WO1997015807A1 - Device for measuring the mass flow rate of a fluid - Google Patents

Device for measuring the mass flow rate of a fluid Download PDF

Info

Publication number
WO1997015807A1
WO1997015807A1 PCT/CH1996/000331 CH9600331W WO9715807A1 WO 1997015807 A1 WO1997015807 A1 WO 1997015807A1 CH 9600331 W CH9600331 W CH 9600331W WO 9715807 A1 WO9715807 A1 WO 9715807A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
plastic
mass flow
flow channel
piezo element
Prior art date
Application number
PCT/CH1996/000331
Other languages
German (de)
French (fr)
Inventor
Adelbert Schalk
Ralf Greitmann
Jürgen Stumpp
Original Assignee
Georg Fischer Rohrleitungssysteme Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Georg Fischer Rohrleitungssysteme Ag filed Critical Georg Fischer Rohrleitungssysteme Ag
Publication of WO1997015807A1 publication Critical patent/WO1997015807A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/32Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters
    • G01F1/325Means for detecting quantities used as proxy variables for swirl
    • G01F1/3259Means for detecting quantities used as proxy variables for swirl for detecting fluid pressure oscillations
    • G01F1/3266Means for detecting quantities used as proxy variables for swirl for detecting fluid pressure oscillations by sensing mechanical vibrations

Definitions

  • the invention relates to a device for measuring the mass flow of a fluid with a stork body arranged in a plastic flow channel and a piezo element projecting into the flow channel as a bending sensor, the vibrations of which are electronically recorded and evaluated to determine the mass flow.
  • a device suitable for carrying out the method also lies within the scope of the invention.
  • Arrangements for measuring the velocity or the volume flow of a fluid in a pipeline have become known under the term Karman's vortex counter. These previously known arrangements have a vortex-producing stork body arranged in a flow channel. The vortices cause pressure fluctuations, the frequency of which is proportional to the flow rate of a fluid. The pressure fluctuations are recorded by a bending sensor, for example a piezo element, and converted into an electrical signal, which can be evaluated accordingly to determine the flow rate.
  • EP-A-0654653 discloses a device for measuring the speed of a fluia with a fluid in a flow channel. nal of a molded part made of plastic and a piezo element as a bending sensor, which is arranged in a fixedly connected to the molded body, and projecting into the flow channel. The vibrations of the piezo element are recorded electronically and the flow rate of the fluid is determined via the vibration frequency.
  • the inventor set himself the task of creating a device of the type mentioned at the beginning with which the measurement of the mass flow of a fluid can be carried out in a simple and inexpensive manner.
  • the solution according to the invention leads to the fact that the quotient of the amplitude and frequency is formed in a microprocessor and used as a signal proportional to the mass flow to indicate the mass flow.
  • the amplitude and the frequency before the quotI ⁇ ducks are preferred over a number of 2, preferably averaged> 8 values.
  • a significant advantage of the device according to the invention over devices according to the prior art is seen in the fact that the flow meter preserved from EP 0654 653 A1 can be converted to a mass flow meter in a simple manner according to the Karman 'vortex payer principle.
  • a possible embodiment of the device according to the invention is equipped with an interfering body arranged in a flow channel of a molded part made of plastic and with a piezo element projecting into the flow channel as a bending sensor.
  • the piezo element is assigned a microprocessor for generating the quotient from the amplitude and frequency and thus the signal proportional to the mass flow.
  • the piezo element is inserted into a plastic shell in a fluid-tight manner.
  • This is expediently firmly connected to a tubular part of the molded part which delimits the flow channel, and in a particularly preferred embodiment the plastic sleeve is in turn connected in a fluid-tight manner to a plastic housing molded onto the tubular part.
  • the device according to the invention is suitable for use in all liquid media against which the plastic used is resistant.
  • Suitable plastics are, for example, PE, PVC, PP, PVDF and other plastics used for piping systems.
  • the design in all-plastic also offers the advantage that dead spaces and undercuts can be avoided and the device is therefore also suitable for use in high-purity media.
  • An electronics unit electrically connected to the piezo element is preferably arranged in the plastic housing.
  • FIG. 1 shows a cross section through a mass flow meter.
  • FIG. 2 shows the circuit diagram of a mass flow meter.
  • a device for determining the mass flow of a fluid shown in FIG. 1 has a molded part 10 with a tubular part 12 that delimits a flow channel for a fluid, and a plastic housing 14 with a cylindrical part 16 and a base part 18 molded onto it.
  • the bottom part 18 is an integral part of the tubular part 12.
  • a piezo element 20 which is surrounded in a fluid-tight manner by a plastic sheath 22, projects into the flow channel in the form of a fin.
  • the plastic sleeve 22 engages in the bottom part 18 of the plastic housing 12 formed by the tubular part 12 and is welded, glued or integrally connected to it.
  • the piezo element 20 is electrically connected via the open end of the plastic sleeve 22, which ends in the cylindrical part 16, to an electronics unit 40 arranged in the cylindrical part 16.
  • an interference or vortex body 24 is arranged upstream of the piezo element 20.
  • the open cylindrical part 16 of the plastic housing 14 is provided with an external thread 26, onto which a cover 28 which closes the plastic housing is screwed.
  • An electrical connection cable 30 passed through the cover 28 serves on the one hand for the external power supply of the electronics unit and on the other hand for the forwarding of the sensor signal used to determine the mass flow.
  • the molded part 10 is connected to a pipeline 36 by means of a union nut 38 by means of a union nut 38, which is formed on the tubular part 12 and has an external thread 35.
  • Fig. 2 shows the circuit diagram of a mass flow meter.
  • the output signal of the sensor is transformed in a microprocessor 32 assigned to the piezo element 20.
  • the volume flow V can also be used via the frequency, and the density p can also be used for further evaluation by means of a further quotient formation from the amplitude and the square of the frequency become.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

In a device for measuring the mass flow rate of a fluid with a spoiler (24) fitted in a flow channel and a piezo-element (20) projecting into said channel as a deflection sensor, the amplitude and frequency of which are electronically detected and evaluated to determine the mass flow rate, the quotient of the amplitude and frequency is found in a microprocessor and used as a mass-flow-rate-proportional signal to display said flow rate.

Description

Einrichtung zur Messung des Massedurchflusses eines FluidesDevice for measuring the mass flow of a fluid
Die Erfindung betrifft eine Einrichtung zur Messung des Masse¬ durchflusses eines Fluides mit einem in einem Durchflusskanal aus Kunststoff angeordneten Storkorper und einem als Biegesen¬ sor m den Durchflusskanal einragenden Piezoelement, dessen Schwingungen elektronisch erfasst und zur Bestimmung des Mas¬ sedurchflusses ausgewertet werden. Im Rahmen der Erfindung liegt auch eine zur Durchfuhrung des Verfahrens geeignete Vor¬ richtung.The invention relates to a device for measuring the mass flow of a fluid with a stork body arranged in a plastic flow channel and a piezo element projecting into the flow channel as a bending sensor, the vibrations of which are electronically recorded and evaluated to determine the mass flow. A device suitable for carrying out the method also lies within the scope of the invention.
Unter dem Begriff Karman' scher Wirbelzahler sind Anordnungen zur Messung der Geschwindigkeit bzw. des Volumendurchflusses eines Fluides in einer Rohrleitung bekanntgeworden. Diese vor¬ bekannten Anordnungen weisen einen in einem Durchflusskanal angeordneten, Wirbel erzeugenden Storkorper auf. Die Wirbel bewirken Druckschwankungen, deren Frequenz proportional zur Durchflussgeschwindigkeit eines Fluides ist. Die Druckschwan¬ kungen werden von einem Biegesensor, beispielsweise von einem Piezoelement, aufgenommen und in ein elektrisches Signal umge¬ wandelt, welches zur Bestimmung der Durchflussgeschwindigkeit entsprechend ausgewertet werden kann.Arrangements for measuring the velocity or the volume flow of a fluid in a pipeline have become known under the term Karman's vortex counter. These previously known arrangements have a vortex-producing stork body arranged in a flow channel. The vortices cause pressure fluctuations, the frequency of which is proportional to the flow rate of a fluid. The pressure fluctuations are recorded by a bending sensor, for example a piezo element, and converted into an electrical signal, which can be evaluated accordingly to determine the flow rate.
Die EP-A-0654653 offenbart eine Einrichtung zur Messung der Geschwindigkeit eines Fluiaes mit einem in einem Durchflusska- nal eines Formteils aus Kunststoff angeordneten Storkorper und einem Piezoelement als Biegesensor, der in einem mit dem Form¬ korper fest verbundenen, in den Durchflusskanal einragenden Steg angeordnet ist. Die Schwingungen des Piezoelementes wer¬ den elektronisch erfasst und über die Schwingungsfrequenz wird die Durchflussgeschwindigkeit des Fluides ermittelt.EP-A-0654653 discloses a device for measuring the speed of a fluia with a fluid in a flow channel. nal of a molded part made of plastic and a piezo element as a bending sensor, which is arranged in a fixedly connected to the molded body, and projecting into the flow channel. The vibrations of the piezo element are recorded electronically and the flow rate of the fluid is determined via the vibration frequency.
In der Praxis ist zusätzlich zur Geschwindigkeit eines Fluides die Kenntnis des Massedurchflusses wichtig. Die Masse wurde bisher, falls die Dichte des Fluides bekannt war, nach der Formel m = V x p ermittelt. Vor allem bei Gasen ist jedoch die Dichte wegen der grossen Druck- und Temperaturabhangigkeit der Masse nicht ohne weiteres bekannt. Es sind auch Massedurch¬ flussmesser bekannt, die nach dem Coriolis-Prinzip arbeiten.In practice, knowing the mass flow is important in addition to the speed of a fluid. If the density of the fluid was known, the mass was previously determined using the formula m = V x p. Especially with gases, however, the density is not readily known due to the large pressure and temperature dependence of the mass. Mass flow meters are also known which operate according to the Coriolis principle.
Angesichts dieser Gegebenheiten hat sich der Erfinder die Auf¬ gabe gestellt, eine Einrichtung der eingangs erwähnten Art zu schaffen, mit welchen die Messung des Massedurchflusses eines Fluides auf einfache und kostengünstige Weise realisiert wer¬ den kann.In view of these circumstances, the inventor set himself the task of creating a device of the type mentioned at the beginning with which the measurement of the mass flow of a fluid can be carried out in a simple and inexpensive manner.
Zur erfindungsgemassen Losung fuhrt bezüglich der Einrichtung, dass in einem Mikroprozessor der Quotient aus Amplitude und Frequenz gebildet und als zum Massedurchfluss proportionales Signal zur Anzeige des Massedurchflusses verwendet wird.With regard to the device, the solution according to the invention leads to the fact that the quotient of the amplitude and frequency is formed in a microprocessor and used as a signal proportional to the mass flow to indicate the mass flow.
Bevorzugt werden die Amplitude und die Frequenz vor der Quoti¬ entenbildung über mehrere 2, vorzugsweise > 8 Werte gemittelt.The amplitude and the frequency before the quotI ¬ ducks are preferred over a number of 2, preferably averaged> 8 values.
Der Quotient aus Amplitude und Frequenz, multipliziert mit ei¬ nem konstanten Faktor KM, ergeben den gesuchten Massestrom.The quotient of amplitude and frequency, multiplied by ¬ ei nem constant factor K M, yield the desired mass flow.
Ein wesentlicher Vorteil der erfindungsgemassen Einrichtung gegenüber Einrichtungen nach dem Stand der Technik wird darin gesehen, dass der aus EP 0654 653 AI bewahrte Druchflussmesser nach dem Prinzip des Karman' sehen Wirbelzahlers auf einfache Weise zu einem Massedurchflussmesser umgerüstet werden können. Eine mögliche Ausführungsform der erfindungsgemassen Einrich¬ tung ist mit einem in einem Durchflusskanal eines Formteils aus Kunststoff angeordneten Störkörper und einem als Biegesen¬ sor in den Durchflusskanal einragenden Piezoelement ausgestat¬ tet. Zudem ist dem Piezoelement ein Mikroprozessor zur Erzeu¬ gung des Quotienten aus Amplitude und Frequenz und damit des zum Massedurchfluss proportionalen Signals zugeordnet.A significant advantage of the device according to the invention over devices according to the prior art is seen in the fact that the flow meter preserved from EP 0654 653 A1 can be converted to a mass flow meter in a simple manner according to the Karman 'vortex payer principle. A possible embodiment of the device according to the invention is equipped with an interfering body arranged in a flow channel of a molded part made of plastic and with a piezo element projecting into the flow channel as a bending sensor. In addition, the piezo element is assigned a microprocessor for generating the quotient from the amplitude and frequency and thus the signal proportional to the mass flow.
Bei einer bevorzugten Ausführungsform der erfindungsgemassen Einrichtung ist das Piezoelement fluiddicht in eine Kunst¬ stoffhülle eingesetzt. Diese ist zweckmässigerweise mit einem den Durchflusskanal begrenzenden rohrförmigen Teil des Form¬ teils fest verbunden, wobei bei einer besonders bevorzugten Ausführungsform die Kunststoffhülle ihrerseits fluiddicht mit einem dem rohrförmigen Teil angeformten Kunststoffgehäuse ver¬ bunden ist.In a preferred embodiment of the device according to the invention, the piezo element is inserted into a plastic shell in a fluid-tight manner. This is expediently firmly connected to a tubular part of the molded part which delimits the flow channel, and in a particularly preferred embodiment the plastic sleeve is in turn connected in a fluid-tight manner to a plastic housing molded onto the tubular part.
Dank der Vollkunststoff-Ausführung eignet sich die erfindungs¬ gemässe Einrichtung für den Einsatz in sämtlichen flüssigen Medien, gegen die der eingesetzte Kunststoff beständig ist. Geeignete Kunststoffe sind beispielsweise PE, PVC, PP, PVDF sowie weitere für Rohrleitungssysteme eingesetzte Kunststoffe. Die Ausführung in Vollkunststoff bietet auch den Vorteil, dass Toträume und Hinterschneidungen vermieden werden können und das Gerät somit auch für den Einsatz in hochreinen Medien ge¬ eignet ist.Thanks to the all-plastic design, the device according to the invention is suitable for use in all liquid media against which the plastic used is resistant. Suitable plastics are, for example, PE, PVC, PP, PVDF and other plastics used for piping systems. The design in all-plastic also offers the advantage that dead spaces and undercuts can be avoided and the device is therefore also suitable for use in high-purity media.
Eine mit dem Piezoelement elektrisch verbundene Elektronikein¬ heit ist bevorzugt im Kunststoffgehäuse angeordnet.An electronics unit electrically connected to the piezo element is preferably arranged in the plastic housing.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung er¬ geben sich aus der nachfolgenden Beschreibung eines bevorzug¬ ten Ausführungsbeispiels sowie anhand der Zeichnung; diese zeigt schematisch inFurther advantages, features and details of the invention emerge from the following description of a preferred exemplary embodiment and from the drawing; this shows schematically in
Fig. 1 einen Querschnitt durch einen Massedurchflussmesser;1 shows a cross section through a mass flow meter.
Fig. 2 das Schaltbild eines Massedurchflussmessers. Eine in Fig. 1 dargestellte Einrichtung zur Bestimmung des Massedurchflusses eines Fluides weist ein Formteil 10 mit ei¬ nem einen Durchflusskanal für ein Fluid begrenzenden rohrför¬ migen Teil 12 sowie einem,diesem angeformten Kunststoffgehäuse 14 mit einem zylindrischen Teil 16 und einem Bodenteil 18 auf. Der Bodenteil 18 ist integraler Bestandteil des rohrförmigen Teils 12.Fig. 2 shows the circuit diagram of a mass flow meter. A device for determining the mass flow of a fluid shown in FIG. 1 has a molded part 10 with a tubular part 12 that delimits a flow channel for a fluid, and a plastic housing 14 with a cylindrical part 16 and a base part 18 molded onto it. The bottom part 18 is an integral part of the tubular part 12.
In das Innere des rohrförmigen Teils 12, d.h. in den Durch¬ flusskanal, ragt flossenformig ein Piezoelement 20, welches fluiddicht von einer Kunststoffhülle 22 umgeben ist. Die Kunststoffhulle 22 greift in den vom rohrförmigen Teil 12 ge¬ bildeten Bodenteil 18 des Kunststoffgehauses 12 ein und ist mit diesem verschweisst, verklebt oder einstuckig verbunden. Das Piezoelement 20 ist über das in den zylindrischen Teil 16 mundende offene Ende der Kunststoffhulle 22 mit einer im zy¬ lindrischen Teil 16 angeordneten Elektronikemheit 40 elek¬ trisch verbunden.Inside the tubular part 12, i.e. A piezo element 20, which is surrounded in a fluid-tight manner by a plastic sheath 22, projects into the flow channel in the form of a fin. The plastic sleeve 22 engages in the bottom part 18 of the plastic housing 12 formed by the tubular part 12 and is welded, glued or integrally connected to it. The piezo element 20 is electrically connected via the open end of the plastic sleeve 22, which ends in the cylindrical part 16, to an electronics unit 40 arranged in the cylindrical part 16.
Im Durchflusskanal mit der Fluidstromungsrichtung x ist strom¬ aufwärts zum Piezoelement 20 em Stör- bzw. Wirbelkorper 24 angeordnet.In the flow channel with the direction of fluid flow x, an interference or vortex body 24 is arranged upstream of the piezo element 20.
Der offene zylindrische Teil 16 des Kunststoffgehauses 14 ist mit einem Aussengewinde 26 versehen, auf welches eine das Kunststoffgehäuse verschliessende Abdeckhaube 28 aufgeschraubt ist. Ein durch die Abdeckhaube 28 hmdurchgefuhrtes elektri¬ sches Anschlusskabel 30 dient einerseits zur externen Strom¬ versorgung der Elektronikemheit und andererseits zur Weiter- leitung des zur Bestimmung des Massedurchflusses verwendeten Sensorsignals.The open cylindrical part 16 of the plastic housing 14 is provided with an external thread 26, onto which a cover 28 which closes the plastic housing is screwed. An electrical connection cable 30 passed through the cover 28 serves on the one hand for the external power supply of the electronics unit and on the other hand for the forwarding of the sensor signal used to determine the mass flow.
Das Formteil 10 ist über einen am rohrförmigen Teil 12 ange¬ formten Anschlussstutzen 34 mit Aussengewinde 35 mittels einer Ueberwurfmutter 38 mit einer Rohrleitung 36 verbunden.The molded part 10 is connected to a pipeline 36 by means of a union nut 38 by means of a union nut 38, which is formed on the tubular part 12 and has an external thread 35.
Fig. 2 zeigt das Schaltbild eines Massedurchflussmessers. In einem dem Piezoelement 20 zugeordneten Mikroprozessor 32 wird aas Ausgangssignal des Sensors umgeformt. Neben dem Quotienten aus der Amplitude U und der Frequenz f, der zum Massedurch- fluss M führt, können über die Frequenz auch der Volumendurch- fluss V sowie durch eine weitere Quotientenbildung aus der Am¬ plitude und dem Quadrat der Frequenz auch die Dichte p zur weiteren Auswertung verwendet werden. Fig. 2 shows the circuit diagram of a mass flow meter. The output signal of the sensor is transformed in a microprocessor 32 assigned to the piezo element 20. In addition to the quotient From the amplitude U and the frequency f, which leads to the mass flow M, the volume flow V can also be used via the frequency, and the density p can also be used for further evaluation by means of a further quotient formation from the amplitude and the square of the frequency become.

Claims

P a t e n t a n s p r ü c h e Patent claims
1. Einrichtung zur Messung des Massedurchflusses eines Flui¬ des mit einem in einem Durchflusskanal aus Kunststoff an¬ geordneten Storkorper (24) und einem als Biegesensor in den Durchflusskanal einragenden Piezoelement (20) , dadurch gekennzeichnet, dass neben der Frequenz (f) auch die Am¬ plitude (U) gemessen wird.1. Device for measuring the mass flow of a fluid with a stork body (24) arranged in a plastic flow channel and a piezo element (20) projecting into the flow channel as a bending sensor, characterized in that in addition to the frequency (f), the Am¬ plitude (U) is measured.
2. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, dass in einem Mikroprozessor (32) der Quotient aus Amplitude (U) und Frequenz (f) gebildet und als zum Massedurchfluss proportionales Signal zur Anzeige des Massedurchflusses verwendet wird.2. Device according to claim 1, characterized in that the quotient of amplitude (U) and frequency (f) is formed in a microprocessor (32) and is used as a signal proportional to the mass flow to indicate the mass flow.
3. Einrichtung nach Anspruch 2, dadurch gekennzeichnet, dass die Amplitude (U) und die Frequenz (f) vor der Quotienten- bildung über mehrere Werte, vorzugsweise > 8 Werte gem.it- telt werden.3. Device according to claim 2, characterized in that the amplitude (U) and the frequency (f) are averaged over several values, preferably> 8 values, before the quotient formation.
4. Einrichtung zur Durchfuhrung des Verfahrens nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass sie emen in einem Durchflusskanal emes Formteils (10) aus Kunst¬ stoff angeordneten Storkorper (24) und em als Biegesensor m den Durchflusskanal einragendes Piezoelement (20) auf¬ weist. Einrichtung nach Anspruch 4, dadurch gekennzeichnet, dass das Piezoelement (20) fluiddicht in eine Kunststoffhülle (22) eingesetzt ist.4. Device for carrying out the method according to one of claims 1 to 3, characterized in that it is arranged in a flow channel emes a molded part (10) made of plastic stork body (24) and em as a bending sensor m projecting the flow channel piezo element (20) has. Device according to claim 4, characterized in that the piezo element (20) is inserted in a fluid-tight manner in a plastic sleeve (22).
Einrichtung nach Anspruch 5, dadurch gekennzeichnet, dass die Kunststoffhülle (22) mit einem den Durchflusskanal be¬ grenzenden rohrförmigen Teil (12) fest verbunden ist.Device according to claim 5, characterized in that the plastic casing (22) is firmly connected to a tubular part (12) delimiting the flow channel.
Einrichtung nach Anspruch 6, dadurch gekennzeichnet, dass die Kunststoffhulle (22) fluiddicht mit einem dem rohrför¬ migen Teil (12) angeformten Kunststoffgehäuse (14) verbun¬ den ist.Device according to claim 6, characterized in that the plastic sleeve (22) is connected in a fluid-tight manner to a plastic housing (14) molded onto the tubular part (12).
Einrichtung nach Anspruch 7, dadurch gekennzeichnet, dass im Kunststoffgehäuse (14) eine mit dem Piezoelement (20) elektrisch verbundene Elektronikeinheit (40) angeordnet ist. Device according to claim 7, characterized in that an electronics unit (40) electrically connected to the piezo element (20) is arranged in the plastic housing (14).
PCT/CH1996/000331 1995-10-26 1996-09-25 Device for measuring the mass flow rate of a fluid WO1997015807A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH3018/95 1995-10-26
CH301895 1995-10-26

Publications (1)

Publication Number Publication Date
WO1997015807A1 true WO1997015807A1 (en) 1997-05-01

Family

ID=4246794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH1996/000331 WO1997015807A1 (en) 1995-10-26 1996-09-25 Device for measuring the mass flow rate of a fluid

Country Status (1)

Country Link
WO (1) WO1997015807A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004063499A1 (en) * 2004-12-24 2006-07-06 Huba Control Ag Vortex principle flow meter has constriction integral with the piezoelectric sensor element mount and fits through holes in tube

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988003260A1 (en) * 1986-10-24 1988-05-05 Lew Hyok S Vortex shedding flowmeter
WO1989005965A1 (en) * 1987-12-16 1989-06-29 Lew Hyok S Vortex flowmeter
US5090251A (en) * 1990-03-23 1992-02-25 Lew Hyok S Vortex flowmeter with torsional vortex sensor
WO1993007450A1 (en) * 1991-10-08 1993-04-15 Lew Hyok S Noise rejecting vortex flowmeter
EP0654653A1 (en) * 1993-11-22 1995-05-24 Georg Fischer Rohrleitungssysteme AG Device for measuring the speed of a fluid

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988003260A1 (en) * 1986-10-24 1988-05-05 Lew Hyok S Vortex shedding flowmeter
WO1989005965A1 (en) * 1987-12-16 1989-06-29 Lew Hyok S Vortex flowmeter
US5090251A (en) * 1990-03-23 1992-02-25 Lew Hyok S Vortex flowmeter with torsional vortex sensor
WO1993007450A1 (en) * 1991-10-08 1993-04-15 Lew Hyok S Noise rejecting vortex flowmeter
EP0654653A1 (en) * 1993-11-22 1995-05-24 Georg Fischer Rohrleitungssysteme AG Device for measuring the speed of a fluid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004063499A1 (en) * 2004-12-24 2006-07-06 Huba Control Ag Vortex principle flow meter has constriction integral with the piezoelectric sensor element mount and fits through holes in tube

Similar Documents

Publication Publication Date Title
US4459858A (en) Flow meter having an electromagnetic sensor probe
EP1993742B1 (en) Device for determining and/or monitoring the volume or mass flow rate of a medium in a pipe conduit
DE19521786B4 (en) Method and apparatus for monitoring a particle flow in a conduit by periodic excitation
EP0762088A2 (en) Method and device for detecting critical level for fluids and bulk materials
DE3239126A1 (en) FLOWMETER FOR FLUIDE
DE10249543A1 (en) vortex
DE1498271B2 (en) FLOW METER WITHOUT MOVING PARTS TO DISPLAY A MASS FLOW
DE2713050A1 (en) FLOW METER
EP0713079A2 (en) Indicating device for a vortex flowmeter
WO1997015807A1 (en) Device for measuring the mass flow rate of a fluid
DE102005051785B4 (en) Device and method for turbulence-free measurement of the flow rate and / or flow rate of a fluid
US6675661B1 (en) Device for measuring the volume flow of a fluid in a pipe
DE3431741A1 (en) Device for measuring the filling level of liquids
EP0831303A3 (en) Vortex flow sensor with a turbulance grid
DE102007044079A1 (en) Flow sensor for determining mass of fluid flowing through flow channel in time interval, has measurement body which is formed in fluid flow and passes fluid in asymmetric manner
EP1332339B1 (en) Coupling element for an ultrasonic flowmeter
WO1995016186A1 (en) Flow measuring probe
DE3301855A1 (en) Method for measuring the velocity of flowing media and a device for carrying out this method
DE19933043B4 (en) Level sensor for a liquid container and method for determining the level in a liquid container
DE4128178A1 (en) Fuel level measurer in fibre reinforced laminated tank of aircraft - has non-magnetic sensing tube contg. magnetic float and carrying Hall probes communicating with interior of tank
DD219381A1 (en) SENSOR FOR THE VOLUME FLOW MEASUREMENT OF A BREATHING GAS
DE10114576C2 (en) Device for measuring the flow rate of flowable media in a pipeline
DE19650621A1 (en) Measuring device for recording the flow rate
DE10134307B4 (en) Device for continuously measuring the level of liquids in a container
DE4129199A1 (en) Sensor for small-scale measurement of marine and fresh water flow - has shaped sensing element protruding from protective cap and transferring force applied by flow to flexurally sensitive element

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase