WO1997028007A1 - Lithographic plate material for laser direct makeup, and printing method using same - Google Patents

Lithographic plate material for laser direct makeup, and printing method using same Download PDF

Info

Publication number
WO1997028007A1
WO1997028007A1 PCT/JP1997/000268 JP9700268W WO9728007A1 WO 1997028007 A1 WO1997028007 A1 WO 1997028007A1 JP 9700268 W JP9700268 W JP 9700268W WO 9728007 A1 WO9728007 A1 WO 9728007A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
plate material
printing plate
lithographic printing
recording layer
Prior art date
Application number
PCT/JP1997/000268
Other languages
French (fr)
Japanese (ja)
Inventor
Katsuji Konishi
Seiji Arimatsu
Hiroyuki Hiraoka
Yasuyuki Takimoto
Original Assignee
Nippon Paint Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paint Co., Ltd. filed Critical Nippon Paint Co., Ltd.
Publication of WO1997028007A1 publication Critical patent/WO1997028007A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C1/00Forme preparation
    • B41C1/10Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme
    • B41C1/1008Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme by removal or destruction of lithographic material on the lithographic support, e.g. by laser or spark ablation; by the use of materials rendered soluble or insoluble by heat exposure, e.g. by heat produced from a light to heat transforming system; by on-the-press exposure or on-the-press development, e.g. by the fountain of photolithographic materials
    • B41C1/1025Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme by removal or destruction of lithographic material on the lithographic support, e.g. by laser or spark ablation; by the use of materials rendered soluble or insoluble by heat exposure, e.g. by heat produced from a light to heat transforming system; by on-the-press exposure or on-the-press development, e.g. by the fountain of photolithographic materials using materials comprising a polymeric matrix containing a polymeric particulate material, e.g. hydrophobic heat coalescing particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N1/00Printing plates or foils; Materials therefor
    • B41N1/12Printing plates or foils; Materials therefor non-metallic other than stone, e.g. printing plates or foils comprising inorganic materials in an organic matrix
    • B41N1/14Lithographic printing foils

Definitions

  • Lithographic printing plate material for laser direct plate making and printing method using the same Lithographic printing plate material for laser direct plate making and printing method using the same
  • the present invention relates to a lithographic printing plate material for laser direct plate making, and more particularly to a material used for offset printing.
  • the printing plate material suitable for the computer ⁇ toe-plate system '' has a photosensitive layer that has a light-sensitive property that enables image formation with low energy, can be developed without using water or chemical agents, and is equal to or better than the PS plate Printability, for example, hydrophilicity of the printing plate, water retention, print recovery (the property that printing can be performed as usual even after normal printing work after ink adheres to the entire surface of the plate), printing durability It is necessary to have
  • printing plates currently under development are multi-layered, require special materials, special manufacturing methods, and special plate-making equipment.
  • an image forming member consisting of an aluminum metal film and a silicone layer is provided on a polyester film, and the aluminum metal layer is broken by a multi-stylus discharge head modulated by image signals. It is used as a printing plate by forming an ink repellent layer.
  • special materials and plate making equipment using general-purpose polymer materials, pigments and existing laser irradiation equipment, We believe that if a printing plate suitable for the computer-toe-plate system can be obtained, it will contribute to technological innovation in the printing industry.
  • Hiroyuki Hiraoka is described in the journal 'OB' Photopolymer Science 'and Technology 1, Vol. 4, No. 3 (1991), pp. 463-468, and in Vol. 7, No. 2 ( 1994), pp. 299-308, reported that thermoplastic polymer films become hydrophilic upon irradiation with laser light.
  • the present inventors applied this finding to a lithographic printing plate and invented a lithographic printing plate material for laser direct plate making (Japanese Patent Application No. 7-117125).
  • the present invention is to further enhance the performance of the lithographic printing plate according to the above invention, and the object thereof is to have excellent water retention at a laser beam irradiated portion on the surface of a recording layer, hardly cause background stain on printed matter, and An object of the present invention is to provide a planographic printing plate material for laser direct plate making that has excellent recoverability.
  • the present invention provides a pulsed laser having a matrix made of a thermoplastic polymer having an ultraviolet absorption band (or a matrix containing a thermoplastic polymer and an additive) and particles dispersed therein.
  • Another object of the present invention is to provide a lithographic printing plate material for laser direct plate making characterized by having a recording layer, and the above object is achieved.
  • thermoplastic polymer used in the present invention is a general-purpose thermoplastic polymer known to those skilled in the art.
  • a thermoplastic polymer having a high glass transition temperature (hereinafter abbreviated as Tg) and a high ultraviolet absorbance is preferred.
  • Particularly preferred thermoplastic polymers are those having a Tg of at least 160 ° C. and an absorbance at the lasing wavelength of the laser of at least 1 ⁇ lf ⁇ cnr 1 , especially at least 5 ⁇ 10 2 .
  • the parent surface of the recording layer Insufficient water solubility and soiling easily occur.
  • the absorbance at the oscillation wavelength of the laser of the polymer is decreased absorption efficiency of the irradiation energy below 1 ⁇ ⁇ ⁇ ⁇ 1, the hydrophilicity is insufficient laser irradiated surface of the recording layer, tends to occur scumming.
  • thermoplastic polymer of the present invention examples include polyimide resin, polyphenylquinosaline (PPQ), polysulfone, tetrafluoroethylene and 2,2-bis (trifluoromethyl) -4,5-difluoro- Examples thereof include a copolymer with 1,3-dioxolen and a soluble polyimide resin.
  • the particulate matter dispersed in the polymer refers to a component that forms a closed interface and exists in a matrix made of a thermoplastic polymer. “Particles” includes solids and liquids.
  • Particles which have good affinity and adhesion to the thermoplastic polymer and improve the water retention thereof are preferred as particulate matter.
  • Particles that have been surface-treated to improve dispersibility may be used.
  • inorganic particles, metal particles, organic particles and the like are used as the above-mentioned granular material. These may be used in combination as appropriate.
  • the inorganic particles for example, zinc oxide, titanium dioxide, white carbon (eg, maleic anhydride, hydrated calcium silicate and hydrated aluminum silicate), clay, tanolek, kaolin and the like can be used.
  • the metal particles for example, aluminum, copper, nickel, etc. can be used.
  • the inorganic or metal particles have an average particle size of less than 10 jum, preferably from 0.001 to 8111, more preferably from 0.01 to 5 zm. When the average particle size of the inorganic particles or the metal particles is less than 0.001 ID, the water retention of the laser-irradiated portion becomes insufficient, and the soil is easily generated. If it exceeds 10 ⁇ , the resolution of the printed matter will be poor, the adhesion to the support will be poor, and particles near the surface will be easily removed.
  • the inorganic or metal particles are preferably 2 to 50% by volume, based on the total composition, preferably Is contained in the recording layer in an amount of 5 to 40% by volume, more preferably 10 to 30% by volume.
  • the content of the particles is less than 2% by volume, the water retention of the laser-irradiated portion on the surface of the recording layer becomes insufficient, and background fouling easily occurs. If it exceeds 50% by weight, the strength of the recording layer is reduced and the printing durability is reduced, and the adhesion between the support and the recording layer is reduced.
  • Organic particles other than inorganic particles or metal particles can be used as the granular material.
  • the organic particles are not particularly limited as long as they enhance water retention, but resin particles can be used as the organic particles in a granular form. The following precautions need to be taken during use.
  • a solvent is used to disperse the resin particles, it is necessary to select a resin particle that does not dissolve in the solvent or a solvent that does not dissolve the resin particles.
  • dispersing the resin particles by heat with the thermoplastic polymer it is necessary to select a material that does not melt, deform, or decompose due to the heat at the time of dispersing the resin particles.
  • Crosslinked resin particles can be preferably used to reduce these cautions.
  • the organic particles have an average particle size of 0.01 to: 10 / m, preferably 0.05 to 5 // 01, more preferably 0.1 to 2; / m. If the average particle size of the organic particles is less than 0.01 zm, the water retention of the laser-irradiated portion becomes insufficient, and soiling tends to occur. If it exceeds 10 / Z ID, the resolution of the printed matter will be poor, the adhesion to the support will be poor, and particles near the surface will be easily removed.
  • the organic particles are contained in the recording layer in an amount of 3 to 50% by volume, preferably 5 to 40% by volume, more preferably 10 to 30% by volume based on the total composition.
  • the content of the particles is less than 3% by volume, the water retention at the laser-irradiated portion of the recording layer surface will be insufficient, and background fouling will easily occur. It decreases the strength of the recording layer to exceed 50 wt% printing durability decreased, also, adhesion between the support and the recording layer you decrease 0
  • the organic particles include polystyrene particles (particle diameter: 4 to 10 im), silicon particles (particle diameter: 2 to 4 zni), and the like.
  • crosslinked resin particles examples include a microgel (particle diameter: 0.01 to 1 m) composed of two or more ethylenically unsaturated monomers, and a crosslinked resin particle composed of styrene and divinylbenzene (particle diameter: 4 to 10). / zm), crosslinked resin particles (particle diameter: 4 to 10 ⁇ ) composed of methyl methacrylate and diethylene glycol dimethacrylate, such as acrylic resin microgel, crosslinked polystyrene, crosslinked methyl methacrylate, and the like. These are prepared by general methods such as emulsion polymerization, soap-free emulsion polymerization, seed emulsion polymerization, dispersion polymerization, and suspension polymerization.
  • inorganic particles from a solution.
  • a metal lower alkoxide is added to a solvent such as ethanol, and in the presence of water and an acid or alkali, inorganic particles containing the metal can be obtained.
  • the resulting inorganic particle solution can be added to a solvent-soluble thermoplastic polymer solution to form an inorganic particle dispersion.
  • inorganic particles are prepared by adding a metal lower alkoxide to a thermoplastic polymer precursor solution
  • a polymer-inorganic composite is obtained when the polymer precursor is converted into a thermoplastic polymer by heat.
  • the metal lower alkoxide tetraethoxyquin silane, tetraethoxyquin titanium and the like can be used.
  • the recording layer is formed using any layer forming method known to those skilled in the art. For example, coating of a thermoplastic polymer solution containing granules or melt molding of a thermoplastic polymer containing granules can be mentioned.
  • thermoplastic polymer When forming a recording layer using a thermoplastic polymer solution containing particulate matter, first, a thermoplastic polymer (or a thermoplastic polymer and an additive) is used. Put the granules and the glass beads in a container dissolved in a solvent, and shake using a paint shredder to disperse the granules. Next, the glass beads are removed with a stainless sieve to obtain a dispersion of the thermoplastic polymer containing the particulate matter. This dispersion is applied to a support and dried. Instead of the thermoplastic polymer, a solution containing the precursor and the particulate matter may be applied on a support, dried and, at the same time, the precursor is thermally cured to form a recording layer as a thermoplastic polymer.
  • the coating thickness is generally between 0.1 and 10 ⁇ m, preferably between 0.5 and 5 ⁇ .
  • the support may be provided in advance with a layer of an adhesion promoter to improve the adhesion to the recording layer.
  • adhesion promoter include commercially available silane coupling agents and urethane adhesives.
  • silane coupling agents such as a- (aminoethyl) aminopropyltrimethoxysilane and avarininopropyltrimethoxysilane are suitable for bonding polyimides to metal supports.
  • the recording layer may be formed by adding a granular material to a solution of a commercially available thermoplastic polymer or a precursor thereof as exemplified below.
  • a dimethylformamide solution of an aromatic polyimide resin with an aromatic ring marketed by Ciba Geigy Corporation under the trade name of “Matrimid 5218”: a product of “LARC-TPI” from Mitsui Toatsu Chemicals, Inc.
  • Polyamic acid having an aromatic ring commercially available under the name (eg, 3.3 ', 4,4'-benzophenonetetracarboxylic anhydride and 3,3'-diaminobenzophenone) Dimethylacetamide solution) and commercially available from DuPont under the trade name “Teflon AF”.
  • Teflon AF tetrafluoroethylene and 2,2'-bis (trifluoromethyl) -4,5-difluoro-1,3-dioxylene copolymer.
  • the recording layer is formed by melt-molding a thermoplastic polymer containing particulate matter
  • a compression molding method is preferable.
  • the injection molding method and the extrusion molding method are not suitable when the Tg is relatively high as in the present invention.
  • thermoplastic polymer or a thermoplastic polymer and an additive
  • a granular material are mixed in a powder or molten state, and the mixture is filled into a mold having a gap corresponding to a desired thickness of a recording layer.
  • Heat to give fluidity After pressing with a press while heating, the mold is opened and the recording layer is taken out.
  • a suitable heating temperature is around Tg of the thermoplastic polymer.
  • the recording layer When the recording layer is used alone as a printing plate material without using a support, the recording layer should have a thickness of 50 ⁇ or more, preferably 80 to 500 // ⁇ , more preferably 100 to 300 // ⁇ . Molding. When the thickness of the recording layer is less than 50 m, the mechanical strength is insufficient for use as a printing plate.
  • offset printing can be performed by a so-called laser direct plate making method.
  • the laser direct plate making method is to irradiate the surface of a recording layer (for example, a high Tg high absorbance thermoplastic polymer film with an absorption band in the ultraviolet) with a pulsed laser beam to increase the hydrophilicity of the irradiated area.
  • a recording layer for example, a high Tg high absorbance thermoplastic polymer film with an absorption band in the ultraviolet
  • This is a plate making method that enhances the thermoplastic polymer film to give the ink a selective adhesion.
  • the surface of the recording layer of the plate material of the present invention is irradiated with a pulsed laser beam according to an image.
  • the irradiated portion on the surface of the recording layer becomes hydrophilic.
  • a lithographic printing ink may be applied to the surface of the clerk for printing.
  • the energy density of the laser beam is lower than 10 mJ / cm 2 , the recording layer surface is not provided with the selective adhesion of the ink. Irradiation at an energy density exceeding 200 fflJ / cm 2 has little effect on improving printability.
  • image formation on the surface of the recording layer can be performed by scanning and exposing the surface of the recording layer with laser light in response to print image information.
  • a pulsed laser As a pulsed laser, a multimode Nd: YAG laser, an excimer laser, a titanium-sapphire-laser, a nitrogen gas laser, a copper gas laser, a gallium arsenide semiconductor laser, and the like can be used. From the viewpoint of ease of maintenance and operation costs, solid-state lasers are preferred over gas lasers. Pulse oscillation lasers can be used up to wavelengths in the ultraviolet, visible, and even infrared light regions.
  • Another method of irradiating the surface of the recording layer according to an image is a method in which a mask processed according to the image is superimposed on the surface of the recording layer, and a laser beam is irradiated from above.
  • a mask processed according to the image is superimposed on the surface of the recording layer, and a laser beam is irradiated from above.
  • the mask a photo negative for printing, a metal mask, or the like is used.
  • an additive having a spectral sensitivity can be added to the oscillation region to increase the photosensitivity to the recording layer.
  • the following can be used as additives.
  • Photopolymerization initiator Photopolymerization initiator for aromatic ketones such as benzophenone and thioxanthene, and acetophene such as benzoin ether and acetophenone
  • Non-photopolymerization initiators Photopolymerization initiators for diketones such as benzyl, organic peroxides: benzoyl peroxide,
  • Aromatic eodonium salt Aromatic eodonium salt
  • Aromatic sulfonium salt
  • Dyes that absorb visible light carbonium dyes, onium dyes, anthraquinone dyes, cyanine / merocyanine dyes,
  • Xanthene dyes such as fluorescein, eosin, rose bengal, rhodamine 6G,
  • Thiazine dyes such as thionine and methylene blue
  • Azine dyes such as riboflavin and noremiflavin
  • Azo-based dyes such as Disperse Orange 3 and Disperse Yellow 9, and metal complexes of tetrabenzoborfurin.
  • IR absorbers can be used. For example, there are carbon black pigment, titanium carbonate, silicon, green pigment, tungsten oxide, manganese oxide, and the like.
  • a laser from ultraviolet to infrared can be used.
  • the wavelength is preferably from visible to ultraviolet with a wavelength of 700 nm or less.
  • an infrared laser there is a problem in handling and safety because the laser beam cannot be seen. In addition, a lot of energy is required, and energy loss is also large.
  • the amount of the additives is generally from 0.:! To 5% by weight, preferably from 0.5 to 2% by weight. If the content is more than 5% by weight, the amount of light required for image formation is insufficient, and the hydrophilicity of the irradiated portion becomes insufficient.
  • the contrast between the irradiated part and the non-irradiated part can be improved by discoloring by laser irradiation by adding a dye. This is useful for plate calibration.
  • Irradiation of the surface of the recording layer with laser light to enhance the hydrophilicity of the irradiated portion is a result of many causes. Although the reason is not clear, in the printing plate material of the present invention, due to the presence of the particulate matter on the surface of the recording layer, surface roughening due to laser light irradiation effectively occurs, and the water retention and hydrophilicity of the irradiated portion are improved. This is presumed to be one of the factors.
  • the hydrophilicity can be represented by a change in the contact angle between the plate surface and water. When a 40 mJ / cm 2 laser beam is applied, the contact angle changes from 80 degrees to 0 degrees. It is said that when performing offset printing, the contact angle of the printing plate with water should be 20 degrees or less.
  • the products of the present invention all satisfy this value.
  • the hydrophilicity after laser irradiation increases in the order of polyester, polysulfone, polyimide and PPQ.
  • the hydrophilicity of PPQ is equivalent to polyimide. Polycarbonate, polystyrene, polymethacrylate and the like show little hydrophilicity.
  • the hydrophilicity of these polymers decreases as the Tg decreases. It is considered that a high Tg makes it easier to maintain the porous structure and surface roughness of the surface site generated by irradiation.
  • the Tg of the thermoplastic polymer must be at least 160 ° C in order to exhibit hydrophilicity and maintain it for a long time.
  • the hydrophilicity of the irradiated part can last for at least several months, but it must be maintained semipermanently for practical use as a printing plate.
  • the conventional method for desensitizing offset printing plates containing phosphoric acid as a main component can be applied as it is.
  • parts are based on weight, and the volume% of the granular material is added in parentheses after the weight%, and the average particle size and the true specific gravity of the granular material are based on the data described in the force tag.
  • the scanning exposure method of the plate material was performed by moving the plate material with a moving table at a speed of 1 cm / sec. All pulse frequencies were fixed at 10 Hz.
  • silica particles (trade name: Carplex BS304F, average) Particle size 5 zm, specific gravity 2, Shionogi Pharmaceutical Co., Ltd.) was added to make up 40% (28.6%) of the total solids, glass beads were added, and this solution was applied to a paint shaker for 2 hours. The sily particles were dispersed. After filtering the glass beads, the filtrate was applied to an aluminum plate using a bar coater # 16, and dried at 130 at 4 minutes. The plate was heat treated at 300 ° C. for l hr.
  • This plate was scan-exposed with an energy density of 50 ffiJ / cm 2 and a pulse width of 15 nsec using a Nd: YAG laser (4th synchronous mode, 266 nm, Spectra, Quantix Ray GCR-4 manufactured by Physics).
  • Printing was carried out using an offset printing machine (trade name: Hamadastar 700CDX, manufactured by Hamada Printing Machine Co., Ltd.) using an ink (trade name: New Campion F Gloss 59 indigo, manufactured by Dainippon Ink). Table 2 shows the print quality and evaluation.
  • Clay particles (specific gravity: 2.6), manufactured by Shiraishi Calcium Co.
  • Zinc oxide particles (specific gravity: 5.6), manufactured by Sakai Chemical Co.
  • a printing plate material was prepared in the same manner as in Example 12, and was subjected to etching treatment with an etchant (trade name: PP Clean B, manufactured by Kenken Kagaku Kenkyusho) before printing, followed by printing in the same manner as in Example 1. .
  • Table 2 shows the print quality and evaluation.
  • Soluble polyimide (trade name: Matrimid 5218, specific gravity 1.2, manufactured by Ciba-Geigy Corporation) is adjusted to 8% NV with DMF (dimethylformamide), and then aluminum pigment (trade name: Alpaste 5680NS) ) [Aluminum content 70%], average particle size 8.2 / ⁇ , specific gravity of aluminum 2.7, manufactured by Toyo Aluminum Co., Ltd. And a glass bead was added thereto, and this solution was dispersed in a paint shaker for 2 hours to disperse the aluminum pigment.
  • Soluble polyimide brand name: liatrimid 5218, specific gravity 1.2, manufactured by Ciba Geigy
  • DMF dimethylformamide
  • copper particles average particle size 1 ⁇ , 8.9
  • 20% (3.3%) of the total solids add glass beads, and apply this liquid to a paint shaker for 2 hr.
  • the silane coupling agent trade name: s
  • the obtained plate was scanned and exposed using an Nd: YAG laser (second synchronous mode 533 nm) at an energy density of 200 mJ / cro 2 and a pulse width of 15 nsec.
  • Printing was performed in the same manner as in Example 1.
  • Table 2 shows the print quality and evaluation. The adhesion to the aluminum support was also good.
  • Soluble polyimide (trade name: Matrimid 5218, specific gravity 1.2, Ciba-Geigy) Manufactured by DMF (dimethylformamide) to make the NV 8%, and then cross-linked acryl resin microgel (trade name: AZP-1430, average particle size 0.48 xm, specific gravity 1.1, Nippon Paint) was added to make up to 40% (42.1%) of the total solids, glass beads were added, and this liquid was applied to a paint shaker for 2 hours to disperse the crosslinked resin particles. After filtering the glass beads, apply with a bar coater # 16 to an aluminum plate surface-treated with a silane coupling agent (trade name: S Z6020.
  • a silane coupling agent (trade name: S Z6020.
  • Soluble polyimide (trade name: Matrimid 5218, specific gravity 1.2, manufactured by Ciba-Geigy Corporation) is adjusted to 8% NV with DMF (dimethylformamide), and then crosslinked polymethyl methacrylate resin particles (trade name: Techpolymer MBX-4, average particle size 4 / zm, specific gravity 1.2, manufactured by Sekisui Plastics Co., Ltd.) to 20% (20%) of the total solids, add glass beads, and paint this liquid. The crosslinked resin particles were dispersed in the shaker over 2 hours.
  • Example 22 After filtering the glass beads, apply it with a bar coater # 16 to an aluminum plate surface-treated with a silane coupling agent (trade name: SZ6083, manufactured by Toray 'Dauco One' Silicone) and dried at 130 ° C for 4 minutes did.
  • the treatment of the aluminum plate with the silane coupling agent is performed by applying a 1% methanol solution to the aluminum plate with a bar coater # 8 plate, drying at 60 ° C, and further drying at 100 ° C for 10 minutes. went.
  • Using a Nd: YAG laser (fourth synchronous mode, 266 nm) the obtained plate was scanned and exposed at an energy density of 100 mJ / cm 2 and a pulse width of 15 nsec. Printing was performed in the same manner as in Example 1. Table 2 shows the print quality and evaluation.
  • Example 22 shows the print quality and evaluation.
  • a glass bead was added, and this solution was applied to a paint shaker for 2 hours to disperse the particles of the sili-can. After filtering the glass beads, the filtrate was applied to an aluminum plate with a bar coater # 16 and dried at 130 ° C for 4 minutes.
  • This plate was subjected to heat treatment at 100 ° C. for 1 hr, at 150 ° C. for 1 hr, at 200 ° C. for 1 hr, and at 300 ° C. for 2 hr to complete the polyimide treatment.
  • This plate was scanned and exposed using an Nd: YAG laser (fourth synchronous mode, 266 nm) at an energy density of 50 niJ / cin 2 and a pulse width of 15 nsec. Printing was performed in the same manner as in Example 1. Table 2 shows the print quality and evaluation.
  • ion-exchanged water corresponding to 1.3 times the number of moles of tetraethoxysilane and HC1 0.01 times the number of moles of tetraethoxysilane, and the mixture was stirred at room temperature for 6 hr.
  • the solution was applied to an aluminum plate with a bar coater # 16 and dried at 130 ° C for 4 minutes.
  • the plate was then heat treated for lhr at 100 ° C, lhr at 150 ° C, lhr at 200 ° C, and 2hr at 300 ° C to form a polyimide to form a polyimide / silica composite.
  • This plate was scanned and exposed with an energy density of 100 nJ / cm 2 and a pulse width of 15 nsec using a Nd: YAG laser (4th synchronous mode: 266 mn). Printing was performed in the same manner as in Example 1. Table 2 shows the print quality and evaluation.
  • Ion-exchanged water equivalent to 1.3 times the number of moles of tetraethoxytitanium and HC1 0.01% relative to the number of moles of tetraethoxytitanium were added to the solution, and the mixture was stirred at room temperature for 6 hr.
  • the solution was applied to an aluminum plate with a bar coater # 10 and dried at 130 ° C for 4 minutes. 100 of this board. Heat treatment was continued for 1 hr at C, 1 hr at 150 ° C, 1 hr at 200 ° C, and 2 hr at 300 ° C to form a polyimide / titanium oxide composite.
  • This plate was scanned and exposed using an Nd: YAG laser (fourth synchronous mode 266 ⁇ ) at an energy density of 100 mJ / cm 2 and a pulse width of 15 nsec. Printing was performed in the same manner as in Example 1. Table 2 shows the print quality and evaluation.
  • Thermoplastic polyimide (trade name: Aurum, specific gravity 1.33, manufactured by Mitsui Toatsu Chemicals, Inc.) and silica particles (trade name: Curve Lettuce BS304N, average particle size 9.3 ⁇ m, specific gravity 2, manufactured by Shionogi Pharmaceutical Co., Ltd.) ) was added at 55% (44.9%) of the total solids and kneaded in a kneader at 300 ° C for about 30 minutes. Take out the kneaded material, insert it into a mold heated to 140 to 170 ° C, close the female mold and the female mold, and press with a press while maintaining the temperature at 310 to 360 ° C to obtain a thickness. Formed into 100 / z iD film.
  • the molding conditions are: 1) molding temperature: 310-360 ° C, 2) molding pressure: 210-350 kg / cm 2 , 3) gap setting: lOO / zm (with spacer thickness), 4) molding time: 10 minutes And
  • the obtained film was subjected to scanning exposure with an energy density of 100 mJ / cm 2 and a pulse width of 15 nsec using a Nd: YAG laser (fourth synchronous mode, 266 nm).
  • the light offset etch solution (Ricofax etch solution) was diluted with water to make a dampening solution, and printing was performed.
  • the ink used was process ink (CAPS-G, manufactured by Dainippon Ink and Chemicals, Inc.), and high-quality paper (35 kg in gold) was used. The print quality and evaluation are shown in Table 2.
  • Polyethersulfone (trade name: polyether sulfone (PES), specific gravity 1.37, manufactured by Mitsui Toatsu Chemicals, Inc.) and silica particles (trade name: AER0SIL 130, primary average particle diameter 16 nm, specific gravity 2.2, Japan AEROSIL Co., Ltd.) was added to make up 40% (29.4%) of the total solids, and the recording layer film was formed in the same manner as in Example 19 except that the following molding conditions were used. did.
  • the molding conditions were 1) molding temperature: 177 ° C, 2) molding pressure: 210 to 350 kg / cm 2 , 3) gap setting: lOO ⁇ m (though spacer thickness), and 4) molding time: 10 minutes. .
  • Nd YAG laser (the fourth synchronous mode, 266 nm) used in Example 1
  • the obtained film was scanned and exposed at an energy density of 100 mJ / cm 2 and a pulse width of 15 nsec.
  • Printing was performed according to the method described in Example 25. The print quality and evaluation are not shown in Table 2.
  • the molding conditions were: 1) molding temperature: 177 ° C, 2) molding pressure: 210-350 kg / cm 2 , 3) gap setting: 100 m (but spacer thickness), 4) molding time: 10 minutes .
  • Example 2 Using the same Nd: YAG laser (the fourth synchronous mode, 266 nm) used in Example 1, the obtained film was scanned and exposed at an energy density of 100 mJ / cm 2 and a pulse width of 15 nsec. Printing was performed according to the method described in Example 25. Table 2 shows the print quality and evaluation.
  • Organic solvent soluble ethylene tetrafluoride and 2,2-bis (trifluoromethyl) -4,5-difluoro-1,3-dioxolene copolymer (specific gravity 1.6) are converted to 8% NV with fluorocarbon.
  • silica particles trade name: AEROSIL R972, primary average particle size 16 nm, specific gravity 2.2, manufactured by Nippon Aerosil Co., Ltd.
  • the leverage solution was applied to a paint shaker for 2 hr to disperse silica particles. After filtering the glass beads, the filtrate was applied to an aluminum plate with a bar coater # 10 and dried at 80 ° C for 4 minutes.
  • the silica particles (trade name: Carplex BS304F, Average particle size 5 // m, specific gravity 2, Shionogi Pharmaceutical Co., Ltd.) is added to 30% (20.5%) of the total solids, glass beads are added, and this liquid is added to paint shaker for 2 hr. To disperse the silica particles.
  • silica particles (trade name: Carpretas BS304F) , Average particle size 5 // m, specific gravity 2, Shionogi Pharmaceutical Co., Ltd.) was added to soluble polyimide at 30% (20.5%), glass beads were added, and this solution was applied to a paint shaker for 2 hours. The sily particles were dispersed.
  • a polyester-based adhesive trade name: Hybon 7031, manufactured by Hitachi Chemical Co., Ltd.
  • Curing agent trade name: Takenate D-101, manufactured by Takeda Pharmaceutical Co., Ltd.
  • Dibutyltin dilaurate / ethyl acetate 40 parts / 2 parts / 0.4 parts / 57.6 parts of the solution was applied to an aluminum plate with a bar coater # 8 and dried at 90 ° C. for 5 minutes.
  • the obtained plate was scanned and exposed at an energy density of 50 mJ / ciD 2 and a pulse width of 15 nsec. Printing was performed in the same manner as in Example 1. Table 2 shows the print quality and evaluation. The adhesion to the aluminum support was also good.
  • Soluble polyimide (trade name: Matrimid 5218, specific gravity 1.2, manufactured by Ciba Geigy Co., Ltd.) and 1% of rhodamine 6G as an additive to soluble polyimide were added to NV8 with DMF (dimethylformamide). %, And then adjust the particle size (product name: Carplex BS304F, average particle size 5 ⁇ ⁇ , specific gravity 2, Shionogi (Manufactured by Pharmaceutical Co., Ltd.) was added to make up 20% (12.9%) of the total solids, glass beads were added, and the solution was dispersed on a paint shaker for 2 hours to disperse the particles of silicic acid.
  • DMF dimethylformamide
  • soluble polyimide trade name: ilatrimid 5218, specific gravity 1.2, manufactured by Ciba Geigy
  • Benzov Xnon as an additive
  • soluble polyimide and DMF dimethylformamide
  • silica particles trade name: Carplex BS304F, average particle size 5 ⁇ m, specific gravity 2, Shionogi Pharmaceutical Co., Ltd.
  • the glass beads were added, and the solution was dispersed in a paint shaker for 2 hours to disperse the particles.
  • a plate was prepared, exposed, and printed in the same manner as in Example 1 except that the particles of the sily force were removed. As shown in Table 2, the print quality is lower than in Example 1 in recoverability.
  • a plate was prepared, exposed, and printed in the same manner as in Example 22 except that the particles of the sily force were removed. As shown in Table 2, the print quality is lower than that of Example 22.
  • Film forming, exposure, and printing were performed in the same manner as in Example 25 except that the particles of the sily force were removed. As shown in Table 2, the print quality is inferior to Example 25 in recoverability.
  • Film forming, exposure, and printing were performed in the same manner as in Example 26 except that the particles of the sily force were removed. As shown in Table 2, the print quality is lower than that of Example 26 in recoverability.
  • Example 27 Film forming, exposure, and printing were performed in the same manner as in Example 27 except that the silicide particles were omitted. As shown in Table 2, the print quality is lower in recoverability than in Example 27.
  • Example 28 A plate was prepared, exposed, and printed in the same manner as in Example 28 except that the particles of the sily force were removed.
  • Table 2 shows the print quality compared to Example 28 as shown in the print quality. You can see that the reversion is inferior,
  • the present invention provides a coating film in which inorganic fine particles, metal fine particles or organic fine particles are dispersed in a general-purpose thermoplastic polymer (or a thermoplastic polymer and an additive) having a high glass transition temperature (hereinafter abbreviated as Tg) and a high ultraviolet absorbance.
  • a general-purpose thermoplastic polymer or a thermoplastic polymer and an additive
  • Tg glass transition temperature
  • a high ultraviolet absorbance write laser directly on the film.
  • a lithographic printing plate material for laser direct plate making that has excellent water retention in the laser light-irradiated portion of the recording layer surface and is less likely to cause soiling on printed matter is provided, reducing printing costs, making the plate making environment cleaner, and improving materials. It brings effects such as eliminating supply anxiety.

Abstract

A lithographic plate material for laser direct makeup, comprising a recording layer irradiated with pulsed laser, which includes a matrix of a thermoplastic polymer having an absorption band in the ultraviolet region, and particulates dispersed in the matrix, wherein the recording layer has an excellent print recovery property. A lithographic plate material for laser direct makeup is provided which has an excellent water retentivity in a portion of a recording layer surface irradiated by laser and by which scumming is hard to generate on a printed matter.

Description

明細書  Specification
レーザーダイレク ト製版用平版刷版材およびそれを用いる印刷方法 発明が属する技術分野  Lithographic printing plate material for laser direct plate making and printing method using the same
本発明は、 レーザーダイレク ト製版用平版刷版材に関し、 特に、 オフセッ ト印刷に使用されるものに関する。  The present invention relates to a lithographic printing plate material for laser direct plate making, and more particularly to a material used for offset printing.
従来の技術  Conventional technology
オフセッ ト印刷市場の拡大、 多様化に伴い、 新しい印刷システムが開発 されている。 そして、 数年来、 コンピュータ内に記録された印刷画線情報 が刷版上に直接再現でき、 また、 現像工程で廃液を出さず、 自然環境保全 に対処でき、 さらに、 従来の生産工程計画を大幅に変更することなく既存 の印刷機械、 付属設備が使用でき、 新規設備投資が小額で済む新しいコン ピュータ · トウ ·プレートシステムが提案され、 その実現が望まれている。 コンピュータ ' トウ ·プレートシステムに適する刷版材は、 感光層が低 エネルギーで画像形成が可能な感光特性を持ち、 水や化学薬剤を使用しな いで現像でき、 そして PS版と同等乃至それを上回る印刷適性、 例えば刷版 の親水性、 保水性、 印刷回復性 (版全面にインキが付着した後、 通常の印 刷作業を行っても、 もとどおり印刷が可能になる性質)、 耐刷性等を有す る必要がある。  With the expansion and diversification of the offset printing market, new printing systems are being developed. For several years, the printing streak information recorded in the computer can be directly reproduced on the printing plate, the wastewater is not discharged in the development process, the natural environment can be protected, and the conventional production process plan has been significantly improved. A new computer-to-plate system that can use existing printing machines and ancillary equipment without any change and requires a small capital investment is proposed and its realization is desired. The printing plate material suitable for the computer `` toe-plate system '' has a photosensitive layer that has a light-sensitive property that enables image formation with low energy, can be developed without using water or chemical agents, and is equal to or better than the PS plate Printability, for example, hydrophilicity of the printing plate, water retention, print recovery (the property that printing can be performed as usual even after normal printing work after ink adheres to the entire surface of the plate), printing durability It is necessary to have
ところが、 現在開発中の刷版材は複層構成物であったり、 特殊な材料、 特殊な製造方法、 特殊な製版装置を必要としている。 たとえば、 放電破壊 方式刷版材はポリエステルフィルム上にアルミ金属膜とシリコーン層から なる画像形成雇を設けたものであって、 画像信号で変調したマルチスタイ ラス放電へッ ドでアルミ金属層を破壌し、 インキ反発層にすることにより 刷版として利用する。 このような特殊な材料や製版装置を使用すること なく、 汎用のポリマー材料、 顔料や既存のレーザー照射装置を使用して、 コンピュータ · トウ ·プレート方式に適する刷版が得られれば印刷産業界 の技術革新に貢献できるものと考える。 However, printing plates currently under development are multi-layered, require special materials, special manufacturing methods, and special plate-making equipment. For example, in a discharge-discharge type printing plate material, an image forming member consisting of an aluminum metal film and a silicone layer is provided on a polyester film, and the aluminum metal layer is broken by a multi-stylus discharge head modulated by image signals. It is used as a printing plate by forming an ink repellent layer. Without using such special materials and plate making equipment, using general-purpose polymer materials, pigments and existing laser irradiation equipment, We believe that if a printing plate suitable for the computer-toe-plate system can be obtained, it will contribute to technological innovation in the printing industry.
本発明者のうち平岡弘之は、 ジャーナル 'ォブ ' フォトポリマー ·サイ エンス ' アンド ·テクノロジ一、 第 4巻、 No. 3(1991)、 463〜468頁および 同第 7巻、 No. 2(1994)、 299〜308ページにおいて、 熱可塑性ポリマーフィ ルムがレーザー光照射によつて親水性を示すようになることを報告した。 そして、 本発明者らはこの知見を平版印刷版に応用してレーザーダイレク ト製版用平版刷版材を発明した(特願平 7-117125号)。  Among the present inventors, Hiroyuki Hiraoka is described in the journal 'OB' Photopolymer Science 'and Technology 1, Vol. 4, No. 3 (1991), pp. 463-468, and in Vol. 7, No. 2 ( 1994), pp. 299-308, reported that thermoplastic polymer films become hydrophilic upon irradiation with laser light. The present inventors applied this finding to a lithographic printing plate and invented a lithographic printing plate material for laser direct plate making (Japanese Patent Application No. 7-117125).
発明の要旨  Summary of the Invention
本発明は、 上記発明に係る平版印刷版の性能を更に高めるものであり、 その目的とするところは、 記録層表面のレーザー光照射部分において保水 性に優れ、 印刷物に地汚れが生じ難く、 印刷回復性に優れたレーザーダイ レク ト製版用平版刷版材を提供することにある。  The present invention is to further enhance the performance of the lithographic printing plate according to the above invention, and the object thereof is to have excellent water retention at a laser beam irradiated portion on the surface of a recording layer, hardly cause background stain on printed matter, and An object of the present invention is to provide a planographic printing plate material for laser direct plate making that has excellent recoverability.
本発明は、 紫外部に吸収帯をもつ熱可塑性ポリマーでなるマトリックス (若しくは熱可塑性ポリマーと添加剤を含有するマトリックス)とその中に 分散された粒状物とを有しパルス発振レーザーが照射される記録層、 を有 することを特徴とするレーザーダイレク ト製版用平版刷版材を提供するも のであり、 そのことにより上記目的が達成される。  The present invention provides a pulsed laser having a matrix made of a thermoplastic polymer having an ultraviolet absorption band (or a matrix containing a thermoplastic polymer and an additive) and particles dispersed therein. Another object of the present invention is to provide a lithographic printing plate material for laser direct plate making characterized by having a recording layer, and the above object is achieved.
発明の詳細な説明  Detailed description of the invention
本発明で用 L、る熱可塑性ポリマーは、 当業者に知られた汎用の熱可塑性 ポリマーである。 ガラス転移温度(以下 Tgと略記する)および紫外線吸光度 が高い熱可塑性ポリマーが好ましい。 特に好ましい熱可塑性ポリマーは、 Tgが 160°C以上、 及びレーザーの発振波長における吸光度が 1 x lf^cnr 1以 上、 特に 5 x lO2以上のものである。 The thermoplastic polymer used in the present invention is a general-purpose thermoplastic polymer known to those skilled in the art. A thermoplastic polymer having a high glass transition temperature (hereinafter abbreviated as Tg) and a high ultraviolet absorbance is preferred. Particularly preferred thermoplastic polymers are those having a Tg of at least 160 ° C. and an absorbance at the lasing wavelength of the laser of at least 1 × lf ^ cnr 1 , especially at least 5 × 10 2 .
ポリマーの Tgが 160°Cを下回ると、 レーザー照射された記録層表面の親 水性が不十分となり、 地汚れが生じ易くなる。 またポリマーのレーザーの 発振波長における吸光度が 1 χ ΐΟ^πΓ 1を下回ると照射エネルギーの吸収 効率が低下し、 レーザー照射された記録層表面の親水性が不十分となり、 地汚れが生じ易くなる。 When the Tg of the polymer falls below 160 ° C, the parent surface of the recording layer Insufficient water solubility and soiling easily occur. The absorbance at the oscillation wavelength of the laser of the polymer is decreased absorption efficiency of the irradiation energy below 1 χ ΐΟ ^ πΓ 1, the hydrophilicity is insufficient laser irradiated surface of the recording layer, tends to occur scumming.
本発明の熱可塑性ポリマ一としては具体的には、 ポリイミ ド樹脂、 ポリ フエ二ルキノザリン(PPQ)、 ポリスルホン、 四フッ化工チレンと 2, 2-ビス(ト リフルォロメチル) -4, 5-ジフルォ口- 1, 3-ジォキソレンとの共重合体及び 可溶性ポリイミ ド樹脂等が挙げられる。  Specific examples of the thermoplastic polymer of the present invention include polyimide resin, polyphenylquinosaline (PPQ), polysulfone, tetrafluoroethylene and 2,2-bis (trifluoromethyl) -4,5-difluoro- Examples thereof include a copolymer with 1,3-dioxolen and a soluble polyimide resin.
上記ポリマー中に分散された粒状物とは、 熱可塑性ポリマーでなるマト リックス中に閉じられた界面を形成して存在する成分をいう。 「粒状物」に は、 固体及び液体のものが含まれる。  The particulate matter dispersed in the polymer refers to a component that forms a closed interface and exists in a matrix made of a thermoplastic polymer. “Particles” includes solids and liquids.
熱可塑性ポリマーへの親和性及び付着性がよく、 その保水性を向上させ る粒子が粒状物として好ましい。 分散性を改良するために表面処理された 粒子でもよい。 一般に、 無機粒子、 金属粒子及び有機粒子等が上記粒状物 として用いられる。 これらは適宜組合わせて用いてもよい。  Particles which have good affinity and adhesion to the thermoplastic polymer and improve the water retention thereof are preferred as particulate matter. Particles that have been surface-treated to improve dispersibility may be used. Generally, inorganic particles, metal particles, organic particles and the like are used as the above-mentioned granular material. These may be used in combination as appropriate.
無機粒子としては、 例えば酸化亜鉛、 二酸化チタン、 ホワイ トカーボン (無水ゲイ酸、 含水ゲイ酸カルシウム及び含水ゲイ酸アルミニウムなど)、 クレー、 タノレク、 カオリン等が使用できる。 また金属粒子としては、 例え ばアルミニウム、 銅、 ニッケル等が使用できる。 無機粒子又は金属粒子は lOjum以下、 好ましくは0. 001〜8 111、 さらに好ましくは 0. 01〜 5 z mの平 均粒径を有する。 無機粒子又は金属粒子の平均粒径が 0. 001 IDを下回ると レーザ一照射部分の保水性が不十分となり、 地汚れが生じ易くなる。 10 πを上回ると印刷物の解像度が悪くなつたり、 支持体との接着性が悪くなつ たり、 表面付近の粒子が取れ易くなつたりする。  As the inorganic particles, for example, zinc oxide, titanium dioxide, white carbon (eg, maleic anhydride, hydrated calcium silicate and hydrated aluminum silicate), clay, tanolek, kaolin and the like can be used. As the metal particles, for example, aluminum, copper, nickel, etc. can be used. The inorganic or metal particles have an average particle size of less than 10 jum, preferably from 0.001 to 8111, more preferably from 0.01 to 5 zm. When the average particle size of the inorganic particles or the metal particles is less than 0.001 ID, the water retention of the laser-irradiated portion becomes insufficient, and the soil is easily generated. If it exceeds 10π, the resolution of the printed matter will be poor, the adhesion to the support will be poor, and particles near the surface will be easily removed.
無機粒子又は金属粒子は全組成物を基準にして 2〜50体積%、 好ましく は 5〜40体積%、 更に好ましくは 10〜30体積%の量で記録層中に含有させ る。 粒子の含有量が 2体積%を下回ると記録層表面のレーザー照射部分に おいて保水性が不十分となり、 地汚れが生じ易くなる。 50重量%を上回る と記録層の強度が低下して耐刷性が低下し、 また、 支持体と記録層との接 着性が低下する。 The inorganic or metal particles are preferably 2 to 50% by volume, based on the total composition, preferably Is contained in the recording layer in an amount of 5 to 40% by volume, more preferably 10 to 30% by volume. When the content of the particles is less than 2% by volume, the water retention of the laser-irradiated portion on the surface of the recording layer becomes insufficient, and background fouling easily occurs. If it exceeds 50% by weight, the strength of the recording layer is reduced and the printing durability is reduced, and the adhesion between the support and the recording layer is reduced.
粒状物として無機粒子又は金属粒子以外に有機粒子も使用できる。 有機 粒子は保水性を高めるものであれば特に限定はしないが粒状物の有機粒子 としては樹脂粒子が使用できる。 使用の際に次ぎの注意を払うことが必要 である。 樹脂粒子を分散させる際に溶剤を用いるときはその溶剤に溶解し ない樹脂粒子を選択するか、 樹脂粒子を溶解しない溶剤を選択する必要が ある。 また、 樹脂粒子を熱可塑性ポリマーと熱により分散させる際には樹 脂粒子が分散させるときの熱により溶融したり、 変形したり、 分解しない ような物を選択する必要がある。  Organic particles other than inorganic particles or metal particles can be used as the granular material. The organic particles are not particularly limited as long as they enhance water retention, but resin particles can be used as the organic particles in a granular form. The following precautions need to be taken during use. When a solvent is used to disperse the resin particles, it is necessary to select a resin particle that does not dissolve in the solvent or a solvent that does not dissolve the resin particles. When dispersing the resin particles by heat with the thermoplastic polymer, it is necessary to select a material that does not melt, deform, or decompose due to the heat at the time of dispersing the resin particles.
これらの注意点を軽減する物としては架橋された樹脂粒子が好ましく使 用することができる。 有機粒子は 0. 01〜: 10 / m、 好ましくは0. 05〜5 // 01、 更に好ましくは 0. 1〜2;/ mの平均粒径を有する。 有機粒子の平均粒径が 0. 01 z mを下回るとレーザー照射部分の保水性が不十分となり、 地汚れが生 じ易くなる。 10 /Z IDを上回ると印刷物の解像度がわるくなつたり、 支持体 との接着性がわるくなつたり、 表面付近の粒子が取れ易くなつたりする。 有機粒子は全組成物を基準にして 3 ~50体積%、 好ましくは 5〜40体積 %、 更に好ましくは 10〜30体積%の量で記録層中に含有させる。 粒子の含 有量が 3体積%を下回ると記録層表面のレーザー照射部分において保水性 が不十分となり、 地汚れが生じ易くなる。 50重量%を上回ると記録層の強 度が低下して耐刷性が低下し、 また、 支持体と記録層との接着性が低下す る 0 有機粒子としては、 ポリスチレン粒子(粒径 4〜10 i m)、 シリコン粒子(粒 径 2〜4 z ni)等が挙げられる。 架橋された樹脂粒子としては、 例えば、 2 種以上のエチレン性不飽和モノマーからなるマイクロゲル(粒径 0. 01〜1 m)、 スチレンとジビニルベンゼンとからなる架橋樹脂粒子(粒径 4〜 10 /z m)、 メチルメタク リ レー 卜とジエチレングリコールジメタクリ レー トと からなる架橋樹脂粒子 (粒径 4〜10 πι)等、 つまり、 アクリル樹脂のマイ クロゲル、 架橋ポリスチレン及び架橋メチルメタクリレート等が挙げられ る。 これらは乳化重合法、 ソープフリー乳化重合法、 シード乳化重合法、 分散重合法、 懸濁重合法などの一般的な方法で調製される。 Crosslinked resin particles can be preferably used to reduce these cautions. The organic particles have an average particle size of 0.01 to: 10 / m, preferably 0.05 to 5 // 01, more preferably 0.1 to 2; / m. If the average particle size of the organic particles is less than 0.01 zm, the water retention of the laser-irradiated portion becomes insufficient, and soiling tends to occur. If it exceeds 10 / Z ID, the resolution of the printed matter will be poor, the adhesion to the support will be poor, and particles near the surface will be easily removed. The organic particles are contained in the recording layer in an amount of 3 to 50% by volume, preferably 5 to 40% by volume, more preferably 10 to 30% by volume based on the total composition. If the content of the particles is less than 3% by volume, the water retention at the laser-irradiated portion of the recording layer surface will be insufficient, and background fouling will easily occur. It decreases the strength of the recording layer to exceed 50 wt% printing durability decreased, also, adhesion between the support and the recording layer you decrease 0 Examples of the organic particles include polystyrene particles (particle diameter: 4 to 10 im), silicon particles (particle diameter: 2 to 4 zni), and the like. Examples of the crosslinked resin particles include a microgel (particle diameter: 0.01 to 1 m) composed of two or more ethylenically unsaturated monomers, and a crosslinked resin particle composed of styrene and divinylbenzene (particle diameter: 4 to 10). / zm), crosslinked resin particles (particle diameter: 4 to 10πι) composed of methyl methacrylate and diethylene glycol dimethacrylate, such as acrylic resin microgel, crosslinked polystyrene, crosslinked methyl methacrylate, and the like. These are prepared by general methods such as emulsion polymerization, soap-free emulsion polymerization, seed emulsion polymerization, dispersion polymerization, and suspension polymerization.
また、 溶液から無機粒子を調製することも可能である。 例えば、 ェタノ ールなどの溶剤中に金属低級アルコキシドを加え、 水および酸もしくはァ ルカリの存在下により、 該金属を含む無機粒子が得られる。 できた無機粒 子溶液を溶剤可溶の熱可塑性ポリマー溶液に加えて無機粒子分散溶液をつ くることができる。 あるいは金属低級アルコキシドをさきに熱可塑性ポリ マー溶液に加えてから水および酸もしくはアル力リを添加し、 該金属を含 む無機粒子を得ることも可能である。  It is also possible to prepare inorganic particles from a solution. For example, a metal lower alkoxide is added to a solvent such as ethanol, and in the presence of water and an acid or alkali, inorganic particles containing the metal can be obtained. The resulting inorganic particle solution can be added to a solvent-soluble thermoplastic polymer solution to form an inorganic particle dispersion. Alternatively, it is also possible to add the metal lower alkoxide to the thermoplastic polymer solution first, and then add water and an acid or aluminum salt to obtain inorganic particles containing the metal.
熱可塑性ポリマーの前駆体溶液に金属低級アルコキシドを添加して無機 粒子を作製する場合はポリマー前駆体を熱により熱可塑性ポリマーにする ときにポリマーと無機の複合体のものが得られる。 金属低級アルコキシド としてはテトラエトキンシラン、 テトラエトキンチタンなどが使用できる。 記録層は、 当業者に知られたいずれかの層形成法を用いて形成される。 例えば、 粒状物を含有する熱可塑性ポリマー溶液の被覆、 又は粒状物を含 有する熱可塑性ポリマーの溶融成形等が挙げられる。  When inorganic particles are prepared by adding a metal lower alkoxide to a thermoplastic polymer precursor solution, a polymer-inorganic composite is obtained when the polymer precursor is converted into a thermoplastic polymer by heat. As the metal lower alkoxide, tetraethoxyquin silane, tetraethoxyquin titanium and the like can be used. The recording layer is formed using any layer forming method known to those skilled in the art. For example, coating of a thermoplastic polymer solution containing granules or melt molding of a thermoplastic polymer containing granules can be mentioned.
粒状物を含有する熱可塑性ポリマーの溶液を用いて記録層を形成する場 合は、 まず、 熱可塑性ポリマー(若しくは熱可塑性ポリマーと添加剤)を有 機溶剤に溶かした容器に粒状物とガラスビーズを入れ、 ペイントシユー力 一を用いて振通して粒状物を分散させる。 次いで、 ステンレス製のふるい でガラスビーズを取り除き、 粒状物を含有する熱可塑性ポリマーの分散液 を得る。 この分散液を支持体上に塗布し、 乾燥させる。 熱可塑性ポリマー の代わりにその前駆体と粒状物とを含む溶液を支持体上に塗布し、 乾燥さ せると同時にその前駆体を熱硬化させ、 熱可塑性ポリマーとして記録層を 形成してもよい。 被覆膜厚は一般に 0. l〜10 ^ m、 好ましくは 0. 5〜5 ηιで ある。 When forming a recording layer using a thermoplastic polymer solution containing particulate matter, first, a thermoplastic polymer (or a thermoplastic polymer and an additive) is used. Put the granules and the glass beads in a container dissolved in a solvent, and shake using a paint shredder to disperse the granules. Next, the glass beads are removed with a stainless sieve to obtain a dispersion of the thermoplastic polymer containing the particulate matter. This dispersion is applied to a support and dried. Instead of the thermoplastic polymer, a solution containing the precursor and the particulate matter may be applied on a support, dried and, at the same time, the precursor is thermally cured to form a recording layer as a thermoplastic polymer. The coating thickness is generally between 0.1 and 10 ^ m, preferably between 0.5 and 5 ηι.
支持体としては、 当業者に周知のものを使用できる。 例えば、 寸法安定 性のよい各種プラスチックシート、 それらの積層体、 金属板及びこれらの 複合体が挙げられる。  As the support, those well known to those skilled in the art can be used. For example, various plastic sheets having good dimensional stability, laminates thereof, metal plates, and composites thereof may be mentioned.
支持体には記録層との接着性を改善するため接着促進剤の層を予め設け ておいてよい。 接着促進剤としては、 市販のシランカップリング剤及びゥ レタン接着剤等が挙げられる。 例えば、 ァ- (アミノエチル)アミノブロピ ルトリメ トキシシラン及びァ-ァ二リノプロビルトリメ トキシシランのよ うなシランカツプリング剤はポリイミ ドと金属支持体との接着に適してい る。  The support may be provided in advance with a layer of an adhesion promoter to improve the adhesion to the recording layer. Examples of the adhesion promoter include commercially available silane coupling agents and urethane adhesives. For example, silane coupling agents such as a- (aminoethyl) aminopropyltrimethoxysilane and avarininopropyltrimethoxysilane are suitable for bonding polyimides to metal supports.
以下に例示するような市販の熱可塑性ポリマーもしくはその前駆体の溶 液に粒状物を加え、 記録層を形成してもよい。  The recording layer may be formed by adding a granular material to a solution of a commercially available thermoplastic polymer or a precursor thereof as exemplified below.
例えば、 チバ ·ガイギ一社より「マトリ ミ ド 5218」の商品名で市販されて いる芳香環をもつポリイミ ド榭脂のジメチルホルムアミ ド溶液:三井東圧 化学社より「LARC-TPI」の商品名で市販されている芳香環をもつポリィミ ド 酸(例えば、 3. 3',4, 4' -ベンゾフエノンテトラカルボン酸無水物と 3, 3' -ジ ァミノベンゾフヱノンとを溶剤中でポリ縮合させたもの)のジメチルァセ トアミ ド溶液;及びデュポン社より「テフロン AF」の商品名で市販されてい る四フッ化エチレンと 2, 2' -ビス(トリフルォロメチル) -4, 5-ジフルオロ- 1, 3-ジォキソレンの共重合体のフッ化炭化水素溶液などである。 For example, a dimethylformamide solution of an aromatic polyimide resin with an aromatic ring marketed by Ciba Geigy Corporation under the trade name of “Matrimid 5218”: a product of “LARC-TPI” from Mitsui Toatsu Chemicals, Inc. Polyamic acid having an aromatic ring commercially available under the name (eg, 3.3 ', 4,4'-benzophenonetetracarboxylic anhydride and 3,3'-diaminobenzophenone) Dimethylacetamide solution) and commercially available from DuPont under the trade name “Teflon AF”. And tetrafluoroethylene and 2,2'-bis (trifluoromethyl) -4,5-difluoro-1,3-dioxylene copolymer.
粒状物を含有する熱可塑性ポリマーを溶融成形して記録層を形成する場 合は、 圧縮成形法が好適である。 射出成形法及び押し出し成形法は本発明 のように Tgが比較的高い場合には適していない。  In the case where the recording layer is formed by melt-molding a thermoplastic polymer containing particulate matter, a compression molding method is preferable. The injection molding method and the extrusion molding method are not suitable when the Tg is relatively high as in the present invention.
圧縮成形法によれば、 熱可塑性ポリマー(若しくは熱可塑性ポリマーと 添加剤)と粒状物とを粉末もしくは溶融状態で混合し、 所望の記録層の厚 さに相当する間隙の金型内に充填し、 加熱して流動性を与える。 加熱を続 けながらプレスで加圧した後、 金型を開いて記録層を取り出す。 加熱温度 は熱可塑性ポリマーの Tg付近が適している。  According to the compression molding method, a thermoplastic polymer (or a thermoplastic polymer and an additive) and a granular material are mixed in a powder or molten state, and the mixture is filled into a mold having a gap corresponding to a desired thickness of a recording layer. Heat to give fluidity. After pressing with a press while heating, the mold is opened and the recording layer is taken out. A suitable heating temperature is around Tg of the thermoplastic polymer.
支持体を使用せず、 記録層単独で刷版材として用いる場合は、 50 ζ πι以 上、 好ましくは 80〜500 // πι、 より好ましくは 100〜300 // πιの厚さに記録層 を成形する。 記録層の厚さが 50 mを下回ると刷版として用いるには機械 的強度が不足する。  When the recording layer is used alone as a printing plate material without using a support, the recording layer should have a thickness of 50 ζπι or more, preferably 80 to 500 // πι, more preferably 100 to 300 // πι. Molding. When the thickness of the recording layer is less than 50 m, the mechanical strength is insufficient for use as a printing plate.
上述のようにして得られる本発明の刷版材を用いて、 いわゆるレーザー ダイレク ト製版法によりオフセッ ト印刷を行い得る。 レーザーダイレク ト 製版法とは、 記録層(例えば紫外部に吸収帯をもつ高 Tg高吸光性の熱可塑 性ポリマーフィルム)の表面を、 パルス発振レーザー光を照射して照射部 分の親水性を高め、 熱可塑性ポリマーフィルムにィンキの選択付着性を付 与する製版法をいう。  Using the printing plate material of the present invention obtained as described above, offset printing can be performed by a so-called laser direct plate making method. The laser direct plate making method is to irradiate the surface of a recording layer (for example, a high Tg high absorbance thermoplastic polymer film with an absorption band in the ultraviolet) with a pulsed laser beam to increase the hydrophilicity of the irradiated area. This is a plate making method that enhances the thermoplastic polymer film to give the ink a selective adhesion.
本発明の刷版材を用いてオフセッ ト印刷を行うには、 例えば、 まず、 本 発明の刷版材の記録層の表面を、 パルス発振レーザー光で画像に応じて照 射する。 その結果、 記録層の表面の照射部分が親水化される。 ついで、 平 版印刷用ィンキを記録雇の表面に付与して印刷すればよい。  In order to perform offset printing using the plate material of the present invention, for example, first, the surface of the recording layer of the plate material of the present invention is irradiated with a pulsed laser beam according to an image. As a result, the irradiated portion on the surface of the recording layer becomes hydrophilic. Then, a lithographic printing ink may be applied to the surface of the clerk for printing.
記録雇表面の照射部分の親水性を高めるために必要なレーザー光のエネ ルギー密度は 10〜200mJ/cni2、 好ましくは 40〜: lOOmJ/cm2である。 レーザー 光のエネルギー密度が lOmJ/cm2を下回ると記録層表面にィンキの選択付着 性が付与されな t、。 200fflJ/cm2を越えるエネルギー密度で照射しても印刷 性の改善にはほとんど効果がない。 The energy of the laser light necessary to increase the hydrophilicity of the irradiated part of the recording Energy density 10~200mJ / cni 2, preferably 40: a lOOmJ / cm 2. When the energy density of the laser beam is lower than 10 mJ / cm 2 , the recording layer surface is not provided with the selective adhesion of the ink. Irradiation at an energy density exceeding 200 fflJ / cm 2 has little effect on improving printability.
記録層表面への画像形成は、 具体的には、 レーザー光を印刷画像情報に 応答させて記録層の表面に走査露光することによって行いうる。  Specifically, image formation on the surface of the recording layer can be performed by scanning and exposing the surface of the recording layer with laser light in response to print image information.
記録層表面の照射部分に親水性を付与するためには、 照射表面のェネル ギー密度があるしきい値以上に達することが必要である。 したがって、 短 い強力パルス放電によって、 尖頭出力の大きいパルス発振レーザー光を照 射する必要がある。  In order to impart hydrophilicity to the irradiated portion of the recording layer surface, it is necessary that the energy density of the irradiated surface reaches a certain threshold or more. Therefore, it is necessary to irradiate a pulsed laser beam with a large peak output by a short powerful pulse discharge.
パルス発振レーザーとしては、 多モード Nd :YAGレーザー、 エキシマレー ザ一、チタン-サファイア-レーザー、 窒素ガスレーザー、 銅ガスレーザー、 ガリウム砒素半導体レーザー等が使用できる。 メ ンテナンスの容易さ、 運 転コストからみて、 ガスレーザーよりも固体レーザーの方が好ましい。 パ ルス発振レーザ一は発振波長が紫外、 可視光さらには赤外光領域にあるも のまで利用できる。  As a pulsed laser, a multimode Nd: YAG laser, an excimer laser, a titanium-sapphire-laser, a nitrogen gas laser, a copper gas laser, a gallium arsenide semiconductor laser, and the like can be used. From the viewpoint of ease of maintenance and operation costs, solid-state lasers are preferred over gas lasers. Pulse oscillation lasers can be used up to wavelengths in the ultraviolet, visible, and even infrared light regions.
記録層の表面を画像に応じて照射する他の方法は、 画像に応じて加工し たマスクを記録層表面に重ねて、 その上からレーザー光を照射する方法で ある。 マスクとしては、 印刷用写真ネガチブ及び金属マスクなどが用いら れる。  Another method of irradiating the surface of the recording layer according to an image is a method in which a mask processed according to the image is superimposed on the surface of the recording layer, and a laser beam is irradiated from above. As the mask, a photo negative for printing, a metal mask, or the like is used.
パルス発振波長が可視光領域にあるレーザ一光源を使って製版する場合、 記録層には、 感光性を高めるために、 該発振領域に分光感度をもつ添加剤 を加えることができる。 添加剤としては、 下記の物が使用しうる。  When plate making is performed using a laser light source having a pulse oscillation wavelength in the visible light region, an additive having a spectral sensitivity can be added to the oscillation region to increase the photosensitivity to the recording layer. The following can be used as additives.
光重合開始剤:ベンゾフヱノン、 チォキサンテンなどの芳香族ケトン類 の光重合開始剤、 ベンゾインエーテル、 ァセ トフエノンなどのァセ トフエ ノン類の光重合開始剤、 ベンジルなどのジケトン類の光重合開始剤、 有機過酸化物:過酸化べンゾィル、 Photopolymerization initiator: Photopolymerization initiator for aromatic ketones such as benzophenone and thioxanthene, and acetophene such as benzoin ether and acetophenone Non-photopolymerization initiators, photopolymerization initiators for diketones such as benzyl, organic peroxides: benzoyl peroxide,
ァゾ化合物:ァゾビスィソプチロニトリル、  Azo compound: azobis disoptyronitrile,
ハロゲン化物: 2, 4, 6-トリプロモフヱノール、  Halide: 2,4,6-tripromophenol,
芳香族ジァゾニゥム塩、  Aromatic diazonium salt,
芳香族ョードニゥム塩、  Aromatic eodonium salt,
芳香族スルホニゥム塩、  Aromatic sulfonium salt,
光力チオン重合開始剤、  Light power thione polymerization initiator,
可視部を吸収する色素: カルボニゥム色素、 ォニゥム色素、 アントラキ ノン色素、 シァニン · メロシアニン色素、  Dyes that absorb visible light: carbonium dyes, onium dyes, anthraquinone dyes, cyanine / merocyanine dyes,
フルォレセイン、 ェォシン、 ローズベンガル、 ローダミ ン 6 Gなどのキサ ンテン系色素、 Xanthene dyes such as fluorescein, eosin, rose bengal, rhodamine 6G,
チォニン、 メチレンブルーなどのチアジン系色素、 Thiazine dyes such as thionine and methylene blue,
リボフラビン、 ノレミフラビンなどァジン系色素、 Azine dyes such as riboflavin and noremiflavin,
クマリ ンなどのクマリ ン系色素、 Coumarin-based dyes such as coumarin,
ァクリジンオレンジなどのァクリジン系色素、 Acridine dyes such as acridine orange,
ディスパースオレンジ 3、 ディスパースィエロー 9などのァゾ系色素、 テトラべンゾボルフイ リン金属錯体。 Azo-based dyes such as Disperse Orange 3 and Disperse Yellow 9, and metal complexes of tetrabenzoborfurin.
比較的短波長領域では使用できる添加剤の数が多い。 しかしながら、 吸 収波長が長波長領域に近付くにつれて有機溶媒に対する可溶性が低下し、 使用できる添加剤の数も少なくなる。 600nm以上の長波長領域ではメソフ ニルテトラベンゾボルフィ リン金属錯体が好適である。 その事例について は、 巿村国宏ら、 ジャーナル 'ォブ · フォ トポリマー 'サイエンス ' アン ド 'テクノロジー、 第 1巻、 Νο. 2(1988)205〜211頁に開示されている。 赤外のパルス発振レーザー光に感じる添加剤も使用できる。 添加剤とし ては一般的な IR吸収剤が使用できる。 例えば、 カーボンブラック顔料、 炭 化チタン、 シリコン、 緑色顔料、 酸化タングステン、 酸化マンガンなどが ある。 In the relatively short wavelength region, the number of additives that can be used is large. However, as the absorption wavelength approaches the longer wavelength region, the solubility in organic solvents decreases, and the number of additives that can be used decreases. In the long wavelength region of 600 nm or more, a metal complex of mesophenyltetrabenzoborphyrin is preferable. An example of such a case is disclosed in Kunihiro Takamura et al., Journal “OB PHOTOPOLYMER“ Science ”AND” Technology, Vol. 1, Νο. 2 (1988), pp. 205-211. Additives that feel infrared pulsed laser light can also be used. As an additive Ordinary IR absorbers can be used. For example, there are carbon black pigment, titanium carbonate, silicon, green pigment, tungsten oxide, manganese oxide, and the like.
本発明のパルス発振レーザーは紫外から赤外までのレーザーが使用可能 である。 好ましくは波長 700nm以下の可視から紫外までが好ましい。 とい うのは赤外のレーザーを使用する場合、 レーザー光が目視できない為取扱 い上、 安全上問題がある。 また、 エネルギーが多く必要であり、 また、 ェ ネルギ一のロスも大きい。  As the pulse oscillation laser of the present invention, a laser from ultraviolet to infrared can be used. The wavelength is preferably from visible to ultraviolet with a wavelength of 700 nm or less. When using an infrared laser, there is a problem in handling and safety because the laser beam cannot be seen. In addition, a lot of energy is required, and energy loss is also large.
添加剤の量は、 一般に 0.:!〜 5重量%、 好ましくは 0. 5〜2重量%とされ る。 5重量%を上回ると、 画像形成の必要な光量が不足して照射部の親水 性が不十分となり、 印刷で地汚れする。  The amount of the additives is generally from 0.:! To 5% by weight, preferably from 0.5 to 2% by weight. If the content is more than 5% by weight, the amount of light required for image formation is insufficient, and the hydrophilicity of the irradiated portion becomes insufficient.
また、 色素を加えることによりレーザー照射により退色することで照射 部と非照射部とのコントラス卜をよくすることもできる。 このことは版校 正をするときに便利である。  In addition, the contrast between the irradiated part and the non-irradiated part can be improved by discoloring by laser irradiation by adding a dye. This is useful for plate calibration.
作用  Action
記録層の表面にレーザー光を照射して照射部分の親水性が高められるの は、 多くの原因による結果である。 理由は明確でないが、 本発明の刷版材 では、 記録層の表面に粒状物が存在することによりレーザー光照射による 粗面化が効果的に生じ、 照射部分の保水性と親水性が向上されることが要 因の一つであると推測される。  Irradiation of the surface of the recording layer with laser light to enhance the hydrophilicity of the irradiated portion is a result of many causes. Although the reason is not clear, in the printing plate material of the present invention, due to the presence of the particulate matter on the surface of the recording layer, surface roughening due to laser light irradiation effectively occurs, and the water retention and hydrophilicity of the irradiated portion are improved. This is presumed to be one of the factors.
レーザー光によるポリマーの表面変化は、 例えば、 (1 )平岡弘之ら、 ジャ ーナル ·ォブ · フォ トポリマー ·サイエンス 'アンド ·テクノロジー、 第 4卷、 No. 3(1991)463〜468頁、 (2 )平岡弘之ら、 ジャーナル 'ォブ ' フォ トケミストリー . アンド · フォ トバイオロジー、 A: ケミストリー、 65巻(1 992)293〜302頁、 (3 )矢部明ら、 アプライ ド ·フィジックス · レター、 60 巻、 No. 21、 5月 25曰(1992)2697~2699頁、 及び(4 )矢部明ら、 アプライ ド .サーフヱイス .サイエンス、 69巻(1993) 1〜6頁、 に詳細に記載され ている。 For example, (1) Hiroyuki Hiraoka et al., Journal of Photopolymer Science and Technology, Vol. 4, No. 3 (1991) pp. 463-468, (2) ) Hiroyuki Hiraoka et al., Journal 'Ob' Photochemistry. And Photobiology, A: Chemistry, 65 (1992) pp. 293-302, (3) Akira Yabe, Applied Physics Letter, 60 Vol. 21, No. 21, May 25, (1992) pp. 2697-2699, and (4) Akira Yabe et al., Applied Surface Science, Vol. 69 (1993), pp. 1-6. .
親水性は、 版面と水の接触角の変化で表すことができる。 40mJ/cm 2のレ 一ザ一光照射をおこなうと、 接触角は 80度から 0度の範囲で変化する。 ォ フセッ ト印刷をおこなう場合、 刷版の水に対する接触角が 20度以下であれ ばよいといわれている。 本発明品はいずれもこの値を満足させている。 レーザー光を照射した後の親水性は、 一般に、 ポリエステル、 ポリスル ホン、 ポリイミ ドおよび PPQの順に高くなる。 なお、 PPQの親水性はポリイ ミ ドと同等である。 ポリカーボネート、 ポリスチレン及びポリメタクリレ 一トなどはほとんど親水性を示さない。 The hydrophilicity can be represented by a change in the contact angle between the plate surface and water. When a 40 mJ / cm 2 laser beam is applied, the contact angle changes from 80 degrees to 0 degrees. It is said that when performing offset printing, the contact angle of the printing plate with water should be 20 degrees or less. The products of the present invention all satisfy this value. Generally, the hydrophilicity after laser irradiation increases in the order of polyester, polysulfone, polyimide and PPQ. The hydrophilicity of PPQ is equivalent to polyimide. Polycarbonate, polystyrene, polymethacrylate and the like show little hydrophilicity.
これらのポリマーの親水性は Tgが低くなるにつれて低下する。 Tgが高い と照射によって生成した表面部位の多孔構造、 表面粗度が保持され易くな るためと考えられる。  The hydrophilicity of these polymers decreases as the Tg decreases. It is considered that a high Tg makes it easier to maintain the porous structure and surface roughness of the surface site generated by irradiation.
尚、 親水性の発現と長期間保持のためには、 熱可塑性ポリマーの Tgはす くなくとも 160°C以上でなければならない。 照射部の親水性は少なくとも 数力月は持続できるが、 刷版として実用化するには、 親水性を半永久的に 持続させなければならない。 そのためには、 リン酸を主成分とする従来の オフセッ ト刷版の不感脂化法がそのまま適用できる。  In addition, the Tg of the thermoplastic polymer must be at least 160 ° C in order to exhibit hydrophilicity and maintain it for a long time. The hydrophilicity of the irradiated part can last for at least several months, but it must be maintained semipermanently for practical use as a printing plate. For this purpose, the conventional method for desensitizing offset printing plates containing phosphoric acid as a main component can be applied as it is.
実施例  Example
以下の実施例により本発明をさらに詳細に説明するが、 本発明はこれら に限定されない。 尚、 特に断らない限り、 「部」は重量基準であり、 粒状物 の体積%は重量%の後の括弧内に付記し、 粒状物の平均粒径、 真比重は力 タログの記載データによる。 また版材の走査露光方法は版材を移動テープ ルにて、 1 cm/secの速度で動かして行い、 実験に用いたパルスレーザーの パルス周波数はすべて 10Hzに固定した。 The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto. Unless otherwise specified, “parts” are based on weight, and the volume% of the granular material is added in parentheses after the weight%, and the average particle size and the true specific gravity of the granular material are based on the data described in the force tag. The scanning exposure method of the plate material was performed by moving the plate material with a moving table at a speed of 1 cm / sec. All pulse frequencies were fixed at 10 Hz.
実施例 1  Example 1
可溶性ポリイミ ド(商品名: Matriniid 5218、 比重 1. 2、 チバガイギ一社製) を DMF (ジメチルホルムアミ ド)で NV 8 %になるように調整した後、 シリカ 粒子(商品名:カープレクス BS304F、 平均粒径 5 z m、 比重 2、 シオノギ製 薬社製)を全固形分の 40% (28. 6%)になるように添加しガラスビーズを加 えてこの液をペイントシヱイカーに 2 hrかけてシリ力粒子を分散させた。 ガラスビーズをろ過後、 ろ液をアルミ板にバーコ一ター #16で塗布し、 130 でで 4分乾燥した。 この板を 300°Cで l hr熱処理した。 Nd : YAGレーザー(第 4同期モー ド 266nm、 スぺク トラ ♦ フィジックス社製、 クォンタ ' レイ GCR - 4)を用いてエネルギー密度 50ffiJ/cm2及びパルス幅 15nsecで、 この板を走 査露光した。 湿し水として水道水/酸性エッチ液(商品名: EU-3、 富士写真 フィル厶社製)/ IPA (ィソプロピルアルコール) =1650/16. 7/185. 3を使用し、 ィンキとして藍ィンキ(商品名: New Campion F Gloss 59藍、 大日本ィンキ 社製)を使用し、 オフセッ ト印刷機 (商品名:ハマダスター 700CDX、 ハマダ 印刷機社製)で印刷を行った。 印刷品質及び評価は表 2に示した。 After adjusting soluble polyimide (trade name: Matriniid 5218, specific gravity 1.2, manufactured by Ciba Geigy Corporation) to 8% NV with DMF (dimethylformamide), silica particles (trade name: Carplex BS304F, average) Particle size 5 zm, specific gravity 2, Shionogi Pharmaceutical Co., Ltd.) was added to make up 40% (28.6%) of the total solids, glass beads were added, and this solution was applied to a paint shaker for 2 hours. The sily particles were dispersed. After filtering the glass beads, the filtrate was applied to an aluminum plate using a bar coater # 16, and dried at 130 at 4 minutes. The plate was heat treated at 300 ° C. for l hr. This plate was scan-exposed with an energy density of 50 ffiJ / cm 2 and a pulse width of 15 nsec using a Nd: YAG laser (4th synchronous mode, 266 nm, Spectra, Quantix Ray GCR-4 manufactured by Physics). . Tap water / acid etchant (trade name: EU-3, manufactured by Fuji Photo Film Co., Ltd.) / IPA (isopropyl alcohol) = 1650/16. 7 / 185.3 as dampening water Printing was carried out using an offset printing machine (trade name: Hamadastar 700CDX, manufactured by Hamada Printing Machine Co., Ltd.) using an ink (trade name: New Campion F Gloss 59 indigo, manufactured by Dainippon Ink). Table 2 shows the print quality and evaluation.
実施例 2〜15  Examples 2 to 15
実施例 1において粒状物、 粒状物の添加量、 レーザー、 エネルギー密度 を下の表 1のように変えること以外は同様の方法で版作成、 露光、 印刷を 行った。 印刷品質及び評価は表 2に示した。 Plate production, exposure, and printing were performed in the same manner as in Example 1 except that the granular material, the amount of the granular material added, the laser, and the energy density were changed as shown in Table 1 below. Table 2 shows the print quality and evaluation.
Figure imgf000015_0001
Figure imgf000015_0001
", 2),3) : シリカ粒子 (比重: 2.2)、 日本ァエロジル社製 4) ·酸化チタン粒子 (比重: 3.7)、 日本ァエロジル社製 ", 2) , 3) : silica particles (specific gravity: 2.2), manufactured by Nippon Aerosil 4 ) · Titanium oxide particles (specific gravity: 3.7), manufactured by Nippon Aerosil
5) クレー粒子 (比重: 2.6)、 白石カルシウム社製  5) Clay particles (specific gravity: 2.6), manufactured by Shiraishi Calcium Co.
6) 酸化アルミニウム粒子 (比重: 3.2)、 日本ァエロジル社製 6) Aluminum oxide particles (specific gravity: 3.2), manufactured by Nippon Aerosil
7) 7)
.8) : シリカ粒子 (比重: 2)、 シオノギ製薬社製 8) : Silica particles (specific gravity: 2), manufactured by Shionogi
9) :酸化亜鉛粒子 (比重: 5.6)、 堺化学社製 9) : Zinc oxide particles (specific gravity: 5.6), manufactured by Sakai Chemical Co.
10 · クエステック社製 10 · Questec
1) ラムダ ·フィジック社製  1) Lambda Physic
12) ラムダ'フィジック社製 12) Lambda Physic
実施例 12と同等に刷版材を作成し印刷前にェッチ液(商品名: PPクリ一ン B、 曰研化学研究所製)でエッチング処理した後実施例 1と同様にして印刷 を行った。 印刷品質及び評価は表 2に示した。 A printing plate material was prepared in the same manner as in Example 12, and was subjected to etching treatment with an etchant (trade name: PP Clean B, manufactured by Kenken Kagaku Kenkyusho) before printing, followed by printing in the same manner as in Example 1. . Table 2 shows the print quality and evaluation.
実施例 17  Example 17
可溶性ポリイミ ド(商品名: Matrimid 5218、 比重 1. 2、 チバガイギ一社 製)を DMF (ジメチルホルムアミ ド)で NV 8 %になるように調整した後、 アル ミニゥム顔料 (商品名:アルペースト 5680NS) [アルミニウム含量 70%]、 平 均粒径 8. 2 / πι、 アルミニウムの比重 2. 7、 東洋アルミニウム社製)をアルミ ニゥム顔料として全固形分の 40% (22. 9%)になるように添加しガラスビー ズを加えてこの液をペイントシエイカーに 2 hrかけてアルミニウム顔料を 分散させた。 ガラスビーズをろ過後、 シランカップリング剤(商品名: SZ6 020、 東レ 'ダウコーニング' シリコーン社製)で表面処理したアルミ板に バーコ一ター # 16で塗布し、 130°Cで 4分乾燥した。 アルミ板をシランカツ プリング剤で処理する方法は、 1 %のメタノール溶液をアルミ板にバーコ 一ター # 8で塗布し 60°Cで乾燥後さらに 100°Cで 10分乾燥した。 Nd: YAGレ 一ザ一(第 2同期モード 533nm)を用いてエネルギー密度 100mJ/cm2及びパル ス幅 15nsecで、 得られた板を走査露光した。 実施例 1と同様にして印刷を 行った。 印刷品質及び評価は表 2に示した。 アルミ指示体との接着性も良 好であった。 Soluble polyimide (trade name: Matrimid 5218, specific gravity 1.2, manufactured by Ciba-Geigy Corporation) is adjusted to 8% NV with DMF (dimethylformamide), and then aluminum pigment (trade name: Alpaste 5680NS) ) [Aluminum content 70%], average particle size 8.2 / πι, specific gravity of aluminum 2.7, manufactured by Toyo Aluminum Co., Ltd. And a glass bead was added thereto, and this solution was dispersed in a paint shaker for 2 hours to disperse the aluminum pigment. After filtration of the glass beads, it was applied to an aluminum plate surface-treated with a silane coupling agent (trade name: SZ6020, manufactured by Toray 'Dow Corning' Silicone Co., Ltd.) using a bar coater # 16 and dried at 130 ° C for 4 minutes. . To treat the aluminum plate with a silane coupling agent, a 1% methanol solution was applied to the aluminum plate with a bar coater # 8, dried at 60 ° C, and further dried at 100 ° C for 10 minutes. The obtained plate was scanned and exposed at an energy density of 100 mJ / cm 2 and a pulse width of 15 nsec using a Nd: YAG laser (second synchronous mode 533 nm). Printing was performed in the same manner as in Example 1. Table 2 shows the print quality and evaluation. The adhesion to the aluminum indicator was also good.
実施例 18  Example 18
可溶性ポリイミ ド(商品名: liatrimid 5218、 比重 1. 2、 チバガイギ一社 製)を DMF (ジメチルホルムアミ ド)で NV 8 %になるように調整した後、 銅粒 子 (平均粒径 1 ιη、 比重 8. 9)を全固形分の 20% (3. 3%)になるように添加 しガラスビーズを加えてこの液をペイントシエイカーに 2 hrかけて銅粒子 を分散させた。 ガラスビーズをろ過後、 シランカップリング剤(商品名 : sSoluble polyimide (brand name: liatrimid 5218, specific gravity 1.2, manufactured by Ciba Geigy) was adjusted with DMF (dimethylformamide) to 8% NV, and then copper particles (average particle size 1 ιη, 8.9) to 20% (3.3%) of the total solids, add glass beads, and apply this liquid to a paint shaker for 2 hr. Was dispersed. After filtering the glass beads, the silane coupling agent (trade name: s
Z6020、 東レ ·ダウコ一二ング' シリコーン社製)で表面処理したアルミ板 にバーコ一ター # 16で塗布し、 130°Cで 4分乾燥した。 アルミ板をシラン カツプリング剤で処理する方法は、 1 %のメタノール溶液をアルミ板にバ ーコ一ター # 8で塗布し 60°Cで乾燥後さらに 100°Cで 10分乾燥した。 Nd: Y AGレーザー(第 2同期モード 533nm)を用いてエネルギー密度 200mJ m2及び パルス幅 15nsecで、 得られた板を走査露光した。 実施例 1と同様にして印 刷を行った。 印刷品質及び評価は表 2に示した。 アルミ支持体との接着性 も良好であった。 It was applied to an aluminum plate surface-treated with Z6020 (Toray Dow Corning Silicone Co., Ltd.) using a bar coater # 16 and dried at 130 ° C for 4 minutes. To treat the aluminum plate with a silane coupling agent, a 1% methanol solution was applied to the aluminum plate with a bar coater # 8, dried at 60 ° C, and further dried at 100 ° C for 10 minutes. The obtained plate was subjected to scanning exposure with an energy density of 200 mJm 2 and a pulse width of 15 nsec using a Nd: YAG laser (second synchronous mode 533 nm). Printing was performed in the same manner as in Example 1. Table 2 shows the print quality and evaluation. The adhesion to the aluminum support was also good.
実施例 19  Example 19
可溶性ポリイミ ド (商品名: Matrinid5218、 比重 1. 2、 チバガイギ一社製) を DMF (ジメチルホルムアミ ド)で NV 8 %になるように調整した後、 ニッケ ノレ (平均粒径 1 / m、 比重 8. 85)を全固形分の 20% (3. 3%)になるように添加 しガラスビーズを加えてこの液をペイントシエイカ一に 2 hrかけてニッケ ル粒子を分散させた。 ガラスビーズをろ過後、 シランカップリング剤(商 品名: SZ6020、 東レ 'ダウコ一二ンング · シリコーン社製)で表面処理し たアルミ板にバーコ一ター #16で塗布し、 130°Cで 4分乾燥した。 アルミ板 をシランカップリング剤で処理する方法は、 1 %のメタノール溶液をアル ミ板にバーコ一ター # 8で塗布し 60°Cで乾燥後さらに 100°Cで 10分乾燥した。  After adjusting soluble polyimide (trade name: Matrinid 5218, specific gravity 1.2, manufactured by Ciba-Geigy Co., Ltd.) to 8% NV with DMF (dimethylformamide), nickel (average particle diameter 1 / m, specific gravity) 8.85) was added to 20% (3.3%) of the total solids, glass beads were added, and this liquid was dispersed in a paint shaker for 2 hours to disperse nickel particles. After filtering the glass beads, apply it to an aluminum plate surface-treated with a silane coupling agent (trade name: SZ6020, manufactured by Toray Industries, Inc., Silicone Co., Ltd.) using a bar coater # 16, and then 4 minutes at 130 ° C. Dried. To treat the aluminum plate with a silane coupling agent, a 1% methanol solution was applied to the aluminum plate with a bar coater # 8, dried at 60 ° C, and further dried at 100 ° C for 10 minutes.
Nd:YAGレーザー(第 2同期モード 533nm)を用いてエネルギー密度 200mJ/cro2 及びパルス幅 15nsecで、 得られた板を走査露光した。 実施例 1と同様にし て印刷を行った。 印刷品質及び評価は表 2に示した。 アルミ支持体との接 着性も良好であった。 The obtained plate was scanned and exposed using an Nd: YAG laser (second synchronous mode 533 nm) at an energy density of 200 mJ / cro 2 and a pulse width of 15 nsec. Printing was performed in the same manner as in Example 1. Table 2 shows the print quality and evaluation. The adhesion to the aluminum support was also good.
実施例 20  Example 20
可溶性ポリィミ ド (商品名: Matrimid 5218、 比重 1. 2、 チバガイギ一社 製)を DMF (ジメチルホルムアミ ド)で NV 8 %になるように調整した後、 架橋 ァクリル樹脂マイクロゲル(商品名: AZP- 1430、 平均粒径 0. 48 x m、 比重 1. 1、 日本ペイント社製)を全固形分の 40% (42. 1% )になるように添加しガラ スビーズを加えてこの液をペイントシヱイカーに 2 hrかけて架橋樹脂粒子 を分散させた。 ガラスビーズをろ過後、 シランカップリ ング剤(商品名: S Z6020. 東レ ·ダウコ一ニング · シリコーン社製)で表面処理したアルミ板 にバーコ一ター #16で塗布し、 130°Cで 4分乾燥した。 アルミ板のシランカツ プリング剤での処理は、 1 %のメタノール溶液をアルミ板にバーコ一ター # 8板で塗布し、 60°Cで乾燥後さらに 100°Cで 10分乾燥することにより行つ た。 Nd: YAGレーザー(第 4同期モード 266nm)を用いてでエネルギー密度 10 OmJ/cm2及びパルス幅 15nsecで、 得られた板を走査露光した。 実施例 1と 同様にして印刷を行った。 印刷品質及び評価は表 2に示した。 Soluble polyimide (trade name: Matrimid 5218, specific gravity 1.2, Ciba-Geigy) Manufactured by DMF (dimethylformamide) to make the NV 8%, and then cross-linked acryl resin microgel (trade name: AZP-1430, average particle size 0.48 xm, specific gravity 1.1, Nippon Paint) Was added to make up to 40% (42.1%) of the total solids, glass beads were added, and this liquid was applied to a paint shaker for 2 hours to disperse the crosslinked resin particles. After filtering the glass beads, apply with a bar coater # 16 to an aluminum plate surface-treated with a silane coupling agent (trade name: S Z6020. Toray, Dow Corning, Silicone Co., Ltd.) and dry at 130 ° C for 4 minutes. did. Treatment of the aluminum plate with the silane coupling agent was performed by applying a 1% methanol solution to the aluminum plate with a bar coater # 8 plate, drying at 60 ° C, and then drying at 100 ° C for 10 minutes. . The obtained plate was scanned and exposed using an Nd: YAG laser (fourth synchronous mode, 266 nm) with an energy density of 10 OmJ / cm 2 and a pulse width of 15 nsec. Printing was performed in the same manner as in Example 1. Table 2 shows the print quality and evaluation.
実施例 21  Example 21
可溶性ポリイミ ド(商品名: Matrimid 5218、 比重 1. 2、 チバガイギ一社 製)を DMF (ジメチルホルムアミ ド)で NV 8 %になるように調整した後、 架橋 ポリメチルメタクリレート樹脂粒子 (商品名:テクポリマー MBX-4、 平均粒 径 4 /z m、 比重 1. 2、 積水化成品社製)を全固形分の 20% (20% )になるよう に添加しガラスビーズを加えてこの液をペイントシエイカーに 2 hrかけて 架橋樹脂粒子を分散させた。 ガラスビーズをろ過後、 シランカップリング 剤(商品名: SZ6083、 東レ 'ダウコ一二ング ' シリコーン社製)で表面処理 したアルミ板にバーコ一ター #16で塗布し、 130°Cで 4分乾燥した。 アルミ 板のシランカップリング剤での処理は、 1 %のメタノ一ル溶液をアルミ板 にバーコ一ター # 8板で塗布し 60°Cで乾燥後さらに 100°Cで 10分乾燥するこ とにより行った。 Nd: YAGレーザ一(第 4同期モード 266nm)を用いてェネル ギー密度 100m J/cm 2及びノ ルス幅 15nsecで、 得られた板を走査露光した。 実施例 1と同様にして印刷を行った。 印刷品質及び評価は表 2に示した。 実施例 22 Soluble polyimide (trade name: Matrimid 5218, specific gravity 1.2, manufactured by Ciba-Geigy Corporation) is adjusted to 8% NV with DMF (dimethylformamide), and then crosslinked polymethyl methacrylate resin particles (trade name: Techpolymer MBX-4, average particle size 4 / zm, specific gravity 1.2, manufactured by Sekisui Plastics Co., Ltd.) to 20% (20%) of the total solids, add glass beads, and paint this liquid. The crosslinked resin particles were dispersed in the shaker over 2 hours. After filtering the glass beads, apply it with a bar coater # 16 to an aluminum plate surface-treated with a silane coupling agent (trade name: SZ6083, manufactured by Toray 'Dauco One' Silicone) and dried at 130 ° C for 4 minutes did. The treatment of the aluminum plate with the silane coupling agent is performed by applying a 1% methanol solution to the aluminum plate with a bar coater # 8 plate, drying at 60 ° C, and further drying at 100 ° C for 10 minutes. went. Using a Nd: YAG laser (fourth synchronous mode, 266 nm), the obtained plate was scanned and exposed at an energy density of 100 mJ / cm 2 and a pulse width of 15 nsec. Printing was performed in the same manner as in Example 1. Table 2 shows the print quality and evaluation. Example 22
ポリアミック酸(商品名 : LARC-TPI、 NV=28. 6%、 固形分比重 1. 4、 三井 東圧化学社製)にシリカ粒子(商品名: カープレクス BS304F、 平均粒径 m、 比重 2、 シオノギ製薬社製)を固形分全体の 30% (23. 1%)になるように 添加した後、 DMAC (ジメチルァセトアミ ド)で NV10%に調整した。 ガラスビ ーズを加えてこの液をペイントシヱイカーに 2 hrかけてシリ力粒子を分散 させた。 ガラスビーズをろ過後、 ろ液をアルミ板にバーコ一ター #16で塗 布し、 130°Cで 4分乾燥した。 この板を 100°Cで l hr、 150°Cで l hr、 200°C で l hr、 300°Cで 2 hrと続いて熱処理を行いポリイミ ド化を完了させた。 N d: YAGレーザー(第 4同期モード 266nm)を用いてエネルギー密度 50niJ/cin2 及びパルス幅 15nsecで、 この板を走査露光した。 実施例 1と同様にして印 刷を行つた。 印刷品質及び評価は表 2に示した。 Polyamic acid (trade name: LARC-TPI, NV = 28.6%, solid specific gravity 1.4, manufactured by Mitsui Toatsu Chemicals, Inc.) and silica particles (trade name: Carplex BS304F, average particle size m, specific gravity 2, Shionogi) (Manufactured by Pharmaceutical Co., Ltd.) to 30% (23.1%) of the total solid content, and then adjusted to 10% NV with DMAC (dimethylacetamide). A glass bead was added, and this solution was applied to a paint shaker for 2 hours to disperse the particles of the sili-can. After filtering the glass beads, the filtrate was applied to an aluminum plate with a bar coater # 16 and dried at 130 ° C for 4 minutes. This plate was subjected to heat treatment at 100 ° C. for 1 hr, at 150 ° C. for 1 hr, at 200 ° C. for 1 hr, and at 300 ° C. for 2 hr to complete the polyimide treatment. This plate was scanned and exposed using an Nd: YAG laser (fourth synchronous mode, 266 nm) at an energy density of 50 niJ / cin 2 and a pulse width of 15 nsec. Printing was performed in the same manner as in Example 1. Table 2 shows the print quality and evaluation.
実施例 23  Example 23
ポリァミック酸 (商品名 : LARC-TPI、 NV=28. 6%、 固形分比重 1. 4、 三井 東圧化学社製)にテトラエトキシシランを計算上 Si02として全固形分の 30 % (23. 1%)になるように添加し DMAC (ジメチルァセトアミ ド)で NV10%に調 整し室温で 8 hr撹拌した。 その液にテトラエトキシシランのモル数に対し 1. 3倍のモル数に相当するィォン交換水とテトラエトキシシランのモル数 に対し 0. 01倍の HC1を添加した後室温で 6 hr撹拌した。 その液をアルミ板 にバーコ一ター #16で塗布し、 130°Cで 4分乾燥した。 この板を 100°Cで l h r、 150でで l hr、 200°Cで l hr、 300°Cで 2 hrと続いて熱処理を行いポリィ ミ ド化してポリイミ ド /シリカのコンポジッ トを形成した。 Nd: YAGレーザ 一(第 4同期モー ド 266mn)を用いてエネルギー密度 100nJ/cm2及びパルス幅 15nsecで、 この板を走査露光した。 実施例 1と同様にして印刷を行った。 印刷品質及び評価は表 2に示した。 Poriamikku acid (trade name:. LARC-TPI, NV = 28 6%, solids specific gravity 1.4, Mitsui East pressure chemical Co.) 30% of the total solids in the tetraethoxysilane as calculated on Si0 2 (23. 1%), adjusted to 10% NV with DMAC (dimethylacetamide), and stirred at room temperature for 8 hr. To the solution were added ion-exchanged water corresponding to 1.3 times the number of moles of tetraethoxysilane and HC1 0.01 times the number of moles of tetraethoxysilane, and the mixture was stirred at room temperature for 6 hr. The solution was applied to an aluminum plate with a bar coater # 16 and dried at 130 ° C for 4 minutes. The plate was then heat treated for lhr at 100 ° C, lhr at 150 ° C, lhr at 200 ° C, and 2hr at 300 ° C to form a polyimide to form a polyimide / silica composite. This plate was scanned and exposed with an energy density of 100 nJ / cm 2 and a pulse width of 15 nsec using a Nd: YAG laser (4th synchronous mode: 266 mn). Printing was performed in the same manner as in Example 1. Table 2 shows the print quality and evaluation.
実施例 24  Example 24
ポリアミ ック酸(商品名: LARC-TPI、 NV=28. 6%、 固形分比重 1. 4、 三井 東圧化学社製)にテトラエトキシチタンを計算上 Ti02として全固形分の 40 % (20. 1%)になるように添加し DMAC (ジメチルァセ卜アミ ド)で NV10%に調 整し室温で 8 hr撹拌した。 その液にテトラエトキシチタンのモル数に対し 1. 3倍のモル数に相当するイオン交換水とテトラエトキシチタンのモル数 に対し 0. 01倍の HC1を添加した後室温で 6 hr撹拌した。 その液をアルミ板 にバーコ一ター #10で塗布し、 130°Cで 4分乾燥した。 この板を 100。Cで l h r、 150°Cで l hr、 200°Cで l hr、 300°Cで 2 hrと続いて熱処理を行いポリィ ミ ド化してポリイミ ド /酸化チタンのコンポジッ トを形成した。 Nd : YAGレ 一ザ一(第 4同期モード 266ηιη)を用いてエネルギー密度 100mJ/cm2及びパル ス幅 15nsecでこの板を走査露光した。 実施例 1と同様にして印刷を行った。 印刷品質及び評価は表 2に示した。 Polyamide Kkusan (trade name:. LARC-TPI, NV = 28 6%, solids specific gravity 1.4, Mitsui East pressure chemical Co.) 40% of the total solids in tetraethoxy titanium as calculated on Ti0 2 ( 25.1%), adjusted to NV10% with DMAC (dimethyl acetate amide), and stirred at room temperature for 8 hr. Ion-exchanged water equivalent to 1.3 times the number of moles of tetraethoxytitanium and HC1 0.01% relative to the number of moles of tetraethoxytitanium were added to the solution, and the mixture was stirred at room temperature for 6 hr. The solution was applied to an aluminum plate with a bar coater # 10 and dried at 130 ° C for 4 minutes. 100 of this board. Heat treatment was continued for 1 hr at C, 1 hr at 150 ° C, 1 hr at 200 ° C, and 2 hr at 300 ° C to form a polyimide / titanium oxide composite. This plate was scanned and exposed using an Nd: YAG laser (fourth synchronous mode 266ηιη) at an energy density of 100 mJ / cm 2 and a pulse width of 15 nsec. Printing was performed in the same manner as in Example 1. Table 2 shows the print quality and evaluation.
実施例 25  Example 25
熱可塑性ポリイミ ド (商品名:オーラム、 比重 1. 33、 三井東圧化学社製) にシリカ粒子(商品名:カーブレタス BS304N、 平均粒径 9. 3〃 m、 比重 2、 シ オノギ製薬社製)を全固形分の 55% (44. 9%)添加し、 ニーダ一中で 300°Cで 約 30分間混練した。 混練物を取り出し、 140〜170°Cに加熱された金型に挿 入し、 ォスの金型とメスの金型を閉じ、 310〜360°Cに保ちながら、 プレス で加圧して厚さ 100 /z iDのフィルムに成形した。 成形条件は、 1 )成形温度: 310〜360°C、 2 )成形圧力: 210〜350kg/cm2、 3 )間隙設定: lOO /z m (ただし スぺーサー厚)、 4 )成形時間: 10分とした。 Thermoplastic polyimide (trade name: Aurum, specific gravity 1.33, manufactured by Mitsui Toatsu Chemicals, Inc.) and silica particles (trade name: Curve Lettuce BS304N, average particle size 9.3〃m, specific gravity 2, manufactured by Shionogi Pharmaceutical Co., Ltd.) ) Was added at 55% (44.9%) of the total solids and kneaded in a kneader at 300 ° C for about 30 minutes. Take out the kneaded material, insert it into a mold heated to 140 to 170 ° C, close the female mold and the female mold, and press with a press while maintaining the temperature at 310 to 360 ° C to obtain a thickness. Formed into 100 / z iD film. The molding conditions are: 1) molding temperature: 310-360 ° C, 2) molding pressure: 210-350 kg / cm 2 , 3) gap setting: lOO / zm (with spacer thickness), 4) molding time: 10 minutes And
Nd: YAGレーザー(第 4同期モード 266nm)を用いてエネルギー密度 lOOmJ/ cm2及びパルス幅 15nsecで、 得られたフィルムを走査露光した。 軽オフセッ ト用エッチ液(リコ一ファックスエッチ液)を水で希釈して、 湿し水とし、 印刷を行った。 インキはプロセスインキ(大日本インキ化学 工業社製、 CAPS-G)で上質紙 (金鸥 35kg)を使用した。 印刷品質及び評価は 表 2に示した。 The obtained film was subjected to scanning exposure with an energy density of 100 mJ / cm 2 and a pulse width of 15 nsec using a Nd: YAG laser (fourth synchronous mode, 266 nm). The light offset etch solution (Ricofax etch solution) was diluted with water to make a dampening solution, and printing was performed. The ink used was process ink (CAPS-G, manufactured by Dainippon Ink and Chemicals, Inc.), and high-quality paper (35 kg in gold) was used. The print quality and evaluation are shown in Table 2.
実施例 26  Example 26
ポリエーテルスルホン(商品名:ポリエーテルサルフォン(PES)、 比重 1. 37、 三井東圧化学社製)にシリカ粒子 (商品名: AER0SIL 130、 1次平均粒 径 16nm、 比重 2. 2、 日本ァエロジル社製)を、 全固形分の 40% (29. 4%)にな るように添加し、 下記の成形条件にしたがうこと以外は実施例 19と同様に して、 記録層のフィルムを成形した。 成形条件は、 1 )成形温度: 177°C、 2 )成形圧力: 210〜350kg/cm2、 3 )間隙設定: lOO ^ m (ただしスぺーサー 厚)、 4 )成形時間: 10分とした。 実施例 1で用いたのと同じ Nd: YAGレー ザ一(第 4同期モード 266nm)を用いてエネルギー密度 lOOmJ/cm2及びパルス 幅 15nsecで、 得られたフィルムを走査露光した。 Polyethersulfone (trade name: polyether sulfone (PES), specific gravity 1.37, manufactured by Mitsui Toatsu Chemicals, Inc.) and silica particles (trade name: AER0SIL 130, primary average particle diameter 16 nm, specific gravity 2.2, Japan AEROSIL Co., Ltd.) was added to make up 40% (29.4%) of the total solids, and the recording layer film was formed in the same manner as in Example 19 except that the following molding conditions were used. did. The molding conditions were 1) molding temperature: 177 ° C, 2) molding pressure: 210 to 350 kg / cm 2 , 3) gap setting: lOO ^ m (though spacer thickness), and 4) molding time: 10 minutes. . Using the same Nd: YAG laser (the fourth synchronous mode, 266 nm) used in Example 1, the obtained film was scanned and exposed at an energy density of 100 mJ / cm 2 and a pulse width of 15 nsec.
実施例 25記載の方法にしたがって印刷を行った。 印刷品質及び評価は表 2に不した。  Printing was performed according to the method described in Example 25. The print quality and evaluation are not shown in Table 2.
実施例 27  Example 27
ポリフエ二ルキノザリン(比重 1. 6)にシリカ粒子(商品名: カープレクス BS304F、 平均粒径 5 m、 比重 2、 シオノギ製薬社製)を、 全固形分の 30% (25. 5%)になるように添加し、 下記の成形条件にしたがうこと以外は実施 例 19と同様にして、 記録層のフィルムを成形した。 成形条件は、 1 )成形 温度: 177°C、 2 )成形圧力: 210〜350kg/cm2、 3 )間隙設定: 100 m (ただ しスぺーサー厚)、 4 )成形時間: 10分とした。 実施例 1で用いたのと同じ Nd: YAGレーザー(第 4同期モード 266nm)を用いてエネルギー密度 100mJ/cm 2及びパルス幅 15nsecで、 得られたフィルムを走査露光した。 実施例 25記載の方法にしたがって印刷を行った。 印刷品質及び評価は表 2に示した。 Polyphenylquinosaline (specific gravity 1.6) with silica particles (trade name: Carplex BS304F, average particle size 5 m, specific gravity 2, Shionogi Pharmaceutical Co., Ltd.) to 30% (25.5%) of the total solids And a recording layer film was formed in the same manner as in Example 19, except that the following conditions were applied. The molding conditions were: 1) molding temperature: 177 ° C, 2) molding pressure: 210-350 kg / cm 2 , 3) gap setting: 100 m (but spacer thickness), 4) molding time: 10 minutes . Using the same Nd: YAG laser (the fourth synchronous mode, 266 nm) used in Example 1, the obtained film was scanned and exposed at an energy density of 100 mJ / cm 2 and a pulse width of 15 nsec. Printing was performed according to the method described in Example 25. Table 2 shows the print quality and evaluation.
実施例 28  Example 28
有機溶剤可溶性の四フッ化エチレンと 2, 2ビス(卜リフルォロメチル) -4, 5-ジフルォ口- 1, 3ジォキソレン共重合体(比重 1. 6)をフッ化炭化水素で NV 8 %になるように調整した後、 シリカ粒子(商品名 : AEROSIL R972、 1次 平均粒径 16nm、 比重 2. 2、 日本ァエロジル社製)を全固形分の 20% (15. 4%) 添加しガラスビーズを加えてこの液をペイントシエイカ一に 2 hrかけてシ リカ粒子を分散させた。 ガラスビーズをろ過後、 ろ液をアルミ板にバーコ 一ター #10で塗布し、 80°Cで 4分乾燥した。 この板を 25%のトリ- C9F1 8置 換トリアジンでドープした後、 200°C、 l hr加熱してから遠紫外線を照射 すると、 紫外線吸収係数が向上 (吸光度 0. 14、 波長 240nm)した。 実施例 1 で用いたのと同じ Nd: YAGレーザー(第 4同期モ一ド 266nm)を用いてェネル ギー密度 lOOraJ/cm2及びパルス幅 15nsecで、 得られた板を走査露光した。 実施例 1と同等に印刷を行った。 印刷品質及び評価は表 2に示した。 Organic solvent soluble ethylene tetrafluoride and 2,2-bis (trifluoromethyl) -4,5-difluoro-1,3-dioxolene copolymer (specific gravity 1.6) are converted to 8% NV with fluorocarbon. After adjusting to 20% (15.4%) of silica particles (trade name: AEROSIL R972, primary average particle size 16 nm, specific gravity 2.2, manufactured by Nippon Aerosil Co., Ltd.) and adding glass beads The leverage solution was applied to a paint shaker for 2 hr to disperse silica particles. After filtering the glass beads, the filtrate was applied to an aluminum plate with a bar coater # 10 and dried at 80 ° C for 4 minutes. After doping this plate with 25% tri-C 9 F 18 -substituted triazine, heating at 200 ° C for lhr and then irradiating with far ultraviolet light, the ultraviolet absorption coefficient improves (absorbance 0.14, wavelength 240nm) )did. The obtained plate was subjected to scanning exposure using the same Nd: YAG laser (the fourth synchronization mode of 266 nm) as used in Example 1 at an energy density of lOOraJ / cm 2 and a pulse width of 15 nsec. Printing was performed in the same manner as in Example 1. Table 2 shows the print quality and evaluation.
実施例 29  Example 29
可溶性ポリイミ ド(商品名: Matrimid 5218、 比重 1. 2、 チバガイギ一社 製)を DMF (ジメチルホルムアミ ド)で NV 8 %になるように調整した後、 シリ 力粒子(商品名 :カープレクス BS304F、 平均粒径 5 // m、 比重 2、 シオノギ 製薬社製)を全固形分の 30% (20. 5%)になるように添加しガラスビーズを 加えてこの液をペイントシヱイカーに 2 hrかけてシリカ粒子を分散させた。 ガラスビーズをろ過後、 シランカップリング剤(商品名 : SZ6020、 東レ * ダウコ一二ング. シリコーン社製)で表面処理したアルミ板にバーコ一夕 一 #16で塗布し、 130°Cで 4分乾燥した。 アルミ板をシランカップリング剤 で処理する方法は 1 %のメタノール溶液をアルミ板にバーコ一ター # 8板 で塗布し 60°Cで乾燥後さらに 100°Cで 10分乾燥した。 Nd: YAGレーザー(第 4同期モード 266nra)を用いてエネルギー密度 50mJ/cm2及びパルス幅 15nsec で、 得られた板を走査露光した。 実施例 1と同様にして印刷を行った。 印 刷品質及び評価は表 2に示した。 アルミ支持体との接着性も良好であった。 After adjusting the soluble polyimide (trade name: Matrimid 5218, specific gravity 1.2, manufactured by Ciba Geigy Co., Ltd.) to 8% NV with DMF (dimethylformamide), the silica particles (trade name: Carplex BS304F, Average particle size 5 // m, specific gravity 2, Shionogi Pharmaceutical Co., Ltd.) is added to 30% (20.5%) of the total solids, glass beads are added, and this liquid is added to paint shaker for 2 hr. To disperse the silica particles. After filtering the glass beads, apply it to an aluminum plate surface-treated with a silane coupling agent (trade name: SZ6020, Toray * Dawko Isingu, Silicone Co., Ltd.) at # 16 with Barco # 1 and 4 minutes at 130 ° C Dried. To treat an aluminum plate with a silane coupling agent, apply a 1% methanol solution to the aluminum plate with a bar coater # 8 plate And dried at 60 ° C for 10 minutes at 100 ° C. Using a Nd: YAG laser (fourth synchronous mode, 266nra), the obtained plate was subjected to scanning exposure at an energy density of 50 mJ / cm 2 and a pulse width of 15 nsec. Printing was performed in the same manner as in Example 1. Table 2 shows the printing quality and evaluation. The adhesion to the aluminum support was also good.
実施例 30  Example 30
可溶性ポリイミ ド(商品名: Matrimid 5218、 比重 1. 2、 チバガイギ一社 製)を DMF (ジメチルホルムアミ ド)で NV 8 %になるように調整した後、 シリ 力粒子(商品名:カープレタス BS304F、 平均粒径 5 // m、 比重 2、 シオノギ 製薬社製)を可溶性ポリイミ ドに対し 30% (20. 5%)添加しガラスビーズを 加えてこの液をペイントシヱイカーに 2 hrかけてシリ力粒子を分散させた。 ガラスビーズをろ過後、 ろ液を 2液硬化型ゥレタン接着層を上に設けてな るアルミ板にバーコ一ター #10で塗布し、 130°Cで 4分乾燥した。 接着層は ポリエステル系接着剤(商品名:ハイボン 7031レ 日立化成ポリマー社製)/ 硬化剤 (商品名: タケネート D- 101、 武田薬品工業社製)/ジブチル錫ジラウ レート /酢酸ェチル =40部/ 2部 /0. 4部 /57. 6部の溶液をバーコ一ター # 8で アルミ板に塗布し、 90°Cで 5分乾燥することにより設けた。 Nd : YAGレー ザ一(第 4同期モード 266ηπι)を用いてエネルギー密度 50mJ/ciD 2及びパルス 幅 15nsecで、 得られた板を走査露光した。 実施例 1と同様にして印刷を行つ た。 印刷品質及び評価は表 2に示した。 アルミ支持体との接着性も良好で あった。 After adjusting soluble polyimide (trade name: Matrimid 5218, specific gravity 1.2, manufactured by Ciba Geigy Co., Ltd.) to 8% NV with DMF (dimethylformamide), the silica particles (trade name: Carpretas BS304F) , Average particle size 5 // m, specific gravity 2, Shionogi Pharmaceutical Co., Ltd.) was added to soluble polyimide at 30% (20.5%), glass beads were added, and this solution was applied to a paint shaker for 2 hours. The sily particles were dispersed. After filtering the glass beads, the filtrate was applied to an aluminum plate provided with a two-component curing type urethane adhesive layer thereon using a bar coater # 10, and dried at 130 ° C for 4 minutes. The adhesive layer is a polyester-based adhesive (trade name: Hybon 7031, manufactured by Hitachi Chemical Co., Ltd.) / Curing agent (trade name: Takenate D-101, manufactured by Takeda Pharmaceutical Co., Ltd.) / Dibutyltin dilaurate / ethyl acetate = 40 parts / 2 parts / 0.4 parts / 57.6 parts of the solution was applied to an aluminum plate with a bar coater # 8 and dried at 90 ° C. for 5 minutes. Using a Nd: YAG laser (4th synchronous mode 266ηπι), the obtained plate was scanned and exposed at an energy density of 50 mJ / ciD 2 and a pulse width of 15 nsec. Printing was performed in the same manner as in Example 1. Table 2 shows the print quality and evaluation. The adhesion to the aluminum support was also good.
実施例 31  Example 31
可溶性ポリイミ ド(商品名: Matrimid 5218、 比重 1. 2、 チバガイギ一社 製)と添加剤として染料ローダミン 6 Gを可溶性ポリィミ ドに対して 1 %添 加し DMF (ジメチルホルムアミ ド)で NV 8 %になるように調整した後、 シリ 力粒子 (商品名:カープレクス BS304F、 平均粒径 5 ζ πι、 比重 2、 シオノギ 製薬社製)を全固形分の 20% (12. 9% )になるように添加しガラスビーズを 加えてこの液をペイントシヱイカーに 2 hrかけてシリ力粒子を分散させた。 ガラスビーズをろ過後、 シランカツプリング剤(商品名: SZ6083、 東レ · ダウコ一二ング. シリコーン社製)で表面処理したアルミ板にバーコ一夕 一 #10で塗布し、 130°Cで 4分乾燥した。 アルミ板のシランカップリング剤 での処理は 1 %のメタノール溶液をアルミ板にバーコ一ター # 8板で塗布 し 60°Cで乾燥後さらに 100°Cで 10分乾燥することにより行った。 Nd: YAGレ 一ザ一(第 2同期モード 533ηπι)を用いてエネルギー密度 100mJ/cm2及びパル ス幅 15nsecで、 得られた板を走査露光した。 露光された部分は染料が退色 して潜像があらわれた。 この板を実施例 1と同様にして印刷を行った。 印 刷品質及び評価は表 2に示した。 アルミ支持体との接着性も良好であった。 Soluble polyimide (trade name: Matrimid 5218, specific gravity 1.2, manufactured by Ciba Geigy Co., Ltd.) and 1% of rhodamine 6G as an additive to soluble polyimide were added to NV8 with DMF (dimethylformamide). %, And then adjust the particle size (product name: Carplex BS304F, average particle size 5ζ πι, specific gravity 2, Shionogi (Manufactured by Pharmaceutical Co., Ltd.) was added to make up 20% (12.9%) of the total solids, glass beads were added, and the solution was dispersed on a paint shaker for 2 hours to disperse the particles of silicic acid. After filtering the glass beads, apply it to an aluminum plate surface-treated with a silane coupling agent (trade name: SZ6083, Toray Duco One Silicone Co., Ltd.) at # 10 with Barco # 10, and 4 minutes at 130 ° C Dried. The treatment of the aluminum plate with the silane coupling agent was performed by applying a 1% methanol solution to the aluminum plate with a bar coater # 8 plate, drying at 60 ° C, and further drying at 100 ° C for 10 minutes. The obtained plate was scanned and exposed at an energy density of 100 mJ / cm 2 and a pulse width of 15 nsec using a Nd: YAG laser (second synchronous mode 533ηπι). In the exposed area, the dye faded and a latent image appeared. This plate was printed in the same manner as in Example 1. Table 2 shows the printing quality and evaluation. The adhesion to the aluminum support was also good.
実施例 32  Example 32
可溶性ポリイミ ド(商品名: ilatrimid 5218、 比重 1. 2、 チバガイギ一社 製)と添加剤としてべンゾフ Xノンを可溶性ポリイミ ドに対して 1 %添加 し DMF (ジメチルホルムアミ ド)で NV 8 %になるように調整した後、 シリカ 粒子(商品名:カープレクス BS304F、 平均粒径 5 ^ m、 比重 2、 シオノギ製 薬社製)を全固形分の 20% (12. 9%)になるように添加しガラスビーズを加 えてこの液をペイントシヱイカーに 2 hrかけてシリ力粒子を分散させた。 ガラスビーズをろ過後、 シランカップリング剤(商品名 : SZ6083、 東レ ' ダウコ一二ング . シリコーン社製)で表面処理したアルミ板にバーコ一夕 一 #10で塗布し、 130°Cで 4分乾燥した。 アルミ板のシランカップリング剤 での処理は 1 %のメタノール溶液をアルミ板にバーコ一夕一 # 8板で塗布 し 60°Cで乾燥後さらに 100°Cで 10分乾燥することにより行った。 Nd: YAGレ 一ザ一(第 2同期モード 358nm)を用いてエネルギー密度 50mJ/cm2及びパル ス幅 15nsecで、 得られた板を走査露光した。 この板を実施例 1と同様にし て印刷を行った。 印刷品質及び評価は表 2に示した。 アルミ支持体との接 着性も良好であった。 1% of soluble polyimide (trade name: ilatrimid 5218, specific gravity 1.2, manufactured by Ciba Geigy) and Benzov Xnon as an additive are added to soluble polyimide and DMF (dimethylformamide) NV 8% After that, the silica particles (trade name: Carplex BS304F, average particle size 5 ^ m, specific gravity 2, Shionogi Pharmaceutical Co., Ltd.) were adjusted to 20% (12.9%) of the total solids. The glass beads were added, and the solution was dispersed in a paint shaker for 2 hours to disperse the particles. After filtering the glass beads, apply it to an aluminum plate surface-treated with a silane coupling agent (trade name: SZ6083, Toray's Dawco One Silicone Co., Ltd.) at # 10 with Barco # 10, and 4 minutes at 130 ° C Dried. Treatment of the aluminum plate with the silane coupling agent was performed by applying a 1% methanol solution to the aluminum plate using a Verco # 8 plate, drying at 60 ° C, and further drying at 100 ° C for 10 minutes. The obtained plate was scanned and exposed using an Nd: YAG laser (second synchronous mode: 358 nm) at an energy density of 50 mJ / cm 2 and a pulse width of 15 nsec. This plate is the same as in Example 1 Printing. Table 2 shows the print quality and evaluation. The adhesion to the aluminum support was also good.
比較例 1  Comparative Example 1
実施例 1においてシリ力粒子を除く以外は同様の方法で版作成、 露光、 印刷をおこなった。 表 2に印刷品質を示したように実施例 1と比べると回 復性が劣ることがわかる。  A plate was prepared, exposed, and printed in the same manner as in Example 1 except that the particles of the sily force were removed. As shown in Table 2, the print quality is lower than in Example 1 in recoverability.
比較例 2  Comparative Example 2
実施例 22においてシリ力粒子を除く以外は同様の方法で版作成、 露光、 印刷をおこなった。 表 2に印刷品質を示したように実施例 22と比べると回 復性が劣ることがわかる。  A plate was prepared, exposed, and printed in the same manner as in Example 22 except that the particles of the sily force were removed. As shown in Table 2, the print quality is lower than that of Example 22.
比較例 3  Comparative Example 3
実施例 25においてシリ力粒子を除く以外は同様の方法でフィルム成型、 露光、 印刷をおこなった。 表 2に印刷品質を示したように実施例 25と比べ ると回復性が劣ることがわかる。  Film forming, exposure, and printing were performed in the same manner as in Example 25 except that the particles of the sily force were removed. As shown in Table 2, the print quality is inferior to Example 25 in recoverability.
比較例 4  Comparative Example 4
実施例 26においてシリ力粒子を除く以外は同様の方法でフィルム成型、 露光、 印刷をおこなった。 表 2に印刷品質を示したように実施例 26と比べ ると回復性が劣ることがわかる。  Film forming, exposure, and printing were performed in the same manner as in Example 26 except that the particles of the sily force were removed. As shown in Table 2, the print quality is lower than that of Example 26 in recoverability.
比較例 5  Comparative Example 5
実施例 27においてシリ力粒子を除く以外は同様の方法でフィルム成型、 露光、 印刷をおこなった。 表 2に印刷品質を示したように実施例 27と比べ ると回復性が劣ることがわかる。  Film forming, exposure, and printing were performed in the same manner as in Example 27 except that the silicide particles were omitted. As shown in Table 2, the print quality is lower in recoverability than in Example 27.
比較例 6  Comparative Example 6
実施例 28においてシリ力粒子を除く以外は同様の方法で版作成、 露光、 印刷をおこなった。 表 2に印刷品質を示したように実施例 28と比べると回 復性が劣ることがわかる, A plate was prepared, exposed, and printed in the same manner as in Example 28 except that the particles of the sily force were removed. Table 2 shows the print quality compared to Example 28 as shown in the print quality. You can see that the reversion is inferior,
表 2 Table 2
tat  tat
実施例 回復性 地汚れ 耐刷性 Example Recoverability Background dirt Printing durability
1 〇 ϋ 5  1 〇 ϋ 5
2 〇 〇 6  2 〇 〇 6
3 Δ 〇 4  3 Δ 〇 4
4 〇 〇 5 「  4 〇 〇 5 “
5 リ 〇 5  5 〇 〇 5
6 リ 〇 4  6 〇 〇 4
1 Δ〜リ  1 Δ ~
o 〇 4  o 〇 4
8 Δ 〇 3  8 Δ 〇 3
9 Δ 〇 3  9 Δ 〇 3
10 リ 〇 3  10 〇 〇 3
11 リ 〇 5  11 Li 〇 5
12 Δ 〇 2  12 Δ 〇 2
13 〇 〇 5  13 〇 〇 5
14 〇 〇 6  14 〇 〇 6
15 〇 〇 5  15 〇 〇 5
16 Δ〜〇 〇 4  16 Δ ~ 〇 〇 4
17 Δ 〇 3  17 Δ 〇 3
18 Δ 〇 2  18 Δ 〇 2
19 Δ 〇 2  19 Δ 〇 2
20 △〜〇 〇 3  20 △ 〜〇 〇 3
21 Δ 〇 2  21 Δ 〇 2
22 〇 〇 5  22 〇 〇 5
23 Ο 〇 3  23 Ο 〇 3
24 △〜〇 〇 4  24 △ 〜〇 〇 4
25 Δ 〇 1  25 Δ 〇 1
26 Δ 〇 1  26 Δ 〇 1
27 Δ 〇 1  27 Δ 〇 1
28 Δ 〇 2  28 Δ 〇 2
29 〇 〇 8  29 〇 〇 8
30 〇 〇 7  30 〇 〇 7
01  01
ύ丄 リ o o  ύ 丄 ri o o
32 〇 〇 8  32 〇 〇 8
比較 1 X 〇 0. 3 Compare 1 X 〇 0.3
比較 2 Δ 〇 0. 5 Comparison 2 Δ 〇 0.5
比較 3 X 〇 0. 2 Compare 3 X 〇 0.2
比較 4 X 〇 0. 2 Compare 4 X 〇 0.2
比較 5 X 〇 0. 2 Compare 5 X 〇 0.2
比較 6 X 〇 0. 3 Compare 6 X 〇 0.3
PS版 d 〇 〇 5〜10e PS version d 〇 〇 5 ~ 10 e
a) インキで版を全面汚した後、 印刷可能になるかどうかを調べたa) After printing the plate completely with ink, we checked whether it could be printed.
〇…回復; Δ· 部回復; X…回復せず 〇… Recovery; Δ · Recovery; X… No recovery
b) 印刷時の地汚れの有無を目視評価した 〇…地汚れなし: X…地汚れあり b) The presence or absence of background stain during printing was visually evaluated. 〇… No background stain: X… Background stain
C) 印刷可能部数を表し、 数字の単位は「万枚」である C) Indicates the number of copies that can be printed.
d) 富士写真フィルム社製の PS版「商品名;ポジタイプ PS-PLATE FPSJ e) 富士写真フィルムのカタログより転載 d) Fuji Photo Film PS version "Product name; Positive type PS-PLATE FPSJ" e) Reprinted from Fuji Photo Film catalog
発明の効果 The invention's effect
本発明は、 ガラス転移温度 (以下 Tgと略記する)および紫外線吸光度が高 い汎用の熱可塑性ポリマー(若しくは熱可塑性ポリマーと添加剤)中に無機 微粒子、 金属微粒子または有機微粒子を分散させたコーティング膜あるい はフィルム上に直接レーザー描画する。 その結果、 記録層表面のレーザー 光照射部分において保水性に優れ、 印刷物に地汚れが生じ難いレーザーダ ィレク ト製版用平版刷版材が提供され、 印刷コストの低減化、 製版環境の クリーン化、 材料供給不安を無くするなどの効果をもたらす。  The present invention provides a coating film in which inorganic fine particles, metal fine particles or organic fine particles are dispersed in a general-purpose thermoplastic polymer (or a thermoplastic polymer and an additive) having a high glass transition temperature (hereinafter abbreviated as Tg) and a high ultraviolet absorbance. Alternatively, write laser directly on the film. As a result, a lithographic printing plate material for laser direct plate making that has excellent water retention in the laser light-irradiated portion of the recording layer surface and is less likely to cause soiling on printed matter is provided, reducing printing costs, making the plate making environment cleaner, and improving materials. It brings effects such as eliminating supply anxiety.

Claims

請求の範囲 The scope of the claims
1 . パルス発振レーザ一を照射して得られる記録層を有するレーザーダ ィレク ト製版用平版刷版材において、 当該記録層が紫外部に吸収帯をもつ 熱可塑性ポリマーでなるマトリックスとその中に分散された粒状物とを有 することを特徴とするレーザーダイレク ト製版用平版刷版材。  1. In a lithographic printing plate material for laser direct plate making having a recording layer obtained by irradiating a pulsed laser, the recording layer is dispersed in a matrix made of a thermoplastic polymer having an ultraviolet absorption band. A lithographic printing plate material for laser direct plate making characterized by having a granular material.
2. 前記マトリックスの中に、 さらに添加剤を有することを特徴とする 請求項 1記載の平版刷版材。  2. The lithographic printing plate material according to claim 1, wherein the matrix further contains an additive.
3. パルス発振レーザーが多モード Nd: YAGレーザー、 エキシマレーザ 一、チタン-サファイア-レーザー、 窒素ガスレーザー、 鋦ガスレーザー、 ガリゥ厶砒素半導体レーザーである請求項 1記載の平版刷版材。  3. The lithographic printing plate material according to claim 1, wherein the pulsed laser is a multimode Nd: YAG laser, excimer laser, titanium-sapphire-laser, nitrogen gas laser, nitrogen gas laser, or gallium arsenide semiconductor laser.
4. 前記熱可塑性ポリマーが 160°C以上のガラス転移温度、 及び l x lO2 cnr1以上のレーザーの発振波長における吸光度を有する請求項 1記載の平 版刷版材 4. The lithographic printing plate material according to claim 1, wherein the thermoplastic polymer has a glass transition temperature of 160 ° C. or more, and an absorbance at a laser oscillation wavelength of 1 × 10 2 cnr 1 or more.
5. 前記熱可塑性ポリマーが縮合型ポリイミ ド樹脂、 ポリフエ二ルキノ ザリン及びポリスルホンからなる群から選択される少なくとも一種である 請求項 1記載の平版刷版材。  5. The lithographic printing plate material according to claim 1, wherein the thermoplastic polymer is at least one selected from the group consisting of a condensation type polyimide resin, polyphenylquinosaline and polysulfone.
6. 前記粒状物が、 酸化亜鉛、 二酸化チタン、 ホワイ 卜カーボン及びク レーからなる群から選択される無機粒子、 またはアルミニウム、 銅及びニッ ケルからなる群から選択される金属粒子である請求項 1記載の平版刷版材。  6. The particulate matter is an inorganic particle selected from the group consisting of zinc oxide, titanium dioxide, white carbon, and clay, or a metal particle selected from the group consisting of aluminum, copper, and nickel. The lithographic printing plate material described.
7. 前記粒状物が 10 πι以下の平均粒径を有する請求項 1記載の平版刷 版材。  7. The lithographic printing plate material according to claim 1, wherein the granular material has an average particle size of 10 πι or less.
8. 前記粒状物が全組成物を基準にして 2 ~50体積%の量で記録層中に 含有される請求項 1記載の平版刷版材。  8. The lithographic printing plate material according to claim 1, wherein the particulate matter is contained in the recording layer in an amount of 2 to 50% by volume based on the total composition.
9. 前記粒状物が架橋された樹脂でなる有機粒子である請求項 1記載の 平 fe刷版材。 9. The flat printing plate material according to claim 1, wherein the particulate matter is an organic particle made of a crosslinked resin.
10. 前記粒状物が 0. 01〜: の平均粒径を有する請求項 1記載の平版 刷版材 10. The lithographic printing plate material according to claim 1, wherein the granular material has an average particle size of 0.01 to:
11. 前記粒状物が全組成物を基準にして 3〜50体積%の量で記録層中に 含有される請求項 1記載の平版刷版材。  11. The lithographic printing plate material according to claim 1, wherein the particulate matter is contained in the recording layer in an amount of 3 to 50% by volume based on the total composition.
12. a)請求項 1記載の平版刷版材を提供する工程;  12. a) providing a lithographic printing plate according to claim 1;
b)該平版刷版材の記録層の表面を、 パルス発振レーザ一光で画像に応じ て照射することにより、 照射部分を親水化する工程:及び  b) irradiating the surface of the recording layer of the lithographic printing plate material with an image of a pulsed laser beam according to an image, thereby hydrophilizing an irradiated portion:
c)平版印刷用ィンキを記録層の表面に付与して印刷する工程; を包含するオフセッ ト印刷方法。  c) applying a lithographic printing ink to the surface of the recording layer and printing.
PCT/JP1997/000268 1996-02-05 1997-02-04 Lithographic plate material for laser direct makeup, and printing method using same WO1997028007A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1866696 1996-02-05
JP8/18666 1996-02-05

Publications (1)

Publication Number Publication Date
WO1997028007A1 true WO1997028007A1 (en) 1997-08-07

Family

ID=11977942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/000268 WO1997028007A1 (en) 1996-02-05 1997-02-04 Lithographic plate material for laser direct makeup, and printing method using same

Country Status (1)

Country Link
WO (1) WO1997028007A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999004974A1 (en) * 1997-07-25 1999-02-04 Kodak Polychrome Graphics Single layer direct write lithographic printing plates

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06199064A (en) * 1992-07-20 1994-07-19 Presstek Inc Lithography printing plate to be used for laser discharge imaging device
JPH071850A (en) * 1993-04-22 1995-01-06 Asahi Chem Ind Co Ltd Novel thermal direct planographic base plate and production thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06199064A (en) * 1992-07-20 1994-07-19 Presstek Inc Lithography printing plate to be used for laser discharge imaging device
JPH071850A (en) * 1993-04-22 1995-01-06 Asahi Chem Ind Co Ltd Novel thermal direct planographic base plate and production thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999004974A1 (en) * 1997-07-25 1999-02-04 Kodak Polychrome Graphics Single layer direct write lithographic printing plates
US6014930A (en) * 1997-07-25 2000-01-18 Kodak Polychrome Graphics Llc Single layer direct write lithographic printing plates

Similar Documents

Publication Publication Date Title
US4588674A (en) Laser imaging materials comprising carbon black in overlayer
EP1488285B1 (en) Processless digitally imaged printing plate using microspheres
JP4808322B2 (en) Use of graft copolymers for the production of laser-engravable letterpress printing elements
CN105372935B (en) can directly be put in printing and exempt from to handle thermosensitive version
US6880461B2 (en) Method for producing flexo printing forms by means of laser-direct engraving
JPH11268413A (en) Heat-sensitive composition and original plate for lithographic printing plate employing this and manufacture of printing plate
CN104730865A (en) Negative image treatment-free lithograph plate
JPH09171259A (en) Manufacture of gravure printing plate by photosensitive polymer and gravure printing plate obtained by it
CN1771136A (en) Imageable element containing silicate-coated polymer particles
US5721087A (en) Formation of lithographic printing plate requiring no fountain solution
JPH10254143A (en) Manufacture of positive-action planographic printing plate
JP4442187B2 (en) Photosensitive resin printing plate precursor, method for producing the same, and method for producing resin relief printing plate using the same
US20020009671A1 (en) Positive-working ir-sensitive mixture
JP2009139599A (en) Photosensitive resin printing plate original form
JPH06186743A (en) Use of alkali-soluble photopolymer in colorproofing structure
WO1997028007A1 (en) Lithographic plate material for laser direct makeup, and printing method using same
JPH0929926A (en) Original plate for planographic printing plate, planographic printing plate and production thereof
WO2008067232A2 (en) Laser imaging coating and methods for imaging
KR20010049734A (en) Image forming composition, image recording material comprising the same, and process of image formation
JPS6119027B2 (en)
WO2002011996A1 (en) Thermo-sensitive recording type lithographical block material, method of making up lithographical block, and lithographical block made up by the making up method
JPH01238935A (en) Manufacture of lithography printing plate
JPH09272270A (en) Lithographic machine plate material for laser direct process and printing method employing this
JP3615288B2 (en) Film for creating a printing manuscript and method for producing a final manuscript film for printing using the same
ES2266667T3 (en) PHOTOSENSIBLE PLATE.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase