating layer suitable. For example, 63% by weight MgO and 37% by weight A1 2 0 3 are selected as the mixture.
Die Dicke der Lage 10 der elektrisch isolierenden Schicht 4 wird so gewählt, daß die Lagen 8, 12 der elektrisch isolie¬ renden Schicht 4 aus dem Glaslot zwischen 100 und 200μm dick sind. Je nach dem geometrisch vorgegebenen Abstand zwischen den elektrisch leitenden Bauelementen 2, 6, der durch die elektrisch isolierende Schicht 4 ausgefüllt werden soll, bleibt die Dicke der Lagen 8, 12 der elektrisch isolierenden Schicht 4 in etwa konstant und der bei größer gewähltem Ab¬ stand auszufüllende Bereich zwischen den elektrisch leitenden Bauelementen 2, 6 wird somit durch die Lage 10 aus der Kera¬ mik aufgefüllt.The thickness of the layer 10 of the electrically insulating layer 4 is selected such that the layers 8, 12 of the electrically insulating layer 4 made of the glass solder are between 100 and 200 μm thick. Depending on the geometrically predetermined distance between the electrically conductive components 2, 6, which is to be filled by the electrically insulating layer 4, the thickness of the layers 8, 12 of the electrically insulating layer 4 remains approximately constant and that with a larger selected distance The area to be filled between the electrically conductive components 2, 6 is thus filled by the layer 10 from the ceramic.
FIG 2 zeigt einen Ausschnitt aus einer Hochtemperatur-Brenn¬ stoffzelle 20 mit einer Festelektrolyt-Anordnung 22, die zwei Elektroden 24, 26 aufweist. Zwischen den Elektroden 24, 26 ist ein Elektrolyt 28 angeordnet. Zwischen den Elektroden 24, 26 und den bipolaren Platten 32 bzw. 34 ist jeweils ein elek¬ trisch leitendes Kontaktelement 30 angeordnet. Die Festelektrolyt-Anordnung 22 ist in einem Spalt 36 zwi¬ schen den beiden bipolaren Platten 32, 34 angeordnet. Über eine Zuführung 40 und die bipolaren Platten 32, 34 wird die Festelektrolyt-Anordnung 22 mit einem Betriebsmittel ver- sorgt.2 shows a section of a high-temperature fuel cell 20 with a solid electrolyte arrangement 22 which has two electrodes 24, 26. An electrolyte 28 is arranged between the electrodes 24, 26. An electrically conductive contact element 30 is arranged between the electrodes 24, 26 and the bipolar plates 32 and 34, respectively. The solid electrolyte arrangement 22 is arranged in a gap 36 between the two bipolar plates 32, 34. The solid electrolyte arrangement 22 is supplied with an operating medium via a feed 40 and the bipolar plates 32, 34.
Eine elektrisch isolierende Schicht 42 verbindet stoffschlüs¬ sig und gasundurchlässig die beiden bipolaren Platten 32, 34 miteinander. Desweiteren verbindet eine elektrisch isolie- rende Schicht 44 die bipolare Platte 34 stoffschlüssig und gasundurchlässig mit dem Ektrolyten 28. Sowohl die elektrisch isolierende Schicht 42 als auch die elektrisch isolierende Schicht 44 setzt sich aus den aus Figur 1 bekannten Lagen 8, 10, 12 zusammen.An electrically insulating layer 42 connects the two bipolar plates 32, 34 to one another in a material-tight and gas-impermeable manner. Furthermore, an electrically insulating layer 44 connects the bipolar plate 34 to the electrolyte 28 in a cohesive and gas-impermeable manner. Both the electrically insulating layer 42 and the electrically insulating layer 44 are composed of the layers 8, 10, 12 known from FIG.
Die Zuführung 40 ist somit gasdicht gegenüber einer außerhalb der Hochtemperatur-Brennstoffzelle 20 herrschenden Atmosphäre sowie gegenüber zumindest einer der Elektroden 24, 26 abge¬ trennt.The feed 40 is thus gas-tight against an atmosphere outside the high-temperature fuel cell 20 and against at least one of the electrodes 24, 26.
Die Lage 10 der elektrisch isolierenden Schicht 42 hat in dieser Ausführungsform eine Dicke zwischen 400 und 800μm. Die Lage 10 der elektrisch isolierenden Schicht 44 ist dabei zwi¬ schen 200 und 300μm dick. The layer 10 of the electrically insulating layer 42 has a thickness between 400 and 800 μm in this embodiment. The layer 10 of the electrically insulating layer 44 is between 200 and 300 μm thick.

Claims

Patentansprüche claims
1. Elektrisch isolierende Schicht (4) zum Verbinden von elek¬ trisch leitenden Bauelementen (2, 6) einer Hochtemperatur- Brennstoffzelle, wobei die elektrisch isolierende Schicht (4) wenigstens zwei Lagen (8, 12) aus einem Glaslot enthält und zwischen den Lagen (8, 12) eine Lage (10) aus einer Keramik angeordnet ist .1. Electrically insulating layer (4) for connecting electrically conductive components (2, 6) of a high-temperature fuel cell, the electrically insulating layer (4) containing at least two layers (8, 12) made of a glass solder and between the layers (8, 12) a layer (10) made of a ceramic is arranged.
2. Elektrisch isolierende Schicht (4) nach Anspruch 1, bei der die Lagen (8, 12) der elektrisch isolierenden Schicht (4) aus einem alkalifreien Glaslot bestehen.2. Electrically insulating layer (4) according to claim 1, wherein the layers (8, 12) of the electrically insulating layer (4) consist of an alkali-free glass solder.
3. Elektrisch isolierende Schicht (4) nach Anspruch 1 oder 2, bei der die Lage (10) der elektrisch isolierenden Schicht (4) aus gesintertem MgO besteht .3. Electrically insulating layer (4) according to claim 1 or 2, wherein the layer (10) of the electrically insulating layer (4) consists of sintered MgO.
4. Elektrisch isolierende Schicht (4) nach Anspruch 1 oder 2, bei der die Lage (10) der elektrisch isolierenden Schicht (4) aus dem Spinell MgO/Al203 besteht.4. Electrically insulating layer (4) according to claim 1 or 2, in which the layer (10) of the electrically insulating layer (4) consists of the spinel MgO / Al 2 0 3 .
5. Elektrisch isolierende Schicht (4) nach Anspruch 1 oder 2, bei der die Lage (10) der elektrisch isolierenden Schicht (4) aus einem MgO/Al203 Gemisch besteht .5. Electrically insulating layer (4) according to claim 1 or 2, in which the layer (10) of the electrically insulating layer (4) consists of a MgO / Al 2 0 3 mixture.
6. Elektrisch isolierende Schicht (4) nach einem der vorher¬ gehenden Ansprüche, bei der die Dicke der Lage (10) so ge¬ wählt wird, daß die Lagen (8, 12) aus dem Glaslot jeweils zwischen 100 und 200μm dick sind.6. Electrically insulating layer (4) according to one of the preceding claims, in which the thickness of the layer (10) is selected such that the layers (8, 12) made of the glass solder are each between 100 and 200 μm thick.
7. Hochtemperatur-Brennstoffzelle (20), bei der eine elek¬ trisch isolierende Schicht (42) zwischen zwei bipolaren Plat¬ ten (32, 34) angeordnet ist, wobei die elektrisch isolierende Schicht (42) wenigstens zwei Lagen (8, 12) aus einem Glaslot enthält und zwischen den Lagen (8, 12) eine Lage (10) aus ei¬ ner Keramik angeordnet ist . 7. High-temperature fuel cell (20), in which an electrically insulating layer (42) is arranged between two bipolar plates (32, 34), the electrically insulating layer (42) having at least two layers (8, 12) contains a glass solder and a layer (10) made of a ceramic is arranged between the layers (8, 12).
8. Hochtemperatur-Brennstoffzelle (20) nach Anspruch 7, bei der die Lage (10) der elektrisch isolierenden Schicht (42) zwischen 400 und 800μm dick ist.8. High-temperature fuel cell (20) according to claim 7, wherein the layer (10) of the electrically insulating layer (42) is between 400 and 800 microns thick.
9. Hochtemperatur-Brennstoffzelle (20), bei der eine elek¬ trisch isolierende Schicht (4£) zwischen einer bipolaren Platte (34) und einem Elektrolyten (28) angeordnet ist, wobei die elektrisch isolierende Schicht (44) wenigstens zwei Lagen (8, 12) aus einem Glaslot enthält und zwischen den Lagen (8, 12) eine Lage (10) aus einer Keramik angeordnet ist.9. High-temperature fuel cell (20), in which an electrically insulating layer (£ 4) is arranged between a bipolar plate (34) and an electrolyte (28), the electrically insulating layer (44) having at least two layers (8 , 12) from a glass solder and a layer (10) made of a ceramic is arranged between the layers (8, 12).
10. Hochtemperatur-Brennstoffzelle (20) nach Anspruch 9, bei der die Lage (10) der elektrisch isolierenden Schicht (44) zwischen 200 und 300μm dick ist. 10. High-temperature fuel cell (20) according to claim 9, wherein the layer (10) of the electrically insulating layer (44) is between 200 and 300 microns thick.
PCT/DE1997/000330 1996-03-06 1997-02-24 Electrically insulating layer for connection of electrically conductive components of a high-temperature fuel cell WO1997033329A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU22862/97A AU2286297A (en) 1996-03-06 1997-02-24 Electrically insulating layer for connection of electrically conductive components of a high-temperature fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19608727.9 1996-03-06
DE19608727A DE19608727C1 (en) 1996-03-06 1996-03-06 Insulating layer for joining high temperature fuel cell components

Publications (1)

Publication Number Publication Date
WO1997033329A1 true WO1997033329A1 (en) 1997-09-12

Family

ID=7787436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1997/000330 WO1997033329A1 (en) 1996-03-06 1997-02-24 Electrically insulating layer for connection of electrically conductive components of a high-temperature fuel cell

Country Status (3)

Country Link
AU (1) AU2286297A (en)
DE (1) DE19608727C1 (en)
WO (1) WO1997033329A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6165632A (en) * 1997-10-02 2000-12-26 Siemens Aktiengesellschaft High-temperature fuel cell and high-temperature fuel cell stack
US9989420B2 (en) 2014-05-01 2018-06-05 Ngk Spark Plug Co., Ltd. Temperature sensitive element and temperature sensor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59706045D1 (en) 1997-08-13 2002-02-21 Siemens Ag Method of manufacturing an insulating component for a high temperature fuel cell and high temperature fuel cell
EP0921583A1 (en) * 1997-12-05 1999-06-09 Siemens Aktiengesellschaft Sealing of high temperature fuel cells and high temperature fuel cell stacks
US7222406B2 (en) * 2002-04-26 2007-05-29 Battelle Memorial Institute Methods for making a multi-layer seal for electrochemical devices
AT505141B1 (en) * 2007-05-04 2009-02-15 Alpps Fuel Cell Systems Gmbh CONNECTION OF CHEMICAL OR THERMAL REACTORS

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0426265A2 (en) * 1989-09-12 1991-05-08 Mitsubishi Jukogyo Kabushiki Kaisha Solid electrolyte fuel cell
DE4324181A1 (en) * 1992-08-24 1994-03-03 Siemens Ag High temp. fuel cell - has seal forming load free junction between solid electrolyte and separator element
JPH06231784A (en) * 1992-09-01 1994-08-19 Fuji Electric Co Ltd Solid electrolyte type fuel cell
JPH0745295A (en) * 1993-07-30 1995-02-14 Sanyo Electric Co Ltd Gas seal material for solid electrolyte fuel cell
DE4334438A1 (en) * 1993-10-08 1995-04-13 Siemens Ag Composite/glass solder, the use of the composite/glass solder, and process for joining the components
WO1996017394A1 (en) * 1994-12-01 1996-06-06 Siemens Aktiengesellschaft Fuel cell with bipolar flanges coated with ceramic material and its production
DE19538034C1 (en) * 1995-10-12 1997-01-09 Siemens Ag High-temperature fuel cell with at least one electrically insulating layer and method for producing a high-temperature fuel cell

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4242728A1 (en) * 1992-12-17 1994-06-23 Dornier Gmbh Ceramic gas connection components for fuel cells with zirconium oxide solid electrolyte

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0426265A2 (en) * 1989-09-12 1991-05-08 Mitsubishi Jukogyo Kabushiki Kaisha Solid electrolyte fuel cell
DE4324181A1 (en) * 1992-08-24 1994-03-03 Siemens Ag High temp. fuel cell - has seal forming load free junction between solid electrolyte and separator element
JPH06231784A (en) * 1992-09-01 1994-08-19 Fuji Electric Co Ltd Solid electrolyte type fuel cell
JPH0745295A (en) * 1993-07-30 1995-02-14 Sanyo Electric Co Ltd Gas seal material for solid electrolyte fuel cell
DE4334438A1 (en) * 1993-10-08 1995-04-13 Siemens Ag Composite/glass solder, the use of the composite/glass solder, and process for joining the components
WO1996017394A1 (en) * 1994-12-01 1996-06-06 Siemens Aktiengesellschaft Fuel cell with bipolar flanges coated with ceramic material and its production
DE19538034C1 (en) * 1995-10-12 1997-01-09 Siemens Ag High-temperature fuel cell with at least one electrically insulating layer and method for producing a high-temperature fuel cell
WO1997013731A2 (en) * 1995-10-12 1997-04-17 Siemens Aktiengesellschaft High-temperature fuel cell with at least one electrically insulating layer and a method of producing a high-temperature fuel cell

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol. 107, no. 2, 13 July 1987, Columbus, Ohio, US; abstract no. 10510, OGAWA ET AL: "Molten-carbonate fuel cells" XP002035059 *
CHEMICAL ABSTRACTS, vol. 121, no. 26, 26 December 1994, Columbus, Ohio, US; abstract no. 304686, HARUFUJI: "Solid electrolyte fuel cells with improved gas seals" XP002035058 *
PATENT ABSTRACTS OF JAPAN vol. 095, no. 005 30 June 1995 (1995-06-30) *
PATENT ABSTRACTS OF JAPAN vol. 11, no. 275 (E - 537) 5 September 1987 (1987-09-05) *
PATENT ABSTRACTS OF JAPAN vol. 18, no. 599 (E - 1631) 15 November 1994 (1994-11-15) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6165632A (en) * 1997-10-02 2000-12-26 Siemens Aktiengesellschaft High-temperature fuel cell and high-temperature fuel cell stack
AU730237B2 (en) * 1997-10-02 2001-03-01 Siemens Aktiengesellschaft High-temperature fuel cell and high-temperature fuel cell stack
US9989420B2 (en) 2014-05-01 2018-06-05 Ngk Spark Plug Co., Ltd. Temperature sensitive element and temperature sensor

Also Published As

Publication number Publication date
AU2286297A (en) 1997-09-22
DE19608727C1 (en) 1997-06-19

Similar Documents

Publication Publication Date Title
DE69305939T2 (en) Method of manufacturing a ceramic circuit substrate
DE2321715C2 (en) Method of manufacturing an NTC thermistor for measuring temperature
EP0653898A2 (en) Process for manufacturing ceramic heating elements
DE2753198A1 (en) MAGNETOHYDRODYNAMIC ELECTRODE
DE2746172A1 (en) ASSOCIATION OF ELECTROCHEMICAL FIXED ELECTROLYTE CELLS
DE19700700C2 (en) Sensor element and method for its production
WO2008071137A1 (en) Fuel cell stack and seal for a fuel cell stack, as well as a production method for it
DE2245403C2 (en) Electrically conductive sealant for spark plugs and methods of manufacturing the same
DE19805142C2 (en) High temperature fuel cell and its use
WO1997033329A1 (en) Electrically insulating layer for connection of electrically conductive components of a high-temperature fuel cell
EP3436261A1 (en) Method for producing a ceramic insulator
DE10116046A1 (en) poetry
EP0795204B1 (en) Fuel cell with bipolar flanges coated with ceramic material and its production
DE2329424A1 (en) Flat printed circuit heating element - comprises refractory plate sandwich
WO1997013731A2 (en) High-temperature fuel cell with at least one electrically insulating layer and a method of producing a high-temperature fuel cell
DE10206863A1 (en) High temperature resistant adhesive
DE1218072B (en) Secondary electron multiplier and method of manufacturing the multiplier
DE19542808A1 (en) Vitreous coating of substrate by spraying
DE19640805C1 (en) High temperature fuel cell stack production
DE69318915T2 (en) CONNECTED BODY OF A HEAT-RESISTANT ALLOY AND METHOD FOR CONNECTING IT
EP2648255A1 (en) High temperature glass solder and method for producing the same
EP0886886A1 (en) Method of coating a component of a high-temperature fuel cell with a vitreous layer and high-temperature fuel cell stack
EP0594048B1 (en) Fuelcell support
DE102009008672A1 (en) Method for producing an electrically insulating sealing arrangement and sealing arrangement for sealing between two components of a fuel cell stack
EP0897196B1 (en) Method of manufacturing an insulating component for a high-temperature fuel-cell and high-temperature fuel-cell

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 97531324

Format of ref document f/p: F

NENP Non-entry into the national phase

Ref country code: CA

122 Ep: pct application non-entry in european phase