WO1997017633A1 - Transmission-type screen, method of producing the same and backsurface projection image display using the same screen - Google Patents

Transmission-type screen, method of producing the same and backsurface projection image display using the same screen Download PDF

Info

Publication number
WO1997017633A1
WO1997017633A1 PCT/JP1995/002300 JP9502300W WO9717633A1 WO 1997017633 A1 WO1997017633 A1 WO 1997017633A1 JP 9502300 W JP9502300 W JP 9502300W WO 9717633 A1 WO9717633 A1 WO 9717633A1
Authority
WO
WIPO (PCT)
Prior art keywords
screen
image
lens
light
source side
Prior art date
Application number
PCT/JP1995/002300
Other languages
French (fr)
Japanese (ja)
Inventor
Koji Hirata
Takahiko Yoshida
Shigeru Inaoka
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to JP51804297A priority Critical patent/JP3689430B2/en
Priority to PCT/JP1995/002300 priority patent/WO1997017633A1/en
Publication of WO1997017633A1 publication Critical patent/WO1997017633A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/62Translucent screens
    • G03B21/625Lenticular translucent screens

Definitions

  • the present invention relates to a transmission screen, a method of manufacturing the same, and a rear projection type image display apparatus using the same.
  • the present invention relates to a transmission screen, a method of manufacturing the same, and a rear projection image display device using the same.
  • Rear projection type image display such as a rear projection type television receiver that enlarges the image displayed on a liquid crystal display device etc. with a projection lens and projects it from the back onto a transmission type screen
  • devices have been remarkably improved in image quality and have a powerful large screen that allows them to enjoy a sense of presence.
  • FIG. 19 is a plan view showing an outline when the projection optical system is developed on a horizontal plane.
  • 16, 17, and 18 are blue, green, and red projection CRTs
  • 19 is the corresponding projection lens
  • 20, 21, and 22 are blue, ⁇ , and red, respectively. This is the optical axis of the image light.
  • the optical system of the rear projection type image display device Most mirrors exist, but this mirror is omitted in Fig. 19.
  • FIG. 20 is a vertical sectional view showing a main part of the rear projection type image display device.
  • the image displayed on the surface of the projection type cathode ray tube 28 is magnified by the projection lens 26, and is projected from the back onto the transmission screen 24 via the optical path bending mirror 23. ing.
  • a screen sheet provided with a Fresnel lens on one side see, for example, Hereafter, this is referred to as a Fresnel lens sheet.
  • a screen sheet provided with a lenticular lens on both sides hereinafter referred to as a lenticular lens sheet.
  • Japanese Patent Application Laid-Open No. 58-192022 discloses a screen.
  • a two-part transmission screen which is a combination of a Fresnel lens sheet and a lenticular lens sheet in which fine particles that scatter light are dispersed, is generally used.
  • FIG. 21 is a perspective view showing the main components of a transmission screen as an example of the prior art.
  • reference numeral 38 denotes a transmission screen, which is composed of two lens sheets, a Fresnel lens sheet 36 and a lenticular lens sheet 7.
  • the base material of each sheet is made of a transparent thermoplastic resin. Of these, fine particles of the light diffusing material 37 for scattering light are dispersed in the base material of the lenticular lens sheet.
  • the image light incident surface 35 of the Fresnel lens sheet 36 is flat.
  • the exit surface of the Fresnel lens sheet 36 for the image light has a Fresnel convex lens shape 3.
  • Reference numeral 6 denotes an image light incident surface of the lenticular lens sheet 7, and a lenticular lens (hereinafter, referred to as a “second lenticular lens”) having a longitudinal direction perpendicular to the screen is provided in the horizontal direction of the screen. It has a shape arranged continuously.
  • Reference numeral 9 denotes an emission surface of the image light of the lenticular lens sheet 7, and a lenticular lens (hereinafter, referred to as a “third lenticular lens”) having a longitudinal direction perpendicular to the screen screen, It has a shape that is substantially opposed to the two lenticular lenses and is continuously arranged in the horizontal direction of the screen.
  • the third lenticular-lens interface is provided with a convex protrusion 60 at the boundary between the lenses, and a light absorbing layer (black stripe) .8 having a finite width is provided thereon. It is designed to prevent image quality degradation due to the influence of external light such as sunlight and sunlight, and in particular, a decrease in contrast performance.
  • the light flux emitted from each point of the display image on the projection screen of the Braun tube passes through a projection lens (neither of which is shown) to form a Fresnel lens sheet 36.
  • a projection lens either of which is shown
  • this incident light beam is converted into a substantially parallel light beam by the Fresnel convex lens 3 on the light exit surface of the Fresnel lens sheet 36, and enters the lenticular lens sheet 7.
  • the light beam incident on the lenticular lens sheet 7 is directed to the focal point near the third lenticular lens surface on the light emitting surface 9 by the second lenticular lens on the incident surface 6, and diffuses from the focal point in the horizontal direction of the screen.
  • the light is diffused in the vertical and horizontal directions of the screen by the fine particles of the light diffusing material 37 dispersed in the base material and emitted to the viewer side. That is, the light passing through the lenticular lens sheet 7 is diffused in the horizontal direction of the screen depending on the shape of the entrance surface 6 of the lenticular lens-lens sheet 7 and diffused in the vertical direction of the screen by a light diffusing material 3 7. Is performed only by the action of In addition, in order to realize diffusion of image light in the vertical direction of the screen, for example, as described in Japanese Patent Application Laid-Open No. 58-93043, the image light is screened by a lens function.
  • a transmission screen having a two-piece configuration is used in which a Fresnel lens sheet having a function of vertically diffusing and a lenticular lens sheet in which light scattering fine particles are dispersed are combined.
  • a Fresnel lens sheet having a function of vertically diffusing and a lenticular lens sheet in which light scattering fine particles are dispersed are combined.
  • FIG. 22 is a perspective view showing a main part of a configuration of another embodiment of the transmission screen according to the prior art in the prior art.
  • reference numeral 40 denotes a transmission screen, which is composed of two screen sheets, a Fresnel lens sheet 39 and a lenticular lens sheet 7.
  • Each base material uses the same transparent thermoplastic resin as the structure shown in FIG.
  • a lenticular lens 38 (hereinafter referred to as a first lenticular lens) having a horizontal direction as a longitudinal direction is provided on the image light incident surface of the Fresnel lens sheet 39 in this example.
  • the shape is continuous in the direction.
  • Other configurations are the same as those in FIG.
  • the first lenticular lens whose longitudinal direction is the horizontal direction of the screen screen is provided on the entrance surface of the Fresnel lens sheet 39, so that the incident light flux is
  • the first lenticular lens provides diffusion characteristics in the vertical direction of the screen. Thereafter, the diffusion characteristics in the vertical direction of the screen are also provided by the fine particles of the light diffusing material 37 dispersed in the base material of the lenticular lens sheet 7.
  • the pitch of the first lenticular lens 38 is usually designed to be smaller than the pitch of the scanning lines of the projected image or the pitch of the pixels, and is about 0.1 mm at present.
  • each incident light beam will have the same scan line or the same image.
  • the angle of incidence differs depending on the incident position, so it will bend at a different angle and diffuse in the vertical direction of the screen. That is, the light passing through the transmission screen is diffused in the horizontal direction of the screen depending on the shape of the incident surface of the lenticular lens sheet 7, and the diffusion in the vertical direction is based on the action of the light diffusing material 37 and the screen.
  • the first lenticular lens 38 whose longitudinal direction is the horizontal direction of the lean screen.
  • the light diffusing material 37 dispersed in the base material of the lenticular lens sheet 7 is collected near the surface of the third lenticular lens. Transmission-type screens that prevent a decrease in focus performance and obtain a wide diffusion angle have also been proposed.
  • a projection 60 is provided at the boundary between the third lens and the lens, and a light absorbing layer (black stripe) having a limited width is provided thereon.
  • the configuration provided with 6 reduces reflection when external light such as room illumination light or sunlight enters the screen surface.
  • the finite width of the light absorbing layer (black stripe) 6 accounts for only about 40% of the entire screen.
  • the presence of extraneous light reflected on the surface of the third lenticular lens made it impossible to completely suppress the decrease in contrast.
  • the image light rays are reflected multiple times on the entrance surface of the lenticular lens sheet 7 and the exit surfaces of the Fresnel lens sheet 36 and the Fresnel lens sheet 39, which not only reduces the contrast but also reduces the focus performance. The decline was also occurring.
  • the image light beam is diffused and incident on the Fresnel lens provided on the viewing side by the action of a horizontally long lenticular lens provided on the image light incident surface of the lens sheet 39 for diffusing light in the direction perpendicular to the screen.
  • This increases the angle of incidence on the Fresnel lens and increases the return loss.
  • the incident angle to the Fresnel lens is particularly large, so that the transmittance of the image light is reduced and the brightness around the screen is reduced.
  • An object of the present invention is to solve the above-mentioned problems in the prior art, and reduce the contrast of an image, the focus performance, and the brightness of the peripheral portion of a screen.
  • Another object of the present invention is to provide a rear projection type image display device constituted by the method and the manufacturing method thereof. Disclosure of the invention
  • the present invention provides a means for preventing a decrease in contrast performance and focus performance, which is the first problem, by using at least one screen sheet constituting the transmission screen of the present invention.
  • a plurality of lenses having a function of condensing image light are continuously arranged on the image source side (incident surface side) of the sheet, and the focal points of the individual lenses are present inside the screen. In the vicinity, a light absorbing part will be provided in a region where the image light does not pass.
  • an optical axis of a lens provided on the image source side (incident surface side) of the screen sheet and having a function of condensing image light, and a center of an area inside the screen sheet through which the image light passes. Are substantially matched at the center of the screen, and have a predetermined decentering amount d toward the edge of the screen, and the decentering amount d is gradually increased.
  • the screen sheet is divided into a plurality of portions, each of which is refracted as a base material.
  • a lens having a different ratio is used, and a lens for converting the image light beam into substantially parallel light is provided in a region of the lenticular lens substrate through which the image light beam passes.
  • the above-mentioned screen sheet is manufactured by being divided into a plurality of parts. That is, the first portion has a plurality of lenses having an action of condensing image light continuously arranged on one surface, and a notch portion is provided on the opposing surface near the focal point of each of the lenses, Further, a flat portion is provided in an area where the image light does not pass, and a light absorbing layer is printed or applied on the flat portion.
  • the surface of the first portion (substrate) thus obtained is cured by ultraviolet light.
  • a Fresnel lens is formed with a resin or the like, the second part is obtained, and finally the Fresnel lens sheet of the present invention is obtained.
  • the rear projection type image display device of the present invention includes the above-mentioned transmission type screen according to the present invention, and combines an image source and a projection lens with a coupler to form a lens group constituting a projection lens.
  • the lens located closest to the image source is a concave lens with a convex surface on the image source side and a concave surface on the screen side, and the liquid refrigerant is placed in the space between the image source and the concave lens in the coupler.
  • the structure will be used in combination with the conventional contrast improvement technology of encapsulation.
  • a rear-projection image display apparatus using a transmission screen having the above configuration light emitted from an image generation source such as a projection CRT enters a transmission screen via a projection lens.
  • the screen sheet arranged on the image generation source side of the transmission screen is composed of two types of base materials having different refractive indexes, and its entrance surface has a plurality of lenses that have the function of condensing the image light. Pieces are arranged continuously. For this reason, the image light beam is focused on the focal point of each lens existing inside the screen.
  • a light absorbing layer is provided in the area inside the screen where the image light does not pass, By absorbing the multiple reflection light and the like generated between the external light and the screen sheet incident on the screen from above through the light absorption layer, the contrast and the reduction in the performance of the thin film are greatly reduced.
  • a lens having an action of converting image light into substantially parallel light is provided near the focal point of the lens provided on the incident surface.
  • the image light rays become almost parallel light and enter the Fresnel lens provided on the viewing side, so that the angle of incidence on the Fresnel lens can be reduced, and the reflection loss can be reduced, resulting in lower brightness of the screen. do not do.
  • the image light that has passed through the screen sheet (hereinafter referred to as the Fresnel lens sheet) becomes almost parallel light. Then, the light enters a lenticular lens sheet arranged on the image viewing side of the transmission screen, and a lenticular lens provided on the entrance and exit surfaces of the lenticular lens (perpendicular to the screen surface).
  • the diffusion in the horizontal direction of the screen is controlled by the shape of a lenticular lens whose direction is the longitudinal direction.
  • a projection 60 is provided in a region of the emission surface through which the image light does not pass, and the light absorption layer 8 ( Black stripes). For this reason, even if external light such as illumination light is incident on the exit surface of the transmission screen by combining with the light absorption layer provided on the above-mentioned Fresnel lens sheet, some of the incident light Since the light is absorbed in the light absorbing layer and is not reflected, the contrast when viewing an image in a bright place is further improved.
  • FIG. 1 is a perspective view showing a main part of a transmission screen as a first embodiment of the present invention.
  • FIG. 2 is a perspective view showing a main part of a transmission screen as a second embodiment of the present invention.
  • FIG. 3 is a perspective view showing a main part of a transmission screen as a third embodiment of the present invention.
  • FIG. 4 is a vertical sectional view of the screen showing a main part of the Fresnel lens sheet 2 near the center of the screen in FIG.
  • FIG. 5 is a plan view schematically showing a vertical cross section of a projection optical system of a general rear projection type image display device, omitting an optical path turning mirror.
  • FIG. 6 is a vertical sectional view of a screen showing a main part of the Fresnel lens sheet 2 in FIG. 1, and is an explanatory diagram of lens shape data.
  • FIG. 7 is an explanatory diagram for explaining the definition of the lens shape.
  • FIG. 8 is an explanatory diagram for explaining a method of manufacturing a transmission screen of the present invention.
  • FIG. 9 is an explanatory diagram for explaining a method of manufacturing a transmission screen according to the present invention.
  • FIG. 10 is an explanatory diagram for explaining a method of manufacturing a transmission screen according to the present invention.
  • FIG. 11 is an explanatory diagram for explaining a method of manufacturing a transmission screen of the present invention.
  • FIG. 12 is an explanatory diagram for explaining a method of manufacturing a transmission screen according to the present invention.
  • FIG. 13 is an explanatory diagram for explaining a method of manufacturing a transmission screen of the present invention.
  • FIG. 14 is an explanatory diagram for explaining a method of manufacturing a transmission screen of the present invention.
  • FIG. 15 is a vertical cross-sectional view of the Fresnel lens sheet 2 of the present invention, showing a main portion near the center of the screen.
  • FIG. 16 is a vertical sectional view of the Fresnel lens sheet 2 according to the present invention, showing a main portion near the center of the screen.
  • FIG. 17 is a vertical cross-sectional view of the Fresnel lens sheet 2 of the present invention, showing a main portion near the center of the screen.
  • FIG. 18 is a vertical cross-sectional view of the Fresnel lens sheet 2 of the present invention showing a main part near the center of the screen.
  • FIG. 19 is a plan view showing an outline when a projection optical system of a general rear projection type surface image display device is developed on a horizontal plane.
  • FIG. 20 is a schematic plan view of a vertical cross section showing a projection optical system of a general rear projection type image display device.
  • FIG. 21 is a perspective view showing a main part of an example of a transmission screen according to the prior art.
  • FIG. 22 is a perspective view showing a main part of another example of the transmission screen according to the prior art.
  • FIG. 23 is a perspective view showing a main part of another example of the transmission screen according to the prior art.
  • FIG. 1 is a perspective view showing a main part of a transmission screen as a first embodiment of the present invention.
  • reference numeral 10 denotes a transmission screen, which is constituted by a Fresnel lens sheet 2. a lenticular lens sheet 7.
  • Fresnel lens Sheet 2 and lenticular lens sheet 7 are fixed to each other at their ends (not shown).
  • the Fresnel lens sheet 2 includes a lenticular lens substrate 46 and a Fresnel lens substrate 52.
  • the base material of the lenticular lens sheet 7 is also a substantially transparent thermoplastic resin material.
  • the light incident surface of the Fresnel lens sheet 2 is formed by connecting a horizontally long lenticular lens 1 (hereinafter, referred to as a first lenticular lens) whose longitudinal direction is the screen screen in the screen vertical direction.
  • the shape is arranged side by side.
  • the focal points FF 2 and F 3 of the first lenticular lens are located inside the Fresnel lens sheet 2, and near the focal points F 1, F 2 and F 3, almost once the focused image light rays are emitted.
  • a horizontally long lenticular lens is provided as a lens element 5 for converting into a parallel light beam.
  • a horizontally long light absorbing layer 4 whose longitudinal direction is the horizontal direction of the screen screen is provided.
  • the emitting surface of the Fresnel lens sheet 2 for image light is a Fresnel convex lens 3.
  • the light-incident surface of the lenticular lens lens 7 is composed of a vertically long lenticular lens 6 (hereinafter referred to as a second lenticular lens) whose longitudinal direction is perpendicular to the screen screen. It has a shape.
  • a vertical lenticular lens 9 (hereinafter, referred to as a third lenticular lens) having a longitudinal direction perpendicular to the screen screen is provided on the exit surface of the image light with a second lenticular lens 6 on the incident surface. It is arranged so as to face the screen and to be continuously arranged in the horizontal direction of the screen. Further, a protrusion 60 is provided at a boundary between the third lenticular lenses, and a vertically long light absorbing layer 8 having a finite width is provided thereon.
  • FIG. 4 shows the Fresnel lens in the first embodiment of the present invention shown in FIG.
  • FIG. 6 is a vertical cross-sectional view of a main part near the center of the screen of the second sheet in the screen vertical direction.
  • Image light rays from an image source (not shown) are converted into finely divided light beams by a first lenticular lens (horizontally elongated lenticular lens) provided on the incident surface of the Fresnel lens sheet 2, and each lenticular light is emitted.
  • the lens focuses on the focal point F (F ,, F :, F ,, F " owned in the figure) that once exists inside the Fresnel lens sheet 2, and the individual luminous flux is focused most near the focal point State.
  • a lens element 5 for converting the once converged image light beam into a substantially parallel light beam is provided on the image viewing side.
  • the image light rays enter the Fresnel lens provided on the viewing side almost in parallel, so that the angle of incidence on the Fresnel lens can be reduced and the reflection loss can be reduced, thus lowering the brightness of the screen.
  • the refractive index ⁇ of the lenticular lens substrate 46 is smaller than the refractive index ⁇ of the lenticular lens substrate 52, the shape of the lens element 5 is concave toward the viewing side.
  • the optical axis of the first lenticular lens and the center of the area through which the image light rays inside the screen sheet pass are:
  • the decentering amount d is set to be substantially the same, and has a predetermined decentering amount d toward the edge of the screen, and the decentering amount d gradually increases.
  • FIG. 5 is a plan view schematically showing a vertical cross section of a projection optical system of a general rear projection type image display device without a folded mirror.
  • FIG. 6 is a schematic cross-sectional view in the vertical direction of the screen showing a main part of the Fresnel lens sheet 2 in the first embodiment of the present invention shown in FIG. (Partially omitted).
  • the screen of the image light ray at the evaluation point P when the distance from the tip of the projection lens to the transmission screen is (projection distance) L, the screen of the image light ray at the evaluation point P.
  • the center position of the opening (light passage portion 5) formed by the light absorbing layer 4 is separated from the optical axis 1 by distance d, (decenter amount d,).
  • desired performance can be obtained if the center position of the opening (light passing portion 5) formed by the horizontally long light absorbing layer 4 is separated from the optical axis 11 'by a distance d, (a decenter amount d :). Can be.
  • L is the focal length of the first lenticular lens.
  • Tables 1, 3, and 5 show examples of the cross-sectional shape (lens shape) of the horizontally long lenticular lens according to the embodiment of the present invention in the direction perpendicular to the surface.
  • Table 2 shows the optimum decenter amount d at the distance from the center of the screen corresponding to the embodiment shown in Table 1.
  • Table 4 corresponds to Table 3 and Table 6 is the decentering quantity d corresponding to Table 5.
  • the lens shape of the horizontally long lenticular lens provided on the entrance surface has a radius of curvature of 0.9345 mm, a distance of 1 mm on the optical axis from the entrance surface to the focal point F is 2.5133.6 mm, It is shown that the refractive index n, of the base material with respect to light having a wavelength of 545 nm, is 1.540. Also, it can be seen that the effective diameter of the horizontally long wrench lens is 0.14 mm. At this time, the diameter of the light beam condensed at the focal point F is calculated to be 0.006 mm, but the manufacturing error due to the manufacturing method described later and the light beam when the image light beam enters the upper and lower ends of the screen will be described.
  • the opening (light passing portion 5) of the horizontally long light absorbing layer 4 is set to 0.05 mm.
  • the width of the light passing portion 5 is 0.05 mm, while the lens pitch of the horizontally long lenticular lens is 0.14 mm, so that the ratio of the light absorbing layer is about 65%.
  • the refractive index ⁇ of the substrate from the horizontally long light absorbing layer 4 to the Fresnel lens surface with respect to light having a wavelength of 545 nm is also 1.540.
  • the aspheric coefficients CC and AE are coefficients when the lens surface shape is expressed by the following equation. r 2 / RD
  • Table 2 shows that, at the periphery of the screen, the image light flux from the image source (not shown) 4 2-2 and 4 2-3 force is incident on the Fresnel lens sheet 2.
  • an optimum decenter amount d at a distance from the screen center is shown.
  • the decenter amount d at a distance of 45.6 mm from the center of the screen in the vertical direction of the screen is 0.5344.22 mm.
  • the present invention also includes a configuration having a lens function of converting a light beam into a substantially parallel light beam.
  • FIG. 2 is a perspective view showing a main part of a transmission screen as a second embodiment of the present invention.
  • the difference from the first embodiment shown in FIG. 1 is that the light incident surface of the Fresnel lens sheet 2 faces the vertical lenticular lens 1 whose longitudinal direction is in the vertical direction of the screen in this embodiment. The point is that they are arranged continuously in the horizontal direction.
  • the focal points F1, F2, and F3 of the lenticular lenses also exist inside the Fresnel lens sheet 2 as in the first embodiment.
  • a vertically long light absorbing layer 13 whose longitudinal direction is perpendicular to the screen screen is provided in a portion where the image light rays near the focal point do not pass.
  • FIG. 3 is a perspective view showing a main part of a transmission screen as a third embodiment of the present invention.
  • the transmission screen has a three-piece structure.
  • a Fresnel lens sheet 36 is arranged at a position closest to a video source (not shown), and the Fresnel lens 3 provided on the exit surface converts the video rays into substantially parallel rays. It is incident on the horizontal lenticular sheet 61.
  • the image luminous flux is once condensed at the focal point F of each lens by the horizontal lenticular lens 1 provided on the entrance surface of the horizontal lenticular sheet 61, and diffuses from the matted emission surface.
  • the lenticular sheet 7 has the same function as that of the first embodiment, and the description is omitted here.
  • a model of a molding machine for manufacturing The sheet base material 46 extruded from the extruder 43 is used to transfer a lenticular lens shape provided on the image light incident surface to a transfer drum 44, and a transfer drum 44 for printing a light absorbing layer.
  • the desired shape is transferred by the transfer drum 441-1 for transferring the flat part and the notched part.
  • the desired light absorbing layer 4 is obtained on the surface of the flat part by the light absorbing layer printing drum 45.
  • FIG. 9 and 10 show the cross-sectional shape of the sheet base material 46 after the sheet base material 46 has been formed by the transfer drums 441-1 and 441-2, respectively.
  • FIG. 9 shows an embodiment in which the cutout portion 48 provided on the surface on which the light absorbing layer is printed has a U-shape.
  • a lenticular lens is formed on the image light incident surface.
  • FIG. 10 shows an embodiment in which the shape 50 of the cutout portion provided on the surface on which the light absorbing layer 4 is printed has a V-shape.
  • FIGS. Figure 12 shows.
  • FIG. 11 corresponds to FIG. 9, and FIG. 12 corresponds to FIG.
  • the sheet base material 46 is cut into desired dimensions, Proceed to the final step of forming the Fresnel lens.
  • a 2P method using an ultraviolet curable resin for the substrate 52 is generally used as a means for forming the Fresnel lens 3 on the sheet substrate 46 after the light absorbing layer 4 is printed.
  • FIGS. 13 and 14 show cross-sectional shapes of the embodiment of the present invention in which the Fresnel lens 3 is formed on the sheet base material 46 after the light absorbing layer 4 is printed.
  • FIG. 13 corresponds to FIG. 11, and
  • FIG. 14 corresponds to FIG.
  • FIGS. 15 and 16 show ray tracing results when an image light beam enters the embodiment of the present invention shown in FIGS. 13 and 14.
  • FIG. the refractive index n0 of the lenticular lens base material 46 is larger than the refractive index ⁇ of the Fresnel lens base material 52, and the bonding surface of each base material is the first lenticular lens base material.
  • This figure shows the lens shape of the cemented surface and the results of ray tracing when the focal position of the lens is closer to the image light incident surface side.
  • FIG. 17 and FIG. 18 also show other lens shapes that can be taken by the joint surface under the same conditions, and the results of ray tracing. It has a concave lens shape on the viewing side, and is an optimal lens shape for the manufacturing method described above.
  • the method of manufacturing the Fresnel lens sheet as an embodiment of the present invention has been described above.
  • a flat mat surface or the like may be formed on the sheet base material 46 after the light absorbing layer is printed.
  • the present invention includes a configuration in which a shape other than the Fresnel lens is formed.
  • a lens having a light condensing function is continuously provided on at least the image light incident surface of at least one screen sheet constituting the transmission screen. Since the light absorbing layer is provided in the area where the image light does not pass inside the lean sheet, unnecessary reflection light is reduced by absorbing multiple reflection between screen sheets and external light, etc., and the contrast of the image is improved.
  • a lens having an action of converting the image light into almost parallel light is provided near the focal point of the lens provided on the image light incident surface.
  • the image light rays become almost parallel rays and enter the Fresnel lens provided on the viewing side, so that the angle of incidence on the Fresnel lens can be reduced and the reflection loss can be reduced, so that the brightness of the screen does not decrease.
  • the Fresnel lens surface is formed after printing the light absorbing layer, the transmission screen having the light absorbing layer can be manufactured very easily. Industrial applicability
  • the present invention is useful in the configuration of a projection-type image display device and the transmission-type screen used for the same, and in manufacturing the same, and in particular, reduces image contrast and focus characteristics. It is suitable for use as a transmission screen technology for preventing a decrease in screen brightness.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Overhead Projectors And Projection Screens (AREA)

Abstract

A transmission-type screen comprising a plurality of screen sheets, wherein a plurality of lenses for collecting light are arranged in succession on a plane of image light incidence of at least one screen sheet, the lenses are focused inside the sheet, and a light-absorbing layer is provided on a region where the image light near the focal point does not pass through, in order to decrease multiple reflection and reflection of external light among the screen sheets and to improve focusing characteristics and contrast of the image. Moreover, the center of the region where the image light passes through is nearly brought into agreement with the optical axis of the lens provided on the plane of image light incidence. A predetermined decentering quantity d is imparted to the end portions, and a Fresnel lens is provided on the outgoing plane.

Description

明 細 書  Specification
透過型スク リーンとその製造方法及びこれを用いた背面投写型画像デ イスプレイ装置 技術分野 TECHNICAL FIELD The present invention relates to a transmission screen, a method of manufacturing the same, and a rear projection type image display apparatus using the same.
本発明は、 透過型スク リーンとその製造方法及びこれを用いた背面投 写型画像ディスプレイ装置に関する。 背景技術  The present invention relates to a transmission screen, a method of manufacturing the same, and a rear projection image display device using the same. Background art
映像発生源としての投写型ブラウン管ゃ液晶表示装置などに表示され た映像を、 投写レンズにより拡大し、 透過型スク リーンに背面より投写 する背面投写型テレビジョ ン受像機等の背面投写型画像ディスプレイ装 置は、 近年、 画質の向上が著しく、 迫力ある大画面により臨場感を楽し むことができるため、 家庭用、 業務用に普及が進んでいる。  Projection type cathode ray tube as image source ゃ Rear projection type image display such as a rear projection type television receiver that enlarges the image displayed on a liquid crystal display device etc. with a projection lens and projects it from the back onto a transmission type screen In recent years, devices have been remarkably improved in image quality and have a powerful large screen that allows them to enjoy a sense of presence.
この背面投写型画像ディスプレイ装置において、 投写型ブラウン管を 映像発生源として用いる場合、 スク リーン上の画面の輝度を十分に明る くするために、 従来より、 赤、 緑、 青の 3原色についてそれぞれブラウ ン管と投写レンズを組み合わせ、 スク リーン上で 3原色の画像を合成す る構成とすることが一般に行われている。  In this rear-projection image display device, when a projection type cathode-ray tube is used as an image source, the three primary colors of red, green, and blue have been conventionally used in order to sufficiently increase the brightness of the screen on the screen. It is common practice to combine three primary color images on a screen by combining a projection tube and a projection lens.
第 1 9図は、 この投写光学系を水平面上に展開した時の概略を示す平 面図である。 同図において 1 6、 1 7、 1 8はそれぞれ青、 緑、 赤の投 写型ブラウン管、 1 9はそれぞれに対応する投写レンズ、 2 0、 2 1、 2 2はそれぞれ青、 綠、 赤の映像光の光軸である。 背面投写型画像ディ スプレイ装置の光学系には、 第 2 0図に示したように光路折り曲げ用の ミ ラーが存在するものがほとんどであるが、 第 1 9図ではこのミ ラ一を 省略している。 FIG. 19 is a plan view showing an outline when the projection optical system is developed on a horizontal plane. In the figure, 16, 17, and 18 are blue, green, and red projection CRTs, 19 is the corresponding projection lens, and 20, 21, and 22 are blue, 綠, and red, respectively. This is the optical axis of the image light. As shown in Fig. 20, the optical system of the rear projection type image display device Most mirrors exist, but this mirror is omitted in Fig. 19.
また、 第 2 0図は、 背面投写型画像ディ スプレイ装置の要部を示す垂 直方向断面図である。 投写型ブラウン管 2 8の管面上に表示された画像 を投写レンズ 2 6により拡大し、 光路折り曲げ用のミ ラ一 2 3を介して、 透過型スク リーン 2 4 に背面より投写する構成となっている。  FIG. 20 is a vertical sectional view showing a main part of the rear projection type image display device. The image displayed on the surface of the projection type cathode ray tube 28 is magnified by the projection lens 26, and is projected from the back onto the transmission screen 24 via the optical path bending mirror 23. ing.
この構成の背面投写型画像ディ スプレイ装置においては、 従来より、 例えば、 特開昭 5 6 — 1 1 7 2 2 6号公報に記載のよう に、 片面にフ レ ネルレンズを設けたスク リーンシー 卜 (以下フレネルレンズシー 卜 と記 述する。 ) と、 レンチキユラ一レンズを両面に設けたスク リーンシー ト (以下レンチキユラ一レンズシー トと記述する。 ) とを組み合わせた 2 枚構成の透過型スク リーンが用いられていた。 また、 画面垂直方向へ の映像光の拡散を実現するための具体的な技術手段を開示したスク リ一 ンとして、 たとえば、 特開昭 5 8 — 1 9 2 0 2 2号公報に記載のように、 フレネルレンズシー トと、 内部に光を散乱する微粒子が分散されたレン チキユラ一レンズシー 卜とを組み合わせて成る 2枚構成の透過型スク リ 一ンが一般に用いられている。  In a rear projection type image display apparatus having this configuration, conventionally, for example, as described in Japanese Patent Application Laid-Open No. 56-117272, a screen sheet provided with a Fresnel lens on one side (see, for example, Hereafter, this is referred to as a Fresnel lens sheet.) And a screen sheet provided with a lenticular lens on both sides (hereinafter referred to as a lenticular lens sheet). Had been. Further, as a screen which discloses specific technical means for realizing diffusion of image light in the vertical direction of the screen, for example, Japanese Patent Application Laid-Open No. 58-192022 discloses a screen. In addition, a two-part transmission screen, which is a combination of a Fresnel lens sheet and a lenticular lens sheet in which fine particles that scatter light are dispersed, is generally used.
以下、 これらにつき説明する。  Hereinafter, these will be described.
第 2 1 図は、 従来技術の一例としての透過型スク リーンの構成要部を 示す斜視図である。 第 2 1 図において、 3 8は透過型スク リーンで、 フ レネルレンズシ一 卜 3 6 と、 レンチキュラーレンズシー 卜 7 との 2枚の レンズシー トにより構成されている。 それぞれのシー トの基材は、 いず れも透明の熱可塑性樹脂から成る。 このう ち、 レンチキュラーレンズシ 一卜の基材中には、 光を散乱させる光拡散材 3 7の微粒子が分散されて いる。  FIG. 21 is a perspective view showing the main components of a transmission screen as an example of the prior art. In FIG. 21, reference numeral 38 denotes a transmission screen, which is composed of two lens sheets, a Fresnel lens sheet 36 and a lenticular lens sheet 7. The base material of each sheet is made of a transparent thermoplastic resin. Of these, fine particles of the light diffusing material 37 for scattering light are dispersed in the base material of the lenticular lens sheet.
フレネルレンズシー ト 3 6の映像光入射面 3 5は平面となつている。 フレネルレンズシー ト 3 6の映像光の出射面はフレネル凸レンズ形状 3 になっている。 6は、 レンチキユラ一レンズシー ト 7の映像光の入射面 であり、 スク リーン画面垂直方向を長手方向とするレンチキュラーレン ズ (以下、 「第二のレンチキユラ一レンズ」 と記す) を画面水平方向に 連続して並べた形状となっている。 9はレンチキュラーレンズシー ト 7 の映像光の出射面であり、 スク リーン画面垂直方向を長手方向とするレ ンチキユラ一レンズ (以下、 「第三のレンチキュラーレンズ」 と記す) を、 入射面 6の第二のレンチキュラーレンズにほぼ対向して、 画面水平 方向に連続して並べた形状となっている。 さらに同第三のレンチキユラ —レンズ相互間の境界部分には、 凸形突起部 6 0が設けられ、 その上に 有限幅の光吸収層 (ブラックス トライプ) .8が設けられており、 照明光 や太陽光など外光の影響による画質低下、 特に、 コン トラス ト性能の低 下を防ぐ構成となっている。 The image light incident surface 35 of the Fresnel lens sheet 36 is flat. The exit surface of the Fresnel lens sheet 36 for the image light has a Fresnel convex lens shape 3. Reference numeral 6 denotes an image light incident surface of the lenticular lens sheet 7, and a lenticular lens (hereinafter, referred to as a “second lenticular lens”) having a longitudinal direction perpendicular to the screen is provided in the horizontal direction of the screen. It has a shape arranged continuously. Reference numeral 9 denotes an emission surface of the image light of the lenticular lens sheet 7, and a lenticular lens (hereinafter, referred to as a “third lenticular lens”) having a longitudinal direction perpendicular to the screen screen, It has a shape that is substantially opposed to the two lenticular lenses and is continuously arranged in the horizontal direction of the screen. The third lenticular-lens interface is provided with a convex protrusion 60 at the boundary between the lenses, and a light absorbing layer (black stripe) .8 having a finite width is provided thereon. It is designed to prevent image quality degradation due to the influence of external light such as sunlight and sunlight, and in particular, a decrease in contrast performance.
第 2 1図に示す透過型スク リーンにおいては、 投写型ブラゥン管管面 上の表示画像の各点から出射した光束は、 投写レンズ (いずれも図示せ ず) を経て、 フレネルレンズシー ト 3 6の光入射面 3 5に入射する。 そ して、 この入射光束は、 フレネルレンズシー ト 3 6の光出射面のフレネ ル凸レンズ 3によりほぼ平行光束に変換され、 レンチキュラーレンズシ 一卜 7に入射する。 レンチキュラーレンズシー ト 7に入射した光線は、 入射面 6の第二のレンチキュラーレンズにより光出射面 9上の第三のレ ンチキユラ一レンズ面付近の焦点に向かい、 その焦点から画面水平方向 に拡散するとともに、 基材内に分散された光拡散材 3 7の微粒子により、 画面垂直方向及び水平方向に拡散されながら観視者側に出射する。 すな わち、 レンチキュラーレンズシー ト 7を通過する光線は、 レンチキユラ —レンズシー 卜 7の入射面 6の形状に依存して画面水平方向に拡散され 画面垂直方向への拡散は光拡散材 3 7の作用によってのみ行われる。 また、 その他には、 画面垂直方向への映像光の拡散を実現するために、 例えば、 特開昭 5 8 — 9 3 0 4 3号公報に記載のように、 レンズ作用に より映像光を画面垂直方向に拡散する作用をもつフレネルレンズシー ト と内部に光を散乱する微粒子が分散されているレンチキュラーレンズシ — 卜とを、 組み合わせた 2枚構成の透過型スク リーンが用いられている。 以下、 これについて説明する。 In the transmission screen shown in FIG. 21, the light flux emitted from each point of the display image on the projection screen of the Braun tube passes through a projection lens (neither of which is shown) to form a Fresnel lens sheet 36. Incident on the light incident surface 35 of the light source. Then, this incident light beam is converted into a substantially parallel light beam by the Fresnel convex lens 3 on the light exit surface of the Fresnel lens sheet 36, and enters the lenticular lens sheet 7. The light beam incident on the lenticular lens sheet 7 is directed to the focal point near the third lenticular lens surface on the light emitting surface 9 by the second lenticular lens on the incident surface 6, and diffuses from the focal point in the horizontal direction of the screen. At the same time, the light is diffused in the vertical and horizontal directions of the screen by the fine particles of the light diffusing material 37 dispersed in the base material and emitted to the viewer side. That is, the light passing through the lenticular lens sheet 7 is diffused in the horizontal direction of the screen depending on the shape of the entrance surface 6 of the lenticular lens-lens sheet 7 and diffused in the vertical direction of the screen by a light diffusing material 3 7. Is performed only by the action of In addition, in order to realize diffusion of image light in the vertical direction of the screen, for example, as described in Japanese Patent Application Laid-Open No. 58-93043, the image light is screened by a lens function. A transmission screen having a two-piece configuration is used in which a Fresnel lens sheet having a function of vertically diffusing and a lenticular lens sheet in which light scattering fine particles are dispersed are combined. Hereinafter, this will be described.
第 2 2図は透過型スク リーンの従来技術における他の実施例の構成の 要部構成を示す斜視図である。 該第 2 2図において、 4 0は透過型スク リ ー ンで、 フ レネゾレレンズシー ト 3 9 と、 レ ンチキュラー レ ンズシー ト 7の 2枚のスク リーンシー 卜から構成されている。 各基材はそれぞれ第 2 1図の構成と同じ透明熱可塑性樹脂を用いている。  FIG. 22 is a perspective view showing a main part of a configuration of another embodiment of the transmission screen according to the prior art in the prior art. In FIG. 22, reference numeral 40 denotes a transmission screen, which is composed of two screen sheets, a Fresnel lens sheet 39 and a lenticular lens sheet 7. Each base material uses the same transparent thermoplastic resin as the structure shown in FIG.
また、 フレネルレンズシー ト 3 9の映像光入射面には、 この例では、 スク リ ー ン画面水平方向を長手方向とするレ ンチキュラーレ ンズ 3 8 (以下、 第一のレンチキュラーレンズという) を画面垂直方向に連続し て並べた形状となっている。 その他の構成は第 2 2図の場合と同様であ る。  In this example, a lenticular lens 38 (hereinafter referred to as a first lenticular lens) having a horizontal direction as a longitudinal direction is provided on the image light incident surface of the Fresnel lens sheet 39 in this example. The shape is continuous in the direction. Other configurations are the same as those in FIG.
第 2 2図に示す透過型スク リーンにおいては、 フレネルレンズシー ト 3 9の入射面には、 スク リーン画面水平方向を長手方向とする第一のレ ンチキユラ一レンズがあるので、 入射した光束は、 この第一のレンチキ ユラ一レンズによりスク リーン画面垂直方向の拡散特性を付与される。 その後さらに、 レンチキュラーレンズシ一 卜 7の基材内に分散された光 拡散材 3 7の微粒子によつても画面垂直方向の拡散特性を付与される。  In the transmission screen shown in FIG. 22, the first lenticular lens whose longitudinal direction is the horizontal direction of the screen screen is provided on the entrance surface of the Fresnel lens sheet 39, so that the incident light flux is The first lenticular lens provides diffusion characteristics in the vertical direction of the screen. Thereafter, the diffusion characteristics in the vertical direction of the screen are also provided by the fine particles of the light diffusing material 37 dispersed in the base material of the lenticular lens sheet 7.
第一のレンチキユラ一レンズ 3 8のピッチは、 通常、 投写画像の走査 線のピッチ、 または画素のピッチより小さ く設計され現状では約 0 . 1 m m程度である。 従って、 入射光束が、 入射面の第一のレンチキュラー レンズ面 3 8から入射すると、 各入射光線は、 同じ走査線または同じ画 素であっても、 入射位置によって入射角が異なるため、 異なる角度で屈 折し、 画面垂直方向に拡散されることになる。 すなわち、 この透過型 スク リーンを通過する光線は、 レンチキュラーレンズシ一 ト 7の入射面 形状に依存して画面水平方向に拡散され、 垂直方向への拡散は、 光拡散 材 3 7の作用とスク リーン画面水平方向を長手方向とする第一のレンチ キュラーレンズ 3 8の作用によって行われる。 この垂直方向への拡散を さらに大きくするためには、 基材内へ分散させた光拡散材 3 7の量を増 やす必要があるが、 トレー ドオフとしてフォーカス性能が低下する。 こ の解決策として、 第 2 3図に示すように、 レンチキユラ一レンズシー ト 7の基材に分散させていた光拡散材 3 7を、 第三のレンチキュラーレン ズの表面近傍に集めることで、 フォーカス性能の低下を防ぎ、 かつ広い 拡散角を得るようにした透過型スク リーンも提案されている。 The pitch of the first lenticular lens 38 is usually designed to be smaller than the pitch of the scanning lines of the projected image or the pitch of the pixels, and is about 0.1 mm at present. Thus, when an incident light beam is incident from the first lenticular lens surface 38 of the incident surface, each incident light beam will have the same scan line or the same image. Even if it is elementary, the angle of incidence differs depending on the incident position, so it will bend at a different angle and diffuse in the vertical direction of the screen. That is, the light passing through the transmission screen is diffused in the horizontal direction of the screen depending on the shape of the incident surface of the lenticular lens sheet 7, and the diffusion in the vertical direction is based on the action of the light diffusing material 37 and the screen. This is performed by the action of the first lenticular lens 38 whose longitudinal direction is the horizontal direction of the lean screen. In order to further increase the diffusion in the vertical direction, it is necessary to increase the amount of the light diffusing material 37 dispersed in the base material. As a solution to this, as shown in FIG. 23, the light diffusing material 37 dispersed in the base material of the lenticular lens sheet 7 is collected near the surface of the third lenticular lens. Transmission-type screens that prevent a decrease in focus performance and obtain a wide diffusion angle have also been proposed.
上記従来の透過型スク リーンにおいては、 前述のように、 第三のレン チキユラ一レンズ相互間の境界部分に、 突起部 6 0を設け、 その上に有 限幅の光吸収層 (ブラックス トライプ) 6を設ける構成により、 室内照 明光や太陽光などの外光がスク リーン面に入射した場合の反射を低減す るようになっている。  In the conventional transmission screen described above, as described above, a projection 60 is provided at the boundary between the third lens and the lens, and a light absorbing layer (black stripe) having a limited width is provided thereon. The configuration provided with 6 reduces reflection when external light such as room illumination light or sunlight enters the screen surface.
しかしながら、 一般に用いられている透過型スク リーンにおいては、 この有限幅の光吸収層 (ブラ ックス トライプ) 6がスク リーン全体に占 める割合は、 4 0 %程度しかなく、 実際には、 第三のレンチキユラーレ ンズの表面で反射した外光にが存在するため、 コン トラス トの低下を完 全に抑えるこ とは不可能であった。 さらに、 レンチキュラーレンズシー 卜 7の入射面とフレネルレンズシー ト 3 6及びフ レネルレンズシ一 卜 3 9の出射面で映像光線が多重反射し、 このため、 コン トラス ト低下だけ でなく、 フ ォーカス性能の低下をも起こ していた。  However, in a generally used transmission screen, the finite width of the light absorbing layer (black stripe) 6 accounts for only about 40% of the entire screen. The presence of extraneous light reflected on the surface of the third lenticular lens made it impossible to completely suppress the decrease in contrast. Furthermore, the image light rays are reflected multiple times on the entrance surface of the lenticular lens sheet 7 and the exit surfaces of the Fresnel lens sheet 36 and the Fresnel lens sheet 39, which not only reduces the contrast but also reduces the focus performance. The decline was also occurring.
また、 第 2 2図に示した従来の透過型スク リーンにおいては、 フレネ ルレンズシー ト 3 9の映像光入射面に設けた、 画面垂直方向に光を拡散 させるための横長レンチキュラーレンズの作用により映像光線は、 観視 側面に設けたフレネルレンズに拡散して入射する。 このため、 フレネル レンズへの入射角度が大き くなり、 反射損失が増加する。 スク リーン画 面上下端部においては、 フ レネルレンズへの入射角度が特に大きくなる ため、 映像光線の透過率が減少し、 画面周辺の明るさが低下する。 In the conventional transmission screen shown in FIG. The image light beam is diffused and incident on the Fresnel lens provided on the viewing side by the action of a horizontally long lenticular lens provided on the image light incident surface of the lens sheet 39 for diffusing light in the direction perpendicular to the screen. This increases the angle of incidence on the Fresnel lens and increases the return loss. At the upper and lower ends of the screen, the incident angle to the Fresnel lens is particularly large, so that the transmittance of the image light is reduced and the brightness around the screen is reduced.
本発明の目的は、 上記の従来技術における課題を解決し、 画像のコン 卜ラス ト低下や、 フォーカス性能低下や、 画面周辺部の明るさ低下等が 少なく、 しかも製造の容易な透過型スク リーンと、 その製造方法、 及び これによつて構成される背面投写型画像ディスプレイ装置を提供するこ とにある。 発明の開示  SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems in the prior art, and reduce the contrast of an image, the focus performance, and the brightness of the peripheral portion of a screen. Another object of the present invention is to provide a rear projection type image display device constituted by the method and the manufacturing method thereof. Disclosure of the invention
本発明は、 第一の課題であるコン トラス ト性能とフオーカス性能の低 下を防ぐための手段として、 本発明の透過型スク リーンを構成するスク リーンシー 卜の少なく とも 1枚は、スク リ一ンシー 卜の映像発生源側(入 射面側) に映像光を集光させる作用を有する複数個のレンズを連続配置 し、 該個々のレンズの焦点がスク リーン内部に存在する構成とし、 この 焦点近傍において、 映像光線の通過しない領域に光吸収部を設ける。 さ らに、 スク リーンシー 卜の映像発生源側 (入射面側) に設けた、 映像光 を集光させる作用を有するレンズの光軸と、 前記スク リーンシー ト内部 の映像光線が通過する領域の中心を、 画面の中心部では、 ほぼ一致させ、 かつ画面端部に向かうに従って所定のディセンター量 dを有し、 さらに、 このディセンタ一量 dが徐々に大きくなるような構成とする。  The present invention provides a means for preventing a decrease in contrast performance and focus performance, which is the first problem, by using at least one screen sheet constituting the transmission screen of the present invention. A plurality of lenses having a function of condensing image light are continuously arranged on the image source side (incident surface side) of the sheet, and the focal points of the individual lenses are present inside the screen. In the vicinity, a light absorbing part will be provided in a region where the image light does not pass. Further, an optical axis of a lens provided on the image source side (incident surface side) of the screen sheet and having a function of condensing image light, and a center of an area inside the screen sheet through which the image light passes. Are substantially matched at the center of the screen, and have a predetermined decentering amount d toward the edge of the screen, and the decentering amount d is gradually increased.
次に、 上記の第二の課題である周辺部の明るさ低下の解決手段として は、 スク リーンシー トを複数の部分に分け、 それぞれの基材として屈折 率が異なるものを使用し、 レンチキユラーレンズ基材の映像光線が通過 する領域に映像光線を略平行光とするレンズを設ける。 Next, as a solution to the above-mentioned second problem of lowering the brightness of the peripheral portion, the screen sheet is divided into a plurality of portions, each of which is refracted as a base material. A lens having a different ratio is used, and a lens for converting the image light beam into substantially parallel light is provided in a region of the lenticular lens substrate through which the image light beam passes.
さらに、 本発明による透過型スク リーンを容易に得るための製造方法 として、 前述のスク リーンシ一 卜を複数の部分に分けて製造する。 すな わち、 第 1の部分は一面に映像光を集光させる作用を有するレンズを複 数個連続配置し、 対向する面には、 前記個々のレンズの焦点近傍に切欠 き部を設け、 さらに、 映像光線の通過しない領域に、 平坦部を設け、 該 平坦部の表面に光吸収層を印刷または塗布する. こう して得られた第 1 の部分 (基材) の表面に、 紫外線硬化樹脂などにより、 フレネルレンズ を形成し、 第 2の部分を得て、 最終的に本発明のフレネルレンズシー 卜 を得る.  Further, as a manufacturing method for easily obtaining the transmission type screen according to the present invention, the above-mentioned screen sheet is manufactured by being divided into a plurality of parts. That is, the first portion has a plurality of lenses having an action of condensing image light continuously arranged on one surface, and a notch portion is provided on the opposing surface near the focal point of each of the lenses, Further, a flat portion is provided in an area where the image light does not pass, and a light absorbing layer is printed or applied on the flat portion. The surface of the first portion (substrate) thus obtained is cured by ultraviolet light. A Fresnel lens is formed with a resin or the like, the second part is obtained, and finally the Fresnel lens sheet of the present invention is obtained.
また、 本発明の背面投写型画像ディスプレイ装置においては、 前述の 本発明に係る透過型スク リーンを備えるとともに、 画像発生源と投写レ ンズを結合器により結合し、 投写レンズを構成するレンズ群のうち最も 画像発生源側に配置されるレンズを、 画像発生源側が凸面でかつスク リ ーン側が凹面となる凹レンズとし、 結合器内の、 画像発生源と凹レンズ との間の空間に液体冷媒を封入するという従来からのコン トラス ト改善 技術を併用する構成とする。  Further, the rear projection type image display device of the present invention includes the above-mentioned transmission type screen according to the present invention, and combines an image source and a projection lens with a coupler to form a lens group constituting a projection lens. The lens located closest to the image source is a concave lens with a convex surface on the image source side and a concave surface on the screen side, and the liquid refrigerant is placed in the space between the image source and the concave lens in the coupler. The structure will be used in combination with the conventional contrast improvement technology of encapsulation.
上記構成の透過型スク リ一ンを用いた背面投写型画像ディスプレイ装 置においては、 投写型ブラウン管などの映像発生源からの出射光は投写 レンズを経て透過型スク リーンに入射する。 透過型スク リーンの映像発 生源側に配置されたスク リーンシ一 卜は屈折率の異なる 2種類の基材か ら構成され、 その入射面には、 映像光を集光させる作用を有するレンズ を複数個、 連続的に配置されている。 このため、 映像光線は、 スク リー ン内部に存在する個々のレンズの焦点に集光される。 そこで、 このスク リ一ン内部の映像光線が通過しない領域に光吸収層を設け、 画像観視側 からスク リーンに入射した外光ゃスク リーンシ一 卜間で発生した多重反 射光などを前記光吸収層により吸収することで、 コン トラス トや、 フ才 一カス性能の低下を大幅に軽減する。 In a rear-projection image display apparatus using a transmission screen having the above configuration, light emitted from an image generation source such as a projection CRT enters a transmission screen via a projection lens. The screen sheet arranged on the image generation source side of the transmission screen is composed of two types of base materials having different refractive indexes, and its entrance surface has a plurality of lenses that have the function of condensing the image light. Pieces are arranged continuously. For this reason, the image light beam is focused on the focal point of each lens existing inside the screen. Therefore, a light absorbing layer is provided in the area inside the screen where the image light does not pass, By absorbing the multiple reflection light and the like generated between the external light and the screen sheet incident on the screen from above through the light absorption layer, the contrast and the reduction in the performance of the thin film are greatly reduced.
また、 前記入射面に設けたレンズの焦点近傍に、 映像光をほぼ平行光 に変換する作用を有するレンズを設ける。 このため、 映像光線は、 ほぼ 平行光となって観視側面に設けたフレネルレンズに入射するので、 フレ ネルレンズへの入射角度を小さ くでき、 反射損失が柽減できるので画面 の明るさが低下しない。  Further, a lens having an action of converting image light into substantially parallel light is provided near the focal point of the lens provided on the incident surface. As a result, the image light rays become almost parallel light and enter the Fresnel lens provided on the viewing side, so that the angle of incidence on the Fresnel lens can be reduced, and the reflection loss can be reduced, resulting in lower brightness of the screen. do not do.
また、 対向する面にフレネルレンズを設けることで、 スク リーンシー ト(以下フレネルレンズシー トと記述)を通過した映像光はほぼ平行光と なる。 そしてし、 透過型スク リ一ンの映像観視側に配置されたレンチキ ユラ一レンズシー トに入射し、 このシー トの入射面と出射面に設けられ たレンチキユラ一レンズ (スク リーン面面垂直方向を長手方向とするレ ンチキユラ一レンズ) の形状により画面水平方向の拡散が制御される。 本発明においてもレンチキュラーレンズシー トの出射面において映像 光を一旦集光させるため、 この出射面の映像光が通過しない領域に突起 部 6 0を設け、 この突起部 6 0に光吸収層 8 (ブラックス トライプ) を 設けることが可能となる。 このため、 前述のフレネルレンズシー 卜に設 1ナた光吸収層と合わせることで、 透過型スク リーンの出射面に照明光な どの外光が入射しても、 その入射光のうちの幾分かは光吸収層において 吸収され、 反射しないことこなるので、 明るい場所で画像を観視すると きのコン 卜ラス 卜がさらに良好なものとなる。 図面の簡単な説明  By providing Fresnel lenses on the opposing surfaces, the image light that has passed through the screen sheet (hereinafter referred to as the Fresnel lens sheet) becomes almost parallel light. Then, the light enters a lenticular lens sheet arranged on the image viewing side of the transmission screen, and a lenticular lens provided on the entrance and exit surfaces of the lenticular lens (perpendicular to the screen surface). The diffusion in the horizontal direction of the screen is controlled by the shape of a lenticular lens whose direction is the longitudinal direction. Also in the present invention, in order to temporarily collect the image light on the emission surface of the lenticular lens sheet, a projection 60 is provided in a region of the emission surface through which the image light does not pass, and the light absorption layer 8 ( Black stripes). For this reason, even if external light such as illumination light is incident on the exit surface of the transmission screen by combining with the light absorption layer provided on the above-mentioned Fresnel lens sheet, some of the incident light Since the light is absorbed in the light absorbing layer and is not reflected, the contrast when viewing an image in a bright place is further improved. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の第 1の実施例としての透過型スク リーンの要部を 示す斜視図である。 第 2図は、 本発明の第 2の実施例としての透過型スク リーンの要部を 示す斜視図である。 FIG. 1 is a perspective view showing a main part of a transmission screen as a first embodiment of the present invention. FIG. 2 is a perspective view showing a main part of a transmission screen as a second embodiment of the present invention.
第 3図は、 本発明の第 3の実施例としての透過型スク リーンの要部を 示す斜視図である。  FIG. 3 is a perspective view showing a main part of a transmission screen as a third embodiment of the present invention.
第 4図は、 第 1 図におけるフレネルレンズシー ト 2の画面中心付近の 要部を示す画面垂直方向断面図である。  FIG. 4 is a vertical sectional view of the screen showing a main part of the Fresnel lens sheet 2 near the center of the screen in FIG.
第 5図は、 一般的な背面投写型画像ディスプレイ装置の投写光学系の 垂直方向断面の概略を光路折り返しミラーを省略して示した平面図であ る。  FIG. 5 is a plan view schematically showing a vertical cross section of a projection optical system of a general rear projection type image display device, omitting an optical path turning mirror.
第 6図は、 第 1図におけるフレネルレンズシー ト 2の要部を示す画面 垂直方向断面図であり、 レンズ形状のデータの説明図である。  FIG. 6 is a vertical sectional view of a screen showing a main part of the Fresnel lens sheet 2 in FIG. 1, and is an explanatory diagram of lens shape data.
第 7図は、 レンズ形状の定義を説明するための説明図である。  FIG. 7 is an explanatory diagram for explaining the definition of the lens shape.
第 8図は、 本発明の透過型スク リーンの製造方法を説明するための説 明図である。  FIG. 8 is an explanatory diagram for explaining a method of manufacturing a transmission screen of the present invention.
第 9図は、 本発明の透過型スク リーンの製造方法を説明するための説 明図である。  FIG. 9 is an explanatory diagram for explaining a method of manufacturing a transmission screen according to the present invention.
第 1 0図は、 本発明の透過型スク リーンの製造方法を説明するための 説明図である。  FIG. 10 is an explanatory diagram for explaining a method of manufacturing a transmission screen according to the present invention.
第 1 1図は、 本発明の透過型スク リ一ンの製造方法を説明するための 説明図である。  FIG. 11 is an explanatory diagram for explaining a method of manufacturing a transmission screen of the present invention.
第 1 2図は、 本発明の透過型スク リ一ンの製造方法を説明するための 説明図である。  FIG. 12 is an explanatory diagram for explaining a method of manufacturing a transmission screen according to the present invention.
第 1 3図は、 本発明の透過型スク リ一ンの製造方法を説明するための 説明図である。  FIG. 13 is an explanatory diagram for explaining a method of manufacturing a transmission screen of the present invention.
第 1 4図は、 本発明の透過型スク リーンの製造方法を説明するための 説明図である。 第 1 5図は、 本発明のフレネルレンズシー ト 2の画面中心付近の要部 を示す画面垂直方向断面図である。 FIG. 14 is an explanatory diagram for explaining a method of manufacturing a transmission screen of the present invention. FIG. 15 is a vertical cross-sectional view of the Fresnel lens sheet 2 of the present invention, showing a main portion near the center of the screen.
第 1 6図は、 本発明のフレネルレンズシー ト 2の画面中心付近の要部 を示す画面垂直方向断面図である。  FIG. 16 is a vertical sectional view of the Fresnel lens sheet 2 according to the present invention, showing a main portion near the center of the screen.
第 1 7図は、 本発明のフレネルレンズシー ト 2の画面中心付近の要部 を示す画面垂直方向断面図である。  FIG. 17 is a vertical cross-sectional view of the Fresnel lens sheet 2 of the present invention, showing a main portion near the center of the screen.
第 1 8図は、 本発明のフレネルレンズシー ト 2の画面中心付近の要部 を示す画面垂直方向断面図である。  FIG. 18 is a vertical cross-sectional view of the Fresnel lens sheet 2 of the present invention showing a main part near the center of the screen.
第 1 9図は、 一般的な背面投写型面像ディスプレイ装置の投写光学系 を水平面上に展開したときの概略を示す平面図である。  FIG. 19 is a plan view showing an outline when a projection optical system of a general rear projection type surface image display device is developed on a horizontal plane.
第 2 0図は、 一般的な背面投写型画像ディスプレイ装置の投写光学系 を示す垂直断面の概略平面図である。  FIG. 20 is a schematic plan view of a vertical cross section showing a projection optical system of a general rear projection type image display device.
第 2 1図は、 従来技術による透過型スク リーンの一例の要部を示す斜 視図である。  FIG. 21 is a perspective view showing a main part of an example of a transmission screen according to the prior art.
第 2 2図は、 従来技術による透過型スク リーンの他の例の要部を示す 斜視図である。  FIG. 22 is a perspective view showing a main part of another example of the transmission screen according to the prior art.
第 2 3図は、 従来技術による透過型スク リーンの他の例の要部を示す 斜視図である。 発明を実施するための最良の形態  FIG. 23 is a perspective view showing a main part of another example of the transmission screen according to the prior art. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の実施例を図面を用いて説明する。 まず、 本発明の第 1の実施 例について 明する。  An embodiment of the present invention will be described with reference to the drawings. First, a first embodiment of the present invention will be described.
第 1図は、 本発明の第 1の実施例としての透過型スク リーンの要部を 示す斜視図である。  FIG. 1 is a perspective view showing a main part of a transmission screen as a first embodiment of the present invention.
第 1図において、 1 0は透過型スク リーンでフレネルレンズシー ト 2 . レンチキュラーレンズシ一 ト 7により構成されている。 フレネルレンズ シー ト 2、 レンチキユラ一レンズシー ト 7はそれぞれ端部 (図示せず) で相互に固定されている。 フレネルレンズシー ト 2は、 レンチキュラー レンズ基材 4 6 とフレネルレンズ基材 5 2からなる。 レンチキユラーレ ンズ基材 4 6の屈折率 n。はフレネルレンズ基材 5 2の屈折率 η ,よりも 小さい。 また、 レンチキュラーレンズシー ト 7の基材もほぼ透明な熱可 塑性樹脂材料である。 In FIG. 1, reference numeral 10 denotes a transmission screen, which is constituted by a Fresnel lens sheet 2. a lenticular lens sheet 7. Fresnel lens Sheet 2 and lenticular lens sheet 7 are fixed to each other at their ends (not shown). The Fresnel lens sheet 2 includes a lenticular lens substrate 46 and a Fresnel lens substrate 52. Lenticular lens base material 46 Refractive index n of 6. Is smaller than the refractive index η of the Fresnel lens substrate 52. The base material of the lenticular lens sheet 7 is also a substantially transparent thermoplastic resin material.
フレネルレンズシ一ト 2の光入射面は、 本実施例ではスク リ一ン画面 水平方向を長手方向とする横長レンチキュラーレンズ 1 (以下、 第一の レンチキュラーレンズと記す) を画面垂直方向に連続して並べた形状と なっている。 第一のレンチキュラーレンズ個々の焦点 F F 2、 F 3は フレネルレンズシー ト 2の内部に存在し、 個々の焦点 F ,、 F 2、 F 3近 傍には、 一旦集光された映像光線をほぼ平行な光線に変換するためのレ ンズ素子 5 として、 横長レンチキュラーレンズを設ける。 また、 映像光 線が通過しない領域には、 スク リーン画面水平方向を長手方向とする横 長光吸収層 4を設ける。 このフ レネルレンズシー ト 2の映像光の出射面 は、 フレネル凸レンズ 3になっている。 レンチキユラ一レンズシ一 卜 7 の光入射面は、 スク リーン画面垂直方向を長手方向とする縦長レンチキ ユラ一レンズ 6 (以下、 第二のレンチキュラーレンズと記す) を画面水 平方向に連続して並べた形状となっている。 同様に、 映像光の出射面に は、 スク リーン画面垂直方向を長手方向とする縦長レンチキユラ一レン ズ 9 (以下、 第三のレンチキュラーレンズと記す) を入射面の第二のレ ンチキユラ一レンズ 6にほぼ対向して画面水平方向に連続して並べた形 状となっている。 さらに第三のレンチキュラーレンズ相互間の境界部分 には、 突起部 6 0が設けられ、 その上に有限幅の縦長光吸収層 8が設け られている。 In this embodiment, the light incident surface of the Fresnel lens sheet 2 is formed by connecting a horizontally long lenticular lens 1 (hereinafter, referred to as a first lenticular lens) whose longitudinal direction is the screen screen in the screen vertical direction. The shape is arranged side by side. The focal points FF 2 and F 3 of the first lenticular lens are located inside the Fresnel lens sheet 2, and near the focal points F 1, F 2 and F 3, almost once the focused image light rays are emitted. A horizontally long lenticular lens is provided as a lens element 5 for converting into a parallel light beam. Further, in a region through which the image light beam does not pass, a horizontally long light absorbing layer 4 whose longitudinal direction is the horizontal direction of the screen screen is provided. The emitting surface of the Fresnel lens sheet 2 for image light is a Fresnel convex lens 3. The light-incident surface of the lenticular lens lens 7 is composed of a vertically long lenticular lens 6 (hereinafter referred to as a second lenticular lens) whose longitudinal direction is perpendicular to the screen screen. It has a shape. Similarly, a vertical lenticular lens 9 (hereinafter, referred to as a third lenticular lens) having a longitudinal direction perpendicular to the screen screen is provided on the exit surface of the image light with a second lenticular lens 6 on the incident surface. It is arranged so as to face the screen and to be continuously arranged in the horizontal direction of the screen. Further, a protrusion 60 is provided at a boundary between the third lenticular lenses, and a vertically long light absorbing layer 8 having a finite width is provided thereon.
第 4図は、 第 1図に示した本発明の第 1の実施例におけるフレネルレ ンズシー ト 2の画面中心付近の要部を示す画面垂直方向断面図である。 映像発生源 (図示せず) からの映像光線は、 フ レネルレンズシー ト 2の 入射面に設けた第一のレンチキュラーレンズ (横長レンチキュラーレン ズ) により、 細かく分割された光束となり、 それぞれのレンチキュラー レンズによって一旦フレネルレンズシー ト 2の内部に存在する焦点 F (図中では、 F ,、 F:、 F ,、 F " „) に集光され、 個々の光束は焦 点近傍で最も絞られた状態になる。 FIG. 4 shows the Fresnel lens in the first embodiment of the present invention shown in FIG. FIG. 6 is a vertical cross-sectional view of a main part near the center of the screen of the second sheet in the screen vertical direction. Image light rays from an image source (not shown) are converted into finely divided light beams by a first lenticular lens (horizontally elongated lenticular lens) provided on the incident surface of the Fresnel lens sheet 2, and each lenticular light is emitted. The lens focuses on the focal point F (F ,, F :, F ,, F "„ in the figure) that once exists inside the Fresnel lens sheet 2, and the individual luminous flux is focused most near the focal point State.
これらの光束は画面垂直方向に連铳的に並ぶことになるので、 隣合つ た焦点と焦点の間に存在する映像光線が通過しない領域も、 同様に画面 垂直方向に連続的に並ぶことになる。 この映像光線が通過しない領域に 横長光吸収層 4を設ければ、 映像光線に影響を与えることなく、 室内照 明光、 太陽光などの外光 4 3やフレネルレンズシー ト出射面とレンチキ ユラーシー ト入射面 (図示せず) で生じる多重反射光などを吸収するの でコン トラス トや、 フォ一カス性能の低下を大幅に軽減することができ る。  Since these luminous fluxes are continuously arranged in the vertical direction of the screen, the region where the image light rays existing between the adjacent focal points do not pass is similarly arranged in the vertical direction of the screen. Become. If the horizontally long light absorbing layer 4 is provided in the area where this image light does not pass, the outside light 43 such as indoor illumination light and sunlight, the Fresnel lens sheet emission surface and the lenticular sheet will be provided without affecting the image light. Since it absorbs multiple reflections generated at the entrance surface (not shown), it is possible to significantly reduce contrast and focus performance.
また、第一のレンチキユラーレンズ個々の焦点 F ,、 F z、 F ,近傍には、 一旦集光された映像光線をほぼ平行な光線に変換するためのレンズ素子 5 として、 映像観視側に凹面形状の横長レンチキユラ一レンズを設ける。 このレンズ作用により、 映像光線は、 観視側面に設けたフ レネルレンズ にほぼ平行に入射するので、 フレネルレンズへの入射角度が小さ くでき、 反射損失が柽減できるので画面の明るさを低下させることはない。 本実 施例においては、 レンチキュラーレンズ基材 4 6の屈折率 η ,がフ レネ ルレンズ基材 5 2の屈折率 η ,より も小さいので、 レンズ素子 5の形状 は観視側に凹となる。 In the vicinity of each of the focal points F 1, F z , and F 1 of the first lenticular lens, a lens element 5 for converting the once converged image light beam into a substantially parallel light beam is provided on the image viewing side. Is provided with a horizontally long wrench lens having a concave shape. By this lens action, the image light rays enter the Fresnel lens provided on the viewing side almost in parallel, so that the angle of incidence on the Fresnel lens can be reduced and the reflection loss can be reduced, thus lowering the brightness of the screen. Never. In this embodiment, since the refractive index η of the lenticular lens substrate 46 is smaller than the refractive index η of the lenticular lens substrate 52, the shape of the lens element 5 is concave toward the viewing side.
本実施例では、 第一のレンチキュラーレンズの光軸と、 前記スク リー ンシ一 ト内部の映像光線が通過する領域の中心を、 画面の中心部では、 ほぼ一致させ、 かつ画面端部に向かうに従って所定のディセンタ一量 d を有し、 このディセンター量 dが徐々に大きくなる構成とした。 In the present embodiment, the optical axis of the first lenticular lens and the center of the area through which the image light rays inside the screen sheet pass are: The decentering amount d is set to be substantially the same, and has a predetermined decentering amount d toward the edge of the screen, and the decentering amount d gradually increases.
以下、 第 5図及び第 6図を用いて最適ディセンター量 dについて説明 する。 第 5図は、 一般的な背面投写型画像ディスプレイ装置の投写光学 系の垂直方向断面の概略を折り返しミ ラーを省略して示した平面図であ る。 また、 第 6図は第 1図に示した本発明の第 1の実施例におけるフレ ネルレンズシー ト 2の画面中心付近から画面垂直方向下端までの要部を 示す画面垂直方向断面の概略図 (一部を省略して図示) である。 第 5図 において、 投写レンズの先端から透過型スク リーンまでの距離を (投写 距離) L ,とした場合に、 スク リーン中心から距離 D ,離れた評価点 P . における映像光線のスク リ一ンに対する入射角 0 ,は、 θο= t an"l (D1 Lo) …… (数 1 ) Hereinafter, the optimal decenter amount d will be described with reference to FIGS. 5 and 6. FIG. 5 is a plan view schematically showing a vertical cross section of a projection optical system of a general rear projection type image display device without a folded mirror. FIG. 6 is a schematic cross-sectional view in the vertical direction of the screen showing a main part of the Fresnel lens sheet 2 in the first embodiment of the present invention shown in FIG. (Partially omitted). In FIG. 5, when the distance from the tip of the projection lens to the transmission screen is (projection distance) L, the screen of the image light ray at the evaluation point P. The incident angle 0, is θο = t an ” l (D 1 Lo) …… (Equation 1)
によって求められる。 また、 第 6図に示すように、 透過型スク リーンを 構成するフレネルレンズシー ト 2のレンチキュラーレンズ基材 4 6の屈 折率を η ,' とすれば、 屈折後の角度 0 ·' は、 Required by Further, as shown in FIG. 6, if the refractive index of the lenticular lens substrate 46 of the Fresnel lens sheet 2 constituting the transmission screen is η, ', the angle 0
0o' = s i n~'(s i n(t an—^D! /Lo) /n。)) …… (数 2 ) によって求められる。 0o '= sin ~' (sin (t an-^ D! / Lo) / n.)) …… (Equation 2)
映像発生源 (図示せず) からフレネルレンズシー ト 2に入射した映像 光束は、 画面中心部においては、 フレネルレンズシー ト 2にほぼ垂直に 入射する。 このため、 第 6図に示すように映像光束 4 2 — 1は、 入射面 に設けたレンチキュラーレンズ 1のレンズ面から距離 Lだけ離れた焦点 Fに集光する。 ところが、 画面中心から中域さらには下端に近づく につれて映像光束 がフレネルレンズシー ト 2に入射する角度 S ,は徐々に大きくなり、 た とえば画面中域では映像光束 4 2— 2がレンチキュラーレンズ 1 によつ て集光されても、 光軸 1 Γ 上の焦点 Fには集光されず光軸 1 Γ から距 雜 d ,だけ離れた場所に集光される。 そこで、 光吸収層 4による開口 (光 通過部 5 ) の中心位置を、 光軸 1 Γ から距雜 d , (ディセンター量 d , ) だけ離す。 同様に、 面面下端では、 横長光吸収層 4による開口 (光通過 部 5 ) の中心位置を光軸 1 1' から距離 d , (ディセンター量 d :) だけ 離すと所望の性能を得ることができる。 The image light flux entering the Fresnel lens sheet 2 from an image source (not shown) enters the Fresnel lens sheet 2 almost vertically at the center of the screen. For this reason, as shown in FIG. 6, the image light flux 42-1 is condensed on the focal point F, which is a distance L away from the lens surface of the lenticular lens 1 provided on the incident surface. However, the angle S, at which the image light flux enters the Fresnel lens sheet 2 gradually increases from the center of the screen to the middle area and further to the lower end. For example, in the middle area of the screen, the image light flux 4 2-2 becomes the lenticular lens 1. However, even if the light is condensed by the optical axis, the light is not condensed at the focal point F on the optical axis 1 さ れ ず but is condensed at a distance d from the optical axis 1 だ け. Therefore, the center position of the opening (light passage portion 5) formed by the light absorbing layer 4 is separated from the optical axis 1 by distance d, (decenter amount d,). Similarly, at the lower end of the surface, desired performance can be obtained if the center position of the opening (light passing portion 5) formed by the horizontally long light absorbing layer 4 is separated from the optical axis 11 'by a distance d, (a decenter amount d :). Can be.
このディセンター量 d ,は、 数 1及び数 2から導かれる d = L t a n ( s i n"' ( s i n ( t a n'^D. /Lo ) Z n0)〉 …… (数 3 ) The decentering amount d, is derived from equations 1 and 2 d = L tan (sin "'(sin (ta n' ^ D. / Lo) Z n 0)> ...... ( Equation 3)
により求めることができる。 Can be obtained by
ただし、 Lは第一のレンチキユラ一レンズの焦点距離とする。 Here, L is the focal length of the first lenticular lens.
本発明の実施例の横長レンチキユラーレンズの面面垂直方向の断面形 状 (レンズ形状) についての例を表 1、 表 3、 表 5にそれぞれ示す。 ま た表 2は、 表 1 に示した実施例に対応したスク リ一ン中心からの距離に おける最適なディセンター量 dを示す。 以下同様に、 表 4は、 表 3に対 応し、 表 6は表 5に対応したディセンタ一量 dである。  Tables 1, 3, and 5 show examples of the cross-sectional shape (lens shape) of the horizontally long lenticular lens according to the embodiment of the present invention in the direction perpendicular to the surface. Table 2 shows the optimum decenter amount d at the distance from the center of the screen corresponding to the embodiment shown in Table 1. Similarly, Table 4 corresponds to Table 3 and Table 6 is the decentering quantity d corresponding to Table 5.
次に、レンズ形状のデータの読み方について表 1及び表 2を基にして 説明する。 5 表 1 Next, how to read lens shape data will be described based on Tables 1 and 2. 5 Table 1
Figure imgf000017_0001
入射面に設けた横長レンチキュラーレンズのレンズ形状は、 曲率半径 が 0. 9 3 4 5 mmであり、 入射面から焦点 Fまでの光軸上 1 Γ の距 離が 2. 5 1 3 6 mm、 その間の基材の波長 5 4 5 n mの光に対する屈 折率 n ,が 1. 5 4 0であることが示されている。 また、 横長レンチキ ユラ一レンズの有効径が 0. 1 4 mmであることが判る。 このとき、 焦 点 Fに集光する光束の直径は、 計算上 0. 0 0 6 mmとなるが、 後述す る製造方法による製造誤差と映像光束が画面上下端部へ入射した場合の 光束の広がりを考慮して横長光吸収層 4による開口 (光通過部 5 ) を 0. 0 5 mmとした。 この時、 横長レンチキュラーレンズのレンズピッチが 0. 1 4 mmであるのに対して光通過部 5の幅が 0. 0 5 mmとなるの で光吸収層の比率は、 約 6 5 %となる。 また、 本実施例においては横長 光吸収層 4からフレネルレンズ面までの基材の波長 5 4 5 n mの光に対 する屈折率 η ,も 1. 5 4 0である。
Figure imgf000017_0001
The lens shape of the horizontally long lenticular lens provided on the entrance surface has a radius of curvature of 0.9345 mm, a distance of 1 mm on the optical axis from the entrance surface to the focal point F is 2.5133.6 mm, It is shown that the refractive index n, of the base material with respect to light having a wavelength of 545 nm, is 1.540. Also, it can be seen that the effective diameter of the horizontally long wrench lens is 0.14 mm. At this time, the diameter of the light beam condensed at the focal point F is calculated to be 0.006 mm, but the manufacturing error due to the manufacturing method described later and the light beam when the image light beam enters the upper and lower ends of the screen will be described. In consideration of the spread, the opening (light passing portion 5) of the horizontally long light absorbing layer 4 is set to 0.05 mm. At this time, the width of the light passing portion 5 is 0.05 mm, while the lens pitch of the horizontally long lenticular lens is 0.14 mm, so that the ratio of the light absorbing layer is about 65%. . In the present embodiment, the refractive index η of the substrate from the horizontally long light absorbing layer 4 to the Fresnel lens surface with respect to light having a wavelength of 545 nm is also 1.540.
曲率半径の符号が正の場合は、 そのレンズ面の曲率中心がレンズ面よ り、 光軸の 1 から Γ に向かう方向に位置することを示す。 また非球面 係数 C C及び A Eは、 レンズ面形状を次式で表現した時の係数である。 r2/RD If the sign of the radius of curvature is positive, it indicates that the center of curvature of the lens surface is located in a direction from the optical axis toward Γ from the lens surface. The aspheric coefficients CC and AE are coefficients when the lens surface shape is expressed by the following equation. r 2 / RD
Zひ〕 =  Zhi) =
+ -〔1+CC〕 ■ /RD2 +-[1 + CC] ■ / RD 2
+ AE . r4+AF . Γ β+Α(τ · Γβ+ΑΗ · 广1 (数 4) 但し、 Zはレンズ形状の定義説明図である図 7に見られる如く 、 光軸 の 1 から Γ に向かう方向を Z軸にとり レンズの半径方向を r軸にとつ た時のレンズ面の高さ ( rの関数) を表し、 rは半径方向の距離を示し、 R は曲率半径を示している。 従って C C、 A E、 A F、 A G、 A Hの各 係数が与えられれば、 上記式に従ってレンズ面の高さ、 すなわち形状が 定まるわけである。 + AE .r 4 + AF .Γ β + Α (τ · Γ β + ΑΗ · Hiro 1 (Equation 4) Where Z is the height of the lens surface when the direction from 光 of the optical axis toward Γ is taken as the Z axis and the radial direction of the lens is taken as the r axis, as shown in FIG. Where r is the radial distance and R is the radius of curvature. Therefore, if the coefficients of CC, AE, AF, AG, and AH are given, the height of the lens surface, that is, the shape, is determined according to the above equation.
以上が表 1 に示したデータの読み方である。 表 3から表 5に示した他 の実施例のデータの読み方も、 これと同様である。 表 1 This is how to read the data shown in Table 1. The reading of the data of the other examples shown in Tables 3 to 5 is the same. table 1
Figure imgf000018_0001
表 2は、 画面周辺部においては、 映像発生源 (図示せず) からの映像 光束 4 2 — 2及び 4 2 — 3力く、 フ レネルレンズシー ト 2に入射する場合 について、 表 1 に示した実施例に対応したレンチキュラーレンズ形状に おいて、 スク リ ーン中心からの距離における最適なディセンター量 dを 示したものである。 例えばスク リーン中心から画面垂直方向に 4 8 5. 6 mm離れた場所でのディ センター量 dは 0. 5 3 4 2 2 mmである。 表 3
Figure imgf000018_0001
Table 2 shows that, at the periphery of the screen, the image light flux from the image source (not shown) 4 2-2 and 4 2-3 force is incident on the Fresnel lens sheet 2. In the lenticular lens shape corresponding to the illustrated embodiment, an optimum decenter amount d at a distance from the screen center is shown. For example, the decenter amount d at a distance of 45.6 mm from the center of the screen in the vertical direction of the screen is 0.5344.22 mm. Table 3
入 RD 0. 9401 6 射 CC 6. 0755949 面 AE 0. 10655055 有 δ半径 P/2(mm) 0. 085  Included RD 0.940 6 Radiation CC 6. 0755949 Surface AE 0.10655055 Exist δ radius P / 2 (mm) 0.085
2. 53 13 折阜 (i=545nm) 1. 540 光吸収層の比率 ) 68 表 ·  2.53 13 Orifu (i = 545nm) 1.540 Ratio of light absorbing layer) 68 Table
スクリーン中心からの Si (mm) デセンタ-量 d (mm)  Si (mm) decentering from screen center d (mm)
0 0. 0 0 0. 0
97. 1 0. 1093997.1 0.10939
194. 3 0. 2 1820194.3 0.2 1820
29 1. 4 0. 3258529 1.4 0. 32585
388. 5 0. 43 184388.5 0.43 184
485. 6 0. 53572 表 5 485.6 0.53572 Table 5
入 RD 0. 9 121 射 CC -0. 977006 面 AE  Enter RD 0.99 121 Fire CC -0.997706 Surface AE
有効半径 P/2(mm) 0. 1766 蕭ら Ιϋまでの ¾!(■) 2. 500 lttM$(i=545nm) 1. 540 光吸収層の比率 ) 77. 3 表 6  Effective radius P / 2 (mm) 0.1766 To Xiao et al. Ιϋ! (■) 2.500 lttM $ (i = 545nm) 1.540 Ratio of light absorption layer) 77.3 Table 6
スクリ-ン中心からの S離 (■) ディセンタ-量 d (mm)  S departure from screen center (■) Decenter amount d (mm)
0 0. 0 0 0. 0
97. 1 0. 1082097.1 0.10820
194. 3 0. 2 1 580194.3 0.2 1 580
29 1. 4 0. 3221029 1.4 0. 32210
388. 5 0. 42689388. 5 0. 42689
485. 6 0. 52937 本発明の実施例として表 1、 表 3、 表 5に示したように、 レンチキュ ラーレンズ基材の屈折率 n,がフレネルレンズ基材の屈折率 η ,に比べて 小さい場合について示したが、 この他、 基材の屈折率の大小関係が異な る場合もしく は、 それぞれの基材の接合面のレンズ面形状がそれぞれの 基材の接合面を、 第一のレンチキュラーレンズによって集光された映像 光線をほぼ平行な光線に変換するレンズ作用を有する構成とすることも 実質的に本発明に含まれることは言うまでもない。 485.6 0.52937 As shown in Tables 1, 3 and 5 as examples of the present invention, the case where the refractive index n of the lenticular lens substrate is smaller than the refractive index η of the Fresnel lens substrate is shown. In addition, the refractive index of the base materials may be different, or the lens surface shape of the bonding surface of each base material may be the image collected by the first lenticular lens on the bonding surface of each base material. Needless to say, the present invention also includes a configuration having a lens function of converting a light beam into a substantially parallel light beam.
第 2図は、 本発明の第 2実施例としての透過型スク リーンの要部を示 す斜視図である。 第 1図に示した第 1の実施例との相違点は、 フレネル レンズシー ト 2の光入射面が、 本実施例ではスク リ一ン画面垂直方向を 長手方向とする縦長レンチキュラーレンズ 1を面面水平方向に連続して 並べた形状となっている点にある。  FIG. 2 is a perspective view showing a main part of a transmission screen as a second embodiment of the present invention. The difference from the first embodiment shown in FIG. 1 is that the light incident surface of the Fresnel lens sheet 2 faces the vertical lenticular lens 1 whose longitudinal direction is in the vertical direction of the screen in this embodiment. The point is that they are arranged continuously in the horizontal direction.
このために、 第 1の実施例と同様にレンチキュラーレンズ個々の焦点 F 1、 F 2、 F 3もフ レネルレンズシー ト 2の内部に存在する。 この焦点 近傍の映像光線が通過しない部分に、 スク リーン画面垂直方向を長手方 向とする縦長光吸収層 1 3を設けた構成としている。  For this reason, the focal points F1, F2, and F3 of the lenticular lenses also exist inside the Fresnel lens sheet 2 as in the first embodiment. A vertically long light absorbing layer 13 whose longitudinal direction is perpendicular to the screen screen is provided in a portion where the image light rays near the focal point do not pass.
第 3図は、 本発明の第 3実施例としての透過型スク リーンの要部を示 す斜視図である。 第 1図に示した第 1の実施例との相違点は、 3枚構成 'の透過型スク リーンとなっている点である。 本実施例では、 映像発生源 (図示せず) に最も近い位置にフ レネルレンズシー 卜 3 6を配置し、 出 射面に設けたフレネルレンズ 3によって映像光線をほぼ平行な光線とし て、 横長レンチキュラーシー ト 6 1 に入射させる。 横長レンチキュラー シー ト 6 1の入射面設けた横長レンチキュラーレンズ 1 によつて映像光 束は、 それぞれのレンズの焦点 Fに一旦集光され、 マツ ト処理された出 射面から拡散する。 この横長レンチキユラ一シー ト 6 1 内部の横長レン チキユラ一レンズ 1の焦点 F近傍には第 1の実施例と同様に横長光吸収 層 4を設けている。 レンチキユラーシ一 卜 7は、 第 1の実施例と同様の 働きをするものであり、 ここでは説明を省略する。 FIG. 3 is a perspective view showing a main part of a transmission screen as a third embodiment of the present invention. The difference from the first embodiment shown in FIG. 1 is that the transmission screen has a three-piece structure. In this embodiment, a Fresnel lens sheet 36 is arranged at a position closest to a video source (not shown), and the Fresnel lens 3 provided on the exit surface converts the video rays into substantially parallel rays. It is incident on the horizontal lenticular sheet 61. The image luminous flux is once condensed at the focal point F of each lens by the horizontal lenticular lens 1 provided on the entrance surface of the horizontal lenticular sheet 61, and diffuses from the matted emission surface. In the vicinity of the focal point F of the horizontally elongated lenticular lens 1 inside the horizontally elongated wrench sheet 6 1, as in the first embodiment, horizontally elongated light absorption is performed. Layer 4 is provided. The lenticular sheet 7 has the same function as that of the first embodiment, and the description is omitted here.
本実施例では、 横長レンチキュラーシー ト 6 1の出射面がマッ 卜処理 されたものについて述べたが、 入射面が縦長レンチキユラ一レンズであ る縦長レンチキュラーシー トとしても、 また、 出射が平面の場合につい ても実質的に本発明に含まれることは言うまでもない。  In the present embodiment, the case where the exit surface of the horizontally long lenticular sheet 61 is subjected to a matting process has been described. However, even if the entrance surface is a vertically long lenticular sheet having a vertically elongated lenticular lens, the case where the emission is flat Needless to say, this is substantially included in the present invention.
本発明の実施例で示したフレネルレンズシー 卜と横長レンチキュラー シー 卜の製造方法について第 8図から第 1 4図を用いて以下に説明する c 第 8図は、 前述したそれぞれのシー ト基材を製造するための成形機をモ デル化したものである。 押出し成形機 4 3から押し出されたシー ト基材 4 6は、 映像光の入射面に設けたレンチキュラーレンズ形状を転写する ための転写用 ドラム 4 4一 2 と、 光吸収層を印刷するための平坦部と切 りかけ部を転写するための転写用 ドラム 4 4一 1 により所望の形状を転 写される。 その後、 光吸収層印刷用 ドラム 4 5により平坦部の表面に所 望の光吸収層 4を得る。 The method of manufacturing the Fresnel lens sheet and the horizontally long lenticular sheet shown in the examples of the present invention will be described below with reference to FIGS. 8 to 14c . A model of a molding machine for manufacturing The sheet base material 46 extruded from the extruder 43 is used to transfer a lenticular lens shape provided on the image light incident surface to a transfer drum 44, and a transfer drum 44 for printing a light absorbing layer. The desired shape is transferred by the transfer drum 441-1 for transferring the flat part and the notched part. Then, the desired light absorbing layer 4 is obtained on the surface of the flat part by the light absorbing layer printing drum 45.
シー ト基材 4 6がそれぞれの転写用 ドラム 4 4一 1、 4 4一 2により 成形された後のシー ト基材 4 6の横断面形状を第 9図及び第 1 0図に示 す。 第 9図は、 光吸収層を印刷する面に設けた切りかけ部 4 8の形状が U字型をした実施例である。 映像光入射面にはレンチキュラーレンズが 形成されている。 また、 第 1 0図は、 光吸収層 4を印刷する面に設けた 切りかけ部の形状 5 0が V字型をした実施例である。  9 and 10 show the cross-sectional shape of the sheet base material 46 after the sheet base material 46 has been formed by the transfer drums 441-1 and 441-2, respectively. FIG. 9 shows an embodiment in which the cutout portion 48 provided on the surface on which the light absorbing layer is printed has a U-shape. A lenticular lens is formed on the image light incident surface. FIG. 10 shows an embodiment in which the shape 50 of the cutout portion provided on the surface on which the light absorbing layer 4 is printed has a V-shape.
第 8図に示した光吸収層印刷用 ドラム 4 5により、 平坦部の表面に所 望の光吸収層を印刷した後のシー ト基材 4 6の横断面形状を第 1 1図及 び第 1 2図に示す。 第 1 1図は第 9図に、 第 1 2図は第 1 0図にそれぞ れ対応する。  The cross-sectional shape of the sheet base material 46 after the desired light absorption layer is printed on the flat surface by the light absorption layer printing drum 45 shown in FIG. 8 is shown in FIGS. Figure 12 shows. FIG. 11 corresponds to FIG. 9, and FIG. 12 corresponds to FIG.
光吸収層 4を印刷した後のシー ト基材 4 6は所望の寸法に裁断され、 フレネルレンズを形成する最終工程に進む。 光吸収層 4を印刷した後の シー 卜基材 4 6にフレネルレンズ 3を形成する手段として、 紫外線硬化 樹脂を基材 5 2に用いた 2 P法などが一般的である。 After printing the light absorbing layer 4, the sheet base material 46 is cut into desired dimensions, Proceed to the final step of forming the Fresnel lens. As a means for forming the Fresnel lens 3 on the sheet substrate 46 after the light absorbing layer 4 is printed, a 2P method using an ultraviolet curable resin for the substrate 52 is generally used.
光吸収層 4を印刷した後のシ一 ト基材 4 6にフレネルレンズ 3を形成 した本発明の実施例の横断面形状を第 1 3図及び第 1 4図に示す。 第 1 3図は第 1 1 図に、 第 1 4図は第 1 2図にそれぞれ対応する。  FIGS. 13 and 14 show cross-sectional shapes of the embodiment of the present invention in which the Fresnel lens 3 is formed on the sheet base material 46 after the light absorbing layer 4 is printed. FIG. 13 corresponds to FIG. 11, and FIG. 14 corresponds to FIG.
第 1 5図及び第 1 6図は、 第 1 3図、 第 1 4図に示した本発明の実施 例に映像光束が入射した場合の光線追跡結果を示したものである。 本実 施例では、 レンチキユラーレンズ基材 4 6の屈折率 n 0がフレネルレン ズ基材 5 2の屈折率 η ,より大きく、 かつ、 それぞれの基材の接合面が、 第一のレンチキユラ一レンズの焦点位置より映像光の入射面側に近い場 合における接合面のレンズ形状と、 光線追跡の結果を示したものである。  FIGS. 15 and 16 show ray tracing results when an image light beam enters the embodiment of the present invention shown in FIGS. 13 and 14. FIG. In this embodiment, the refractive index n0 of the lenticular lens base material 46 is larger than the refractive index η of the Fresnel lens base material 52, and the bonding surface of each base material is the first lenticular lens base material. This figure shows the lens shape of the cemented surface and the results of ray tracing when the focal position of the lens is closer to the image light incident surface side.
第 1 7図及び第 1 8図も、 同様の条件の場合に接合面がとりえる他の レンズ形状と、 光線追跡の結果を示したものである。 観視側に凹のレン ズ形状であり、 前述した製造方法に最適なレンズ形状である。  FIG. 17 and FIG. 18 also show other lens shapes that can be taken by the joint surface under the same conditions, and the results of ray tracing. It has a concave lens shape on the viewing side, and is an optimal lens shape for the manufacturing method described above.
以上、 本発明の実施例としてのフ レネルレンズシー トを製造する方法 について述べたが、 この他、 光吸収層を印刷した後のシー ト基材 4 6に 例えば平面のマッ 卜面などのフレネルレンズ以外の形状を形成した構成 も本発明は含む。 以上説明したように、 本発明によれば透過型スク リ一ンを構成する少 なく とも 1 のスク リーンシー 卜の映像光入射面に、 集光作用のあるレ ンズを連続的に設け、 このスク リーンシー ト内部の映像光線が通過しな い領域に光吸収層を設けるので、 スク リ一ンシー ト間の多重反射や外光 などを吸収するため不要反射光が低減され、 画像のコン トラス トの低下 及びフォーカス特性の低下を低減できる。 また、 前記の映像光入射面に設けたレンズの焦点近傍に、 映像光をほ ぼ平行光に変換する作用を有するレンズを設ける。 このため、 映像光線 はほぼ平行光線となつて観視側面に設けたフレネルレンズに入射するた め、 フレネルレンズへの入射角度を小さ くでき、 反射損失が軽減できる ので画面の明るさが低下しない。 The method of manufacturing the Fresnel lens sheet as an embodiment of the present invention has been described above. In addition, for example, a flat mat surface or the like may be formed on the sheet base material 46 after the light absorbing layer is printed. The present invention includes a configuration in which a shape other than the Fresnel lens is formed. As described above, according to the present invention, a lens having a light condensing function is continuously provided on at least the image light incident surface of at least one screen sheet constituting the transmission screen. Since the light absorbing layer is provided in the area where the image light does not pass inside the lean sheet, unnecessary reflection light is reduced by absorbing multiple reflection between screen sheets and external light, etc., and the contrast of the image is improved. It is possible to reduce the deterioration and the focus characteristic. Further, a lens having an action of converting the image light into almost parallel light is provided near the focal point of the lens provided on the image light incident surface. As a result, the image light rays become almost parallel rays and enter the Fresnel lens provided on the viewing side, so that the angle of incidence on the Fresnel lens can be reduced and the reflection loss can be reduced, so that the brightness of the screen does not decrease. .
さらに、 光吸収層を印刷した後に、 フレネルレンズ面を形成するので、 光吸収層を有する透過型スク リーンを極めて容易に製造できる。 産業上の利用可能性  Further, since the Fresnel lens surface is formed after printing the light absorbing layer, the transmission screen having the light absorbing layer can be manufactured very easily. Industrial applicability
以上のように、 本発明は、 投写型画像ディスプレイ装置及びこれに用 いる透過型スク リ一ンの構成及びその製造上で有用であり、 特に、 画像 のコン トラス トの低下、 フォーカス特性の低下、 画面の明るさの低下等 を防止する目的の透過型スク リ一ン技術として用いるのに適する。  INDUSTRIAL APPLICABILITY As described above, the present invention is useful in the configuration of a projection-type image display device and the transmission-type screen used for the same, and in manufacturing the same, and in particular, reduces image contrast and focus characteristics. It is suitable for use as a transmission screen technology for preventing a decrease in screen brightness.

Claims

請求の範囲 The scope of the claims
1 . 映像発生源側から入射した映像光を透過し映像観視側に出射する透 過型スク リーンにおいて、  1. In a transmissive screen that transmits image light incident from the image source side and emits it to the image viewing side,
前記スク リーンを形成するスク リーンシー トの少なく とも 1枚が、 屈 折率の異なる複数の基材が接合された構成を有し、 その映像発生源側の スク リーン面が、 映像光を集光する複数個のレンズを連続配置して成り、 各レンズの焦点が、 前記基材の接合面近傍に位置し、 該接合面は、 集光 された映像光を略平行光に変換する レンズ形状を有し、 前記映像発生源 側のスク リ一ン面に設けたレンズの焦点近傍の映像光が通過しない領域 に光吸収層を設け、 かつ映像観視側のスク リーン面にフレネルレンズを 設けた構成を特徴とする透過型スク リーン。  At least one of the screen sheets forming the screen has a configuration in which a plurality of base materials having different refractive indices are joined, and the screen surface on the image source side condenses the image light. The focal point of each lens is located near the joint surface of the base material, and the joint surface has a lens shape that converts the focused image light into substantially parallel light. A light absorbing layer is provided in an area where the image light near the focal point of the lens provided on the screen surface on the image generation source side does not pass, and a Fresnel lens is provided on the screen surface on the image viewing side. A transmission screen characterized by its configuration.
2 . 請求の範囲第 1項記載の透過型スク リーンにおいて、 前記スク リー ンシー 卜の映像発生源側のスク リ一ン面が、 映像光を集光する複数個の レンズを連続配置して成り、 各レンズの焦点が、 前記基材の接合面近傍 に位置し、 該接合面は、 集光された映像光を略平行光に変換する レンズ 形状を有し、 前記映像発生源側のスク リーン面に設けたレンズの焦点近 傍の映像光が通過しない領域に前記スク リ一ン入射面に平行に光吸収層 を設け、 かつ映像観視側のスク リ一ン面にフレネルレンズを設けた構成 を特徴とする透過型スク リーン。  2. The transmission screen according to claim 1, wherein the screen surface on the image source side of the screen sheet is formed by continuously arranging a plurality of lenses for condensing image light. The focal point of each lens is located near the bonding surface of the base material, and the bonding surface has a lens shape for converting the focused image light into substantially parallel light, and the screen on the image generation source side. A light absorbing layer is provided in a region near the focal point of the lens provided on the surface where the image light does not pass, in parallel with the screen incident surface, and a Fresnel lens is provided on the screen surface on the image viewing side. A transmission screen characterized by a configuration.
3 . 請求の範囲第 1項記載の透過型スク リ ーンにおいて、 前記スク リ ー ンシー トは、 その映像発生源側スク リーン面が、 スク リーン画面水平方 向を長手方向とする複数個のレンチキュラーレンズをスク リーン画面垂 直方向に連続配置した形状を有し、 各レンズの焦点が、 前記基材の接合 面近傍に位置し、 前記接合面は、 集光された映像光を略平行光に変換す るレンズ形状を有し、 前記映像発生源側のスク リーン面に設けたレンズ の焦点近傍の映像光が通過しない領域に光吸収層を設け、 かつ映像観視 側のスク リーン面にフレネルレンズを設けた構成を特徴とする透過型ス ク リーン. 3. The transmission-type screen according to claim 1, wherein the screen sheet includes a plurality of screens each having a screen-source-side screen surface whose longitudinal direction is the horizontal direction of the screen screen. It has a shape in which lenticular lenses are continuously arranged in the vertical direction of the screen, and the focal point of each lens is located near the bonding surface of the base material, and the bonding surface converts the condensed image light into substantially parallel light. A light absorbing layer is provided in an area where the image light near the focal point of the lens provided on the screen surface on the image source side does not pass through, and A transmission screen characterized by having a Fresnel lens on the side of the screen.
4 .映像発生源側から入射した映像光を透過し映像観視側に出射する透 過型スク リーンにおいて、  4. In a transmission screen that transmits image light incident from the image source side and emits it to the image viewing side,
5 前記スク リーンを形成するスク リーンシー トの少なく とも 1枚のシ一 卜の映像発生源側のスク リ一ン面が、 映像光を集光する複数個のレンズ を連銃配置して成り、 前記スク リーンシー トは、 屈折率の異なる複数の 基材が接合された構成を有し、 映像発生源側に位置する基材の屈折率を n ·、 映像観視側に位置する基材の屈折率を η ,とした場合に (5) At least one screen of the screen sheet forming the screen has a screen surface on the image source side which is formed by arranging a plurality of lenses for condensing image light in a continuous gun, The screen sheet has a configuration in which a plurality of base materials having different refractive indices are joined to each other. The refractive index of the base material located on the image generation source side is n ·, and the refractive index of the base material located on the image viewing side is n. Where η is the rate
0 η , > η , 0 η,> η,
の関係を有し、 映像発生源側のスク リーン面に設けた各レンズの焦点が、 前記基材の接合面より映像発生源側に位置し、 該接合面は、 映像観視側 に凹のレンズ形状をなし、 かつ前記映像発生源側のスク リ一ン面に設け たレンズの焦点近傍の映像光が通過しない領域に前記スク リーン入射面5 に略平行に光吸収層を設け、 かつ映像観視側のスク リーン面にフレネル レ ンズを設けた構成を特徴とする透過型スク リーン。  The focal point of each lens provided on the screen surface on the image source side is located closer to the image source than the joint surface of the base material, and the joint surface is concave on the image viewing side. A light-absorbing layer provided substantially in parallel with the screen incident surface 5 in an area where the image light near the focal point of the lens provided on the screen surface on the image source side does not pass through, having a lens shape; A transmissive screen characterized by a Fresnel lens provided on the viewing surface.
5 .映像発生源から入射した映像光を透過し映像観視側に出射する透過 型スク リーンにおいて、  5. In a transmission screen that transmits the image light incident from the image source and exits to the image viewing side,
前記スク リーンを形成するスク リーンシー トの少なく とも 1枚のシ一0 卜の映像発生源側のスク リーン面が、 映像光を集光する複数個のレンズ を連続配置して成り、 前記スク リーンシー トは、 複数の基材が接合され た構成を有.し、映像発生源側に位置する基材の屈折率を n ·、映像観視側 に位置する基材の屈折率を η ,とした場合に  At least one screen of the screen sheet forming the screen has a screen surface on the image source side which is formed by continuously arranging a plurality of lenses for condensing image light. Has a configuration in which a plurality of base materials are joined, and the refractive index of the base material located on the image generation source side is n and the refractive index of the base material located on the image viewing side is η. In case
n < n . n <n.
5 の関係を有し、 映像発生源側のスク リーン面に設けた各レンズの焦点が、 基材の接合面より映像観視側に位置し、 該接合面は映像観視側に凹のレ ンズ形状をなし、 かつ前記映像発生源側のスク リ一ン面に設けたレンズ の焦点近傍の映像光が通過しない領域に、 前記スク リーン入射面に略平 行に光吸収層を設け、 かつ映像観視側のスク リ一ン面にフレネルレンズ を設けた構成を特徴とする透過型スク リーン。 The focal point of each lens provided on the screen surface on the image source side is located closer to the image viewing side than the bonding surface of the base material, and the bonding surface is concave toward the image viewing side. A light absorbing layer substantially parallel to the screen incident surface in a region where the image light does not pass near the focal point of a lens provided on the screen surface on the image generating source side and which has a lens shape, and A transmission screen characterized by a Fresnel lens provided on the screen surface on the image viewing side.
6 . 請求の範囲第 1項記載の透過型スク リーンにおいて、 前記スク リー ンシー トは、 屈折率の異なる 2種類の基材から成り、 その映像発生源側 スク リーン面は、 スク リーン画面垂直方向を長手方向とする複数個のレ ンチキユラ一レンズをスク リーン画面水平方向に連続配置した形状を有 し、 各レンズの焦点が、 前記 2種類の基材の接合面近傍に位置し、 該接 合面は集光された映像光を略平行光に変換するレンズ形状を有し、 前記 映像発生源側のスク リーン面に設けたレンズの焦点近傍の映像光が通過 しない領域に光吸収層を設け、 かつ映像観視側のスク リ一ン面にフレネ ルレンズを設けた構成を特徴とする透過型スク リーン。 6. The transmission screen according to claim 1, wherein the screen sheet is composed of two types of base materials having different refractive indexes, and a screen surface on the image source side is perpendicular to the screen screen. The lens has a shape in which a plurality of lenticular lenses having a longitudinal direction are arranged continuously in the horizontal direction of the screen screen, and the focal point of each lens is located near the joint surface of the two types of base materials. The surface has a lens shape for converting the condensed image light into substantially parallel light, and a light absorbing layer is provided in a region where the image light near the focal point of the lens provided on the screen surface on the image source side does not pass through. A transmission screen characterized in that a Fresnel lens is provided on the screen surface on the image viewing side.
7 . 映像発生源側から入射した映像光を透過し映像観視側に出射する透 過型スク リーンにおいて、  7. In a transmission screen that transmits image light incident from the image source side and emits it to the image viewing side,
前記スク リーンを形成するスク リーンシー トの少なく とも 1枚は、 屈 折率の異なる基材が接合された構成を有し、 その映像発生源側のスク リ ーン面が、 映像光を集光する複数個のレンズを連続配置して成り、 各レ ンズの焦点が、 前記基材の接合面近傍に位置し、 前記接合面は集光され た映像光を略平行光に変換するレンズ形状を有し、 前記映像発生源側の スク リーン面に設けたレンズの焦点近傍の映像光が通過しない領域に光 吸収層を設け、 かつ映像観視側スク リ一ン面を平面とした構成を特徴と する透過型スク リ一ン。  At least one of the screen sheets forming the screen has a configuration in which base materials having different refractive indices are joined, and the screen surface on the image source side condenses the image light. The focal point of each lens is located near the bonding surface of the substrate, and the bonding surface has a lens shape that converts the focused image light into substantially parallel light. A light absorbing layer is provided in an area where the image light near the focal point of the lens provided on the screen surface on the image generation source side does not pass through, and the image viewing side screen surface is flat. Transmission screen.
8 . 映像発生源側から入射した映像光を透過し映像観視側に出射する透 過型スク リーンにおいて、  8. In a transmissive screen that transmits image light incident from the image source side and emits it to the image viewing side,
前記スク リーンを形成するスク リーンシー トの少なく とも 1枚は、 屈 折率の異なる基材が接合された構成を有し、 その映像発生源側のスク リ ーン面が、 映像光を集光する複数個のレンズを連続配置して成り、 各レ ンズの焦点が、 前記基材の接合面近傍に位置し、 該接合面は集光された 映像光を略平行光に変換するレンズ形状を有し、 前記映像発生源側のス ク リーン面に設けたレンズの焦点近傍の映像光が通過しない領域に光吸 収層を設け、 かつ映像観視側スク リーン面を光拡散面とした構成を特徴 とする透過型スク リ一ン。 At least one of the screen sheets forming the screen is bent. It has a structure in which substrates with different bending ratios are bonded, and the screen surface on the image source side is made up of a plurality of lenses that condense image light continuously arranged, and the focal point of each lens Is located near the bonding surface of the base material, the bonding surface having a lens shape for converting the focused image light into substantially parallel light, and a lens provided on the screen surface on the image generation source side. A transmission screen characterized in that a light absorbing layer is provided in a region near the focal point where video light does not pass, and the screen surface on the image viewing side is a light diffusing surface.
9 . 映像発生源側から入射した映像光を透過し映像観視側に出射する透 過型スク リーンにおいて、  9. In a transmission screen that transmits image light incident from the image source side and emits it to the image viewing side,
前記スク リーンを形成するスク リーンシー トの少なく とも 1枚は、 屈 折率の異なる基材が接合された構成を有し、 映像発生源側のスク リーン 面が、 映像光を集光する複数個のレンズを連続配置して成り、 各レンズ の焦点が、 前記基材の接合面近傍に位置し、 前記レンズの光軸と、 前記 接合面に設け集光された映像光を略平行光に変換するレンズの光軸とが、 スク リーンシー トの外形中心において略一致し、 上下端部に向かうに従 い光軸のずれ量が増加するようにし、 前記映像発生源側のスク リ一ン面 に設けたレンズの焦点近傍の映像光が通過しない領域に光吸収層を設け, かつ映像観視側スク リーン面にフレネルレンズを設けた構成を特徴とす る透過型スク リーン。  At least one of the screen sheets forming the screen has a configuration in which substrates having different refractive indices are joined, and the screen surface on the image source side has a plurality of screens for condensing image light. The focal point of each lens is located near the bonding surface of the base material, and the optical axis of the lens and the image light provided on the bonding surface are converted into substantially parallel light. The optical axis of the lens to be adjusted substantially coincides with the center of the outer shape of the screen sheet, and the shift amount of the optical axis increases toward the upper and lower ends. A transmissive screen characterized by having a light absorbing layer in a region near the focal point of the provided lens through which image light does not pass and a Fresnel lens provided on a screen surface on the image viewing side.
1 0 . 映像発生源側から入射した映像光を透過し映像観視側に出射する 透過型スク リーンにおいて、  10. In a transmission screen that transmits image light incident from the image source side and emits it to the image viewing side,
前記スク リーンが複数個のスク リーンシー トで構成され、 該スク リー ンシ一 卜のう ち映像発生源側に最も近い第 1のスク リーンシー トは、 屈 折率の異なる基材が接合された構成を有し、 映像発生源側のスク リーン 面の形状が、 スク リーン画面水平方向を長手方向とする複数個の第 1 の レンチキュラーレンズを、 スク リーン画面垂直方向に連続配置した形状 を有し、 各レンズの焦点が、 前記基材の接合面近傍に位置し、 該接合面 は集光された映像光を略平行光に変換するレンズ形状を有し、 前記焦点 近傍の映像光が通過しない領域に光吸収層を設け、 かつ映像観視側スク リーン面にフレネルレンズを設けて、 前記第 1のスク リーンシー トの映 像観視側に位置する第 2のスク リーンシー トの、 映像発生源側のスク リ 一ン形状が、 スク リーン画面垂直方向を長手方向とする複数個の第 2の レンチキュラーレンズを、 スク リ一ン画面水平方向に連続配置した形状 を有し、 その映像観視側のスク リーン面の形状が、 スク リーン画面垂直 方向を長手方向とする複数個の第 3のレンチキュラーレンズを、 前記第 2のレンチキュラーレンズに略対向させスク リーン画面水平方向に連続 配置した形状を有し、 前記第 2のレンチキユラ一レンズのスク リーン画 面水平方向の断面形状が、 映像発生源側に凸である形状とした構成を特 徴とする透過型スク リ一ン。 The screen is composed of a plurality of screen sheets, and the first screen sheet closest to the image generation source side of the screen sheets is formed by bonding substrates having different refractive indices. The screen surface on the image source side has a shape in which a plurality of first lenticular lenses having the longitudinal direction in the horizontal direction of the screen are continuously arranged in the vertical direction of the screen. Wherein the focal point of each lens is located near the bonding surface of the base material, and the bonding surface has a lens shape for converting the focused image light into substantially parallel light, and the image light near the focus A light-absorbing layer in an area through which no light passes, and a Fresnel lens on the image viewing-side screen surface, and a second screen sheet positioned on the image viewing side of the first screen sheet. The screen shape on the image source side has a shape in which a plurality of second lenticular lenses having a longitudinal direction perpendicular to the screen screen are arranged continuously in the horizontal direction of the screen screen. The screen surface on the viewing side has a shape in which a plurality of third lenticular lenses whose longitudinal direction is the screen screen vertical direction are substantially opposed to the second lenticular lens and are continuously arranged in the horizontal direction of the screen screen. Has Jo, the second is screen screen horizontal direction of the cross-sectional shape of the Renchikiyura first lens, the transmission type disk re Ichin a configuration in which the shape is convex to the image generation source side and feature.
1 1 . 映像発生源側から入射した映像光を透過し映像観視側に出射する 透過型スク リ一ンにおいて、  1 1. In a transmission screen that transmits image light incident from the image source side and emits it to the image viewing side,
前記スク リーンが複数個のスク リーンシー 卜で構成され、 該スク リ一 ンシ一 卜のうち、 映像発生源側に最も近い第 1のスク リーンシー 卜は、 映像発生源側のスク リ一ン面が平面で、 かつ映像観視側スク リ一ン面に フレネルレンズを設けて成り、 前記第 1のスク リーンシー トに対し映像 観視側に位置する第 2のスク リーンシー トは、 屈折率の異なる基材を備 えて成り、 映像発生源側のスク リーン面の形状が、 スク リーン画面水平 方向を長手方向とする複数個の第 1のレンチキュラーレンズを、 スク リ 一ン画面垂直方向に連続配置した形状を有し、 各レンズの焦点が前記基 材の接合面近傍に位置し、 該接合面は集光された映像光を略平行光に変 換するレンズ形状を有し、 前記焦点近傍の映像光が通過しない領域に光 吸収層を設け、 かつ映像観視側のスク リ一ン面を平面もしくは光拡散面 とし、 前記第 2のスク リーンシー 卜の映像観視側に位置する第 3のスク リーンシ一 卜の、 映像発生源側のスク リ一ン形状が、 スク リーン画面垂 直方向を長手方向とする複数個の第 2のレンチキュラーレンズを、 スク リーン画面水平方向に連続配置した形状を成し、 その映像観視側のスク リーン面の形状が、 スク リーン画面垂直方向を長手方向とする複数個の 第 3のレンチキュラーレンズを、 前記第 2のレンチキュラーレンズにほ ぼ対向して、 スク リーン画面水平方向に連続配置した形状とし、 前記第 2のレンチキュラーレンズのスク リーン面面水平方向の断面形状が、 映 像発生源側に凸である形状とした構成を特徴とする透過型スク リーン。 The screen is composed of a plurality of screen sheets, and among the screen sheets, a first screen sheet closest to the video source side has a screen surface on the video source side. A second screen sheet that is flat and has a Fresnel lens on the image viewing side screen surface, and a second screen sheet positioned on the image viewing side with respect to the first screen sheet has a different refractive index. The shape of the screen surface on the image source side is a shape in which a plurality of first lenticular lenses whose longitudinal direction is the horizontal direction of the screen screen are arranged continuously in the vertical direction of the screen screen. Wherein the focal point of each lens is located near the joint surface of the substrate, and the joint surface has a lens shape for converting the collected image light into substantially parallel light, and the image light near the focal point Light absorption layer in the area where does not pass Provided, and a plane or a light diffusing surface disk Li one down surface of the image viewing side The screen shape on the image source side of the third screen sheet located on the image viewing side of the second screen sheet has a plurality of screens whose longitudinal direction is the vertical direction of the screen screen. The second lenticular lens has a shape in which two second lenticular lenses are continuously arranged in the horizontal direction of the screen screen, and the shape of the screen surface on the image viewing side is a plurality of second lenticular lenses whose longitudinal direction is in the vertical direction of the screen screen. The third lenticular lens is arranged so as to be substantially continuously opposed to the second lenticular lens in the horizontal direction of the screen screen, and the cross-sectional shape of the second lenticular lens in the horizontal direction of the screen surface is projected. A transmissive screen characterized by a configuration that is convex toward the image source side.
1 2 . 映像発生源の前方に投写レンズを配し、 該投写レンズの前方の結 像面に、 請求の範囲第 1 、 2、 3、 4、 5、 6、 7、 8、 9、 1 0、 ま たは 1 1項記載の透過型スク リ一ンを配置した背面投写型画像ディスプ レイ装置。  1 2. A projection lens is arranged in front of the image source, and the first, second, third, fourth, fifth, sixth, seventh, eighth, ninth, and tenth of the claims are arranged on an image plane in front of the projection lens. Or a rear projection type image display device in which the transmission type screen according to item 11 is arranged.
1 3 . 屈折率の異なる第 1、 第 2の基材から成るスク リーンシ一 トを用 いた透過型スク リ一ンの製造方法において、  13. A method of manufacturing a transmission screen using a screen sheet comprising first and second base materials having different refractive indices,
前記スク リーンシー トの第 1の基材を、 該スク リーンシー 卜の光入射 面の形状の母型を有する第 1の金型ロールと、 該スク リーンシー トの第 2の基材との接合面に設ける形状の母型を有する第 2の金型ロールとの 間に、 熱可塑性樹脂シー トを通し、 前記入射面の形状と接合面の形状を 該熱可塑性樹脂シー トに形成した後、 該接合面に賦形された平坦部に光 吸収体を印刷し、 その後、 該スク リーンシー 卜を切断して製作し、 さら に、 該スク リーンシー トの光出射面の形状の母型を有するスタンパーに 第 2の基材である紫外線硬化型樹脂または電子線硬化型樹脂を充填し、 前記スク リーンシー 卜の接触面とを接触させ、 紫外線または電子線を照 射して前記光出射面の形状を得ることを特徴とする透過型スク リーンの 製造方法. The first base material of the screen sheet is attached to a first die roll having a matrix having a shape of a light incident surface of the screen sheet and a bonding surface of the second base material of the screen sheet. A thermoplastic resin sheet is passed between a second mold roll having a matrix to be provided, and the shape of the incident surface and the shape of the joining surface are formed on the thermoplastic resin sheet. A light absorber is printed on the flat portion formed on the surface, and then the screen sheet is cut and manufactured. Further, a stamper having a matrix of the shape of the light emitting surface of the screen sheet is formed on the stamper. Filling the substrate 2 with an ultraviolet curable resin or an electron beam curable resin, bringing the substrate into contact with the contact surface of the screen sheet, and irradiating ultraviolet light or an electron beam to obtain the shape of the light emitting surface. A method for manufacturing a transmission screen characterized by the following.
1 4. 請求の範囲第 1 3項記載の方法で製作した透過型スク リーンを用 いて成る背面投写型画像ディスプレイ装置。 1 4. A rear projection type image display device using a transmission screen manufactured by the method according to claim 13.
PCT/JP1995/002300 1995-11-10 1995-11-10 Transmission-type screen, method of producing the same and backsurface projection image display using the same screen WO1997017633A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP51804297A JP3689430B2 (en) 1995-11-10 1995-11-10 TRANSMISSION SCREEN, MANUFACTURING METHOD THEREOF, AND REAR PROJECTION IMAGE DISPLAY DEVICE USING THE SAME
PCT/JP1995/002300 WO1997017633A1 (en) 1995-11-10 1995-11-10 Transmission-type screen, method of producing the same and backsurface projection image display using the same screen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1995/002300 WO1997017633A1 (en) 1995-11-10 1995-11-10 Transmission-type screen, method of producing the same and backsurface projection image display using the same screen

Publications (1)

Publication Number Publication Date
WO1997017633A1 true WO1997017633A1 (en) 1997-05-15

Family

ID=14126452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/002300 WO1997017633A1 (en) 1995-11-10 1995-11-10 Transmission-type screen, method of producing the same and backsurface projection image display using the same screen

Country Status (2)

Country Link
JP (1) JP3689430B2 (en)
WO (1) WO1997017633A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011209706A (en) * 2010-03-08 2011-10-20 Dainippon Printing Co Ltd Screen used as display of small-sized display device having touch panel function and small-sized display device having touch panel function, including the same
WO2017026327A1 (en) * 2015-08-07 2017-02-16 シャープ株式会社 Transmission-type screen and head-up display

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63191140A (en) * 1987-02-03 1988-08-08 Dainippon Printing Co Ltd Transmission type screen for transmission type projection television
JPS63191337U (en) * 1987-05-29 1988-12-09
JPS63200833U (en) * 1987-06-15 1988-12-23
JPH05232435A (en) * 1992-02-24 1993-09-10 Nippon Telegr & Teleph Corp <Ntt> Projection type stereoscopic display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63191140A (en) * 1987-02-03 1988-08-08 Dainippon Printing Co Ltd Transmission type screen for transmission type projection television
JPS63191337U (en) * 1987-05-29 1988-12-09
JPS63200833U (en) * 1987-06-15 1988-12-23
JPH05232435A (en) * 1992-02-24 1993-09-10 Nippon Telegr & Teleph Corp <Ntt> Projection type stereoscopic display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011209706A (en) * 2010-03-08 2011-10-20 Dainippon Printing Co Ltd Screen used as display of small-sized display device having touch panel function and small-sized display device having touch panel function, including the same
WO2017026327A1 (en) * 2015-08-07 2017-02-16 シャープ株式会社 Transmission-type screen and head-up display

Also Published As

Publication number Publication date
JP3689430B2 (en) 2005-08-31

Similar Documents

Publication Publication Date Title
US6785048B2 (en) Rear-projection screen and rear-projection image display
JP2972271B2 (en) TRANSMISSION SCREEN AND METHOD OF MANUFACTURING SHEET-LIKE MEMBER USED FOR THE SAME, AND REAR PROJECTION DISPLAY USING THE SCREEN
EP0118951B1 (en) Projection screen
US6762883B2 (en) Lenticular lens sheet and rear projection screen
JP3371654B2 (en) Projection display device
KR100538220B1 (en) Wide angle screen and projection television comprising the same
JP3770006B2 (en) Rear projection image display device
US7099079B2 (en) Diffuser panel for rear projection screen and such rear projection screen
WO2003067327A1 (en) Transparent screen
KR100553887B1 (en) Screen for image display having wide view angle in vertical and horizontal and projection television comprising the same
WO1997017633A1 (en) Transmission-type screen, method of producing the same and backsurface projection image display using the same screen
US7061676B2 (en) Rear projection screen and rear projection display apparatus
JP2947160B2 (en) Transmission screen
JPH11344769A (en) Back projection type screen and production of light diffusion member
JP2998811B2 (en) Transmissive screen and rear projection type image display device using the same
JPH10339915A (en) Back projection screen and its production, and picture display device using the same
JP2002318425A (en) Rear projection type screen and display
JP3723138B2 (en) Transmission screen
JP2002031854A (en) Back projection type screen and back projection type image display device
JP4008939B2 (en) Rear projection screen and optical device therefor
US20040120037A1 (en) Rear projection screen, optical component thereof, and method for manufacturing the optical component
JP2006039580A (en) Transmission type screen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR SG US VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase