WO1997017504A1 - Construction for joining post and beam or post and post to each other - Google Patents

Construction for joining post and beam or post and post to each other Download PDF

Info

Publication number
WO1997017504A1
WO1997017504A1 PCT/JP1996/003247 JP9603247W WO9717504A1 WO 1997017504 A1 WO1997017504 A1 WO 1997017504A1 JP 9603247 W JP9603247 W JP 9603247W WO 9717504 A1 WO9717504 A1 WO 9717504A1
Authority
WO
WIPO (PCT)
Prior art keywords
column
cylindrical body
joint structure
fitted
fixed
Prior art date
Application number
PCT/JP1996/003247
Other languages
French (fr)
Japanese (ja)
Inventor
Nobutaka Tamura
Original Assignee
Nobutaka Tamura
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nobutaka Tamura filed Critical Nobutaka Tamura
Priority to AU75053/96A priority Critical patent/AU7505396A/en
Publication of WO1997017504A1 publication Critical patent/WO1997017504A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B1/2403Connection details of the elongated load-supporting parts
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B1/2403Connection details of the elongated load-supporting parts
    • E04B2001/2406Connection nodes
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B1/2403Connection details of the elongated load-supporting parts
    • E04B2001/2415Brackets, gussets, joining plates
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B1/2403Connection details of the elongated load-supporting parts
    • E04B2001/2451Connections between closed section profiles
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B1/2403Connection details of the elongated load-supporting parts
    • E04B2001/2454Connections between open and closed section profiles
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B1/2403Connection details of the elongated load-supporting parts
    • E04B2001/246Post to post connections

Definitions

  • the present invention relates to a column-to-beam or column-to-column joining structure, and more particularly, to joining a beam (eg, a steel beam) or a column (eg, a steel tube column) to a column (eg, a steel tube column) in a civil engineering / construction structure.
  • the present invention relates to a column-to-beam or column-to-column joining structure suitable for use in a vehicle. Background technology
  • a steel tube column 100 with a square cross section is cut horizontally at the beam joint to obtain an intermediate part 101, an upper part 102 and a lower part 103.
  • grooves 101a and 101b are provided at the upper and lower ends of the middle part 101, and grooves 102a are formed at the lower end of the upper part 102.
  • a groove 103a at the upper end of the lower part 103.
  • the backing material 104 is fixed to the inside of the intermediate portion 101, the upper portion 102 and the lower portion 103 by welding, respectively.
  • the diaphragm 1 is shown in FIG. 39 (b).
  • the intermediate part 101, the upper part 102 and the lower part 103 are arranged on the same straight line, and temporarily welded.
  • the middle part 101, the upper part 102 and the lower part 103 are integrated with each other.
  • reference numeral 106 denotes a temporary weld.
  • FIG. 40 (b) shows Reference numeral 107 denotes a main welded portion.
  • one end of a bracket 200 composed of an upper flange 202, a lower flange 203 and a web 201 is joined to the side surface of the pillar 100 by welding.
  • the upper flange 202 and the lower flange 203 of the bracket 200 are welded to the corresponding side surfaces of the diaphragm 105, and the web 201 is welded to the side surface of the intermediate portion 101. I do.
  • one end of a steel beam (not shown) having the same cross-sectional shape as the bracket 200 is joined to the other end of the bracket 200 by welding, and the joining operation of the beam is completed.
  • a plate-like member is welded to a beam joining position on a side surface of a steel pipe column, and a bracket for beam joining is welded to an outer surface of the plate-like member.
  • This plate-shaped member can be wound around the outer periphery of the steel pipe column and welded.
  • Still another example of this type of conventional column-beam joint structure (hereinafter, referred to as a third conventional structure) is disclosed in Japanese Patent Application Laid-Open No. 3-27141439.
  • the third conventional structure at the joint between the steel pipe column and the steel beam, the outer periphery of the steel pipe column is surrounded by a reinforcing member having a predetermined rigidity, and the steel beam is bolted using the screw holes provided in the reinforcing member. Yes, it is.
  • a fourth conventional structure is disclosed in Japanese Utility Model Laid-Open No. 61-020602.
  • a large flat plate and a small flat plate which are located in the direction perpendicular to each other and have the same thickness and a difference of the same dimension as the thickness in the width dimension are connected at their edges to form an L-shaped section.
  • a pair of L-shaped section steels are formed and welded to the outer surface of the rectangular column base body with the side end faces of the small plate being close to the inner end of the large plate.
  • the steel tube column 100 is cut at the beam joint, divided into an intermediate portion 101, an upper portion 102, and a lower portion 103, and then divided through a diaphragm 105. It is necessary to join again by welding. For this reason, not only is the work complicated, but also it is difficult to adjust the beam joint position for each steel pipe column 100. In addition, since the cut steel pipe columns 100 are joined by welding, there is a problem that bending rigidity is low.
  • a plate-like member is welded to a beam joint position on the side surface of a steel pipe column, and a beam-joining bracket is welded to the outer surface of the plate-like member. After cutting the steel pipe column at the beam joint, it is no longer necessary to integrate it.
  • it is no longer necessary to integrate it.
  • it is necessary to hold the plate-shaped member in a predetermined position in close contact with the steel pipe column.
  • it is necessary to wrap a plate member with high rigidity and heavy weight around the steel tube column and hold it. Have difficulty.
  • the outer periphery of the steel pipe column is surrounded by a reinforcing member having a predetermined rigidity, and the steel beam is bolt-joined using screw holes provided in the reinforcing member.
  • the reinforcing member When enclosing, it is necessary to hold the reinforcing member in a predetermined position in a state in which the reinforcing member is in close contact with the outer periphery of the steel pipe column, and then fix them by porting or welding. Therefore, there is a problem that the work is difficult as in the case of the above-mentioned second conventional structure.
  • Another object of the present invention is to provide a joint structure between a column and a beam or a column and a column, which has low production costs as well as low operation costs.
  • Still another object of the present invention is to provide a column-to-beam or column-to-column connection structure in which a beam can be easily and quickly joined to columns of different sizes. Disclosure of the invention
  • a joint structure of a first column and a beam according to the present invention includes a cylindrical body having a through-hole having a cross-sectional shape substantially the same as the cross-sectional shape of the column and capable of being fitted to the outside of the column.
  • the tubular body is fitted to the outside of the pillar by passing the through hole through the pillar, and is fixed to the outside of the pillar, and uses the fitted and secured tubular body.
  • the beam is connected to the column.
  • the cylindrical body is fixed to the column by welding at least at one of the upper and lower ends. This is because the fixing strength and the simplicity of the operation are good.
  • the above-mentioned cylindrical body may be fixed to the pillar using a locking member such as a bottle or a bolt.
  • the cylindrical body has a window on a side surface thereof, and the cylindrical body is welded to the column through the window. This is because the bonding strength and the simplicity of the work are further improved as compared with the case where no window is provided.
  • the tubular body has thick portions at both upper and lower ends, and the tubular body is fixed to the column via the thick portions. This is because the bonding strength of the bracket and the like is improved as compared with the case where the thick part is not provided.
  • the joint structure of the second column and the beam according to the present invention has a first through-hole having a cross-sectional shape substantially the same as the cross-sectional shape of the first column and capable of fitting the first column, A cylindrical body having a cross-sectional shape substantially the same as the cross-sectional shape of the second column, and having a second through-hole into which the second column can be fitted; and the first and second columns.
  • the size of the first and second tubular bodies may be different may be the same c
  • the joint structure of the third pillar and the beam according to the present invention has a through-hole having substantially the same cross-sectional shape as the first pillar and capable of fitting the first pillar, A cylindrical body having a support surface capable of supporting the column, wherein the first column is fitted and fixed inside the through hole, and the second column is fixed on the support surface And a beam is joined to the first column using the fitted / fixed tubular body.
  • This joint structure between the third column and the beam is suitable when the size of the first column is different from the size of the second column, and in that case, the size of the first column is It is preferably larger than the size of the second column.
  • the joint structure between the first pillar and the pillar according to the present invention has a first through-hole having substantially the same sectional shape as that of the first pillar and capable of fitting the first pillar, A cylindrical body having a cross-sectional shape substantially the same as the cross-sectional shape of the second column, and having a second through-hole into which the second column can be fitted; and the first and second columns. Are fitted and fixed inside the first and second through holes, respectively, and the first and second columns are joined to each other by the fitted and fixed cylindrical body. It is characterized by the following.
  • the joint structure between the second pillar and the pillar according to the present invention includes a through-hole having substantially the same sectional shape as the first pillar and capable of fitting the first pillar, A cylindrical body having a support surface capable of supporting the column, wherein the first column is fitted and fixed inside the through hole, and the second column is fixed on the support surface And the first and second columns are joined to each other by using the fitted and fixed cylindrical body.
  • the column may have any cross-sectional shape, but for example, a rectangular or circular cross-sectional shape is preferable.
  • the size of the first and second pillars may be the same or different.
  • the centers of the first and second columns may respectively correspond to the centers of the cylindrical bodies, or the centers of at least one of the first and second columns may be the centers of the cylindrical bodies. They may be skewed.
  • the cross-sectional shape of the through-hole of the cylindrical body is substantially the same as the cross-sectional shape of the pillar, and does not need to exactly match. In short, it is only necessary that the tubular body can be fitted outside the pillar. The same applies to the joint structure of the second and third columns and beams of the present invention, and the first and second columns in the joint structure of the first and second columns and columns of the present invention.
  • the method of fixing the cylindrical body is arbitrary. It may be fixed by welding, or may be fixed by bolting or binning.
  • connection beam as a joining member is usually fixed to the tubular body, and the other end of the joining member is attached to the other end of the joining member.
  • the beams are joined.
  • the beam may be directly joined to the cylindrical body.
  • the first to third joint structures of columns and beams of the present invention and the first and second joint structures of columns and columns of the present invention join columns and beams or columns and columns in building structures and civil engineering structures.
  • the present invention can be applied to any location, for example, to architectural structures other than steel structures and civil structures such as underground shopping malls and roads.
  • the material of the cylindrical body and the joining member is, for example, SS400 (J1SG3101 rolled steel for general structures), SM490A (J1SG3106 rolled steel for welded structures) is preferred, but other steel and non-steel materials also require strength Can be used appropriately according to
  • the tubular body may be integrally formed by a mechanical cutting process, or may be integrally formed by rolling, drawing, or the like.
  • the first joint structure between a column and a beam according to the present invention includes a cylindrical body having a through-hole having a cross-sectional shape substantially the same as the cross-sectional shape of the column and capable of being fitted to the outside of the column.
  • the tubular body is fitted to the outside of the pillar by inserting the through hole into the pillar, and is fixed to the outside of the pillar.
  • the fitted and secured tubular body is used for the pillar.
  • the beam is joined to For this reason, when joining a beam to a column, the through-hole of the cylindrical body is inserted through the column so that the cylindrical body is fitted to the outside of the column, and then welded, bolted or binned It only needs to be fixed by any method.
  • tubular body since the tubular body is fitted on the outside of the column, it can be easily fixed simply by holding it from below. It is not necessary to hold the tubular body while keeping it tightly attached to the column as in the case of the above-mentioned conventional structure.
  • the beam joining operation to the column can be performed easily and quickly. This leads to a reduction in work costs. Further, since the cylindrical body has a through-hole having a cross section substantially the same as the cross section of the column and can be fitted to the outside of the column, the manufacturing cost is low.
  • the first through-hole having substantially the same sectional shape as the first pillar and capable of fitting the first pillar
  • a cylindrical body having a cross-sectional shape substantially the same as the cross-sectional shape of the second column and having a second through-hole into which the second column can be fitted;
  • the column is fitted and fixed inside the first and second through holes, respectively, and a beam is joined to the first and second column using the fitted and fixed cylindrical body.
  • the work of joining the beams to columns of different sizes can be performed easily and quickly.
  • the second column has a cross-sectional shape substantially the same as the cross-sectional shape of the first column, A cylindrical body having a support surface capable of supporting the column, wherein the first column is fitted and fixed inside the through hole, and the second column is provided on the support surface.
  • the beam is fixed to the first column using the fitted / fixed cylindrical body. For this reason, it is possible to easily and quickly join a beam to columns of different sizes.
  • the first through-hole having substantially the same sectional shape as that of the first pillar and capable of fitting the first pillar is provided.
  • a cylindrical body having a cross-sectional shape substantially the same as the cross-sectional shape of the second column, and having a second through hole to which the second column can be fitted.
  • the first pillar and the second pillar are fitted and fixed inside the first and second through holes, respectively, and the first and second pillars are joined to each other by the fitted and fixed cylindrical body. I have. For this reason, the joining operation of the pillars can be performed easily and quickly.
  • the through-hole having a sectional shape substantially the same as the sectional shape of the first pillar and capable of fitting the first pillar is provided.
  • a cylindrical body having a support surface capable of supporting the second column, wherein the first column is fitted and fixed inside the through-hole, and the second column is the support surface. Fixed on top and its mating
  • the first and second columns are joined to each other by using the fixed cylindrical body. Therefore, as in the case of the first column-column connection structure, the column-column connection operation can be performed easily and quickly.
  • the second column is fixed on the support surface. Since it is attached, there is an advantage that it is possible to easily cope with a shift in the fixed position of the first and second columns.
  • FIG. 1 (a) is a perspective view of an essential part of a first embodiment of a joint structure between a column and a beam according to the present invention
  • FIG. 1 (b) is a cross-sectional view along the line AA.
  • FIG. 2 is a perspective view of a steel pipe column and a tubular body used in the column-beam joint structure of the first embodiment.
  • FIG. 3 is a perspective view showing a configuration in which a bracket is ported to a joint structure between a column and a beam according to the first embodiment, before brackets are joined.
  • FIG. 4 is a perspective view after the bracket is joined, showing a configuration in which the bracket is bolted to the joint structure between the column and the beam according to the first embodiment.
  • FIGS. 5 (a) and 5 (b) are perspective views after the bracket is joined, showing a configuration in which the bracket is joined to the joint structure between the column and the beam of the first embodiment by welding.
  • FIG. 6 is a perspective view of a steel pipe column and a cylindrical body used in a second embodiment of the joint structure between a column and a beam according to the present invention.
  • FIG. 7 is a perspective view of a main part of a joint structure between a column and a beam according to the second embodiment.
  • FIG. 8 is a sectional view taken along line BB of FIG.
  • FIG. 9 is a perspective view of a cylindrical body used in a third embodiment of the joint structure between a column and a beam according to the present invention.
  • FIG. 10 is a perspective view after the bracket is joined, showing a configuration in which the bracket is joined to the joint structure of the column and the beam of the third embodiment by welding.
  • FIG. 11 is a perspective view of a cylindrical body used in a fourth embodiment of the joint structure between a column and a beam according to the present invention.
  • FIG. 12 is a perspective view after the brackets are joined, showing a configuration in which the brackets are joined to the column / beam joining structure of the fourth embodiment by welding.
  • FIG. 13 is a perspective view showing a structure in which a bracket is bolted to a fifth embodiment of the joint structure between a column and a beam according to the present invention, before the bracket is joined.
  • FIG. 14 shows a structure in which a bracket is bolted to the joint structure between a column and a beam according to the fifth embodiment.
  • FIG. 4 is a perspective view showing a structure after bracket joining.
  • FIG. 15 is a perspective view of a cylindrical body used in a sixth embodiment of the joint structure between a column and a beam according to the present invention.
  • FIG. 16 is a perspective view after the bracket is joined, showing a configuration in which the bracket is joined to the joint structure of the column and the beam of the sixth embodiment by welding.
  • FIG. 17 is a perspective view of a cylindrical body used in a seventh embodiment of the joint structure between a column and a beam according to the present invention.
  • FIG. 18 is a side view showing a modification of the cylindrical body used for the joint structure between the column and the beam in the seventh embodiment.
  • FIG. 19 is a side view showing a modified example of the projecting portion of the cylindrical body used in the column / beam joint structure of the fourth embodiment.
  • FIG. 20 is a schematic plan view showing a modification of the connection state of the brackets in the joint structure between the column and the beam in the first to seventh embodiments.
  • FIG. 21 is a perspective view of a relevant part of an eighth embodiment of the joint structure between a column and a beam according to the present invention.
  • FIG. 22 is a perspective view of a steel pipe column and a tubular body used in the column-beam joint structure of the eighth embodiment.
  • FIG. 23 is a perspective view of a main part of a ninth embodiment of the joint structure between a column and a beam according to the present invention.
  • FIG. 24 is a perspective view of a steel pipe column and a tubular body used for the column-beam joint structure of the ninth embodiment.
  • FIG. 25 is a sectional view of a joint structure between a column and a beam according to the ninth embodiment.
  • FIG. 26 is a schematic plan view showing a modification of the arrangement of the steel pipe columns in the column-beam joint structure of the ninth embodiment.
  • FIG. 27 is a perspective view of a main part of a tenth embodiment of the joint structure between a column and a beam according to the present invention.
  • FIG. 28 is a perspective view of a steel pipe column and a tubular body used in the column-beam joining structure of the tenth embodiment.
  • FIG. 29 is a cross-sectional view of a cylindrical body used for the joint structure between the column and the beam in the tenth embodiment.
  • FIG. 30 is a perspective view of an essential part of a first embodiment of the joint structure between a column and a beam according to the present invention.
  • Fig. 31 shows the steel pipe columns and cylindrical bodies used in the column-beam joint structure of the first embodiment. It is a perspective view of.
  • FIGS. 32 (a), (b) and (c) are perspective views showing examples of forming a cylindrical body.
  • FIG. 33 (a), (b), (c) is a perspective view and a plan view showing another example of forming a tubular body.
  • FIG. 34 is a perspective view showing an actual application example of the present invention.
  • FIG. 35 is a perspective view showing another application example.
  • FIG. 36 is a perspective view of a cylindrical body showing another modification of the present invention.
  • FIGS. 37 (a) and (b) are a cross-sectional view of the cylindrical body of FIG. 36 applied to a column / beam joint structure, and an enlarged view thereof.
  • Fig. 38 is a perspective view showing one step of a conventional method for constructing a joint structure between a column and a beam.
  • C Fig. 39 is a perspective view showing one step of a conventional method for constructing a joint structure between a column and a beam.
  • C Fig. 40 is a perspective view showing one step of a conventional method of constructing a joint structure between a column and a beam.
  • C Fig. 41 is a perspective view of a main part showing a conventional joint structure between a column and a beam.
  • FIG. 1 and FIG. 2 show a first embodiment of the joint structure between a column and a beam according to the present invention.
  • the joint structure of this embodiment includes a steel pipe column 10 having a square cross section (square tube) and a steel tubular body (solid box) 20 having a square cross section (square tube).
  • Consists of The steel tube column 10 has four flat sides 11 on the outside and a square cross-sectional hole 12 on the inside.
  • the cylindrical body 20 has a through-hole 21 having a square cross section substantially the same as the cross-sectional shape of the steel pipe column 10 inside, and four flat sides 22 outside. At least one of the four side surfaces 22 is used as a joint surface of a beam or a bracket.
  • a steel pipe column 10 can be fitted inside the through hole 21.
  • the cylindrical body 20 is fitted on the outside of the copper pipe column 10 by inserting a steel pipe column 10 into the through hole 21.
  • the cylindrical body 20 is also located at the joint position of the beam. It is fixed to the outside of the steel pipe column 10 by fillet welding.
  • the welded portions 31 are formed along the four side surfaces 11 of the steel pipe column 10 so as to close gaps formed between the cylindrical body 20 and the steel column 10 at the upper and lower ends.
  • the welded portions 31 at the upper and lower ends of the tubular body 20 extend along the entire circumference of the steel pipe column 10.
  • the welded portion 31 may be at either the upper end or the lower end instead of the upper and lower ends of the cylindrical body 20.
  • a connection beam (bracket) 40 (here, formed of H-shaped steel) is fixed, for example, as shown in FIGS.
  • a screw hole 23 is formed on one side surface 22 of the cylindrical body 20, and an end plate 50 is fixed to one end of the bracket 40 by welding.
  • a through hole 51 is formed at a side surface, that is, at a position corresponding to each screw hole 23 of the joint surface 22.
  • the bolt 40 is inserted through the through hole 51 of the end plate 50. It is fixed by screwing 60 into the corresponding screw hole 23 of the cylindrical body 20.
  • FIGS. 5A and 5B show an example in which the bracket 40 is directly fixed to the joint surface 22 of the cylindrical body 20 by welding.
  • the bracket 40 is fixed using the bolt 60 via the end plate 50, but in the joint structure of the first embodiment, welding is simplified as described above.
  • a configuration is also possible.
  • Fig. 5 (a) shows a case where a square steel pipe column 10 and a cylindrical body 20 are used
  • Fig. 5 (b) shows a case where a circular steel pipe column 10 and a cylindrical body 20 are used. Shows the case when used.
  • the bracket may be welded in advance to the tubular body 20 or may be welded after fitting and fixing to the steel pipe column.
  • the welded portion 71 is formed along the web 41 of the bracket 40 and the upper and lower flanges 42, 43. Also in FIG. 5 (b), the welded portion 71 is formed along the web 41 of the bracket 40 and the upper and lower flanges 42, 43. In FIG. 5 (b), the bracket The upper and lower flanges 42, 43 of the gate 40 are formed in an arc shape corresponding to the cylindrical outer surface 22 of the cylindrical body 20.
  • the cylindrical body 20 has a through hole 21 having a cross section substantially the same as the cross section of the steel pipe column 10, and the outside of the steel pipe column 10. Can be fitted to The cylindrical body 20 is fitted to the outside of the steel pipe post 10 by inserting the through hole 21 into the steel pipe post 10 and is fixed to the outside of the steel pipe post 10. I have. For this reason, when joining a beam (not shown) formed of H-shaped steel to the steel pipe column 10, the cylindrical body 20 is inserted through the through-hole 21 of the cylindrical body 20, thereby forming the cylindrical body 10. It is only necessary to fit the 20 on the outside of the steel pipe column 10 and then fix it by any method such as welding, bolting or binning. Therefore, simply holding the tubular body 20 from below can easily fix the tubular body 10 to the steel pipe column 10, as in the case of the above-described conventional structure. It is not necessary to hold while keeping close to zero.
  • the joining operation of the beam to the copper tube column 10 can be performed easily and quickly. This leads to a reduction in working costs.
  • the cylindrical body 20 has a through hole 2 having a cross section substantially the same as the cross section of the steel pipe column 10.
  • the joint structure of the second embodiment includes a steel pipe column 10 having a square cross section (square cylinder) and a steel tubular body having a square cross section (square cylinder).
  • the point composed of 20 is the same as in the first embodiment.
  • the second embodiment is different from the first embodiment in that a bin mosquito L 13 is formed on one side 11 of a steel pipe column 10 and one side 2 of a cylindrical body 20. 2 in that a bin hole 23 is formed at a position corresponding to the through hole 13.
  • the tubular body 20 is fitted on the outside of the steel pipe post 10 by inserting a copper pipe post 10 into the through hole 21.
  • the cylindrical body 20 is also fixed to the outside of the copper column 10 by welding at the joint position of the beam.
  • the welded portions 31 are formed along the four side surfaces 11 of the copper pipe column 10 so as to close the gaps formed between the cylindrical body 20 and the steel column 10 at the upper and lower ends. .
  • This point is the same as in the first embodiment, but in the second embodiment, as shown in FIG. 8, the steel pipe column 10 and the cylindrical body 20 are engaged with each other by the bin 80. ing.
  • the pin 80 shows an engagement state between the steel pipe column 10 and the cylindrical body 20.
  • the pin 80 penetrates the bin hole 13 of the cylindrical body 20 and the bin hole 23 of the steel pipe column 10, and the tip protrudes into the through hole 12 of the steel pipe column 10.
  • the pin 80 is fixed by welding.
  • the welded portion 32 is formed so as to fill the gap inside the bin hole 23, and
  • bracket 40 for beam joining can be fixed as shown in FIGS. 3 to 5, for example.
  • one-sided bolt is a port that can be screwed into a screw hole from one direction and tightened and fixed.
  • FIGS. 9 and 10 show a third embodiment of the joint structure between a column and a beam according to the present invention.
  • the joint structure of the third embodiment is the same as that of the first embodiment except that the configuration of the steel cylindrical body 20 used is different. It is.
  • the cylindrical body 20 of the third embodiment is equivalent to the cylindrical body 20 of the first embodiment provided with a window 24 as shown in FIG.
  • the window 24 is formed by leaving only the joint surface 22 in a substantially I-shape and removing the center of the other three side surfaces 22.
  • the inner peripheral edge of the window 24 is also provided.
  • a weld 32 is formed along the entire inner peripheral edge of the window 24.
  • a bracket 40 for beam joining is fixed, for example, as shown in FIG. This fixed state is the same as that in FIG. 5 (a). Since the joining surface 22 of the cylindrical body 20 remains in a substantially I-shape, there is no problem in fixing the bracket 40. (Fourth embodiment)
  • FIGS. 11 and 12 show a fourth embodiment of the joint structure between a column and a beam according to the present invention.
  • the joint structure of the fourth embodiment is the same as that of the first embodiment except that the configuration of the steel cylindrical body 20 used is different. It is the same.
  • the cylindrical body 20 of the fourth embodiment is equivalent to the cylindrical body 20 of the first embodiment provided with projecting portions 25 as shown in FIG.
  • One side surface 22 of these protrusions 25 is used as a joint surface.
  • the thickness of the upper and lower ends of the cylindrical body 20 is increased by these protruding portions 25 as compared with the other portions.
  • a bracket 40 for beam joining is fixed as shown in FIG. That is, the upper and lower flanges 4 2, 4 3 of the bracket 40 are joined to the joining surface 22 of the upper and lower protrusions 25, and the web 41 is joined to the side surface itself of the central tubular body 20. . Since the upper and lower ends 44 of the web 41 are cut out (scalloped), there is no problem in fixing the bracket 40 at all.
  • FIG. 19 (a) shows the lower portion of the protruding portion 25 formed so as to have a concave arc-shaped cross section. This corresponds to the cross section of the protrusion 25 in FIG.
  • FIG. 19 (b) shows that the lower part of the protruding portion 25 is formed so as to be perpendicular to the cross section.
  • FIG. 19 (c) shows a lower portion of the protruding portion 25 formed to have a convex arcuate cross section.
  • FIGS. 19 (d), (e), and (f) show the case where the protrusions 25 are provided slightly below the upper end of the cylindrical body 20. FIGS. ), (b) and (c) respectively.
  • FIGS. 13 and 14 show a fifth embodiment of the joint structure between a column and a beam according to the present invention.
  • This fifth embodiment is equivalent to the third embodiment shown in FIGS. 9 and 10, except that the beam joining bracket 40 is replaced with a bolt instead of welding.
  • Tubular body 2 0 has a window 24.
  • the joining condition of the bracket 40 is the same as that of Fig. 3.
  • a beam joining bracket 40 is fixed by an end plate 50 by a bolt 60 as shown in FIG.
  • Notches 52 are formed on both sides of the end plate 50 in correspondence with the substantially I-shaped joining surface 22 of the cylindrical body 20 to form a substantially I-shape.
  • FIGS. 15 and 16 show a sixth embodiment of the joint structure between a column and a beam according to the present invention.
  • This sixth embodiment corresponds to the fourth embodiment shown in FIGS. 11 and 12 in which a window 24 is formed in a cylindrical body 20.
  • a window 24 is formed in a cylindrical body 20.
  • the protrusions 25 are provided at the upper and lower ends of the cylindrical body 20, respectively.
  • the bonding state of the bracket 40 is the same as that of FIG.
  • a welded portion 32 is formed along the inner peripheral edge of the window 24 in addition to the welded portions 31 formed at the upper and lower ends of the cylindrical body 20.
  • FIG. 17 shows a cylindrical body used in a seventh embodiment of the joint structure between a column and a beam according to the present invention.
  • the cylindrical body 20 of the seventh embodiment differs from the cylindrical body 20 of the third embodiment of FIG. 9 in that, instead of the window 24, two straight windows 26 extending in the vertical direction are opposed to each other. It corresponds to the one formed on the side surface 22.
  • the side surface 22 of the cylindrical body 20 has such a shape.
  • a window 26 can be formed.
  • FIG. 18 shows a modification of the window formed in the cylindrical body 20.
  • FIG. 18 (a) shows a cylindrical body 20 in which two circular windows 26 are formed apart from each other on the side surface 22.
  • FIG. 18 (b) two square windows 26 are formed on the side surface 22 of the cylindrical body 20 so as to be vertically separated from each other.
  • FIG. 18 (c) shows two triangular windows 26 formed on the side surface 22 of the cylindrical body 20 so as to be vertically separated from each other.
  • Various other modifications are also conceivable. (Modified example)
  • the bracket 40 is described as being joined to only one side surface 22 of the cylindrical body 20.
  • the present invention is not limited to this, and it is necessary to Of course, the bracket 40 can be joined to two or more side faces 22 of the cylindrical body 20.
  • FIG. 20 shows an example in which the bracket 40 is joined to all four side surfaces 22 of the cylindrical body 20.
  • the rigidity is greatly improved. This has the effect of being extremely excellent in earthquake resistance. Needless to say, the rigidity and the earthquake resistance are further improved by welding the cylindrical bodies 20, 20 a, 20 b to the outside of the steel pipe column 10.
  • Figs. 21 and 22 show an eighth embodiment of the joint structure between a column and a beam according to the present invention.
  • a steel pipe column 10 of the first embodiment is replaced with a square cross section. Used two steel pipe columns 10a and 10b of the same size.
  • the cylindrical body 20 is the same as that of the first embodiment in FIGS. 1 and 2.
  • the eighth embodiment also shows an embodiment of the joint structure between pillars according to the present invention.
  • the steel tube columns 10a and 10b have four flat sides 11a and lib on the outside, and square holes 12a and 12b on the inside.
  • the steel pipe columns 10a and 10b are arranged linearly with their opposing ends in contact inside the tubular body 20.
  • the reinforcing diaphragm 81 is fixed to the lower inside of the through hole 12 a of the upper steel pipe column 10 a, and the reinforcing diaphragm 82 is connected to the lower steel pipe column 10. It is fixed to the inner upper end of the through hole 1 2b of b.
  • the cylindrical body 20 is fixed to the outside of the steel pipe columns 10a and 10b by welding at the joint positions of the beams.
  • the welded portions 31 are formed on the four sides 11 a, 1 1 of the steel pipe columns 10 a, 10 b so as to close the gaps formed between the upper and lower ends of the tubular body 20 and the steel pipe columns 10 a, 10 b. It is formed along b. Thus, the two steel pipe columns 10a, 10b are joined to each other and integrated.
  • a beam joining bracket 40 (here, formed of H-shaped steel) is fixed as shown in FIGS. 3 to 5, for example.
  • the cylindrical body 20 has the through-hole 21 having the cross-sectional shape substantially the same as the cross-sectional shape of the two steel pipe columns 10a and 10b, and the steel pipe columns 10a and 10b.
  • the cylindrical body 20 is fitted to the outside of the copper pipe columns 10a and 10b by inserting the through holes 21 into the steel pipe columns 10a and 1 Ob, and It is fixed to the outside of the steel pipe columns 10a and 10b. For this reason, when joining a beam (not shown) to the steel pipe columns 10a and 10b, the through-hole 21 of the cylindrical body 20 is inserted into the steel pipe columns 10a and 10b.
  • the cylindrical body 20 has a through-hole 21 having a cross-sectional shape substantially the same as the cross-sectional shape of the copper pipe columns 10a and 10b, and it is sufficient if the cylindrical body 20 can be fitted to the outside of the steel pipe columns 10a and 10b. The manufacturing cost is also low.
  • FIG. 23 to FIG. 25 show a ninth embodiment of the joint structure between a column and a beam according to the present invention.
  • a steel tube column 10c having a square cross section larger in size than the upper steel tube column 10a is used in place of the lower steel tube column 1 Ob of the eighth embodiment.
  • the cylindrical body 20a has a through-hole 21a in which the upper steel pipe column 10a can be fitted and a through-hole 21b in which the lower steel pipe column 10c can be fitted. have.
  • a flat side surface 22a is formed in an upper portion corresponding to the through hole 21a, and a flat side surface 22c is formed in a lower portion corresponding to the through hole 21c.
  • the ninth embodiment also shows another embodiment of the joint structure between pillars according to the present invention.
  • the lower steel pipe column 10c has four flat sides 11c on the outside and a square cross-section hole 12c on the inside.
  • the lower copper column 10c is fitted into the lower through hole 21b of the cylindrical body 20a from below, and the upper steel column 10a is positioned above the cylindrical body 20a. Is fitted into the inside of the through hole 21a from above.
  • the steel pipe columns 10a and 10c have their opposing ends in contact with each other inside the cylindrical body 20a, and are arranged substantially linearly in the vertical direction.
  • the reinforcing diaphragm 81 is fixed to the lower inside of the through hole 12a of the upper steel pipe column 10a, and the reinforcing diaphragm 82 is connected to the lower steel pipe column 10a.
  • the through hole of c is fixed to the inner upper end of 1 c.
  • the cylindrical body 20a is fixed to the outer sides of the copper tube columns 10a and 10c by welding at the joint positions of the beams.
  • the welded portions 31 are made of steel pipe columns 10a, 10c so as to close the gaps formed between the steel pipe columns 10a, 10c at the upper and lower ends of the cylindrical body 20a. It is formed along one side lla and 1 1b respectively. Thus, the two steel pipe columns 10a, 10c are joined and integrated with each other.
  • a bracket 40 (here, formed of H-section steel) for beam joining is provided on the flat side surface 22 a or 22 c of the cylindrical body 20 a. It is fixed as shown in Figs.
  • a cylindrical body 20a provides a joint structure of a beam, and simultaneously joins two steel pipe columns 10a and 10c having different sizes. There are other advantages.
  • the planar arrangement of the two steel pipe columns 10a, 10c and the cylindrical body 20a is as shown in FIG. 26 (c). That is, the center of the large-sized steel pipe column 10c coincides with the center of the cylindrical body 20a, and the small-sized steel pipe column 10a has the center of the cylindrical body 20a. To one corner.
  • the arrangement is not limited to this, and it goes without saying that the arrangement shown in FIG. 26 (a) or FIG. 26 (b) is also possible.
  • the center of the cylindrical body 20a coincides with the center of the large steel pipe column 10c, and the center of the small steel pipe column 10a has the center of the cylinder. It is shifted toward the center of one side of the shape 20a.
  • the center of both steel pipe columns 10c and 10a coincides with the center of the cylindrical body 20a.
  • FIGS. 27 to 29 show a tenth embodiment of the joint structure between a column and a beam according to the present invention.
  • the tenth embodiment has the same configuration as that of the ninth embodiment except that a cylindrical body 20b closed on the upper surface is used instead of the cylindrical body 20a of the ninth embodiment. is there.
  • the tenth embodiment also shows still another embodiment of the joint structure between pillars according to the present invention.
  • the configuration of the cylindrical body 20b is as shown in FIG. 29, and includes a top surface 26b, side surfaces 22c, and an internal space 21b.
  • the internal space 21b is large enough to fit the large steel pipe column 10c.
  • the outside has a flat side surface 22c.
  • the small-sized copper tube post 10a is placed on the upper surface 26b of the cylindrical body 2Ob and fixed by welding. Therefore, the welded part 31 is formed at the joint between the steel pipe column 10a and the cylindrical body 2Ob, in other words, at the lower end of the steel pipe column 10a.
  • the small-sized steel pipe column 10a is fixed on the upper surface 26b of the cylindrical body 2Ob, so that even if the steel pipe columns 10a have different sizes, Has the advantage that it can be applied even if it is slightly different.
  • FIG. 30 and FIG. 31 show a first embodiment of a joint structure between a column and a beam according to the present invention.
  • the eleventh embodiment is different from the tenth embodiment in that a cylindrical body 20 b having a circular cross section is replaced with a cylindrical body 20 b having a square cross section and upper and lower steel pipe columns 10 a, 10 c. Corresponds to those using upper and lower steel tube columns 10a, 10c.
  • the same effects as in the tenth embodiment can be obtained.
  • the eleventh embodiment also shows still another embodiment of the joint structure between pillars according to the present invention.
  • the tubular bodies 20, 20a, 20b according to the present invention may be formed by cutting a square steel pipe to a predetermined length, or may be formed by pressing a circular steel pipe from all sides. Of course.
  • four plate-shaped steel materials are welded into a square shape, and as shown in FIGS. 32 (a), (b) and (c), two channel-type steel materials are formed by welding.
  • 33 As shown in Figures (a), (b) and (c), four L-shaped steel members can be formed by welding, and these flat steel members, channel steel members and L-shaped steel members can be formed. It can also be formed by arbitrarily combining die steel materials.
  • the tubular bodies 20, 20a, 20b are attached to the steel pipe columns 10 as follows.
  • the cylindrical bodies 20, 20a, and 2 Ob are set up on the processing table, and the bracket 40 is welded to one or more side surfaces of the cylindrical bodies 20, 20a, and 20b.
  • the steel pipe column 10 is placed on the pedestal and horizontally arranged, and the tubular bodies 20, 20a, 2 Ob to which the brackets 40 are welded are inserted and fitted in order from one end of the steel pipe column 10 to a predetermined position.
  • Set to. Check the linearity and dimensional accuracy of the steel pipe column 10 and the cylindrical bodies 20, 20a, 2 Ob before welding the fillet.
  • the column-to-beam or column-to-column connection structure of the present invention is applied to an actual building as shown in FIG. That is, a plurality of steel pipe columns 10, 10 in which the tubular body 20 (or 20a, 20b) is fitted and fixed, the brackets 40 welded to the tubular body 20 face each other and are the same. It is built so that it is located on the line, and the beam B is joined between the end faces of the two brackets 40,40.
  • the bracket 40 and the beam B are bolted to each other through a well-known slyce plate S across the upper and lower flanges and the web.
  • the backing metal is fixed by welding to the inside of the joint between the tubular body 20 and the bracket 40, but this is not essential in the present invention.
  • the tubular part 20 to which the bracket 40 is joined is not the joint part (that is, the maximum stress part) unlike the conventional structure.
  • the rigidity of column 10 and bracket 40 (or beam) is high, It can exhibit the maximum power of the material.
  • the conventional structure for example, the first conventional structure, when bending stress is transmitted from the beam (bracket 200) to the steel pipe column 100, there is a possibility that distortion occurs at almost the intermediate portion of the intermediate portion 101.
  • the present invention it has been confirmed by an experiment that even when a bending load is applied to a beam, almost no accompanying distortion occurs.
  • the rigidity can be further increased.
  • a bracket or a beam joined to each side surface of the cylindrical body 20 is provided.
  • beams B, B having different beam structures are joined to two cylindrical bodies 20.
  • the cylinders are left as they are without haunching. Can be joined to the shape 20.
  • a small diameter for example, a diameter of about 6 mm
  • Air holes can also be formed.
  • the location where the air hole is formed is preferably substantially at the middle position of the height of the cylindrical body, and is preferably a flat plate part avoiding the square part.
  • the steel pipe column 10 and the cylindrical bodies 20, 20 a, and 20 Ob may have a rectangular cross section instead of a square cross section or a circular cross section. It is only necessary that the shape of the cross section of the shape be matched. Further, it goes without saying that the square cross section and the rectangular cross section may each have an inner corner having a curvature.
  • the cylindrical bodies 20, 20 a, and 20 b are made of four thick flat plate steel plates P, P. It can also be formed by welding. In this case, in order to improve the rigidity, it is preferable to weld flat stiffeners S 1 and S 2 to at least one of the upper and lower end surfaces.
  • the tubular body having the stiffener S1 welded to the upper end face can be applied, for example, to the embodiment shown in FIG. 28 as it is, and the tubular body according to this example can be applied to the outer periphery of a steel pipe column. It is also possible to substitute for the intermediate portion 101 in the conventional structure without inserting. In this case, flat steel It has been confirmed that when the thickness of the plates P, P is twice or more the thickness of the upper and lower portions 102, 103, the same effects as those of the tubular bodies 20, 20a, 20b of the present invention can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Joining Of Building Structures In Genera (AREA)

Abstract

A cylindrical body (20) has a through hole having substantially the same cross-sectional shape as that of a steel pipe post (10), and is fitted over the steel pipe post (10). The cylindrical body (20) is fitted over the steel pipe post (10) with its through hole fitted over the steel pipe post (10) and is secured to the outside of the steel pipe post (10) by means of a weld (31). One end of a bracket (40) is fixed to the cylindrical body (20) thus fitted and secured, and the other end of the bracket (40) is connected to a beam.

Description

明 糸田 柱と梁または柱と柱の接合構造 技 術 分 野  Akira Itoda Pillar-to-beam or pillar-to-column joining structure
この発明は、 柱と梁または柱と柱の接合構造に関し、 さらに言えば、 土木 ·建 築構造において柱 (たとえば鋼管柱) に梁 (たとえば鉄骨梁) または柱 (例えば 鋼管柱) を接合するのに好適な柱と梁または柱と柱の接合構造に関する。 背 景 技 術  The present invention relates to a column-to-beam or column-to-column joining structure, and more particularly, to joining a beam (eg, a steel beam) or a column (eg, a steel tube column) to a column (eg, a steel tube column) in a civil engineering / construction structure. The present invention relates to a column-to-beam or column-to-column joining structure suitable for use in a vehicle. Background technology
従来より、 住宅などの鉄骨造建築において鋼管柱と鉄骨梁を接合する場合、 通 常、 柱側に短く切断した梁部材からなる接合用の仕口梁 (ブラケッ ト) を接合し、 このブラケッ卜に梁となる長い鉄骨材を接合している。 このような従来の柱 ·梁 接合構造の一例 (以下、 第 1従来構造という) を第 3 8図〜第 4 1図を用いて説 明すると、 次の通りである。  2. Description of the Related Art Conventionally, when connecting a steel tubular column and a steel beam in a steel-framed building such as a house, a connecting beam (bracket), which is composed of a beam member cut short, is usually connected to the column side. A long steel frame material to be used as a beam is joined. An example of such a conventional column-beam joint structure (hereinafter, referred to as a first conventional structure) will be described with reference to FIGS. 38 to 41 as follows.
まず、 第 3 8図 (a ) に示すように、 断面正方形の鋼管柱 1 0 0を梁接合箇所 において水平方向に切断し、 中間部 1 0 1、 上部 1 0 2および下部 1 0 3を得る。 次に、 第 3 8図 (b ) に示すように、 中間部 1 0 1の上下両端に開先 1 0 1 a、 1 0 1 bを、 上部 1 0 2の下端に開先 1 0 2 aを、 下部 1 0 3の上端に開先 1 0 3 aをそれぞれ加工する。  First, as shown in Fig. 38 (a), a steel tube column 100 with a square cross section is cut horizontally at the beam joint to obtain an intermediate part 101, an upper part 102 and a lower part 103. . Next, as shown in Fig. 38 (b), grooves 101a and 101b are provided at the upper and lower ends of the middle part 101, and grooves 102a are formed at the lower end of the upper part 102. And a groove 103a at the upper end of the lower part 103.
続いて、 第 3 9図 (a ) に示すように、 中間部 1 0 1、 上部 1 0 2および下部 1 0 3の内側に裏当て材 1 0 4をそれぞれ溶接により固着する。 その後、 第 3 9 図 (b ) に示すように、 対向する裏当て材 1 0 4の間にそれそれダイヤフラム 1 Subsequently, as shown in FIG. 39 (a), the backing material 104 is fixed to the inside of the intermediate portion 101, the upper portion 102 and the lower portion 103 by welding, respectively. Then, as shown in Fig. 39 (b), the diaphragm 1
0 5を介在させてから、 第 4 0図 (a ) に示すように、 中間部 1 0 1、 上部 1 0 2および下部 1 0 3を同一直線上に配置し、 仮溶接する。 こうして、 中間部 1 0 1、 上部 1 0 2および下部 1 0 3は互いに一体化される。 なお、 第 4 0図 (a ) において符号 1 0 6は仮溶接部を示す。 After interposition of the intermediate part 105, as shown in Fig. 40 (a), the intermediate part 101, the upper part 102 and the lower part 103 are arranged on the same straight line, and temporarily welded. Thus, the middle part 101, the upper part 102 and the lower part 103 are integrated with each other. In FIG. 40 (a), reference numeral 106 denotes a temporary weld.
さらに、 第 4 0図 (b ) に示すように、 仮溶接部 1 0 6を本溶接し、 中間部 1 0 1、 上部 1 0 2および下部 1 0 3の接合を完了する。 なお、 第 4 0図 (b ) に おいて符号 1 0 7は本溶接部を示す。 Further, as shown in FIG. 40 (b), the temporary welding portion 106 is fully welded to complete the joining of the intermediate portion 101, the upper portion 102, and the lower portion 103. Fig. 40 (b) shows Reference numeral 107 denotes a main welded portion.
そして、 第 4 1図に示すように、 上フランジ 2 0 2、 下フランジ 2 0 3および ウェブ 2 0 1よりなるブラケヅト 2 0 0の一端を、 溶接により柱 1 0 0の側面に 接合する。 この際、 ブラケット 2 0 0の上フランジ 2 0 2と下フランジ 2 0 3と を対応するダイヤフラム 1 0 5の側面にそれぞれ溶接し、 さらに、 ウェブ 2 0 1 を中間部 1 0 1の側面に溶接する。  Then, as shown in FIG. 41, one end of a bracket 200 composed of an upper flange 202, a lower flange 203 and a web 201 is joined to the side surface of the pillar 100 by welding. At this time, the upper flange 202 and the lower flange 203 of the bracket 200 are welded to the corresponding side surfaces of the diaphragm 105, and the web 201 is welded to the side surface of the intermediate portion 101. I do.
最後に、 ブラケット 2 0 0と同じ断面形状を持つ鉄骨梁 (図示せず) の一端を ブラケッ卜 2 0 0の他端に溶接により接合し、 梁の接合作業が完了する。  Finally, one end of a steel beam (not shown) having the same cross-sectional shape as the bracket 200 is joined to the other end of the bracket 200 by welding, and the joining operation of the beam is completed.
なお、 溶接の代わりに、 高力ポルトを用いて接合することも可能である。 この 種の従来の柱 ·梁接合構造の他の例 (以下、 第 2従来構造という) が、 曰本国特 開平 5— 2 1 4 7 6 9号公報に開示されている。 この第 2従来構造では、 鋼管柱 の側面の梁接合位置に板状部材を溶接し、 この板状部材の外面に梁接合用のブラ ケットを溶接する、 というものである。 この板状部材は、 鋼管柱の外周に巻き付 けて溶接することも可能である。  Instead of welding, it is also possible to join using high-strength ports. Another example of this type of conventional column-beam joint structure (hereinafter referred to as a second conventional structure) is disclosed in Japanese Patent Laid-Open Publication No. Heisei 5-2-147069. In the second conventional structure, a plate-like member is welded to a beam joining position on a side surface of a steel pipe column, and a bracket for beam joining is welded to an outer surface of the plate-like member. This plate-shaped member can be wound around the outer periphery of the steel pipe column and welded.
この種の従来の柱 ·梁接合構造のさらに他の例 (以下、 第 3従来構造という) が、 特閧平 3— 2 7 1 4 3 9号公報に開示されている。 この第 3従来構造では、 鋼管柱と鋼梁の接合部において、 鋼管柱外周を所定の剛性を有する補強部材で囲 み、 その補強部材に設けたねじ孔を利用して、 鋼梁をボルト接合する、 というも のである。  Still another example of this type of conventional column-beam joint structure (hereinafter, referred to as a third conventional structure) is disclosed in Japanese Patent Application Laid-Open No. 3-27141439. In the third conventional structure, at the joint between the steel pipe column and the steel beam, the outer periphery of the steel pipe column is surrounded by a reinforcing member having a predetermined rigidity, and the steel beam is bolted using the screw holes provided in the reinforcing member. Yes, it is.
この種の従来の柱 ·梁接合構造のさらに他の例 (以下、 第 4従来構造という) が、 実開昭 6 1— 2 0 6 0 2号公報に開示されている。 この第 4従来構造では、 同じ厚さでしかも幅寸法においてその厚さ寸法と同寸法の差を有する互いに直交 方向に位置する大平板と小平板を各々の端縁で連接して断面 L型の型鋼を構成し、 この断面 L型の型鋼の一対を四角形柱基体の外表面に、 小平板の側端面を大平板 の内面端部に近接した状態で被装溶着する、 というものである。  Still another example of this type of conventional column-beam joint structure (hereinafter, referred to as a fourth conventional structure) is disclosed in Japanese Utility Model Laid-Open No. 61-020602. In this fourth conventional structure, a large flat plate and a small flat plate which are located in the direction perpendicular to each other and have the same thickness and a difference of the same dimension as the thickness in the width dimension are connected at their edges to form an L-shaped section. In this method, a pair of L-shaped section steels are formed and welded to the outer surface of the rectangular column base body with the side end faces of the small plate being close to the inner end of the large plate.
上記の第 1従来構造では、 鋼管柱 1 0 0を梁接合箇所において切断し、 中間部 1 0 1、 上部 1 0 2および下部 1 0 3に分割した後、 ダイヤフラム 1 0 5を介し てそれらを再度、 溶接により接合して一体化する必要がある。 このため、 作業が 煩雑であるだけでなく、 各鋼管柱 1 0 0について梁接合位置の調整が困難である だけでなく、 切断された鋼管柱 1 0 0を溶接により接合しているので曲げ剛性が 低いという問題がある。 In the first conventional structure described above, the steel tube column 100 is cut at the beam joint, divided into an intermediate portion 101, an upper portion 102, and a lower portion 103, and then divided through a diaphragm 105. It is necessary to join again by welding. For this reason, not only is the work complicated, but also it is difficult to adjust the beam joint position for each steel pipe column 100. In addition, since the cut steel pipe columns 100 are joined by welding, there is a problem that bending rigidity is low.
上記の第 2従来構造では、 鋼管柱の側面の梁接合位置に板状部材を溶接し、 こ の板状部材の外面に梁接合用のブラケットを溶接するので、 上記の第 1従来構造 のように鋼管柱を梁接合箇所において切断した後、 一体化する必要はなくなる。 しかし、 鋼管柱の外側に板状部材を溶接する際に、 板状部材を鋼管柱に密着させ た状態で所定位置に保持しておく必要があるので、 その作業は容易ではない。 また、 板状部材を鋼管柱に巻き付けて溶接する場合、 剛性が高く且つ重量の大 きな板状部材を鋼管柱に巻き付けて保持する必要があるが、 この作業は巻き付け ない場合よりもいつそう困難である。  In the above-mentioned second conventional structure, a plate-like member is welded to a beam joint position on the side surface of a steel pipe column, and a beam-joining bracket is welded to the outer surface of the plate-like member. After cutting the steel pipe column at the beam joint, it is no longer necessary to integrate it. However, when welding the plate-shaped member to the outside of the steel pipe column, it is necessary to hold the plate-shaped member in a predetermined position in close contact with the steel pipe column. In addition, when wrapping a plate-shaped member around a steel tube column and welding it, it is necessary to wrap a plate member with high rigidity and heavy weight around the steel tube column and hold it. Have difficulty.
上記の第 3従来構造では、 鋼管柱外周を所定の剛性を有する補強部材で囲み、 その補強部材に設けたねじ孔を利用して鋼梁をボル卜接合するので、 鋼管柱外周 を補強部材で囲む際に、 補強部材を鋼管柱外周に密着させた状態で所定位置に保 持してからポルト止めや溶接によりそれらを固定する必要がある。 このため、 上 記の第 2従来構造の場合と同様に、 作業が困難であるという問題がある。  In the third conventional structure described above, the outer periphery of the steel pipe column is surrounded by a reinforcing member having a predetermined rigidity, and the steel beam is bolt-joined using screw holes provided in the reinforcing member. When enclosing, it is necessary to hold the reinforcing member in a predetermined position in a state in which the reinforcing member is in close contact with the outer periphery of the steel pipe column, and then fix them by porting or welding. Therefore, there is a problem that the work is difficult as in the case of the above-mentioned second conventional structure.
上記の第 4従来構造では、 断面 L型の型鋼の一対を四角形柱の外表面に、 小平 板の側端面を大平板の内面端部に近接した状態で被装溶着するので、 上記の第 2 従来構造および第 3従来構造の場合と同様に、 作業が困難であるという問題があ る。  In the fourth conventional structure described above, a pair of L-shaped section steels are welded to the outer surface of the square pillar and the side end surface of the small flat plate is close to the inner surface end of the large flat plate. As in the case of the conventional structure and the third conventional structure, there is a problem that work is difficult.
そこで、 この発明の目的は、 柱への梁の接合作業が上記従来構造より簡易且つ 迅速に行なえる柱と梁または柱と柱の接合構造を提供することにある。  SUMMARY OF THE INVENTION It is an object of the present invention to provide a column-to-beam or column-to-column connection structure in which the operation of connecting a beam to a column can be performed more easily and more quickly than the conventional structure.
この発明の他の目的は、 製造コストだけでなく作業コストも低廉である柱と梁 または柱と柱の接合構造を提供することにある。  Another object of the present invention is to provide a joint structure between a column and a beam or a column and a column, which has low production costs as well as low operation costs.
この発明のさらに他の目的は、 サイズの異なる柱への梁の接合作業を簡易且つ 迅速に行なえる柱と梁または柱と柱の接合構造を提供することにある。 発 明 の 開 示  Still another object of the present invention is to provide a column-to-beam or column-to-column connection structure in which a beam can be easily and quickly joined to columns of different sizes. Disclosure of the invention
( 1 ) この発明の第 1の柱と梁の接合構造は、 柱の断面形状とほぼ同一の断面形 状の透孔を持つと共に前記柱の外側に嵌装可能とした筒状体を備えてなり、 前記 筒状体はその透孔を前記柱に揷通することにより前記柱の外側に嵌装され、 且つ 前記柱の外側に固着されていて、 その嵌装 ·固着された前記筒状体を利用して前 記柱に梁を接合するようにしたことを特徴とする。 (1) A joint structure of a first column and a beam according to the present invention includes a cylindrical body having a through-hole having a cross-sectional shape substantially the same as the cross-sectional shape of the column and capable of being fitted to the outside of the column. Become The tubular body is fitted to the outside of the pillar by passing the through hole through the pillar, and is fixed to the outside of the pillar, and uses the fitted and secured tubular body. The beam is connected to the column.
前記筒状体は、 その上下両端部の少なくとも一方において前記柱に溶接により 固着されているのが好ましい。 固着強度と作業の簡便性が良好だからである。 前 記筒状体は、 ビン、 ボルトなどの係止部材を用いて前記柱に固着されていてもよ い。  It is preferable that the cylindrical body is fixed to the column by welding at least at one of the upper and lower ends. This is because the fixing strength and the simplicity of the operation are good. The above-mentioned cylindrical body may be fixed to the pillar using a locking member such as a bottle or a bolt.
前記筒状体は、 その側面に窓を有しており、 その窓を介して前記筒状体が前記 柱に溶接されているのが好ましい。 窓を設けない場合に比べて、 固着強度と作業 の簡便性がいっそう良好となるからである。  It is preferable that the cylindrical body has a window on a side surface thereof, and the cylindrical body is welded to the column through the window. This is because the bonding strength and the simplicity of the work are further improved as compared with the case where no window is provided.
前記筒状体は、 上下両端に厚肉部を有しており、 その厚肉部を介して前記筒状 体が前記柱に固着されているのが好ましい。 厚肉部を設けない場合に比べて、 ブ ラケットなどの接合強度が向上するからである。  It is preferable that the tubular body has thick portions at both upper and lower ends, and the tubular body is fixed to the column via the thick portions. This is because the bonding strength of the bracket and the like is improved as compared with the case where the thick part is not provided.
( 2 ) この発明の第 2の柱と梁の接合構造は、 第 1の柱の断面形状とほぼ同一の 断面形状を持つと共に前記第 1の柱が嵌合可能な第 1の透孔と、 第 2の柱の断面 形状とほぼ同一の断面形状を持つと共に前記第 2の柱が嵌合可能な第 2の透孔と を持つ筒状体を備えており、 前記第 1および第 2の柱は前記第 1および第 2の透 孔の内側にそれぞれ嵌合且つ固着されていて、 その嵌合 ·固着された筒状体を利 用して前記第 1および第 2の柱に梁を接合するようにしたことを特徴とする。 前記第 1および第 2の筒状体のサイズは、 同じでもよいし異なっていてもよい c (2) The joint structure of the second column and the beam according to the present invention has a first through-hole having a cross-sectional shape substantially the same as the cross-sectional shape of the first column and capable of fitting the first column, A cylindrical body having a cross-sectional shape substantially the same as the cross-sectional shape of the second column, and having a second through-hole into which the second column can be fitted; and the first and second columns. Are fitted and fixed inside the first and second through holes, respectively, and the beams are joined to the first and second pillars by using the fitted and fixed cylindrical body. It is characterized by doing so. The size of the first and second tubular bodies may be different may be the same c
( 3 ) この発明の第 3の柱と梁の接合構造は、 第 1の柱の断面形状とほぼ同一の 断面形状を持つと共に前記第 1の柱が嵌合可能な透孔と、 第 2の柱を支持可能な 支持面とを持つ筒状体を備えており、 前記第 1の柱は前記透孔の内側に嵌合且つ 固着されており、 前記第 2の柱は前記支持面上に固着されていて、 その嵌合 ·固 着された筒状体を利用して前記第 1の柱に梁を接合するようにしたことを特徴と する。 (3) The joint structure of the third pillar and the beam according to the present invention has a through-hole having substantially the same cross-sectional shape as the first pillar and capable of fitting the first pillar, A cylindrical body having a support surface capable of supporting the column, wherein the first column is fitted and fixed inside the through hole, and the second column is fixed on the support surface And a beam is joined to the first column using the fitted / fixed tubular body.
この第 3の柱と梁の接合構造は、 前記第 1の柱のサイズが前記第 2の柱のサイ ズとは異なっている場合に好適であり、 その場合、 前記第 1の柱のサイズが前記 第 2の柱のサイズよりも大きいのが好ましい。 ( 4 ) この発明の第 1の柱と柱の接合構造は、 第 1の柱の断面形状とほぼ同一の 断面形状を持つと共に前記第 1の柱が嵌合可能な第 1の透孔と、 第 2の柱の断面 形状とほぼ同一の断面形状を持つと共に前記第 2の柱が嵌合可能な第 2の透孔と を持つ筒状体を備えており、 前記第 1および第 2の柱は前記第 1および第 2の透 孔の内側にそれぞれ嵌合且つ固着されていて、 その嵌合 ·固着された筒状体によ り前記第 1および第 2の柱を互いに接合するようにしたことを特徴とする。 This joint structure between the third column and the beam is suitable when the size of the first column is different from the size of the second column, and in that case, the size of the first column is It is preferably larger than the size of the second column. (4) The joint structure between the first pillar and the pillar according to the present invention has a first through-hole having substantially the same sectional shape as that of the first pillar and capable of fitting the first pillar, A cylindrical body having a cross-sectional shape substantially the same as the cross-sectional shape of the second column, and having a second through-hole into which the second column can be fitted; and the first and second columns. Are fitted and fixed inside the first and second through holes, respectively, and the first and second columns are joined to each other by the fitted and fixed cylindrical body. It is characterized by the following.
( 5 ) この発明の第 2の柱と柱の接合構造は、 第 1の柱の断面形状とほぼ同一の 断面形状を持つと共に前記第 1の柱が嵌合可能な透孔と、 第 2の柱を支持可能な 支持面とを持つ筒状体を備えており、 前記第 1の柱は前記透孔の内側に嵌合且つ 固着されており、 前記第 2の柱は前記支持面上に固着されていて、 その嵌合 '固 着された筒状体を利用して前記第 1および第 2の柱を互いに接合するようにした ことを特徴とする。  (5) The joint structure between the second pillar and the pillar according to the present invention includes a through-hole having substantially the same sectional shape as the first pillar and capable of fitting the first pillar, A cylindrical body having a support surface capable of supporting the column, wherein the first column is fitted and fixed inside the through hole, and the second column is fixed on the support surface And the first and second columns are joined to each other by using the fitted and fixed cylindrical body.
( 6 ) この発明の第 1の柱と梁の接合構造において、 前記柱の断面形状は任意で あるが、 例えば矩形や円形の断面形状が好ましい。 この発明の第 2および第 3の 柱と梁の接合構造における前記第 1および第 2の柱についても、 これと同様であ また、 この発明の第 1および第 2の柱と柱の接合構造において、 前記第 1およ び第 2の柱のサイズは、 同じであってもよいし、 異なっていてもよい。 また、 前 記第 1および第 2の柱の中心が前記筒状体の中心とそれぞれ一致していてもよい し、 前記第 1および第 2の柱の少なくとも一方の中心が前記筒状体の中心からず れていてもよい。  (6) In the first column-beam joining structure of the present invention, the column may have any cross-sectional shape, but for example, a rectangular or circular cross-sectional shape is preferable. The same applies to the first and second columns in the joint structure of the second and third columns and beams of the present invention. Also, in the joint structure of the first and second columns and columns of the present invention, The size of the first and second pillars may be the same or different. Further, the centers of the first and second columns may respectively correspond to the centers of the cylindrical bodies, or the centers of at least one of the first and second columns may be the centers of the cylindrical bodies. They may be skewed.
この発明の第 1の柱と梁の接合構造において、 前記筒状体の透孔の断面形状は、 前記柱の断面形状とほぼ同一であれば足り、 正確に一致する必要はない。 要は、 前記筒状体を前記柱の外側に嵌装できればよい。 この発明の第 2および第 3の柱 と梁の接合構造と、 この発明の第 1および第 2の柱と柱の接合構造における前記 第 1および第 2の柱についても、 これと同様である。  In the joint structure of the first pillar and the beam according to the present invention, it is sufficient that the cross-sectional shape of the through-hole of the cylindrical body is substantially the same as the cross-sectional shape of the pillar, and does not need to exactly match. In short, it is only necessary that the tubular body can be fitted outside the pillar. The same applies to the joint structure of the second and third columns and beams of the present invention, and the first and second columns in the joint structure of the first and second columns and columns of the present invention.
この発明の第 1の柱と梁の接合構造における前記柱に嵌装された前記筒状体の 固着方法と、 この発明の第 2〜第 3の柱と梁の接合構造およびこの発明の第 1お よび第 2の柱と柱の接合構造における前記第 1または第 2の柱に嵌装された前記 筒状体の固着方法は、 いずれも任意である。 溶接により固着してもよいし、 ボル 卜止めやビン止めなどにより固着してもよい。 A method for fixing the cylindrical body fitted to the column in the first column and beam joint structure of the present invention, the second and third column and beam joint structures of the first and second aspects of the present invention And the first or second column fitted in the joint structure of the second column and the column. The method of fixing the cylindrical body is arbitrary. It may be fixed by welding, or may be fixed by bolting or binning.
この発明の第 1〜第 3の柱と梁の接合構造では、 前記筒状体には通常、 接合部 材としての仕口梁 (ブラケット) の一端が固定され、 その接合部材の他端に前記 梁が接合される。 しかし、 前記梁を直接、 前記筒状体に接合してもよいことは勿 細'である  In the joint structure of the first to third columns and beams of the present invention, one end of a connection beam (bracket) as a joining member is usually fixed to the tubular body, and the other end of the joining member is attached to the other end of the joining member. The beams are joined. However, it is a matter of course that the beam may be directly joined to the cylindrical body.
この発明の第 1〜第 3の柱と梁の接合構造およびこの発明の第 1および第 2の 柱と柱の接合構造は、 建築構造および土木構造における柱と梁または柱と柱を接 合する箇所であれば、 いずれにも適用可能であり、 例えば鉄骨構造以外の建築構 造や地下街やその道路などの土木構造にも適用可能である。  The first to third joint structures of columns and beams of the present invention and the first and second joint structures of columns and columns of the present invention join columns and beams or columns and columns in building structures and civil engineering structures. The present invention can be applied to any location, for example, to architectural structures other than steel structures and civil structures such as underground shopping malls and roads.
この発明の第 1〜第 3の柱と梁の接合構造およびこの発明の第 1および第 2の 柱と柱の接合構造において、 前記筒状体や前記接合部材の材質は、 例えば S S 4 0 0 ( J 1 S G 3 1 0 1 一般構造用圧延鋼材) 、 S M 4 9 0 A ( J 1 S G 3 1 0 6 溶接構造用圧延鋼材) か好ましいが、 その他の鋼材や鋼材以外の 材料も必要な強度に応じて適宜使用することができる。  In the joint structure of the first to third columns and beams of the present invention and the joint structure of the first and second columns and columns of the present invention, the material of the cylindrical body and the joining member is, for example, SS400 (J1SG3101 rolled steel for general structures), SM490A (J1SG3106 rolled steel for welded structures) is preferred, but other steel and non-steel materials also require strength Can be used appropriately according to
前記筒状体は、 錡造ゃ切削加工により一体的に形成してもよいし、 圧延、 引き 抜きなどにより一体的に形成してもよい。  The tubular body may be integrally formed by a mechanical cutting process, or may be integrally formed by rolling, drawing, or the like.
( 7 ) この発明の第 1の柱と梁の接合構造では、 柱の断面形状とほぼ同一の断面 形状の透孔を持つと共に前記柱の外側に嵌装可能とした筒状体を備えており、 筒 状体はその透孔を柱に挿通することによりその柱の外側に嵌装され、 且つその柱 の外側に固着されていて、 その嵌装 ·固着された筒状体を利用して柱に梁を接合 するようにしている。 このため、 柱に梁を接合する際には、 筒状体の透孔を柱に 挿通させることにより、 その筒状体を柱の外側に嵌装させてから溶接、 ボルト止 めあるいはビン止めなど、 任意の方法により固着するだけでよい。  (7) The first joint structure between a column and a beam according to the present invention includes a cylindrical body having a through-hole having a cross-sectional shape substantially the same as the cross-sectional shape of the column and capable of being fitted to the outside of the column. The tubular body is fitted to the outside of the pillar by inserting the through hole into the pillar, and is fixed to the outside of the pillar. The fitted and secured tubular body is used for the pillar. The beam is joined to For this reason, when joining a beam to a column, the through-hole of the cylindrical body is inserted through the column so that the cylindrical body is fitted to the outside of the column, and then welded, bolted or binned It only needs to be fixed by any method.
換言すれば、 筒状体は柱の外側に嵌装されているため、 単に下方より保持して おけば容易に固着することが可能である。 上記従来構造の場合のように、 筒状体 を柱に密着させながら保持する必要はない。  In other words, since the tubular body is fitted on the outside of the column, it can be easily fixed simply by holding it from below. It is not necessary to hold the tubular body while keeping it tightly attached to the column as in the case of the above-mentioned conventional structure.
このように、 この発明の第 1の柱と梁の接合構造では、 柱への梁の接合作業を 簡易且つ迅速に行なうことができる。 これは作業コス卜の低減につながる。 また、 筒状体は、 柱の断面形状とほぼ同一の断面形状の透孔を持ち、 且つその 柱の外側に嵌装可能であれば足りるので、 その製造コストも低廉である。 As described above, in the first column / beam joining structure of the present invention, the beam joining operation to the column can be performed easily and quickly. This leads to a reduction in work costs. Further, since the cylindrical body has a through-hole having a cross section substantially the same as the cross section of the column and can be fitted to the outside of the column, the manufacturing cost is low.
( 8 ) この発明の第 2の柱と梁の接合構造では、 第 1の柱の断面形状とほぼ同一 の断面形状を持つと共に前記第 1の柱が嵌合可能な第 1の透孔と、 第 2の柱の断 面形状とほぼ同一の断面形状を持つと共に前記第 2の柱が嵌合可能な第 2の透孔 とを持つ筒状体を備えており、 前記第 1および第 2の柱は前記第 1および第 2の 透孔の内側にそれぞれ嵌合且つ固着されていて、 その嵌合 ·固着された筒状体を 利用して前記第 1および第 2の柱に梁を接合するようにしている。 このため、 サ ィズの異なる柱への梁の接合作業を簡易且つ迅速に行なうことができる。  (8) In the joint structure of the second pillar and the beam according to the present invention, the first through-hole having substantially the same sectional shape as the first pillar and capable of fitting the first pillar, A cylindrical body having a cross-sectional shape substantially the same as the cross-sectional shape of the second column and having a second through-hole into which the second column can be fitted; The column is fitted and fixed inside the first and second through holes, respectively, and a beam is joined to the first and second column using the fitted and fixed cylindrical body. Like that. For this reason, the work of joining the beams to columns of different sizes can be performed easily and quickly.
( 9 ) この発明の第 3の柱と梁の接合構造では、 第 1の柱の断面形状とほぼ同一 の断面形状を持つと共に前記第 1の柱が嵌合可能な透孔と、 第 2の柱を支持可能 な支持面とを持つ筒状体を備えており、 前記第 1の柱は前記透孔の内側に嵌合且 つ固着されており、 前記第 2の柱は前記支持面上に固着されていて、 その嵌合 · 固着された筒状体を利用して前記第 1の柱に梁を接合するようにしている。 この ため、 サイズの異なる柱への梁の接合作業を簡易且つ迅速に行なうことができる (9) In the joint structure of the third column and the beam according to the present invention, the second column has a cross-sectional shape substantially the same as the cross-sectional shape of the first column, A cylindrical body having a support surface capable of supporting the column, wherein the first column is fitted and fixed inside the through hole, and the second column is provided on the support surface. The beam is fixed to the first column using the fitted / fixed cylindrical body. For this reason, it is possible to easily and quickly join a beam to columns of different sizes.
( 1 0 ) この発明の第 1の柱と柱の接合構造では、 第 1の柱の断面形状とほぼ同 一の断面形状を持つと共に前記第 1の柱が嵌合可能な第 1の透孔と、 第 2の柱の 断面形状とほぼ同一の断面形状を持つと共に前記第 2の柱が嵌合可能な第 2の透 孔とを持つ筒状体を備えており、 前記第 1および第 2の柱は前記第 1および第 2 の透孔の内側にそれぞれ嵌合且つ固着されていて、 その嵌合 ·固着された筒状体 により前記第 1および第 2の柱を互いに接合するようにしている。 このため、 柱 と柱の接合作業を簡易且つ迅速に行うことができる。 (10) In the joint structure of the first pillar and the pillar according to the present invention, the first through-hole having substantially the same sectional shape as that of the first pillar and capable of fitting the first pillar is provided. A cylindrical body having a cross-sectional shape substantially the same as the cross-sectional shape of the second column, and having a second through hole to which the second column can be fitted. The first pillar and the second pillar are fitted and fixed inside the first and second through holes, respectively, and the first and second pillars are joined to each other by the fitted and fixed cylindrical body. I have. For this reason, the joining operation of the pillars can be performed easily and quickly.
( 1 1 ) この発明の第 2の柱と柱の接合構造では、 第 1の柱の断面形状とほぼ同 一の断面形状を持つと共に前記第 1の柱が嵌合可能な透孔と、 第 2の柱を支持可 能な支持面とを持つ筒状体を備えており、 前記第 1の柱は前記透孔の内側に嵌合 且つ固着されており、 前記第 2の柱は前記支持面上に固着されていて、 その嵌合 (11) In the joint structure of the second pillar and the pillar according to the present invention, the through-hole having a sectional shape substantially the same as the sectional shape of the first pillar and capable of fitting the first pillar is provided. A cylindrical body having a support surface capable of supporting the second column, wherein the first column is fitted and fixed inside the through-hole, and the second column is the support surface. Fixed on top and its mating
•固着された筒状体を利用して前記第 1および第 2の柱を互いに接合するように している。 このため、 第 1の柱と柱の接合構造の場合と同様に、 柱と柱の接合作 業を簡易且つ迅速に行うことができる。 また、 前記第 2の柱は前記支持面上に固 着されるので、 前記第 1および第 2の柱の固着位置のずれに容易に対応できる利 点がある。 図面の簡単な説明 • The first and second columns are joined to each other by using the fixed cylindrical body. Therefore, as in the case of the first column-column connection structure, the column-column connection operation can be performed easily and quickly. The second column is fixed on the support surface. Since it is attached, there is an advantage that it is possible to easily cope with a shift in the fixed position of the first and second columns. BRIEF DESCRIPTION OF THE FIGURES
第 1図 (a ) はこの発明の柱と梁の接合構造の第 1実施例の要部斜視図、 (b ) はその A— A線に沿った断面図である。  FIG. 1 (a) is a perspective view of an essential part of a first embodiment of a joint structure between a column and a beam according to the present invention, and FIG. 1 (b) is a cross-sectional view along the line AA.
第 2図は、 第 1実施例の柱と梁の接合構造に使用する鋼管柱と筒状体の斜視図 である。  FIG. 2 is a perspective view of a steel pipe column and a tubular body used in the column-beam joint structure of the first embodiment.
第 3図は、 第 1実施例の柱と梁の接合構造にブラケッ卜をポルト止めする構成 を示す、 ブラケット接合前の斜視図である。  FIG. 3 is a perspective view showing a configuration in which a bracket is ported to a joint structure between a column and a beam according to the first embodiment, before brackets are joined.
第 4図は、 第 1実施例の柱と梁の接合構造にブラケットをボルト止めする構成 を示す、 ブラケット接合後の斜視図である。  FIG. 4 is a perspective view after the bracket is joined, showing a configuration in which the bracket is bolted to the joint structure between the column and the beam according to the first embodiment.
第 5図 (a ) , ( b ) は、 第 1実施例の柱と梁の接合構造にブラケットを溶接 により接合する構成を示す、 ブラケット接合後の斜視図である。  FIGS. 5 (a) and 5 (b) are perspective views after the bracket is joined, showing a configuration in which the bracket is joined to the joint structure between the column and the beam of the first embodiment by welding.
第 6図は、 この発明の柱と梁の接合構造の第 2実施例に使用する鋼管柱と筒状 体の斜視図である。  FIG. 6 is a perspective view of a steel pipe column and a cylindrical body used in a second embodiment of the joint structure between a column and a beam according to the present invention.
第 7図は、 第 2実施例の柱と梁の接合構造の要部斜視図である。  FIG. 7 is a perspective view of a main part of a joint structure between a column and a beam according to the second embodiment.
第 8図は、 第 7図の B— B線に沿った断面図である。  FIG. 8 is a sectional view taken along line BB of FIG.
第 9図は、 この発明の柱と梁の接合構造の第 3実施例に使用する筒状体の斜視 図である。  FIG. 9 is a perspective view of a cylindrical body used in a third embodiment of the joint structure between a column and a beam according to the present invention.
第 1 0図は、 第 3実施例の柱と梁の接合構造にブラケットを溶接により接合す る構成を示す、 ブラケット接合後の斜視図である。  FIG. 10 is a perspective view after the bracket is joined, showing a configuration in which the bracket is joined to the joint structure of the column and the beam of the third embodiment by welding.
第 1 1図は、 この発明の柱と梁の接合構造の第 4実施例に使用する筒状体の斜 視図である。  FIG. 11 is a perspective view of a cylindrical body used in a fourth embodiment of the joint structure between a column and a beam according to the present invention.
第 1 2図は、 第 4実施例の柱と梁の接合構造にブラケットを溶接により接合す る構成を示す、 ブラケット接合後の斜視図である。  FIG. 12 is a perspective view after the brackets are joined, showing a configuration in which the brackets are joined to the column / beam joining structure of the fourth embodiment by welding.
第 1 3図は、 この発明の柱と梁の接合構造の第 5実施例にブラケットをボルト 止めする構成を示す、 ブラケット接合前の斜視図である。  FIG. 13 is a perspective view showing a structure in which a bracket is bolted to a fifth embodiment of the joint structure between a column and a beam according to the present invention, before the bracket is joined.
第 1 4図は、 第 5実施例の柱と梁の接合構造にブラケットをボルト止めする構 成を示す、 ブラケット接合後の斜視図である。 FIG. 14 shows a structure in which a bracket is bolted to the joint structure between a column and a beam according to the fifth embodiment. FIG. 4 is a perspective view showing a structure after bracket joining.
第 1 5図は、 この発明の柱と梁の接合構造の第 6実施例に使用する筒状体の斜 視図である。  FIG. 15 is a perspective view of a cylindrical body used in a sixth embodiment of the joint structure between a column and a beam according to the present invention.
第 1 6図は、 第 6実施例の柱と梁の接合構造にブラケットを溶接により接合す る構成を示す、 ブラケット接合後の斜視図である。  FIG. 16 is a perspective view after the bracket is joined, showing a configuration in which the bracket is joined to the joint structure of the column and the beam of the sixth embodiment by welding.
第 1 7図は、 この発明の柱と梁の接合構造の第 7実施例に使用する筒状体の斜 視図である。  FIG. 17 is a perspective view of a cylindrical body used in a seventh embodiment of the joint structure between a column and a beam according to the present invention.
第 1 8図は、 第 7実施例の柱と梁の接合構造に使用する筒状体の変形例を示す 側面図である。  FIG. 18 is a side view showing a modification of the cylindrical body used for the joint structure between the column and the beam in the seventh embodiment.
第 1 9図は、 第 4実施例の柱と梁の接合構造に使用する筒状体の突出部の変形 例を示す側面図である。  FIG. 19 is a side view showing a modified example of the projecting portion of the cylindrical body used in the column / beam joint structure of the fourth embodiment.
第 2 0図は、 第 1〜第 7実施例の柱と梁の接合構造における、 ブラケットの接 続状況の変形例を示す概略平面図である。  FIG. 20 is a schematic plan view showing a modification of the connection state of the brackets in the joint structure between the column and the beam in the first to seventh embodiments.
第 2 1図は、 この発明の柱と梁の接合構造の第 8実施例の要部斜視図である。 第 2 2図は、 第 8実施例の柱と梁の接合構造に使用する鋼管柱および筒状体の 斜視図である。  FIG. 21 is a perspective view of a relevant part of an eighth embodiment of the joint structure between a column and a beam according to the present invention. FIG. 22 is a perspective view of a steel pipe column and a tubular body used in the column-beam joint structure of the eighth embodiment.
第 2 3図は、 この発明の柱と梁の接合構造の第 9実施例の要部斜視図である。 第 2 4図は、 第 9実施例の柱と梁の接合構造に使用する鋼管柱および筒状体の 斜視図である。  FIG. 23 is a perspective view of a main part of a ninth embodiment of the joint structure between a column and a beam according to the present invention. FIG. 24 is a perspective view of a steel pipe column and a tubular body used for the column-beam joint structure of the ninth embodiment.
第 2 5図は、 第 9実施例の柱と梁の接合構造の断面図である。  FIG. 25 is a sectional view of a joint structure between a column and a beam according to the ninth embodiment.
第 2 6図は、 第 9実施例の柱と梁の接合構造における鋼管柱の配置の変形例を 示す概略平面図である。  FIG. 26 is a schematic plan view showing a modification of the arrangement of the steel pipe columns in the column-beam joint structure of the ninth embodiment.
第 2 7図は、 この発明の柱と梁の接合構造の第 1 0実施例の要部斜視図である。 第 2 8図は、 第 1 0実施例の柱と梁の接合構造に使用する鋼管柱および筒状体 の斜視図である。  FIG. 27 is a perspective view of a main part of a tenth embodiment of the joint structure between a column and a beam according to the present invention. FIG. 28 is a perspective view of a steel pipe column and a tubular body used in the column-beam joining structure of the tenth embodiment.
第 2 9図は、 第 1 0実施例の柱と梁の接合構造に使用する筒状体の断面図であ る o  FIG. 29 is a cross-sectional view of a cylindrical body used for the joint structure between the column and the beam in the tenth embodiment.
第 3 0図は、 この発明の柱と梁の接合構造の第 1 1実施例の要部斜視図である。 第 3 1図は、 第 1 1実施例の柱と梁の接合構造に使用する鋼管柱および筒状体 の斜視図である。 FIG. 30 is a perspective view of an essential part of a first embodiment of the joint structure between a column and a beam according to the present invention. Fig. 31 shows the steel pipe columns and cylindrical bodies used in the column-beam joint structure of the first embodiment. It is a perspective view of.
第 3 2図 (a ) , ( b ) , (c ) は、 筒状体の成形例を示す斜視図である。 第 3 3図 (a ) , ( b ) , ( c ) は、 筒状体の他の成形例を示す斜視図および 平面図である。  FIGS. 32 (a), (b) and (c) are perspective views showing examples of forming a cylindrical body. FIG. 33 (a), (b), (c) is a perspective view and a plan view showing another example of forming a tubular body.
第 3 4図は、 本発明の実際の適用例を示す斜視図である。  FIG. 34 is a perspective view showing an actual application example of the present invention.
第 3 5図は、 他の適用例を示す斜視図である。  FIG. 35 is a perspective view showing another application example.
第 3 6図は、 この発明の他の変更例を示す筒状体の斜視図である。  FIG. 36 is a perspective view of a cylindrical body showing another modification of the present invention.
第 3 7図 (a ) , (b ) は、 第 3 6図の筒状体を柱と梁の接合構造に適用した 断面図、 およびその拡大図である。  FIGS. 37 (a) and (b) are a cross-sectional view of the cylindrical body of FIG. 36 applied to a column / beam joint structure, and an enlarged view thereof.
第 3 8図は、 従来の柱と梁の接合構造の構築方法の一工程を示す斜視図である c 第 3 9図は、 従来の柱と梁の接合構造の構築方法の一工程を示す斜視図である c 第 4 0図は、 従来の柱と梁の接合構造の構築方法の一工程を示す斜視図である c 第 4 1図は、 従来の柱と梁の接合構造を示す要部斜視図である。 発明の実施の形態 Fig. 38 is a perspective view showing one step of a conventional method for constructing a joint structure between a column and a beam. C Fig. 39 is a perspective view showing one step of a conventional method for constructing a joint structure between a column and a beam. C Fig. 40 is a perspective view showing one step of a conventional method of constructing a joint structure between a column and a beam. C Fig. 41 is a perspective view of a main part showing a conventional joint structure between a column and a beam. FIG. Embodiment of the Invention
以下、 この発明の実施の形態を添付図面に基づいて詳細に説明する。 ここでは、 この発明を鋼管柱 (コラム) に H型鋼梁を接合する例について述べるが、 この発 明はこれらに限定されるものではない。  Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. Here, an example in which the present invention joins an H-shaped steel beam to a steel pipe column will be described, but the present invention is not limited to these.
(第 1実施例)  (First embodiment)
第 1図および第 2図は、 この発明の柱と梁の接合構造の第 1実施例を示してい る。 図 2に示すように、 この実施例の接合構造は、 断面正方形 (正四角筒) の鋼 管柱 1 0と、 断面正方形 (正四角筒) の鋼製の筒状体 (ソリッドボックス) 2 0 から構成される。 鋼管柱 1 0は、 外側に平坦な 4つの側面 1 1を持ち、 内側に断 面正方形の透孔 1 2を持つ。 筒状体 2 0は、 内側に鋼管柱 1 0の断面形状とほぼ 同一の断面正方形の透孔 2 1を持ち、 外側に平坦な 4つの側面 2 2を持つ。 それ ら 4つの側面 2 2のうち、 少なくとも 1つが梁またはブラケッ 卜の接合面として 用いられる。 透孔 2 1の内部には、 鋼管柱 1 0が嵌装可能となっている。  FIG. 1 and FIG. 2 show a first embodiment of the joint structure between a column and a beam according to the present invention. As shown in FIG. 2, the joint structure of this embodiment includes a steel pipe column 10 having a square cross section (square tube) and a steel tubular body (solid box) 20 having a square cross section (square tube). Consists of The steel tube column 10 has four flat sides 11 on the outside and a square cross-sectional hole 12 on the inside. The cylindrical body 20 has a through-hole 21 having a square cross section substantially the same as the cross-sectional shape of the steel pipe column 10 inside, and four flat sides 22 outside. At least one of the four side surfaces 22 is used as a joint surface of a beam or a bracket. A steel pipe column 10 can be fitted inside the through hole 21.
筒状体 2 0は、 第 1図に示すように、 その透孔 2 1に鋼管柱 1 0を挿通するこ とにより銅管柱 1 0の外側に嵌装してある。 筒状体 2 0はまた、 梁の接合位置に おいて隅肉溶接することにより鋼管柱 1 0の外側に固着してある。 溶接部 3 1は、 筒状体 2 0の上下両端において鋼管柱 1 0との間に形成された隙間を塞ぐように、 鋼管柱 1 0の 4つの側面 1 1に沿って形成してある。 換言すれば、 筒状体 2 0の 上下両端の溶接部 3 1は、 鋼管柱 1 0の全周に沿って延びている。 溶接部 3 1は、 筒状体 2 0の上下両端でなく上端または下端のいずれかであってもよい。 As shown in FIG. 1, the cylindrical body 20 is fitted on the outside of the copper pipe column 10 by inserting a steel pipe column 10 into the through hole 21. The cylindrical body 20 is also located at the joint position of the beam. It is fixed to the outside of the steel pipe column 10 by fillet welding. The welded portions 31 are formed along the four side surfaces 11 of the steel pipe column 10 so as to close gaps formed between the cylindrical body 20 and the steel column 10 at the upper and lower ends. In other words, the welded portions 31 at the upper and lower ends of the tubular body 20 extend along the entire circumference of the steel pipe column 10. The welded portion 31 may be at either the upper end or the lower end instead of the upper and lower ends of the cylindrical body 20.
この第 1実施例の接合構造では、 仕口梁 (ブラケット) 4 0 (ここでは H型鋼 により形成してある) が、 例えば第 3図〜第 5図のように固定される。 第 3図で は、 筒状体 2 0の一つの側面 2 2にネジ孔 2 3が形成してあり、 またブラケット 4 0の一端にェンドブレート 5 0が溶接により固着してある。 エンドブレー卜 5 0には、 側面すなわち接合面 2 2の各ネジ孔 2 3に対応する位置に貫通孔 5 1が 形成してある。 ブラケット 4 0は、 第 4図に示すように、 エンドプレート 5 0の 対向面全体を筒状体 2 0の接合面 2 2に接触させてから、 ェンドブレート 5 0の 貫通孔 5 1を挿通したボルト 6 0を筒状体 2 0の対応するネジ孔 2 3に螺合する ことにより、 固定される。  In the joint structure of the first embodiment, a connection beam (bracket) 40 (here, formed of H-shaped steel) is fixed, for example, as shown in FIGS. In FIG. 3, a screw hole 23 is formed on one side surface 22 of the cylindrical body 20, and an end plate 50 is fixed to one end of the bracket 40 by welding. In the end plate 50, a through hole 51 is formed at a side surface, that is, at a position corresponding to each screw hole 23 of the joint surface 22. As shown in FIG. 4, after the bracket 40 is brought into contact with the entire opposing surface of the end plate 50 with the joint surface 22 of the cylindrical body 20, the bolt 40 is inserted through the through hole 51 of the end plate 50. It is fixed by screwing 60 into the corresponding screw hole 23 of the cylindrical body 20.
第 5図 (a ) , ( b ) は、 ブラケット 4 0を溶接により直接、 筒状体 2 0の接 合面 2 2に固定した例を示す。 第 3図および第 4図の例では、 ェンドプレート 5 0を介してボルト 6 0を使用してブラケット 4 0を固定しているが、 第 1実施例 の接合構造では、 このように溶接により簡略な構成にすることも可能である。 第 5図 (a ) は、 断面正方形の鋼管柱 1 0と筒状体 2 0を用いた場合を示し、 第 5 図 (b ) は、 断面円形の鋼管柱 1 0と筒状体 2 0を用いた場合を示す。 ここで、 ブラケットは筒状体 2 0に予め溶接されていてもよいし、 鋼管柱への嵌合 ·固着 後に溶接してもよいことは勿論である。  FIGS. 5A and 5B show an example in which the bracket 40 is directly fixed to the joint surface 22 of the cylindrical body 20 by welding. In the examples of FIGS. 3 and 4, the bracket 40 is fixed using the bolt 60 via the end plate 50, but in the joint structure of the first embodiment, welding is simplified as described above. A configuration is also possible. Fig. 5 (a) shows a case where a square steel pipe column 10 and a cylindrical body 20 are used, and Fig. 5 (b) shows a case where a circular steel pipe column 10 and a cylindrical body 20 are used. Shows the case when used. Here, the bracket may be welded in advance to the tubular body 20 or may be welded after fitting and fixing to the steel pipe column.
第 5図 (a ) では、 溶接部 7 1は、 ブラケット 4 0のウェブ 4 1と上下のフラ ンジ 4 2、 4 3に沿って形成してある。 第 5図 (b ) においても、 溶接部 7 1は、 ブラケット 4 0のウェブ 4 1と上下のフランジ 4 2、 4 3に沿って形成してある c なお、 第 5図 (b ) では、 ブラケッ ト 4 0の上下のフランジ 4 2、 4 3が、 筒状 体 2 0の円筒状外面 2 2に対応して円弧状に形成してある。  In FIG. 5 (a), the welded portion 71 is formed along the web 41 of the bracket 40 and the upper and lower flanges 42, 43. Also in FIG. 5 (b), the welded portion 71 is formed along the web 41 of the bracket 40 and the upper and lower flanges 42, 43. In FIG. 5 (b), the bracket The upper and lower flanges 42, 43 of the gate 40 are formed in an arc shape corresponding to the cylindrical outer surface 22 of the cylindrical body 20.
上記の第 1実施例の柱と梁の接合構造では、 筒状体 2 0が鋼管柱 1 0の断面形 状とほぼ同一の断面形状の透孔 2 1を持つと共に、 鋼管柱 1 0の外側に嵌装可能 となっており、 筒状体 2 0はその透孔 2 1を鋼管柱 1 0に挿通することにより鋼 管柱 1 0の外側に嵌装され、 且つその鋼管柱 1 0の外側に固着されている。 この ため、 鋼管柱 1 0に H型鋼により形成した梁 (図示せず) を接合する際には、 筒 状体 2 0の透孔 2 1を鋼管柱 1 0に挿通させることにより、 筒状体 2 0を鋼管柱 1 0の外側に嵌装させてから溶接、 ボルト止めあるいはビン止めなど、 任意の方 法により固着するだけでよい。 よって、 筒状体 2 0を単に下方より保持しておけ ば、 容易に鋼管柱 1 0に固着することが可能であり、 上記従来構造の場合のよう に、 筒状体 2 0を鋼管柱 1 0に密着させながら保持する必要はない。 In the joint structure of the column and the beam of the first embodiment described above, the cylindrical body 20 has a through hole 21 having a cross section substantially the same as the cross section of the steel pipe column 10, and the outside of the steel pipe column 10. Can be fitted to The cylindrical body 20 is fitted to the outside of the steel pipe post 10 by inserting the through hole 21 into the steel pipe post 10 and is fixed to the outside of the steel pipe post 10. I have. For this reason, when joining a beam (not shown) formed of H-shaped steel to the steel pipe column 10, the cylindrical body 20 is inserted through the through-hole 21 of the cylindrical body 20, thereby forming the cylindrical body 10. It is only necessary to fit the 20 on the outside of the steel pipe column 10 and then fix it by any method such as welding, bolting or binning. Therefore, simply holding the tubular body 20 from below can easily fix the tubular body 10 to the steel pipe column 10, as in the case of the above-described conventional structure. It is not necessary to hold while keeping close to zero.
このように、 この第 1実施例の柱と梁の接合構造では、 銅管柱 1 0への梁の接 合作業を簡易且つ迅速に行なうことができる。 これは作業コス卜の低減につなが る。 また、 筒状体 2 0は、 鋼管柱 1 0の断面形状とほぼ同一の断面形状の透孔 2 As described above, in the column and beam joining structure of the first embodiment, the joining operation of the beam to the copper tube column 10 can be performed easily and quickly. This leads to a reduction in working costs. Further, the cylindrical body 20 has a through hole 2 having a cross section substantially the same as the cross section of the steel pipe column 10.
1を持ち、 且つその鋼管柱 1 0の外側に嵌装可能であれば足りるので、 その製造 コストも低廉である。 It is sufficient if it has 1 and can be fitted to the outside of the steel pipe column 10, so that the manufacturing cost is low.
(第 2実施例)  (Second embodiment)
第 6図〜第 8図は、 この発明の柱と梁の接合構造の第 2実施例を示している。 第 6図および第 7図に示すように、 この第 2実施例の接合構造は、 断面正方形 (正四角筒) の鋼管柱 1 0と、 断面正方形 (正四角筒) の鋼製の筒状体 2 0から 構成される点は、 第 1実施例と同じである。 この第 2実施例が第 1実施例と異な る点は、 鋼管柱 1 0の一つの側面 1 1にビン孑 L 1 3が形成されている点と、 筒状 体 2 0の一つの側面 2 2において透孔 1 3に対応する位置にビン孔 2 3が形成さ れている点である。  6 to 8 show a second embodiment of the joint structure between a column and a beam according to the present invention. As shown in FIGS. 6 and 7, the joint structure of the second embodiment includes a steel pipe column 10 having a square cross section (square cylinder) and a steel tubular body having a square cross section (square cylinder). The point composed of 20 is the same as in the first embodiment. The second embodiment is different from the first embodiment in that a bin mosquito L 13 is formed on one side 11 of a steel pipe column 10 and one side 2 of a cylindrical body 20. 2 in that a bin hole 23 is formed at a position corresponding to the through hole 13.
筒状体 2 0は、 第 7図に示すように、 その透孔 2 1に銅管柱 1 0を挿通するこ とにより鋼管柱 1 0の外側に嵌装してある。 筒状体 2 0はまた、 梁の接合位置に おいて溶接により銅管柱 1 0の外側に固着してある。 溶接部 3 1は、 筒状体 2 0 の上下両端において鋼管柱 1 0との間に形成された隙間を塞ぐように、 銅管柱 1 0の 4つの側面 1 1に沿って形成してある。 この点は上記第 1実施例と同じであ るが、 第 2実施例ではさらに、 第 8図に示すように、 ビン 8 0により鋼管柱 1 0 と筒状体 2 0とを互いに係合している。 これにより、 第 1実施例の効果に加えて、 鋼管柱 1 0と筒状体 2 0との接合強度がいっそう強化される利点がある。 鋼管柱 1 0と筒状体 2 0との係合状態を第 8図に示す。 ピン 8 0は、 筒状体 2 0のビン孔 1 3および鋼管柱 1 0のビン孔 2 3を貫通しており、 先端が鋼管柱 1 0の透孔 1 2内に突出している。 ビン孔 2 3の内部において、 ピン 8 0は溶接に より固着してある。 溶接部 3 2は、 ビン孔 2 3の内部の隙間を埋めるように形成 し Lあ ο As shown in FIG. 7, the tubular body 20 is fitted on the outside of the steel pipe post 10 by inserting a copper pipe post 10 into the through hole 21. The cylindrical body 20 is also fixed to the outside of the copper column 10 by welding at the joint position of the beam. The welded portions 31 are formed along the four side surfaces 11 of the copper pipe column 10 so as to close the gaps formed between the cylindrical body 20 and the steel column 10 at the upper and lower ends. . This point is the same as in the first embodiment, but in the second embodiment, as shown in FIG. 8, the steel pipe column 10 and the cylindrical body 20 are engaged with each other by the bin 80. ing. Thereby, in addition to the effect of the first embodiment, there is an advantage that the joining strength between the steel pipe column 10 and the cylindrical body 20 is further enhanced. FIG. 8 shows an engagement state between the steel pipe column 10 and the cylindrical body 20. The pin 80 penetrates the bin hole 13 of the cylindrical body 20 and the bin hole 23 of the steel pipe column 10, and the tip protrudes into the through hole 12 of the steel pipe column 10. Inside the via hole 23, the pin 80 is fixed by welding. The welded portion 32 is formed so as to fill the gap inside the bin hole 23, and
図示はしていないが、 この第 2実施例の接合構造においても、 梁接合用のブラ ケット 4 0が例えば第 3図〜第 5図のように固定されることができる。  Although not shown, also in the joint structure of the second embodiment, the bracket 40 for beam joining can be fixed as shown in FIGS. 3 to 5, for example.
なお、 第 1実施例においては、 筒状体 2 0の一つの側面 2 2にネジ孔 2 3を形 成する例を示したが、 エンドプレート 5 0、 筒状体 2 0および鋼管柱 1 0のそれ それに相互に整合する貫通孔を形成し、 ワンサイ ドボルトを用いることにより、 第 2実施例と同様の効果を奏することができる。 ここに、 「ワンサイ ド 'ボルト」 とは、 一方向からネジ孔にねじ込んで締め付け、 固定できるポルトである。  In the first embodiment, the example in which the screw hole 23 is formed on one side surface 22 of the cylindrical body 20 has been described. However, the end plate 50, the cylindrical body 20, and the steel pipe column 10 are described. By forming through holes that match each other and using a one-sided bolt, the same effect as in the second embodiment can be obtained. Here, "one-sided bolt" is a port that can be screwed into a screw hole from one direction and tightened and fixed.
(第 3実施例)  (Third embodiment)
第 9図および第 1 0図は、 この発明の柱と梁の接合構造の第 3実施例を示して いる。 第 9図および第 1 0図から明らかなように、 この第 3実施例の接合構造ば、 使用する鋼製の筒状体 2 0の構成が異なる点を除いて、 第 1実施例のそれと同じ である。  FIGS. 9 and 10 show a third embodiment of the joint structure between a column and a beam according to the present invention. As is clear from FIGS. 9 and 10, the joint structure of the third embodiment is the same as that of the first embodiment except that the configuration of the steel cylindrical body 20 used is different. It is.
この第 3実施例の筒状体 2 0は、 第 1実施例の筒状体 2 0の側面に第 9図に示 すような窓 2 4を設けたものに相当する。 この窓 2 4は、 接合面 2 2のみを略 I 字形に残し、 他の 3つの側面 2 2の中央部を除去して形成してある。  The cylindrical body 20 of the third embodiment is equivalent to the cylindrical body 20 of the first embodiment provided with a window 24 as shown in FIG. The window 24 is formed by leaving only the joint surface 22 in a substantially I-shape and removing the center of the other three side surfaces 22.
よって、 この第 3実施例の接合構造では、 第 1および第 2実施例と同様に、 筒 状体 2 0の上下両端部に形成される溶接部 3 1の他に、 窓 2 4の内周縁に沿って 筒状体 2 0と銅管柱 1 0とを溶接することにより、 筒状体 2 0と鋼管柱 1 0との 固着強度を第 1実施例よりも高くすることができる利点がある。 この場合、 窓 2 4の内周縁の全体に沿って溶接部 3 2が形成される。  Therefore, in the joint structure of the third embodiment, similarly to the first and second embodiments, in addition to the welded portions 31 formed on the upper and lower ends of the cylindrical body 20, the inner peripheral edge of the window 24 is also provided. By welding the tubular body 20 and the copper tube post 10 along the axis, there is an advantage that the fixing strength between the tubular body 20 and the steel tube post 10 can be made higher than in the first embodiment. . In this case, a weld 32 is formed along the entire inner peripheral edge of the window 24.
この第 3実施例の接合構造では、 梁接合用のブラケット 4 0が例えば第 1 0図 のように固定される。 この固定状態は、 第 5図 (a ) のそれと同じである。 筒状 体 2 0の接合面 2 2が略 I字形に残っているので、 ブラケッ ト 4 0の固定になん ら支障は生じない。 (第 4実施例) In the joining structure of the third embodiment, a bracket 40 for beam joining is fixed, for example, as shown in FIG. This fixed state is the same as that in FIG. 5 (a). Since the joining surface 22 of the cylindrical body 20 remains in a substantially I-shape, there is no problem in fixing the bracket 40. (Fourth embodiment)
第 1 1図および第 1 2図は、 この発明の柱と梁の接合構造の第 4実施例を示し ている。 第 1 1図および第 1 2図から明らかなように、 この第 4実施例の接合構 造は、 使用する鋼製の筒状体 2 0の構成が異なる点を除いて、 第 1実施例のそれ と同じである。  FIGS. 11 and 12 show a fourth embodiment of the joint structure between a column and a beam according to the present invention. As is clear from FIGS. 11 and 12, the joint structure of the fourth embodiment is the same as that of the first embodiment except that the configuration of the steel cylindrical body 20 used is different. It is the same.
この第 4実施例の筒状体 2 0は、 第 1実施例の筒状体 2 0の上下両端部に、 第 1 1図に示すような突出部 2 5をそれぞれ設けたものに相当する。 これら突出部 2 5の一つの側面 2 2を接合面としてある。 これら突出部 2 5により、 筒状体 2 0の上下両端部の肉厚がそれ以外の部分に比べて増加する。  The cylindrical body 20 of the fourth embodiment is equivalent to the cylindrical body 20 of the first embodiment provided with projecting portions 25 as shown in FIG. One side surface 22 of these protrusions 25 is used as a joint surface. The thickness of the upper and lower ends of the cylindrical body 20 is increased by these protruding portions 25 as compared with the other portions.
この第 4実施例の接合構造では、 梁接合用のブラケット 4 0が第 1 2図に示す ように固定される。 すなわち、 ブラケット 4 0の上下のフランジ 4 2、 4 3が上 下の突出部 2 5の接合面 2 2に接合され、 そのウェブ 4 1が中央の筒状体 2 0の 側面自体に接合される。 ウェブ 4 1の上下両端部 4 4が切欠 (スカラップ) され ているので、 ブラケッ卜 4 0の固定になんら支障は生じない。  In the joint structure according to the fourth embodiment, a bracket 40 for beam joining is fixed as shown in FIG. That is, the upper and lower flanges 4 2, 4 3 of the bracket 40 are joined to the joining surface 22 of the upper and lower protrusions 25, and the web 41 is joined to the side surface itself of the central tubular body 20. . Since the upper and lower ends 44 of the web 41 are cut out (scalloped), there is no problem in fixing the bracket 40 at all.
この第 4実施例の接合構造では、 ブラケッ ト 4 0の上下フランジ 4 2、 4 3が 厚肉の上下突出部 2 5に接合されるので、 第 5図および第 1 0図の場合に比べて 筒状体 2 0の接合部の強度が高くなる利点が生じる。  In the joint structure of the fourth embodiment, since the upper and lower flanges 42 and 43 of the bracket 40 are joined to the thicker upper and lower projecting portions 25, compared to the case of FIGS. There is an advantage that the strength of the joint of the cylindrical body 20 is increased.
筒状体 2 0の上下両端部に形成される突出部 2 5としては、 第 1 9図に示すよ うな変形例が考えられる。 第 1 9図 (a ) は、 突出部 2 5の下部を断面凹円弧状 になるように形成したものを示す。 これは、 第 1 1図の突出部 2 5の断面に一致 する。 第 1 9図 (b ) は、 突出部 2 5の下部を断面直角になるように形成したも のを示す。 第 1 9図 ( c ) は、 突出部 2 5の下部を断面凸円弧状になるように形 成したものを示す。 第 1 9図 (d ) , (e ) , ( f ) は、 いずれも突出部 2 5を 筒状体 2 0の上端より少し下方にずらして設けたものを示し、 それぞれ第 1 9図 ( a ) , ( b ) , ( c ) にそれぞれ対応している。  As the protruding portions 25 formed at both upper and lower ends of the cylindrical body 20, a modified example as shown in FIG. 19 can be considered. FIG. 19 (a) shows the lower portion of the protruding portion 25 formed so as to have a concave arc-shaped cross section. This corresponds to the cross section of the protrusion 25 in FIG. FIG. 19 (b) shows that the lower part of the protruding portion 25 is formed so as to be perpendicular to the cross section. FIG. 19 (c) shows a lower portion of the protruding portion 25 formed to have a convex arcuate cross section. FIGS. 19 (d), (e), and (f) show the case where the protrusions 25 are provided slightly below the upper end of the cylindrical body 20. FIGS. ), (b) and (c) respectively.
(第 5実施例)  (Fifth embodiment)
第 1 3図および第 1 4図は、 この発明の柱と梁の接合構造の第 5実施例を示し ている。 この第 5実施例は、 第 9図および第 1 0図の第 3実施例において、 梁接 合用のブラケット 4 0を溶接からボルト止めに代えたものに相当する。 筒状体 2 0は窓 2 4を有している。 ブラケット 4 0の接合状態は第 3図のそれと同じであFIGS. 13 and 14 show a fifth embodiment of the joint structure between a column and a beam according to the present invention. This fifth embodiment is equivalent to the third embodiment shown in FIGS. 9 and 10, except that the beam joining bracket 40 is replaced with a bolt instead of welding. Tubular body 2 0 has a window 24. The joining condition of the bracket 40 is the same as that of Fig. 3.
O o O o
この第 5実施例の接合構造では、 梁接合用のブラケット 4 0が第 1 4図のよう に、 エンドプレート 5 0を介してボルト 6 0によって固定される。 筒状体 2 0の 略 I字形の接合面 2 2に対応して、 ェンドブレ一ト 5 0の両側に切欠部 5 2が形 成され、 略 I字形になっている。  In the joint structure of the fifth embodiment, a beam joining bracket 40 is fixed by an end plate 50 by a bolt 60 as shown in FIG. Notches 52 are formed on both sides of the end plate 50 in correspondence with the substantially I-shaped joining surface 22 of the cylindrical body 20 to form a substantially I-shape.
この第 5実施例の接合構造では、 第 3実施例と同様に、 筒状体 2 0の上下両端 部に形成される溶接部 3 1の他に、 窓 2 4の内周縁に沿って溶接部 3 2が形成さ れる。 その結果、 筒状体 2 0と鋼管柱 1 0との固着強度を第 1実施例よりも高く することができる利点がある。  In the joint structure of the fifth embodiment, similarly to the third embodiment, in addition to the welded portions 31 formed at the upper and lower ends of the cylindrical body 20, a welded portion is formed along the inner peripheral edge of the window 24. 32 is formed. As a result, there is an advantage that the fixing strength between the tubular body 20 and the steel pipe column 10 can be made higher than in the first embodiment.
(第 6実施例)  (Sixth embodiment)
第 1 5図および第 1 6図は、 この発明の柱と梁の接合構造の第 6実施例を示し ている。 この第 6実施例は、 第 1 1図および第 1 2図の第 4実施例において、 筒 状体 2 0に窓 2 4を形成したものに相当する。 換言すれば、 第 9図および第 1 0 図の第 3実施例において、 筒状体 2 0の上下両端部に突出部 2 5をそれぞれ設け たものに相当する。 ブラケヅト 4 0の接合状態は第 1 2図のそれと同じである。 この第 6実施例の接合構造では、 筒状体 2 0の上下両端部に形成される溶接部 3 1の他に、 窓 2 4の内周縁に沿って溶接部 3 2が形成される。 よって、 筒状体 2 0と鋼管柱 1 0との固着強度を第 1および第 2実施例よりも高くすることがで きる利点がある。 また、 ブラケット 4 0の上下フランジ 4 2、 4 3が厚肉の上下 突出部 2 5に接合されるので、 第 5図および第 1 0図の場合に比べて筒状体 2 0 の接合部の強度が高くなる利点もある。  FIGS. 15 and 16 show a sixth embodiment of the joint structure between a column and a beam according to the present invention. This sixth embodiment corresponds to the fourth embodiment shown in FIGS. 11 and 12 in which a window 24 is formed in a cylindrical body 20. In other words, it corresponds to the third embodiment shown in FIGS. 9 and 10 in which the protrusions 25 are provided at the upper and lower ends of the cylindrical body 20, respectively. The bonding state of the bracket 40 is the same as that of FIG. In the joint structure of the sixth embodiment, a welded portion 32 is formed along the inner peripheral edge of the window 24 in addition to the welded portions 31 formed at the upper and lower ends of the cylindrical body 20. Therefore, there is an advantage that the fixing strength between the tubular body 20 and the steel pipe column 10 can be made higher than in the first and second embodiments. In addition, since the upper and lower flanges 42, 43 of the bracket 40 are joined to the thicker upper and lower projecting portions 25, the joints of the cylindrical body 20 are compared with those in FIGS. 5 and 10. There is also an advantage that the strength is increased.
筒状体 2 0の接合面が略 I字形に残っているので、 ブラケッ ト 4 0の接合にな んら支障は生じない。  Since the joint surface of the cylindrical body 20 remains in an approximately I shape, there is no problem in joining the bracket 40.
(第 7実施例)  (Seventh embodiment)
第 1 7図は、 この発明の柱と梁の接合構造の第 7実施例に使用する筒状体を示 している。 この第 7実施例の筒状体 2 0は、 第 9図の第 3実施例の筒状体 2 0の 窓 2 4に代えて、 上下方向に延びる直線状の窓 2 6を対向する 2つの側面 2 2に 形成したものに相当する。 この発明では、 筒状体 2 0の側面 2 2にこのような形 状の窓 2 6を形成することもできる。 FIG. 17 shows a cylindrical body used in a seventh embodiment of the joint structure between a column and a beam according to the present invention. The cylindrical body 20 of the seventh embodiment differs from the cylindrical body 20 of the third embodiment of FIG. 9 in that, instead of the window 24, two straight windows 26 extending in the vertical direction are opposed to each other. It corresponds to the one formed on the side surface 22. In the present invention, the side surface 22 of the cylindrical body 20 has such a shape. A window 26 can be formed.
第 1 8図は、 筒状体 2 0に形成する窓の変形例を示す。 第 1 8図 (a ) は、 筒 状体 2 0の側面 2 2に円形の窓 2 6を二つ、 離して形成したものである。 第 1 8 図 (b ) は、 筒状体 2 0の側面 2 2に正方形の窓 2 6を二つ、 上下に離して形成 したものである。 第 1 8図 (c ) は、 筒状体 2 0の側面 2 2に三角形の窓 2 6を 二つ、 上下に離して形成したものである。 この他にも種々の変形が考えられる。 (変形例)  FIG. 18 shows a modification of the window formed in the cylindrical body 20. FIG. 18 (a) shows a cylindrical body 20 in which two circular windows 26 are formed apart from each other on the side surface 22. In FIG. 18 (b), two square windows 26 are formed on the side surface 22 of the cylindrical body 20 so as to be vertically separated from each other. FIG. 18 (c) shows two triangular windows 26 formed on the side surface 22 of the cylindrical body 20 so as to be vertically separated from each other. Various other modifications are also conceivable. (Modified example)
上記第 1〜第 7実施例では、 筒状体 2 0の一つの側面 2 2のみにブラケット 4 0を接合するように説明しているが、 この発明はこれに限定されず、 必要に応じ て、 筒状体 2 0の二つ以上の側面 2 2にブラケット 4 0を接合することができる ことはもちろんである。 第 2 0図には、 筒状体 2 0の四つの側面 2 2すべてにブ ラケット 4 0を接合する例を示している。  In the first to seventh embodiments, the bracket 40 is described as being joined to only one side surface 22 of the cylindrical body 20. However, the present invention is not limited to this, and it is necessary to Of course, the bracket 40 can be joined to two or more side faces 22 of the cylindrical body 20. FIG. 20 shows an example in which the bracket 40 is joined to all four side surfaces 22 of the cylindrical body 20.
以上の第 1〜第 7実施例によれば、 鋼管柱 1 0 0が通し柱となっていて、 第 1 従来構造のように、 一旦切断して再度溶接するものではないので、 剛性が大幅に 向上し、 耐震性にきわめて優れるといった効果を奏する。 この剛性、 耐震性は、 筒状体 2 0 , 2 0 a , 2 0 bを鋼管柱 1 0の外側に溶接することにより、 さらに 向上することはいうまでもない。  According to the first to seventh embodiments, since the steel pipe column 100 is a through column and is not cut and welded again unlike the first conventional structure, the rigidity is greatly improved. This has the effect of being extremely excellent in earthquake resistance. Needless to say, the rigidity and the earthquake resistance are further improved by welding the cylindrical bodies 20, 20 a, 20 b to the outside of the steel pipe column 10.
(第 8実施例)  (Eighth embodiment)
第 2 1図および第 2 2図は、 この発明の柱と梁の接合構造の第 8実施例を示す c この第 8実施例では、 第 1実施例の鋼管柱 1 0に代えて、 断面正方形で同じサイ ズの 2本の鋼管柱 1 0 aと 1 0 bを使用している。 筒状体 2 0は、 第 1図および 第 2図の第 1実施例のそれと同じである。 なお、 この第 8実施例は、 この発明の 柱と柱の接合構造の実施例をも示している。  Figs. 21 and 22 show an eighth embodiment of the joint structure between a column and a beam according to the present invention. C In the eighth embodiment, a steel pipe column 10 of the first embodiment is replaced with a square cross section. Used two steel pipe columns 10a and 10b of the same size. The cylindrical body 20 is the same as that of the first embodiment in FIGS. 1 and 2. The eighth embodiment also shows an embodiment of the joint structure between pillars according to the present invention.
鋼管柱 1 0 a、 1 0 bは、 それぞれ、 外側に平坦な 4つの側面 1 1 a、 l i b を持ち、 内側に断面正方形の透孔 1 2 a、 1 2 bを持つ。 鋼管柱 1 0 a、 1 0 b は、 筒状体 2 0の内部でその対向端を当接させて直線状に配置してある。 第 2 1 図より分かるように、 補強用のダイヤフラム 8 1は上位の鋼管柱 1 0 aの透孔 1 2 aの内部下端に固着され、 補強用のダイヤフラム 8 2は、 下位の鋼管柱 1 0 b の透孔 1 2 bの内部上端に固着されている。 筒状体 20は、 梁の接合位置において溶接により鋼管柱 10 a、 10bの外側 にそれぞれ固着してある。 溶接部 31は、 筒状体 20の上下両端において鋼管柱 10 a、 10 bとの間に形成された隙間を塞ぐように、 鋼管柱 10 a、 10 bの 4つの側面 1 1 a、 1 1 bに沿って形成してある。 こうして、 2本の鋼管柱 10 a、 10 bが互いに接合 '一体化されている。 The steel tube columns 10a and 10b have four flat sides 11a and lib on the outside, and square holes 12a and 12b on the inside. The steel pipe columns 10a and 10b are arranged linearly with their opposing ends in contact inside the tubular body 20. As can be seen from FIG. 21, the reinforcing diaphragm 81 is fixed to the lower inside of the through hole 12 a of the upper steel pipe column 10 a, and the reinforcing diaphragm 82 is connected to the lower steel pipe column 10. It is fixed to the inner upper end of the through hole 1 2b of b. The cylindrical body 20 is fixed to the outside of the steel pipe columns 10a and 10b by welding at the joint positions of the beams. The welded portions 31 are formed on the four sides 11 a, 1 1 of the steel pipe columns 10 a, 10 b so as to close the gaps formed between the upper and lower ends of the tubular body 20 and the steel pipe columns 10 a, 10 b. It is formed along b. Thus, the two steel pipe columns 10a, 10b are joined to each other and integrated.
この第 8実施例の接合構造では、 梁接合用のブラケット 40 (ここでは H型鋼 により形成してある) が例えば第 3図〜第 5図のように固定される。  In the joint structure of the eighth embodiment, a beam joining bracket 40 (here, formed of H-shaped steel) is fixed as shown in FIGS. 3 to 5, for example.
この第 8実施例の柱と梁の接合構造では、 筒状体 20が 2本の鋼管柱 10 a、 10 bの断面形状とほぼ同一の断面形状の透孔 21を持つと共に、 鋼管柱 10a、 10 bの外側に嵌装可能となっており、 筒状体 20はその透孔 21を鋼管柱 10 a、 1 Obに挿通することにより銅管柱 10a、 10 bの外側に嵌装され、 且つ その鋼管柱 10 a、 10 bの外側に固着されている。 このため、 鋼管柱 10 a、 10 bに梁 (図示せず) を接合する際には、 筒状体 20の透孔 21を鋼管柱 10 a、 10 bに挿通させることにより、 筒状体 20を鋼管柱 10 a、 10 bの外側 に嵌装させてから溶接、 ボルト止めあるいはビン止めなど、 任意の方法により固 着するだけでよい。 よって、 筒状体 20を単に下方より保持しておけば、 容易に 鋼管柱 10a、 1 Obに固着することが可能であり、 上記従来構造の場合のよう に、 筒状体 20を鋼管柱 10 a、 10 bに密着させながら保持する必要はない。 このように、 この第 8実施例の柱と梁の接合構造では、 2本の銅管柱 10 a、 10 bへの梁の接合作業を簡易且つ迅速に行なうことができる。 これは作業コス トの低減につながる。 また、 筒状体 20は、 銅管柱 10a、 10bの断面形状と ほぼ同一の断面形状の透孔 21を持ち、 且つそれら鋼管柱 10a、 10bの外側 に嵌装可能であれば足りるので、 その製造コストも低廉である。  In the joint structure of the column and the beam of the eighth embodiment, the cylindrical body 20 has the through-hole 21 having the cross-sectional shape substantially the same as the cross-sectional shape of the two steel pipe columns 10a and 10b, and the steel pipe columns 10a and 10b. The cylindrical body 20 is fitted to the outside of the copper pipe columns 10a and 10b by inserting the through holes 21 into the steel pipe columns 10a and 1 Ob, and It is fixed to the outside of the steel pipe columns 10a and 10b. For this reason, when joining a beam (not shown) to the steel pipe columns 10a and 10b, the through-hole 21 of the cylindrical body 20 is inserted into the steel pipe columns 10a and 10b. It is only necessary to fit the outside of the steel pipe columns 10a and 10b and then fix them by any method such as welding, bolting or binning. Therefore, simply holding the tubular body 20 from below can easily fix the tubular body 20 to the steel pipe columns 10a and 1 Ob. It is not necessary to hold it tightly against a, 10b. As described above, in the joint structure of the column and the beam of the eighth embodiment, the work of joining the beam to the two copper tube columns 10a and 10b can be performed easily and quickly. This leads to a reduction in working costs. In addition, since the cylindrical body 20 has a through-hole 21 having a cross-sectional shape substantially the same as the cross-sectional shape of the copper pipe columns 10a and 10b, and it is sufficient if the cylindrical body 20 can be fitted to the outside of the steel pipe columns 10a and 10b. The manufacturing cost is also low.
さらに、 柱と梁の接合構造を構築する過程で、 2本の鋼管柱 10 a、 10bの 接合も同時に行なうことが可能である。  Further, in the process of constructing the joint structure between the column and the beam, it is possible to simultaneously join the two steel pipe columns 10a and 10b.
(第 9実施例)  (Ninth embodiment)
第 23図〜第 25図は、 この発明の柱と梁の接合構造の第 9実施例を示す。 こ の第 9実施例では、 第 8実施例の下位の鋼管柱 1 Obに代えて、 上位の鋼管柱 1 0 aよりもサイズの大きい断面正方形の鋼管柱 10 cを使用している。 また、 そ れに対応して、 筒状体 2 0 aは、 上位の鋼管柱 1 0 aが嵌合可能な透孔 2 1 aと 下位の鋼管柱 1 0 cが嵌合可能な透孔 2 1 bとを有している。 透孔 2 1 aに対応 する上位部分には、 平坦な側面 2 2 aが形成され、 透孔 2 1 cに対応する下位部 分には、 平坦な側面 2 2 cが形成されている。 なお、 この第 9実施例は、 この発 明にかかる柱と柱の接合構造の他の実施例をも示している。 FIG. 23 to FIG. 25 show a ninth embodiment of the joint structure between a column and a beam according to the present invention. In the ninth embodiment, a steel tube column 10c having a square cross section larger in size than the upper steel tube column 10a is used in place of the lower steel tube column 1 Ob of the eighth embodiment. Also, Correspondingly, the cylindrical body 20a has a through-hole 21a in which the upper steel pipe column 10a can be fitted and a through-hole 21b in which the lower steel pipe column 10c can be fitted. have. A flat side surface 22a is formed in an upper portion corresponding to the through hole 21a, and a flat side surface 22c is formed in a lower portion corresponding to the through hole 21c. The ninth embodiment also shows another embodiment of the joint structure between pillars according to the present invention.
第 2 4図に示すように、 下位の鋼管柱 1 0 cは、 外側に平坦な 4つの側面 1 1 cを持ち、 内側に断面正方形の透孔 1 2 cを持つ。  As shown in Fig. 24, the lower steel pipe column 10c has four flat sides 11c on the outside and a square cross-section hole 12c on the inside.
下位の銅管柱 1 0 cは、 筒状体 2 0 aの下位の透孔 2 1 bの内部に下方より嵌 合され、 上位の鋼管柱 1 0 aは、 筒状体 2 0 aの上位の透孔 2 1 aの内部に上方 より嵌合されている。 鋼管柱 1 0 a、 1 0 cは、 筒状体 2 0 aの内部でそれらの 対向端が互いに当接していて、 上下方向にほぼ直線状に配置されている。  The lower copper column 10c is fitted into the lower through hole 21b of the cylindrical body 20a from below, and the upper steel column 10a is positioned above the cylindrical body 20a. Is fitted into the inside of the through hole 21a from above. The steel pipe columns 10a and 10c have their opposing ends in contact with each other inside the cylindrical body 20a, and are arranged substantially linearly in the vertical direction.
第 2 5図より分かるように、 補強用のダイヤフラム 8 1は上位の鋼管柱 1 0 a の透孔 1 2 aの内部下端に固着され、 補強用のダイヤフラム 8 2は、 下位の鋼管 柱 1 0 cの透孔 1 2 cの内部上端に固着されている。  As can be seen from Fig. 25, the reinforcing diaphragm 81 is fixed to the lower inside of the through hole 12a of the upper steel pipe column 10a, and the reinforcing diaphragm 82 is connected to the lower steel pipe column 10a. The through hole of c is fixed to the inner upper end of 1 c.
筒状体 2 0 aは、 梁の接合位置において溶接により銅管柱 1 0 a、 1 0 cの外 側にそれぞれ固着してある。 溶接部 3 1は、 筒状体 2 0 aの上下両端において鋼 管柱 1 0 a、 1 0 cとの間に形成された隙間を塞ぐように、 鋼管柱 1 0 a、 1 0 cの 4つの側面 l l a、 1 1 bに沿ってそれぞれ形成してある。 こうして、 2本 の鋼管柱 1 0 a、 1 0 cが互いに接合 '一体化されている。  The cylindrical body 20a is fixed to the outer sides of the copper tube columns 10a and 10c by welding at the joint positions of the beams. The welded portions 31 are made of steel pipe columns 10a, 10c so as to close the gaps formed between the steel pipe columns 10a, 10c at the upper and lower ends of the cylindrical body 20a. It is formed along one side lla and 1 1b respectively. Thus, the two steel pipe columns 10a, 10c are joined and integrated with each other.
この第 9実施例の接合構造では、 筒状体 2 0 aの平坦な側面 2 2 aまたは 2 2 cに、 梁接合用のブラケット 4 0 (ここでは H型鋼により形成してある) が例え ば第 3図〜第 5図のように固定される。  In the joint structure of the ninth embodiment, for example, a bracket 40 (here, formed of H-section steel) for beam joining is provided on the flat side surface 22 a or 22 c of the cylindrical body 20 a. It is fixed as shown in Figs.
この第 8実施例の柱と梁の接合構造では、 筒状体 2 0 aにより、 梁の接合構造 を提供すると同時に、 サイズの異なる 2本の鋼管柱 1 0 a、 1 0 cの接合も行な える利点がある。  In the joint structure between a column and a beam according to the eighth embodiment, a cylindrical body 20a provides a joint structure of a beam, and simultaneously joins two steel pipe columns 10a and 10c having different sizes. There are other advantages.
第 8実施例では、 2本の鋼管柱 1 0 a、 1 0 cと筒状体 2 0 aの平面配置は第 2 6図 ( c ) に示すようになつている。 すなわち、 筒状体 2 0 aの中心に対して、 サイズの大きい鋼管柱 1 0 cはその中心が一致し、 サイズの小さい鋼管柱 1 0 a は、 その中心が筒状体 2 0 aの一つの角に向かってずれている。 しかし、 これに限定されず、 例えば第 2 6図 (a ) または第 2 6図 (b ) に示 す配置にすることも可能であることは言うまでもない。 第 2 6図 (a ) では、 筒 状体 2 0 aの中心に対して、 サイズの大きい鋼管柱 1 0 cはその中心か一致し、 サイズの小さい鋼管柱 1 0 aは、 その中心が筒状体 2 0 aの一つの辺の中央に向 かってずれている。 第 2 6図 (b ) では、 筒状体 2 0 aの中心に対して、 両方の 鋼管柱 1 0 c、 1 0 aの中心が一致している。 In the eighth embodiment, the planar arrangement of the two steel pipe columns 10a, 10c and the cylindrical body 20a is as shown in FIG. 26 (c). That is, the center of the large-sized steel pipe column 10c coincides with the center of the cylindrical body 20a, and the small-sized steel pipe column 10a has the center of the cylindrical body 20a. To one corner. However, the arrangement is not limited to this, and it goes without saying that the arrangement shown in FIG. 26 (a) or FIG. 26 (b) is also possible. In Fig. 26 (a), the center of the cylindrical body 20a coincides with the center of the large steel pipe column 10c, and the center of the small steel pipe column 10a has the center of the cylinder. It is shifted toward the center of one side of the shape 20a. In Fig. 26 (b), the center of both steel pipe columns 10c and 10a coincides with the center of the cylindrical body 20a.
(第 1 0実施例)  (10th embodiment)
第 2 7図〜第 2 9図は、 この発明の柱と梁の接合構造の第 1 0実施例を示す。 この第 1 0実施例では、 第 9実施例の筒状体 2 0 aに代えて、 上面か塞がった筒 状体 2 0 bを使用している点を除き、 第 9実施例と同じ構成である。 なお、 この 第 1 0実施例は、 この発明の柱と柱の接合構造のさらに他の実施例をも示してい る。  FIGS. 27 to 29 show a tenth embodiment of the joint structure between a column and a beam according to the present invention. The tenth embodiment has the same configuration as that of the ninth embodiment except that a cylindrical body 20b closed on the upper surface is used instead of the cylindrical body 20a of the ninth embodiment. is there. The tenth embodiment also shows still another embodiment of the joint structure between pillars according to the present invention.
筒状体 2 0 bの構成は、 第 2 9図に示す通りであり、 上面 2 6 b、 側面 2 2 c、 内部空間 2 1 bが存在している。 内部空間 2 1 bは、 サイズの大きい鋼管柱 1 0 cが嵌合する大きさである。 外部には平坦な側面 2 2 cが形成されている。  The configuration of the cylindrical body 20b is as shown in FIG. 29, and includes a top surface 26b, side surfaces 22c, and an internal space 21b. The internal space 21b is large enough to fit the large steel pipe column 10c. The outside has a flat side surface 22c.
この第 1 0実施例では、 サイズの小さい銅管柱 1 0 aは、 筒状体 2 O bの上面 2 6 b上に載せて溶接により固着される。 よって、 溶接部 3 1は、 鋼管柱 1 0 a と筒状体 2 O bの接合部、 換言すれば、 鋼管柱 1 0 aの下端部に形成される。 この第 1 0実施例では、 サイズの小さい鋼管柱 1 0 aが筒状体 2 O bの上面 2 6 b上に固着されるので、 鋼管柱 1 0 aのサイズが異なっても、 また接合位置が 多少異なっても適用が可能であるという利点がある。  In the tenth embodiment, the small-sized copper tube post 10a is placed on the upper surface 26b of the cylindrical body 2Ob and fixed by welding. Therefore, the welded part 31 is formed at the joint between the steel pipe column 10a and the cylindrical body 2Ob, in other words, at the lower end of the steel pipe column 10a. In the tenth embodiment, the small-sized steel pipe column 10a is fixed on the upper surface 26b of the cylindrical body 2Ob, so that even if the steel pipe columns 10a have different sizes, Has the advantage that it can be applied even if it is slightly different.
(第 1 1実施例)  (Example 11)
第 3 0図および第 3 1図は、 この発明の柱と梁の接合構造の第 1 1実施例を示 す。 この第 1 1実施例は、 第 1 0実施例において、 断面正方形の筒状体 2 0 bと 上下の鋼管柱 1 0 a、 1 0 cに代えて、 断面円形の筒状体 2 0 bと上下の鋼管柱 1 0 a、 1 0 cを用いたものに対応する。 この第 1 1実施例では、 第 1 0実施例 と同じ効果が得られる。 なお、 この第 1 1実施例は、 この発明の柱と柱の接合構 造のさらに他の実施例をも示している。  FIG. 30 and FIG. 31 show a first embodiment of a joint structure between a column and a beam according to the present invention. The eleventh embodiment is different from the tenth embodiment in that a cylindrical body 20 b having a circular cross section is replaced with a cylindrical body 20 b having a square cross section and upper and lower steel pipe columns 10 a, 10 c. Corresponds to those using upper and lower steel tube columns 10a, 10c. In the eleventh embodiment, the same effects as in the tenth embodiment can be obtained. The eleventh embodiment also shows still another embodiment of the joint structure between pillars according to the present invention.
(組立施工方法) 本発明にかかる筒状体 20, 20 a、 20 bは、 角型鋼管を所定長さに切断し て形成してもよいし、 円形鋼管を四方から押圧成形して形成してもよいことは勿 論である。 また、 4枚の平板状鋼材を角型に溶接したり、 第 32図 (a) , (b) , (c) に示されるように、 2つのチャンネル型鋼材を溶接して形成したり、 第 3 3図 (a) , (b) , (c) に示されるように、 4つの L字型鋼材を溶接して形 成することもできるし、 これらの平板状鋼材、 チャンネル型鋼材および L字型鋼 材を任意に組み合わせて形成することもできる。 (Assembly construction method) The tubular bodies 20, 20a, 20b according to the present invention may be formed by cutting a square steel pipe to a predetermined length, or may be formed by pressing a circular steel pipe from all sides. Of course. In addition, four plate-shaped steel materials are welded into a square shape, and as shown in FIGS. 32 (a), (b) and (c), two channel-type steel materials are formed by welding. 33 As shown in Figures (a), (b) and (c), four L-shaped steel members can be formed by welding, and these flat steel members, channel steel members and L-shaped steel members can be formed. It can also be formed by arbitrarily combining die steel materials.
筒状体 20, 20a, 20bは、 次のようにして鋼管柱 10に取り付けられる。 加工台上に筒状体 20, 20 a, 2 Obを立てるとともに、 筒状体 20, 20 a, 20 bの一側面あるいは複数の側面にブラケット 40が溶接される。 一方、 鋼管 柱 10を台座上に載置して水平配置し、 ブラケット 40が溶接された筒状体 20, 20 a, 2 Obを鋼管柱 10の一端部から順に挿入 ·嵌合して所定位置にセット する。 鋼管柱 10と筒状体 20, 20 a, 2 Obとの直線度、 寸法精度などを確 認してから隅肉溶接する。 なお、 鋼管柱 10と筒状体 20, 20 a, 2 Obとの 間隙、 特に、 四角部の間隙に、 6〜9mm程度の高さ寸法を有する鉄板を圧入し て溶接することが好ましい。  The tubular bodies 20, 20a, 20b are attached to the steel pipe columns 10 as follows. The cylindrical bodies 20, 20a, and 2 Ob are set up on the processing table, and the bracket 40 is welded to one or more side surfaces of the cylindrical bodies 20, 20a, and 20b. On the other hand, the steel pipe column 10 is placed on the pedestal and horizontally arranged, and the tubular bodies 20, 20a, 2 Ob to which the brackets 40 are welded are inserted and fitted in order from one end of the steel pipe column 10 to a predetermined position. Set to. Check the linearity and dimensional accuracy of the steel pipe column 10 and the cylindrical bodies 20, 20a, 2 Ob before welding the fillet. In addition, it is preferable to press-fit an iron plate having a height of about 6 to 9 mm into the gap between the steel pipe column 10 and the cylindrical bodies 20, 20a, and 2 Ob, in particular, into the gap between the square portions, and weld.
そして、 本発明の柱と梁または柱と柱の接合構造は、 第 34図に示されるよう に実際の建築物に適用される。 すなわち、 筒状体 20 (または 20 a, 20 b) が嵌挿固着された複数の鋼管柱 10, 10が、 該筒状体 20に溶接されたブラケ ヅ ト 40が相互に対向し、 かつ同一線上に位置するように建て込まれ、 二つのブ ラケット 40, 40の端面間に梁 Bが接合される。 第 34図の例では、 ブラケヅ ト 40と梁 Bとは、 上下フランジおよびウェブ間に跨って周知のスブライスブレ ート Sを介してボルト接合されている。 なお、 第 34図では、 筒状体 20とブラ ケッ 卜 40との接合部分内側に裏当金が溶接固定されているが、 これは本発明に おいて必須ではない。  Then, the column-to-beam or column-to-column connection structure of the present invention is applied to an actual building as shown in FIG. That is, a plurality of steel pipe columns 10, 10 in which the tubular body 20 (or 20a, 20b) is fitted and fixed, the brackets 40 welded to the tubular body 20 face each other and are the same. It is built so that it is located on the line, and the beam B is joined between the end faces of the two brackets 40,40. In the example of FIG. 34, the bracket 40 and the beam B are bolted to each other through a well-known slyce plate S across the upper and lower flanges and the web. In FIG. 34, the backing metal is fixed by welding to the inside of the joint between the tubular body 20 and the bracket 40, but this is not essential in the present invention.
(作用効果)  (Effect)
本発明にかかる柱と梁または柱と柱の接合構造によれば、 ブラケット 40が接 合される筒状体 20の部分が従来構造のような接合部分 (すなわち最大応力部分) ではないので、 鋼管柱 10とブラケット 40 (ないしは梁) との剛性が高く、 部 材の最大耐カを発揮することができる。 従来構造、 例えば第 1従来構造によれば、 梁 (ブラケット 2 0 0 ) から鋼管柱 1 0 0に曲げ応力が伝達されると、 中間部 1 0 1のほぼ中間部に歪みが生じるおそれがあるが、 本発明によれば、 梁に曲げ荷 重を付加してもそれに伴う歪みは殆ど生じないことが実験により確認された。 特 に、 第 1 0図に示されるように、 筒状体 2 0の上下端部とブラケット 4 0の上下 フランジ 4 2 , 4 3との間の距離を大きく設定すれば、 他の実施例においても、 さらに剛性を高くすることができる。 According to the column-to-beam or column-to-column joint structure of the present invention, the tubular part 20 to which the bracket 40 is joined is not the joint part (that is, the maximum stress part) unlike the conventional structure. The rigidity of column 10 and bracket 40 (or beam) is high, It can exhibit the maximum power of the material. According to the conventional structure, for example, the first conventional structure, when bending stress is transmitted from the beam (bracket 200) to the steel pipe column 100, there is a possibility that distortion occurs at almost the intermediate portion of the intermediate portion 101. However, according to the present invention, it has been confirmed by an experiment that even when a bending load is applied to a beam, almost no accompanying distortion occurs. In particular, as shown in FIG. 10, if the distance between the upper and lower ends of the cylindrical body 20 and the upper and lower flanges 42, 43 of the bracket 40 is set to be large, in other embodiments, However, the rigidity can be further increased.
また、 第 1および第 2実施例、 並びに、 第 7 ~ 1 1実施例によれば、 例えば第 3 5図に示されるように、 筒状体 2 0のそれぞれの側面に接合されるブラケット または梁 (第 3 5図では、 梁成が異なる梁 B, Bがーつの筒状体 2 0に接合され ている) のサイズが相互に異なっていても、 ハンチ加工を施すことなく、 そのま ま筒状体 2 0に接合することができる。  According to the first and second embodiments and the seventh to eleventh embodiments, for example, as shown in FIG. 35, a bracket or a beam joined to each side surface of the cylindrical body 20 is provided. (In Fig. 35, beams B, B having different beam structures are joined to two cylindrical bodies 20.) Even if the sizes are different from each other, the cylinders are left as they are without haunching. Can be joined to the shape 20.
(変形例)  (Modified example)
なお、 本発明は上記各実施例のものに限定されるものではなく、 例えば筒状体 2 0, 2 0 a , 2 0 bの任意の位置に内外を貫通する小径 (例えば直径 6 mm程 度) の空気穴を形成することもできる。 この場合、 空気穴の形成箇所は、 筒状体 の高さのほぼ中間位置が好ましく、 また、 四角部を避けた平板部であることが好 ましい。  The present invention is not limited to the above embodiments. For example, a small diameter (for example, a diameter of about 6 mm) penetrating inside and outside at an arbitrary position of the cylindrical body 20, 20 a, 20 b ) Air holes can also be formed. In this case, the location where the air hole is formed is preferably substantially at the middle position of the height of the cylindrical body, and is preferably a flat plate part avoiding the square part.
また、 鋼管柱 1 0および筒状体 2 0, 2 0 a、 2 O bは、 正方形断面や円形断 面でなく、 長方形断面であってもよいし、 要は、 鋼管柱の断面形状と筒状体の断 面形状とが整合していればよいのである。 また、 正方形断面および長方形断面は、 それぞれの内角部が曲率を有していてもよいことはいうまでもない。  Further, the steel pipe column 10 and the cylindrical bodies 20, 20 a, and 20 Ob may have a rectangular cross section instead of a square cross section or a circular cross section. It is only necessary that the shape of the cross section of the shape be matched. Further, it goes without saying that the square cross section and the rectangular cross section may each have an inner corner having a curvature.
さらに、 筒状体 2 0 , 2 0 a , 2 0 bは、 第 3 6図および第 3 7図 (a ) ' ( b ) に示すように、 厚肉の平板状鋼板 P , Pを 4枚溶接して形成することもで きる。 この場合、 剛性を向上するため、 上下端面の少なくともいずれかに平板状 のスチフナ S 1 , S 2を溶接することが好ましい。 上部端面にスチフナ S 1を溶 接した筒状体は、 例えば、 第 2 8図に示される実施例にそのまま適用することが できるだけでなく、 この例にかかる筒状体は、 鋼管柱の外周に嵌挿することなく、 従来構造における中間部 1 0 1の代用とすることもできる。 この場合、 平板状鋼 板 P, Pの肉厚を上下部 102, 103の肉厚の 2倍以上とすれば、 本願発明の 筒状体 20, 20a, 20 bと同様な効果を奏することができることが確認され た。 Further, as shown in FIGS. 36 and 37 (a) '(b), the cylindrical bodies 20, 20 a, and 20 b are made of four thick flat plate steel plates P, P. It can also be formed by welding. In this case, in order to improve the rigidity, it is preferable to weld flat stiffeners S 1 and S 2 to at least one of the upper and lower end surfaces. The tubular body having the stiffener S1 welded to the upper end face can be applied, for example, to the embodiment shown in FIG. 28 as it is, and the tubular body according to this example can be applied to the outer periphery of a steel pipe column. It is also possible to substitute for the intermediate portion 101 in the conventional structure without inserting. In this case, flat steel It has been confirmed that when the thickness of the plates P, P is twice or more the thickness of the upper and lower portions 102, 103, the same effects as those of the tubular bodies 20, 20a, 20b of the present invention can be obtained.

Claims

言胄求の範囲 Scope of language
1 . 柱の断面形状とほぼ同一の断面形状の透孔を持つと共に前記柱の外側に嵌 装可能とした筒状体を備えてなり、 前記筒状体はその透孔を前記柱に挿通するこ とにより前記柱の外側に嵌装され、 且つ前記柱の外側に固着されていて、 その嵌 装 ·固着された前記筒状体を利用して前記柱に梁を接合するようにしたことを特 徴とする柱と梁の接合構造。 1. A cylindrical body having a through-hole having substantially the same cross-sectional shape as that of the column and having a cylindrical shape that can be fitted to the outside of the column, and the cylindrical body having the through-hole inserted through the column. Thereby, the beam is fitted to the outside of the column and fixed to the outside of the column, and the beam is joined to the column using the fitted and fixed cylindrical body. The feature is the joint structure of columns and beams.
2 . 前記筒状体が、 その上下両端部の少なくとも一方において前記柱に溶接に より固着されている請求項 1に記載の柱と梁の接合構造。  2. The joint structure between a column and a beam according to claim 1, wherein the cylindrical body is fixed to the column at least at one of upper and lower ends by welding.
3 . 前記筒状体が、 係止部材を用いて前記柱に固着されている請求項 1または 2に記載の柱と梁の接合構造。  3. The joint structure between a column and a beam according to claim 1, wherein the tubular body is fixed to the column using a locking member.
4 . 前記筒状体がその側面に窓を有しており、 その窓を介して前記筒状体が前 記柱に溶接されている請求項 1 ~ 3のいずれかに記載の柱と梁の接合構造。 4. The column and beam according to any one of claims 1 to 3, wherein the cylindrical body has a window on a side surface thereof, and the cylindrical body is welded to the column through the window. Joint structure.
5 . 前記筒状体が上下両端に厚肉部を有しており、 その厚肉部を介して前記筒 状体が前記柱に固着されている請求項 1〜4のいずれかに記載の柱と梁の接合構 5. The pillar according to any one of claims 1 to 4, wherein the tubular body has thick portions at both upper and lower ends, and the tubular body is fixed to the pillar via the thick portions. Beam and beam
6 . 第 1の柱の断面形状とほぼ同一の断面形状を持つと共に前記第 1の柱が嵌 合可能な第 1の透孔と、 第 2の柱の断面形状とほぼ同一の断面形状を持つと共に 前記第 2の柱が嵌合可能な第 2の透孔とを持つ筒状体を備えており、 前記第 1お よび第 2の柱は前記第 1および第 2の透孔の内側にそれぞれ嵌合且つ固着されて いて、 その嵌合 ·固着された筒状体を利用して前記第 1および第 2の柱に梁を接 合するようにしたことを特徴とする柱と梁の接合構造。 6. The first pillar has a cross-sectional shape substantially the same as the cross-sectional shape of the first pillar, and has a first through-hole into which the first pillar can be fitted, and a cross-sectional shape substantially the same as the cross-sectional shape of the second pillar. And a cylindrical body having a second through hole to which the second column can be fitted, and the first and second columns are respectively provided inside the first and second through holes. A joint structure between a column and a beam, wherein the beam is joined to and fixed to the first and second columns using the fitted and fixed cylindrical body. .
7 . 前記第 1および第 2の筒状体のサイズが同じである請求項 6に記載の柱と 梁の接合構造。  7. The joint structure between a column and a beam according to claim 6, wherein the first and second cylindrical bodies have the same size.
8 . 前記第 1および第 2の筒状体のサイズが異なる請求項 6に記載の柱と梁の 接合構造。  8. The joint structure between a column and a beam according to claim 6, wherein the first and second cylindrical bodies have different sizes.
9 . 第 1の柱の断面形状とほぼ同一の断面形状を持つと共に前記第 1の柱が嵌 合可能な透孔と、 第 2の柱を支持可能な支持面とを持つ筒状体を備えており、 前 記第 1の柱は前記透孔の内側に嵌合且つ固着されており、 前記第 2の柱は前記支 持面上に固着されていて、 その嵌合 ·固着された筒状体を利用して前記第 1の柱 に梁を接合するようにしたことを特徴とする柱と梁の接合構造。 9. A cylindrical body having a cross-sectional shape substantially the same as the cross-sectional shape of the first column and having a through-hole into which the first column can be fitted, and a support surface capable of supporting the second column. The first column is fitted and fixed inside the through hole, and the second column is fixed to the support. A joint structure between a column and a beam, wherein the beam is joined to the first column using a tubular body fixed and fixed on a holding surface and using the fitted and fixed cylindrical body.
1 0 . 前記第 1の筒状体のサイズが前記第 2の筒状体のサイズよりも大きい請 求項 9に記載の柱と梁の接合構造。  10. The joint structure between a column and a beam according to claim 9, wherein the size of the first cylindrical body is larger than the size of the second cylindrical body.
1 1 . 第 1の柱の断面形状とほぼ同一の断面形状を持つと共に前記第 1の柱が 嵌合可能な第 1の透孔と、 第 2の柱の断面形状とほぼ同一の断面形状を持つと共 に前記第 2の柱が嵌合可能な第 2の透孔とを持つ筒状体を備えており、 前記第 1 および第 2の柱は前記第 1および第 2の透孔の内側にそれぞれ嵌合且つ固着され ていて、 その嵌合 ·固着された筒状体により前記第 1および第 2の柱を互いに接 合するようにしたことを特徴とする柱と柱の接合構造。  1 1. The first pillar has a cross-sectional shape that is substantially the same as the cross-sectional shape of the first column, and the first through-hole into which the first column can be fitted; And a cylindrical body having a second through-hole into which the second column can be fitted, and the first and second columns are provided inside the first and second through-holes. A column-to-column joining structure, wherein the first and second columns are joined to each other by a fitted and fixed cylindrical body.
1 2 . 前記第 1および第 2の柱のサイズが同じである請求項 1 1に記載の柱と 柱の接合構造。  12. The joint structure between pillars according to claim 11, wherein the first and second pillars have the same size.
1 3 . 前記第 1および第 2の柱のサイズが異なる請求項 1 1に記載の柱と柱の 接合構造。  13. The joint structure between pillars according to claim 11, wherein the first and second pillars have different sizes.
1 4 . 前記第 1および第 2の柱の中心が前記筒状体の中心とそれぞれ一致して いる請求項 1 1〜 1 3のいずれかに記載の柱と柱の接合構造。  14. The joint structure between columns according to any one of claims 11 to 13, wherein the centers of the first and second columns coincide with the centers of the cylindrical bodies, respectively.
1 5 . 前記第 1および第 2の柱の少なくとも一方の中心が前記筒状体の中心か らずれている請求項 1 1〜 1 3のいずれかに記載の柱と柱の接合構造。  15. The joint structure between pillars according to any one of claims 11 to 13, wherein a center of at least one of the first and second pillars is shifted from a center of the cylindrical body.
1 6 . 第 1の柱の断面形状とほぼ同一の断面形状を持つと共に前記第 1の柱が 嵌合可能な透孔と、 第 2の柱を支持可能な支持面とを持つ筒状体を備えており、 前記第 1の柱は前記透孔の内側に嵌合且つ固着されており、 前記第 2の柱は前記 支持面上に固着されていて、 その嵌合 ·固着された筒状体を利用して前記第 1お よび第 2の柱を互いに接合するようにしたことを特徴とする柱と柱の接合構造。 16. A cylindrical body having a cross-sectional shape substantially the same as the cross-sectional shape of the first column and having a through-hole into which the first column can be fitted, and a support surface capable of supporting the second column. The first column is fitted and fixed inside the through hole, and the second column is fixed on the support surface, and the fitted and fixed cylindrical body is provided. A joint structure between pillars, wherein the first and second pillars are joined to each other by utilizing the following.
1 7 . 前記第 1および第 2の柱のサイズが同じである請求項 1 6に記載の柱と 柱の接合構造。 17. The joint structure between pillars according to claim 16, wherein the first and second pillars have the same size.
1 8 . 前記第 1および第 2の柱のサイズが異なる請求項 1 6に記載の柱と柱の 接合構造。  18. The joint structure between pillars according to claim 16, wherein the first and second pillars have different sizes.
1 9 . 前記第 1および第 2の柱の中心が前記筒状体の中心とそれぞれ一致して いる請求項 1 6 ~ 1 8のいずれかに記載の柱と柱の接合構造。 19. The joint structure between columns according to any one of claims 16 to 18, wherein the centers of the first and second columns coincide with the centers of the cylindrical bodies, respectively.
20. 前記第 1および第 2の柱の少なくとも一方の中心が前記筒状体の中心か らずれている請求項 16〜18のいずれかに記載の柱と柱の接合構造。 20. The joint structure between columns according to any one of claims 16 to 18, wherein the center of at least one of the first and second columns is offset from the center of the cylindrical body.
PCT/JP1996/003247 1995-11-06 1996-11-06 Construction for joining post and beam or post and post to each other WO1997017504A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU75053/96A AU7505396A (en) 1995-11-06 1996-11-06 Construction for joining post and beam or post and post to each other

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7/287658 1995-11-06
JP28765895 1995-11-06

Publications (1)

Publication Number Publication Date
WO1997017504A1 true WO1997017504A1 (en) 1997-05-15

Family

ID=17720062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/003247 WO1997017504A1 (en) 1995-11-06 1996-11-06 Construction for joining post and beam or post and post to each other

Country Status (2)

Country Link
AU (1) AU7505396A (en)
WO (1) WO1997017504A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003096912A (en) * 2001-09-19 2003-04-03 Misawa Homes Co Ltd Connecting structure of column and beam
JP2014190045A (en) * 2013-03-27 2014-10-06 Nippon Steel & Sumikin Metal Products Co Ltd Pillar beam connection structure for connecting different diameter pillar of building
CN105366558A (en) * 2015-12-14 2016-03-02 天津亨通利铁道工程机械配件有限公司 Upright post and track cross beam connection structure of assembled maintenance room
CN108612190A (en) * 2018-05-24 2018-10-02 安徽中亚钢结构工程有限公司 A kind of assembling type steel structure connection component
JP2019035302A (en) * 2017-08-21 2019-03-07 大和ハウス工業株式会社 Steel column and column beam joint structure
US10538913B2 (en) 2018-05-23 2020-01-21 Herman Miller, Inc. Connection assembly for an architectural structure
US10718111B2 (en) 2017-03-13 2020-07-21 Herman Miller, Inc. Subarchitectural office system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5625578B2 (en) * 1973-04-24 1981-06-13
JPH03271439A (en) * 1990-03-20 1991-12-03 Sumitomo Metal Ind Ltd Joist jointing section of steel pipe column
JPH04185839A (en) * 1990-11-19 1992-07-02 Sekisui House Ltd Joining device for column and beam
JPH04185842A (en) * 1990-11-19 1992-07-02 Sekisui House Ltd Joining device for column and beam

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5625578B2 (en) * 1973-04-24 1981-06-13
JPH03271439A (en) * 1990-03-20 1991-12-03 Sumitomo Metal Ind Ltd Joist jointing section of steel pipe column
JPH04185839A (en) * 1990-11-19 1992-07-02 Sekisui House Ltd Joining device for column and beam
JPH04185842A (en) * 1990-11-19 1992-07-02 Sekisui House Ltd Joining device for column and beam

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MICROFILM OF JAPANESE UTILITY MODEL, Application No. 2464/1990 (Laid-open No. 93504/1991), (K.K. SEKINE), 24 September 1991. *
MICROFILM OF JAPANESE UTILITY MODEL, Application No. 39136/1987 (Laid-open No. 148705/1988), (MORISHITA KOGYO K.K.), 30 September 1988. *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003096912A (en) * 2001-09-19 2003-04-03 Misawa Homes Co Ltd Connecting structure of column and beam
JP2014190045A (en) * 2013-03-27 2014-10-06 Nippon Steel & Sumikin Metal Products Co Ltd Pillar beam connection structure for connecting different diameter pillar of building
CN105366558A (en) * 2015-12-14 2016-03-02 天津亨通利铁道工程机械配件有限公司 Upright post and track cross beam connection structure of assembled maintenance room
US10718111B2 (en) 2017-03-13 2020-07-21 Herman Miller, Inc. Subarchitectural office system
US11280086B2 (en) 2017-03-13 2022-03-22 MillerKnoll, Inc. Subarchitectural office system
JP2019035302A (en) * 2017-08-21 2019-03-07 大和ハウス工業株式会社 Steel column and column beam joint structure
US10538913B2 (en) 2018-05-23 2020-01-21 Herman Miller, Inc. Connection assembly for an architectural structure
CN108612190A (en) * 2018-05-24 2018-10-02 安徽中亚钢结构工程有限公司 A kind of assembling type steel structure connection component

Also Published As

Publication number Publication date
AU7505396A (en) 1997-05-29

Similar Documents

Publication Publication Date Title
WO2019074050A1 (en) Joint structure for h-beam
WO1997017504A1 (en) Construction for joining post and beam or post and post to each other
JP2002146921A (en) Steel pipe structure
JPH1122001A (en) Structure of junction between closed section column and beam
WO2022219899A1 (en) Column and beam structure of building, building, construction method for building, and building member
JP4627608B2 (en) High-strength bolt joint structure between steel columns and steel beams and its construction method
JP2002266426A (en) Junction of steel pipe column and steel beam and method of making junction
JP2784332B2 (en) Beam support column
JPH08311989A (en) Joint structure of steel skeleton building construction
JP2022163986A (en) Building column-beam structure, building, and building construction method
JPH08284250A (en) Joint section of wooden pillar and steel framed beam
JP2004076303A (en) Connection structure for column and beam
JP2766815B2 (en) Architectural and civil engineering joints
JPH0941563A (en) H-section steel post and post/beam joint structure
JPH07150635A (en) Joint construction between column and beam using shape steel
JPH0444545A (en) Joint of column and beam and reinforcing metal
JP2601105B2 (en) Steel member joint hardware
JPH04185839A (en) Joining device for column and beam
JP2567437Y2 (en) Column-beam joint hardware
JP3801577B2 (en) Steel structure using steel pipe columns
JP2003082762A (en) High tensile bolt joint structure for box-shaped sectional column and h sectional beam and construction method thereof
JP3010003B2 (en) Connection structure of columns and beams in steel structure
JP2003301513A (en) Post-beam joint structure
JPH09111871A (en) Joining structure of column and beam
JP2001065064A (en) Joint structure between steel pipe column and brace member

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase