WO1997031420A1 - Spark-free commutator - Google Patents

Spark-free commutator Download PDF

Info

Publication number
WO1997031420A1
WO1997031420A1 PCT/JP1996/001998 JP9601998W WO9731420A1 WO 1997031420 A1 WO1997031420 A1 WO 1997031420A1 JP 9601998 W JP9601998 W JP 9601998W WO 9731420 A1 WO9731420 A1 WO 9731420A1
Authority
WO
WIPO (PCT)
Prior art keywords
commutator
sliding
brush
electrode
pieces
Prior art date
Application number
PCT/JP1996/001998
Other languages
French (fr)
Japanese (ja)
Inventor
Osami Matsumoto
Original Assignee
Osami Matsumoto
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osami Matsumoto filed Critical Osami Matsumoto
Publication of WO1997031420A1 publication Critical patent/WO1997031420A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K13/00Structural associations of current collectors with motors or generators, e.g. brush mounting plates or connections to windings; Disposition of current collectors in motors or generators; Arrangements for improving commutation
    • H02K13/10Arrangements of brushes or commutators specially adapted for improving commutation
    • H02K13/105Spark suppressors associated with the commutator

Definitions

  • the present invention relates to a DC motor having a commutator-type armature and a commutator that does not generate a spark and is used for a DC generator.
  • Spark generation in the gap between the commutator strip and the brush is caused by the well-known armature reaction described below. Due to this armature reaction, the geometric neutral axis, which is the midpoint between the stator NS poles, is shifted in the rotating direction of the armature in the generator and in the opposite direction in the motor. This is called an electrical neutral axis, and the deviation angle between the two varies depending on the magnitude of the armature current.
  • the geometric neutral axis is no longer the midpoint between the NS poles where the magnetic flux density is zero, and if a brush is located at this position, the induced electromotive force is applied to the armature coil shorted by the brush. Occurs and short-circuit current flows.
  • the short-circuit current due to the induced electromotive force is proportional to the magnitude of the armature current, and is proportional to the deviation angle between the geometric neutral axis and the electrical neutral axis. Therefore, when a load is applied, the armature current naturally increases, and the short-circuit current also increases. This short-circuit current breaks the electrical path when one of the commutator strips separates from the brush as the commutator rotates, causing a spark in the gap between the two.
  • a conductive sheet (Tay 1 or US Pat. No. 3,409,788) which generates an eddy current which is arranged in a magnetic flux region and suppresses a change in magnetic flux
  • a resistor connected in series to a brush element
  • resistive paths Kaneko et al., U.S. Pat. No. 3,487,248
  • quenching capacitors provided between rectifier sites (U.S. Pat. No. 3,594,598 to Schaub)
  • Low voltage surge protector (Jonassen, U.S. Pat. No.
  • the current has a property of continuing to flow when it starts to flow, and when the electric circuit is cut, the electric current flows in the air between the conductor ends of the separated electric circuit in an attempt to flow, and a spark is generated.
  • one of them is to provide a compensation winding and an auxiliary pole to return the electrical neutral axis due to the armature reaction to the geometric neutral axis, and to reduce the short-circuit current due to the induced electromotive force.
  • the second is to use a brush with a material with a large contact resistance to short-circuit the short-circuit current.
  • the commutator of the present invention is provided with a bypass circuit using a “diode and a sliding electrode and a bridging wire” in the above circuit, shunts a short-circuit current, eliminates the circuit, and circulates a current in the bypass circuit.
  • a bypass circuit using a “diode and a sliding electrode and a bridging wire” in the above circuit, shunts a short-circuit current, eliminates the circuit, and circulates a current in the bypass circuit.
  • a "negative current from the power supply” also known as flyback (Flyback)
  • FIG. 4 shows a state where commutation has started, and a positive electrode is provided at the center of the commutator piece (111).
  • the brush (8) is in contact and a positive current (11) is flowing from the power supply (10).
  • the diode (3-1) has its anode side connected to the commutator strip (1-1) and its power source side connected to the sliding electrode (2-1).
  • Each of the crossover wires (4) connects the crossover sliding electrodes (2-1) and (2-2), and (2-2) and (2-3).
  • Each coil (5) connects between the commutator pieces, but does not directly connect to the cross slide electrodes.
  • the commutator rotates and the state shown in Fig. 5 is reached, and the positive brush (8) comes into contact with the commutator piece (1-1-1), the passing sliding electrode (2-1) and the commutator piece (1-1-2). Then, a short circuit (1 2) is formed between the coil (5) and the short circuit, which conducts the current in the opposite direction to the forward positive current (1 1) from the power supply (10). A short-circuit current flows due to the electromotive force.
  • the commutator further rotates and reaches the state shown in Fig. 6, when the commutator piece (11-1) moves and moves away from the positive brush (8), the supplied positive current becomes diode (3-1). ), Passing through the passing sliding electrode (2_1), the positive brush (8) commutator strip (1-1-2) ⁇ coil (5)-diode (3-1) and circulating current (13), and at the same time, The short circuit disappears.
  • This circulating current has a very short duration and disappears instantaneously, but cancels the short-circuit current.
  • the bypass circuit which connects the diode (3-1) and the sliding electrode (2-1), shunts the current flowing through the commutator strip (1-1) and the positive brush (8). Does not generate sparks.
  • the circulating circuit acts to supply “negative current (14)” from the power source, also called flyback (flyback), so that the sliding electrode (2-1) passes from the positive brush (8) to the positive electrode brush (8). Even if it separates, it does not generate a spark in the gap, it becomes the state shown in the figure, and the commutator piece (1-2) replaces the commutator piece (1-1-1) at the start of commutation. End the commutation.
  • Diodes may be connected to all the commutator pieces and the sliding electrodes, but connecting an equal number of diodes to the armature with a large number of commutator pieces will result in rectification with insufficient storage space.
  • a crossover wire (4) should be provided instead of the diode.
  • crossover wire (4) is a short copper wire, it works in place of the diode (3) by short-circuiting between the crossover slide electrodes (2).
  • the number and usage of the crossover wire (4), crossover slide electrode (2) and diode (3) will be described with reference to FIGS. 3, 8, and 9.
  • the diode (3) that connects the commutator piece (1) and the sliding element 3 ⁇ 4H (2) connects the cathode side to the commutator element (1) and the power source side to the sliding electrode (2).
  • the diode (3) consists of three, five, six commutator segments (1), For commutators with 7, 9, 10, 11, 12, 12, 13, 14 or 15 etc., use 3 commutators and 8 commutator pieces (1) Alternatively, use a minimum of three, and at most four, equally divided, using four commutators with sixteen commutators.
  • the crossover wire (4) connects between the other crossover sliding electrodes (2) without the diode (3) connected, only one of which is connected to the force side of the diode (3). Connect to the passing slide electrode (2). In other words, the crossover line (4) does not allow the connection between the commutator strip (1) connecting the crossover slide electrode (2) and the crossover slide electrode (2).
  • the bridging slide electrode (2) is short-circuited across the stepping stone with the bridging wire (4), if less than three diodes (3) are used, the distance between the pair of positive and negative bipolar brushes It is necessary to use a minimum of three diodes as approaching distances can cause the bipolar brushes to short out.
  • FIG. 1 is a perspective view showing the entirety of a DC motor equipped with the commutator of the present invention
  • FIG. 2 is a diagram showing details of the commutator.
  • FIG. 3 is a connection diagram of a brush and an armature coil and a commutator having nine commutator pieces of the present invention
  • FIGS. 4 to 7 are diagrams showing a transition of a rectifying action between the brush and the commutator.
  • FIG. FIG. 8 and FIG. 9 are electric circuit diagrams of a commutator having 15 or more commutator pieces.
  • FIG. 1 is a perspective view showing a state in which a commutator of the present invention is mounted on a model small-sized DC motor using permanent magnets for a stator and three armature coils. Since a practical small DC motor is covered with a soft iron cylindrical cover and the form of the brushless commutator is not visible, the illustration of the present invention is based on the model manufactured for the experiment. It was made with some modifications to the drawing. The commutator is exaggerated to be larger than the whole motor, so that the configuration of the commutator pieces, the sliding electrodes and the diodes can be easily understood.
  • FIG. 2 shows details of a commutator piece (1), a cross slide electrode (2), and an insulator (7) for fixing both, which constitute the commutator of the present invention.
  • the width of the cross slide electrode (2) on the circumference is narrower than that of the commutator strip (1), and the length in the XI-X biaxial direction is rectified. It is about half of the child piece (1).
  • the arc width W and the clearance C on the XI side of the commutator segment (1) are the same as those of the conventional commutator segment.
  • the arc width T on the X2 side is made smaller than W, and S ⁇ W—C—T and , W ⁇ T ⁇ 4C.
  • the width of the rotor piece (1) is reduced from a position near half the length X of the effective sliding portion in the direction of the XI-X2 axis, and the commutator piece (1) is placed between the two pieces.
  • the width is S
  • the length Z is Z> X ⁇ 2 + R.
  • interleaved sliding electrodes (2) these are used as commutators fixed with insulators (7).
  • a positive brush (8) and a negative brush (9) are installed near one-half the length X of the effective sliding part.
  • the brush is in sliding contact with the front commutator piece (1) and also in sliding contact with the transfer sliding electrode (2). Since the current passes through the rear commutator piece (1), the time during which no current is supplied is negligibly small, and the rotation speed does not decrease.
  • the above clearance C is preferably in the range of 0.3 to 0.5.
  • FIG. 3 is a connection diagram of a brush, a coil of an armature, and a commutator having nine commutator pieces of the present invention.
  • nine commutators are shown. Since it is difficult to illustrate the layout of the pieces, the crossover sliding electrodes, the diodes, the crossovers, etc., and the details of the wiring, they are represented as shown in this figure.
  • Fig. 4 to Fig. 7 illustrate the process in which the rectifying action of the brush and the commutator ⁇ ⁇ is performed in the order of the processes.
  • the features of the present invention are that, unlike a conventional commutator composed of only a commutator piece, a “sliding sliding electrode” is provided, and a “diode on the armature side that rotates at high speed” is provided. Yes, in order to briefly explain its features, the illustration method used here does not dare to mention the role of the crossover.
  • Figures 8 and 9 show the “crossover” to save on the diodes used. It is a figure which put emphasis on the illustration of the usage of. Although it is theoretically possible, it is practically impossible to provide the same number of diodes on the “armature side” as the number of commutator pieces increases. In such cases, use short copper wires "four wires (4)" which will replace the diode (3). No matter how many commutator pieces (1) are used, only three or four diodes and some copper wires cut short for the crossover (4) can be used.
  • FIG. 8 shows a commutator having 15 commutator pieces, using three diodes (3) and twelve crossover wires (4).
  • FIG. 9 shows a commutator having 16 commutator pieces, in which four diodes (3) and twelve crossover wires (4) are used.
  • the diodes (3) are arranged evenly around the circumference so that rotation irregularities do not occur even when the armature rotates at high speed.
  • the diode must be firmly fixed to the armature so that it will not be scattered by the centrifugal force of the high-speed rotation of the armature.
  • the non-sparking commutator of the present invention can be manufactured easily and at low cost, so that the structure is complicated and expensive, as well as a small DC motor using a permanent magnet for the stator. For this reason, it can be used for all large DC generators and DC motors that cannot be provided with a compensation winding and a supplementary pole.
  • An example of a specific effect when the commutator of the present invention is adopted will be described below.
  • the brush is installed not on the electric neutral axis but on the geometric neutral axis, and even when the brush is rotated forward or backward, the spark is generated. No spark is generated even when a large load is applied to the rotating armature shaft as long as the motor is used at the rated current.
  • all DC generators and DC motors using brushes can eliminate the burning and abrasion of the commutator and brushes due to spark generation, prolong the life of the brush, and increase the product life. In some applications, maintenance-free operation is possible.
  • the commutator of the present invention continues and develops a compact structure utilizing the characteristics of a simple mechanism that combines a conventional commutator and a brush.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Current Collectors (AREA)
  • Dc Machiner (AREA)

Abstract

A commutator for a D.C. generator and a D.C. motor equiped with a commutator type armature, comprising metal commutator segments (1), sliding electrodes (2) of metal in the same number as that of the commutator segments, three or four diodes (3), and copper wires (4) for connecting the sliding electrodes. Therefore, a short-circuit current generated by an armature reaction between the commutator segment and the armature coil short-circuited by a brush is bypassed to avoid the interruption of short-circuit current and thus no spark is generated between the commutator and the brush. When the commutator of the invention is used, the commutator and the brush are protected from burnout due to the occurence of the spark, so that their service life can be prolonged, and maintenance-free devices can be accomplished depending on applications. Moreover, the commutator can be produced at a low cost, and can be applied not only to small D.C. motors using a permanent magnet for a stator but also to large D.C. generators and D.C. motors in which compensating windings and auxiliary poles cannot be disposed because the structure is complicated and expensive.

Description

明 細 火花を発しない整流子 技術分野  Commutator that does not emit sparks
本発明は、 整流子形電機子を備えた直流モータと直流発電機に供する 火花を発しない整流子に関するものである。 背景技術  The present invention relates to a DC motor having a commutator-type armature and a commutator that does not generate a spark and is used for a DC generator. Background art
従来から、 整流子形電機子を備えた直流モータと直流発電機は、 整流 子がブラシと摺り接触しながら回転するため、 整流子片とブラシの電路 の切れる瞬間に、 その間隙で火花が発生するものであった。 そのために 、 整流子とブラシは、 摺り接触による摩耗に加え、 火花による焼損摩耗 があり、 一定時間毎にブラシを交換したり、 整流子表面を平滑にする等 のメンテナンスが必要であった。  Conventionally, DC motors and DC generators equipped with commutator-type armatures rotate while the commutator is in sliding contact with the brush, so a spark is generated in the gap between the commutator piece and the brush when the electrical path breaks. Was to do. For this reason, the commutator and the brush suffered burnout wear due to sparks in addition to wear due to sliding contact, and maintenance such as replacing the brush at regular intervals and smoothing the commutator surface was required.
整流子片とブラシの間隙での火花発生は、 以下に述べる周知の電機子 反作用によって起きる。 この電機子反作用によってステ一タ N S両磁極 の中間点である幾何学的中性軸は、 発電機においては電機子の回転方向 に、 モータにおいてはその逆方向にずれる。 これを電気的中性軸といい 、 その両者間のずれ角は、 電機子電流の大きさによって変化する。  Spark generation in the gap between the commutator strip and the brush is caused by the well-known armature reaction described below. Due to this armature reaction, the geometric neutral axis, which is the midpoint between the stator NS poles, is shifted in the rotating direction of the armature in the generator and in the opposite direction in the motor. This is called an electrical neutral axis, and the deviation angle between the two varies depending on the magnitude of the armature current.
このため、 幾何学的中性軸は、 実際には磁束密度がゼロである N S両 磁極の中間点ではなくなり、 この位置にブラシがあると、 ブラシにより 短絡される電機子のコィルに誘導起電力が発生して短絡電流が流れる。 この誘導起電力による短絡電流は、 電機子電流の大きさに比例し、 幾何 学的中性軸と電気的中性軸間のずれ角の大きさに比例する。 従って、 負 荷が加わると当然に電機子電流が大きくなり、 短絡電流も大きくなる。 この短絡電流は、 整流子の回転で整流子片の一方がブラシから離れる 瞬間に、 その電路が途切れるため、 両者の間隙に火花が発生する。 Therefore, the geometric neutral axis is no longer the midpoint between the NS poles where the magnetic flux density is zero, and if a brush is located at this position, the induced electromotive force is applied to the armature coil shorted by the brush. Occurs and short-circuit current flows. The short-circuit current due to the induced electromotive force is proportional to the magnitude of the armature current, and is proportional to the deviation angle between the geometric neutral axis and the electrical neutral axis. Therefore, when a load is applied, the armature current naturally increases, and the short-circuit current also increases. This short-circuit current breaks the electrical path when one of the commutator strips separates from the brush as the commutator rotates, causing a spark in the gap between the two.
その火花発生の軽減対策として、 大形の直流モータと直流発電機等は 、 ステータ側に補償巻線や補極を設けて対処しているが、 ステ一タに永 久磁石を用いることが多い小形の直流モータは、 その構造上の制約、 サ ィズ上の制約のため、 又、 ステ一タに永久磁石を使用しないものの場合 でも、 構造が複雑で高価な補償卷線それに補極等をこれらには採用しな い。  Large DC motors and DC generators are provided with compensation windings and auxiliary poles on the stator side as countermeasures to reduce the occurrence of sparks, but permanent magnets are often used for the stator. Due to the structural and size restrictions of small DC motors, and even those that do not use permanent magnets for the stator, expensive DC windings and auxiliary poles with complicated structures are required. Not used for these.
その他の火花発生の軽減対策としては、 ブラシを電気的中性軸の位置 に移して短絡電流を小さくする接触抵抗大きい材料のブラシの採用、 ブ ラシの摺り合わせの精度ァップ、 ブラシ圧力の調整並びに火花の発生が 少なくなる材料を用いた整流子を採用する等の工夫がなされている。  Other measures to reduce the generation of sparks include the use of a brush made of a material with a large contact resistance to reduce the short-circuit current by moving the brush to the position of the electric neutral axis, adjusting the brush brushing accuracy, adjusting the brush pressure, and Some measures have been taken, such as the use of commutators that use materials that reduce spark generation.
更に、 上記における火花の発生を抑えるための種々の発明も出願され ている。 その例をあげると、 磁束領域に配されて磁束変化を抑制する渦 電流を生ずる導電シ一卜 (T ay 1 o rの米国特許第 3409788号 公報) 、 ブラシ素子に直列に接続された抵抗器 (Uemu r a他の米国 特許第 3456143号公報) 、 抵抗経路 (Kan e k o他の米国特許 第 3487248号公報) 、 整流器部位間に設けた急冷コンデンサ (S c hau bの米国特許第 3 594598号公報) 、 低電圧サージ保護器 (J o n a s s e nの米国特許第 3890543号公報) 、 整流器部位 を被覆し且つそれらの間を充塡するためのスパーク急冷用導電性グリ一 ス (マプチの米国特許第 43 191 53号公報) 、 サージ吸収ュニッを 備えた成型水中モータ (山本他の米国特許第 443 7027号公報) 、 整流器近傍に配した絶縁ワウシャ及び導電性リングの組合せ (I kaw a他の米国特許第 4734607号公報) 及び整流式電気機器における スパーク抑制のための方法および装置 (Ma r t i n R. Mc LE N D〇N日本国特開平 6— 5 4 4 9 9 ) 等がある。 Further, various inventions for suppressing the above-mentioned generation of sparks have also been filed. For example, a conductive sheet (Tay 1 or US Pat. No. 3,409,788) which generates an eddy current which is arranged in a magnetic flux region and suppresses a change in magnetic flux, a resistor connected in series to a brush element ( Uemu ra et al., U.S. Pat. No. 3,456,143), resistive paths (Kaneko et al., U.S. Pat. No. 3,487,248), quenching capacitors provided between rectifier sites (U.S. Pat. No. 3,594,598 to Schaub), Low voltage surge protector (Jonassen, U.S. Pat. No. 3,890,543); conductive grease for spark quenching to cover and fill between rectifier sections (Mupchi, U.S. Pat. No. 4,391,153). Gazette), a molded underwater motor equipped with a surge absorbing unit (US Pat. No. 4,443,027, Yamamoto et al.), A combination of an insulating washer and a conductive ring disposed near a rectifier (US Pat. No. 4,734,607 to Ikawa et al.) ) And rectifier type electrical equipment That the method and apparatus for a spark suppression (Ma rtin R. Mc LE ND〇N Japanese Unexamined Patent Publication No. 6-54449-9).
これらの内、 山本他の米国特許第 4 4 3 7 0 2 7号公報や J 0 n a s s e nの米国特許第 3 8 9 0 5 4 3号公報は、 ともに回転子にかかるサ —ジ電圧の制限ではなく、 固定子側のサージ電圧の制限であり、 その効 果が回転子側のスパーク防止に及ぶことがない。  Of these, Yamamoto et al., U.S. Pat. No. 4,473,027 and U.S. Pat. No. 3,890,543 of J0nassen both disclose limitations on the surge voltage applied to the rotor. This is a limitation of the surge voltage on the stator side, and its effect does not extend to prevention of sparks on the rotor side.
M a r t i n R . M c L E N D〇 N日本国特開平 6— 5 4 4 9 9 は、 ツエナダイオードの特性を利用してサージ電圧をカツ卜し、 電機子 のコイルに流れる電流を一定に保たせることにより、 整流子間のフラッ シュオーバを抑制させる力?、 ブラシで短絡されて形成されるコイルの短 絡回路の誘導起電力により発生する火花を解消させるものではない。 し かも、 この当該発明は、 整流子片の数量の 2倍数のツエナダイオードを 使用するので、 整流子片の数量の多い電機子への装着には、 かなりの収 納スペースを必要とする。  M artin R. M c LEND〇 N Japanese Patent Application Laid-Open No. 6-54449 / 1999 discloses that the surge voltage is cut using the characteristics of a zena diode to keep the current flowing through the armature coil constant. This does not eliminate the flashover between the commutators and the spark generated by the induced electromotive force in the short circuit of the coil formed by short-circuiting with the brush. In addition, since the present invention uses twice as many Zener diodes as the number of commutator pieces, mounting it on an armature having a large number of commutator pieces requires a considerable storage space.
これら、 実用に供されている公知の技術や特許がある力 以上述べた 種々の技術的制約、 構造的な制約及び経済上の制約等の理由により、 直 流発電機と整流子形直流モータは、 依然として火花の発生の問題を抱え えていて、 完全に解決されていない。 故に、 火花の発生を無くす方法は 今日でも望まれており、 本発明の整流子は、 その要望に応えようとする ものである。 発明の開示  Due to the various technical, structural, and economic constraints mentioned above, DC generators and commutator DC motors are However, there is still a problem of spark generation and it has not been completely solved. Therefore, a method for eliminating the generation of sparks is still desired today, and the commutator of the present invention is intended to meet the demand. Disclosure of the invention
電流は、 ー且流れ始めると流れ続ける性質があり、 電路を切ると無理 やり流れようとして切り離した電路の導線端の間の空中を流れて、 火花 が発生する。  The current has a property of continuing to flow when it starts to flow, and when the electric circuit is cut, the electric current flows in the air between the conductor ends of the separated electric circuit in an attempt to flow, and a spark is generated.
整流子形電機子を備えた直流モータと直流発電機は、 整流時において ブラシで短絡された電機子コィルに誘導起電力による短絡電流が発生し 、 この短絡電流は、 隣合ってブラシに摺り接触している二つの整流子片 の一方がブラシから離れる時、 その閒隙に火花が発生する。 In DC motors and DC generators equipped with commutator-type armatures, a short-circuit current due to induced electromotive force occurs in the armature coil shorted with a brush during commutation. However, this short-circuit current generates a spark in the gap when one of the two commutator pieces that are in sliding contact with the brush is separated from the brush.
この火花発生を無くすための対策として、 その一つは、 補償巻線と補 極を設けて電機子反作用による電気的中性軸を幾何学的中性軸に戻して 誘導起電力による短絡電流を少なくし、 補極でこの短絡電流と反対の電 流を発生させて誘導起電力による短絡電流を打ち消す方法、 二つ目には 、 接触抵抗の大きい材質のブラシを使用して短絡回路の短絡電流を少な くする方法等がある。  As a countermeasure to eliminate this spark, one of them is to provide a compensation winding and an auxiliary pole to return the electrical neutral axis due to the armature reaction to the geometric neutral axis, and to reduce the short-circuit current due to the induced electromotive force. To reduce the short-circuit current due to the induced electromotive force by generating a current opposite to this short-circuit current at the auxiliary pole, the second is to use a brush with a material with a large contact resistance to short-circuit the short-circuit current There is a method to reduce the number.
本発明の整流子は、 上記の 回路に 「ダイオードと渡し滑り電極及 び渡し線」 を使用したバイパス回路を設けて、 短絡電流をシャン卜させ て^ &回路を消滅させ、 バイパス回路に循環電流を流し、 それと同時に フライバック (F l yb a c k) とも呼ばれる 「電源からの負の電流」 を供給させて火花の発生を無くす機能を果たすものである。  The commutator of the present invention is provided with a bypass circuit using a “diode and a sliding electrode and a bridging wire” in the above circuit, shunts a short-circuit current, eliminates the circuit, and circulates a current in the bypass circuit. At the same time as supplying a "negative current from the power supply", also known as flyback (Flyback), to eliminate sparks.
本発明の整流子の構成と作用の詳細を第 4図〜第 7図を参照して説明 すると、 第 4図は、 整流開始の状態であり、 整流子片 (1一 1) の中央 に正極ブラシ (8) が接触していて電源 (10) から正の電流 (11) が流れている。 ダイオード (3— 1) は、 そのアノード側を整流子片 ( 1— 1 ) に、 力ソード側を渡し滑り電極 (2— 1) に接続する。 渡し線 (4) 各々は、 渡し滑り電極 (2— 1) と (2— 2) を、 又、 (2— 2 ) と (2— 3) を接続する。 コイル (5) 各々は、 整流子片各々間を接 続するが、 渡し滑り電極各々と直接には接続しない。  The details of the configuration and operation of the commutator of the present invention will be described with reference to FIGS. 4 to 7. FIG. 4 shows a state where commutation has started, and a positive electrode is provided at the center of the commutator piece (111). The brush (8) is in contact and a positive current (11) is flowing from the power supply (10). The diode (3-1) has its anode side connected to the commutator strip (1-1) and its power source side connected to the sliding electrode (2-1). Each of the crossover wires (4) connects the crossover sliding electrodes (2-1) and (2-2), and (2-2) and (2-3). Each coil (5) connects between the commutator pieces, but does not directly connect to the cross slide electrodes.
整流子が回転し、 第 5図の状態になり、 正極ブラシ (8) は、 整流子 片 (1一 1 ) 、 渡し滑り電極 (2— 1) それに整流子片 (1一 2) に接 触し、 コイル (5) との間に短絡回路 (1 2) が形成され、 この短絡回 路には、 電源 (10) からの順方向の正の電流 (1 1) とは逆向きの誘 導起電力による短絡電流が流れる。 更に整流子が回転し、 第 6図の状態になり、 整流子片 (1一 1) が移 動して正極ブラシ (8) から離れると、 供給される正の電流はダイォー ド (3— 1) を通り、 渡し滑り電極 (2_1) を経て、 正極ブラシ (8 ) 整流子片 (1一 2) →コイル (5) —ダイオード (3— 1) と循環 電流 (13) が流れ、 それと同時に、 短絡回路は消滅する。 The commutator rotates and the state shown in Fig. 5 is reached, and the positive brush (8) comes into contact with the commutator piece (1-1-1), the passing sliding electrode (2-1) and the commutator piece (1-1-2). Then, a short circuit (1 2) is formed between the coil (5) and the short circuit, which conducts the current in the opposite direction to the forward positive current (1 1) from the power supply (10). A short-circuit current flows due to the electromotive force. When the commutator further rotates and reaches the state shown in Fig. 6, when the commutator piece (11-1) moves and moves away from the positive brush (8), the supplied positive current becomes diode (3-1). ), Passing through the passing sliding electrode (2_1), the positive brush (8) commutator strip (1-1-2) → coil (5)-diode (3-1) and circulating current (13), and at the same time, The short circuit disappears.
この循環電流は、 持続時間が極めて短く、 瞬時に消滅するが、 短絡電 流を打消す。 又、 ダイオード (3— 1) と渡し滑り電極 (2— 1) を接 続したバイパス回路は、 整流子片 (1—1) と正極ブラシ (8) を通る 電流をシャン卜させるので両者の間隙に火花を発生させない。 それに循 環電路は同時にフライバック (F l y ba c k) とも呼ばれる 「電源か らの負の電流 (14) 」 を供給する作用をするので渡し滑り電極 (2— 1) が正極ブラシ (8) から離れても、 その間隙にも火花を発生させる ことなく、 第や図の状態になり、 整流開始時の状態の整流子片 (1一 1 ) に整流子片 (1— 2) が入れ代わって整流を終了する。  This circulating current has a very short duration and disappears instantaneously, but cancels the short-circuit current. The bypass circuit, which connects the diode (3-1) and the sliding electrode (2-1), shunts the current flowing through the commutator strip (1-1) and the positive brush (8). Does not generate sparks. In addition, the circulating circuit acts to supply “negative current (14)” from the power source, also called flyback (flyback), so that the sliding electrode (2-1) passes from the positive brush (8) to the positive electrode brush (8). Even if it separates, it does not generate a spark in the gap, it becomes the state shown in the figure, and the commutator piece (1-2) replaces the commutator piece (1-1-1) at the start of commutation. End the commutation.
すべての整流子片と渡し滑り電極にダイオードを接続してもよいが、 整流子片の数が多い電機子に整流子片と同等数のダイオードを接続する ことは、 収納スペースが不十分な整流子回りを考慮すれば、 構造的に好 ましくないし、 それに製作コストが嵩むので、 ダイオードの代わりに渡 し線 (4) を設ける。  Diodes may be connected to all the commutator pieces and the sliding electrodes, but connecting an equal number of diodes to the armature with a large number of commutator pieces will result in rectification with insufficient storage space. Considering the surroundings of the wires, it is not preferable in terms of structure, and the manufacturing cost increases. Therefore, a crossover wire (4) should be provided instead of the diode.
渡し線 (4) は、 短い銅線であるが、 渡し滑り電極 (2) 各々間を短 絡させることでダイオード (3) に代わる働きをする。 この渡し線 (4 ) と渡し滑り電極 (2) 及びダイオード (3) の使用数と使用方法等を 第 3図、 第 8図及び第 9図を参照して説明する。  Although the crossover wire (4) is a short copper wire, it works in place of the diode (3) by short-circuiting between the crossover slide electrodes (2). The number and usage of the crossover wire (4), crossover slide electrode (2) and diode (3) will be described with reference to FIGS. 3, 8, and 9.
整流子片 (1) と渡し滑り ¾H (2) を結ぶダイオード (3) は、 ァ ソード側を整流子片 (1 ) に、 力ソード側を渡し滑り電極 (2) に接続 する。 そのダイオード (3) は、 整流子片 (1) を三個、 五個、 六個、 七個、 九個、 十個、 十一個、 十二個、 十三個、 十四個あるいは十五個等 々を持つ整流子には三個使用し、 整流子片 (1) を八個あるいは十六個 を持つ整流子には四個使用する等、 最少数で三個、 多くても四個を等分 配列して使用する。 The diode (3) that connects the commutator piece (1) and the sliding element ¾H (2) connects the cathode side to the commutator element (1) and the power source side to the sliding electrode (2). The diode (3) consists of three, five, six commutator segments (1), For commutators with 7, 9, 10, 11, 12, 12, 13, 14 or 15 etc., use 3 commutators and 8 commutator pieces (1) Alternatively, use a minimum of three, and at most four, equally divided, using four commutators with sixteen commutators.
渡し線 (4) は、 ダイオード (3) が接続されていない、 他の渡し滑 り電極 (2) 間を接続し、 その内の一つだけは、 ダイオード (3) の力 ソード側が接続された渡し滑り電極 (2) に接続する。 言いかえれば、 渡し線 (4) は、 渡し滑り電極 (2) 間を接続する力 整流子片 (1) と渡し滑り電極 (2) との接続をさせない。  The crossover wire (4) connects between the other crossover sliding electrodes (2) without the diode (3) connected, only one of which is connected to the force side of the diode (3). Connect to the passing slide electrode (2). In other words, the crossover line (4) does not allow the connection between the commutator strip (1) connecting the crossover slide electrode (2) and the crossover slide electrode (2).
尚、 渡し滑り電極 (2) は、 渡し線 (4) で飛び石を跨ぐように短絡 されているので、 使用するダイオード (3) が三個未満であると、 その 距離が正負一対の両極ブラシ間距離に近付いて、 両極ブラシが短絡する 可能性があるので、 最低でも三個のダイォ一ドを使用する必要がある。  Since the bridging slide electrode (2) is short-circuited across the stepping stone with the bridging wire (4), if less than three diodes (3) are used, the distance between the pair of positive and negative bipolar brushes It is necessary to use a minimum of three diodes as approaching distances can cause the bipolar brushes to short out.
又、 渡し滑り電極 (2) は、 整流子片 (1) よりその円周上の幅を狭 くしないと運転に支障をきたすので後述する 「発明を実施するための最 良の形態」 の第 2図で説明される形状にする必要がある。 図面の簡単な説明  In addition, the cross slide electrode (2) will hinder operation unless the circumferential width thereof is smaller than that of the commutator piece (1). Therefore, the following description will be made in the “Best mode for carrying out the invention” described later. It is necessary to have the shape described in FIG. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の整流子を装着した直流モータの全容を示す斜視図 であり、 第 2図は、 整流子の詳細を示す図である。 第 3図は、 ブラシ、 電機子のコィルと本発明の九個の整流子片を持つ整流子の結線図であり 、 第 4図〜第 7図は、 ブラシと整流子間の整流作用の推移を示す図であ る。 又、 第 8図及び第 9図は、 十五個以上の整流子片を持つ整流子の電 気回路図である。 発明を実施するための最良の形態 本発明をより詳細に説示するために、 添付の図面を参照してこれを順 次説明する。 FIG. 1 is a perspective view showing the entirety of a DC motor equipped with the commutator of the present invention, and FIG. 2 is a diagram showing details of the commutator. FIG. 3 is a connection diagram of a brush and an armature coil and a commutator having nine commutator pieces of the present invention, and FIGS. 4 to 7 are diagrams showing a transition of a rectifying action between the brush and the commutator. FIG. FIG. 8 and FIG. 9 are electric circuit diagrams of a commutator having 15 or more commutator pieces. BEST MODE FOR CARRYING OUT THE INVENTION In order to illustrate the present invention in more detail, it will be described in turn with reference to the accompanying drawings.
第 1図は、 ステータに永久磁石を使用し、 電機子のコイルが三個の模 型の小形直流モータに本発明の整流子を装着した状態を示す斜視図であ る。 実用の小形直流モータは、 軟鉄の筒状のカバ一で覆われていてブラ シゃ整流子の形態が見えないので、 図解の便を考慮し、 本発明の図は、 実験用に製作したモデルに若干の手を加えて作図したものである。 整流 子をモータ全体に比し大きめに誇張して、 整流子片、 渡し滑り電極及び ダイォ一ドの構成が容易に分かるような図としてある。  FIG. 1 is a perspective view showing a state in which a commutator of the present invention is mounted on a model small-sized DC motor using permanent magnets for a stator and three armature coils. Since a practical small DC motor is covered with a soft iron cylindrical cover and the form of the brushless commutator is not visible, the illustration of the present invention is based on the model manufactured for the experiment. It was made with some modifications to the drawing. The commutator is exaggerated to be larger than the whole motor, so that the configuration of the commutator pieces, the sliding electrodes and the diodes can be easily understood.
第 2図は、 本発明の整流子を構成する整流子片 (1 ) 、 渡し滑り電極 ( 2 ) 及び両者を固定する絶縁物 ( 7 ) の詳細を示している。 図で明ら かなように、 渡し滑り電極 (2 ) の円周上の幅は、 整流子片 (1 ) のそ れと比較して狭く、 又、 X I— X 2軸方向の長さが整流子片 (1 ) の半 分程度である。  FIG. 2 shows details of a commutator piece (1), a cross slide electrode (2), and an insulator (7) for fixing both, which constitute the commutator of the present invention. As is evident from the figure, the width of the cross slide electrode (2) on the circumference is narrower than that of the commutator strip (1), and the length in the XI-X biaxial direction is rectified. It is about half of the child piece (1).
整流子片 (1 ) と同程度幅の渡し滑り電極 (2 ) が整流子片 (1 ) の 間に、 全長に渡って揷入されると、 渡し滑り電極 (2 ) がブラシに接触 している間は、 電源からの電流が流れないから電機子が励磁されず、 予 期せぬパルス幅制御効果を発生させるため回転数が減少する。 この現象 は、 渡し滑り電極 (2 ) の幅が広い程顕著になるので、 見方を変えて、 渡し滑り電極 (2 ) の形状を長手方向の楔形にして、 ブラシを長手方向 に往復させてやれば供給電流のオフタイムを変化させることができるか ら、 回転数の可変制御ができる。 しかし、 この派生現象を応用したブラ シの横移動によるこの種の制御方法は、 理論的にはともかく、 実用的で はないし、 寧ろ、 本発明の利用目的にそぐわない欠点である。  When the passing sliding electrode (2) having the same width as that of the commutator piece (1) is inserted between the commutator pieces (1) over the entire length, the passing sliding electrode (2) comes into contact with the brush. During this period, the current from the power supply does not flow, so the armature is not excited, and an unexpected pulse width control effect is generated, and the rotation speed is reduced. This phenomenon becomes more remarkable as the width of the sliding electrode (2) becomes wider. Therefore, change the viewpoint, change the shape of the sliding electrode (2) into a longitudinal wedge shape, and reciprocate the brush in the longitudinal direction. If the off-time of the supply current can be changed, the rotation speed can be variably controlled. However, this kind of control method by lateral movement of the brush applying this derivative phenomenon is theoretically aside, not practical, but rather a drawback that does not fit the purpose of use of the present invention.
この欠点を解消するためには、 渡し滑り電極 (2 ) の幅を可能な限り 小さくする必要がある力、 それには限界があり、 せいぜい従来の整流子 の整流子片の幅程度である。 本発明では、 次のような方法を採用する。 整流子片 (1 ) の XI側の円弧幅 Wとクリアランス Cは、 従来の整流 子片と同様にし、 X 2側の円弧幅 Tを Wよりも小さくし、 Sく W— C— T、 又、 W〉T〉 4Cの寸法とする。 それに、 XI— X2軸芯方向の有 効摺動部の長さ Xの二分の一付近の位置から流子片 (1) の幅を狭くし 、 この整流子片 (1) 二個の間に、 幅が S、 長さ Zが Z〉X÷2+Rの 渡し滑り電極 (2) を割り込ませた配置として、 これらを絶縁物 (7) で固定した整流子とし、 整流子片 (1 ) の有効摺動部の長さ Xの二分の 一の位置付近に正極ブラシ (8) 及び負極ブラシ (9) を設置する。 In order to eliminate this drawback, the force that requires the width of the cross-sliding electrode (2) to be as small as possible is limited. About the width of the commutator piece. In the present invention, the following method is adopted. The arc width W and the clearance C on the XI side of the commutator segment (1) are the same as those of the conventional commutator segment. The arc width T on the X2 side is made smaller than W, and S × W—C—T and , W〉 T〉 4C. In addition, the width of the rotor piece (1) is reduced from a position near half the length X of the effective sliding portion in the direction of the XI-X2 axis, and the commutator piece (1) is placed between the two pieces. , The width is S, and the length Z is Z> X ÷ 2 + R. As a layout with interleaved sliding electrodes (2), these are used as commutators fixed with insulators (7). A positive brush (8) and a negative brush (9) are installed near one-half the length X of the effective sliding part.
以上のように構成された整流子とブラシとすることにより、 ブラシは 前方の整流子片 (1) に摺リ接触しながら渡し滑り電極 (2) にも摺り 接触し、 次に、 これから離れる時には、 後方の整流子片 (1 ) に渡って いるので、 電流が供給されない時間は無視できる程に微少となり、 回転 数の滅少は発生しない。 尚、 上記のクリアランス Cは 0. 3乃至 0. 5 匪程度が望ましい。  By using the commutator and the brush configured as described above, the brush is in sliding contact with the front commutator piece (1) and also in sliding contact with the transfer sliding electrode (2). Since the current passes through the rear commutator piece (1), the time during which no current is supplied is negligibly small, and the rotation speed does not decrease. The above clearance C is preferably in the range of 0.3 to 0.5.
第 3図は、 ブラシ、 電機子のコイルそれに本発明の九個の整流子片を 持つ整流子の結線図であり、 これは、 第 1図のような斜視図においては 、 九個の整流子片、 渡し滑り電極及びダイオードおよび渡し線等の配置 や配線の詳細の図解が困難なので本図のような表現をした。  FIG. 3 is a connection diagram of a brush, a coil of an armature, and a commutator having nine commutator pieces of the present invention. In the perspective view as shown in FIG. 1, nine commutators are shown. Since it is difficult to illustrate the layout of the pieces, the crossover sliding electrodes, the diodes, the crossovers, etc., and the details of the wiring, they are represented as shown in this figure.
第 4図〜第 7図は、 ブラシと整流子閒の整流作用がどのようなプロセ スで行われるかを、 その工程順に図解したものである。 本発明の特徴は 、 整流子片のみの集合体で構成される従来の整流子とは異なり、 「渡し 滑り電極」 を設けたこと、 高速回転する 「電機子側にダイオード」 を設 けたことであり、 その特徴を端的に説明するために、 ここでは渡し線の 役割の詳細には敢えて触れない図示方法とした。  Fig. 4 to Fig. 7 illustrate the process in which the rectifying action of the brush and the commutator 行 わ is performed in the order of the processes. The features of the present invention are that, unlike a conventional commutator composed of only a commutator piece, a “sliding sliding electrode” is provided, and a “diode on the armature side that rotates at high speed” is provided. Yes, in order to briefly explain its features, the illustration method used here does not dare to mention the role of the crossover.
第 8図と第 9図は、 使用するダイオードを節約するための 「渡し線」 の使用法の例示に主眼を置いた図である。 理論的にはともあれ、 現実的 には整流子片の数量が多くなるとそれと同等数のダイオードを 「電機子 側」 に設けることは無理である。 そのような場合、 ダイオード (3 ) の 代りの機能を果たしてくれる短い銅線 「渡し線 (4 ) 」 を使用する。 い くら整流子片 (1 ) の数が多くても、 三個か四個のダイオード、 それに 渡し線 (4 ) 用に短く切った銅線若干の使用で済む。 Figures 8 and 9 show the “crossover” to save on the diodes used. It is a figure which put emphasis on the illustration of the usage of. Although it is theoretically possible, it is practically impossible to provide the same number of diodes on the “armature side” as the number of commutator pieces increases. In such cases, use short copper wires "four wires (4)" which will replace the diode (3). No matter how many commutator pieces (1) are used, only three or four diodes and some copper wires cut short for the crossover (4) can be used.
第 8図は、 十五個の整流子片を持つ整流子であり、 ダイオード (3 ) を三個と渡し線 (4 ) を十二個使用する。 第 9図は、 十六個の整流子片 を持つ整流子であり、 ダイオード (3 ) を四個、 渡し線 (4 ) を十二個 使用した例である。 以上の 2例のいずれもダイオード (3 ) を円周上に 均等に配置して、 電機子が高速回転しても回転ムラが発生しないように 工夫してある。 尚、 ダイオードは、 電機子の高速回転の遠心力で飛散し ないように堅固に電機子に固定する必要がある。 産業上の利用可能性  FIG. 8 shows a commutator having 15 commutator pieces, using three diodes (3) and twelve crossover wires (4). FIG. 9 shows a commutator having 16 commutator pieces, in which four diodes (3) and twelve crossover wires (4) are used. In each of the above two examples, the diodes (3) are arranged evenly around the circumference so that rotation irregularities do not occur even when the armature rotates at high speed. The diode must be firmly fixed to the armature so that it will not be scattered by the centrifugal force of the high-speed rotation of the armature. Industrial applicability
以上のように、 本発明の火花を発しない整流子は、 手軽に、 しかも低 コストで製作できるので、 ステ一タに永久磁石を用いる小形の直流モ一 タにはもとより、 構造が複雑で高価なために補償巻線と補極を設けるこ とができない大形の直流発電機と直流モ一タのすべてに採用できる。 本発明の整流子を採用した場合の具体的効果の例を次に述べる。  As described above, the non-sparking commutator of the present invention can be manufactured easily and at low cost, so that the structure is complicated and expensive, as well as a small DC motor using a permanent magnet for the stator. For this reason, it can be used for all large DC generators and DC motors that cannot be provided with a compensation winding and a supplementary pole. An example of a specific effect when the commutator of the present invention is adopted will be described below.
補償巻線と補極を設けた大形モータの場合でも、 補極と電機子の間の 隙間を広げると補極の磁束が弱くなり、 不足整流となってブラシの後端 から火花が発生し、 この逆に補極と電機子の間の隙間を狭くすると、 過 整流となってブラシの前端から火花が発生するので、 補極と電機子の間 の隙間の調整をしなければならない。 しかし、 この場合でも、 本発明の 整流子を使用すれば、 その調整がラフであっても火花の発生を無くすこ とができる。 Even in the case of a large motor with a compensating winding and an auxiliary pole, if the gap between the auxiliary pole and the armature is widened, the magnetic flux of the auxiliary pole will weaken, causing insufficient commutation and sparking from the rear end of the brush. Conversely, if the gap between the auxiliary pole and the armature is reduced, over commutation will occur and sparks will be generated from the front end of the brush, so the gap between the auxiliary pole and the armature must be adjusted. However, even in this case, if the commutator of the present invention is used, it is possible to eliminate the generation of sparks even if the adjustment is rough. Can be.
本発明の整流子を装着すれば、 小形の直流モータにおいては、 ブラシ を電気的中性軸にではなく、 幾何学的中性軸の位置に設置して、 正回転 あるいは逆回転させても火花を発生させないし、 定格電流で使用してい る限り、 回転している電機子軸に大きな負荷が加わっても火花を発生さ せない。  If the commutator of the present invention is mounted, in a small DC motor, the brush is installed not on the electric neutral axis but on the geometric neutral axis, and even when the brush is rotated forward or backward, the spark is generated. No spark is generated even when a large load is applied to the rotating armature shaft as long as the motor is used at the rated current.
又、 大形の直流発電機と直流モータにおいては、 正回転あるいは逆回 転の回転方向に合わせて、 ブラシを電気的中性軸の位置に設置しておい ても、 負荷変動に応じてブラシ位置調整をする必要があるが、 本発明の 整流子の使用でその必要がなくなる。  For large DC generators and DC motors, even if the brush is installed at the position of the electric neutral axis in accordance with the forward or reverse rotation direction, the brush will not change according to the load fluctuation. Position adjustment is required, but the use of the commutator of the present invention eliminates that need.
以上のように、 本発明の整流子を採用することにより、 ブラシ使用の すべての直流発電機及び直流モータは、 火花発生による整流子とブラシ の焼損摩耗が無くなり、 その寿命を長くでき、 商品寿命を超えることに もなり、 用途によってはメンテナンス フリーが可能となる。  As described above, by employing the commutator of the present invention, all DC generators and DC motors using brushes can eliminate the burning and abrasion of the commutator and brushes due to spark generation, prolong the life of the brush, and increase the product life. In some applications, maintenance-free operation is possible.
しかも、 本発明の整流子は、 従来の整流子とブラシを組合わせた簡単 なメカニズムの特性を活かしたコンパク卜な構造を継続 ·発展させたも のであり、 これに付加した構成部品は、 渡し滑り電極、 三個又は四個の ダイォ一ドと渡し線に用いる銅線の三種類の僅かなものである。 従って 、 当然のこととして、 その製造コス卜のアップも微々たるものである。  Moreover, the commutator of the present invention continues and develops a compact structure utilizing the characteristics of a simple mechanism that combines a conventional commutator and a brush. There are three kinds of sliding electrodes, three or four diodes and three kinds of copper wires used for crossovers. Therefore, as a matter of course, the increase in the manufacturing cost is insignificant.

Claims

請 求 の 範 囲 The scope of the claims
1. 本発明の整流子は、 電機子のコイルの線端を接続する複数個の金属 製の整流子片 (1) 、 それとは全く異なる特徴、 すなわち、 整流子片 ( 1) を通る電流のうち、 負の電流のみを流す機能を果たす整流子片と同 数個の金属製の渡し滑り電極 (2) 、 三個あるいは四個のダイオード ( 3) 及び渡し滑り電極 (2) と渡し滑り電極 (2) を接続するための銅 の渡し線 (4) を備えている。 渡し滑り電極 (2) は、 複数個の整流子 片 (1) の間に挿入され、 それら両者は交互に配列される。 三個あるい は四個のダイオード (3) は、 配列された複数個の整流子片 (1) のう ちの等分配列か近似等分配列した三個あるいは四個の整流子片 (1) に そのアノード側を接続し、 その力ソード側をそのアノード側が接続され た整流子片 (1) の両側の渡し滑り電極 (2) のうちのどちらか一つに 接続する。 この時、 整流子を電機子軸 (6) の軸方向から見て、 ダイォ —ド (3) の力ソード側を渡し滑り電極 (2) に時計回りに接続した場 合、 この渡し滑り電極 (2) から同じ時計回りに、 次の渡し滑り電極 ( 2) に渡し線 (4) をを接続する。 次の次の渡し滑り電極 (2) にも順 次渡し線 (4) の接続を繰返して、 二個目のダイオード (3) を接続し た整流子片 (1) の直ぐ手前の渡し滑り電極 (2) 迄での接続で止める 。 残された二個目 ·三個目及び四個目のダイォ一ド (3 ) についても以 上と同様にする。 反時計回りの場合には、 上記と同様の順序で逆回りに する。 そして、 それら整流子片 (1) と渡し滑り電極 (2) 各々のすベ ては、 絶縁物 (7) で固定される。 特許請求の範囲は、 以上の様に構成 された構造の整流子。 1. The commutator of the present invention is composed of a plurality of metal commutator pieces (1) for connecting the wire ends of the armature coils, and has a completely different feature, namely, the current flowing through the commutator pieces (1). Of these, the same number of commutator strips that perform the function of passing only negative current and the same number of metal sliding electrodes (2), three or four diodes (3), and the passing sliding electrodes (2) and the passing sliding electrodes It has a copper bridge (4) for connecting (2). The cross slide electrode (2) is inserted between a plurality of commutator strips (1), both of which are arranged alternately. The three or four diodes (3) are composed of three or four commutator segments (1) that are equally or approximately equally arranged among the arranged commutator segments (1). The anode of the commutator is connected to one of the sliding electrodes (2) on both sides of the commutator piece (1) to which the anode is connected. At this time, when the commutator is viewed from the axial direction of the armature shaft (6), when the force side of the diode (3) is connected to the sliding electrode (2) in a clockwise direction, the passing sliding electrode ( From 2), in the same clockwise direction, connect the crossover wire (4) to the next crossover slide electrode (2). Repeat the connection of the next crossover wire (4) to the next next crossover slide electrode (2), and the crossover slide electrode immediately before the commutator piece (1) to which the second diode (3) is connected. (2) Stop at the connection up to. The same applies to the remaining second, third and fourth diodes (3). If it is counterclockwise, turn it counterclockwise in the same order as above. All of the commutator pieces (1) and the sliding electrodes (2) are fixed with insulators (7). Claims are directed to a commutator having a structure configured as described above.
2. 渡し滑り電極 (2) の使用数量は、 整流子片 (1) と同数個であり 、 ダイオード (3) の使用数量は、 三個あるいは四個とするもの及び整 流子片 (1 ) と同数個であるものも含み、 渡し線 (4) は整流子片 (1 ) の使用数量から使用するダイオード (3) の使用数量を差し引いた数 量とする請求の範囲 1項記載の整流子。 2. The number of bridge sliding electrodes (2) used is the same as the number of commutator strips (1), and the number of diodes (3) used is three or four. Claims that include the same number as the sprue pieces (1), and the crossover wire (4) to be the quantity obtained by subtracting the used quantity of the diode (3) used from the used quantity of the commutator pieces (1) The commutator according to item 1.
3. 整流子片 ( 1 ) は、 点 X 1と点 X 2を結ぶ線分 X 1 -X 2を軸芯と する直径が D、 その外周長を L = n (W+C) とする。 但し、 nは整流 子片の数とする。 又、 整流子片 (1) の X 1側の円弧幅は Wとし、 X2 側の円弧幅は Wより小さい寸法の Tとし、 隣合う二個の整流子片 (1) 間のクリアランスを C、 但し、 Cは 0. 3乃至 0. 5mm程度とする。 一 方、 軸芯 X 1— X 2方向の整流子片 (1) の有効摺動部の長さは X、 そ のライザ部の長さは Rとし、 X2側のクリアランス (G) は、 有効摺動 部の長さ Xの二分の一の位置から点 X 2の方向に向けて、 その幅が G = 2 xC+Sの寸法に削り広げた形状とする。 渡し滑り電極 (2) は、 そ の摺動部の長さ Zを、 Z>X÷2+Rとし、 又、 その円弧幅 Sを、 S < W— T— C及び W〉 T> 4Cとする。 これら整流子片 (1) と渡し滑り 電極 ( 2 ) の両者の形状が以上の寸法関係にある請求の範囲 1項記載の 整流子。  3. The commutator piece (1) has a diameter D centered on a line segment X1-X2 connecting the point X1 and the point X2, and its outer peripheral length is L = n (W + C). Here, n is the number of commutator pieces. Also, the arc width on the X1 side of the commutator segment (1) is W, the arc width on the X2 side is T smaller than W, and the clearance between two adjacent commutator segments (1) is C, However, C is about 0.3 to 0.5 mm. On the other hand, the length of the effective sliding part of the commutator piece (1) in the axis X1—X2 direction is X, the length of its riser is R, and the clearance (G) on the X2 side is effective. From the half of the length X of the sliding part to the direction of the point X2, the width is reduced to G = 2 x C + S. The cross slide electrode (2) has the length Z of the sliding portion as Z> X ÷ 2 + R, and the arc width S as S <W—T—C and W> T> 4C. I do. 2. The commutator according to claim 1, wherein the shape of both the commutator piece (1) and the cross slide electrode (2) is in the above-mentioned dimensional relationship.
訂正された用紙 (纖 iJ91) Corrected paper (Fiber iJ91)
PCT/JP1996/001998 1996-02-26 1996-07-18 Spark-free commutator WO1997031420A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7927096 1996-02-26
JP8/79270 1996-02-26

Publications (1)

Publication Number Publication Date
WO1997031420A1 true WO1997031420A1 (en) 1997-08-28

Family

ID=13685183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/001998 WO1997031420A1 (en) 1996-02-26 1996-07-18 Spark-free commutator

Country Status (1)

Country Link
WO (1) WO1997031420A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006013452A3 (en) * 2004-08-02 2006-05-11 Dolphin Electric Holdings Inc Commutator and method of commutating current in a rotating electrical machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5490506A (en) * 1977-12-28 1979-07-18 Matsushita Electric Works Ltd Commutator of dc motor
JPS5728545A (en) * 1980-07-29 1982-02-16 Zenhachi Oba Brush circuit in dc commutator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5490506A (en) * 1977-12-28 1979-07-18 Matsushita Electric Works Ltd Commutator of dc motor
JPS5728545A (en) * 1980-07-29 1982-02-16 Zenhachi Oba Brush circuit in dc commutator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006013452A3 (en) * 2004-08-02 2006-05-11 Dolphin Electric Holdings Inc Commutator and method of commutating current in a rotating electrical machine
EP1794868A2 (en) * 2004-08-02 2007-06-13 Dolphin Electric Holdings Inc. Commutator and method of commutating current in a rotating electrical machine
EP1794868A4 (en) * 2004-08-02 2008-11-05 Dolphin Electric Holdings Inc Commutator and method of commutating current in a rotating electrical machine

Similar Documents

Publication Publication Date Title
CA2121357C (en) Rotary electric machine
JP4369377B2 (en) Rotating electric machine
EP1012952A1 (en) Dynamo-electric machines and control and operating system for the same
US5929579A (en) Soft-commutated direct current motor
EP0025058B1 (en) Multiple windings electrical machines
JPS6329507B2 (en)
US4948998A (en) Electric motor
US4341971A (en) Armature of electric rotating machine
US4425536A (en) Positive contacts commutator apparatus
WO1997031420A1 (en) Spark-free commutator
US3576456A (en) Transient leakage flux barrier for dc dynamoelectric machines
WO2021049452A1 (en) Electric motor and electrical equipment
US11329582B2 (en) Series shunt wound DC motor driving device and equipment
CN211930448U (en) Direct current brush motor and commutator and brush arrangement thereof
WO1983000777A1 (en) Commutators
US20030052566A1 (en) Commutator for a multi-pole commutator motor and commutator motor provided therewith
WO1999028997A1 (en) Reduced noise commutator system
USRE32674E (en) Multiple windings electrical machines
JP2018170898A (en) DC motor with multiple brushes
TWI796781B (en) Dc motor with discharging unit for inhibiting electromagnetic interference
WO2023135955A1 (en) Electric motor and electrical device
JPH09294361A (en) Commutator without generation of spark
US837889A (en) Means for commutating motor and other electric currents.
WO2022050179A1 (en) Electric motor
CN1206949A (en) Permanent magnet rotor motor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AT BR CN KR US AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase