WO1997019365A1 - Radar device for a vehicle, particularly a motor vehicle - Google Patents

Radar device for a vehicle, particularly a motor vehicle Download PDF

Info

Publication number
WO1997019365A1
WO1997019365A1 PCT/FR1996/001823 FR9601823W WO9719365A1 WO 1997019365 A1 WO1997019365 A1 WO 1997019365A1 FR 9601823 W FR9601823 W FR 9601823W WO 9719365 A1 WO9719365 A1 WO 9719365A1
Authority
WO
WIPO (PCT)
Prior art keywords
intermediate frequency
signal
input
mixer
signals
Prior art date
Application number
PCT/FR1996/001823
Other languages
French (fr)
Inventor
Maurice Callac
Pascal Cornic
Nathalie Jan
Original Assignee
Thomson-Csf
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson-Csf filed Critical Thomson-Csf
Priority to AU76299/96A priority Critical patent/AU7629996A/en
Publication of WO1997019365A1 publication Critical patent/WO1997019365A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • G01S13/44Monopulse radar, i.e. simultaneous lobing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/348Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using square or rectangular modulation, e.g. diplex radar for ranging over short distances
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/583Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets
    • G01S13/584Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets adapted for simultaneous range and velocity measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9321Velocity regulation, e.g. cruise control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9325Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles for inter-vehicle distance regulation, e.g. navigating in platoons

Definitions

  • the present invention relates to a radar device for a vehicle. It applies in particular to the detection of dangerous obstacles on the trajectories of a passenger vehicle or a heavy vehicle to alert the driver and / or control the vehicle controls so as to avoid collision with the obstacle or still maintain a predetermined safety distance from the vehicle in front.
  • a first, simple solution consists in using a fixed beam antenna in transmission and reception, according to a mono-static or bi-static principle.
  • This solution which has the advantage of simplicity, can be used in the context of high-speed and low-cost production.
  • the fixed beam antenna technique can therefore only be validly used in particular configurations such as, for example, applications with short range or with straight paths.
  • Another solution consists in sequentially using in transmission and in reception a small number of antennas, typically from 3 to 5, whose viewing directions are angularly offset with respect to each other, so as to provide overall coverage of the area. to observe.
  • This technique allows a coarse angular localization, limited by the beamwidth of the elementary antenna, typically equal to 3 degrees, and by its level of secondary lobes. Furthermore, it requires the use of microwave switches making it possible to ensure high decoupling between the signals received from the different antennas, which is a priori difficult to achieve, in particular in the field of millimeter waves. Finally, the performances are limited by the fact that the angular localization of the targets is carried out by comparison of average energy received in different directions, during different time intervals, which can be penalizing, for example in the presence of an effect. image in the azimuthal plane in certain operational configurations
  • Another solution consists in covering the observation area using a narrow beam antenna in the azimuth plane, typically less than 1 degree, this beam scanning the entire domain.
  • This solution although very effective, is difficult to envisage in the context of low-cost production, whether antenna scanning is obtained mechanically or electronically
  • Another solution also consists in using simultaneously in transmission and in reception a small number of antennas whose viewing directions and / or the radiation patterns are different, so as to form, by linear combination of the signals received by the different antennas, a small number of beams allowing the precise angular location of the targets in the observation area
  • the performances obtained by this principle is a direct function of the size of the network thus formed and therefore of the number of antennas used
  • the number of v geese of reception and the volume of computation necessary to obtain the sufficient quality of information makes that this approach is difficult to apply to an automotive radar
  • monopulse very frequently used in radar technique, which proves to be interesting for the application mentioned previously in the introduction, provided that the separation of the targets can be carried out by another channel
  • the solution generally used corresponds to pulse radar, Doppler or not, to FMCW radar, or to CW frequency-hopping radar.
  • Pulse radar is a powerful solution, provided it has a Doppler effect.
  • the fineness of the pulses to be transmitted and the need to maintain the phase coherence of the received signal with respect to the transmitted signal make it a costly and difficult solution, especially in the millimeter wave domain.
  • the FMCW radar requires, to reach a satisfactory level of performance, to transmit and receive broadband, on at least a hundred megahertz. This makes its realization complex. Furthermore, the distance / speed ambiguity resulting from this waveform makes it difficult to use radar signals when numerous targets are presented simultaneously in the area illuminated by the radar emission.
  • the CW frequency hopping radar is an interesting solution by its simplicity by making it possible to separate targets very finely thanks to a high Doppler resolution power.
  • it has the disadvantage of controlling the microwave oscillator with great precision and with very short response times.
  • this type of radar produced in homodyne mode may have a decrease in sensitivity for low relative speeds, linked to the different noises of the active microwave elements such as in particular oscillators or mixers.
  • the object of the invention is to overcome these drawbacks. To this end, it combines the monopulse antenna technique with a waveform based on the simultaneous or sequential emission of two or more pure sinusoids. Consequently, the subject of the invention is a radar device for a vehicle, characterized in that it comprises a monopulse type antenna connected to transmission means emitting at least two waves having substantially the form of pure sinusoids, one wave being the sum of a microwave signal and an intermediate frequency signal, and means for detecting the amplitude and the phase of the signal received on the sum channel with respect to the intermediate frequency signals and for detecting the amplitude and the phase of the signal received on the difference channel with respect to at least one of the intermediate frequency signals.
  • the main advantages of the invention are in particular that it is economical, that it is simple to implement, that it improves performance against noise, that it improves energy efficiency and that it offers better immunity to low frequency electromagnetic interference, especially due to the engine or mechanical vibrations of a vehicle.
  • FIG. 1 shows, by a block diagram, a possible embodiment of a device according to the invention.
  • This device comprises a monopulse type antenna and means for emitting at least two waves having substantially the shape of a pure sinusoid.
  • the association of a continuous sinusoidal waveform and the principle of transmission-reception monopulse makes it possible to locate angularly a large number of targets with a very low risk of confusion, these targets having been separated beforehand thanks to the power of resolution Very high radar Doppler.
  • This solution according to the invention makes it possible, at low cost, to map the mobile echoes present at the front of the vehicle, as would a narrow beam scanning radar, the latter constituting on the contrary an expensive solution.
  • the transmission means comprise for example a free microwave oscillator 1, operating for example at 77 GHz, connected to a mixer 2 for example of SSB type, that is to say with single sideband.
  • This mixer is also connected to intermediate frequency oscillators 3.
  • the frequency from the microwave oscillator 1 is transposed to these intermediate frequencies by means of the mixer 2.
  • the frequency of the microwave oscillator is for example fixed.
  • the frequency transposition can be carried out for example according to the modes presented in FIGS. 2a, 2b, 3a and 3b.
  • the transposition to the frequency is achieved by simultaneously summing two or more sine waves F- ) , F 2 substantially pure at the microwave frequency F 0 of the microwave oscillator 1, the waves F- j , F 2 at intermediate frequency being, for example, summed together beforehand, a switch 201 separating the mixer from the addition device 202 of the waves.
  • FIG. 2b presents by two curves as a function of time the waveform of the signal emitted by its frequency and its amplitude, in the case where the frequency F 0 is combined for example with two frequencies F 1 ( F 2.
  • FIG. 3a shows that the transposition can be carried out by alternating summing two or more sine waves F-
  • FIG. 3b illustrates by two curves as a function of time the frequency and the amplitude of the transmitted wave.
  • the amplitude remains the same from one recurrence to another, but the frequency is at a frequency F Q + FJ one recurrence out of two, and at another frequency F 0 + F 2 , your other recurrences.
  • the frequency would be at a given frequency a recurrence on N.
  • FIGS. 2a and 2b an embodiment is presented relating to the mode of transposition of FIGS. 2a and 2b.
  • FIG. 1 shows that the transmission means also comprise an amplification the input of which is connected to the output of the mixer 2, and a circulator 5 connected to the output of the amplifier 4.
  • a magic tee separates for example the antenna 6, of the monopulse type, at the output of the circulator 5.
  • a wave is generated and transmitted on the sum channel ⁇ of the monopulse antenna 6.
  • This transmitted wave consists of the sum of two sinusoids of respective frequencies F 0 + F-
  • the reflected signals relating to the different targets seen by the radar are received simultaneously on the two monopulse microwave channels, the sum channel ⁇ on the one hand, and the difference channel ⁇ on the other hand.
  • the signals received on the sum channel ⁇ and the difference channel ⁇ being denoted respectively ⁇ r and ⁇ r , these signals are defined according to the following relationships:
  • N the number of targets seen by the radar
  • Fdi represents the Doppler frequency corresponding to the i-th target di represents the distance of the i-th target from the radar
  • Z ⁇ and ⁇ j represent the complex gains of the path ⁇ and the path ⁇ in the direction of the i th target a; represents the amplitude of the signal received from the i th target.
  • the signals received on the channels ⁇ and difference ⁇ are demodulated by the microwave oscillator 1 at frequency F.
  • the output of this oscillator 1 is connected to the input of two mixers 7, 8, the other input of which is connected to the sum channel ⁇ for one 7, and to the difference channel ⁇ for the other 8 Following this demodulation, the signals obtained at the output of these mixers are given by the following relationships •
  • T being the signal from the sum channel
  • ⁇ r being the signal from the difference channel
  • K ' being an attenuation coefficient, less than a
  • T. , ⁇ . are for example amplified and filtered by bandpass amplifiers 9, 10 connected at output by mixers 7, 8
  • Amplitude and phase detection systems are produced at the output of the bandpass amplifiers to process the previous signals
  • a first mixer 11 has one of its inputs connected to the first intermediate frequency oscillator F-
  • a second mixer 12 has an input connected to the output of the second intermediate frequency oscillator F 2 and its second input connected to the output of the first bandpass amplifier 9
  • a third mixer 13 has its first input connected to the second frequency oscillator intermediate F 2 and its second input connected to the output of the second amplifier 10, processing the signal ⁇ ; from the difference path
  • the phase and the amplitude of the signal ⁇ r received on the sum channel are detected with respect to the two signals at intermediate frequencies F-
  • and the phase and the amplitude of the signal ⁇ received on the difference channel are detected with respect to any of the signals at intermediate frequency, that of the second oscillator for example, at frequency F 2 .
  • R1 being an I signal concerning the combined difference channel is at the frequency F1 or frequency F2.
  • This battery of filters can for example be produced using a discrete Fourier transform.
  • Detection means 21 connected at the output of the filtering
  • Doppler 20 allow for example to detect the presence of a number P of targets by relative comparison and with respect to a threshold, of the output power of the various Doppler filters, this operation being able to be carried out on the sum channel ⁇ and on the difference path ⁇ .
  • Processing means 22 allow for example to estimate the speed of each of the P targets, knowing that the filter j is centered on the
  • ⁇ j represents the angular position of the target considered in the azimuth plane, ⁇ j and ⁇ j having been defined previously;
  • the main advantages linked to the embodiment according to the invention arise in particular from the way of transmitting and receiving the radar signals. From the point of view of sensitivity and resolving power, the performance of the radar rests on the stability and the purity of the two sine waves at intermediate frequency Fj, F2 which can be easily generated using quartz. No particular performance is required with regard to the spectral purity and the medium-term stability of the microwave oscillator 1, which allows it to be produced at low cost using for example integrated components of the ASGA type, without setting implementation of an oscillator servo loop 1. The constraints on the purity and the precision of the supply of the microwave part are also relaxed.
  • the receiver operates in heterodyne mode, with an intermediate frequency for example of a few megahertz, which allows it in particular to overcome the noise factor varying inversely in proportion to the intermediate frequency.
  • the receiver thus has an increased sensitivity compared to a solution in homodyne mode, where the intermediate frequency is zero, therefore the ratio 1 / Fi very large, Fi being the intermediate frequency
  • the power emitted can therefore be reduced by as much, at performance equal
  • the receiver With the low power levels operating at intermediate frequency, the receiver then has better immunity to low frequency electromagnetic interference from the vehicle engine, and also to low frequency disturbances from mechanical vibrations of the chassis when the vehicle moves

Abstract

A radar device for a vehicle, particularly a motor vehicle, is disclosed. The device comprises a monopulse antenna (6) connected to transmitting means (1, 2, 3, 4, 5) transmitting at least two substantially pure sinusoidal waves (F0+F1, F0+F2) and means (7, 8, 9, 10, 11, 12, 13) for detecting the phase and amplitude of the signal received over the sum channel (Σ) relative to the intermediate-frequency signals (F1, F2), and detecting the phase and amplitude of the signal received over the difference channel (Δ) relative to at least one of the intermediate-frequency signals (F2). The device is useful as an alarm for warning of hazardous obstacles for motor vehicles.

Description

D1SPOSIΗF RADAR POUR VEHICULE NOTAMMENT AUTOMOBILED1SPOSIΗF RADAR FOR A PARTICULARLY MOTOR VEHICLE
La présente invention concerne un dispositif radar pour véhicule. Elle s'applique notamment à la détection d'obstacles dangereux sur la trajectoires d'un véhicule de tourisme ou d'un poids lourd pour alerter le conducteur et/ou asservir les commandes du véhicule de façon à éviter la collision sur l'obstacle ou encore maintenir une distance de sécurité prédéterminée par rapport au véhicule qui précède.The present invention relates to a radar device for a vehicle. It applies in particular to the detection of dangerous obstacles on the trajectories of a passenger vehicle or a heavy vehicle to alert the driver and / or control the vehicle controls so as to avoid collision with the obstacle or still maintain a predetermined safety distance from the vehicle in front.
Les solutions connues dans les domaines d'application précités se différencient entre elles par la façon d'assurer la couverture de la zone d'observation, lice au choix deε principes d'antennes d'émission et de réception d'une part et, d'autre part par la façon d'obtenir les informations de distance et de vitesse, relatives aux différentes cibles radar à traiter, liée au choix de la forme d'onde du radar.The solutions known in the abovementioned fields of application differ from one another by the way of ensuring the coverage of the observation area, which is in line with the choice of the principles of transmitting and receiving antennas on the one hand, and on the other hand by the way of obtaining the information of distance and speed, relating to the various radar targets to be treated, linked to the choice of the waveform of the radar.
En ce qui concerne l'antenne, plusieurs solutions sont connues. Une première solution, simple, consiste à utiliser une antenne à faisceau fixe en émission et en réception, suivant un principe mono-statique ou bi-statique. Cette solution, qui présente l'avantage de la simplicité, est utilisable dans le cadre d'une production à haute cadence et à faible coût.With regard to the antenna, several solutions are known. A first, simple solution consists in using a fixed beam antenna in transmission and reception, according to a mono-static or bi-static principle. This solution, which has the advantage of simplicity, can be used in the context of high-speed and low-cost production.
Cependant, elle ne permet pas la localisation angulaire des cibles et est donc vulnérable aux fausses alarmes générées par l'infrastructure routière, notamment les panneaux de signalisation, les ponts ou les rails de sécurité.However, it does not allow the angular location of targets and is therefore vulnerable to false alarms generated by the road infrastructure, in particular traffic signs, bridges or safety rails.
De plus, elle n'autorise pas le suivi des cibles dans des trajectoires courbes, les virages notammentIn addition, it does not allow tracking of targets in curved trajectories, in particular turns
La technique d'antenne à faisceau fixe ne peut donc être valablement utilisée que dans des configurations particulières telles que par exemple des applications à courte portée ou à trajectoires rectilignes.The fixed beam antenna technique can therefore only be validly used in particular configurations such as, for example, applications with short range or with straight paths.
Une autre solution consiste à utiliser séquentiellement en émission et en réception un petit nombre d'antennes, typiquement de 3 à 5, dont les directions de visée sont décalées angulairement les unes par rapport aux autres, de façon à assurer globalement la couverture de la zone à observer.Another solution consists in sequentially using in transmission and in reception a small number of antennas, typically from 3 to 5, whose viewing directions are angularly offset with respect to each other, so as to provide overall coverage of the area. to observe.
CeUe technique permet une localisation angulaire grossière, limitée par la largeur de faisceau de l'antenne élémentaire, typiquement égale à 3 degrés, et par son niveau de lobes secondaires Par ailleurs, elle nécessite l'utilisation de commutateurs hyperfrequence permettant d'assurer un haut découplage entre les signaux reçus des différentes antennes, ce qui est a priori difficile à réaliser, en particulier dans le domaine des ondes millimétriques. Enfin, les performances sont limitées par le fait que la localisation angulaire des cibles s'effectue par comparaison d'énergie moyenne reçue dans des directions différentes, pendant des intervalles de temps différents, ce qui peut être pénalisant, par exemple en présence d'effet image dans le plan azimutal dans certaines configurations opérationellesThis technique allows a coarse angular localization, limited by the beamwidth of the elementary antenna, typically equal to 3 degrees, and by its level of secondary lobes. Furthermore, it requires the use of microwave switches making it possible to ensure high decoupling between the signals received from the different antennas, which is a priori difficult to achieve, in particular in the field of millimeter waves. Finally, the performances are limited by the fact that the angular localization of the targets is carried out by comparison of average energy received in different directions, during different time intervals, which can be penalizing, for example in the presence of an effect. image in the azimuthal plane in certain operational configurations
Une autre solution consiste à couvrir la zone d'observation à l'aide d'une antenne à faisceau étroit dans le plan azimutal, typiquement inférieur à 1 degré, ce faisceau balayant l'ensemble du domaine Cette solution, bien que très performante, est difficilement envisageable dans le cadre d'une production à faible coût, que le balayage d'antenne soit obtenu de façon mécanique, ou de façon électronique Une autre solution consiste encore à utiliser simultanément en émission et en réception un petit nombre d'antennes dont les directions de visée et/ou les diagrammes de rayonnement sont différents, de façon à former par combinaison linéaire des signaux reçus par les différentes antennes, un petit nombre de faisceaux permettant la localisation angulaire précise des cibles dans la zone d'observation Les performances obtenues par ce principe sont directement fonction de la dimension du réseau ainsi constitué et donc du nombre d'antennes mises en oeuvre Le nombre de voies de réception et le volume de calcul nécessaire pour obtenir la qualité d'information suffisante fait que cette approche est difficilement applicable à un radar automobile II existe pourtant une mise en oeuvre triviale, dite "monopulse", très fréquemment utilisée en technique radar, qui s'avère intéressante pour l'application citée précédemment en introduction, à condition que ia séparation des cibles puisse être effectuée par une autre voie que par l'antenne elle-même Cette solution permet, en émettant le même signal à travers deux antennes identiques, puis en recevant le signal réfléchi de façon simultanée et indépendante sur ces deux antennes, de déterminer précisément la position angulaire d'une cible dans la zone éclairée par l'émission radar La technique monopulse est généralement associée à une forme d'onde puisée, d'où le nom de monopulse, ou encore à une forme d'onde de type continue.Another solution consists in covering the observation area using a narrow beam antenna in the azimuth plane, typically less than 1 degree, this beam scanning the entire domain. This solution, although very effective, is difficult to envisage in the context of low-cost production, whether antenna scanning is obtained mechanically or electronically Another solution also consists in using simultaneously in transmission and in reception a small number of antennas whose viewing directions and / or the radiation patterns are different, so as to form, by linear combination of the signals received by the different antennas, a small number of beams allowing the precise angular location of the targets in the observation area The performances obtained by this principle is a direct function of the size of the network thus formed and therefore of the number of antennas used The number of v geese of reception and the volume of computation necessary to obtain the sufficient quality of information makes that this approach is difficult to apply to an automotive radar There is however a trivial implementation, called "monopulse", very frequently used in radar technique, which proves to be interesting for the application mentioned previously in the introduction, provided that the separation of the targets can be carried out by another channel than by the antenna itself This solution makes it possible, by emitting the same signal through two identical antennas, then by receiving the signal reflected simultaneously and independently on these two antennas, to precisely determine the angular position of a target in the area illuminated by the radar emission The monopulse technique is generally associated with a pulsed waveform, hence the name monopulse, or even with a continuous waveform.
Concernant la forme d'onde, la solution généralement utilisée correspond au radar à impulsions, Doppler ou non, au radar FMCW, ou encore au radar CW à saut de fréquence.Regarding the waveform, the solution generally used corresponds to pulse radar, Doppler or not, to FMCW radar, or to CW frequency-hopping radar.
Le radar à impulsions constitue une solution performante, à condition d'être à effet Doppler. En pratique, la finesse des impulsions à émettre et la nécessité de conserver la cohérence de phase du signal reçu par rapport au signal émis, en font une solution cnère et difficile à meure en oeuvre, notamment dans le domaine des ondes millimétriques.Pulse radar is a powerful solution, provided it has a Doppler effect. In practice, the fineness of the pulses to be transmitted and the need to maintain the phase coherence of the received signal with respect to the transmitted signal, make it a costly and difficult solution, especially in the millimeter wave domain.
Le radar FMCW nécessite, pour atteindre un niveau de performance satisfaisant, d'émettre et de recevoir à large bande, sur au moins une centaines de mégahertz. Cela rend complexe sa réalisation. Par ailleurs, l'ambiguïté distance/vitesse résultant de cette forme d'onde rend difficile l'exploitation des signaux radar dès lors que de nombreuses cibles sont présentées simultanément dans la zone éclairée par l'émission radar.The FMCW radar requires, to reach a satisfactory level of performance, to transmit and receive broadband, on at least a hundred megahertz. This makes its realization complex. Furthermore, the distance / speed ambiguity resulting from this waveform makes it difficult to use radar signals when numerous targets are presented simultaneously in the area illuminated by the radar emission.
Le radar CW à saut de fréquence est une solution intéressante par sa simplicité en permettant de séparer très finement les cibles grâce à un pouvoir de résolution Doppler élevé. Il présente cependant comme inconvénient la difficulté de commander l'oscillateur hyperfrequence avec une grande précision et avec des temps de réponse très courts. D'autre part, ce type de radar, réalisé en mode homodyne peut présenter une baisse de sensibilité pour les faibles vitesses relatives, liée aux différents bruits des éléments actifs hyperfrequence tels que notamment les oscillateurs ou les mélangeurs.The CW frequency hopping radar is an interesting solution by its simplicity by making it possible to separate targets very finely thanks to a high Doppler resolution power. However, it has the disadvantage of controlling the microwave oscillator with great precision and with very short response times. On the other hand, this type of radar, produced in homodyne mode may have a decrease in sensitivity for low relative speeds, linked to the different noises of the active microwave elements such as in particular oscillators or mixers.
Les principales solutions radar mises en oeuvre à ce jour résultent des différentes combinaisons de techniques d'antenne et de formes d'ondes évoquées précédemment, avec les avantages mais aussi avec les inconvénients qui s'y rattachent.The main radar solutions implemented to date result from the different combinations of antenna techniques and waveforms mentioned above, with the advantages but also with the drawbacks associated therewith.
Le but de l'invention est de pallier ces inconvénients. A cet effet, elle associe la technique d'antenne monopulse à une forme d'onde basée sur l'émission simultanée ou séquentielle de deux ou plusieurs sinusoïdes pures. En conséquence, l'invention a pour objet un dispositif radar pour véhicule, caractérisé en ce qu'il comporte une antenne de type monopulse reliée à des moyens d'émission émettant au moins deux ondes ayant sensiblement la forme de sinusoïdes pures, une onde étant la somme d'un signal hyperfrequence et d'un signal à fréquence intermédiaire, et des moyens pour détecter l'amplitude et la phase du signal reçu sur la voie somme par rapport aux signaux à fréquence intermédiaire et pour détecter l'amplitude et la phase du signal reçu sur la voie différence par rapport à au moins un des signaux à fréquence intermédiaire. L'invention a notamment pour principaux avantages qu'elle est économique, qu'elle est simple à mettre en oeuvre, qu'elle améliore les performances contre le bruit, qu'elle améliore le rendement énergétique et qu'elle offre une meilleure immunité aux interférences électromagnétiques basses fréquences, notamment dues au moteur ou aux vibrations mécaniques d'un véhicule.The object of the invention is to overcome these drawbacks. To this end, it combines the monopulse antenna technique with a waveform based on the simultaneous or sequential emission of two or more pure sinusoids. Consequently, the subject of the invention is a radar device for a vehicle, characterized in that it comprises a monopulse type antenna connected to transmission means emitting at least two waves having substantially the form of pure sinusoids, one wave being the sum of a microwave signal and an intermediate frequency signal, and means for detecting the amplitude and the phase of the signal received on the sum channel with respect to the intermediate frequency signals and for detecting the amplitude and the phase of the signal received on the difference channel with respect to at least one of the intermediate frequency signals. The main advantages of the invention are in particular that it is economical, that it is simple to implement, that it improves performance against noise, that it improves energy efficiency and that it offers better immunity to low frequency electromagnetic interference, especially due to the engine or mechanical vibrations of a vehicle.
D'autres caractéristiques et avantages de l'invention apparaîtront à l'aide de la description qui suit faite en regard des dessins annexés qui représentent :Other characteristics and advantages of the invention will become apparent from the following description given with reference to the appended drawings which represent:
- la figure 1 , un exemple de réalisation d'un dispositif selon l'invention ;- Figure 1, an embodiment of a device according to the invention;
- la figure 2a et 3a, des exemples de réalisation de moyen de transposition de fréquence ;- Figure 2a and 3a, exemplary embodiments of frequency transposition means;
- les figures 2b et 3b, les formes d'ondes générées par les moyens précités. La figure 1 présente, par un synoptique, un mode possible de réalisation d'un dispositif selon l'invention. Ce dispositif comporte une antenne de type monopulse et des moyens pour émettre au moins deux ondes ayant sensiblement la forme d'une sinusoïde pure. L'association d'une forme d'onde continue sinusoïdale et du principe d'émission-réception monopulse permet de localiser angulairement un grand nombre de cibles avec un risque de confusion très faible, ces cibles ayant été séparées au préalable grâce au pouvoir de résolution Doppler très élevé du radar. Cette solution selon l'invention permet à faible coût, de tracer la carte des échos mobiles présents à l'avant du véhicule, comme le ferait un radar à faisceau étroit à balayage, ce dernier constituant au contraire une solution chère. Les moyens d'émission comportent par exemple un oscillateur hyperfrequence libre 1, fonctionnant par exemple à 77 GHz, relié à un mélangeur 2 par exemple de type BLU, c'est-à-dire à bande latérale unique. Ce mélangeur est par ailleurs relié à des oscillateurs à fréquence intermédiaire 3. La fréquence issue de l'oscillateur hyperfrequence 1 est transposée à ces fréquences intermédiaires au moyen du mélangeur 2. La fréquence de l'oscillateur hyperfrequence est par exemple fixe. La transposition de fréquence peut s'effectuer par exempte selon des modes présentés par les figures 2a, 2b, 3a et 3b. La figure 2a, montre que la transposition αe fréquence est réalisée en sommant simultanément deux ou plusieurs ondes sinusoïdales F-) , F2 sensiblement pures à l'onde hyperfrequence F0 de l'oscillateur hyperfrequence 1 , les ondes F-j, F2 à fréquence intermédiaire étant par exemple sommées entre elles au préalable, un commutateur 201 séparant le mélangeur du dispositif d'addition 202 des ondes.- Figures 2b and 3b, the waveforms generated by the above means. Figure 1 shows, by a block diagram, a possible embodiment of a device according to the invention. This device comprises a monopulse type antenna and means for emitting at least two waves having substantially the shape of a pure sinusoid. The association of a continuous sinusoidal waveform and the principle of transmission-reception monopulse makes it possible to locate angularly a large number of targets with a very low risk of confusion, these targets having been separated beforehand thanks to the power of resolution Very high radar Doppler. This solution according to the invention makes it possible, at low cost, to map the mobile echoes present at the front of the vehicle, as would a narrow beam scanning radar, the latter constituting on the contrary an expensive solution. The transmission means comprise for example a free microwave oscillator 1, operating for example at 77 GHz, connected to a mixer 2 for example of SSB type, that is to say with single sideband. This mixer is also connected to intermediate frequency oscillators 3. The frequency from the microwave oscillator 1 is transposed to these intermediate frequencies by means of the mixer 2. The frequency of the microwave oscillator is for example fixed. The frequency transposition can be carried out for example according to the modes presented in FIGS. 2a, 2b, 3a and 3b. FIG. 2a shows that the transposition to the frequency is achieved by simultaneously summing two or more sine waves F- ) , F 2 substantially pure at the microwave frequency F 0 of the microwave oscillator 1, the waves F- j , F 2 at intermediate frequency being, for example, summed together beforehand, a switch 201 separating the mixer from the addition device 202 of the waves.
La figure 2b présente par deux courbes en fonction du temps la forme d'onde du signal émis par sa fréquence et son amplitude, dans le cas où la fréquence F0 est combinée par exemple à deux fréquences F1( F2. La figure 3a montre que la transposition peut être réalisée en sommant alternativement deux ou plusieurs ondes sinusoïdales F-| , F2 sensiblement pures à la fréquence F0.FIG. 2b presents by two curves as a function of time the waveform of the signal emitted by its frequency and its amplitude, in the case where the frequency F 0 is combined for example with two frequencies F 1 ( F 2. FIG. 3a shows that the transposition can be carried out by alternating summing two or more sine waves F- |, F 2 substantially pure at the frequency F 0 .
La figure 3b illustre par deux courbes en fonction du temps la fréquence et l'amplitude de l'onde émise. L'amplitude reste la même d'une récurrence à l'autre, mais la fréquence est à une fréquence FQ+F-J une récurrence sur deux, et à une autre fréquence F0+F2, tes autres récurrences. En cas de combinaison à N fréquence, la fréquence serait à une fréquence donnée une récurrence sur N.FIG. 3b illustrates by two curves as a function of time the frequency and the amplitude of the transmitted wave. The amplitude remains the same from one recurrence to another, but the frequency is at a frequency F Q + FJ one recurrence out of two, and at another frequency F 0 + F 2 , your other recurrences. In case of combination at N frequency, the frequency would be at a given frequency a recurrence on N.
Le choix entre l'un ou l'autre type de transposition s'effectue par exemple en fonction des contraintes de réalisation, et/ou de considérations relatives à l'ambiguïté distance du radar.The choice between one or the other type of transposition is made for example according to the constraints of realization, and / or considerations relating to the ambiguity distance from the radar.
Par la suite, à titre d'exemple, est présentée une réalisation relative au mode de transposition des figures 2a et 2b.Subsequently, by way of example, an embodiment is presented relating to the mode of transposition of FIGS. 2a and 2b.
La figure 1 montre que les moyens d'émission comportent par ailleurs une amplification dont l'entrée est reliée à la sortie du mélangeur 2, et un circulateur 5 relié à la sortie de l'amplificateur 4. Un té magique sépare par exemple l'antenne 6, de type monopulse, à la sortie du circulateur 5.FIG. 1 shows that the transmission means also comprise an amplification the input of which is connected to the output of the mixer 2, and a circulator 5 connected to the output of the amplifier 4. A magic tee separates for example the antenna 6, of the monopulse type, at the output of the circulator 5.
A partir de l'oscillateur hyperfrequence 1 de fréquence F0, par exemple 77 GHz, et des deux, ou plus, oscillateurs moyenne fréquence de fréquences
Figure imgf000008_0001
et F2 par exemple respectivement 10 MHz et 10,250 MHz, une onde est générée et émise sur la voie somme Σ de l'antenne monopulse 6. Cette onde émise est constituée de la somme de deux sinusoïdes de fréquences respectives F0+F-| et F0+F2. L'équation de l'onde émise e(t) s'établit alors selon la relation suivante, en cas de combinaison à deux ondes sinusoïdales : e(ή = al sm (2n{Fn + F>) t + ai )
From the microwave oscillator 1 of frequency F 0 , for example 77 GHz, and from the two or more, medium frequency oscillators of frequencies
Figure imgf000008_0001
and F 2 for example 10 MHz and 10.250 MHz respectively, a wave is generated and transmitted on the sum channel Σ of the monopulse antenna 6. This transmitted wave consists of the sum of two sinusoids of respective frequencies F 0 + F- | and F 0 + F 2 . The equation of the emitted wave e (t) is then established according to the following relation, in the case of combination with two sine waves: e (ή = a l sm (2n {F n + F > ) t + a i )
<r/: sin (2π{F0 + F, ) / + ccz ) ( l) a-| et a2 étant les amplitudes des ondes sinusoïdales.<r / : sin (2π {F 0 + F,) / + cc z ) (l) a- | and a 2 being the amplitudes of the sine waves.
En réception, les signaux réfléchis relatifs aux différentes cibles vues par le radar sont reçus simultanément sur les deux voies monopulse hyperfrequence, la voie somme Σ d'une part, et la voie différence Δ d'autre part. Les signaux reçus sur la voie somme Σ et la voie différence Δ étant notés respectivement ∑r et Δr, ces signaux sont définis selon les relations suivantes :On reception, the reflected signals relating to the different targets seen by the radar are received simultaneously on the two monopulse microwave channels, the sum channel Σ on the one hand, and the difference channel Δ on the other hand. The signals received on the sum channel Σ and the difference channel Δ being denoted respectively ∑ r and Δ r , these signals are defined according to the following relationships:
Figure imgf000008_0002
+ φ, )
Figure imgf000008_0002
+ φ,)
+ ε,a, sin(2π(^ + F + Fdήi - ^(F, + F ) + φ: ) } (2)+ Ε, a, sin (2π (^ + F + Fdήi - ^ (F, + F) + φ:)} (2)
Figure imgf000008_0003
Figure imgf000008_0003
+ δ,a, s\n(2π{F(> + F + Fdi)t - ^{Fn + F2) + φz) } (3)+ δ, a, s \ n (2π {F (> + F + Fdi) t - ^ {F n + F 2 ) + φ z )} (3)
Où : N représente le nombre de cibles vues par le radarWhere: N represents the number of targets seen by the radar
Fdi représente la fréquence Doppler correspondant à la ième cible di représente la distance de la ième cible par rapport au radarFdi represents the Doppler frequency corresponding to the i-th target di represents the distance of the i-th target from the radar
Z\ et δj représente les gains complexes de la voie Σ et de la voie Δ dans la direction de la ième cible a; représente l'amplitude du signal reçu de la ième cible. Les signaux reçus sur les voies Σ et différence Δ sont démodulés par l'oscillateur hyperfrequence 1 à fréquence F. A cet effet, la sortie de cet oscillateur 1 est reliée à l'entrée de deux mélangeurs 7, 8 dont l'autre entrée est reliée à la voie somme Σ pour l'un 7, et à la voie différence Δ pour l'autre 8 Suite à cette démodulation, les signaux obtenus en sortie de ces mélangeurs sont donnés par les relations suivantes Z \ and δ j represent the complex gains of the path Σ and the path Δ in the direction of the i th target a; represents the amplitude of the signal received from the i th target. The signals received on the channels Σ and difference Δ are demodulated by the microwave oscillator 1 at frequency F. For this purpose, the output of this oscillator 1 is connected to the input of two mixers 7, 8, the other input of which is connected to the sum channel Σ for one 7, and to the difference channel Δ for the other 8 Following this demodulation, the signals obtained at the output of these mixers are given by the following relationships
Figure imgf000009_0001
Figure imgf000009_0001
+ εlal sm{24F2 + fdι )t - 2ηrL{Fo + F2) + <p 2) } (4)+ ε l a l sm {24F 2 + fdι) t - 2 ηr L {Fo + F 2 ) + <p 2)} (4)
Figure imgf000009_0002
Figure imgf000009_0002
+ ε,a, sm (2π(Ft: +fdι)ι - ^{F0 + F2) + φ2) } (5)+ ε, a, sm (2π (F t: + fdι) ι - ^ {F 0 + F 2 ) + φ2)} (5)
]T étant le signal issu de la voie somme, Δr étant le signal issu de la voie différence, et K' étant un coefficient d'atténuation, inférieur à un] T being the signal from the sum channel, Δ r being the signal from the difference channel, and K 'being an attenuation coefficient, less than a
Ces signaux ]T . , Δ . sont par exemple amplifiés et filtrés par des amplificateurs passe-bande 9, 10 reliés en sortie par des mélangeurs 7, 8These signals] T. , Δ. are for example amplified and filtered by bandpass amplifiers 9, 10 connected at output by mixers 7, 8
Des systèmes de détection d'amplitude et de phase sont réalisés en sortie des amplificateurs passe-bande pour traiter les signaux précédentsAmplitude and phase detection systems are produced at the output of the bandpass amplifiers to process the previous signals
r , Δ A cet effet, un premier mélangeur 11 a une de ses entrées reliée au premier oscillateur à fréquence intermédiaire F-| et sa deuxième entrée reliée à la sortie du premier amplificateur passe-bande 9, traitant du signal ∑ issu de la voie somme. Un deuxième mélangeur 12 a une entrée reliée à la sortie du deuxième oscillateur à fréquence intermédiaire F2 et sa deuxième entrée reliée à la sortie du premier amplificateur passe-bande 9 Enfin, un troisième mélangeur 13 a sa première entrée reliée au deuxième oscillateur à fréquence intermédiaire F2 et sa deuxième entrée reliée à la sortie du deuxième amplificateur 10, traitant le signal Δ; issu de la voie différence Ainsi, la phase et l'amplitude du signal ∑r reçu sur la voie somme sont détectées par rapport aux deux signaux à fréquences intermédiaires F-| et F2, et la phase et l'amplitude du signal Δ reçu sur la voie différence sont détectées par rapport à l'un quelconque des signaux à fréquence intermédiaire, celui du deuxième oscillateur par exemple, à fréquence F2. Après un filtrage passe-bas dans la bande Doppler réalisé aux moyens d'amplificateurs passe-bas 14, 15, 16 reliés aux sorties des mélangeurs 11 , 12, 13, les signaux suivants sont obtenus :r , Δ For this purpose, a first mixer 11 has one of its inputs connected to the first intermediate frequency oscillator F- | and its second input connected to the output of the first bandpass amplifier 9, processing the signal ∑ from the sum channel. A second mixer 12 has an input connected to the output of the second intermediate frequency oscillator F 2 and its second input connected to the output of the first bandpass amplifier 9 Finally, a third mixer 13 has its first input connected to the second frequency oscillator intermediate F 2 and its second input connected to the output of the second amplifier 10, processing the signal Δ ; from the difference path Thus, the phase and the amplitude of the signal ∑ r received on the sum channel are detected with respect to the two signals at intermediate frequencies F- | and F 2 , and the phase and the amplitude of the signal Δ received on the difference channel are detected with respect to any of the signals at intermediate frequency, that of the second oscillator for example, at frequency F 2 . After low-pass filtering in the Doppler band carried out by means of low-pass amplifiers 14, 15, 16 connected to the outputs of the mixers 11, 12, 13, the following signals are obtained:
^ = Km & ε, a, sin(2π/dit -ψ{Fϋ + Ft) + ιrn) (ό)^ = K m & ε, has, if n (2π / -ψ said ϋ {F + F t) + ιr n) (ό)
^ = K' lfι ε, a, sιn(2πfώt -ψ{F0 + Fî ) + ψ,i) (?)^ = K ' lf ι ε, a, sιn (2πfώt -ψ {F 0 + F î ) + ψ, i ) (?)
Figure imgf000010_0001
Figure imgf000010_0001
K" étant un coefficient d'atténuation, inférieur à l'unité, ∑"r<j étant le signal relatif à la voie somme combinée à la fréquence intermédiaire F1 ,K "being an attenuation coefficient, less than unity, ∑" r <j being the signal relating to the sum channel combined at the intermediate frequency F1,
∑"r2 étant le signal relatif à la voie somme combinée à la figure F2, et Δ"r2∑ " r 2 being the signal relating to the sum channel combined in FIG. F2, and Δ" r 2
(ou r1 ) étant Ie signal relatif à la voie différence combinée soit à la fréquence F1 , soit à la fréquence F2.(or R1) being an I signal concerning the combined difference channel is at the frequency F1 or frequency F2.
Ces signaux ∑"rι ∑"r2 Δ"r2 sont ensuite par exemple échantillonnés et décodés au moyen de convertisseurs analogique- numérique 17, 18, 19 connectés en sortie des amplificateurs passe-bas.These signals ∑ " r ι ∑" r 2 Δ " r 2 are then for example sampled and decoded by means of analog-digital converters 17, 18, 19 connected at the output of the low-pass amplifiers.
Une batterie d'un nombre Q de filtres Doppler 20 à bande étroite connectée à la sortie des convertisseurs 17, 18, 19 permet de filtrer les signaux échantillonnés. Cette batterie de filtres peut être par exemple réalisée à l'aide d'une transformée de Fourrier discrète.A battery of a number Q of Doppler filters 20 with narrow band connected to the output of the converters 17, 18, 19 makes it possible to filter the sampled signals. This battery of filters can for example be produced using a discrete Fourier transform.
Des moyens de détection 21 connectés en sortie du filtrageDetection means 21 connected at the output of the filtering
Doppler 20 permettent par exemple de détecter la présence d'un nombre P de cibles par comparaison relative et par rapport à un seuil, de la puissance de sortie des différents filtres Doppler, cette opération pouvant s'effectuer sur la voie somme ∑ et sur la voie différence Δ. Des moyens de traitement 22 permettent par exemple d'estimer la vitesse de chacune des P cibles, sachant que le filtre j est centré sur laDoppler 20 allow for example to detect the presence of a number P of targets by relative comparison and with respect to a threshold, of the output power of the various Doppler filters, this operation being able to be carried out on the sum channel ∑ and on the difference path Δ. Processing means 22 allow for example to estimate the speed of each of the P targets, knowing that the filter j is centered on the
2 Vi fréquence Doppler fdj = — — , où Vj est la vitesse de la cible détectée par rapport au radar, et λ est la longueur d'onde du radar. Ces moyens de traitement permettent par exemple ensuite :2 Vi Doppler frequency fdj = - -, where Vj is the speed of the target detected relative to the radar, and λ is the wavelength of the radar. These processing means allow for example then:
- d'estimer la distance de chacune des P cibles en mesurant la différence de phase obtenue entre les voies ∑r-| et ∑r2 en sortie du même filtre Doppler où est détectée la cible, de façon à former la différence de phase A φi ≈ (F^ - F,) où di est la distance de 'a ième cible par rapport au radar, c étant la vitesse de la lumière ;- estimate the distance of each of the P targets by measuring the phase difference obtained between the channels ∑ r - | and ∑ r 2 at the output of the same Doppler filter where the target is detected, so as to form the phase difference A φi ≈ (F ^ - F,) where di is the distance from 'a th target to the radar, c being the speed of light;
- d'estimer la position angulaire de chacune des P cibles en calculant la fonction ci-dessous à partir des signaux obtenus en sortie des voies Δrι et ∑rι , ou Δr2 et ∑r2 du même filtre Doppler où est détectée la cible, cette fonction étant : s θ. = Cartg-±- to estimate the angular position of each of the P targets by calculating the function below from the signals obtained at the output of the channels Δ r ι and ∑ r ι, or Δ r 2 and ∑ r 2 of the same Doppler filter where is detected the target, this function being: s θ. = Cartg- ±
' ε, où θj représente la position angulaire de la cible considérée dans le plan azimut, δj et εj ayant été définis précédemment ;'ε, where θ j represents the angular position of the target considered in the azimuth plane, δj and εj having been defined previously;
- de déduire des informations estimées précédemment : distance, vitesse, angle et puissance des Q cibles détectées, la cible jugée la plus dangereuse par rapport à la trajectoire du véhicule ;- to deduce from the information previously estimated: distance, speed, angle and power of the Q targets detected, the target judged the most dangerous in relation to the trajectory of the vehicle;
- de transmettre après filtrage, à travers une interface 23, les informations de distance, de position et de vitesses relatives à la cible jugée la plus dangereuse, à un organe de décision capable de générer une alarme en cas de danger, ou encore d'asservir la vitesse du véhicule selon un mode de régulation de type connu ICC selon l'expression anglo-saxonne- to transmit after filtering, through an interface 23, the distance, position and speed information relating to the target considered most dangerous, to a decision-making body capable of generating an alarm in the event of danger, or even of slaving the speed of the vehicle according to a known type of regulation ICC by the Anglo-Saxon expression
Intelligent Cruise Control.Intelligent Cruise Control.
Les principaux avantages liés au mode de réalisation selon l'invention proviennent notamment de la façon d'émettre et de recevoir les signaux radar. Du point de vue sensibilité et pouvoir de résolution, la performance du radar repose sur la stabilité et la pureté des deux ondes sinusoïdales à fréquence intermédiaire F-j , F2 qui peuvent être générées facilement à l'aide de quartz. Aucune performance particulière n'est requise en ce qui concerne la pureté spectrale et la stabilité à moyen terme de l'oscillateur hyperfrequence 1 , ce qui permet sa réalisation à faible coût à l'aide par exemple de composants intégrés de type ASGA, sans mise en oeuvre d'une boucle d'asservissement de l'oscillateur 1. Les contraintes sur la pureté et la précision de l'alimentation de la partie hyperfrequence sont elles aussi relâchées.The main advantages linked to the embodiment according to the invention arise in particular from the way of transmitting and receiving the radar signals. From the point of view of sensitivity and resolving power, the performance of the radar rests on the stability and the purity of the two sine waves at intermediate frequency Fj, F2 which can be easily generated using quartz. No particular performance is required with regard to the spectral purity and the medium-term stability of the microwave oscillator 1, which allows it to be produced at low cost using for example integrated components of the ASGA type, without setting implementation of an oscillator servo loop 1. The constraints on the purity and the precision of the supply of the microwave part are also relaxed.
D'autre part, le récepteur fonctionne en mode hétérodyne, avec une fréquence intermédiaire par exemple de quelques mégahertz, ce qui lui permet notamment αe s'affranchir au facteur bruit variant inversement proportionnellement à la fréquence intermédiaire. Le récepteur présente ainsi une sensibilité accrue par rapport à une solution en mode homodyne, où la fréquence intermédiaire est nulle, donc le rapport 1/Fi très grand, Fi étant la fréquence intermédiaire La puissance émise peut donc être réduite d'autant, à performance égaleOn the other hand, the receiver operates in heterodyne mode, with an intermediate frequency for example of a few megahertz, which allows it in particular to overcome the noise factor varying inversely in proportion to the intermediate frequency. The receiver thus has an increased sensitivity compared to a solution in homodyne mode, where the intermediate frequency is zero, therefore the ratio 1 / Fi very large, Fi being the intermediate frequency The power emitted can therefore be reduced by as much, at performance equal
D'autre part, les étages à bas niveaux de puissance fonctionnant en fréquence intermédiaire, le récepteur présente alors une meilleure immunité aux interférences électromagnétiques basses fréquences provenant du moteur du véhicule, et également aux perturbations basses fréquences provenant des vibrations mécaniques du châssis lorsque le véhicule se déplace On the other hand, with the low power levels operating at intermediate frequency, the receiver then has better immunity to low frequency electromagnetic interference from the vehicle engine, and also to low frequency disturbances from mechanical vibrations of the chassis when the vehicle moves

Claims

REVENDICATIONS
1. Dispositif radar pour véhicule, comportant une antenne (6) de type monopulse reliée à des moyens d'émission (1 , 2, 3, 4, 5) émettant au moins deux ondes (FQ+F^ , F0+F2) ayant sensiblement la forme de sinusoïdes pures, une onde étant la somme d'un signal hyperfrequence (FQ) et d'un signal à fréquence intermédiaire (F-|, F2), et des moyens (7, 8, 9, 10, 11 , 12, 13) pour détecter l'amplitude et la phase du signal (∑'r) reçu sur la voie somme (∑) par rapport aux signaux à fréquence intermédiaire (F^ , F2) et pour détecter l'amplitude et la phase du signal (Δ'r) reçu sur la voie différence (Δ) par rapport à au moins un des signaux à fréquence intermédiaire (F2), caractérisé en ce que les signaux hyperfréquences reçus sur les voie somme (∑) et différence (Δ) sont démodulés par l'oscillateur hyperfrequence (1 , fo).1. Radar device for a vehicle, comprising an antenna (6) of the monopulse type connected to transmission means (1, 2, 3, 4, 5) emitting at least two waves (FQ + F ^, F0 + F2) having substantially the form of pure sinusoids, a wave being the sum of a microwave signal (FQ) and an intermediate frequency signal (F- |, F2), and means (7, 8, 9, 10, 11, 12, 13) to detect the amplitude and phase of the signal (∑ ' r ) received on the sum channel (∑) with respect to the intermediate frequency signals (F ^, F2) and to detect the amplitude and phase of the signal (Δ ' r ) received on the difference channel (Δ) with respect to at least one of the intermediate frequency signals (F2), characterized in that the microwave signals received on the sum (∑) and difference (Δ) channels are demodulated by the microwave oscillator (1, fo).
2. Dispositif selon la revendication 1 , caractérisé en ce que les signaux démodulés (∑7-,Δ'r) sont amplifiés et filtrés par des amplicateurs passe bande (9, 10).2. Device according to claim 1, characterized in that the demodulated signals (∑7-, Δ'r) are amplified and filtered by band pass amplifiers (9, 10).
3. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que les ondes sensiblement sinusoïdales (Fo+F^ , Fo+F2) sont émises simultanément.3. Device according to any one of the preceding claims, characterized in that the substantially sinusoidal waves (Fo + F ^, Fo + F2) are transmitted simultaneously.
4. Dispositif selon l'une quelconque des revendications 1 ou 2, caractérisé en ce que les ondes sensiblement sinusoïdales (Fn+F-i , F0+F2) sont émises séquentiellement.4. Device according to any one of claims 1 or 2, characterized in that the substantially sinusoidal waves (Fn + F-i, F0 + F2) are transmitted sequentially.
5. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que les moyens d'émission comportent au moins un oscillateur hyperfrequence (1, FO), des oscillateurs (3) à fréquence intermédiaire (F-j , F2) délivrant des sinusoïdes sensiblement pures, un mélangeur (2), un amplificateur (4), les sorties des oscillateurs (1 , 3) étant reliées aux entrées du mélangeur (2), la sortie du mélangeur étant reliée à l'entrée de l'amplificateur (4). 5. Device according to any one of the preceding claims, characterized in that the transmission means comprise at least one microwave frequency oscillator (1, FO), intermediate frequency oscillators (3) (F- j , F2) delivering substantially pure sinusoids, a mixer (2), an amplifier (4), the outputs of the oscillators (1, 3) being connected to the inputs of the mixer (2), the output of the mixer being connected to the input of the amplifier ( 4).
6. Dispositif selon l'une quelconque des revendicateurs précédentes, caractérisé en ce qu'en réception, la voie somme (∑) est reliée à une entrée d'un premier mélangeur (11) dont l'autre entrée est reliée à un premier oscillateur à une première fréquence intermédiaire (F-| ), et à l'entrée d'un deuxième mélangeur dont l'autre entrée est reliée au deuxième oscillateur à une deuxième fréquence intermédiaire (F2), et la voie différence (Δ) est reliée à l'entrée d'un troisième mélangeur (13) dont l'autre entrée est reliée au deuxième oscillateur à fréquence intermédiaire (F2), pour permettre la détection du signal (∑'r) reçu sur la voie somme (∑) par rapport aux signaux à fréquences intermédiaires (F-j , F2), et la détection du signal (Δ'r) reçu sur la voie différence (Δ) par rapport à l'un quelconque des signaux à fréquence intermédiaire (F2).6. Device according to any one of the preceding claims, characterized in that on reception, the sum channel (∑) is connected to an input of a first mixer (11) whose other input is connected to a first oscillator at a first intermediate frequency (F- |), and at the input of a second mixer whose other input is connected to the second oscillator at a second intermediate frequency (F2), and the difference channel (Δ) is connected to the input of a third mixer (13), the other input of which is connected to the second intermediate frequency oscillator (F2), to allow detection of the signal (∑'r) received on the sum channel (∑) relative to the intermediate frequency signals (Fj, F2), and detecting the signal (Δ'r) received on the difference channel (Δ) with respect to any of the intermediate frequency signals (F2).
7. Dispositif selon la revendication 6, caractérisé en ce que les signaux issus des mélangeurs (11 , 12, 13) étant échantillonnés et codés par des convertisseurs analogiques-numériques (17, 18, 19), des filtres Doppler (20) sont connectés en sortie de ces convertisseurs.7. Device according to claim 6, characterized in that the signals from the mixers (11, 12, 13) being sampled and coded by analog-digital converters (17, 18, 19), Doppler filters (20) are connected at the output of these converters.
8. Dispositif selon la revendication 7, caractérisé en ce que des moyens de détection (21 ) connectés en sortie des filtres Doppler (20) permettent de détecter la présence d'un nombre P de cibles par comparaison relative et par rapport à un seuil, de la puissance de sortie des différents filtres Doppler.8. Device according to claim 7, characterized in that detection means (21) connected at the output of the Doppler filters (20) make it possible to detect the presence of a number P of targets by relative comparison and with respect to a threshold, the output power of the different Doppler filters.
9. Dispositif selon la revendication 8, caractérisé en ce que des moyens de traitement (22) connectés en sortie des moyens de détection (21 ) permettent d'estimer la vitesse, la distance et la position angulaire de chacune des P cibles.9. Device according to claim 8, characterized in that processing means (22) connected at the output of the detection means (21) make it possible to estimate the speed, the distance and the angular position of each of the P targets.
10. Dispositif selon la revendication 9, caractérisé en ce que les moyens de traitement transmettent à travers une interface (23), les informations de distance, de position et de vitesse relatives à la cible jugée la plus dangereuse à un organe de décision. 10. Device according to claim 9, characterized in that the processing means transmit through an interface (23), the distance, position and speed information relating to the target deemed most dangerous to a decision-making body.
PCT/FR1996/001823 1995-11-21 1996-11-19 Radar device for a vehicle, particularly a motor vehicle WO1997019365A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU76299/96A AU7629996A (en) 1995-11-21 1996-11-19 Radar device for a vehicle, particularly a motor vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR95/13783 1995-11-21
FR9513783A FR2741453B1 (en) 1995-11-21 1995-11-21 RADAR DEVICE FOR A PARTICULARLY MOTOR VEHICLE

Publications (1)

Publication Number Publication Date
WO1997019365A1 true WO1997019365A1 (en) 1997-05-29

Family

ID=9484762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1996/001823 WO1997019365A1 (en) 1995-11-21 1996-11-19 Radar device for a vehicle, particularly a motor vehicle

Country Status (3)

Country Link
AU (1) AU7629996A (en)
FR (1) FR2741453B1 (en)
WO (1) WO1997019365A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6720908B1 (en) * 2002-11-15 2004-04-13 M/A-Com, Inc. Sensor front-end for range and bearing measurement
FR2948774B1 (en) 2009-07-31 2011-08-26 Thales Sa RADAR FOR DETECTING AIR TARGETS EQUIPPED WITH AN AIRCRAFT, IN PARTICULAR FOR THE AVOIDANCE OF OBSTACLES IN FLIGHT
FR2950147B1 (en) * 2009-09-15 2012-07-13 Thales Sa BEAM AGILITY RADAR, IN PARTICULAR FOR THE DETECTION AND OBSTACLE REMOVAL FUNCTION

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4375057A (en) * 1980-12-10 1983-02-22 Otis Elevator Company Position sensor
WO1995004943A1 (en) * 1993-08-04 1995-02-16 Vorad Safety Systems, Inc. Monopulse azimuth radar system for automotive vehicle tracking

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4375057A (en) * 1980-12-10 1983-02-22 Otis Elevator Company Position sensor
WO1995004943A1 (en) * 1993-08-04 1995-02-16 Vorad Safety Systems, Inc. Monopulse azimuth radar system for automotive vehicle tracking

Also Published As

Publication number Publication date
AU7629996A (en) 1997-06-11
FR2741453A1 (en) 1997-05-23
FR2741453B1 (en) 1997-12-12

Similar Documents

Publication Publication Date Title
US11022675B2 (en) Techniques for angle resolution in radar
EP0568427B1 (en) Method and system for detecting one or more objects in an angular sector, with applications
EP3315994A1 (en) Multibeam fmcw radar, in particular for a motor vehicle
US7061424B2 (en) Radar device
EP3282283A1 (en) Fmcw radar detection method with multiple resolution and radar using such a method
JP4446931B2 (en) Radar equipment
EP2287633B1 (en) Radar for the detection of aerial targets fitted on an aircraft, in particular for avoiding obstacles in flight
EP0591497A1 (en) Method and system for determining the position and direction of a moving object and applications thereof.
EP2296007A1 (en) Radar with beam agility, in particular for the function of detecting and avoiding obstacles
JP2009109484A (en) Radio frequency proximity sensor and sensor system
WO2015078682A1 (en) Anticollision radar, especially for an aircraft when taxiing, and anticollision system
EP0143497B1 (en) Axis-stable fmcw monopulse radar system
WO2021058674A1 (en) Radar imaging method, and radar implementing such a method
WO1997019365A1 (en) Radar device for a vehicle, particularly a motor vehicle
CN111051918B (en) Radar device and automobile provided with same
EP3859882B1 (en) Radioelectric system with multiple antenna networks and with adaptive waveforms
US20050174279A1 (en) Device and method for the single sideband modulation of a radar device
EP3321711A1 (en) Receiving device for electronic scanning antenna capable of operating in radar and resm mode, and radar provided with such a device
EP2341363B1 (en) System for responding to a signal emitted by a radar and use of said system mainly for testing radars, in particular MTI radars
EP1522871B1 (en) Radar with synthetic direction finding channels
WO1999064888A1 (en) Anticollision method for vehicle
FR2892830A1 (en) Radar detection method for detecting presence of e.g. hovering helicopter, involves monitoring phase detecting duration equal to time separating two successive lightings produced by rotation of main rotator blade
FR2880694A1 (en) Missile detection device for electronic counter measures, has transmission units radiating hyperfrequency radiation beam, reception units capturing hyperfrequency echoes from hostile missile and echoes processing units obtaining variable
FR2779236A1 (en) Transmission of signals by antenna elements in a mobile transmitter/receiver in the remote sensing, aircraft radar or telecommunications fields

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN CZ JP KR MX PL RU SK UA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 97519441

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA