WO1997016792A1 - Virtual maintenance network in multiprocessing system - Google Patents
Virtual maintenance network in multiprocessing system Download PDFInfo
- Publication number
- WO1997016792A1 WO1997016792A1 PCT/US1996/015117 US9615117W WO9716792A1 WO 1997016792 A1 WO1997016792 A1 WO 1997016792A1 US 9615117 W US9615117 W US 9615117W WO 9716792 A1 WO9716792 A1 WO 9716792A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- virtual
- channel
- maintenance
- processing element
- flow controlled
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F15/00—Digital computers in general; Data processing equipment in general
- G06F15/16—Combinations of two or more digital computers each having at least an arithmetic unit, a program unit and a register, e.g. for a simultaneous processing of several programs
- G06F15/163—Interprocessor communication
- G06F15/173—Interprocessor communication using an interconnection network, e.g. matrix, shuffle, pyramid, star, snowflake
- G06F15/17337—Direct connection machines, e.g. completely connected computers, point to point communication networks
Definitions
- Wormhole routing interconnect networks route the head ofthe packet from a node before the tail ofthe packet is received by that node.
- the packet is divided into a number of smaller message packets called flow control units (flits), which may be one or more hits,
- a header flit contains routing information
- the heaHer flit is received by a processing element node and examined as to its destination.
- the header flit is sent on to the next node indicated by the routing algorithm.
- the remaining flits follow behind the header flit in a train-like fashion.
- Flow control between nodes is accomplished on a flit-by-flit basis, rather than a packet-by- packet basis as in the store-and-forward interconnect networks.
- a packet may be partially transmitted across a physical communication link, and then blocked due to a shortage of buffer space in the receiving node.
- the second type of virtual channel is an NCI virtual channel.
- the NCI channel implements minimal fully adaptive routing.
- the NCI virtual channel forms the adaptive virtual network component of interconnect 24.
- the NCI virtual channel may have cycles in its channel dependency graph, since packets route freely in the NCI channels. If at any time a decision would be made that would deadlock in the NC 1 virtual channel, then the packet must be able to jump to a C 1 virtual channel. Thus, packets in the NCI channel must always be able to route into a Cl channel.
- request and response packets are routed on separate sets of virtual channels. This breaks any cycles between request and response traffic.
- direction-order routing is preferably used to break any cycles involving multiple directions.
- the packets are routed through a predetermined direction priority, such as (+X, +Y, +Z, -X, -Y, -Z).
- a route for a +X, -Y, +Z destination would route first +X, then +Z, then -Y.
- Direction order routing is 7/16792 PC17US96/15117
- MPP ⁇ v . ctem f) x nreferahl *v us ⁇ ah ⁇ nl ⁇ p l ⁇ pccrin urr, in all th ⁇ w -» dimensions, from source to destination node for normal traffic.
- MPP system 20 uses differential addressing for normal traffic wherein the destination address is calculated at the source node and is decremented/incremented to zero when it reaches the destination node.
- Figure 7 illustrates one of several possible special routing paths through interconnect network 24 from a source node to a destination node in a 36-node MPP system. For clarity, Figure 7 does not show all the communication links in the MPP system.
- the ⁇ values are set as follows:
- the special routing path illustrated in Figure 7 is from a source node 70 to a destination node 80.
- the packet does not travel initially in the X dimension.
- the maintenance packet travels +2 in the Y dimension to a node 72.
- the maintenance packet then travels +1 in the Z dimension to a node 74.
- the maintenance packet then travels +1 in the X dimension to a node 76.
- the maintenance packet then travels -1 in the Y dimension to a node 78.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Multi Processors (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP51732797A JP3639848B2 (en) | 1995-10-31 | 1996-09-23 | Virtual maintenance network in multiprocessing system |
EP96932293A EP0858633B1 (en) | 1995-10-31 | 1996-09-23 | Virtual maintenance network in multiprocessing system |
DE69605319T DE69605319T2 (en) | 1995-10-31 | 1996-09-23 | VIRTUAL MONITORING NETWORK IN A MULTIPROCESSOR SYSTEM |
CA002236213A CA2236213A1 (en) | 1995-10-31 | 1996-09-23 | Virtual maintenance network in multiprocessing system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/550,992 | 1995-10-31 | ||
US08/550,992 US6055618A (en) | 1995-10-31 | 1995-10-31 | Virtual maintenance network in multiprocessing system having a non-flow controlled virtual maintenance channel |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1997016792A1 true WO1997016792A1 (en) | 1997-05-09 |
Family
ID=24199390
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1996/015117 WO1997016792A1 (en) | 1995-10-31 | 1996-09-23 | Virtual maintenance network in multiprocessing system |
Country Status (6)
Country | Link |
---|---|
US (1) | US6055618A (en) |
EP (1) | EP0858633B1 (en) |
JP (2) | JP3639848B2 (en) |
CA (1) | CA2236213A1 (en) |
DE (1) | DE69605319T2 (en) |
WO (1) | WO1997016792A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003510686A (en) * | 1999-09-17 | 2003-03-18 | アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド | Virtual channel and corresponding buffer allocation for computer system operation without deadlock |
WO2018193360A1 (en) * | 2017-04-17 | 2018-10-25 | Cerebras Systems Inc. | Task synchronization for accelerated deep learning |
US10657438B2 (en) | 2017-04-17 | 2020-05-19 | Cerebras Systems Inc. | Backpressure for accelerated deep learning |
US10699189B2 (en) | 2017-02-23 | 2020-06-30 | Cerebras Systems Inc. | Accelerated deep learning |
US11321087B2 (en) | 2018-08-29 | 2022-05-03 | Cerebras Systems Inc. | ISA enhancements for accelerated deep learning |
US11328208B2 (en) | 2018-08-29 | 2022-05-10 | Cerebras Systems Inc. | Processor element redundancy for accelerated deep learning |
US11328207B2 (en) | 2018-08-28 | 2022-05-10 | Cerebras Systems Inc. | Scaled compute fabric for accelerated deep learning |
US11488004B2 (en) | 2017-04-17 | 2022-11-01 | Cerebras Systems Inc. | Neuron smearing for accelerated deep learning |
Families Citing this family (104)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE507118C2 (en) * | 1996-08-26 | 1998-03-30 | Ericsson Telefon Ab L M | Procedure for optimizing a mainly optical ATM network |
US6289021B1 (en) | 1997-01-24 | 2001-09-11 | Interactic Holdings, Llc | Scaleable low-latency switch for usage in an interconnect structure |
US6370145B1 (en) * | 1997-08-22 | 2002-04-09 | Avici Systems | Internet switch router |
US6285679B1 (en) * | 1997-08-22 | 2001-09-04 | Avici Systems, Inc. | Methods and apparatus for event-driven routing |
US6408002B1 (en) * | 1998-06-24 | 2002-06-18 | Fujitsu Siemens Computers Llc | Torus routing element error handling and self-clearing with missing or extraneous control code feature |
WO2000072530A2 (en) * | 1999-05-21 | 2000-11-30 | Avici Systems | Fabric router with flit caching |
US6584073B1 (en) | 1999-06-02 | 2003-06-24 | Sun Microsystems, Inc. | Network topologies |
US6791939B1 (en) | 1999-06-02 | 2004-09-14 | Sun Microsystems, Inc. | Dynamic generation of deadlock-free routings |
US6631421B1 (en) | 1999-06-02 | 2003-10-07 | Sun Microsystems, Inc. | Recursive partitioning of networks |
US6567856B1 (en) * | 1999-06-02 | 2003-05-20 | Sun Microsystems, Inc. | Deadlock-free routing |
US6603742B1 (en) | 1999-06-02 | 2003-08-05 | Sun Microsystems, Inc. | Network reconfiguration |
US6888843B2 (en) | 1999-09-17 | 2005-05-03 | Advanced Micro Devices, Inc. | Response virtual channel for handling all responses |
US6950438B1 (en) | 1999-09-17 | 2005-09-27 | Advanced Micro Devices, Inc. | System and method for implementing a separate virtual channel for posted requests in a multiprocessor computer system |
US6961782B1 (en) * | 2000-03-14 | 2005-11-01 | International Business Machines Corporation | Methods for routing packets on a linear array of processors |
US6741561B1 (en) | 2000-07-25 | 2004-05-25 | Sun Microsystems, Inc. | Routing mechanism using intention packets in a hierarchy or networks |
US6925056B1 (en) | 2000-07-25 | 2005-08-02 | Sun Microsystems, Inc. | System and method for implementing a routing scheme using intention packets in a computer network |
US6826148B1 (en) | 2000-07-25 | 2004-11-30 | Sun Microsystems, Inc. | System and method for implementing a routing scheme in a computer network using intention packets when fault conditions are detected |
US6928470B1 (en) * | 2000-07-31 | 2005-08-09 | Western Digital Ventures, Inc. | Transferring scheduling data from a plurality of disk storage devices to a network switch before transferring data associated with scheduled requests between the network switch and a plurality of host initiators |
JP3706008B2 (en) * | 2000-08-01 | 2005-10-12 | 富士通株式会社 | Inter-processor data communication apparatus, inter-processor data communication method, and data processing apparatus |
AU2001280857A1 (en) * | 2000-08-17 | 2002-02-25 | Api Networks, Inc. | System and method for separate virtual channels for posted requests in a multiprocessor system |
US7401161B2 (en) | 2000-12-18 | 2008-07-15 | Sun Microsystems, Inc. | High performance storage array interconnection fabric using multiple independent paths |
US6718428B2 (en) | 2000-12-18 | 2004-04-06 | Sun Microsystems, Inc. | Storage array interconnection fabric using a torus topology |
US7072976B2 (en) * | 2001-01-04 | 2006-07-04 | Sun Microsystems, Inc. | Scalable routing scheme for a multi-path interconnection fabric |
TW567695B (en) * | 2001-01-17 | 2003-12-21 | Ibm | Digital baseband system |
US6909695B2 (en) * | 2001-05-07 | 2005-06-21 | Sun Microsystems, Inc. | Fault-tolerant, self-healing routing scheme for a multi-path interconnection fabric in a storage network |
US7007189B2 (en) * | 2001-05-07 | 2006-02-28 | Sun Microsystems, Inc. | Routing scheme using preferred paths in a multi-path interconnection fabric in a storage network |
US6883108B2 (en) * | 2001-05-07 | 2005-04-19 | Sun Microsystems, Inc. | Fault-tolerant routing scheme for a multi-path interconnection fabric in a storage network |
US7000033B2 (en) * | 2001-09-28 | 2006-02-14 | Sun Microsystems, Inc. | Mapping of nodes in an interconnection fabric |
US7027413B2 (en) * | 2001-09-28 | 2006-04-11 | Sun Microsystems, Inc. | Discovery of nodes in an interconnection fabric |
US7197553B2 (en) * | 2002-04-19 | 2007-03-27 | Nortel Networks Limited | Network system having a virtual-service-module |
US7804785B2 (en) * | 2002-04-19 | 2010-09-28 | Avaya Inc. | Network system having an instructional sequence for performing packet processing and optimizing the packet processing |
US7246178B2 (en) * | 2002-05-07 | 2007-07-17 | Nortel Networks Limited | Methods and systems for changing a topology of a network |
US7386628B1 (en) | 2002-05-08 | 2008-06-10 | Nortel Networks Limited | Methods and systems for processing network data packets |
US7154886B2 (en) * | 2002-07-22 | 2006-12-26 | Qlogic Corporation | Method and system for primary blade selection in a multi-module fiber channel switch |
US7230929B2 (en) * | 2002-07-22 | 2007-06-12 | Qlogic, Corporation | Method and system for dynamically assigning domain identification in a multi-module fibre channel switch |
US7334046B1 (en) | 2002-08-05 | 2008-02-19 | Qlogic, Corporation | System and method for optimizing frame routing in a network |
US7397768B1 (en) | 2002-09-11 | 2008-07-08 | Qlogic, Corporation | Zone management in a multi-module fibre channel switch |
US7362717B1 (en) | 2002-10-03 | 2008-04-22 | Qlogic, Corporation | Method and system for using distributed name servers in multi-module fibre channel switches |
US6886141B1 (en) * | 2002-10-07 | 2005-04-26 | Qlogic Corporation | Method and system for reducing congestion in computer networks |
US7319669B1 (en) * | 2002-11-22 | 2008-01-15 | Qlogic, Corporation | Method and system for controlling packet flow in networks |
US7324564B2 (en) * | 2003-02-20 | 2008-01-29 | Sun Microsystems, Inc. | Transmitting odd-sized packets over a double data rate link |
US6950905B2 (en) * | 2003-02-20 | 2005-09-27 | Sun Microsystems, Inc. | Write posting memory interface with block-based read-ahead mechanism |
US7003594B2 (en) * | 2003-05-12 | 2006-02-21 | Sun Microsystems, Inc. | Streaming protocol for storage devices |
US7388843B2 (en) * | 2003-07-16 | 2008-06-17 | Qlogic, Corporation | Method and apparatus for testing loop pathway integrity in a fibre channel arbitrated loop |
US7355966B2 (en) * | 2003-07-16 | 2008-04-08 | Qlogic, Corporation | Method and system for minimizing disruption in common-access networks |
US7463646B2 (en) * | 2003-07-16 | 2008-12-09 | Qlogic Corporation | Method and system for fibre channel arbitrated loop acceleration |
US7453802B2 (en) * | 2003-07-16 | 2008-11-18 | Qlogic, Corporation | Method and apparatus for detecting and removing orphaned primitives in a fibre channel network |
US7620059B2 (en) * | 2003-07-16 | 2009-11-17 | Qlogic, Corporation | Method and apparatus for accelerating receive-modify-send frames in a fibre channel network |
US7894348B2 (en) | 2003-07-21 | 2011-02-22 | Qlogic, Corporation | Method and system for congestion control in a fibre channel switch |
US7580354B2 (en) * | 2003-07-21 | 2009-08-25 | Qlogic, Corporation | Multi-speed cut through operation in fibre channel switches |
US7430175B2 (en) * | 2003-07-21 | 2008-09-30 | Qlogic, Corporation | Method and system for managing traffic in fibre channel systems |
US7477655B2 (en) * | 2003-07-21 | 2009-01-13 | Qlogic, Corporation | Method and system for power control of fibre channel switches |
US7684401B2 (en) * | 2003-07-21 | 2010-03-23 | Qlogic, Corporation | Method and system for using extended fabric features with fibre channel switch elements |
US7420982B2 (en) * | 2003-07-21 | 2008-09-02 | Qlogic, Corporation | Method and system for keeping a fibre channel arbitrated loop open during frame gaps |
US7522522B2 (en) | 2003-07-21 | 2009-04-21 | Qlogic, Corporation | Method and system for reducing latency and congestion in fibre channel switches |
US7447224B2 (en) * | 2003-07-21 | 2008-11-04 | Qlogic, Corporation | Method and system for routing fibre channel frames |
US7522529B2 (en) * | 2003-07-21 | 2009-04-21 | Qlogic, Corporation | Method and system for detecting congestion and over subscription in a fibre channel network |
US7630384B2 (en) * | 2003-07-21 | 2009-12-08 | Qlogic, Corporation | Method and system for distributing credit in fibre channel systems |
US7525983B2 (en) * | 2003-07-21 | 2009-04-28 | Qlogic, Corporation | Method and system for selecting virtual lanes in fibre channel switches |
US7792115B2 (en) * | 2003-07-21 | 2010-09-07 | Qlogic, Corporation | Method and system for routing and filtering network data packets in fibre channel systems |
US7583597B2 (en) * | 2003-07-21 | 2009-09-01 | Qlogic Corporation | Method and system for improving bandwidth and reducing idles in fibre channel switches |
US7512067B2 (en) * | 2003-07-21 | 2009-03-31 | Qlogic, Corporation | Method and system for congestion control based on optimum bandwidth allocation in a fibre channel switch |
US7646767B2 (en) | 2003-07-21 | 2010-01-12 | Qlogic, Corporation | Method and system for programmable data dependant network routing |
WO2005089241A2 (en) | 2004-03-13 | 2005-09-29 | Cluster Resources, Inc. | System and method for providing object triggers |
US8782654B2 (en) | 2004-03-13 | 2014-07-15 | Adaptive Computing Enterprises, Inc. | Co-allocating a reservation spanning different compute resources types |
US7930377B2 (en) | 2004-04-23 | 2011-04-19 | Qlogic, Corporation | Method and system for using boot servers in networks |
US7340167B2 (en) * | 2004-04-23 | 2008-03-04 | Qlogic, Corporation | Fibre channel transparent switch for mixed switch fabrics |
US7957428B2 (en) * | 2004-05-21 | 2011-06-07 | Intel Corporation | Methods and apparatuses to effect a variable-width link |
US20070266388A1 (en) | 2004-06-18 | 2007-11-15 | Cluster Resources, Inc. | System and method for providing advanced reservations in a compute environment |
US7404020B2 (en) * | 2004-07-20 | 2008-07-22 | Qlogic, Corporation | Integrated fibre channel fabric controller |
US8176490B1 (en) | 2004-08-20 | 2012-05-08 | Adaptive Computing Enterprises, Inc. | System and method of interfacing a workload manager and scheduler with an identity manager |
US8295299B2 (en) | 2004-10-01 | 2012-10-23 | Qlogic, Corporation | High speed fibre channel switch element |
US7380030B2 (en) * | 2004-10-01 | 2008-05-27 | Qlogic, Corp. | Method and system for using an in-line credit extender with a host bus adapter |
US7411958B2 (en) * | 2004-10-01 | 2008-08-12 | Qlogic, Corporation | Method and system for transferring data directly between storage devices in a storage area network |
US8271980B2 (en) | 2004-11-08 | 2012-09-18 | Adaptive Computing Enterprises, Inc. | System and method of providing system jobs within a compute environment |
US7519058B2 (en) | 2005-01-18 | 2009-04-14 | Qlogic, Corporation | Address translation in fibre channel switches |
US8631130B2 (en) | 2005-03-16 | 2014-01-14 | Adaptive Computing Enterprises, Inc. | Reserving resources in an on-demand compute environment from a local compute environment |
US8863143B2 (en) | 2006-03-16 | 2014-10-14 | Adaptive Computing Enterprises, Inc. | System and method for managing a hybrid compute environment |
US9231886B2 (en) | 2005-03-16 | 2016-01-05 | Adaptive Computing Enterprises, Inc. | Simple integration of an on-demand compute environment |
CA2603577A1 (en) | 2005-04-07 | 2006-10-12 | Cluster Resources, Inc. | On-demand access to compute resources |
US7765385B2 (en) * | 2007-04-18 | 2010-07-27 | International Business Machines Corporation | Fault recovery on a parallel computer system with a torus network |
US7809006B2 (en) * | 2007-08-16 | 2010-10-05 | D. E. Shaw Research, Llc | Routing with virtual channels |
US8041773B2 (en) | 2007-09-24 | 2011-10-18 | The Research Foundation Of State University Of New York | Automatic clustering for self-organizing grids |
US8223650B2 (en) * | 2008-04-02 | 2012-07-17 | Intel Corporation | Express virtual channels in a packet switched on-chip interconnection network |
US20100017513A1 (en) * | 2008-07-16 | 2010-01-21 | Cray Inc. | Multiple overlapping block transfers |
US8599863B2 (en) | 2009-10-30 | 2013-12-03 | Calxeda, Inc. | System and method for using a multi-protocol fabric module across a distributed server interconnect fabric |
US9077654B2 (en) | 2009-10-30 | 2015-07-07 | Iii Holdings 2, Llc | System and method for data center security enhancements leveraging managed server SOCs |
US9054990B2 (en) | 2009-10-30 | 2015-06-09 | Iii Holdings 2, Llc | System and method for data center security enhancements leveraging server SOCs or server fabrics |
US9465771B2 (en) | 2009-09-24 | 2016-10-11 | Iii Holdings 2, Llc | Server on a chip and node cards comprising one or more of same |
US20130107444A1 (en) | 2011-10-28 | 2013-05-02 | Calxeda, Inc. | System and method for flexible storage and networking provisioning in large scalable processor installations |
US20110103391A1 (en) | 2009-10-30 | 2011-05-05 | Smooth-Stone, Inc. C/O Barry Evans | System and method for high-performance, low-power data center interconnect fabric |
US9069929B2 (en) | 2011-10-31 | 2015-06-30 | Iii Holdings 2, Llc | Arbitrating usage of serial port in node card of scalable and modular servers |
US9876735B2 (en) | 2009-10-30 | 2018-01-23 | Iii Holdings 2, Llc | Performance and power optimized computer system architectures and methods leveraging power optimized tree fabric interconnect |
US9680770B2 (en) | 2009-10-30 | 2017-06-13 | Iii Holdings 2, Llc | System and method for using a multi-protocol fabric module across a distributed server interconnect fabric |
US10877695B2 (en) | 2009-10-30 | 2020-12-29 | Iii Holdings 2, Llc | Memcached server functionality in a cluster of data processing nodes |
US11720290B2 (en) | 2009-10-30 | 2023-08-08 | Iii Holdings 2, Llc | Memcached server functionality in a cluster of data processing nodes |
US9648102B1 (en) | 2012-12-27 | 2017-05-09 | Iii Holdings 2, Llc | Memcached server functionality in a cluster of data processing nodes |
US9311269B2 (en) | 2009-10-30 | 2016-04-12 | Iii Holdings 2, Llc | Network proxy for high-performance, low-power data center interconnect fabric |
FR2957176B1 (en) * | 2010-03-02 | 2012-04-06 | Commissariat Energie Atomique | ELECTRONIC CHIP AND INTEGRATED CIRCUIT COMPRISING SUCH AN ELECTRONIC CHIP |
EP2717169B1 (en) | 2011-05-23 | 2017-01-04 | Fujitsu Limited | Administration device, information processing device, and data transfer method |
US9092581B2 (en) | 2012-10-09 | 2015-07-28 | Intel Corporation | Virtualized communication sockets for multi-flow access to message channel infrastructure within CPU |
JP6313237B2 (en) * | 2015-02-04 | 2018-04-18 | 東芝メモリ株式会社 | Storage system |
JP2017120542A (en) * | 2015-12-28 | 2017-07-06 | 富士通株式会社 | Parallel information processor, data transmission method, and data transmission program |
KR20220003621A (en) * | 2020-03-26 | 2022-01-10 | 그래프코어 리미티드 | Network computer with two built-in rings |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4330858A (en) * | 1979-06-29 | 1982-05-18 | International Business Machines Corporation | Time domain supervisory channel for data terminal equipments |
US4630259A (en) * | 1984-11-14 | 1986-12-16 | At&T Bell Laboratories | Lockup detection and recovery in a packet switching network |
US4933933A (en) * | 1986-12-19 | 1990-06-12 | The California Institute Of Technology | Torus routing chip |
EP0479520A2 (en) * | 1990-10-05 | 1992-04-08 | International Business Machines Corporation | Network communication apparatus |
Family Cites Families (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US28577A (en) * | 1860-06-05 | Improved composition for roofing houses | ||
US4814979A (en) * | 1981-04-01 | 1989-03-21 | Teradata Corporation | Network to transmit prioritized subtask pockets to dedicated processors |
US4561090A (en) * | 1983-05-18 | 1985-12-24 | At&T Bell Laboratories | Integrated self-checking packet switch node |
US4814973A (en) * | 1983-05-31 | 1989-03-21 | Hillis W Daniel | Parallel processor |
JP2644718B2 (en) * | 1983-12-28 | 1997-08-25 | 株式会社日立製作所 | Computer system |
SE448558B (en) * | 1985-09-16 | 1987-03-02 | Skandinova Byggsystem Ab | BUILDING CONSTRUCTION AND PROCEDURE FOR ASTAD COMMANDERS THEREOF |
US4771391A (en) * | 1986-07-21 | 1988-09-13 | International Business Machines Corporation | Adaptive packet length traffic control in a local area network |
US4984235A (en) * | 1987-04-27 | 1991-01-08 | Thinking Machines Corporation | Method and apparatus for routing message packets and recording the roofing sequence |
US5170482A (en) * | 1987-08-14 | 1992-12-08 | Regents Of The University Of Minnesota | Improved hypercube topology for multiprocessor computer systems |
US5008882A (en) * | 1987-08-17 | 1991-04-16 | California Institute Of Technology | Method and apparatus for eliminating unsuccessful tries in a search tree |
US4868818A (en) * | 1987-10-29 | 1989-09-19 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Fault tolerant hypercube computer system architecture |
US5105424A (en) * | 1988-06-02 | 1992-04-14 | California Institute Of Technology | Inter-computer message routing system with each computer having separate routinng automata for each dimension of the network |
EP0353819B1 (en) * | 1988-08-02 | 1997-04-09 | Koninklijke Philips Electronics N.V. | Method and apparatus for synchronizing parallel processors using a fuzzy barrier |
EP0364638B1 (en) * | 1988-10-20 | 1994-04-20 | International Business Machines Corporation | Communication network |
US5347450A (en) * | 1989-01-18 | 1994-09-13 | Intel Corporation | Message routing in a multiprocessor computer system |
JP2749098B2 (en) * | 1989-02-03 | 1998-05-13 | 株式会社日立製作所 | Communication line switching / combination method |
US5036459A (en) * | 1989-03-09 | 1991-07-30 | U.S. Philips Corporation | Multi-processor computer system with distributed memory and an interprocessor communication mechanism, and method for operating such mechanism |
JP3072646B2 (en) * | 1989-03-20 | 2000-07-31 | 富士通株式会社 | Communication control method between parallel computers |
CA2032620C (en) * | 1989-12-22 | 1995-08-15 | Takafumi Chujo | Method for searching for alternate path in communication network |
US5280474A (en) * | 1990-01-05 | 1994-01-18 | Maspar Computer Corporation | Scalable processor to processor and processor-to-I/O interconnection network and method for parallel processing arrays |
US5218676A (en) * | 1990-01-08 | 1993-06-08 | The University Of Rochester | Dynamic routing system for a multinode communications network |
US5161156A (en) * | 1990-02-02 | 1992-11-03 | International Business Machines Corporation | Multiprocessing packet switching connection system having provision for error correction and recovery |
GB9019025D0 (en) * | 1990-08-31 | 1990-10-17 | Ncr Co | Work station having multiprocessing capability |
DE69130630T2 (en) * | 1990-09-14 | 1999-09-09 | Hitachi | Synchronous process and device for processors |
US5229990A (en) * | 1990-10-03 | 1993-07-20 | At&T Bell Laboratories | N+K sparing in a telecommunications switching environment |
US5239545A (en) * | 1990-11-05 | 1993-08-24 | Motorola, Inc. | Channel access control in a communication system |
US5313645A (en) * | 1991-05-13 | 1994-05-17 | International Business Machines Corporation | Method for interconnecting and system of interconnected processing elements by controlling network density |
US5175733A (en) * | 1990-12-27 | 1992-12-29 | Intel Corporation | Adaptive message routing for multi-dimensional networks |
US5297137A (en) * | 1991-01-30 | 1994-03-22 | International Business Machines Corporation | Process for routing data packets around a multi-node communications network |
US5365228A (en) * | 1991-03-29 | 1994-11-15 | International Business Machines Corporation | SYNC-NET- a barrier synchronization apparatus for multi-stage networks |
EP0544018B1 (en) * | 1991-06-19 | 2002-10-23 | Fujitsu Limited | System for transferring discriminative information of packet route |
EP0552385B1 (en) * | 1991-08-21 | 2001-02-14 | International Business Machines Corporation | Connectionless ATM data services |
JP2861518B2 (en) * | 1991-09-03 | 1999-02-24 | 日本電気株式会社 | Adaptive multiplexing method |
JP3071007B2 (en) * | 1991-10-22 | 2000-07-31 | 富士通株式会社 | Communication network control method |
US5313628A (en) * | 1991-12-30 | 1994-05-17 | International Business Machines Corporation | Component replacement control for fault-tolerant data processing system |
EP0570729A3 (en) * | 1992-05-22 | 1994-07-20 | Ibm | Apap i/o programmable router |
US5333279A (en) * | 1992-06-01 | 1994-07-26 | Intel Corporation | Self-timed mesh routing chip with data broadcasting |
US5444701A (en) * | 1992-10-29 | 1995-08-22 | International Business Machines Corporation | Method of packet routing in torus networks with two buffers per edge |
US5533198A (en) * | 1992-11-30 | 1996-07-02 | Cray Research, Inc. | Direction order priority routing of packets between nodes in a networked system |
JPH06318951A (en) * | 1993-01-07 | 1994-11-15 | Toshiba Corp | Method and system for transferring cell |
US5539449A (en) * | 1993-05-03 | 1996-07-23 | At&T Corp. | Integrated television services system |
US5353283A (en) * | 1993-05-28 | 1994-10-04 | Bell Communications Research, Inc. | General internet method for routing packets in a communications network |
FR2707819B1 (en) * | 1993-07-12 | 1995-09-15 | Tremel Jean Yves | Method and device for monitoring and / or testing an ATM type telecommunications network. |
US5583990A (en) * | 1993-12-10 | 1996-12-10 | Cray Research, Inc. | System for allocating messages between virtual channels to avoid deadlock and to optimize the amount of message traffic on each type of virtual channel |
US5434995A (en) * | 1993-12-10 | 1995-07-18 | Cray Research, Inc. | Barrier synchronization for distributed memory massively parallel processing systems |
US5453978A (en) * | 1994-04-04 | 1995-09-26 | International Business Machines Corporation | Technique for accomplishing deadlock free routing through a multi-stage cross-point packet switch |
US5546549A (en) * | 1994-06-01 | 1996-08-13 | International Business Machines Corporation | Multi-path channel (MPC) interface with user transparent, unbalanced, dynamically alterable computer input/output channels |
US5619647A (en) * | 1994-09-30 | 1997-04-08 | Tandem Computers, Incorporated | System for multiplexing prioritized virtual channels onto physical channels where higher priority virtual will pre-empt a lower priority virtual or a lower priority will wait |
US5701416A (en) * | 1995-04-13 | 1997-12-23 | Cray Research, Inc. | Adaptive routing mechanism for torus interconnection network |
US5659796A (en) * | 1995-04-13 | 1997-08-19 | Cray Research, Inc. | System for randomly modifying virtual channel allocation and accepting the random modification based on the cost function |
US5684961A (en) * | 1995-04-28 | 1997-11-04 | Sun Microsystems, Inc. | System for defining multicast message distribution paths having overlapping virtual connections in ATM networks and assigning identical labels to overlapping portions of the virtual channels |
-
1995
- 1995-10-31 US US08/550,992 patent/US6055618A/en not_active Expired - Lifetime
-
1996
- 1996-09-23 EP EP96932293A patent/EP0858633B1/en not_active Expired - Lifetime
- 1996-09-23 CA CA002236213A patent/CA2236213A1/en not_active Abandoned
- 1996-09-23 WO PCT/US1996/015117 patent/WO1997016792A1/en active IP Right Grant
- 1996-09-23 JP JP51732797A patent/JP3639848B2/en not_active Expired - Lifetime
- 1996-09-23 DE DE69605319T patent/DE69605319T2/en not_active Expired - Fee Related
-
2003
- 2003-10-16 JP JP2003356594A patent/JP3933620B2/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4330858A (en) * | 1979-06-29 | 1982-05-18 | International Business Machines Corporation | Time domain supervisory channel for data terminal equipments |
US4630259A (en) * | 1984-11-14 | 1986-12-16 | At&T Bell Laboratories | Lockup detection and recovery in a packet switching network |
US4933933A (en) * | 1986-12-19 | 1990-06-12 | The California Institute Of Technology | Torus routing chip |
EP0479520A2 (en) * | 1990-10-05 | 1992-04-08 | International Business Machines Corporation | Network communication apparatus |
Non-Patent Citations (1)
Title |
---|
BOURA Y M ET AL: "EFFICIENT FULLY ADAPTIVE WORMHOLE ROUTING IN N-DIMENSIONAL MESHES", PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTIN SYSTEMS, POZNAN, POLAND, JUNE 21 - 24, 1994, no. CONF. 14, 1 January 1994 (1994-01-01), INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, pages 589 - 596, XP002001412 * |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003510686A (en) * | 1999-09-17 | 2003-03-18 | アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド | Virtual channel and corresponding buffer allocation for computer system operation without deadlock |
US10699189B2 (en) | 2017-02-23 | 2020-06-30 | Cerebras Systems Inc. | Accelerated deep learning |
US11934945B2 (en) | 2017-02-23 | 2024-03-19 | Cerebras Systems Inc. | Accelerated deep learning |
US11062200B2 (en) | 2017-04-17 | 2021-07-13 | Cerebras Systems Inc. | Task synchronization for accelerated deep learning |
US11232347B2 (en) | 2017-04-17 | 2022-01-25 | Cerebras Systems Inc. | Fabric vectors for deep learning acceleration |
US10614357B2 (en) | 2017-04-17 | 2020-04-07 | Cerebras Systems Inc. | Dataflow triggered tasks for accelerated deep learning |
US10726329B2 (en) | 2017-04-17 | 2020-07-28 | Cerebras Systems Inc. | Data structure descriptors for deep learning acceleration |
US10762418B2 (en) | 2017-04-17 | 2020-09-01 | Cerebras Systems Inc. | Control wavelet for accelerated deep learning |
US10515303B2 (en) | 2017-04-17 | 2019-12-24 | Cerebras Systems Inc. | Wavelet representation for accelerated deep learning |
US11157806B2 (en) | 2017-04-17 | 2021-10-26 | Cerebras Systems Inc. | Task activating for accelerated deep learning |
US10657438B2 (en) | 2017-04-17 | 2020-05-19 | Cerebras Systems Inc. | Backpressure for accelerated deep learning |
US11232348B2 (en) | 2017-04-17 | 2022-01-25 | Cerebras Systems Inc. | Data structure descriptors for deep learning acceleration |
WO2018193360A1 (en) * | 2017-04-17 | 2018-10-25 | Cerebras Systems Inc. | Task synchronization for accelerated deep learning |
US11488004B2 (en) | 2017-04-17 | 2022-11-01 | Cerebras Systems Inc. | Neuron smearing for accelerated deep learning |
US11475282B2 (en) | 2017-04-17 | 2022-10-18 | Cerebras Systems Inc. | Microthreading for accelerated deep learning |
US11328207B2 (en) | 2018-08-28 | 2022-05-10 | Cerebras Systems Inc. | Scaled compute fabric for accelerated deep learning |
US11328208B2 (en) | 2018-08-29 | 2022-05-10 | Cerebras Systems Inc. | Processor element redundancy for accelerated deep learning |
US11321087B2 (en) | 2018-08-29 | 2022-05-03 | Cerebras Systems Inc. | ISA enhancements for accelerated deep learning |
Also Published As
Publication number | Publication date |
---|---|
DE69605319D1 (en) | 1999-12-30 |
CA2236213A1 (en) | 1997-05-09 |
DE69605319T2 (en) | 2000-07-13 |
EP0858633A1 (en) | 1998-08-19 |
JP2004118855A (en) | 2004-04-15 |
US6055618A (en) | 2000-04-25 |
JP2000508094A (en) | 2000-06-27 |
EP0858633B1 (en) | 1999-11-24 |
JP3639848B2 (en) | 2005-04-20 |
JP3933620B2 (en) | 2007-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6055618A (en) | Virtual maintenance network in multiprocessing system having a non-flow controlled virtual maintenance channel | |
EP0821816B1 (en) | Adaptive routing mechanism for torus interconnection network | |
US5797035A (en) | Networked multiprocessor system with global distributed memory and block transfer engine | |
US5659796A (en) | System for randomly modifying virtual channel allocation and accepting the random modification based on the cost function | |
US5533198A (en) | Direction order priority routing of packets between nodes in a networked system | |
Finn | An integration of network communication with workstation architecture | |
US6101181A (en) | Virtual channel assignment in large torus systems | |
EP1032887B1 (en) | Router table lookup mechanism | |
EP0410568B1 (en) | Adaptive routing in networks | |
US5630162A (en) | Array processor dotted communication network based on H-DOTs | |
US7773618B2 (en) | System and method for preventing deadlock in richly-connected multi-processor computer system using dynamic assignment of virtual channels | |
WO2008057830A2 (en) | Using a pool of buffers for dynamic association with a virtual channel | |
US6065063A (en) | Deadlock avoidance method in a computer network | |
US20080109586A1 (en) | System and method for arbitration for virtual channels to prevent livelock in a richly-connected multi-processor computer system | |
Duato | Channel classes: a new concept for deadlock avoidance in wormhole networks | |
Ravindran et al. | Issues in the Design of Direct Multiprocessor Networks | |
Ashraf | Routing in multicomputer networks: A classification and comparison | |
Lu et al. | A fault-tolerant multistage combining network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CA JP |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
ENP | Entry into the national phase |
Ref document number: 2236213 Country of ref document: CA Ref country code: CA Ref document number: 2236213 Kind code of ref document: A Format of ref document f/p: F |
|
ENP | Entry into the national phase |
Ref country code: JP Ref document number: 1997 517327 Kind code of ref document: A Format of ref document f/p: F |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1996932293 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1996932293 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 1996932293 Country of ref document: EP |