WO1997032711A1 - Improvement in thermoplastic-resin parisons and related manufacturing process - Google Patents

Improvement in thermoplastic-resin parisons and related manufacturing process Download PDF

Info

Publication number
WO1997032711A1
WO1997032711A1 PCT/EP1997/000776 EP9700776W WO9732711A1 WO 1997032711 A1 WO1997032711 A1 WO 1997032711A1 EP 9700776 W EP9700776 W EP 9700776W WO 9732711 A1 WO9732711 A1 WO 9732711A1
Authority
WO
WIPO (PCT)
Prior art keywords
parison
thickness
parisons
middle portion
bottle
Prior art date
Application number
PCT/EP1997/000776
Other languages
French (fr)
Inventor
Moreno Barel
Franco Bellotto
Original Assignee
Sipa S.P.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sipa S.P.A. filed Critical Sipa S.P.A.
Priority to EP19970905051 priority Critical patent/EP0885107A1/en
Priority to AU18748/97A priority patent/AU709519B2/en
Priority to JP53139597A priority patent/JP3946258B2/en
Priority to CA 2247446 priority patent/CA2247446C/en
Priority to BR9707828A priority patent/BR9707828A/en
Priority to PL97328729A priority patent/PL182411B1/en
Priority to US09/142,204 priority patent/US6248413B1/en
Publication of WO1997032711A1 publication Critical patent/WO1997032711A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/06Injection blow-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/071Preforms or parisons characterised by their configuration, e.g. geometry, dimensions or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C2049/023Combined blow-moulding and manufacture of the preform or the parison using inherent heat of the preform, i.e. 1 step blow moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/072Preforms or parisons characterised by their configuration having variable wall thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/072Preforms or parisons characterised by their configuration having variable wall thickness
    • B29C2949/0723Preforms or parisons characterised by their configuration having variable wall thickness at flange portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/072Preforms or parisons characterised by their configuration having variable wall thickness
    • B29C2949/0724Preforms or parisons characterised by their configuration having variable wall thickness at body portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/072Preforms or parisons characterised by their configuration having variable wall thickness
    • B29C2949/0725Preforms or parisons characterised by their configuration having variable wall thickness at bottom portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/073Preforms or parisons characterised by their configuration having variable diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/073Preforms or parisons characterised by their configuration having variable diameter
    • B29C2949/0732Preforms or parisons characterised by their configuration having variable diameter at flange portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/073Preforms or parisons characterised by their configuration having variable diameter
    • B29C2949/0733Preforms or parisons characterised by their configuration having variable diameter at body portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/076Preforms or parisons characterised by their configuration characterised by the shape
    • B29C2949/0768Preforms or parisons characterised by their configuration characterised by the shape characterised by the shape of specific parts of preform
    • B29C2949/077Preforms or parisons characterised by their configuration characterised by the shape characterised by the shape of specific parts of preform characterised by the neck
    • B29C2949/0772Closure retaining means
    • B29C2949/0773Threads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/076Preforms or parisons characterised by their configuration characterised by the shape
    • B29C2949/0768Preforms or parisons characterised by their configuration characterised by the shape characterised by the shape of specific parts of preform
    • B29C2949/077Preforms or parisons characterised by their configuration characterised by the shape characterised by the shape of specific parts of preform characterised by the neck
    • B29C2949/0777Tamper-evident band retaining ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/20Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer
    • B29C2949/22Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer at neck portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/20Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer
    • B29C2949/24Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer at flange portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/20Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer
    • B29C2949/26Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer at body portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/20Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer
    • B29C2949/28Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer at bottom portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3024Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3032Preforms or parisons made of several components having components being injected
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/139Open-ended, self-supporting conduit, cylinder, or tube-type article
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1397Single layer [continuous layer]

Definitions

  • the present invention refers to a parison and a related manufacturing process adapted to the production on an industrial scale of containers of thermoplastic resin, particularly polyethylene terephtalate (PET) and polypropylene (PP) intended for filling with liquids that may also be at a high temperature and/or carbonated, ie. containing C0 2 gas (carbon dioxide) .
  • thermoplastic resin particularly polyethylene terephtalate (PET) and polypropylene (PP) intended for filling with liquids that may also be at a high temperature and/or carbonated, ie. containing C0 2 gas (carbon dioxide) .
  • Single-stage processes are so defined in that they are capable of forming the so-called preform, or parison, and transferring said parison from the injection mould or extrusion die (upon it having been cooled down to some appropriate temperature) to a conditioning station, where it is allowed to uniformly level at a temperature of preferred molecular orientation. Said preform or parison is then transferred to a blow-moulding mould, in which it is finally moulded into its desired form.
  • thermoplastic resin container which is in some way allowed, through a conditioning station, to gain a uniform wall temperature throughout the cross-section area thereof, such a temperature corresponding to the preferred molecular orientation temperature of the resin.
  • the individual parisons are produced in the first phase of the above process, wherein said parisons are then usually stored in situ or transported to the premises of the final user or processor.
  • the parisons are then re-conditioned to the desired temperature and, immediately thereafter, blow-moulded into the desired final products, ie. the bottles.
  • two-stage processes potentially enables also considerable economies of scale to be obtained, since a single manufacturer is able to produce, in a single and same plant, the parisons that can then be used to produce various different types of bottles.
  • parisons are obtained through continuous extrusion of a flow of thermoplastic resin, in particular polyethylene terephtalate (PET) , into a plurality of multiple moulds.
  • thermoplastic resin in particular polyethylene terephtalate (PET)
  • PET polyethylene terephtalate
  • the actual production of a parison is not independent from the manner in which the same is going to be blow moulded, as well as the manner in which the resulting bottle is going to be used, but must on the contrary take due account of all such variables as mainly:
  • the main problem encountered in the manufacturing of refillable bottles lies in trying to ensure an optimum distribution of the material particularly in the area of the resting base of the bottle, and therefore a differentiated thickness pattern along the walls of the bottle and, as a result, a differentiated thickness pattern even on the parison.
  • the bottom shall possess a well-defined material thickness map.
  • the 'champagne'-type bottom shall ensure such performance abilities as to withstand following treatment: - three hours at 60°C with 25% of NaOH, followed by twenty-four hours at four volumes of C0 2 at
  • All 'champagne'-type bottoms submitted to inner pressure must have minimum thickness values at the points genera ⁇ lly indicated at A and Al, below which the bottom would unfailingly give way.
  • the bottoms must also comply with another basic requirement, ie. they must have an adequately uniform thickness pattern along their circumference in correspondence of the zones 2. Only a minimum thickness difference can be at best allowed between two diametrically opposite points.
  • the greatest allowable thickness difference amounts to 0.2 to 0.25 mm. It is important for this difference to be kept as small as possible in view of minimizing a non-perpendicularity of the bottle.
  • process window criticalness of process tolerances, known also as "process window", when blow moulding parisons with a substantially constant thickness of their walls, due to the fact that the material is at the same starting temperature, but must be stretched to very different values, while keeping pre-defined minimum thicknesses in the most critical zone of the resting base of the bottle; b) the use of parisons with a constant wall thickness has the consequence that the final bottle occurs to have some of its zones with a significantly greater thickness than the one which would be actually required to withstand the respective stresses or loads, so that it can be concluded that at least a part of the material used in said zones is practically wasted;
  • a parison for use in a single-stage process for producing a container of thermplastic resing which is thermally stable, capable of being filled with both hot liquids and carbonated liquids, capable of being re-used for a number of times, and provided with a 'champagne'-type bottom offering the afore mentioned performance capabilities, and
  • FIG. 1 is a cross-sectional view of a 'champagne'-type bottom for a typical refillable bottle
  • FIG. 2 is a vertical, median cross-sectional view of a parison according to the present invention, capable of being blow moulded in a single-stage plant;
  • FIG. 3 is a vertical, median cross-sectional view of the deformation lines of the bottom of a parison according to the present invention
  • FIG. 4 is a view of the thermal map of a typical parison as detected when coming out of the injection mould
  • FIG. 5 is an enlarged view of a median vertical section of the wall of the parison illustrated in Fig. 2, as referred to a particular portion of said wall;
  • FIG. 6 is a view of the median vertical section of a parison according to the present invention, capable of being blow moulded in a two-stage plant;
  • FIG. 7 is a vertical, median cross-sectional view of the deformation lines of the bottom of a parison according to the present invention, during blow moulding in a two-stage method;
  • FIG. 8 is an enlarged view of a median vertical section of the wall of the parison illustrated in Fig. 6, as referred to a particular portion of said wall.
  • the first aim that the present invention is meant to reach is the definition of such a profile and such a thickness map or pattern of the parison as to obtain, after the same parison is blow moulded in a single-stage process, an automatic distribution of the plastic material in the zones 1 and 2 of the bottom, wherein this must be obtained without the aid of any intermediate thermal conditioning means or treatment provided between the injection mould and the blow moulding mould.
  • the parison shown in Figure 2 is subdivided into three distinct, superposed portions, ie. an upper portion or neck H, a middle portion L, and an end portion N in which the parison contracts and closes up in the form of a half-sphere.
  • a lower sub- portion M is furthermore defined close to said end portion; this can be defined as that portion of parison which, after blow moulding, becomes the resting zone of the base of the bottle, at A and Al, and the zones 2 adjacent to such a base (Fig. 1).
  • the most critical zones in this context are known to be the zones 2 situated close to the resting base of the bottle and, above all, the points 4 that correspond to the resting base itself, and it is for this particular reason that the thermal profile of the parison must be such as to ensure a lower temperature in the zones 2 of the bottom (as a matter of fact, said zones 2 are actually a single ring-shaped zone) so as to prevent the material from stretching to an excessive extent, thereby reducing the thickness at the contact points 4.
  • the parison leaves the injection mould with a temperature which is uniform all along its axis, so that a treatment becomes necessary, before blow moulding, aimed at re-distributing the temperature in view of creating an optimum profile thereof.
  • the parison according to the present invention enables the same parison to come directly out of the injection mould with a thermal profile which is ideal in view of blow moulding according to the considerations set forth above.
  • the basic feature of the present invention is that, in said lower sub-portion M, the outside diameter Dl and the inside diameter D2 of the parison decrease progressively following a profile in the shape of a frustum of a cone, until they become D3 and D , respectively, for regaining, possibly after a short length of portion with variable-thickness walls, the usual half-sphere profile in the end portion N.
  • Such a decrease of the wall diameters has a first effect in that, in the zones involved by said narrowing, a thickness SP2 is brought about which is smaller than the thickness SP1 of the parison body, so as to enable a lower temperature to prevail in such a portion of parison, since a quicker cooling is able to take place in this portion of thickness SP1 than in the adjacent zones.
  • the lower temperature reached by the material in said sub-portion M in the shape of a frustum of cone does not allow, notwithstanding the high stretching ratio, for the material to undergo any excessive extent of stretching and, at any rate, any extent of stretching that may be comparable with the one which is imposed to the material of the adjacent portions, considering that, since such material is at higher temperatures, it tends to stretch to a much greater extent, although it is exposed to a smaller stretching ratio as in the amorphous zone adjacent to the injection point.
  • the thickness SP3 of the wall at the lowest point of the end portion N has a value of approx. 0.7 x SP1;
  • said points 7 and 8 shown in Figure 4 originate from the zones 2 (Fig. 1) of the bottom, ie. the material available in said points 7 and 8, and corresponding to said sub-portion M, is caused to automatically flow and arrange itself in the zones 2 of the bottom, at the points A and Al (Fig. 1) thereof, during blow moulding.
  • the height h- ⁇ at which the outer diameter Dl of the parison starts to become narrower, shall be slightly higher than the height h 2 at which also the inside diameter D2 of the parison starts to become narrower
  • the height h 3 at which the gradual narrowing of the outside diameter D3 of the parison terminates, shall be slightly higher than the height h 4 at which the gradual narrowing of the inside diameter D4 of the parison also terminates, said height differences being determinable in accordance with the afore cited angle a and the desired reduction in thickness in said sub-portion M.
  • the parison illustrated in Figure 6 is again subdivided into three distinct, superposed portions, ie. an upper portion H, a middle portion L, and an end portion N in which the parison contracts and closes up in the form of a half-sphere.
  • a lower sub-portion M is furthermore defined close to said end portion; this can be defined as that portion of parison which, after blow moulding, becomes the resting zone of the base of the bottle, at A and Al, and the zones 2 adjacent to such a base (Fig. 7) .
  • the most critical zones in this context are known to be the zones 2 situated close to the resting base of the bottle and, above all, the points 4 that correspond to the resting base itself, and it is for this particular reason that the thermal profile of the parison must be such as to ensure a lower temperature in the zones 2 of the bottom (as a matter of fact, said zones 2 are actually a single ring-shaped zone) so as to prevent the material from stretching to an excessive extent, thereby reducing the thickness at the contact points 4.
  • the parison starts in the same process from a cold condition and must therefore be conditioned, ie. heated up to a temperature which is uniform all along its axis, so that a treatment becomes necessary, before blow moulding, aimed at distributing the temperature in a uniform manner all along the body thereof.
  • the parison according to the present invention enables the same parison to come directly out of the conditioning phase, and therefore to be available at the beginning of the blow moulding phase, with a thermal profile which is ideal for blow moulding according to the considerations set forth above.
  • the basic feature of the present invention is that, in said lower sub-portion M, the outside diameter Dl' and the inside diameter D2' of the parison decrease progressively following a profile in the shape of a frustum of a cone, until they become D3' and D4', respectively, for regaining the usual half-sphere profile in the end portion N.
  • the wall thickness is actually increased from a value SP1' to a greater value SP2', said increase being obtained by differentiating the levels 1 ⁇ , 1 2 at which the outside and inside diameters Dl' and D2' , respectively, start to become narrower, and similarly by differentiating the levels 1 3 , 1 4 at which the outside and inside diameters D3' and D4' , respectively, regain their constant size towards the end portion N.
  • the height 1 1# at which the outer diameter Dl' of the parison starts to become narrower shall be lower than the height 1 2 at which also the inside diameter D2' of the parison starts to become narrower, whereas the height 1 3 , at which the gradual narrowing of the outside diameter D3' of the parison terminates, shall be slightly lower than the height 1 4 at which the gradual narrowing of the inside diameter D4' of the parison also terminates, said height differences being determinable in accordance with the afore cited angle a and the desired reduction in thickness in said sub-portion M.
  • Such a particular geometry of the wall has a first effect in that, in the sub-portion M, in which the diameters become narrower, but the wall thickness is increased, a thickness SP2' is brought about which is greater than the thickness SP1' of the parison bodyg.
  • This brings about a greater thermal capacity in said sub-portion and, therefore, a lesser extent of heating in the conditioning phase required by each two- stage process, thereby reaching practically a lower temperature in such a portion of the parison than in the adjacent zones.
  • the thickness SP3' of the wall at the lowest point of the end portion N has a value of approx. 0.7 x SPl';
  • the height of said sub-portion M is determined experimentally based on the desired distribution of material in the bottom;
  • a further benefit the present invention has been found from systematically performed experiments to derive from a greater extent of biaxial orientation; in fact, considering that in the sub-portion M of the parison the diameter D3' and D4' are smaller than Dl' and D2', respectively, it ensues that the stretching ratios, considering 0 as the resting diameter (critical zone) of the bottle, are respectively greater.
  • Such an increase in the extent of orientation in the sense of an increase in the stretching ratio, amounts to anywhere between approx. 10% and 15% and depends on the actual size and shape of the bottle.
  • the increase in the extent of orientation is generally known to translate into an increase in the mechanical performance capabilities and, above all, a reduction of the stress cracking effect at the points 4, such an effect being commonly known to be the worst enemy of refillable bottles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

Parison of thermoplastic resin, particularly used to be subsequently blow moulded to become a plastic bottle, and comprising an upper portion (H), a middle portion (L) and an end portion (N), said middle portion comprising on its lower side near said terminal portion a lower sub-portion (M) which has a thickness that is variable and smaller with respect to the wall thickness of the parison in said middle portion, particularly with a profile in the shape of a downward narrowing frustum of cone. Preferably, the thickness in said lower sub-portion (M) is decreased by at least 12 % with respect to the thickness of the remaining middle portion of the parison, and the angle between the sides of said profile in the shape of a frustum of cone and the axis of symmetry is comprised between 5° and 10°. Advantages: broader process tolerances, elimination of heat conditioning treatments, reduction in resin usage.

Description

IMPROVEMENT IN THERMOPLASTIC-RESIN PARISONS AND RELATED
MANUFACTURING PROCESS
DESCRIPTION
The present invention refers to a parison and a related manufacturing process adapted to the production on an industrial scale of containers of thermoplastic resin, particularly polyethylene terephtalate (PET) and polypropylene (PP) intended for filling with liquids that may also be at a high temperature and/or carbonated, ie. containing C02 gas (carbon dioxide) .
In the field embracing the technology and the machines for manufacturing such containers there are a number of developments and improvements aimed at obtaining production processes and related apparatuses that are capable of producing said containers in an increasingly reliable, cost- effective, versatile manner, to an increasing level of quality, in a highly competitive industrial context of very large-scale production.
These production processes are generally known to be capable of being schematically grouped into two basic typologies, ie. single-stage and two-stage processes. The present invention applies to parisons obtained with both such types of processes, as well as the same respective processes.
Single-stage processes are so defined in that they are capable of forming the so-called preform, or parison, and transferring said parison from the injection mould or extrusion die (upon it having been cooled down to some appropriate temperature) to a conditioning station, where it is allowed to uniformly level at a temperature of preferred molecular orientation. Said preform or parison is then transferred to a blow-moulding mould, in which it is finally moulded into its desired form.
Inherent to any single-stage process is the fact that an uneven heat distribution takes place across the cross-section area of the wall thickness of the parison when the latter is transferred from the injection mould or extrusion die. Various processes have been patented concerning the times and the temperatures of the parison when this is removed from the injection mould, in view of optimizing the cycle times.
The patent literature covering single-stage processes discloses in all cases a final forming or moulding of the thermoplastic resin container which is in some way allowed, through a conditioning station, to gain a uniform wall temperature throughout the cross-section area thereof, such a temperature corresponding to the preferred molecular orientation temperature of the resin.
Two-stage processes are so defined due to the fact that the blow-moulded bottle is obtained in two distinct phases which may be carried out even at quite great intervals between each other. In fact, the actual advantage of this technology derives exactly from the circumstance that the whole process is divided into two phases that are normally carried out wide apart from each other in terms of both place and time, thereby ensuring greater flexibility from a technical, manufacturing and marketing point of view.
The individual parisons are produced in the first phase of the above process, wherein said parisons are then usually stored in situ or transported to the premises of the final user or processor.
In the second phase of the above process, the parisons are then re-conditioned to the desired temperature and, immediately thereafter, blow-moulded into the desired final products, ie. the bottles.
In addition to such a greater flexibility, two-stage processes potentially enables also considerable economies of scale to be obtained, since a single manufacturer is able to produce, in a single and same plant, the parisons that can then be used to produce various different types of bottles.
However, two-stage processes have a major inherent drawback in their greater energy usage due to the fact that, in the second phase or stage thereof, the parisons must be fully re¬ conditioned, ie. heated to the optimum temperature required for the subsequent blow moulding operation.
In both said single-stage and two-stage processes and plants for the production of hollow plastic products, typically bottles, parisons are obtained through continuous extrusion of a flow of thermoplastic resin, in particular polyethylene terephtalate (PET) , into a plurality of multiple moulds. However, the actual production of a parison is not independent from the manner in which the same is going to be blow moulded, as well as the manner in which the resulting bottle is going to be used, but must on the contrary take due account of all such variables as mainly:
- the shape of the bottle,
- the inetrnal volume of the bottle,
- the type of liquid which is going to be filled in the bottle and which may be either highly or normally carbonated or even simply "plain", ie. uncarbonated,
- the state of the liquid, which can be either hot or cold when filled, - the way in which the bottle itself is going to be used, since it can be designed for disposal after use or be of the re-usable type and, as a result, refillable for a number of times after recovery, cleaning and sanitation, etc.
With reference to the shape of re-usable, or "refillable" bottles, as they are generally referred to in the art, it has been observed that these prove to be particularly well-suited to re-utilization if their bottom, or base, is given a "champagne" bottle-like shape, instead of a "petaloid"-like one, even these two terms being generally and unmistakably known to those skilled in the art.
This is practically due to a twofold reason, ie. to the petaloid bottom being much more subject to crackings and breakages (stress cracking problems) during the subsequent treatments of the bottles, and to the cleanability of the bottle, in view of the re-utilization of the same, being clearly much poorer in the deep recesses of the petaloid, owing to it being hindered by the particular receptacle-like shape of said recesses.
The main problem encountered in the manufacturing of refillable bottles lies in trying to ensure an optimum distribution of the material particularly in the area of the resting base of the bottle, and therefore a differentiated thickness pattern along the walls of the bottle and, as a result, a differentiated thickness pattern even on the parison. In fact, in view of its adequate mechanical strength at the various pressure and temperature conditions, the bottom shall possess a well-defined material thickness map.
It is generally known that, while the internal pressure strength of a bottle with a petaloid bottom is given by the geometry, ie. the actual shape of the same bottom, and in particular by the ribs (tie-beams) thereof, only an adequate and properly distributed quantity of material will be able to ensure the same function of the petaloid configuration in a 'champagne' type of bottle bottom.
For instance, in the case of 2-liter bottles the 'champagne'-type bottom shall ensure such performance abilities as to withstand following treatment: - three hours at 60°C with 25% of NaOH, followed by twenty-four hours at four volumes of C02 at
38°C.
When submitted to the above cited test conditions, the bottom of a refillable-type bottle shall ensure following performance:
1) it shall avoid everting, ie. bending outwards; 2) it shall avoid giving rise to stress-cracking or any other breakage of the kind;
3) it shall not cause the bottle to become unsteady on its resting base or plane;
4) it shall maintain full perpendicularity of the axis of the bottle relative to the resting base or plane.
For such performance capabilities to be reached, a 'champagne'-type bottle bottom must be given certain characteristics, which, with reference to Figure 1, are as follows:
1) Greatest possible orientation of the amorphous zone 1. This is obviously the zone in which the orientation tends to be reduced to a minimum, while material concentration is the greatest. Since there is practically no material orientation, mechanical strength is ensured solely by the thickness thereof. However, an excessively great thickness would only mean a waste of material. Up to 25% of the overall weight of refillable bottles is in the bottom portion thereof (zone 1 + zone 2) . It is therefore necessary for this amorphous zone 1 to be given the greatest possible orientation, although this may prove extremely difficult to be obtained. 2) Greatest possible orientation of the amorphous zone 2. These are the most critical zones, since material orientation and distribution are decisive for the mechanical strength of the bottom.
All 'champagne'-type bottoms submitted to inner pressure must have minimum thickness values at the points genera<lly indicated at A and Al, below which the bottom would unfailingly give way. In addition to this imperative requirement, the bottoms must also comply with another basic requirement, ie. they must have an adequately uniform thickness pattern along their circumference in correspondence of the zones 2. Only a minimum thickness difference can be at best allowed between two diametrically opposite points.
For instance, in the case of a 'champagne'-type bottom of a
2-liter refillable bottle, the greatest allowable thickness difference amounts to 0.2 to 0.25 mm. It is important for this difference to be kept as small as possible in view of minimizing a non-perpendicularity of the bottle.
The extent of orientation is certainly very important, but not as important as the manner in which the material distributes itself in these zones. In both above mentioned methods, such a distribution is furthermore strongly dependent on the temperature conditioning treatment which the parisons are caused to undergo before being blow moulded, and such a conditioning treatment implies a twofold drawback: on the one side, the parison wall is heated up in a substantially uniform manner and this leads to a fairly uniform stretching of the material during blow moulding, ie. gives rise to a conflicting situation with the requirement of a differentiated material distribution, according to a well-defined pattern, along the various zones of the bottle; on the .other side, such a conditioning phase of the process, in single-stage processes, slows down and complicates the entire production process due to a variety of technical and economical reasons as those skilled in the art are well aware of.
As far as two-stage processes and related parisons are concerned, it is a fact inherent thereto that, being it necessary, due to inherent plant limitations, for the parison to be conditioned to a substantially uniform temperature, while it is on the other hand necessary for the bottom of the same parison to be then stretched according to a very differentiated pattern, it ensues that, in order to ensure a satisfactory strength of the base, or contact zone, which usually undergoes greater stretching, the need arises for the use of parisons having an adequate thickness. However, the thickness required for said highly stretched zones turns out to be actually excessive for the other zones of both the bottom and the remaining body portions of the parison, so that such a thickness constraint conclusively translates into an ineffectual consumption of plastic material used in those portions of the bottles that undergo a low-to-medium level of stretching.
In order to reduce such an ineffectual utilization of material, efforts are made in view of keeping the conditioning temperature within very tight limits; however, controlling such a process parameter is not always easily or economically possible.
The basic drawbacks of the present technilogy for the production of parisons can therefore be summarized as follows:
a) criticalness of process tolerances, known also as "process window", when blow moulding parisons with a substantially constant thickness of their walls, due to the fact that the material is at the same starting temperature, but must be stretched to very different values, while keeping pre-defined minimum thicknesses in the most critical zone of the resting base of the bottle; b) the use of parisons with a constant wall thickness has the consequence that the final bottle occurs to have some of its zones with a significantly greater thickness than the one which would be actually required to withstand the respective stresses or loads, so that it can be concluded that at least a part of the material used in said zones is practically wasted;
c) in single-stage plants, introducing the temperature conditioning phase before the actual blow moulding phase gives rise to a number of problems, the solution of which implies high costs and greater complications in the construction of the related plant, as well as in the process performed in the same plant.
Considering all these drawbacks, it is therefore a main purpose of the present invention to provide
a) a parison for use in a single-stage process for producing a container of thermplastic resing which is thermally stable, capable of being filled with both hot liquids and carbonated liquids, capable of being re-used for a number of times, and provided with a 'champagne'-type bottom offering the afore mentioned performance capabilities, and
b) a parison for use in a two-stage process for producing containers of a type similar to the one described above with reference to single-stage processes, which further enables material usage to be reduced to a minimum,
while using presently available, easily and economically implementable techniques for both types of preforms and eliminating the parison conditioning phase before the blow moulding phase in single-stage processes only.
It is a further purpose of the present invention to provide a parison having the above mentioned features and properties, which may be used to also produce bottles with 'petaloid'-type bottom, as well as disposable, ie. non-reusable bottles.
These and further purposes of the present invention will be readily and clearly understood by those skilled in the art from the reading and comprehension of the description given below.
These aims of the present invention are substantially reached in a controlled combination of the obtainment of a particular profile and distribution of the thickness of the wall of the parison and, as far as single-stage processes are concerned, the parison cooling time, including the elimination of the temperature conditioning phase.
A non-limiting example of the invention is described and illustrated in detail below with reference to the accompanying drawings, in which:
- Figure 1 is a cross-sectional view of a 'champagne'-type bottom for a typical refillable bottle;
- Figure 2 is a vertical, median cross-sectional view of a parison according to the present invention, capable of being blow moulded in a single-stage plant;
- Figure 3 is a vertical, median cross-sectional view of the deformation lines of the bottom of a parison according to the present invention;
- Figure 4 is a view of the thermal map of a typical parison as detected when coming out of the injection mould;
- Figure 5 is an enlarged view of a median vertical section of the wall of the parison illustrated in Fig. 2, as referred to a particular portion of said wall;
- Figure 6 is a view of the median vertical section of a parison according to the present invention, capable of being blow moulded in a two-stage plant;
- Figure 7 is a vertical, median cross-sectional view of the deformation lines of the bottom of a parison according to the present invention, during blow moulding in a two-stage method;
- Figure 8 is an enlarged view of a median vertical section of the wall of the parison illustrated in Fig. 6, as referred to a particular portion of said wall.
The actual target which both methods of solution described hereinafter are aiming at is based on the practical consideration that the portion of parison which undergoes the greatest extent of stretching in view of its being transformed into the base of the container is at the same time the portion which, after its being converted into such a base, is most stressed, ie. is exposed to the greatest loads, and must therefore be capable of ensuring the best possible mechanical performance, such a basic consideration applying actually to all types of parisons, ie. both those which are adapted to be blow moulded in single-stage plants and those which are on the contrary adapted to be blow moulded in two-stage plants.
This leads to the definition of parisons in which said portion is varied, and particularly "adapted" to the actual blow-moulding conditions, with respect to the remaining body of the parison.
Such an aim is reached through a controlled combination of the two basic variables affecting the stretching of the parison, ie. the thickness of the wall of the parison and the temperature during stretching.
However, since the temperature during the stretching phase depends on the thermal-treatment and general conditions in which the parison was being held before said phase, said conditions generally varying to a considerable extent in single-stage and two-stage processes, it logically ensues that even the method conceived to solve this problem, ie. the optimum combination of thickness and thermal treatment, will be fully different in the two processes, and this is the reason why the continuation of the description will be divided into two distinct parts applying solely to either one of the two described processes.
PARISON FOR SINGLE-STAGE PLANTS AND PROCESSES
The first aim that the present invention is meant to reach is the definition of such a profile and such a thickness map or pattern of the parison as to obtain, after the same parison is blow moulded in a single-stage process, an automatic distribution of the plastic material in the zones 1 and 2 of the bottom, wherein this must be obtained without the aid of any intermediate thermal conditioning means or treatment provided between the injection mould and the blow moulding mould.
To the purpose of a better and clearer explanation, the parison shown in Figure 2 is subdivided into three distinct, superposed portions, ie. an upper portion or neck H, a middle portion L, and an end portion N in which the parison contracts and closes up in the form of a half-sphere. In the lower portion of the middle parison portion L a lower sub- portion M is furthermore defined close to said end portion; this can be defined as that portion of parison which, after blow moulding, becomes the resting zone of the base of the bottle, at A and Al, and the zones 2 adjacent to such a base (Fig. 1).
To this purpose, and with particular reference to the 'champagne'-type bottom, a special parison has been developed and experimentally tested, which is provided with a variable thickness pattern in said lower sub-portion M, as this is better illustrated in Figures 2 and 3.
The process which led to such a thickness profile started from the basic consideration that it is actually of fundamental importance for the parison to possess a particular thermal profile so as to ensure that, during blow moulding, the material will distribute according to the required particular map or pattern of thicknesses of the bottle.
As already emphasized, the most critical zones in this context are known to be the zones 2 situated close to the resting base of the bottle and, above all, the points 4 that correspond to the resting base itself, and it is for this particular reason that the thermal profile of the parison must be such as to ensure a lower temperature in the zones 2 of the bottom (as a matter of fact, said zones 2 are actually a single ring-shaped zone) so as to prevent the material from stretching to an excessive extent, thereby reducing the thickness at the contact points 4.
In a traditional single-stage blow moulding process, the parison leaves the injection mould with a temperature which is uniform all along its axis, so that a treatment becomes necessary, before blow moulding, aimed at re-distributing the temperature in view of creating an optimum profile thereof.
Quite on the contrary, the parison according to the present invention enables the same parison to come directly out of the injection mould with a thermal profile which is ideal in view of blow moulding according to the considerations set forth above.
The basic feature of the present invention is that, in said lower sub-portion M, the outside diameter Dl and the inside diameter D2 of the parison decrease progressively following a profile in the shape of a frustum of a cone, until they become D3 and D , respectively, for regaining, possibly after a short length of portion with variable-thickness walls, the usual half-sphere profile in the end portion N.
Such a decrease of the wall diameters has a first effect in that, in the zones involved by said narrowing, a thickness SP2 is brought about which is smaller than the thickness SP1 of the parison body, so as to enable a lower temperature to prevail in such a portion of parison, since a quicker cooling is able to take place in this portion of thickness SP1 than in the adjacent zones.
During the subsequent blow moulding phase, the lower temperature reached by the material in said sub-portion M in the shape of a frustum of cone does not allow, notwithstanding the high stretching ratio, for the material to undergo any excessive extent of stretching and, at any rate, any extent of stretching that may be comparable with the one which is imposed to the material of the adjacent portions, considering that, since such material is at higher temperatures, it tends to stretch to a much greater extent, although it is exposed to a smaller stretching ratio as in the amorphous zone adjacent to the injection point.
It has therefore been proven experimentally that, by appropriately decreasing the diameters of the parison in said sub-portion M, it is possible for a differentiated cooling pattern to be obtained throughout the same parison, to such an extent as to enable both the subsequent blow moulding phase to be carried out immediately thereupon and an optimum thermal map, or heat distribution pattern, to be obtained in the parison in view of obtaining the desired thicknesses in the bottom of the bottle without the need for any intermediate conditioning phase.
Based on such an observation, and being it further obvious that each type of bottle requires a special parison, it is possible for the ideal thickness profile to be identified experimentally for each bottle, and therefore for the respective parison, in view of obtaining the results that are the actual purpose of the present invention as described in the foregoing description.
It has been particularly observed that there are a number of characterizations that are common to the various types of parisons and that, when applied individually or in different combination thereof, tend to improve the results that can be achieved or enable the desired results to be more easily obtained, such characterizations basically including:
- constancy of the angle a of inclination, with respect to the axis of the parison, of the inner wall and the outer wall of said sub-portion M in the shape of a frustum of cone, said angle ranging from 5° to 10°;
- decrease in the thickness of the walls by starting from the upper limit SP1 down to the lower limit SP2 of said lower sub-portion M, since this definitely contributes to decreasing the mass of the corresponding walls and, as a result, further accelerating the cooling rate thereof;
- reduction of the thickness SP2 of said sub-portion M by 5% to 10% with respect to the thickness SP1 of the remaining middle portion L, also due to the walls of said sub-portion M being bent inwards;
- maintenance of the wall thickness SP4, all along the length of the portion P immediately below said sub-portion M, at a value which is equal to or, at any rate, not smaller than 5% with respect to said thickness SP1, so as to obtain the greatest extent of biaxial orientation in the zone 1 of the bottom;
- the thickness SP3 of the wall at the lowest point of the end portion N has a value of approx. 0.7 x SP1;
- the height of said sub-portion M is determined experimentally in accordance with the desired distribution of material in the bottom;
- for the thickness in the contact zone of the base of a 'champagne'-type bottom, as referred to generally at A and Al in the cross-sectional illustration appearing in Figure 1, to be held more effectively, it has been ascertained experimentally that the geometry, ie. the shape of both the parison and the respective blow moulding tool must be such as to ensure that said contact zone of the base substantially corresponds to the median points 4 of said sub-portion M; this may be explained by the fact that such median points are, albeit not to a very considerable extent, subject to more intensive cooling and, therefore, are less prone to stretching and, as a result, to a reduction in their thickness.
With reference to Figure 4, which shows the thermal profile detected experimentally on a parison according to the invention as it comes out of the related injection mould, the thermal gradient can be noticed to be lower at the points 7 and 8 than in the other parts of the parison.
During blow moulding, said points 7 and 8 shown in Figure 4 originate from the zones 2 (Fig. 1) of the bottom, ie. the material available in said points 7 and 8, and corresponding to said sub-portion M, is caused to automatically flow and arrange itself in the zones 2 of the bottom, at the points A and Al (Fig. 1) thereof, during blow moulding.
Further clear benefits and advantages of the present invention have emerged from systematically performed experiments, ie. :
1) A greater extent of biaxial orientation; in fact, considering that in the sub-portion M of the parison the diameter D3 and D4 are smaller than Dl and D2, respectively, it ensues that the stretching ratios, considering 0 as the resting diameter (critical zone) of the bottle, are greater, ie. 0:D4 > 0:D2 and 0:D3 > 0:D1. Such an increase in the extent of orientation, in the sense of an increase in the stretching ratio, amounts to anywhere between approx. 10% and 15% and depends on the actual size and shape of the bottle. An increase in the extent of orientation is generally known to translate into an increase in the mechanical performance capabilities and, above all, a reduction of the stress cracking effect at the points 4, such an effect being commonly known to be the worst enemy of refillable bottles.
2) In order to be able to make a parison in a single-stage process, it is of paramount importance for the problem of stress cracking in refillable bottles to be first of all solved. Now, moisture is the most important element as far as the development of such a stress cracking effect is concerned. According to the present invention, any risk of moisture being absorbed is on the contrary eliminated, since the parison is blow moulded immediately upon its being formed in the injection mould, so that it is practically left no time for absorbing humidity from the ambient.
It has furthermore been experimentally found it to be particularly advantageous, to the purpose of a more effective 'guidance' of the temperature in the zone subject to the greatest extent of stretching, ie. said sub-portion M, for the reduction in the thickness of the wall to be brought about not only through the simple inward tapering of the afore cited angle a, but also through a different distance, from the bottom of the parison, of the points at which said tapering begins and ends, as far as both the outside diameter and the inside diameter are concerned.
With reference to Figure 5, in which an enlarged median vertical section of the wall of the parison shown in Fig. 2 is illustrated as referred to the sub-portion M of said wall, the height h-^, at which the outer diameter Dl of the parison starts to become narrower, shall be slightly higher than the height h2 at which also the inside diameter D2 of the parison starts to become narrower, whereas the height h3, at which the gradual narrowing of the outside diameter D3 of the parison terminates, shall be slightly higher than the height h4 at which the gradual narrowing of the inside diameter D4 of the parison also terminates, said height differences being determinable in accordance with the afore cited angle a and the desired reduction in thickness in said sub-portion M.
As a further explanation of the illustration appearing in Figure 5, it should be stressed that the described heights h refer to the respective distance from a single reference level
Z situated below the parison and perpendicular to the axis X thereof.
PARISON FOR TWO-STAGE PLANTS AND PROCESSES
With reference to the parisons illustrated in Figures 6, 7 and 8, which are provided for being blow moulded in a two- stage process, in view of favouring a better understanding a number of references and considerations will be used which have been already used in connection with the single-stage processes and are applicable to typical two-stage process conditions as well.
The parison illustrated in Figure 6 is again subdivided into three distinct, superposed portions, ie. an upper portion H, a middle portion L, and an end portion N in which the parison contracts and closes up in the form of a half-sphere. In the lower portion of the middle parison portion L a lower sub-portion M is furthermore defined close to said end portion; this can be defined as that portion of parison which, after blow moulding, becomes the resting zone of the base of the bottle, at A and Al, and the zones 2 adjacent to such a base (Fig. 7) .
To this purpose, and with particular reference to the 'champagne'-type bottom, a special parison has been developed and experimentally tested, which is provided with a variable thickness pattern in said lower sub-portion M, as this is better illustrated in Figures 6 and 7.
The process which led to such a thickness profile started from the basic consideration that it is actually of fundamental importance for the parison to possess a particular thermal profile so as to ensure that, during blow moulding, the material will distribute according to the required particular map or pattern of thicknesses of the bottle.
As already emphasized, the most critical zones in this context are known to be the zones 2 situated close to the resting base of the bottle and, above all, the points 4 that correspond to the resting base itself, and it is for this particular reason that the thermal profile of the parison must be such as to ensure a lower temperature in the zones 2 of the bottom (as a matter of fact, said zones 2 are actually a single ring-shaped zone) so as to prevent the material from stretching to an excessive extent, thereby reducing the thickness at the contact points 4.
In a traditional two-stage blow moulding process, the parison starts in the same process from a cold condition and must therefore be conditioned, ie. heated up to a temperature which is uniform all along its axis, so that a treatment becomes necessary, before blow moulding, aimed at distributing the temperature in a uniform manner all along the body thereof.
Quite on the contrary, the parison according to the present invention enables the same parison to come directly out of the conditioning phase, and therefore to be available at the beginning of the blow moulding phase, with a thermal profile which is ideal for blow moulding according to the considerations set forth above.
The basic feature of the present invention is that, in said lower sub-portion M, the outside diameter Dl' and the inside diameter D2' of the parison decrease progressively following a profile in the shape of a frustum of a cone, until they become D3' and D4', respectively, for regaining the usual half-sphere profile in the end portion N.
However, notwithstanding such a double narrowing, the wall thickness is actually increased from a value SP1' to a greater value SP2', said increase being obtained by differentiating the levels 1^ , 12 at which the outside and inside diameters Dl' and D2' , respectively, start to become narrower, and similarly by differentiating the levels 13, 14 at which the outside and inside diameters D3' and D4' , respectively, regain their constant size towards the end portion N.
With reference to Figure 8, in which an enlarged median vertical section of the wall of the parison shown in Fig. 6 is illustrated as referred to the sub-portion M of said wall, it should be stressed that the various herein indicated heights ll7 12, 13, 14 refer to the respective distance from a single reference level H situated below the parison and perpendicular to the axis X thereof.
The height 11# at which the outer diameter Dl' of the parison starts to become narrower, shall be lower than the height 12 at which also the inside diameter D2' of the parison starts to become narrower, whereas the height 13, at which the gradual narrowing of the outside diameter D3' of the parison terminates, shall be slightly lower than the height 14 at which the gradual narrowing of the inside diameter D4' of the parison also terminates, said height differences being determinable in accordance with the afore cited angle a and the desired reduction in thickness in said sub-portion M.
Such a particular geometry of the wall has a first effect in that, in the sub-portion M, in which the diameters become narrower, but the wall thickness is increased, a thickness SP2' is brought about which is greater than the thickness SP1' of the parison bodyg. This brings about a greater thermal capacity in said sub-portion and, therefore, a lesser extent of heating in the conditioning phase required by each two- stage process, thereby reaching practically a lower temperature in such a portion of the parison than in the adjacent zones.
It will be now fully appreciated that such a lower temperature is exactly the result which is actually aimed at also in conjunction with the parisons to be blow moulded in a single-stage process, since the effect that is brought about by said lower temperature, ie. a lesser extent of material stretching in the zones involved, is common to both methods.
Going anyway back to the two-stage process, during the subsequent blow moulding phase the lower temperature reached by the material in said sub-portion M in the shape of a frustum of cone does not allow, notwithstanding the high stretching ratio, for the material to undergo any excessive extent of stretching and, at any rate, any extent of stretching that may be comparable with the one which is imposed to the material of the adjacent portions, considering that, since such material is at higher temperatures, it tends to stretch to a much greater extent, although it is exposed to a smaller stretching ratio as in the amorphous zone adjacent to the injection point.
It has therefore been proven experimentally that, by appropriately increasing the diameters of the parison in said sub-portion M of a parison to be blow moulded in a two-stage process, it is possible for a differentiated cooling pattern to be obtained throughout the same parison, to such an extent as to enable an optimum thermal map, or heat distribution pattern, to be automatically obtained in the parison in view of obtaining the desired thicknesses in the bottom of the bottle.
Based on such an observation, and being it further obvious that each type of bottle requires a special parison, it is possible for the ideal thickness profile to be identified experimentally for each bottle, and therefore for the respective parison, in view of obtaining the results that are the actual purpose of the present invention as described in the foregoing description.
It has been particularly observed that there are a number of characterizations that are common to the various types of parisons and that, when applied individually or in different combination thereof, such characterizations tend to improve the results that can be achieved or enable the desired results to be obtained more easily, such characterizations basically including:
- constancy of the angle a of inclination, with respect to the axis of the parison, of the inner wall and the outer wall of said sub-portion M in the shape of a frustum of cone, said angle ranging from 5° to 10°;
- increase in the thickness SP2' of said sub-portion M by at least 10% with respect to the thickness SP1' of the remaining middle portion L, owing to the different levels at which the tapering of the outside and inside walls of the parison starts and terminates, respectively;
- maintenance of the wall thickness SP4', all along the length of the portion P immediately below said sub-portion M, at a value which is equal to or, at any rate, not smaller than 5% with respect to said thickness SP1', so as to obtain the greatest extent of biaxial orientation in the zone 1 of the botto ;
- the thickness SP3' of the wall at the lowest point of the end portion N has a value of approx. 0.7 x SPl';
the height of said sub-portion M is determined experimentally based on the desired distribution of material in the bottom;
- for the thickness in the contact zone of the base of a 'champagne'-type bottom, as referred to generally at A and Al in the cross-sectional illustration appearing in Figure 5, to be held more effectively, it has been ascertained experimentally that the geometry, ie. the shape of both the parison and the respective blow moulding tool must be such as to ensure that said contact zone of the base substantially corresponds to the median points 4 of said sub-portion M; this may be explained by the fact that such median points are, albeit not to a very considerable extent, subject to more intensive cooling and, therefore, are less prone to stretching and, as a result, to a reduction in their thickness.
A further benefit the present invention has been found from systematically performed experiments to derive from a greater extent of biaxial orientation; in fact, considering that in the sub-portion M of the parison the diameter D3' and D4' are smaller than Dl' and D2', respectively, it ensues that the stretching ratios, considering 0 as the resting diameter (critical zone) of the bottle, are respectively greater. Such an increase in the extent of orientation, in the sense of an increase in the stretching ratio, amounts to anywhere between approx. 10% and 15% and depends on the actual size and shape of the bottle.
The increase in the extent of orientation is generally known to translate into an increase in the mechanical performance capabilities and, above all, a reduction of the stress cracking effect at the points 4, such an effect being commonly known to be the worst enemy of refillable bottles.

Claims

1. Parison of thermoplastic resin, particularly used to be subsequently blow moulded and converted into a bottle or hollow body of plastic material, and comprising an upper or neck portion (H) , a middle portion (L) and an end portion (N) , said middle portion comprising on its lower side near said terminal portion a lower sub-portion (M) that is adapted to stretch, during blow moulding, so as to include the resting zones (A, Al) of the bottle and the adjacent zones (2) , characterized in that in said lower sub-portion (M) the parison has a thickness that is variable and different with respect to the wall thickness in said middle portion (L) .
2. Parison according to claim 1, characterized in that said lower sub-portion (M) has a profile in the shape of a downward narrowing frustum of cone.
3. Parison according to claim 2, characterized in that the thickness of the wall of the parison in said lower sub-portion (M) is smaller than the thickness of the wall of the parison prevailing in said middle portion (L) .
4. Parison according to claim 3, characterized in that the thickness in said lower sub-portion (M) is decreased by at least 10% with respect to the thickness of the remaining middle portion of the parison.
5. Parison according to claim 3 or 4, characterized in that the angle (a) between the sides of said profile in the shape of a frustum of cone and the axis of symmetry is comprised between 5° and 10°.
6. Parison according to any of the claims 3 to 5, characterized in that in said end portion (N) the thickness (SP3) of the parison in correspondence of the lowest point (0) decreases to a value which is comprised between 60% and 80% of the thickness (SP1) of said middle portion.
7. Parison according to any of the claims 3 to 6, characterized in that below said lower sub-portion (M) in the shape of a frustum of cone the parison regains a profile which is substantially cylindrical in its shape, wherein the thickness (SP4) of the respective wall has a value which is comprised between 95% and 100% of the thickness (SP1) of said middle portion (L) .
8. Parison according to any of the claims 3 to 7 and adapted to produce a bottle provided with a 'champagne'-type bottom, characterized in that the median points 4 of said sub- portion (M) substantially correspond to the resting zone (A, Al) of the base.
9. Parison according to any of the claims 3 to 8, characterized in that the height (h-^ at which the outer diameter (Dl) of the parison starts to become narrower is higher than the height (h2) at which also the inside diameter (D2) of the parison starts to become narrower, whereas the height (h3) , at which the gradual narrowing of the outside diameter (D3) of the parison terminates, is higher than the height (h4) at which the gradual narrowing of the inside diameter (D4) of the parison also terminates.
10. Parison according to claim 2, characterized in that the thickness of the wall of the parison in said lower sub-portion (M) is greater than the thickness of the wall of the parison prevailing in said middle portion (L) .
11. Parison according to claim 10, characterized in that in said lower sub-portion (M) the thickness is increased by at least 10% with respect to the thickness of the remaining middle portion of the parison.
12. Parison according to claim 10 or 11, characterized in that the angle (a) between the sides of said profile in the shape of a frustum of cone and the axis of symmetry is comprised between 5° and 10°.
13. Parison according to any of the claims 10 to 12, characterized in that in said end portion (N) the thickness (SP3') of the parison in correspondence of the lowest point (0) decreases to a value which is comprised between 60% and 80% of the thickness (SP1') of said middle portion.
14. Parison according to any of the claims 10 to 13, characterized in that below said lower sub-portion (M) in the shape of a frustum of cone the parison regains a profile which is substantially cylindrical in its shape, wherein the thickness (SP4') of the respective wall has a value which is comprised between 95% and 100% of the thickness (SP1') of said middle portion (L) .
15. Parison according to any of the claims 10 to 14, and adapted to produce a bottle provided with a 'champagne'-type bottom, characterized in that the median points 4 of said sub- portion (M) substantially correspond to the resting zone (A, Al) of the base.
16. Parison according to any of the claims 10 to 15, characterized in that the height (11) , at which the outer diameter (Dl') of the parison starts to become narrower, is lower than the height (12) at which also the inside diameter (D2') of the parison starts to become narrower, and the height (13) , at which the gradual narrowing of the outside diameter (D3') of the parison terminates, is lower than the height (14) at which the gradual narrowing of the inside diameter (D4') of the parison also terminates.
17. Single-stage process for producing parisons of thermoplastic resin, particularly for use in view of subsequent blow moulding for conversion into plastic bottles or hollow bodies, comprising the phases of:
- injection moulding molten resin into a plurality of multiple moulds,
- cooling and solidification of respective parisons according any of the preceding claims,
- removal of the solidified parisons from the respective injection moulds,
- conveyance of the same parisons to appropriate blow moulding tools, and
- blow moulding of said pre-conditioned parisons,
and making use of a single-stage plant comprising at least a device for injecting molten thermoplastic resin into a plurality of appropriate moulds, said device being adapted to produce parisons according to any of the preceding claims 1 to 9, a device for removing said parisons from the respective moulds and conveying them into appropriate blow moulding tools adapted to process them into the finished product, characterized in that, upon being removed from said injection moulds and before being delivered to said blow moulding tools, said parisons do not undergo any heat conditioning treatment, except for the zone which is situated just below the neck of the bottle.
PCT/EP1997/000776 1996-03-07 1997-02-19 Improvement in thermoplastic-resin parisons and related manufacturing process WO1997032711A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP19970905051 EP0885107A1 (en) 1996-03-07 1997-02-19 Improvement in thermoplastic-resin parisons and related manufacturing process
AU18748/97A AU709519B2 (en) 1996-03-07 1997-02-19 Improvement in thermoplastic-resin parisons and related manufacturing process
JP53139597A JP3946258B2 (en) 1996-03-07 1997-02-19 Improvements in thermoplastic parison and related manufacturing methods.
CA 2247446 CA2247446C (en) 1996-03-07 1997-02-19 Improvement in thermoplastic-resin parisons and related manufacturing process
BR9707828A BR9707828A (en) 1996-03-07 1997-02-19 Thermoplastic resin preform and single stage process to produce the same
PL97328729A PL182411B1 (en) 1996-03-07 1997-02-19 Improvement in termoplastic resin formpieces and manufacturing process asseociated therewith
US09/142,204 US6248413B1 (en) 1996-03-07 1997-02-19 Thermoplastic-resin parisons and related manufacturing process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IT96PN000016 IT1289367B1 (en) 1996-03-07 1996-03-07 PREFORMS IN THERMOPLASTIC RESIN AND RELATED PRODUCTION PROCESS
ITPN96A000016 1996-03-07

Publications (1)

Publication Number Publication Date
WO1997032711A1 true WO1997032711A1 (en) 1997-09-12

Family

ID=11395115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1997/000776 WO1997032711A1 (en) 1996-03-07 1997-02-19 Improvement in thermoplastic-resin parisons and related manufacturing process

Country Status (11)

Country Link
US (1) US6248413B1 (en)
EP (1) EP0885107A1 (en)
JP (1) JP3946258B2 (en)
AU (1) AU709519B2 (en)
BR (1) BR9707828A (en)
CA (1) CA2247446C (en)
IT (1) IT1289367B1 (en)
PL (1) PL182411B1 (en)
RU (1) RU2174465C2 (en)
TR (1) TR199801651T2 (en)
WO (1) WO1997032711A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2263843A1 (en) * 2009-06-19 2010-12-22 A.K. Technical Laboratory, Inc., Preform for stretch blow-molded bottle
EP2047966A3 (en) * 2001-10-24 2011-03-09 Pechiney Emballage Flexible Europe Polypropylene container and process for making the same
WO2012140343A1 (en) * 2011-04-13 2012-10-18 Sidel Participations Improvement of the bottom of preforms
ITRM20130510A1 (en) * 2013-09-13 2015-03-14 Sipa Progettazione Automaz PREFORMATION FOR PLASTIC CONTAINER WITH THIN FUND
US9849620B2 (en) 2014-03-21 2017-12-26 Husky Injection Molding Systems Ltd. Container preform

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6677013B1 (en) 1998-04-17 2004-01-13 Pechiney Emballage Flexible Europe Transparent multilayer polypropylene container with barrier protection
US20040005475A1 (en) * 1998-04-17 2004-01-08 Curie Kevin James Transparent multilayer polypropylene container with barrier protection
US7543713B2 (en) 2001-04-19 2009-06-09 Graham Packaging Company L.P. Multi-functional base for a plastic, wide-mouth, blow-molded container
US7726106B2 (en) 2003-07-30 2010-06-01 Graham Packaging Co Container handling system
JP3797156B2 (en) * 2001-08-21 2006-07-12 東洋製罐株式会社 Preforms for blow molding of bottle-shaped containers
US7025924B2 (en) * 2003-07-03 2006-04-11 Lowance Philip D Dual container system and method of manufacturing the same
FR2869563B1 (en) * 2004-04-30 2007-09-07 Sidel Sas POLYPROPYLENE PREFORM FOR THE MANUFACTURE OF BOTTLES OR ANALOGS BY BLOWING OR BLOW-STRETCHING AND METHOD OF BLOWING OR STRETCHING BLOW OF THIS PREFORM
US20060051541A1 (en) * 2004-09-09 2006-03-09 Steele Scott W Polymeric preform for a blow molded plastic article
US8017065B2 (en) 2006-04-07 2011-09-13 Graham Packaging Company L.P. System and method for forming a container having a grip region
US9707711B2 (en) 2006-04-07 2017-07-18 Graham Packaging Company, L.P. Container having outwardly blown, invertible deep-set grips
US8747727B2 (en) 2006-04-07 2014-06-10 Graham Packaging Company L.P. Method of forming container
DE102006041837A1 (en) * 2006-09-04 2008-03-20 Kautex Textron Gmbh & Co. Kg Method for producing a fuel tank and fuel tank
US8020717B2 (en) * 2007-04-19 2011-09-20 Graham Packaging Company, Lp Preform base and method of making a delamination and crack resistant multilayer container base
US8241718B2 (en) * 2007-12-14 2012-08-14 Husky Injection Molding Systems Ltd. Preform and a mold stack for producing the preform
US7897222B2 (en) * 2007-12-14 2011-03-01 Husky Injection Molding Systems Ltd. Preform and a mold stack for producing the preform
US8627944B2 (en) 2008-07-23 2014-01-14 Graham Packaging Company L.P. System, apparatus, and method for conveying a plurality of containers
US8597748B2 (en) * 2008-09-02 2013-12-03 Graham Packaging Company, L.P. Preform for making plastic container
US8636944B2 (en) * 2008-12-08 2014-01-28 Graham Packaging Company L.P. Method of making plastic container having a deep-inset base
US7926243B2 (en) 2009-01-06 2011-04-19 Graham Packaging Company, L.P. Method and system for handling containers
US20100304168A1 (en) * 2009-05-26 2010-12-02 Alpla Werke Alwin Lehner Gmbh & Co. Kg Preform for plastics material bottles or wide-necked vessels
US20100304169A1 (en) * 2009-05-27 2010-12-02 Alpla Werke Alwin Lehner Gmbh & Co. Kg Preform for plastics material bottles or wide-necked vessels
US20110049083A1 (en) 2009-09-01 2011-03-03 Scott Anthony J Base for pressurized bottles
US8962114B2 (en) 2010-10-30 2015-02-24 Graham Packaging Company, L.P. Compression molded preform for forming invertible base hot-fill container, and systems and methods thereof
US10118724B2 (en) 2010-11-12 2018-11-06 Niagara Bottling, Llc Preform extended finish for processing light weight ecologically beneficial bottles
US10829260B2 (en) 2010-11-12 2020-11-10 Niagara Bottling, Llc Preform extended finish for processing light weight ecologically beneficial bottles
US10647465B2 (en) 2010-11-12 2020-05-12 Niagara Bottling, Llc Perform extended finish for processing light weight ecologically beneficial bottles
RU2013123905A (en) 2010-11-12 2014-12-20 Ниагара Боттлинг, Ллс. EXTENDED END OF THE PREFORMA FOR THE PRODUCTION OF BOTTLES OF LOW WEIGHT
US9150320B2 (en) 2011-08-15 2015-10-06 Graham Packaging Company, L.P. Plastic containers having base configurations with up-stand walls having a plurality of rings, and systems, methods, and base molds thereof
US9994378B2 (en) 2011-08-15 2018-06-12 Graham Packaging Company, L.P. Plastic containers, base configurations for plastic containers, and systems, methods, and base molds thereof
US8919587B2 (en) 2011-10-03 2014-12-30 Graham Packaging Company, L.P. Plastic container with angular vacuum panel and method of same
US11845581B2 (en) 2011-12-05 2023-12-19 Niagara Bottling, Llc Swirl bell bottle with wavy ribs
US10023346B2 (en) 2012-12-27 2018-07-17 Niagara Bottling, Llc Swirl bell bottle with wavy ribs
JP6521634B2 (en) 2011-12-05 2019-05-29 ナイアガラ・ボトリング・エルエルシー Plastic container with ribs of varying depth
DE102012003219A1 (en) 2012-02-20 2013-08-22 Krones Ag Plastic container
AU2013370421B2 (en) 2012-12-27 2017-09-28 Niagara Bottling, Llc Plastic container with strapped base
US9022776B2 (en) 2013-03-15 2015-05-05 Graham Packaging Company, L.P. Deep grip mechanism within blow mold hanger and related methods and bottles
US9254937B2 (en) 2013-03-15 2016-02-09 Graham Packaging Company, L.P. Deep grip mechanism for blow mold and related methods and bottles
USD699115S1 (en) 2013-05-07 2014-02-11 Niagara Bottling, Llc Plastic container
USD696126S1 (en) 2013-05-07 2013-12-24 Niagara Bottling, Llc Plastic container
USD699116S1 (en) 2013-05-07 2014-02-11 Niagara Bottling, Llc Plastic container
CN109311187A (en) * 2016-04-20 2019-02-05 三得利控股株式会社 Prefabricated component manufacturing device
US11597556B2 (en) 2018-07-30 2023-03-07 Niagara Bottling, Llc Container preform with tamper evidence finish portion
CN109278270B (en) * 2018-10-29 2024-03-26 广东星联精密机械有限公司 Lightweight bottle blank structure and die thereof
FR3101617B1 (en) * 2019-10-03 2022-03-25 Sa Des Eaux Minerales D’Evian Et En Abrege S A E M E OBJECT TO BE HELD BY A USER, COMPRISING A SHELL AND A BOTTLE
USD1003725S1 (en) 2021-09-03 2023-11-07 Graham Packaging Company, L.P. Container
USD1010454S1 (en) 2021-09-03 2024-01-09 Graham Packaging Company, L.P. Container

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4054629A (en) * 1976-01-22 1977-10-18 American Can Company Transfer blow molding technique
GB2040216A (en) * 1979-01-16 1980-08-28 Yoshino Kogyosho Co Ltd Bottomed tubular parison for a bottle
FR2476536A1 (en) * 1980-02-25 1981-08-28 Beloit Corp CLEAR AND TRANSPARENT POLYPROPYLENE CONTAINERS AND METHOD FOR THE PRODUCTION THEREOF
JPS578123A (en) * 1980-06-17 1982-01-16 Mitsubishi Chem Ind Ltd Manufacture of hollow container
EP0247566A2 (en) * 1986-05-30 1987-12-02 Continental Pet Technologies, Inc. Refillable polyester beverage bottle
EP0322651A2 (en) * 1987-12-24 1989-07-05 Continental Pet Technologies, Inc. Preform for, and method of forming hot fill container
WO1990004543A1 (en) * 1988-10-21 1990-05-03 Devtech, Inc. A preform for a monobase container
EP0445465A2 (en) * 1990-03-05 1991-09-11 Continental Pet Technologies, Inc. Refillable polyester container and preform for forming the same
EP0482652A2 (en) * 1990-10-26 1992-04-29 Nissei Asb Machine Co., Ltd. Preform for making plastic can body and method of manufacturing plastic can body by using the same
US5158817A (en) * 1990-04-12 1992-10-27 Continental Pet Technologies, Inc. Method of forming the base section of oblong or oval containers and a preform for effecting same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4054629A (en) * 1976-01-22 1977-10-18 American Can Company Transfer blow molding technique
GB2040216A (en) * 1979-01-16 1980-08-28 Yoshino Kogyosho Co Ltd Bottomed tubular parison for a bottle
FR2476536A1 (en) * 1980-02-25 1981-08-28 Beloit Corp CLEAR AND TRANSPARENT POLYPROPYLENE CONTAINERS AND METHOD FOR THE PRODUCTION THEREOF
JPS578123A (en) * 1980-06-17 1982-01-16 Mitsubishi Chem Ind Ltd Manufacture of hollow container
EP0247566A2 (en) * 1986-05-30 1987-12-02 Continental Pet Technologies, Inc. Refillable polyester beverage bottle
EP0322651A2 (en) * 1987-12-24 1989-07-05 Continental Pet Technologies, Inc. Preform for, and method of forming hot fill container
WO1990004543A1 (en) * 1988-10-21 1990-05-03 Devtech, Inc. A preform for a monobase container
EP0445465A2 (en) * 1990-03-05 1991-09-11 Continental Pet Technologies, Inc. Refillable polyester container and preform for forming the same
US5158817A (en) * 1990-04-12 1992-10-27 Continental Pet Technologies, Inc. Method of forming the base section of oblong or oval containers and a preform for effecting same
EP0482652A2 (en) * 1990-10-26 1992-04-29 Nissei Asb Machine Co., Ltd. Preform for making plastic can body and method of manufacturing plastic can body by using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 006, no. 069 (M - 125) 30 April 1982 (1982-04-30) *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2047966A3 (en) * 2001-10-24 2011-03-09 Pechiney Emballage Flexible Europe Polypropylene container and process for making the same
EP2263843A1 (en) * 2009-06-19 2010-12-22 A.K. Technical Laboratory, Inc., Preform for stretch blow-molded bottle
US8389085B2 (en) 2009-06-19 2013-03-05 A.K. Technical Laboratory, Inc. Preform for stretch blow-molded bottle
WO2012140343A1 (en) * 2011-04-13 2012-10-18 Sidel Participations Improvement of the bottom of preforms
FR2974070A1 (en) * 2011-04-13 2012-10-19 Sidel Participations IMPROVEMENT IN THE BACKGROUND OF PREFORMS
CN103492142A (en) * 2011-04-13 2014-01-01 西德尔公司 Improvement of the bottom of preforms
ITRM20130510A1 (en) * 2013-09-13 2015-03-14 Sipa Progettazione Automaz PREFORMATION FOR PLASTIC CONTAINER WITH THIN FUND
WO2015036596A1 (en) * 2013-09-13 2015-03-19 S.I.P.A. Società Industrializzazione Progettazione E Automazione S.P.A. Preform for plastic container with thin bottom
CN105682877A (en) * 2013-09-13 2016-06-15 S.I.P.A.工业设计自动化合伙股份有限公司 Preform for plastic container with thin bottom
US11104038B2 (en) 2013-09-13 2021-08-31 S.I.P.A. Societa' Industrializzazione Progettazione E Automazione S.P.A. Preform for plastic container with thin bottom
US9849620B2 (en) 2014-03-21 2017-12-26 Husky Injection Molding Systems Ltd. Container preform

Also Published As

Publication number Publication date
CA2247446A1 (en) 1997-09-12
IT1289367B1 (en) 1998-10-02
EP0885107A1 (en) 1998-12-23
AU709519B2 (en) 1999-09-02
AU1874897A (en) 1997-09-22
JP3946258B2 (en) 2007-07-18
ITPN960016A0 (en) 1996-03-07
TR199801651T2 (en) 1998-11-23
PL182411B1 (en) 2001-12-31
JP2000506078A (en) 2000-05-23
CA2247446C (en) 2005-04-26
RU2174465C2 (en) 2001-10-10
ITPN960016A1 (en) 1997-09-07
BR9707828A (en) 1999-07-27
US6248413B1 (en) 2001-06-19
PL328729A1 (en) 1999-02-15

Similar Documents

Publication Publication Date Title
US6248413B1 (en) Thermoplastic-resin parisons and related manufacturing process
US5122327A (en) Blow molding method for making a reversely oriented hot fill container
US5242066A (en) Plastic bottles and similar containers having internal spiders
CA1283064C (en) Container, method, arrangement for manufacturing the same
US4439393A (en) Method of producing synthetic resin bottle with handle
EP0277557B1 (en) Blow molded plastic container
EP2627494B1 (en) Apparatus with a nozzle to control liquid flow with pre-stretch rod assembly
GB2137921A (en) Method and apparatus for forming a container of thermoplastic material
DK158144B (en) PROCEDURE FOR THE PREPARATION OF A PREMIUM RESISTANT BOTTLE CARTRIDGE
CZ292613B6 (en) Process for preparing a heat treated transparent thermoplastic container and apparatus for making the same
US5660905A (en) Preform and process and apparatus for annealing biaxially oriented hollow shaped thermoplastic articles
EP0893229B1 (en) Container having a reduced amount of acetaldehyde released therefrom and method of molding the same
JPH02258214A (en) Production of vessel molding device and its apparatus
GB2124543A (en) Parison for oriented plastic containers
US20020166837A1 (en) Container side wall with ribs causing a predefined varying thickness
AU744427B2 (en) Improved multi-layer container and preform
JP4210901B2 (en) Manufacturing method of bottle-shaped container
US6562279B2 (en) Multi-layer container and preform and process for obtaining same
US6413600B1 (en) Multi-layer container and preform and process for obtaining same
US5750224A (en) Plastic container
JPH0464499B2 (en)
EP0521841B1 (en) Method for making a container of plastic, and container made by means of the method
AU684390B2 (en) A stretch blow moulded threaded container

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR BY CA CZ HU JP MX PL RO RU SK TR UA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997905051

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2247446

Country of ref document: CA

Ref document number: 2247446

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1998/01651

Country of ref document: TR

WWE Wipo information: entry into national phase

Ref document number: PV1998-2741

Country of ref document: CZ

WWE Wipo information: entry into national phase

Ref document number: PA/A/1998/007071

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 09142204

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1997905051

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: PV1998-2741

Country of ref document: CZ

WWR Wipo information: refused in national office

Ref document number: 1997905051

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1997905051

Country of ref document: EP