WO1997030164A1 - Improvements in or relating to gene expression - Google Patents

Improvements in or relating to gene expression Download PDF

Info

Publication number
WO1997030164A1
WO1997030164A1 PCT/GB1997/000406 GB9700406W WO9730164A1 WO 1997030164 A1 WO1997030164 A1 WO 1997030164A1 GB 9700406 W GB9700406 W GB 9700406W WO 9730164 A1 WO9730164 A1 WO 9730164A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
plant
gene
gal4
interest
Prior art date
Application number
PCT/GB1997/000406
Other languages
French (fr)
Inventor
James Phillip Haseloff
Sarah Hodge
Original Assignee
British Technology Group Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by British Technology Group Limited filed Critical British Technology Group Limited
Priority to AU18014/97A priority Critical patent/AU714791B2/en
Priority to EP97903457A priority patent/EP0880593A1/en
Priority to NZ331220A priority patent/NZ331220A/en
Priority to JP09529099A priority patent/JP2001501805A/en
Publication of WO1997030164A1 publication Critical patent/WO1997030164A1/en
Priority to US09/133,321 priority patent/US6255558B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8209Selection, visualisation of transformants, reporter constructs, e.g. antibiotic resistance markers

Definitions

  • GAL4 In yeast there is a gene called GAL4, the product of which acts as a transcriptional activator (Johnston 1987 Microbiol. Rev. 5_1 , 458-476).
  • the GAL4 gene is quite large (3Kb) and the encoded polypeptide comprises an N-terminal DNA-binding domain, a C terminal domain having a transcriptional activator function, and an intervening glucose- responsive element "GRE" (GAL4 being repressed in the presence of glucose).
  • GAL4 binds to the UAS 5 ' of a gene by means of the DNA-binding domain, and the C-terminal domain causes up-regulation of transcription of the gene.
  • GALA derivatives have been demonstrated in maize protoplasts (McCarty et al, 1991 Cell 66, 895- 905) and when introduced by biolistic methods, in maize aleurone tissues or embryogenic calli (Goff et al, 1991 Genes & Dev. 5, 298-309; Goff et al, 1992 Genes & Dev. 6, 864- 875). Hitherto however, there have been no reports of stable, efficient expression of functional GALA or derivaties thereof in a plant cell.
  • Plant includes reference to viral and bacterial promoter sequences which are active in a plant cell (e.g. nucleotides -48 to + 1 of the CaMV 35S promoter).
  • the temporal/spatial pattern of expression of the introduced gene or genes of interest will then mirror that already known for the reporter gene.
  • the plant or part thereof will be Arabidopsis thaliana, but may be any other plant which is routinely studied (e.g. maize, rice, potato etc).
  • Figures 4a-4d show micrographs of roots of plants comprising a sequence in accordance with the invention.
  • the 5' portion of the mGAL4-VP16 sequence was amplified by the polymerase chain reaction (PCR), using the GAL-5' and MGAL2 oligos as primers and the Sacl-Sacl GAL4 DNA fragment as a template. Primers and template were incubated under standard conditions with VENT DNA polymerase (New England Biolabs) and subjected to 30 cycles of 94 °C for 30 sees, 50 °C for 1 min, 72 °C for 1 min. The product was cut with Xhol restriction endonuclease and purified after electrophoresis through a 1.5% LGT agarose gel.
  • PCR polymerase chain reaction
  • the line J2302 was crossed (using standard techniques) with another Arabidopsis line which comprised a stable, silently-maintained GUS reporter gene operably linked to a GALA-responsive UAS.
  • the product of the cross proceeded to express GUS, under the influence of the GALA-VP16 transcriptional activator, in the same pattern as the GFP reporter gene in J2302 (i.e. at the extreme root tip).
  • Suitably stained samples imaged by brightfield microscopy, are shown in Figures 4c and 4d, and demonstrate GUS reporter gene activity (darkest staining) at the root tip.

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Saccharide Compounds (AREA)

Abstract

Disclosed is a nucleic acid sequence, expressible in a plant cell, encoding at least an effective portion of a GAL4 DNA-binding domain, the sequence having a % A/T base content substantially reduced relative to the wild-type yeast sequence.

Description

Title: Improvements in or Relating to Gene Expression
Field of the Invention
This invention relates to a nucleic acid sequence optimised for expression in a plant cell, and to vectors and plant cells comprising the nucleic acid sequence.
Background of the Invention
In yeast there is a gene called GAL4, the product of which acts as a transcriptional activator (Johnston 1987 Microbiol. Rev. 5_1 , 458-476). The GAL4 gene is quite large (3Kb) and the encoded polypeptide comprises an N-terminal DNA-binding domain, a C terminal domain having a transcriptional activator function, and an intervening glucose- responsive element "GRE" (GAL4 being repressed in the presence of glucose).
The GAL4 protein has been quite well characterised. Amino acid residues 1-147 of the protein bind to DNA in a sequence-specific manner (Keegan et al 1986 Science 23_1 , 699- 704). The transcriptional activation function is associated with two short portions of the C terminal domain (Ma & Ptashne 1987 Cell 48, 847-853). The DNA sequence to which GAL4 binds has been identified as a 17mer, which must be present as a repeat for optimal GAL4 binding (Giniger et al, 1 85 Cell 40, 76 '-77 '4), and may be referred to as a GAL4- responsive "upstream activation sequence" (UAS): GAL4 binds to the UAS 5' of a gene by means of the DNA-binding domain, and the C-terminal domain causes up-regulation of transcription of the gene.
Recently, a two-element system has been developed for directing gene expression in Drosophila melanogaster. Brand and Perrimon (1993 Development JT8: 401-415,) randomly inserted the gene encoding the GAL4 into the Drosophila genome using a P- element based vector.
A large number of stable Drosophila lines were generated which each express GALA in a particular pattern, dependent on adjacent genomic DNA sequences. A chosen target gene could then be cloned under the control of GAL4 upstream activation sequences (UAS), separately transformed, and maintained silently in the absence of GAL4. Genetic crossing of this single line with any of the library of GAL4-containing lines allowed activation of the target gene in many different tissue and cell types, and the phenotypic consequences of mis-expression, including those lethal to the organism, could be conveniently studied. In addition, the library of GAL4-containing flies has become an increasingly characterised and shared resource, and which provides a common entry point for various "reverse" genetic techniques.
A similar system operable in plants would be highly desirable. However, expression of heterologous eukaryotic genes in plants has proved highly problematical in the past (see, for example, Green Fluorescent Protein) and efficient expression of GAL4 appears equally difficult, and it has been suggested that this is due to inefficient translation of GAL4 mRNA in plants (Reichel et al, 1995 Plant Cell Reports 14, 773-776). Ma et al, (1988 Nature 334, 631-633) were able to obtain transient expression of modified, functional GALA derivatives in tobacco-leaf protoplasts but could not demonstrate the presence of functional, full-length wild-type GALA. Similarly, transient expression of GALA derivatives has been demonstrated in maize protoplasts (McCarty et al, 1991 Cell 66, 895- 905) and when introduced by biolistic methods, in maize aleurone tissues or embryogenic calli (Goff et al, 1991 Genes & Dev. 5, 298-309; Goff et al, 1992 Genes & Dev. 6, 864- 875). Hitherto however, there have been no reports of stable, efficient expression of functional GALA or derivaties thereof in a plant cell.
It is an aim of the present invention to provide a novel expression system operable in plants, utilising a modified portion of the GAL4 gene.
Summary of the Invention In a first aspect the invention provides a nucleic acid sequence, expressible in a plant cell, encoding at least an effective portion of a GALA DNA-binding domain, the sequence having an A/T base content substantially reduced relative to the wild-type yeast sequence.
The A/T content of the wild-type yeast sequence encoding the DNA-binding domain of GALA is about 59%. The % A/T base content of the sequence of the invention encoding the effective portion of the GALA DNA-binding domain will be understood to be substantially reduced when it is less than 50% . Preferably the A/T content is less than 45 %, and more preferably less than 40%. The sequence of the invention may be made, for example, by site-directed mutagenesis, or be made de novo by chemical synthesis.
An "effective portion" of the DNA-binding domain is a portion sufficient to retain most (i.e. over 50%) of the DNA-binding activity of the full length DNA-binding domain. Typically the "effective portion" will comprise at least two thirds of the full length sequence of the DNA-binding domain. Conveniently the nucleic acid sequence will encode substantially all of the GALA DNA-binding domain (i.e. amino acid residues 1-147 of the yeast polypeptide), although a substantially smaller portion (about 75 amino acid residue) is quite adequate to retain most of the DNA-binding activity (Kraulis et al, 1992 Nature 356, 448-450; and Marmorstein et al, 1992 Nature 356, 408-414). In one particular embodiment, the sequence will comprise the nucleotide sequence shown in the 5' portion (nucleotides 1 to about 460) of Figure 1, which sequence has a substantially reduced A/T content (38 %). relative to the wild-type yeast sequence, yet encodes an identical amino acid sequence.
The GALA DNA-binding domain has no transcriptional activation function in its own right. Thus, in preferred embodiments, the sequence encoding the effective portion of the GALA DNA-binding domain will be operably linked to one or more other nucleic acid sequences, which sequences may be structural (i.e. encode functional polypeptides) and/or regulatory. Typically the sequence encoding the DNA-binding domain will be operably linked (e.g. fused in- frame) to a sequence encoding a peptide or polypeptide with a regulatory function, preferably a transcriptional activator. The transcriptional activator may be the activation domain of GALA protein, the sequence encoding which should preferably be optimised for expression in plants (e.g. by reducing the A/T content thereof). Alternatively, the transcriptional activator could be any one of a number of such proteins known to be active in plants, which will be well-known to those skilled in the art, such that the sequence of the invention encodes a chimeric polypeptide, comprising at least an effective portion of the GALA DNA-binding domain and a transcriptional activation domain. A particularly suitable transcriptional activator domain is that obtainable from herpes simplex virus (HSV) VP-16, (see Greaves and O'Hare 1989 J. Virol 63, 1641- 1650; VP, being also known as VMW65). Other transcriptional activation domains include certain peptides encoded by E. coli genomic DNA fragments (Ma & Ptashne 1987 Cell 5_1 , 113-119) or synthetic peptides designed to form amphiphilic α-helix (Giniger & Ptashne 1987 Nature 330, 670-672). A common feature appears to be the requirement for excess charge, either positive (Gill & Ptashne 1987 Cell 51 , 121-126) or, more especially for plant activation domains, excess negative charge (Estruch et al, 1994 Nucl. Acids Res. 22, 3983-3989). With this in mind, the person skilled in the art could readily synthesise, or find na rally-occurring sequences, which encode peptides or polypeptides with transcriptional activation activity in plants. Such activator sequences may, in any event, be modified for optimal activity in a plant cell.
In a further aspect the invention provides a nucleic acid construct, comprising the nucleic acid sequence defined above. In one particular embodiment, the nucleic acid construct could be used as an "enhancer-trap" to "fish" for plant enhancer sequences (Cf. Sundaresan et al, 1995 Genes & Dev. 9, 1797-1810). In such an embodiment, the construct will preferably include right and left Ti-DNA, to allow for random, stable insertion into the genome of a plant cell host. The construct will preferably comprise a naive plant promoter sequence, by which term is meant a promoter (operable in a plant cell) which requires the presence of a suitable enhancer sequence to cause substantial levels of transcription. Such a "naive" promoter may be thought of as an "enhancer- dependent" promoter, and essentially corresponds to the TATA box region of known plant promoters. "Plant" promoters includes reference to viral and bacterial promoter sequences which are active in a plant cell (e.g. nucleotides -48 to + 1 of the CaMV 35S promoter). The naive promoter is conveniently substantially adjacent to one Ti border, the promoter being in competent relationship with the sequence encoding the GALA DNA-binding domain fused with a transcription activation domain operable in plants such that, should the promoter become inserted in the plant host cell genome in functional relationship with an enhancer sequence, the promoter will direct the expression of the GAL4 DNA-binding domain and the transcriptional activation domain. The construct may additionally comprise a plant selectable marker (e.g. Kanamycin resistance) for convenience.
Additionally, the construct may comprise a reporter gene active in plants (such as Green Fluorescent Protein, or /3-glucuronidase "GUS") in operable linkage to a GALA-responsive upstream activation sequence (UAS), such that the reporter gene will be expressed in response to synthesis of the GALA DNA-binding domain/transcriptional activator fusion protein. Preferably the reporter gene is modified GFP as disclosed in WO 96/27675, or GUS (conveniently with a nuclear localisation signal). Preferably the UAS comprises one or more repeats of the 17mer to which GAL4 binds (Giniger et al, 1985 Cell 40, 767- 774).
As an alternative method of introducing the GALA binding domain/transcriptional activator sequence into a plant host cell genome, the construct may comprise Ds ("dissociation") elements, which may then be moved about the genome by the action of a transiently- expressed Ac (Activator) enzyme (e.g. Cocherel et al, 1996 Plant Mol. Biol. 30, 539- 551).
In a further aspect, the invention provides a plant or part thereof (e.g. a plant host cell or cell line) comprising the construct defined above. Typically the construct will have become integrated into a plant cell genome and be stably maintained therein. In particular the invention provides a plurality of plants or parts thereof (such as isolated plant cells, or cell lines, or tissue cultures) comprising a library, each plant or part thereof comprising a stably maintained nucleic acid sequence encoding an effective portion of the GALA DNA-binding domain as defmed above. Conveniently the nucleic acid sequence will be incorporated into the genome of plant cells present in the library.
The library of plants or parts thereof thus provides a very useful resource. The library may be e.g. Arabidopsis ihaliana, or of any other plant which is routinely used in research. Each plant or part thereof in the library may have a particular pattern of expression of the integrated reporter gene (see, for example, Sundaresan et al , 1995 Genes & Dev. 9, 1797-1810; Klimyuk et al , 1995 Molec. Gen. Genet. 249, 357-365). Thus, introduction of a further gene, having a GALA-responsive UAS into the cell line, will result in expression of the introduced gene in the same temporal/spatial pattern as the reporter gene, such that researchers can express a particular gene of interest in selected tissues and/or at selected times in a predictable manner.
The invention thus provides a method of expressing a gene of interest in a known (predictable) pattern in a plant or part thereof, the method comprising: introducing the gene of interest into the plant or part thereof, said gene of interest having a GALA- responsive upstream activation sequence (UAS), characterised in that said plant or part thereof comprises a reporter gene expressed in a known pattern under the influence of a transcriptional activator comprising an effective portion of a GALA DNA-binding domain encoded by a sequence in accordance with the invention defined above, such that binding of the transcriptional activator to the UAS causes transcriptional activation of the gene of interest.
The temporal/spatial pattern of expression of the introduced gene or genes of interest will then mirror that already known for the reporter gene. Typically the plant or part thereof will be Arabidopsis thaliana, but may be any other plant which is routinely studied (e.g. maize, rice, potato etc).
Typically the gene or genes of interest will be introduced by crossing GALA-expressing plant cell lines with a plant cell line comprising the gene(s) of interest linked to a GALA- responsive UAS.
The nucleic acid sequence of the invention has other useful applications, in addition to use as an "enhancer trap", or to direct the expression of a gene or genes of interest in a predictable manner. The modified GALA DNA-binding domain/transcriptional activator may also be used to co-ordinate the expression of a plurality of genes of interest. In many circumstances it is desirable to express simultaneously a number of genes in a plant either for research purposes, or for agricultural/industrial motives (e.g. to study metabolic pathways, or to manipulate the synthesis of desirable products such as plant dyes or lipids).
Thus, the invention provides a method for co-ordinating the expression of a plurality of genes of interest in a plant or part thereof, each of the genes of interest being functionally associated with a GALA-responsive UAS, characterised in that the plant or part thereof comprises a sequence in accordance with the first aspect of the invention defmed above and is capable of expressing a transcriptional activator comprising an effective portion of a GALA DNA-binding domain, such that binding of the transcriptional activator to the UAS causes simultaneous transcriptional activation of all of the genes of interest.
Conveniently the plurality of genes of interest may all be associated, in a polycistronic arrangement, with a single UAS, which facilitates their introduction into the plant or part thereof (the genes of interest typically being genes which are not naturally found in the plant or part thereof e.g. mammalian or bacterial genes, or genes from a different plant or possibly natural plant genes which have been the subject of various modifications). Alternatively one or more genes may be operably linked to a respective UAS. The transcriptional activator may be encoded by a sequence already present in the plant or part thereof, or may be introduced simultaneously with (or subsequent to) introduction of the plurality of genes of interest.
The invention will now be further described by way of illustrative examples and with reference to the accompanying drawings, of which:
Figure 1 shows a nucleotide sequence in accordance with the invention encoding a modified GAL4 DNA-binding domain, fused in frame to a sequence encoding a modified transcriptional activation domain from HSV VPI 6, the vertical line denotes the end of the GALA DNA-binding domain;
Figure 2 is a schematic representation of a nucleic acid construct comprising a sequence in accordance with the invention; Figure 3 shows the nucleotide sequence of part of the nucleic acid construct represented schematically in Figure 2; and
Figures 4a-4d show micrographs of roots of plants comprising a sequence in accordance with the invention.
Examples
The inventors have used an approach similar to that described by Brand & Perrimon (1993, cited above), but adapted it for use in Arabidopsis, using Agrobacterium tumefasciens - mediated transformation to produce "enhancer trap" plant cell lines with a transcription activator comprising the GALA DNA-binding domain, fused to the activation domain of HSV VP16 (mGALA-VP16).
Example 1 - Construction of mG ALA- VPI 6 gene
Eight oligonucleotides, which correspond to the modified sequence of the GAL4 DNA binding region, were synthesised.
GAL-5' (28-mer)
GGC AAC AAT GAA GCT ACT GTC TTC TAT C (Seq. ID No.3)
VP16-3' (31-mer)
GGC AGA TCT ACC CAC CGT ACT CGT CAA TTC C (Seq. ID No.4)
MGAL1 (109-mer)
GGC AAG CTT GGA TCC AAC AAT GAA GCT CCT GTC CTC CAT CGA GCA GGC CTG CGA CAT CTG CCG CCT CAA GAA GCT CAA GTG CTC CAA GGA GAA GCC GAAGTG CGC CAA G (Seq. ID No.5)
MGAL2 (108-mer)
TCC TCT CGA GGG AAG ATC AGG AGG AAG AGC TGC TCC AGG CGC TCC AGG CGG GAC TCC ACT TCG GTG AGG TGG GCG CGG GTC AGC GGG GAG CGC TTG GTTTTG GGA GAG (Seq. ID No.6)
MGAL3 (81-mer)
TTC CCT CGA GAG GAC CTC GAC ATG ATC CTG AAA ATG GAC TCC CTC
CAG GAC ATC AAA GCC CTG CTC ACC GGC CTC TTC GTC (Seq. ID No.7)
MGAL4 (89-mer)
GGG TGA GGG GCA TGT CGG TCT CCA CGG AGG CCA GGC GGT CGG TGA CGGCGTCTTTGTTCACGTTGTCCTGGACGAAGAGGCCGGTGAGC (Seq. ID No.8)
MGAL5 (80-mer)
GGA GAC CGA CAT GCC CCT CAC CCT GCG CCA GCA CCG CAT CAG CGC
GAC CTC CTC CTC GGA GGA GAG CAG CAA CAA GGG CC (Seq. ID No.9)
MGAL6 (83-mer)
AGT GGA GCT CGT CCC CCA GGC TGA CGT CGG TCG GGG GGG CCG TCG
AGACGGTCAACTGGCGCTGGCCCTTGTTGCTGCTCT CC (Seq. IDNo.10)
The full-length oligonucleotides were purified by electrophoresis in a 5 % poiyacrylamide gel containing 7M urea and 90mM Tris-borate ImM EDTA pH8.3 (TBE) buffer. The fractionated oligonucleotides were detected by brief staining with filtered 0.05 % toluidine blue dye, excised and eluted overnight at 37°C in 0.5M ammonium acetate, 0.1 % SDS and 0. ImM EDTA. The eluted DNAs were precipitated and washed with ethanol, and phophorylated using T4 plynucleotide kinase. DNAs (0.5ug each) were separately resuspended in 50mM Tris-HCl pH 9.0, lOmM MgCl2, lOmM DTT with ImM ATP and 5 units T4 polynucleotide kinase, and incubated for 30 mins at 37 °C.
The plasmid pCMVGal65 (Cousens et al, 1989 EMBO J. 8, 2337-2342) was used as a source of the GALA-VP16 sequence with unmodified codon usage. Two restriction endonuclease fragments were isolated from the plasmid. A SacI-SacI fragment, which contains the sequence encoding the DNA binding element of the Saccharomyces cerevisiae GAL4 protein, and a Sacl-Kpnl fragment, which encodes the activation domain of the herpes simplex virus VP16 protein, were purified by fractionation and elution from a low gelling temperature (LGT) 1 % agarose gel.
The 5' portion of the mGAL4-VP16 sequence was amplified by the polymerase chain reaction (PCR), using the GAL-5' and MGAL2 oligos as primers and the Sacl-Sacl GAL4 DNA fragment as a template. Primers and template were incubated under standard conditions with VENT DNA polymerase (New England Biolabs) and subjected to 30 cycles of 94 °C for 30 sees, 50 °C for 1 min, 72 °C for 1 min. The product was cut with Xhol restriction endonuclease and purified after electrophoresis through a 1.5% LGT agarose gel.
The MGALA and MGAL5 oligonucleotides were annealed by heating to 65 °C and slow cooling to room temperature. The MGAL3 and MGAL6 oligonucleotides were then added and also annealed to the mixture. The oligonucleotides were then incubated with Klenow fragment of DNA polymerase 1 and T4 DNA ligase in 50mM Tris-HCl pH 7.5, lOmM MgCl2, lOmM DTT, ImM dNTPs and ImM ATP for 60 mins at 37°C. An excess of MGAL3 and MGAL6 oligonuceotides were added, and the mixture was subject to PCR amplification, as above. The product was cut with the restriction endonucleases Xhol and Sacl, and purified after electrophoresis through a 1.5% LGT agarose gel.
The three gel-purified restriction fragments: (1) the GAL-57MGAL2 PCR-amplified product, corresponding to the 5' portion of the GALA DNA binding domain. (2) the MGAL3-6 annealed and amplified product, corresponding to the 3' portion of the GALA DNA binding domain, and (3) the Sacl-Kpnl fragment from pCMVGal65, corresponding to the VPI 6 activation domain; were mixed and ligated with T4 DNA ligase in 50mM Tris-HCl pH 7.5. lOmM MgCl2, lOmM DTT and ImM ATP at 20°C overnight. The ligated product was PCR amplified (as above) using MGAL1 and VPI 6-3' as primers. The product, containing the entire modified GAL4-VP16 sequence was cut with BamΑl and ligated to PBI121 (Jefferson et al, EMBO J. 6:3907, 1987) which had been cut with Sacl, blunt ended by treatment with T4 DNA polymerase, and re-cut with BamΑl. The recombinant plasmid (pBIN 35S-mGAL4-VP16) contained the mGAL4-VP16 gene downsteam of the constitutive 35S plant promoter.
In Figure 1 , the lower DNA sequence is that of the fusion gene (Seq. ID No. 1), encoding in the 5' portion the GALA DNA-binding domain, and encoding in the 3' portion the transcriptional activation domain from HSV VP16. The wild-type sequence is shown above for comparison. It will be seen that the wild type GALA DNA-binding domain coding sequence is A/T rich (A/T% content is shown on the right for each line of sequence), and it is believed that this causes inefficient expression in plants. In particular, it is believed that the A/T rich DNA comprises one or more regions which, when transcribed, are recognized as mRNA splice sites in plant cells. The altered nucleotides are shown outlined in Figure 1. The encoded polypeptide sequence is shown below (Seq. ID No. 2). The modifications to the nucleotide sequence were carefully selected to ensure that there was no resulting change in the encoded amino acid sequence. The numbers above the sequences represent the number of the nucleotide or amino acid at that position. Certain restriction endonuclease sites are also shown.
The 35S promoter and mGAL4-VP16 gene were excised by digestion with the restriction endonucleases H DIII and EcoRI, purified by 1 % LGT agarose gel electrophesis, and subcloned into a vector containing a GALA-responsive mgfp5-ER marker gene (see Example 2 below). The resulting construct is shown in Figure 2. in which R and L represent right and left Ti plasmid border sequence. The GAL4-VP16 fusion gene is downstream of the TATA-box region (nucleotides -48 to + 1) of the CaMV 35S gene, were inserted adjacent to the right Ti border. The plasmid also contains the kanamycin resistance (Kan R) selectable marker, and a reporter gene (GUS or GFP) operably linked to a synthetic GAL4-UAS promoter sequence. Certain restriction endonuclease sites are also shown.
Figure 3 shows the nucleotide sequence (Seq. ID No. 15) of the plasmid across the junctions of the Ti right border, the CaMV35S TATA box, and the start of the GAL4 DNA-binding domain coding region. The mGAL4-VP 16 gene was directly assayed for activity in transformed Arabidopsis plants by Agrobacterium-mediated transformation (Valvekens et al Proc. Natl. Acad. Sci. USA 85:5536-5540, 1988).
Example 2
Construction of GAL-GFP enhancer trap vector.
Modification of the T-DNA right border.
The plasmid pBIN19 (Bevan, M. Nuc. Acids Res. 12:8711-8721, 1984) was digested with the restriction endonuclease SαcII, and a 2.6 Kb fragment containing the Agrobacterium T-DNA right border sequence was subcloned into Sacll cut pGEM 5Zf(Genbank accession No. X65308; commercially available from Promega). The bacteria containing the recombinant phagemid were superinfected with helper phage to produce single strand phagemid DNA.
A synthetic mutagenic oligonucleotide ("TR+ ": ATA TCC TGT CAA ACA CTG GAT CCG AGC TCC AAT TCA TAG TTT AAA CTG AAG GCG GG; Seq. ID No. 11) was kinased and annealed to the purified phagemid DNA, extended on the template using T7 DNA polymerase, and ligated using T4 DNA ligase. The DNA was transformed into bacteria, and recombinant plasmids (pTr+) were screened for the insertion of new sites for the restriction endonucleases BamHI, Smal and EcoRI immediately adjacent to the T- DNA right border.
Insertion of TATA box region.
The TATA box region of the 35S promoter was PCR amplified from pBI121 using oligonucleotides complementary to the -48 region of the promoter (oligonucleotide Δ35Sβg/II; GGC AGA TCT TCG CAA GAC CCT TCC TCT ATA TAA GG; Seq. ID No. 12) and the downstream 0-glucuronidase gene (oligonucleotide GUSSiαBI; CAC ACA AAC GGT GAT ACG TA; Seq. ID No. 13). The PCR product was cut with restriction endonucleases BgUl and BamHI and ligated to itømHI cut pTr+ . The resulting recombinant plasmid (pTr+Δ35S) contained a minimal (naive) promoter positioned adjacent to the T-DNA right border.
Insertion of 35S promoter driven mGAL4-VP 16 gene.
Derivatives of the GALA with unmodified codon usage were inserted into the pTr+Δ35S plasmid in unsuccessful trial experiments, and one of these constructions (the insertion of a truncated GALA gene derived from pMA236; Ma et al, 1988 Nature 334, 631-633) had resulted in the insertion of a unique Hindlll site immediately adjacent to the BamHI site in pTR+Δ35S. This plasmid, pTr+ΔGALA, was digested with restriction endonucleases Hindlll and EcoRI, and ligated with the H./iDIII-EcσRI fragment from pBIN 35S-mGAL4- VP 16, to introduce the 35S-driven mGAL4-VP 16 gene. The Agrobacterium sequences from this plasmid (pTr+35S- G lL4-VP 16) were then recloned into a binary plant transformation vector which contained a GALA-responsive marker gene (see below), for testing in planta.
Construction of a synthetic GALA-responsive promoter.
A HinDlϊl-Xbal restriction endonuclease fragment containing five optimised binding sites for GALA was excised from the plasmid pUAST (Brand & Perrimon, 1993 Development, 118. 401-415), and ligated into HinOlll-Xbal cut pBHOl (Jefeerson et al. , 1987 ΕMBO J. 6, 3901-3907) upstream of the GUS gene (to make pBINΔUAS-GUS). A sequence corresponding to the -90 region of the 35S promoter was PCR amplified using oligonucleotides DΕLAS1 (GAA CTC TAG AAG CTA CTC CAC GTC CAT AAG GGA CAC ATC ACA ATC CCA CTA TCC TTC GC; Seq. ID No. 14) and GUSSnαBI (see above). The product was Xbal-BamKl cut and cloned into similarly cut pBIN ΔUAS- GUS. The resulting plasmid (pBIN UAS(-90-ASl)GUS) contains a synthetic GALA promoter upsteam of the 0-glucuronidase (GUS) coding sequence. The GUS gene was then replaced with that of the green fluorescent protein (GFP).
GALA-responsive mgfp5-ER gene.
We have extensively mutated the green fluorescent protein gene for optimised expression in plants. The optimised gene is called mgfp5-ΕR (Siemering et al, Current Biology 6: 1653-1663, 1996; WO96/27675). The mgfp5-ER gene has been cloned into the plant transformation vector pBI121. and we have excised a BamHl-Sacl fragment, which contains the coding sequence, and have inserted this into BamHl-Sacl cut pBIN UAS(-90-ASl)GUS to replace the GUS gene. This plasmid (pBIN UAS(-90-ASl)mg/p5-ER) was cut with Sacll, and ligated with the SαcII fragment containing the modified T-DNA right border and mGAL4-VP16 gene from pTτ+35S-mGAL4-VP16, to give pBIN 35S-GAL4-VP16+ \ AS-mgjp5-ER (abbreviated to pBIN35S-GAL-GFP).
Testing of the pBIN35S-GAL-GFP vector.
The pBIN 35S-GAL-GFP plasmid was introduced into Agrobacterium tumefaciens strain LBA4044 (Jefferson et al , ΕMBO J. 6:3901-3907, 1987) by electroporation. followed by selection on kanamycin-containing plates. The Agrobacterium strain was used to transform Arabidopsis using the technique described below. Plants were scored for the GAL4- dependent induction of GFP fluorescence after transformation.
Construction of GAL-GFP enhancer trap vector
The pTR+35S-mG/H4- VPi6 plasmid was treated with BamHI (to excise the 35S promoter sequences) and religated using T4 DNA ligase. This plasmid pTR+mGAL4-VP16) contains the modified GAL4-VP16 positioned with a minimal promoter adjacent to the T- DNA right border. The T-DNA sequences were then excised by digestion with SαcII, and ligated with similarly cut pBIN UAS(-90-ASl)/τϊg#?5-E/?. This produced pBIN GAL-GFP, which contains the highly active mGAL4-VP16 transcription activator, responsive to adjacent enhancer elements, and a GALA-dependent GFP gene. GFP fluorescence is produced in response to GAL4-VP16 activation.
Enhancer trap screen.
The enhancer trap vector pBIN GAL-GFP was introduced into Agrobacterium tumefaciens (see details below) LBA4044, and has been used to generate over 7,500 transformed Arabidopsis seedlings. Transgenic seedlings have been screened directly for GALA- mediated GFP expression, and seeds were collected from expressing plants. We have a library of over 250 Arabidopsis lines which show stable inheritable patterns of GALA- mediated GFP expression in the root.
Transactivation.
To demonstrate GAL4-mediated transactivation of a foreign gene we have generated transgenic Arabidopsis that contain the T-DNA sequences from pBIN UAS(-90-AS 1)GUS). In the absence of GAL4-VP16, these plants do not express the GUS gene. However, when genetically crossed with lines expressing the mGAL4-VP16 gene, the GUS gene is activated in a pattern of expression which accurately reflects that of the mGAL4-VP16 gene from the donor parent (see Example 3 below).
Example 3
A stable transformed line (J2302) of Arabidopsis thaliana, which formed part of the library described above, expressed modified GFP (under the influence of the mGALA- VP16 activator) in the cells of the extreme root tip (see Figures 4a and 4b).
Figure 4a is a low power micrograph showing GFP-mediated epifluorescence (400nm excitation) at the root tip. Figure 4b is a higher magnification confocal micrograph (488nm excitation) showing the area of GFP-mediated fluorescence in greater detail.
The line J2302 was crossed (using standard techniques) with another Arabidopsis line which comprised a stable, silently-maintained GUS reporter gene operably linked to a GALA-responsive UAS. The product of the cross, as expected, proceeded to express GUS, under the influence of the GALA-VP16 transcriptional activator, in the same pattern as the GFP reporter gene in J2302 (i.e. at the extreme root tip). Suitably stained samples, imaged by brightfield microscopy, are shown in Figures 4c and 4d, and demonstrate GUS reporter gene activity (darkest staining) at the root tip.
This illustrates that the modified GALA DNA-binding domain sequence can
(i) successfully be used in the construction of enhancer trap vectors;
(ii) express genes of interest (as exemplified by GUS) in a predictable pattern; and
(iii) co-ordinate the simultaneous expression of a plurality of genes of interest (as exemplified by GFP and GUS).
Example 4
Transformation of Arabidopsis thaliana.
The methods employed are based on those originally disclosed by Valvekens et al. 1988. Proc. Natl. Acad Sci. 85, 5536-5540).
Media
Unless otherwise stated all procedures were carried out aseptically using sterile solutions and equipment. All media are used in standard plastic disposable petri dishes or, for later stages, Magenta GA 7 pots (Magenta Corp. , USA). Hormones are dissolved in dimethyl sulfoxide (DMSO) as xlOOO stocks. Hormones and antibiotics are added after autoclaving and cooling of the media to 65 °C.
1. Germination medium (GM) comprised: lx Murashige and Skoog salt mixture; 1 % sucrose; 100 mg/1 inositol; 1.0 rag/1 thiamine; 0.5 mg/1 pyridoxine; 0.5 mg/1 nicotinic acid; 0.5 g/l 2-(N-morpholino)ethanesulfonic acid (MES); (adjust to pH 5.7 with IM KOH); and 0.8% Difco Bacto agar (for solid GM medium).
la. GM K50
As GM, but supplemented with: 50 mg/1 kanamycin (Sigma)
2. Callus-inducing medium (CIM) comprised: lx Gamborg's B5 medium; 2% glucose; 0.5 g/l MES (pH 5.7, adjusted with IN KOH); 0.5 mg/1 2,4-D (Sigma); 0.05 mg/1 kinetin (Sigma); and 0.8 % agar (for solid CIM medium).
3. Shoot-inducing medium with Vancomycin (SIM V750 K50) comprised: Gamborg's B5 medium; 2% glucose; 0.5 g/l MES (pH 5.7); 0.8% agar; 5 mg/1 N6-(2- isopentenyI)adenine (2ip); 0.15 mg/1 indole-3 -acetic acid (IAA); 750 mg/1 vancomycin; and 50 mg/1 kanamycin.
3a. SIM V500 K50 As SIM, but supplemented with: 500 mg/1 vancomycin; and 50 mg/1 kanamycin.
4. Root-inducing medium (RIM) comprised: Gamborg's B5 medium; 2% glucose: 0.5 g/l MES (pH 5.7); 0.8% agar; 12.5 mg/1 indole butyric acid (IBA); and 50 mg/1 cefotaxime.
Growth of plants
(i) Place seeds into a 15 ml polypropylene centrifuge tube.
(ii) Add ethanol for 2 min. Remove ethanol with pipette.
(iii) Replace with 5% commercial bleach ( — 0.25% available chlorine) containing one drop of NP40 per 50 ml. Leave for 15 min, shaking regularly.
(iv) Wash seeds in sterile, distilled water for at least three times.
(v) After last wash, add the sterile seeds to 100ml of GM in a conical flask. Grow with shaking for 2-4 weeks in a culture room at 20-25°C.
Agrobacterium-mediated transformation.
1. Day One
(i) Using a scalpel, cut-off all the green (upper) parts of the plantlets to leave only the root systems.
(ii) Lay out the roots on plates containing solid CIM. Gently press down on each bunch of roots to ensure that they are in contact with the surface of the agar.
(iii) Incubate for 3 d in growth room (22 °C, continual light).
2. Day Four
(i) After ensuring that there is no visible sign of contamination, collect the callus-induced roots in an empty petri dish, (ii) Cut the roots into 0.5 cm explants.
(iii) Add 3-5 ml of Agrobacterium culture which has been grown overnight at 28oC in Luria broth, and washed by centrifugation. Swirl with blunt-nosed forceps. Leave to co- cultivate for 2min.
(iv) Blot the roots dry on double-thick sterile filter-paper ( Whatman No.1) in a petri dish, (v) Place the explants onto solidified CIM medium in a petri dish, and gently press them onto the surface to ensure contact with d e medium. (vi) Incubate plates in the growth room for 2 d to allow co-cultivation of Agrobacterium.
3. Day Six
(i) Transfer the explants to a petri dish in 20-25 ml of water.
Agitate with blunt-nosed forceps to wash off the agrobacteria. The bathing medium should become somewhat turbid. Transfer the root pieces to a sieve and repeat the washing. Then lift the sieve out of buffer and drain. Press down the explants down onto the mesh to remove as much buffer and agrobacteria as possible. Push the semi-dried explants together into a mass.
(Custom-made, autoclavable and re-usable, sieves are used to hold the explants during
Agrobacterium infections and washings of root explants. These sieves are made from 100 ml plastic three-cornered beakers and 100 um nylon mesh. The top 3-4 cm is cut off the beaker and the mesh held in place across the bottom of this piece by pushing a ring 2 cm high cut from just above the base of the beaker into the lower portion of the top part.
The two pieces are sealed together by pushing a hot metal rod through them in several places.)
(ii) Blot small bundles of root material on double-thick sterile filter-paper in a petri dish until dry and transfer to solidified SIM V750 K50 medium, taking care that root explants are in close contact with the medium.
(iii) Incubate in growth room.
Regeneration
(i) In growth room, tiny green kanamycin resistant calli appear on the yellowish root- explants after 3 weeks.
(ii) Every 2 weeks, transfer explants to fresh SIM V750 K50. Shoots (often initially vitreous) intermittently appear from the green calli over the next several weeks.
(iii) Transfer these shoots to RIM, where roots will develop over a period of 2 to 3 weeks
(iv) After the formation of roots, transfer the plantlets to GM in vented Magenta GA7 pots or directly to soil. Ensure that the humidity is kept low to ensure good seed set.
(v) Harvest seed pods when tJney turn yellowish-brown and are therefore mature.
Germination and screening of FI progeny. To test for transformation, FI seedlings are germinated on GM K50. (i) Put seeds on GM K50 (surface sterilise the seeds if necessary), (ii) Put petri dishes in the dark at 4oC (refrigerator) for 3-5 d. to break seed dormancy. This is not necessary if seeds were stored for more than a month, (iii) Incubate petri dishes in growth room for 2 weeks. Sensitive seedlings form neither roots nor leaves, and have white cotyledons. Transformed seedlings are phenotypically normal.
(iv) Transgenic callus and shoots were screened for GFP expression using a inverted fluorescence microscope (Leitz DM-IL) fitted with a filter set (Leitz-D excitation BP355- 425, dichroic 455, emission LP460 ) suitable for the main 395nm excitation and 509nm emission peaks of GFP. The use of a 7mm threaded extension tube with a 4x objective (EF 4/0.12) gave a greater working distance, and has allowed the convenient direct observation of tissue within inverted sealed petri dishes. A 100 Watt long wavelength hand-held UV lamp (UV Products, BIOOAP) was also used for routine monitoring of transgenic shoots and plants. Transgenic Arabidopsis FI seedlings were grown in sterile agar culture for 5 days, and were mounted in water under glass coverslips for microscopy. The specimens were examined using a BioRad MRC-600 laser-scanning confocal microscope equipped with a krypton-argon laser and filter sets suitable for the detection of fluorescein and texas red dyes (BioRad K1/K2), and a Nikon 60x PlanApo N.A. 1.2 water immersion objective.
SEQUENCE L ISTING
( 1 ) GENERAL INFORMATION :
(l) APPLICANT:
(A) NAME: Medical Research Council
(B) STREET. 20 Park Crescent
(C) CITY: London
(E) COUNTRY: United Kingdom
(F) POSTAL CODE (ZIP): WIN 4AL
(G) TELEPHONE: (0171) 6365422 (H) TELEFAX: (0171) 323 1331
(ii) TITLE OF INVENTION- Improvements in or Relating to Gene Expression
(in) NUMBER OF SEQUENCES: 15
(iv) COMPUTER READABLE FORM:
(A) MEDIUM TYPE: Floppy disk
(B) COMPUTER: IBM PC compatible
(C) OPERATING SYSTEM: PC-DOS/MS-DOS
(D) SOFTWARE: Patentin Release #1.0. Version #1.30 (EPO)
(2) INFORMATION FOR SEQ ID NO: 1:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 701 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ix) FEATURE:
(A) NAME/KEY: CDS
(B) LOCATION: 17..694
(xi) SEQUFNCE DESCRIPTION: SEQ ID NO: 1:
AAGCTTGGAT CCAACA ATG AAG CTC CTG TCC TCC ATC GAG CAG GCC TGC 49
Met Lys Leu Leu Ser Ser He Glu Gin Ala Cys 1 5 10
GAC ATC TGC CGC CTC AAG AAG CTC AAG TGC TCC AAG GAG AAG CCG AAG 97 Asp lie Cys Arg Leu Lys Lys Leu Lys Cys Ser Lys Glu Lys Pro Lys 15 20 25
TGC GCC AAG TGT CTG AAG AAC AAC TGG GAG TGT CGC TAC TCT CCC AAA 145 Cys Ala Lys Cys Leu Lys Asn Asn Trp Glu Cys Arg Tyr Ser Pro Lys 30 35 40
ACC AAG CGC TCC CCG CTG ACC CGC GCC CAC CTC ACC GAA GTG GAG TCC 193 Thr Lys Arg Ser Pro Leu Thr Arg Ala His Leu Thr Glu Val Glu Ser 45 50 55 CGC CTG GAG CGC CTG GAG CAG CTC πc CTC CTG ATC πc CCT CGA GAG 241 Arg Leu Glu Arg Leu Glu Gin Leu Phe Leu Leu He Phe Pro Arg Glu 60 65 70 75
GAC CTC GAC ATG ATC CTG AAA ATG GAC TCC CTC CAG GAC ATC AAA GCC 289 Asp Leu Asp Met He Leu Lys Met Asp Ser Leu Gin Asp He Lys Ala 80 85 90
CTG CTC ACC GGC CTC πC GTC CAG GAC AAC GTG AAC AAA GAC GCC GTC 337 Leu Leu Thr Gly Leu Phe Val Gin Asp Asn Val Asn Lys Asp Ala Val 95 100 105
ACC GAC CGC CTG GCC TCC GTG GAG ACC GAC ATG CCC CTC ACC CTG CGC 385 Thr Asp Arg Leu Ala Ser Val Glu Thr Asp Met Pro Leu Thr Leu Arg 110 115 120
CAG CAC CGC ATC AGC GCG ACC TCC TCC TCG GAG GAG AGC AGC AAC AAG 433 Gin His Arg He Ser Ala Thr Ser Ser Ser Glu Glu Ser Ser Asn Lys 125 130 135
GGC CAG CGC CAG πG ACC GTC TCG ACG GCC CCC CCG ACC GAC GTC AGC 481 Gly Gin Arg Gin Leu Thr Val Ser Thr Ala Pro Pro Thr Asp Val Ser 140 145 150 155
CTG GGG GAC GAG CTC CAC πA GAC GGC GAG GAC GTG GCG ATG GCG CAT 529 Leu Gly Asp Glu Leu His Leu Asp Gly Glu Asp Val Ala Met Ala His 160 165 170
GCC GAC GCG CTA GAC GAT πC GAT CTG GAC ATG πG GGG GAC GGG GAT 577 Ala Asp Ala Leu Asp Asp Phe Asp Leu Asp Met Leu Gly Asp Gly Asp 175 180 185
TCC CCG GGG CCG GGA Tπ ACC CCC CAC GAC TCC GCC CCC TAC GGC GCT 625 Ser Pro Gly Pro Gly Phe Thr Pro His Asp Ser Ala Pro Tyr Gly Ala 190 195 200
CTG GAT ATG GCC GAC πc GAG πT GAG CAG ATG TTT ACC GAT GCC CTT 673
Leu Asp Met Ala Asp Phe Glu Phe Glu Gin Met Phe Thr Asp Ala Leu 205 210 215
GGA Aπ GAC GAG TAC GGT GGG TAGATCT 701
Gly He Asp Glu Tyr Gly Gly 220 225
(2) INFORMATION FOR SEQ ID NO: 2:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 226 ammo acids
(B) TYPE: amino acid (D) TOPOLOGY: linear
(ii) MOLECULE TYPE: protein
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2: Met Lys Leu Leu Ser Ser He Glu Gin Ala Cys Asp He Cys Arg Leu 1 5 10 15
Lys Lys Leu Lys Cys Ser Lys Glu Lys Pro Lys Cys Ala Lys Cys Leu 20 25 30
Lys Asn Asn Trp Glu Cys Arg Tyr Ser Pro Lys Thr Lys Arg Ser Pro 35 40 45
Leu Thr Arg Ala His Leu Thr Glu Val Glu Ser Arg Leu Glu Arg Leu 50 55 60
Glu Gin Leu Phe Leu Leu He Phe Pro Arg Glu Asp Leu Asp Met He 65 70 75 80
Leu Lys Met Asp Ser Leu Gin Asp He Lys Ala Leu Leu Thr Gly Leu 85 90 95
Phe Val Gin Asp Asn Val Asn Lys Asp Ala Val Thr Asp Arg Leu Ala 100 105 110
Ser Val Glu Thr Asp Met Pro Leu Thr Leu Arg Gin His Arg He Ser 115 120 125
Ala Thr Ser Ser Ser Glu Glu Ser Ser Asn Lys Gly Gin Arg Gin Leu 130 135 140
Thr Val Ser Thr Ala Pro Pro Thr Asp Val Ser Leu Gly Asp Glu Leu 145 150 155 160
His Leu Asp Glv Glu Asp Val Ala Met Ala His Ala Asp Ala Leu Asp 165 170 175
Asp Phe Asp Leu Asp Met Leu Gly Asp Gly Asp Ser Pro Gly Pro Gly 180 185 190
Phe Thr Pro His Asp Ser Ala Pro Tyr Gly Ala Leu Asp Met Ala Asp 195 200 205
Phe Glu Phe Glu Gin Met Phe Thr Asp Ala Leu Gly He Asp Glu Tyr 210 215 220
Gly Gly 225
(2) INFORMATION FOR SEQ ID NO: 3:
(l) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 28 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION. SEQ ID NO. 3 GGCAACAATG AAGCTACTGT CπCTATC 28
(2) INFORMATION FOR SEQ ID NO: 4
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 31 base pairs
(B) TYPE, nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4: GGCAGATCTA CCCACCGTAC TCGTCAAπC C 31
(2) INFORMATION FOR SEQ ID NO: 5:
(l) SEQUENCE CHARACTERISTICS.
(A) LENGTH: 109 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY, linear
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5- GGCAAGCπG GATCCAACAA TGAAGCTCCT GTCCTCCATC GAGCAGGCCT GCGACATCTG 60 CCGCCTCAAG AAGCTCAAGT GCTCCAAGGA GAAGCCGAAG TGCGCCAAG 109
(2) INFORMATION FOR SEQ ID NO. 6.
(l) SEQUENCE CHARACTERISTICS.
(A) LENGTH. 108 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY linear
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6. TCCTCTCGAG GGAAGATCAG GAGGAAGAGC TGCTCCAGGC GCTCCAGGCG GGACTCCACT 60 TCGGTGAGGT GGGCGCGGGT CAGCGGGGAG CGCπGGπT TGGGAGAG 108
(2) INFORMATION FOR SEQ ID NO: 7:
(ι) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 81 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY- linear (xi) SEQUENCE DESCRIPTION. SEQ ID NO: 7 πCCCTCGAG AGGACCTCGA CATGATCCTG AAAATGGACT CCCTCCAGGA CATCAAAGCC 60 CTGCTCACCG GCCTCπCGT C 81
(2) INFORMATION FOR SEQ ID NO: 8:
(ι) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 89 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8: GGGTGAGGGG CATGTCGGTC TCCACGGAGG CCAGGCGGTC GGTGACGGCG TCTπGπCA 60 CGπGTCCTG GACGAAGAGG CCGGTGAGC 89
(2) INFORMATION FOR SEQ ID NO: 9:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 80 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9: GGAGACCGAC ATGCCCCTCA CCCTGCGCCA GCACCGCATC AGCGCGACCT CCTCCTCGGA 60 GGAGAGCAGC AACAAGGGCC 80
(2) INFORMATION FOR SEQ ID NO: 10:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 83 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10: AGTGGAGCTC GTCCCCCAGG CTGACGTCGG TCGGGGGGGC CGTCGAGACG GTCAACTGGC 60 GCTGGCCCπ GπGCTGCTC TCC 83
(2) INFORMATION FOR SEQ ID NO: 11:
(l) SEQUENCE CHARACTERISTICS: (A) LENGTH: 56 base pairs (B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11: ATATCCTGTC AAACACTGGA TCCGAGCTCC AAπCATAGT πAAACTGAA GGCGGG 56
(2) INFORMATION FOR SEQ ID NO: 12:
(l) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 35 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12. GGCAGATCπ CGCAAGACCC πCCTCTATA TAAGG 35
(2) INFORMATION FOR SEQ ID NO: 13:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13: CACACAAACG GTGATACGTA 20
(2) INFORMATION FOR SEQ ID NO: 14:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 59 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14: GAACTCTAGA AGCTACTCCA CGTCCATAAG GGACACATCA CAATCCCACT ATCCπCGC 59
(2) INFORMATION FOR SEQ ID NO: 15:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 91 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS single
(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15: TAGGTπACC CGCCAATATA TCCTGTCAAA CACTGGATCT TCGCAAGACC CπCCTCTAT 60 ATAAGGAAGT TCATπCAπ TGGAGAGGAC A 91

Claims

1. A nucleic acid sequence, expressible in a plant cell, encoding at least an effective portion of a GAL4 DNA-binding domain, the sequence having a % A/T base content substantially reduced relative to the wild-type yeast sequence.
2. A sequence according to claim 1 , further comprising a structural and/or regulatory sequence in operable linkage to the sequence encoding the effective portion of the GAL4 DNA-binding domain.
3. A sequence according to claim 1 or 2, wherein the nucleic acid encodes a peptide or polypeptide. having transcriptional activation activity, in operable linkage with the sequence encoding the effective portion of the GAL4 DNA-binding domain.
4. A sequence according to any one of claims 1, 2 or 3, wherein the sequence encodes a peptide or polypeptide, having transcriptional activation activity in a plant cell, which is a modified portion of GAL4, VPI 6, GCN4 or a designed sequence which does not naturally occur.
5. A nucleic acid construct comprising a sequence in accordance with any one of claims 1-4.
6. A construct according to claim 5, capable of inserting a sequence according to any one of claims 1-4 into the genome of a plant host cell.
7. A construct according to claim 5 or 6, further comprising a reporter gene in operable linkage with a GAL4-responsive upstream activation sequence (UAS).
8. A construct according to any one of claims 5, 6 or 7, comprising a sequence encoding GUS or green fluorescent protein (GFP) suitable for expression in a plant cell.
9. A construct according to any one of claims 5-8, comprising T-DNA borders or Ds elements.
10. A construct according to any one of claims 5-9, wherein expression of the sequence according to claims 1-4 is under the control of an enhancer-dependent plant promoter.
11. A construct according to any one of claims 5-10, further comprising a selectable marker gene.
12. A plant or part thereof comprising a nucleic acid sequence according to any one of claims 1-4, or transformed with a construct according to any one of claims 5-11.
13. A plant or part thereof according to claim 12, wherein the sequence is stably maintained in the plant genome.
14. A library comprising a plurality of plants or parts thereof, each plant or part thereof comprising a stably integrated nucleic acid sequence according to claim 3 or claim 4, which sequence causes the expression of a reporter gene in a known temporal and/or spatial pattern.
15. A library according to claim 14, made by the introduction of a nucleic acid construct according to any one of claims 6-11 into a plurality of plants or parts thereof.
16. A library according to claim 14 or 15, comprising a plurality of Arabidopsis thaliana plants.
17. A method of expressing a gene of interest in a known pattern in a plant or part thereof, the method comprising: introducing the gene of interest into the plant or part thereof, said gene of interest having a GAL4- responsive upstream activation sequence (UAS). characterised in that said plant or part thereof comprises a reporter gene expressed in a known pattern under the influence of a transcriptional activator comprising an effective portion of a GAL4 DNA-binding domain encoded by a sequence according to any one of claims 1-4, such that binding of the transcriptional activator to the UAS causes transcriptional activation of the gene of interest.
18. A method according to claim 17, wherein the gene of interest is introduced into one or more plants or parts thereof from a library according to any one of claims 14, 15 or 16.
19. A method for co-ordinating the expression of a plurality of genes of interest in a plant or part thereof, each of the genes of interest being functionally associated with a GAL4- responsive UAS, characterised in that the plant or part thereof comprises a sequence according to any one of claims 1-4 and is capable of expressing a transcriptional activator comprising an effective portion of a GAL4 DNA-binding domain, such that binding of the transcriptional activator to the UAS causes simultaneous transcriptional activation of all of the genes of interest.
20. A method according to claim 19, wherein at least some of the genes of interest are arranged polycistronically and associated with a single GAL4-responsive UAS.
21. A method according to claim 19, wherein genes of interest are functionally associated with respective GAL4-responsive UASs.
PCT/GB1997/000406 1996-02-14 1997-02-14 Improvements in or relating to gene expression WO1997030164A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU18014/97A AU714791B2 (en) 1996-02-14 1997-02-14 Improvements in or relating to gene expression
EP97903457A EP0880593A1 (en) 1996-02-14 1997-02-14 Improvements in or relating to gene expression
NZ331220A NZ331220A (en) 1996-02-14 1997-02-14 Gene expression comprising manipulation of a GAL4 DNA-binding domain to produce an A/T content of 45% or less
JP09529099A JP2001501805A (en) 1996-02-14 1997-02-14 Improvements in or related to gene expression
US09/133,321 US6255558B1 (en) 1996-02-14 1998-08-13 Gene expression

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB9603069.7A GB9603069D0 (en) 1996-02-14 1996-02-14 Improvements in or relating to gene expression
GB9603069.7 1996-02-14

Publications (1)

Publication Number Publication Date
WO1997030164A1 true WO1997030164A1 (en) 1997-08-21

Family

ID=10788721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB1997/000406 WO1997030164A1 (en) 1996-02-14 1997-02-14 Improvements in or relating to gene expression

Country Status (9)

Country Link
EP (1) EP0880593A1 (en)
JP (1) JP2001501805A (en)
CN (1) CN1216067A (en)
AU (1) AU714791B2 (en)
CA (1) CA2246414A1 (en)
GB (1) GB9603069D0 (en)
NZ (1) NZ331220A (en)
WO (1) WO1997030164A1 (en)
ZA (1) ZA971272B (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998059062A1 (en) * 1997-06-24 1998-12-30 E.I. Du Pont De Nemours And Company Specific gene activation by chimeric gal4 transcription factors in stable transgenic plants
WO1999001549A1 (en) * 1997-07-03 1999-01-14 Basf Aktiengesellschaft Transcriptional activators with graded transactivation potential
WO1999027119A1 (en) * 1997-11-26 1999-06-03 Novartis Ag Method and compositions useful for the activation of silent transgenes
WO1999043848A1 (en) * 1998-02-25 1999-09-02 The University Of British Columbia Protein interaction and transcription factor trap
WO2000028054A2 (en) * 1998-11-06 2000-05-18 E.I. Du Pont De Nemours And Company Plant proteins that interact with nuclear matrix proteins and function as transcriptional activators
WO2001021781A2 (en) * 1999-09-20 2001-03-29 Center For The Application Of Molecular Biology To International Agriculture Methods for site-associated modification of gene activity and nucleic acid structure
WO2003025172A2 (en) * 2001-09-21 2003-03-27 Cambridge University Technical Services Limited Gene expression construct
WO2003035882A2 (en) * 2001-10-26 2003-05-01 Syngenta Limited Novel expression system
US6808926B1 (en) 1999-08-27 2004-10-26 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Agriculture And Agri-Food Repressing gene expression in plants
US6977293B1 (en) 2000-11-03 2005-12-20 Ceres, Inc. Chimeric polypeptides
EP2161340A2 (en) 1999-12-16 2010-03-10 CropDesign N.V. Optimized T-DNA transfer and vectors therefor
WO2011149843A1 (en) 2010-05-24 2011-12-01 Mendel Biotechnology Inc. Novel reporter constructs for compound screening
WO2013151929A1 (en) 2012-04-05 2013-10-10 Mendel Biotechnology, Inc. Herbicidal compound screening
US9101100B1 (en) 2014-04-30 2015-08-11 Ceres, Inc. Methods and materials for high throughput testing of transgene combinations
US10677785B2 (en) 2010-05-24 2020-06-09 Plant Response, Inc. Reporter constructs for compound screening

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2205888A1 (en) 1997-07-11 1999-01-11 John J. Priatel Complementation trap
CN109957842B (en) * 2019-02-11 2022-06-24 王纪武 Method for constructing dual-system expression plasmid library by modular design

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990001551A1 (en) * 1988-07-29 1990-02-22 Washington University School Of Medicine Producing commercially valuable polypeptides with genetically transformed endosperm tissue
EP0359472A2 (en) * 1988-09-09 1990-03-21 Mycogen Plant Science, Inc. Synthetic insecticidal crystal protein gene
EP0385962A1 (en) * 1989-02-24 1990-09-05 Monsanto Company Synthetic plant genes and method for preparation
EP0589841A2 (en) * 1992-09-24 1994-03-30 Ciba-Geigy Ag Methods for the production of hybrid seed
WO1995033055A2 (en) * 1994-06-01 1995-12-07 Calgene Inc. Wax esters in transformed plants
CA2150039A1 (en) * 1995-02-08 1996-08-09 Malcolm Bennett Control of genes in transgenic plants

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990001551A1 (en) * 1988-07-29 1990-02-22 Washington University School Of Medicine Producing commercially valuable polypeptides with genetically transformed endosperm tissue
EP0359472A2 (en) * 1988-09-09 1990-03-21 Mycogen Plant Science, Inc. Synthetic insecticidal crystal protein gene
EP0385962A1 (en) * 1989-02-24 1990-09-05 Monsanto Company Synthetic plant genes and method for preparation
EP0589841A2 (en) * 1992-09-24 1994-03-30 Ciba-Geigy Ag Methods for the production of hybrid seed
WO1995033055A2 (en) * 1994-06-01 1995-12-07 Calgene Inc. Wax esters in transformed plants
CA2150039A1 (en) * 1995-02-08 1996-08-09 Malcolm Bennett Control of genes in transgenic plants

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BRAND A. AND PERRIMON N.: "Targeted gene expression as a means of altering cell fates and generating dominant phenotypes", DEVELOPMENT, vol. 118, no. 2, 1993, pages 401 - 415, XP000674470 *
GREIG S. AND AKAM M.: "Homeotic genes autonomously specify one aspect of pattern in the Drosophila mesoderm", NATURE, vol. 362, 15 April 1993 (1993-04-15), pages 630 - 632, XP002032417 *
MA J ET AL: "YEAST ACTIVATORS STIMULATE PLANT GENE EXPRESSION", NATURE, vol. 334, 18 August 1988 (1988-08-18), pages 631 - 633, XP000645136 *
REICHEL C. ET AL.: "Inefficient expression of the DNA-binding domain of Gal-4 in transgenic plants", PLANT CELL REPORTS, vol. 14, 1995, pages 773 - 776, XP000650425 *
SUNDARESAN V. ET AL.: "Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements", GENES AND DEVELOPMENT, vol. 9, no. 14, 15 July 1995 (1995-07-15), pages 1797 - 1810, XP000674520 *

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5968793A (en) * 1997-06-24 1999-10-19 E. I. Du Pont De Nemours And Company Specific gene activation by chimeric Gal4 transcription factors in stable transgenic plants
WO1998059062A1 (en) * 1997-06-24 1998-12-30 E.I. Du Pont De Nemours And Company Specific gene activation by chimeric gal4 transcription factors in stable transgenic plants
US6271341B1 (en) 1997-07-03 2001-08-07 Basf Aktiengesellschaft Transcriptional activators with graded transactivation potential
WO1999001549A1 (en) * 1997-07-03 1999-01-14 Basf Aktiengesellschaft Transcriptional activators with graded transactivation potential
WO1999027119A1 (en) * 1997-11-26 1999-06-03 Novartis Ag Method and compositions useful for the activation of silent transgenes
AU745867B2 (en) * 1997-11-26 2002-04-11 Syngenta Participations Ag Method and compositions useful for the activation of silent transgenes
WO1999043848A1 (en) * 1998-02-25 1999-09-02 The University Of British Columbia Protein interaction and transcription factor trap
WO2000028054A3 (en) * 1998-11-06 2000-10-05 Du Pont Plant proteins that interact with nuclear matrix proteins and function as transcriptional activators
US6482646B1 (en) 1998-11-06 2002-11-19 E. I. Du Pont De Nemours And Company Plant proteins that interact with nuclear matrix proteins and function as transcriptional activators
WO2000028054A2 (en) * 1998-11-06 2000-05-18 E.I. Du Pont De Nemours And Company Plant proteins that interact with nuclear matrix proteins and function as transcriptional activators
US6808926B1 (en) 1999-08-27 2004-10-26 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Agriculture And Agri-Food Repressing gene expression in plants
WO2001021781A2 (en) * 1999-09-20 2001-03-29 Center For The Application Of Molecular Biology To International Agriculture Methods for site-associated modification of gene activity and nucleic acid structure
WO2001021781A3 (en) * 1999-09-20 2001-11-22 Ct For The Applic Of Molecular Methods for site-associated modification of gene activity and nucleic acid structure
EP2161340A2 (en) 1999-12-16 2010-03-10 CropDesign N.V. Optimized T-DNA transfer and vectors therefor
US6977293B1 (en) 2000-11-03 2005-12-20 Ceres, Inc. Chimeric polypeptides
EP1728869A3 (en) * 2001-09-21 2007-02-14 Cambridge Enterprise Limited Gene expression construct of hap1 adapted for plant cells
WO2003025172A3 (en) * 2001-09-21 2004-07-29 Univ Cambridge Tech Gene expression construct
AU2002324236B2 (en) * 2001-09-21 2006-11-09 Cambridge University Technical Services Limited Gene expression construct
EP1728869A2 (en) * 2001-09-21 2006-12-06 Cambridge University Technical Services Limited Gene expression construct of hap1 adapted for plant cells
WO2003025172A2 (en) * 2001-09-21 2003-03-27 Cambridge University Technical Services Limited Gene expression construct
US8034915B2 (en) 2001-09-21 2011-10-11 Cambridge University Technical Services Limited Gene expression construct
WO2003035882A2 (en) * 2001-10-26 2003-05-01 Syngenta Limited Novel expression system
WO2003035882A3 (en) * 2001-10-26 2003-10-30 Syngenta Ltd Novel expression system
WO2011149843A1 (en) 2010-05-24 2011-12-01 Mendel Biotechnology Inc. Novel reporter constructs for compound screening
US9322070B2 (en) 2010-05-24 2016-04-26 Koch Biological Solutions, Llc Reporter constructs for compound screening
US10677785B2 (en) 2010-05-24 2020-06-09 Plant Response, Inc. Reporter constructs for compound screening
WO2013151929A1 (en) 2012-04-05 2013-10-10 Mendel Biotechnology, Inc. Herbicidal compound screening
US9101100B1 (en) 2014-04-30 2015-08-11 Ceres, Inc. Methods and materials for high throughput testing of transgene combinations

Also Published As

Publication number Publication date
CA2246414A1 (en) 1997-08-21
CN1216067A (en) 1999-05-05
AU714791B2 (en) 2000-01-13
JP2001501805A (en) 2001-02-13
AU1801497A (en) 1997-09-02
NZ331220A (en) 2000-02-28
ZA971272B (en) 1997-08-27
GB9603069D0 (en) 1996-04-10
EP0880593A1 (en) 1998-12-02

Similar Documents

Publication Publication Date Title
AU714791B2 (en) Improvements in or relating to gene expression
JP4424756B2 (en) Transgenic plant using tissue-specific promoter and method for producing the same
US5187267A (en) Plant proteins, promoters, coding sequences and use
CA2301204C (en) Sugarcane bacilliform virus promoter
Johnson et al. Spatial control of transgene expression in rice (Oryza sativa L.) using the GAL4 enhancer trapping system
Sieburth et al. Non-autonomy of AGAMOUS function in flower development: use of a Cre/loxP method for mosaic analysis in Arabidopsis
US6255558B1 (en) Gene expression
US6391639B1 (en) Plant and viral promoters
Chen et al. Gene transfer via pollen‐tube pathway for anti‐fusarium wilt in watermelon
US6489462B1 (en) Sugarcane bacilliform virus promoter
CN110066327B (en) Application of protein TaWRKY13 in regulation and control of plant stress resistance
AU671272B2 (en) Regulation of plant genes
Lusardi et al. An approach towards genetically engineered cell fate mapping in maize using the Lc gene as a visible marker: transactivation capacity of Lc vectors in differentiated maize cells and microinjection of Lc vectors into somatic embryos and shoot apical meristems
EP1461438B1 (en) Gene expression construct of hap1 adapted for plant cells
AU2002324236A1 (en) Gene expression construct
WO1998005789A2 (en) Controlled gene expression in plants
CN108949782B (en) Gene for controlling colors of sheath and leaf pillow of millet and application thereof in breeding
KR100740694B1 (en) Plastid transformation system to prevent the intramolecular recombination of transgene
CN113604476A (en) Application of rice scion GS3.2 in regulation and control of rice grain traits
AU729274B2 (en) Plant and viral promoters
US7256276B2 (en) AtRSp gene promoters
KR20020057944A (en) MITEs-Like Element and Transcriptional Activation Element
JPH05153981A (en) Gramineous plant changed in amylose content and its production
Bilgin Utilization of Transgenic Maize Plants for Functional Analysis of a Histone Promoter and Host-Geminivirus Interactions
MXPA99009123A (en) Strawberry fruit promoters for gene expression

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97193684.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN YU AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2246414

Country of ref document: CA

Ref document number: 2246414

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 331220

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: PA/a/1998/006515

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 1997 529099

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1997903457

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1997903457

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 1997903457

Country of ref document: EP