WO1997011471A1 - Apparatus for increasing magnetic flux density of permanent magnet - Google Patents

Apparatus for increasing magnetic flux density of permanent magnet Download PDF

Info

Publication number
WO1997011471A1
WO1997011471A1 PCT/JP1996/002662 JP9602662W WO9711471A1 WO 1997011471 A1 WO1997011471 A1 WO 1997011471A1 JP 9602662 W JP9602662 W JP 9602662W WO 9711471 A1 WO9711471 A1 WO 9711471A1
Authority
WO
WIPO (PCT)
Prior art keywords
flux density
magnetic flux
magnets
magnetic
permanent magnets
Prior art date
Application number
PCT/JP1996/002662
Other languages
French (fr)
Japanese (ja)
Inventor
Yasurou Kuratomi
Original Assignee
Yasurou Kuratomi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yasurou Kuratomi filed Critical Yasurou Kuratomi
Priority to AU69460/96A priority Critical patent/AU6946096A/en
Publication of WO1997011471A1 publication Critical patent/WO1997011471A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • C02F1/481Treatment of water, waste water, or sewage with magnetic or electric fields using permanent magnets
    • C02F1/482Treatment of water, waste water, or sewage with magnetic or electric fields using permanent magnets located on the outer wall of the treatment device, i.e. not in contact with the liquid to be treated, e.g. detachable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • C02F1/481Treatment of water, waste water, or sewage with magnetic or electric fields using permanent magnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M27/00Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like
    • F02M27/04Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like by electric means, ionisation, polarisation or magnetism
    • F02M27/045Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like by electric means, ionisation, polarisation or magnetism by permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0273Magnetic circuits with PM for magnetic field generation
    • H01F7/0278Magnetic circuits with PM for magnetic field generation for generating uniform fields, focusing, deflecting electrically charged particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/085Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy creating magnetic fields
    • B01J2219/0852Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy creating magnetic fields employing permanent magnets

Definitions

  • the present invention relates to a magnetic flux density amplifying device for a permanent magnet, which is used for a fluid activating device for activating a fluid such as water, fuel, and various industrial materials.
  • This kind of magnetic flux density amplifying device is widely used for liquid fuel and gas fuel used for agricultural and industrial machines, various vehicles, various combustion devices, etc., or for household, agricultural and water industries. It is used as a means for activating fluids such as water, water, wastewater, or raw materials such as gases and liquids used in the manufacturing process of scientific products, chemicals or foods.
  • a disk-shaped permanent magnet 1 having a center hole 2 shown in FIG. 1 and FIG. 2 has an area around the center hole a of the disk surface of 110 gauss (hereinafter referred to as G) and an outer peripheral edge of the disk surface. It has a magnetic flux density of 380 G at the vicinity b and 650 G at the outer periphery c, but the magnetic pole faces face each other so that five such permanent magnets generate an attractive magnetic field.
  • G 110 gauss
  • the magnetic flux density near the outer peripheral edge of the pole face of the permanent magnet 1 at the left and right ends is only 4490 G and 4480 G, and their average value 4 4 8 5 G and a single permanent magnet
  • the improvement rate of the magnetic flux density when five units are connected in series is only less than 20%.
  • the surfaces (magnetic pole surfaces) having the magnetic poles of a plurality of permanent magnets face each other, and the magnetic pole surfaces are arranged so as to be attracted to each other or to repel each other.
  • a magnetic or non-magnetic material is interposed between the magnets to increase the magnetic flux density.
  • the inventor of the present invention has pursued an arrangement in which a limited number of permanent magnets are arranged to form a single device by concentrating more magnetic flux lines, thereby achieving a higher magnetic flux density. Research to gain improvement.
  • the permanent magnet to be used is most preferably a neodymium iron boron magnet (so-called neodymium magnet), which can attain the highest magnetic flux density by itself, but if permanent magnets of various new materials are developed in the future, Of course, these new magnets can be used, and when using conventional cobalt magnets, fluorite magnets, etc., the same as when using neodymium magnets, depending on the magnetic flux density of each unit. The improvement rate of the magnetic flux density can be confirmed.
  • neodymium iron boron magnet so-called neodymium magnet
  • Magnetic pole surface A type in which magnetic members or non-magnetic intervening members are installed between the magnetic pole surfaces, and a bow-absorbing I magnetic field is generated between them.
  • more permanent magnets need to be connected in series, so there is a limit to how such permanent magnets can be arranged in order to obtain a magnetic flux density amplifying device.
  • the interposed member is considered to be a means for generating a larger magnetic pole gradient between the magnetic pole faces, the installation of the interposed member is extremely effective for amplifying the magnetic flux density. If a method of obtaining the magnetic pole gradient is conceivable, it is certain that by using them together, a higher magnetic flux density gain can be obtained.
  • the inventor of the present invention has used conventional disk-shaped permanent magnets or disk-shaped permanent magnets having a central hole, and arranged them in parallel on the same plane without facing the magnetic pole faces of the permanent magnets. However, they discovered that a new large magnetic pole gradient could be obtained between the attracting or repelling permanent magnets, and completed the present invention.
  • FIG. 1 is a side view of a permanent magnet alone.
  • FIG. 2 is a plan view of what is shown in FIG.
  • FIG. 3 is a front view showing a conventional permanent magnet connected type.
  • FIG. 4 is a plan view partially showing a cross section of the first embodiment of the present invention.
  • FIG. 5 is a front view of what is shown in FIG.
  • FIG. 6 is a front view, partially shown in section, of the second embodiment.
  • FIG. 7 is a plan view partially showing a cross section of the third embodiment.
  • FIG. 8 is a front view of what is shown in FIG.
  • FIG. 9 is a front view, partially in section, of the fourth embodiment.
  • FIG. 10 is a plan view, partially in section, of the fifth embodiment.
  • FIG. 11 is a front view of what is shown in FIG.
  • FIG. 12 is a front view of the sixth embodiment.
  • FIG. 13 is a plan view, partially in section, of the seventh embodiment.
  • FIG. 14 is a longitudinal sectional view at the center of FIG.
  • FIG. 15 is a plan view, partially in section, of the eighth embodiment.
  • FIG. 16 is a cross-sectional view at the center of the one shown in FIG.
  • FIG. 17 is a front view, partially in section, of the ninth embodiment.
  • FIG. 18 is a longitudinal sectional view at the center of the one shown in FIG.
  • FIG. 19 is a plan view partially showing a cross section of the tenth embodiment.
  • FIG. 20 is a cross-sectional view at the center of the one shown in FIG.
  • FIG. 21 is a conceptual plan view of an eleventh embodiment in which magnets are continuously arranged in an arc shape.
  • FIG. 22 is a conceptual plan view of the eleventh embodiment in which magnets are continuously arranged in a circle.
  • FIG. 23 is a front view including a cross section of the twelfth embodiment.
  • FIG. 24 is a longitudinal sectional view of the twelfth embodiment.
  • FIG. 25 is a plan view of the thirteenth embodiment.
  • FIG. 26 is a front cross-sectional view of the thirteenth embodiment.
  • FIG. 27 is a plan view of the fourteenth embodiment.
  • FIG. 28 is a left side cross-sectional view of the fourteenth embodiment.
  • FIG. 29 is a left side cross-sectional view of the fifteenth embodiment.
  • FIG. 30 is a plan view of the sixteenth embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
  • the magnetic pole faces of a plurality of disk-shaped neodymium magnets are arranged on the same plane, and an attraction magnetic field or a repulsive magnetic field is generated between these permanent magnets.
  • an array force that generates an attractive magnetic field.
  • the shape of the planar arrangement of the permanent magnets is arbitrary, and the magnets are arranged linearly, or all magnets are arranged adjacently on a grid, or arranged on a predetermined arc or circumference. And so on.
  • the magnets are mutually point-adsorbed on their outer peripheral parts.
  • a new large focusing force of the magnetic field lines is observed, so that a new large magnetic pole gradient can be obtained between the two magnets.
  • Reference numeral 1 denotes a disk-shaped neodymium magnet having a center hole 2, which is an example in which five single bodies having a rating of 3400 G are used. is there.
  • Reference numerals 3 and 3 ' denote a pair of lid-shaped casings made of a magnetic material. The lid-shaped casings are attracted to the magnetic pole surfaces of the respective magnets 1 and cover them, and the ends are bent to partially cover the outer periphery of the magnet 1. I have.
  • the five magnets 1 are arranged so that the pole faces are NS—S—N—S—N or S—N—S—N-S. They are arranged so that they meet each other.
  • Numerical values obtained by measuring the magnetic flux density at each part of the device of the present invention configured as described above are as shown in the drawing, and a substantially middle point between the center hole 2 and the outer peripheral part 1 ′ of the pole face of the magnet 1 is: From the left magnet in Fig. 4, 3870G, 3910G, 3410G, 4260G, and 3280G are obtained. The magnetic flux density generated in the gap 4 between the five magnets 1 is from the left as shown in Fig. 5. , 82 90 G, 7720 G, 8360 G and 7370 G.
  • the average magnetic flux density of gap 4 obtained by simply averaging the magnetic flux densities of these gaps 4 is 7935 G. Compared to the rated 3400 G of the magnet used alone, the result of connecting five magnets in a row This means that about 230% improvement in magnetic flux density was obtained.
  • the magnetic flux density of 7000 G to 8000 G is enough to activate fluids such as beverages, fertilizers, and chemical raw materials. Fluid activation can be achieved.
  • the size of this device, including the lid-shaped casings 3 and 3 *, is 94 mm wide, 10 mm thick and 22 mm deep. Second embodiment
  • FIG. 6 The second embodiment is shown in Fig. 6, which uses two sets of the magnets 1 in a row of 5 shown in the first embodiment, and uses a total of 10 magnets. Examples are shown. While FIG. 6 is shown as a front view, the plan view of this structure appears identical to that shown in FIG.
  • the magnetic flux density in the gap 4 between the magnets in the horizontal direction shown in Fig. 6 is 9640G, 9200G, 9270G and 9050G from the left.
  • the average magnetic flux density of the gap 4 obtained by simply averaging the magnetic flux density of the gap 4 is 9290 G.
  • five magnets connected in series were two. As a result, the magnetic flux density was improved by about 273%.
  • the magnetic flux density of 9000 G is a value that is sufficiently effective for activating various fluids including fuel, and the size of this device is 94 mm in width and thickness, including the lid-like casings 3 and 3 '. 16 mm and 22 mm deep.
  • Reference numeral 1 denotes a disk-shaped neodymium magnet having a center hole 2, which is an example in which five single elements rated at 3400 G are used.
  • Reference numerals 3 and 3 ' denote a pair of groove-shaped casings made of a magnetic material, which continuously cover the outer peripheral portion 5 of the five magnets 1 in the longitudinal direction, and one point of each magnet 1 comes into contact with the magnets and is bent. The end portion covers part of the pole face of magnet 1.
  • the five magnets 1 are arranged such that the magnetic pole faces are NS—N—S—N or S—N—S—N—S. At one point on the outer periphery, the adjacent magnets 1 attract each other. They are aligned to fit.
  • the numerical values obtained by measuring the magnetic flux density at each part of the device of the present invention configured as described above are as shown in the drawing, and the middle point between the center hole 2 of the pole face of the magnet 1 and the outer peripheral part is the seventh point. From the left magnet in the figure, 3690 G, 3960 G, 4070 G, 4080 G, and 4100 G, and the magnetic flux density generated in the gap 4 between the five magnets 1 was 7400 G from the left as shown in FIG. G, 7630G, 7310G and 8520G.
  • the average of the gap 4 obtained by simply averaging the magnetic flux densities of these gaps 4
  • the magnetic flux density is 7715G.
  • the magnetic flux density of 7000G or more is a numerical value sufficient to activate fluids such as beverages, fertilizers, and chemical raw materials.
  • FIG. 9 a set of five magnets 1 in a row shown in the third embodiment of FIGS. An example using a magnet is shown.
  • FIG. 9 is shown as a front view, the plan view of this structure appears identical to that shown in FIG.
  • the magnetic flux density in the gap 4 between the transverse magnets 1 shown in Fig. 9 is 8500G, 9080G, 8870G, and 8960G from the left, and these magnetic flux densities in the gap 4 are simply averaged.
  • the average magnetic flux density of the obtained gap 4 was 8852 G.
  • the five magnets connected in two stages resulted in about 260% more. This means that the improvement in magnetic flux density has been obtained.
  • the magnetic flux density of 8800 G is a value that is sufficiently effective for activating various fluids, and the size of this device, including the lid-shaped casings 3 and 3 ', is 94 mm wide, 16 mm thick and 22 mm.
  • the fifth embodiment shown in FIG. 10 and FIG. 11 uses four neodymium magnets 1 shown in the above-described embodiment and uses them in a grid pattern.
  • the pole face of the upper left magnet is N
  • the lower left is S
  • the upper right is S in Fig. 10 to show an example of the polarity of the pole face.
  • the lower right is N.
  • the lid-shaped casing 3 is attracted to and covers the magnetic pole surface of each magnet 1, and its end is folded back to cover the outer peripheral portion of the magnet 1.
  • the four magnets 1 can form four gaps 4 at the four locations, and the concentrated magnetic flux overlaps the portion surrounded by the four magnets 1 to form a complicated fifth gap. Part 4 can be formed.
  • the average of the magnetic flux densities of these gap portions 4 was 8310 G.
  • the four permanent magnets 1 have a magnetic flux density improvement s of about 244% or more.
  • the magnetic flux density of 8300 G is a numerical value that is sufficiently effective for activating various fluids, and the size of this device is 4 Omm wide and 4 mm thick, including the lid-like casings 3 and 3 ′. It is 16 mm deep and 4 O mm deep.
  • FIG. 12 shows the force>'shown as a front view, and the plan view of this structure appears identical to that shown in FIG.
  • eight magnets 1 can form four gaps> 4 at four gaps, and the concentrated magnetic flux overlaps the central portion surrounded by the eight magnets 1 to form a complex Five gap portions 4 can be formed.
  • the average of the magnetic flux densities in these gaps 4 was 9260 G.
  • an improvement of about 272% in magnetic flux density was obtained.
  • Fig. 13 and subsequent figures show the seventh and subsequent embodiments, all of which are arranged by aligning the magnetic pole surface of the magnet 1 on the same plane as the magnetic pole surface of the adjacent magnet 1.
  • Magnetic flux converging points are provided between the magnets and between the magnets and the casing, thereby obtaining a large magnetic pole gradient that could not be obtained conventionally, and these are 800 G to 150 G. It succeeded in obtaining a magnetic flux density of 0 G.
  • the seventh embodiment shown in FIGS. 13 and 14 can be said to be a modification of the second embodiment, in which five magnets 1 are arranged in series with the pole faces aligned on the same plane. One set, two sets of ten magnets are superimposed in two stages, five each, and a ring-shaped magnetic material is interposed between two magnets 1 that are superposed and adsorbed to each other. A member 5 is interposed, and two magnets 1 each having five steps are accommodated in a cylindrical casing 6 having both ends opened, and as shown in FIG. Is in point contact with the inner wall of the cylindrical casing 6.
  • the present invention is applied to an apparatus for activating a fluid flowing inside by incorporating it in a circuit in which various fluids flow.
  • the action of magnetic field lines and the action of far-infrared rays are simultaneously applied to the fluid, and the seventh embodiment shown in FIG. 13 is used.
  • the magnet 1 and the interposition member 5 are arranged, eight magnets 1 in one stage are used in a total of 16 in two stages, and a groove type cover 7 made of a magnetic material that comes into point contact with these magnets 7 , 7 are arranged around, and all of them are accommodated in a ceramic tube 8 that generates far-infrared rays, and they are accommodated in a tubular casing 10 having connection nozzles 9, 9 at both ends.
  • a part of the outer peripheral part of the magnet 1 is in point contact with the inner walls of the grooved covers 7, 7, and the magnetic flux lines converge around the contact point, resulting in a large magnetic pole gradient force.
  • 5 and a large magnetic pole gradient force can be obtained around the ring-shaped interposition member 5 made of a magnetic material interposed between the magnets 1 and the groove-shaped force par 7, 7
  • the fluid that has flowed into the casing 10 from the connection nozzle 9 is exposed to the force of both the magnetic field lines and far-infrared rays because the ceramic tube is exposed to the force of 8 s between the nozzles. Will be activated in the meantime.
  • the ninth embodiment shown in FIGS. 17 and 18 can be said to be a modification of the second embodiment.
  • a plurality of thin rods made of a magnetic material are interposed as interposition members 5 ′ over the entire length of the magnets 1 provided in series, and a similar interposition member 5 is provided between the lid-shaped casings 3, 3 ′ and the magnet 1.
  • the magnetic flux lines are focused around these interposed members 5 ', creating a complicated state of the focusing, and the gap is created. Generates a larger magnetic pole gradient.
  • the tenth embodiment shown in FIGS. 19 and 20 is for giving only the action of the lines of magnetic force to the fluid, and the upper and lower portions of the magnet 1 configured in the same manner as the embodiment shown in FIG. Instead of the grooved cover 7, plate pieces 11 made of a magnetic material were abutted and adsorbed on the magnetic pole surface, and were accommodated in a tubular casing 10 provided with connection nozzles 9 at both ends. Things.
  • the magnetic flux lines converge in this embodiment mainly at the gaps 4 between the magnets 1 with the interposed members 5 interposed therebetween, the magnets 1, the magnets 1, and the outer periphery of the magnet 1.
  • the magnetic field lines of these focusing portions are complicatedly complicated, and an extremely large magnetic pole gradient is generated in the casing 10.
  • the eleventh embodiment shown in FIGS. 21 and 22 is different from the above-described embodiment in that the pole faces of the disk-shaped magnets are aligned on the same plane, and each magnet is entirely linear. While the magnetic pole faces are aligned on the same plane, the magnets are arranged in an arc or circle as a whole, and the amplification of magnetic flux density according to the present invention This is an effective form when the device is incorporated into a part of another component as a fluid activation device. Also in this case, the point that a large number of convergence points of the lines of magnetic force are generated around the gap 4 between the magnets 1 and the contact point between the casing and the magnet 1 is the same as in each of the embodiments described above. It is optional to superpose several magnets connected along these arcs or circles.
  • a disk-shaped neodymium having a central hole 2 Although an example using a rubber magnet has been described, the presence or absence of a center hole, the shape of the magnet, and the material of the magnet are not limited to this, and the number of magnets connected, the number of superposed stages, the number of The material and shape can be arbitrarily selected. Twelfth embodiment
  • the embodiment shown in FIGS. 23 and 24 is a twelfth embodiment obtained by further expanding and improving the tenth embodiment shown in FIGS. 19 and 20 and is made of a fluid.
  • the tenth embodiment in which the cross-sectional shape of the entire device is rounded, was greatly revised.
  • a series of four permanent magnets 1 with four surfaces adsorbed to each other are connected in a row in eight rows, and a total of 32 magnets are housed in a casing 10 consisting of a rectangular parallelepiped with a rectangular cross section.
  • one thing 10 includes two connection nozzles 9.
  • the interposition member 5 and the plate piece 11 can be arbitrarily installed, but in the case of the illustrated example, four interposition members are provided on both sides in the longitudinal direction of the continuous permanent magnet, Two intermediate members are placed between them so that four permanent magnets in a row are divided into two. Further, iron and ceramic plate pieces are arranged so as to surround the composite of permanent magnets, and they are inserted and fixed in the casing 10.
  • 32 neodymium magnets having a diameter of 17 mm, a thickness of 6 mm, and a single magnetic flux density of 3400 G were used as described above, and the magnetic flux along the longitudinal axis was used.
  • a value S of at least 770,000 G and a value of at most 1,440,000 G were obtained, and a measurement force of about 1,100,000 G was obtained on average.
  • the fluid injected from the connection nozzle 9 is formed. It was also confirmed that the gas smoothly flowed inside the casing 10 in parallel with the pole faces aligned on the same plane, and flowed out from the connection nozzle 9 installed on the opposite side.
  • a further interposition member 5 can be installed in the center hole as shown in FIG. 24. It is possible to arbitrarily increase the number of convergence points, and it is also possible to install a large number of ceramic balls in the lumen formed by four central holes arranged in succession. 13th embodiment
  • the thirteenth embodiment shown in FIG. 25 is a further enlarged and improved version of the fifth and sixth embodiments shown in FIGS. 10 to 12, and is provided with a fluid passage in advance.
  • This is a type for interposing a magnetic flux density amplifying device, and four permanent magnets similar to those used in each of the above-described embodiments are planarly arranged on a net 12 having a frame 13. Then, four magnets are further arranged on the opposite surface of the net 12 in a state of being attracted to the four permanent magnets described above.
  • a magnetic flux density of at least 450 G, a maximum of 800 G, and an average of 600 G can be obtained, but the number of permanent magnets used is eight. However, since the permanent magnets are attracted to each other from the front and back of the net 12 placed, no auxiliary means for fixing the permanent magnet to the net 12 is required.
  • FIGS. 27 and 28 show a fourteenth embodiment which is an improvement of the thirteenth embodiment.
  • a total of eighteen permanent magnets are used instead of eight permanent magnets.
  • the average magnetic flux density in this case is about 900 G 15th embodiment
  • FIG. 29 is also a fifteenth embodiment according to an improvement of the thirteenth embodiment, and the configuration of the permanent magnet is the same as that of the examples of FIGS. 27 and 28, but is made of a magnetic material.
  • a net 12 is used, and nine permanent magnets are arranged on the net 12 on one side, and nine permanent magnets are further attracted to these permanent magnets via an interposition member.
  • This is a design in which it is not desirable that the permanent magnet is exposed on one side of the net 12, and the numerical values of the magnetic flux density are the same as shown in FIGS. 27 and 28.
  • the number of permanent magnets, the shape of the permanent magnets, and the like can be arbitrarily selected, and the design can be freely changed according to the purpose of use.
  • FIG. 30 shows a sixteenth embodiment improved based on the idea of the thirteenth embodiment, in which the intervening member 5 which has been frequently used is replaced with a net 12 for use.
  • a large number of interposition members 5 are arranged and fixed in the form of springs on the frame 13, and they are used in the same manner as the net 12 .
  • the example shown in FIG. 27 is the same as that shown in FIG. 27.
  • An example in which a similar arrangement of permanent magnets is applied is shown. Industrial applicability
  • the average magnetic flux density of the device is used as the magnetic flux density of the permanent magnet alone. 0% to can and this increase in 3 0 0%, thus using the present invention apparatus is magnetic flux density forces s amplification, fuel, food, various rapidly and inexpensively activating a raw material to become fluid Therefore, it is possible to obtain a device that is extremely effective for all types of fluids requiring activation that are used in the industry, and the environmental protection, This is an effective solution for saving resources.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

An apparatus comprising an array of permanent magnets for converging their fluxes to increase its average flux density to 200-300 % of the flux density of a single magnet so that it can be used for irradiating a flow of such an object as fuel or industrial material with strong magnetic lines of force in the presence or absence of far-infrared radiation to promote reactions, mixing or maturation. In order to obtain a higher magnetic flux density by using commercially available permanent magnets of 3000-4500 gausses, a plurality of discoid type or flat polygonal permanent magnets are arranged continuously so that the pole faces of the magnets form a horizontal plane, and magnetic lines of force are focused in the clearances between the magnets and around the contact regions of the magnets with a case or cover of a magnetic substance, and the circumferences of the magnetic members interposed between lines of the magnets, whereby a higher pole gradient is obtained, and whereby the magnetic flux density is increased.

Description

明 細 書 永久磁石の磁束密度増幅装置 技術分野  Description Permanent magnet magnetic flux density amplifying device Technical field
本発明は水、 燃料、 各種工業用原料等の流体を活性化する流体活性化 装置に使用される、 永久磁石の磁束密度増幅装置に関するものである。 この種の磁束密度の増幅装置は、 農業用、 工業用等の機械、 各種車両、 各種燃焼装置等に用いられる液体燃料、 気体燃料、 または家庭用、 農水 産業用等に広汎に使用される上水、 用水、 排水、 或は、 科学製品、 薬品 若しくは食品等の製造工程に於て使用される気体、 液体等の原材料等々 の流体を活性化するための手段として用いられる。 背景技術  TECHNICAL FIELD The present invention relates to a magnetic flux density amplifying device for a permanent magnet, which is used for a fluid activating device for activating a fluid such as water, fuel, and various industrial materials. This kind of magnetic flux density amplifying device is widely used for liquid fuel and gas fuel used for agricultural and industrial machines, various vehicles, various combustion devices, etc., or for household, agricultural and water industries. It is used as a means for activating fluids such as water, water, wastewater, or raw materials such as gases and liquids used in the manufacturing process of scientific products, chemicals or foods. Background art
従来から流体活性化装置に対して各種の磁石を利用する形式が数多く 発表されているが、 それらのものは複数の永久磁石を連設して、 それら 磁石間に相互に吸引し合う磁場 (吸引磁場) やあるいは反発し合う磁場 (反発磁場) を発生させることによって、 磁束密度を向上させる努力が 行われている。  Many types of magnets have been announced for fluid activation devices that use various types of permanent magnets, and a magnetic field (attractive) that mutually attracts the magnets between these magnets has been published. Efforts are being made to increase the magnetic flux density by generating a repulsive magnetic field or a repelling magnetic field.
例えば、 第 1図及び第 2図に示す中心孔 2を有する円盤状の永久磁石 1は、 円盤面の中心孔付近 aで 1 1 3 0ガウス (以下 Gと表記する) 、 円盤面の外周縁付近 bで 3 8 0 0 G、 外周縁 cで 1 6 5 0 Gの磁束密度 を有しているが、 このような永久磁石を五個互いに吸引磁場を発生する ように、 磁極面を互いに対面させて第 3図のごとく連設した場合、 左右 端部の永久磁石 1の磁極面の外周縁付近 bの磁束密度は 4 4 9 0 G及び 4 4 8 0 Gに過ぎず、 それらの平均値 4 4 8 5 Gと単体の永久磁石の同 一部分の磁束密度 3 8 0 0 Gと比較すると、 五個連設した場合の磁束密 度の向上率は、 2 0 %弱に過ぎない。 For example, a disk-shaped permanent magnet 1 having a center hole 2 shown in FIG. 1 and FIG. 2 has an area around the center hole a of the disk surface of 110 gauss (hereinafter referred to as G) and an outer peripheral edge of the disk surface. It has a magnetic flux density of 380 G at the vicinity b and 650 G at the outer periphery c, but the magnetic pole faces face each other so that five such permanent magnets generate an attractive magnetic field. In this case, the magnetic flux density near the outer peripheral edge of the pole face of the permanent magnet 1 at the left and right ends is only 4490 G and 4480 G, and their average value 4 4 8 5 G and a single permanent magnet Compared with the partial magnetic flux density of 3800 G, the improvement rate of the magnetic flux density when five units are connected in series is only less than 20%.
このような従来の形式は、 複数の永久磁石の磁極を有する面 (磁極面 ) を相互に対面させ、 磁極面同志を相互に吸着し合うかあるいは反発し 合うように配列して連設する形式であり、 それら磁石の間に、 磁性体も しくは非磁性体を介置して、 磁束密度を高める工夫が行われている。 こ のような形式の磁束密度の増幅装置では、 本件出願人による過去の出願 である特願平 7 - 1 1 2 3 0 2力 s最も効率の良い装置を達成している。 第 3図に示したような一般的従来形式によつて得られる磁束密度の向 上率は、 使用した永久磁石単体の磁束密度の 2 0〜 6 0 %程度に過ぎず 、 市販されている廉価な永久磁石を単純に連設しただけでは、 各種流体 を活性化できるだけの磁束密度は得られない。  In such a conventional type, the surfaces (magnetic pole surfaces) having the magnetic poles of a plurality of permanent magnets face each other, and the magnetic pole surfaces are arranged so as to be attracted to each other or to repel each other. A magnetic or non-magnetic material is interposed between the magnets to increase the magnetic flux density. Such a magnetic flux density amplifying device achieves the most efficient device, which was filed by the applicant of the present invention and filed in the past in Japanese Patent Application No. 7-111223. The improvement rate of the magnetic flux density obtained by the general conventional type as shown in FIG. 3 is only about 20 to 60% of the magnetic flux density of the used permanent magnet alone, and is a low-cost commercially available one. Simply arranging simple permanent magnets does not provide enough magnetic flux density to activate various fluids.
また、 前述の特願平 7— 1 1 2 3 0 2によると望ましい磁束密度の向 上が得られるが、 連設した磁石の全長が長くなり、 より高い磁束密度を 得るためにはより長い装置が要求されることになる。  According to the aforementioned Japanese Patent Application No. 7-112123, a desirable improvement in magnetic flux density can be obtained, but the total length of the magnets connected in series becomes longer, and a longer magnetic device is required to obtain a higher magnetic flux density. Will be required.
例えば、 水を 7 0 0 0 G以上の磁力線に接触させた場合、 水分子のク ラスタ一が細分化され、 不純物が排除されるとともに異臭が除去され、 また、 燃料として使用される流体を 9 0 0 0 G以上の磁力線に接触させ ると、 燃焼成分の分子が細分化され、 燃焼効率が向上するとともに排気 ガス中の有害物質を除去することができるという事実は広く認められて いるが、 このような磁束密度を得るためには規模の大きな磁力線発生装 置を使用する必要があり、 現状では実用的な装置は得られていない。 産業上有効な安価且つ小体積の流体活性化装置を得るためには、 市販 の永久磁石を利用すること力最も有利であることは明白であるが、 従来 形式ではそれら永久磁石を前述のごとく多数連設しても、 全体の磁束密 度を所望の数値まで向上させることが困難であり、 数値を達成できる場 合も使用される磁石の数が多くなり装置の体積もそれに従って大きなも のとならざるを得ない。 本発明においては、 より少数の永久磁石の新し ぃ連設方式を探究することによって、 強力力つ小型の磁束密度の増幅装 置を得て、 その問題点を解決する。 For example, when water is brought into contact with magnetic field lines of 700 G or more, clusters of water molecules are fragmented, impurities are eliminated and unpleasant odors are removed, and fluid used as fuel is removed. Although it is widely accepted that contact with magnetic lines of magnetic force of more than 0.000 G breaks down the molecules of the combustion components, improving combustion efficiency and removing harmful substances in exhaust gas. In order to obtain such a magnetic flux density, it is necessary to use a large-scale magnetic field line generating device, and no practical device has been obtained at present. The use of commercially available permanent magnets is clearly the most advantageous in order to obtain an inexpensive and small-volume fluid activation device that is industrially effective. However, in the conventional type, many permanent magnets are used as described above. Even if they are connected in series, it is difficult to improve the overall magnetic flux density to a desired value, and if the numerical value can be achieved In many cases, the number of magnets used increases, and the volume of the device must be large accordingly. In the present invention, a powerful and compact magnetic flux density amplifying device is obtained by exploring a new continuous connection system of a smaller number of permanent magnets, and the problem is solved.
発明の開示 Disclosure of the invention
定められた磁束密度を有する市販の永久磁石を複数個連設して、 より 大きい磁束密度を得るという発想は、 第 3図に示した従来形式からも明 らかなごとく極めて一般的なものである。 か ながら、 永久磁石を単 に連設するのみでは、 磁束密度の高い向上率が得られないこともまた事 実である。  The idea of obtaining a higher magnetic flux density by connecting a plurality of commercially available permanent magnets with a specified magnetic flux density is quite common, as is evident from the conventional type shown in Fig. 3. . However, it is also true that a single permanent magnet cannot provide a high magnetic flux density improvement rate.
これらの状況に鑑み本件発明者は、 限られた数の永久磁石を並べて一 個の装置を形成するに当たり、 より多くの磁力線の集束箇所が発生する 並べ方を追求することにより、 より高い磁束密度の向上を獲得する研究 を行った。  In view of these circumstances, the inventor of the present invention has pursued an arrangement in which a limited number of permanent magnets are arranged to form a single device by concentrating more magnetic flux lines, thereby achieving a higher magnetic flux density. Research to gain improvement.
その結果、 使用すべき永久磁石は、 現在のところ単体で最も高い磁束 密度が得られるネオジユーム鉄ボロン磁石 (いわゆるネオジユーム磁石 ) がもっとも望ましいが、 今後、 各種新素材の永久磁石が開発された場 合には、 それら新磁石が利用できることは勿論であり、 また、 従来のコ バルト磁石、 フユライト磁石等を使用した場合にも、 それぞれの単体の 磁束密度に応じて、 ネオジユーム磁石を使用した場合と同様の磁束密度 の向上率力確認できる。  As a result, the permanent magnet to be used is most preferably a neodymium iron boron magnet (so-called neodymium magnet), which can attain the highest magnetic flux density by itself, but if permanent magnets of various new materials are developed in the future, Of course, these new magnets can be used, and when using conventional cobalt magnets, fluorite magnets, etc., the same as when using neodymium magnets, depending on the magnetic flux density of each unit. The improvement rate of the magnetic flux density can be confirmed.
従来の、 磁極を有する面 (磁極面) 同志を対面させ、 それら磁極面の 間に磁性体あるいは非磁性体の介装部材を設置して、 両者の間に吸弓 I磁 場を発生させる形式が、 より高い磁束密度の向上を獲得するためにはよ り多くの永久磁石の連設を必要とすることから、 磁束密度の増幅装置を 得るためにはこのような永久磁石の並べ方に限界があると考え、 この手 法とは異なる新規の並べ方を追求した。 Conventional magnetic pole surface (magnetic pole surface) A type in which magnetic members or non-magnetic intervening members are installed between the magnetic pole surfaces, and a bow-absorbing I magnetic field is generated between them. However, in order to obtain a higher magnetic flux density improvement, more permanent magnets need to be connected in series, so there is a limit to how such permanent magnets can be arranged in order to obtain a magnetic flux density amplifying device. Think there is, this hand We pursued a new arrangement that is different from the law.
前述の介装部材は磁極面間により大きな磁極勾配を発生させるための 手段であると考えるなら、 この介装部材の設置は磁束密度の増幅に極め て有効であるが、 この手段以外に大なる磁極勾配を獲得する方法が考え られるなら、 それらを併用する事によって、 より大きな磁束密度の増幅 率が得られることは確実である。  If the above-mentioned interposed member is considered to be a means for generating a larger magnetic pole gradient between the magnetic pole faces, the installation of the interposed member is extremely effective for amplifying the magnetic flux density. If a method of obtaining the magnetic pole gradient is conceivable, it is certain that by using them together, a higher magnetic flux density gain can be obtained.
本件発明者は、 従来から使用されている円盤型もしくは中心孔を有す る円盤型の永久磁石を使用し、 永久磁石の磁極面同志を対面させずに同 —平面上に並列に並べる事により、 吸引もしくは反発し合う永久磁石の 間に新たに大きな磁極勾配を獲得できる事を発見し本発明を完成するに 至った。 図面の簡単な説明  The inventor of the present invention has used conventional disk-shaped permanent magnets or disk-shaped permanent magnets having a central hole, and arranged them in parallel on the same plane without facing the magnetic pole faces of the permanent magnets. However, they discovered that a new large magnetic pole gradient could be obtained between the attracting or repelling permanent magnets, and completed the present invention. BRIEF DESCRIPTION OF THE FIGURES
第 1図は永久磁石単体の側面図である。 FIG. 1 is a side view of a permanent magnet alone.
第 2図は第 1図に示すものの平面図である。 FIG. 2 is a plan view of what is shown in FIG.
第 3図は従来形式による永久磁石の連設形式を示す正面図である。 第 4図は本発明第一の実施形態の部分的に断面で示した平面図である。 第 5図は第 4図に示すものの正面図である。 FIG. 3 is a front view showing a conventional permanent magnet connected type. FIG. 4 is a plan view partially showing a cross section of the first embodiment of the present invention. FIG. 5 is a front view of what is shown in FIG.
第 6図は第二の実施形態の部分的に断面で示した正面図である。 FIG. 6 is a front view, partially shown in section, of the second embodiment.
第 7図は第三の実施形態の部分的に断面で示した平面図である。 FIG. 7 is a plan view partially showing a cross section of the third embodiment.
第 8図は第 7図に示したものの正面図である。 FIG. 8 is a front view of what is shown in FIG.
第 9図は第四の実施形態の部分的に断面で示した正面図である。 FIG. 9 is a front view, partially in section, of the fourth embodiment.
第 1 0図は第五の実施形態の部分的に断面で示した平面図である。 第 1 1図は第 1 0図に示すものの正面図である。 FIG. 10 is a plan view, partially in section, of the fifth embodiment. FIG. 11 is a front view of what is shown in FIG.
第 1 2図は第六の実施形態の正面図である。 FIG. 12 is a front view of the sixth embodiment.
第 1 3図は第七の実施形態の部分的に断面で示した平面図である。 第 1 4図は第 1 3図の中央部縦断面図である。 FIG. 13 is a plan view, partially in section, of the seventh embodiment. FIG. 14 is a longitudinal sectional view at the center of FIG.
第 1 5図は第八の実施形態の部分的に断面で示した平面図である。 第 1 6図は第 1 5図に示したものの中央部横断面図である。 FIG. 15 is a plan view, partially in section, of the eighth embodiment. FIG. 16 is a cross-sectional view at the center of the one shown in FIG.
第 1 7図は第九の実施形態の部分的に断面で示した正面図である。 第 1 8図は第 1 7図に示したものの中央部縦断面図である。 FIG. 17 is a front view, partially in section, of the ninth embodiment. FIG. 18 is a longitudinal sectional view at the center of the one shown in FIG.
第 1 9図は第十の実施形態の部分的に断面で示した平面図である。 第 2 0図は第 1 9図に示したものの中央部横断面図である。 FIG. 19 is a plan view partially showing a cross section of the tenth embodiment. FIG. 20 is a cross-sectional view at the center of the one shown in FIG.
第 2 1図は第十一の実施形態の円弧状に磁石を連設したものの平面的概 念図である。 FIG. 21 is a conceptual plan view of an eleventh embodiment in which magnets are continuously arranged in an arc shape.
第 2 2図は第十一の実施形態の円状に磁石を連設したものの平面的概念 図である。 FIG. 22 is a conceptual plan view of the eleventh embodiment in which magnets are continuously arranged in a circle.
第 2 3図は第十二の実施形態の横断面を含む正面図である。 FIG. 23 is a front view including a cross section of the twelfth embodiment.
第 2 4図は第十二の実施形態の縦断面図である。 FIG. 24 is a longitudinal sectional view of the twelfth embodiment.
第 2 5図は第十三の実施形態の平面図である。 FIG. 25 is a plan view of the thirteenth embodiment.
第 2 6図は第十三の実施形態の正面図横断面図である。 FIG. 26 is a front cross-sectional view of the thirteenth embodiment.
第 2 7図は第十四の実施形態の平面図である。 FIG. 27 is a plan view of the fourteenth embodiment.
第 2 8図は第十四の実施形態の左側面図横断面図である。 FIG. 28 is a left side cross-sectional view of the fourteenth embodiment.
第 2 9図は第十五の実施形態の左側面図横断面図である。 FIG. 29 is a left side cross-sectional view of the fifteenth embodiment.
第 3 0図は第十六の実施形態の平面図である。 発明を実施するための最良の形態 FIG. 30 is a plan view of the sixteenth embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面に基づき本発明の実施の形態を説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
第一の実施例は複数個の円盤型ネオジユーム磁石の磁極面を同一平面 上に配列し、 それら永久磁石間に吸引磁場もしくは反発磁場を発生させ る。 装置の組み立てから考えると吸引磁場を発生させる配列力望ましい が、 必要に応じて吸弓 I磁場と反発磁場を自由に利用して良い。 各種の流体を活性化するための使用を考慮し、 永久磁石の保護、 取り 扱いの便宜並びに外部に対する磁気漏洩を遮断するための磁性体からな るケーシング若しくはカバーを用意し、 その中に永久磁石を配設する事 によって装置を得る。 In the first embodiment, the magnetic pole faces of a plurality of disk-shaped neodymium magnets are arranged on the same plane, and an attraction magnetic field or a repulsive magnetic field is generated between these permanent magnets. Considering the assembly of the device, it is desirable to use an array force that generates an attractive magnetic field. Considering use for activating various fluids, prepare a casing or cover made of a magnetic material to protect and handle the permanent magnet and block magnetic leakage to the outside. The device is obtained by arranging the.
永久磁石の平面的配列の形状は任意であり、 磁石相互を直線的に並べ 、 もしくは磁石すベてを隣接させて碁盤の目上に並べ、 あるいは定めら れた円弧或は円周上に並べる等々任意に選択できる。  The shape of the planar arrangement of the permanent magnets is arbitrary, and the magnets are arranged linearly, or all magnets are arranged adjacently on a grid, or arranged on a predetermined arc or circumference. And so on.
例えば、 磁極面を同一平面上に並べ、 相互に吸着磁場を発生するよう に連設された二個の円盤型永久磁石に於て、 磁石はその外周部に於て相 互に点的に吸着接触し、 その接触点を中心にした二つの磁石の間隙部分 には、 新たに大きな磁力線の集束力観測され、 それによつて二つの磁石 の間に新たに大きな磁極勾配を得ることができる。  For example, in two disk-shaped permanent magnets in which the magnetic pole faces are arranged on the same plane and mutually generate an attractive magnetic field, the magnets are mutually point-adsorbed on their outer peripheral parts. In the gap between the two magnets centered on the contact point, a new large focusing force of the magnetic field lines is observed, so that a new large magnetic pole gradient can be obtained between the two magnets.
更にこのような二個の永久磁石を磁性体からなるケーシングで包囲す ると、 永久磁石の外周部とケーシングが点的に接触し、 その接触点を中 心にしたケーシングと永久磁石の間隙に、 新たに大きな磁力線の集束が 観測され、 それによつて両者の間に新たに大きな磁極勾配を得ることが できる。  Furthermore, when such two permanent magnets are surrounded by a casing made of a magnetic material, the outer peripheral portion of the permanent magnets and the casing come into point contact with each other, and the gap between the casing and the permanent magnet centered on the contact point. However, a new large focusing of magnetic field lines is observed, so that a new large magnetic pole gradient can be obtained between them.
このように同一平面上に永久磁石を二個だけ配設した場合でさえ、 二 つの磁石外周部の間隙部分、 及び、 磁石外周部とケーシングの間に複雑 多岐にわたる磁力線の集束部が生成され、 二つの永久磁石の磁極面を相 互に吸着させた場合とは全く異なる大きな磁極勾配が得られる。  Even if only two permanent magnets are arranged on the same plane in this way, a gap between the two magnet outer peripheral parts and a complex diversified magnetic field line focusing part between the magnet outer peripheral parts and the casing are generated, A large magnetic pole gradient is obtained, which is completely different from the case where the magnetic pole faces of two permanent magnets are mutually attracted.
第 4図及び第 5図に従って、 本発明の第一の実施形態を説明すると、 1は中心孔 2を有する円盤型のネオジユーム磁石で、 定格 3 4 0 0 Gの 単体を 5個使用する例である。 3及び 3 ' は磁性体からなる一組の蓋型 ケーシングで、 各磁石 1の磁極面に吸着されそれらを被覆するとともに 、 端部は折り曲げられて磁石 1の外周部 を部分的に被覆している。 5個の磁石 1は磁極面が N— S— N— S— N若しくは S— N— S— N 一 Sとなるように並べられており、 外周部の一点において隣接する磁石 1同志が吸弓 Iし合うように整列せしめられている。 Referring to FIGS. 4 and 5, a first embodiment of the present invention will be described. Reference numeral 1 denotes a disk-shaped neodymium magnet having a center hole 2, which is an example in which five single bodies having a rating of 3400 G are used. is there. Reference numerals 3 and 3 'denote a pair of lid-shaped casings made of a magnetic material. The lid-shaped casings are attracted to the magnetic pole surfaces of the respective magnets 1 and cover them, and the ends are bent to partially cover the outer periphery of the magnet 1. I have. The five magnets 1 are arranged so that the pole faces are NS—S—N—S—N or S—N—S—N-S. They are arranged so that they meet each other.
このように構成した本発明装置の各部に於ける磁束密度を計測した数 値は図面に示されている通りで、 磁石 1の磁極面の中心孔 2と外周部 1 ' のほぼ中間点が、 第 4図に於て左方の磁石から、 3870G、 391 0G、 3410G、 4260G及び 3280Gであり、 5個の磁石 1の 間隙部分 4に発生した磁束密度は、 第 5図に示すごとく左方から、 82 90G、 7720G、 8360 G及び 7370 Gであった。  Numerical values obtained by measuring the magnetic flux density at each part of the device of the present invention configured as described above are as shown in the drawing, and a substantially middle point between the center hole 2 and the outer peripheral part 1 ′ of the pole face of the magnet 1 is: From the left magnet in Fig. 4, 3870G, 3910G, 3410G, 4260G, and 3280G are obtained.The magnetic flux density generated in the gap 4 between the five magnets 1 is from the left as shown in Fig. 5. , 82 90 G, 7720 G, 8360 G and 7370 G.
これら間隙部分 4の磁束密度を単純に平均して得た間隙部分 4の平均 磁束密度は 7935 Gであり、 使用された磁石単体の定格 3400 Gと 比較すると、 5個の磁石を連設した結果、 約 230%強の磁束密度の向 上が獲得されたことになる。 この 7000Gないし 8000 Gの磁束密 度は、 飲料、 肥料、 化学原料などの流体を活性化するに十分な数値であ り、 この実施例の装置をそれら流体の貯蔵槽に浸漬するだけで迅速な流 体の活性化が達成できる。 因にこの装置の大きさは、 蓋状ケーシング 3 、 3* を含めた状態で、 幅 94mm、 厚さ 10 mmそして奥行き 22 m mである。 第二の実施例  The average magnetic flux density of gap 4 obtained by simply averaging the magnetic flux densities of these gaps 4 is 7935 G. Compared to the rated 3400 G of the magnet used alone, the result of connecting five magnets in a row This means that about 230% improvement in magnetic flux density was obtained. The magnetic flux density of 7000 G to 8000 G is enough to activate fluids such as beverages, fertilizers, and chemical raw materials. Fluid activation can be achieved. The size of this device, including the lid-shaped casings 3 and 3 *, is 94 mm wide, 10 mm thick and 22 mm deep. Second embodiment
第二の実施の形態は第 6図に示されているが、 これは第一の実施の形 態に示した 5個一列の磁石 1のセットをニ段重ねて、 合計 10個の磁石 を使用した例力示されている。 第 6図は正面図として示されているが、 この構造の平面図は第 4図に示すものと同一に現れる。  The second embodiment is shown in Fig. 6, which uses two sets of the magnets 1 in a row of 5 shown in the first embodiment, and uses a total of 10 magnets. Examples are shown. While FIG. 6 is shown as a front view, the plan view of this structure appears identical to that shown in FIG.
第 6図に示された横方向の磁石同志の間隙部分 4の磁束密度は、 左か ら 9640G、 9200G、 9270 G及び 9050 Gであり、 これら 間隙部分 4の磁束密度を単純に平均して得た間隙部分 4の平均磁束密度 は 9290 Gであり、 使用された磁石単体の定格 3400 Gと比較する と、 5個の連設した磁石を二段重ねとした結果、 約 273%強の磁束密 度の向上が獲得されたことになる。 The magnetic flux density in the gap 4 between the magnets in the horizontal direction shown in Fig. 6 is 9640G, 9200G, 9270G and 9050G from the left. The average magnetic flux density of the gap 4 obtained by simply averaging the magnetic flux density of the gap 4 is 9290 G. Compared with the rated 3400 G of the magnet used alone, five magnets connected in series were two. As a result, the magnetic flux density was improved by about 273%.
9000 Gの磁束密度は燃料をはじめとする各種流体の活性化に十分 有効な数値であるとともに、 この装置の大きさは、 蓋状ケーシング 3、 3' を含めた状態で、 幅 94mm、 厚さ 16 mmそして奧行き 22 mm である。 第三の実施例  The magnetic flux density of 9000 G is a value that is sufficiently effective for activating various fluids including fuel, and the size of this device is 94 mm in width and thickness, including the lid-like casings 3 and 3 '. 16 mm and 22 mm deep. Third embodiment
第 7図及び第 8図に従って、 本発明の第三の実施形態を説明すると、 1は中心孔 2を有する円盤型のネオジユーム磁石で、 定格 3400 Gの 単体を 5個使用する例である。 3及び 3' は磁性体からなる一組の溝型 ケーシングで、 5個の磁石 1の外周部 Γ を連続的に長手方向に被覆し 、 各磁石 1の一点がこれに接触するとともに、 折り曲げられた端部は磁 石 1の磁極面の一部を被覆している。  A third embodiment of the present invention will be described with reference to FIGS. 7 and 8. Reference numeral 1 denotes a disk-shaped neodymium magnet having a center hole 2, which is an example in which five single elements rated at 3400 G are used. Reference numerals 3 and 3 'denote a pair of groove-shaped casings made of a magnetic material, which continuously cover the outer peripheral portion 5 of the five magnets 1 in the longitudinal direction, and one point of each magnet 1 comes into contact with the magnets and is bent. The end portion covers part of the pole face of magnet 1.
5個の磁石 1は磁極面が N— S— N - S— N若しくは S— N - S - N 一 Sとなるように並べられており、 外周部の一点において隣接する磁石 1同志が吸引し合うように整列せしめられている。  The five magnets 1 are arranged such that the magnetic pole faces are NS—N—S—N or S—N—S—N—S. At one point on the outer periphery, the adjacent magnets 1 attract each other. They are aligned to fit.
このように構成した本発明装置の各部に於ける磁束密度を計測した数 値は図面に示されている通りで、 磁石 1の磁極面の中心孔 2と外周部の ほぼ中間点が、 第 7図に於て左方の磁石から、 3690 G、 3960G 、 4070G、 4080G及び 4100Gであり、 5個の磁石 1の間隙 部分 4に発生した磁束密度は、 第 8図に示すごとく左方から、 7400 G、 7630G, 7310G及び 8520Gであった。  The numerical values obtained by measuring the magnetic flux density at each part of the device of the present invention configured as described above are as shown in the drawing, and the middle point between the center hole 2 of the pole face of the magnet 1 and the outer peripheral part is the seventh point. From the left magnet in the figure, 3690 G, 3960 G, 4070 G, 4080 G, and 4100 G, and the magnetic flux density generated in the gap 4 between the five magnets 1 was 7400 G from the left as shown in FIG. G, 7630G, 7310G and 8520G.
これら間隙部分 4の磁束密度を単純に平均して得た間隙部分 4の平均 磁束密度は 7715Gであり、 使用された磁石単体の定格 3400Gと 比較すると、 5個の磁石を連設した結果、 約 226%強の磁束密度の向 上が獲得されたことになる。 この 7000G以上の磁束密度は、 飲料、 肥料、 化学原料などの流体を活性化するに十分な数値であり、 この実施 例の装置をそれら流体の貯蔵槽に浸漬するだけで迅速な流体の活性化が 達成できる。 因にこの装置の大きさは、 蓋状ケーシング 3、 3' を含め た状態で、 幅 94mm、 厚さ 10 mmそして奧行き 22 mmである。 第四の実施例 The average of the gap 4 obtained by simply averaging the magnetic flux densities of these gaps 4 The magnetic flux density is 7715G. Compared with the rated 3400G of the magnet used alone, as a result of installing five magnets in series, an improvement of about 226% in magnetic flux density was obtained. The magnetic flux density of 7000G or more is a numerical value sufficient to activate fluids such as beverages, fertilizers, and chemical raw materials. By immersing the device of this embodiment in a storage tank for those fluids, rapid fluid activation can be achieved. Can be achieved. The size of this device is 94mm wide, 10mm thick and 22mm deep including the lid-like casings 3 and 3 '. Fourth embodiment
第 9図に示した第四の実施の形態においては、 第 7図及び第 8図の第 三の実施の形態に示した 5個一列の磁石 1のセットを二段重ねて、 合計 10個の磁石を使用した例が示されている。 第 9図は正面図として示さ れているが、 この構造の平面図は第 7図に示すものと同一に現れる。 第 9図に示された横方向の磁石 1同志の間隙部分 4の磁束密度は、 左 から 8500G、 9080G、 8870 G及び 8960 Gであり、 これ ら間隙部分 4の磁束密度を単純に平均して得た間隙部分 4の平均磁束密 度は 8852 Gであり、 使用された磁石単体の定格 3400 Gと比較す ると、 5個の連設した磁石を二段重ねとした結果、 約 260%強の磁束 密度の向上が獲得されたことになる。  In the fourth embodiment shown in FIG. 9, a set of five magnets 1 in a row shown in the third embodiment of FIGS. An example using a magnet is shown. Although FIG. 9 is shown as a front view, the plan view of this structure appears identical to that shown in FIG. The magnetic flux density in the gap 4 between the transverse magnets 1 shown in Fig. 9 is 8500G, 9080G, 8870G, and 8960G from the left, and these magnetic flux densities in the gap 4 are simply averaged. The average magnetic flux density of the obtained gap 4 was 8852 G. Compared to the rated magnet of 3400 G used alone, the five magnets connected in two stages resulted in about 260% more. This means that the improvement in magnetic flux density has been obtained.
8800 Gの磁束密度は各種流体の活性化に十分有効な数値であると ともに、 この装置の大きさは、 蓋状ケーシング 3、 3' を含めた状態で 、 幅 94mm、 厚さ 16 mmそして奧行き 22 mmである。 第五の実施例  The magnetic flux density of 8800 G is a value that is sufficiently effective for activating various fluids, and the size of this device, including the lid-shaped casings 3 and 3 ', is 94 mm wide, 16 mm thick and 22 mm. Fifth embodiment
第 10図及び第 1 1図に示す第五の実施の形態は、 前述の実施の形態 に示したネオジユーム磁石 1を 4個使用し、 これらを碁盤の目状 (若し くは升目状) に同一平面上に配列したもので、 磁極面の極性の一例を揚 げるなら、 第 1 0図に於て左上の磁石の磁極面が N、 左下が S、 右上が S、 右下が Nである。 蓋状ケーシング 3は、 各磁石 1の磁極面に吸着さ れこれを被覆するとともに、 その端部は折り返されて磁石 1の外周部の —部を被覆している。 The fifth embodiment shown in FIG. 10 and FIG. 11 uses four neodymium magnets 1 shown in the above-described embodiment and uses them in a grid pattern. In Fig. 10, the pole face of the upper left magnet is N, the lower left is S, and the upper right is S in Fig. 10 to show an example of the polarity of the pole face. The lower right is N. The lid-shaped casing 3 is attracted to and covers the magnetic pole surface of each magnet 1, and its end is folded back to cover the outer peripheral portion of the magnet 1.
この配列によると、 四個の磁石 1によって四ケ所の間隙部分 4力 S形成 でき、 更に四個の磁石 1に囲まれた部分には集束した磁束が重なり合つ て、 錯綜した第五の間隙部分 4を形成することができる。 計測の結果、 これら間隙部分 4の磁束密度の平均は 8 3 1 0 Gであった。 これを使用 された磁石単体の定格 3 4 0 0 Gと比較すると、 四個の永久磁石 1で約 2 4 4 %強の磁束密度の向上力 s獲得されたことになる。  According to this arrangement, the four magnets 1 can form four gaps 4 at the four locations, and the concentrated magnetic flux overlaps the portion surrounded by the four magnets 1 to form a complicated fifth gap. Part 4 can be formed. As a result of the measurement, the average of the magnetic flux densities of these gap portions 4 was 8310 G. Compared to the rated value of 3400 G of the magnet used alone, it means that the four permanent magnets 1 have a magnetic flux density improvement s of about 244% or more.
8 3 0 0 Gの磁束密度は各種流体の活性化に十分有効な数値であると ともに、 この装置の大きさは、 蓋状ケーシング 3、 3 ' を含めた状態で 、 幅 4 O mm、 厚さ 1 6 mmそして奧行き 4 O mmである。 第六の実施例  The magnetic flux density of 8300 G is a numerical value that is sufficiently effective for activating various fluids, and the size of this device is 4 Omm wide and 4 mm thick, including the lid-like casings 3 and 3 ′. It is 16 mm deep and 4 O mm deep. Sixth embodiment
第 1 2図に示した第六の実施の形態においては、 第 1 0図及び第 1 1 図に於て第五の実施の形態に示した 4個一組の磁石 1のセットをニ段重 ねて、 合計 8個の磁石を使用した例が示されている。 第 1 2図は正面図 として示されている力 >'、 この構造の平面図は第 1 0図に示すものと同一 に現れる。 この配列によると、 八個の磁石 1によって四ケ所の間隙部 分 4力 > '形成でき、 更にこの八個の磁石 1に囲まれた中央部分には集束し た磁束が重なり合って、 錯綜した第五の間隙部分 4を形成することがで きる。 計測の結果、 これら間隙部分 4の磁束密度の平均は 9 2 6 0 Gで あった。 これを使用された磁石単体の定格 3 4 0 0 Gと比較すると約 2 7 2 %強の磁束密度の向上が獲得されたことになる。 第七の実施例 In the sixth embodiment shown in FIG. 12, the set of four magnets 1 shown in FIG. 10 and FIG. 11 in the fifth embodiment shown in FIG. Finally, an example using a total of eight magnets is shown. FIG. 12 shows the force>'shown as a front view, and the plan view of this structure appears identical to that shown in FIG. According to this arrangement, eight magnets 1 can form four gaps> 4 at four gaps, and the concentrated magnetic flux overlaps the central portion surrounded by the eight magnets 1 to form a complex Five gap portions 4 can be formed. As a result of the measurement, the average of the magnetic flux densities in these gaps 4 was 9260 G. Compared to the rated value of 3400 G of the magnet used alone, an improvement of about 272% in magnetic flux density was obtained. Seventh embodiment
第 1 3図以下には第七以下の実施の形態が示されており、 それらはい ずれも磁石 1の磁極面を隣接する磁石 1の磁極面と同一平面上に揃えて 連設することにより、 磁石と磁石の間、 及び磁石とケーシングの間に磁 束の集束する箇所を設け、 それによつて従来得られなかった大きな磁極 勾配を獲得したもので、 これらは 8 0 0 0 G乃至 1 5 0 0 0 Gの磁束密 度を得ることに成功したものである。  Fig. 13 and subsequent figures show the seventh and subsequent embodiments, all of which are arranged by aligning the magnetic pole surface of the magnet 1 on the same plane as the magnetic pole surface of the adjacent magnet 1. Magnetic flux converging points are provided between the magnets and between the magnets and the casing, thereby obtaining a large magnetic pole gradient that could not be obtained conventionally, and these are 800 G to 150 G. It succeeded in obtaining a magnetic flux density of 0 G.
第 1 3図及び第 1 4図に示す第七の実施形態は、 第二の実施の形態の 変形といえるもので、 五個の磁石 1を磁極面を同一平面上に揃えて連設 して一組とし、 二組の磁石 1計十個を五個づっニ段に重ねあわせ、 互い に重合されて吸着し合っている二個ずつの磁石 1の間にリング状の磁性 体からなる介装部材 5を介置し、 この五個ずつ二段十個の磁石 1を両端 部が開口した筒状ケーシング 6内に収容したもので、 第 1 4図に示すご とく各磁石 1の端縁部は筒状ケーシング 6の内壁に点的に接触している 。  The seventh embodiment shown in FIGS. 13 and 14 can be said to be a modification of the second embodiment, in which five magnets 1 are arranged in series with the pole faces aligned on the same plane. One set, two sets of ten magnets are superimposed in two stages, five each, and a ring-shaped magnetic material is interposed between two magnets 1 that are superposed and adsorbed to each other. A member 5 is interposed, and two magnets 1 each having five steps are accommodated in a cylindrical casing 6 having both ends opened, and as shown in FIG. Is in point contact with the inner wall of the cylindrical casing 6.
これによると、 重合された磁石の間、 筒状ケーシング 6の内壁と接触 する磁石 1の端緣部の周囲に、 新たな磁束の集束箇所が発生し、 それに よって大きな磁極勾配を得ることができ、 筒状ケ一シング 6の両端部の 開口から内部に流入した流体は、 本実施例の有する増幅された磁束密度 の作用下に、 瞬時に活性化されることになる。 第八の実施例  According to this, a new magnetic flux converging point is generated between the superposed magnets and around the end of the magnet 1 that comes into contact with the inner wall of the cylindrical casing 6, whereby a large magnetic pole gradient can be obtained. The fluid that has flowed into the inside through the openings at both ends of the cylindrical casing 6 is instantaneously activated under the action of the amplified magnetic flux density of the present embodiment. Eighth embodiment
第 1 5図及び第 1 6図に示されている第八の実施形態は、 各種流体が 流動する回路の中に組み込み、 内部を流通する流体を活性化するための 装置に本発明を適用した例で、 流体に対して磁力線の作用と遠赤外線の 作用を同時に与えようとするもので、 第 1 3図に示した第七の実施形態 と同様の形式で磁石 1及び介装部材 5の配設し、 一段八個の磁石 1を二 段計十六個使用し、 これら磁石 1と点的に接触する磁性体からなる溝型 カバー 7、 7を周囲に配設すると共に、 これら全体を遠赤外線を発生す るセラミックチューブ 8内に収容し、 それらを両端に接続ノズル 9、 9 を有する管状のケーシング 1 0に収容する。 In the eighth embodiment shown in FIGS. 15 and 16, the present invention is applied to an apparatus for activating a fluid flowing inside by incorporating it in a circuit in which various fluids flow. In this example, the action of magnetic field lines and the action of far-infrared rays are simultaneously applied to the fluid, and the seventh embodiment shown in FIG. 13 is used. In the same manner as above, the magnet 1 and the interposition member 5 are arranged, eight magnets 1 in one stage are used in a total of 16 in two stages, and a groove type cover 7 made of a magnetic material that comes into point contact with these magnets 7 , 7 are arranged around, and all of them are accommodated in a ceramic tube 8 that generates far-infrared rays, and they are accommodated in a tubular casing 10 having connection nozzles 9, 9 at both ends.
第 1 6図に示すごとく、 磁石 1の外周部の一部は溝型カバー 7、 7の 内壁と点的に接触しており、 その接触点の周囲に磁力線の集束して大き な磁極勾配力5生じると共に、 磁石 1と磁石 1の間に介置された磁性体か らなるリング状の介装部材 5の周囲にも大きな磁極勾配力 ^獲得でき、 更 に、 溝型力パー 7、 7の間にはセラミックチューブ 8力 s露出しているた め、 接続ノズル 9からケーシング 1 0内に流入した流体は、 磁力線と遠 赤外線の双方の作用を受けて他の接続ノズル 9から外部に流出する間に 活性化されることになる。 第九の実施例 As shown in Fig. 16, a part of the outer peripheral part of the magnet 1 is in point contact with the inner walls of the grooved covers 7, 7, and the magnetic flux lines converge around the contact point, resulting in a large magnetic pole gradient force. 5 and a large magnetic pole gradient force can be obtained around the ring-shaped interposition member 5 made of a magnetic material interposed between the magnets 1 and the groove-shaped force par 7, 7 The fluid that has flowed into the casing 10 from the connection nozzle 9 is exposed to the force of both the magnetic field lines and far-infrared rays because the ceramic tube is exposed to the force of 8 s between the nozzles. Will be activated in the meantime. Ninth embodiment
第 1 7図及び第 1 8図に示す第九の実施形態は、 第二の実施形態の変 形といえるもので、 第二の実施形態に於て重合された二段の磁石の間に 、 連設された磁石 1の全長にわたって磁性体からなる複数の細杆を介装 部材 5 ' として介置し、 更に、 蓋状ケーシング 3、 3 ' と磁石 1の間に も同様の介装部材 5 ' を配置したもので、 磁石 1と磁石 1の間の間隙部 分 4以外にこれら介装部材 5 ' の周囲に磁力線の集束を発生せしめ、 そ れら集束の錯綜した状態を生み出し、 間隙部分により大きな磁極勾配を 発生させる。  The ninth embodiment shown in FIGS. 17 and 18 can be said to be a modification of the second embodiment. Between the two-stage magnets superposed in the second embodiment, A plurality of thin rods made of a magnetic material are interposed as interposition members 5 ′ over the entire length of the magnets 1 provided in series, and a similar interposition member 5 is provided between the lid-shaped casings 3, 3 ′ and the magnet 1. In addition to the gap 4 between the magnet 1 and the magnet 1, the magnetic flux lines are focused around these interposed members 5 ', creating a complicated state of the focusing, and the gap is created. Generates a larger magnetic pole gradient.
因に第 1 7図に示す実施形態では、 一列八個の磁石 1を二段十六個使 用し、 間隙部分に 9 0 0 0乃至 1 0 0 0 0 Gの磁束密度を得ることがで きた。 またこの場合の装置の幅は 1 4 8 mm、 厚さは 1 9 mmである。 第十の実施例 In the embodiment shown in FIG. 17, eight magnets 1 in a row are used in two stages and sixteen, and a magnetic flux density of 900 to 100 G can be obtained in the gap. Came. In this case, the width of the device is 148 mm and the thickness is 19 mm. Tenth embodiment
第 1 9図及び第 2 0図に示す第十の実施形態は、 流体に磁力線の作用 のみを与えるためのもので、 第 1 7図に示した実施例と同様に構成した 磁石 1の上下の磁極面に、 溝型カバー 7に代えて磁性体からなる板片 1 1、 1 1を当接吸着せしめ、 それを両端に接続ノズル 9、 9を備えた管 状のケーシング 1 0内に収容したものである。  The tenth embodiment shown in FIGS. 19 and 20 is for giving only the action of the lines of magnetic force to the fluid, and the upper and lower portions of the magnet 1 configured in the same manner as the embodiment shown in FIG. Instead of the grooved cover 7, plate pieces 11 made of a magnetic material were abutted and adsorbed on the magnetic pole surface, and were accommodated in a tubular casing 10 provided with connection nozzles 9 at both ends. Things.
第 2 0図に示すごとく、 この実施形態における磁力線の集束箇所は、 主として介装部材 5が介置された磁石 1と磁石 1の間、 磁石 1同志の間 の間隙部分 4、 磁石 1の外周部がケーシング 1 0の内壁に点的に接触す る部分の周囲、 及び磁石 1の磁極面に吸着された板片 1 1の端部がケー シング 1 0の内壁に接触する部分の周囲であり、 これらの集束部分の磁 力線が複雑に錯綜して、 ケーシング 1 0内には極めて大きな磁極勾配が 生成される。 第十一の実施例  As shown in FIG. 20, the magnetic flux lines converge in this embodiment mainly at the gaps 4 between the magnets 1 with the interposed members 5 interposed therebetween, the magnets 1, the magnets 1, and the outer periphery of the magnet 1. Around the part where the part contacts the inner wall of the casing 10 in a point manner, and around the part where the end of the plate piece 11 attracted to the pole face of the magnet 1 contacts the inner wall of the casing 10. However, the magnetic field lines of these focusing portions are complicatedly complicated, and an extremely large magnetic pole gradient is generated in the casing 10. Eleventh embodiment
第 2 1図及び第 2 2図に示す第十一の実施形態は、 これまで説明した 実施の形態が、 円盤状の磁石の磁極面を同一平面上に揃えて、 各磁石を 全体として直線的に並べたものであつたのに対し、 磁極面を同一平面上 に揃えることは同じであるが、 各磁石が全体として円弧または円を描く ように並べたもので、 本発明による磁束密度の増幅装置が流体の活性化 装置として他の部品の一部に組み込まれる場合に有効な形態である。 この場合も、 磁石 1相互の間の間隙部分 4、 ケーシングと磁石 1の接 触点の周囲に磁力線の集束箇所が多数発生する点は、 これまでに説明し た各実施形態と同様であり、 これらの円弧または円に沿って連設された 磁石を何段か重ね合わせることも任意である。  The eleventh embodiment shown in FIGS. 21 and 22 is different from the above-described embodiment in that the pole faces of the disk-shaped magnets are aligned on the same plane, and each magnet is entirely linear. While the magnetic pole faces are aligned on the same plane, the magnets are arranged in an arc or circle as a whole, and the amplification of magnetic flux density according to the present invention This is an effective form when the device is incorporated into a part of another component as a fluid activation device. Also in this case, the point that a large number of convergence points of the lines of magnetic force are generated around the gap 4 between the magnets 1 and the contact point between the casing and the magnet 1 is the same as in each of the embodiments described above. It is optional to superpose several magnets connected along these arcs or circles.
以上の実施の形態の説明に於ては、 中心孔 2を有する円盤状のネオジ ゥム磁石を使用した例を説明したが、 中心孔の有無、 磁石の形状、 磁石 の材質はこれに限定されることなく任意であり、 磁石の連設個数、 重合 の段数、 カバー及びケーシングの材質及び形状等々も任意に選択できる ものである。 第十二の実施例 In the above description of the embodiment, a disk-shaped neodymium having a central hole 2 Although an example using a rubber magnet has been described, the presence or absence of a center hole, the shape of the magnet, and the material of the magnet are not limited to this, and the number of magnets connected, the number of superposed stages, the number of The material and shape can be arbitrarily selected. Twelfth embodiment
第 2 3図及び第 2 4図に示す実施例は、 第 1 9図及び第 2 0図に示し た第十の実施例を更に拡大改良した第十二の実施形態で、 流動体からな る燃料等の物質を流通させるパイブと言う概念と、 既成の磁石が円盤型 であるという二点から、 装置全体の断面形状を円形にまとめていた第十 の実施例を大幅に改案し、 磁極面を相互に吸着させた四体一列の永久磁 石 1を横方向に八列にわたって連設し、 合計三十二体の磁石を断面矩形 の直方体からなるケーシング 1 0に収容したもので、 ケ一シング 1 0が 二個の接続ノズル 9を備えていることは第十の実施例と同様である。 この場合、 介装部材 5及び板片 1 1の設置は任意に行えるが、 図示例 の場合には、 連設された永久磁石の長手方向の両側面に各四本の介装部 材と、 一列四個の永久磁石を二個ずつに分割するようにそれらの中間に 二本の介装部材を置く。 更に、 この永久磁石の複合体を包囲するように 、 鉄及びセラミックスの板片を配置し、 それをケーシング 1 0内に挿入 固定する。  The embodiment shown in FIGS. 23 and 24 is a twelfth embodiment obtained by further expanding and improving the tenth embodiment shown in FIGS. 19 and 20 and is made of a fluid. Based on the concept of a pipe that distributes fuel and other substances and the fact that the existing magnet is disk-shaped, the tenth embodiment, in which the cross-sectional shape of the entire device is rounded, was greatly revised. A series of four permanent magnets 1 with four surfaces adsorbed to each other are connected in a row in eight rows, and a total of 32 magnets are housed in a casing 10 consisting of a rectangular parallelepiped with a rectangular cross section. As in the tenth embodiment, one thing 10 includes two connection nozzles 9. In this case, the interposition member 5 and the plate piece 11 can be arbitrarily installed, but in the case of the illustrated example, four interposition members are provided on both sides in the longitudinal direction of the continuous permanent magnet, Two intermediate members are placed between them so that four permanent magnets in a row are divided into two. Further, iron and ceramic plate pieces are arranged so as to surround the composite of permanent magnets, and they are inserted and fixed in the casing 10.
この実施例に於ては、 直径 1 7 mm厚さ 6 mm、 単体の磁束密度 3 4 0 0 Gのネオジユーム磁石を前述のごとく三十二個使用し、 その長手方 向の軸線に沿った磁束密度を計測すると、 最低 7 7 0 0 G、 最高 1 4 2 6 0 Gの値力 S得られ、 平均して約 1 1 0 0 0 Gの測定結果力得られた。 また、 各永久磁石及びケーシングと永久磁石の間には介装部材及び板 片により空隙力形成されているため、 接続ノズル 9から注入された流体 は、 同一平面上に揃えられた磁極面平行にと円滑にケーシング 1 0内部 を流動し、 反対側に設置された接続ノズル 9から流出することも確認さ れた。 In this example, 32 neodymium magnets having a diameter of 17 mm, a thickness of 6 mm, and a single magnetic flux density of 3400 G were used as described above, and the magnetic flux along the longitudinal axis was used. When the density was measured, a value S of at least 770,000 G and a value of at most 1,440,000 G were obtained, and a measurement force of about 1,100,000 G was obtained on average. In addition, since a gap force is formed between each permanent magnet and the casing and the permanent magnet by the interposition member and the plate piece, the fluid injected from the connection nozzle 9 is formed. It was also confirmed that the gas smoothly flowed inside the casing 10 in parallel with the pole faces aligned on the same plane, and flowed out from the connection nozzle 9 installed on the opposite side.
更に、 単体の永久磁石が中心孔を有している場合には、 第 2 4図に示 すごとくその中心孔に更なる介装部材 5を設置することができるので、 その介装部材によって磁力線の集束箇所を任意に増加させることが可能 であるとともに、 四個ずっ連設された中心孔によって形成される内腔に セラミツクス製の小球を多数設置することも可能である。 第十三の実施例  Further, when a single permanent magnet has a center hole, a further interposition member 5 can be installed in the center hole as shown in FIG. 24. It is possible to arbitrarily increase the number of convergence points, and it is also possible to install a large number of ceramic balls in the lumen formed by four central holes arranged in succession. 13th embodiment
第 2 5図に示す第十三の実施形態は、 第 1 0図乃至第 1 2図に示した 第五及び第六の実施例を更に拡大改良したもので、 流体の通路に予め用 意した磁束密度増幅装置を介装するための一形式であり、 枠体 1 3を有 する網 1 2の上に前述の各実施例で使用されたものと同様の永久磁石を 平面的に四個配置し、 網 1 2の反対面に前述の四個の永久磁石と吸着し あう状態で更に四個の磁石を配置したものである。  The thirteenth embodiment shown in FIG. 25 is a further enlarged and improved version of the fifth and sixth embodiments shown in FIGS. 10 to 12, and is provided with a fluid passage in advance. This is a type for interposing a magnetic flux density amplifying device, and four permanent magnets similar to those used in each of the above-described embodiments are planarly arranged on a net 12 having a frame 13. Then, four magnets are further arranged on the opposite surface of the net 12 in a state of being attracted to the four permanent magnets described above.
この実施例においては、 最低 4 5 0 0 G、 最高 8 5 0 0 G、 平均して 6 0 0 0 G程度の磁束密度が得られるが、 使用される永久磁石単体の数 は八個であり、 永久磁石は配置される網 1 2の表裏から互いに吸着しあ うため、 永久磁石を網 1 2に固定するための補助手段を必要としない。 第十四の実施例  In this embodiment, a magnetic flux density of at least 450 G, a maximum of 800 G, and an average of 600 G can be obtained, but the number of permanent magnets used is eight. However, since the permanent magnets are attracted to each other from the front and back of the net 12 placed, no auxiliary means for fixing the permanent magnet to the net 12 is required. Fourteenth embodiment
第 2 7図及び第 2 8図に示すものは前述第十三の実施形態の改良から なる第十四の実施形態で、 八個の永久磁石の代りに表裏合計十八個の永 久磁石を使用した例で、 この場合の平均磁束密度は約 9 0 0 0 Gである 第十五の実施例 FIGS. 27 and 28 show a fourteenth embodiment which is an improvement of the thirteenth embodiment. A total of eighteen permanent magnets are used instead of eight permanent magnets. In the example used, the average magnetic flux density in this case is about 900 G 15th embodiment
第 2 9図も第十三の実施例の改良にかかる第十五の実施形態で、 永久 磁石の構成は第 2 7図及び第 2 8図の例と同様であるが、 磁性体からな る網 1 2を使用し、 一面九個の永久磁石を網 1 2上に配置するとともに 、 それら永久磁石に介装部材を介して更に九個の永久磁石を吸着させる 形式になっている。 これは永久磁石が網 1 2の一方の面に露出すること 力望ましくない場合の設計で、 磁束密度の数値は第 2 7図及び第 2 8図 に示したもと同等である。 これらの実施形態は、 永久磁石の数量、 永久 磁石の形状等を任意に選択することができ、 使用目的に応じて自由に設 計を変更することができる。 第十六の実施例  FIG. 29 is also a fifteenth embodiment according to an improvement of the thirteenth embodiment, and the configuration of the permanent magnet is the same as that of the examples of FIGS. 27 and 28, but is made of a magnetic material. A net 12 is used, and nine permanent magnets are arranged on the net 12 on one side, and nine permanent magnets are further attracted to these permanent magnets via an interposition member. This is a design in which it is not desirable that the permanent magnet is exposed on one side of the net 12, and the numerical values of the magnetic flux density are the same as shown in FIGS. 27 and 28. In these embodiments, the number of permanent magnets, the shape of the permanent magnets, and the like can be arbitrarily selected, and the design can be freely changed according to the purpose of use. Sixteenth embodiment
第 3 0図示すものは前述の第十三の実施形態の発想を生かして改良さ れた第十六の実施形態で、 これまで多用してきた介装部材 5を網 1 2に 変えて利用する形式で、 枠体 1 3に簧の子状に介装部材 5を多数配置固 定して、 これを網 1 2と同様に使用するもので、 図示例では第 2 7図に 示したものと同様の永久磁石の配置を適用した例が示されている。 産業上の利用可能性  FIG. 30 shows a sixteenth embodiment improved based on the idea of the thirteenth embodiment, in which the intervening member 5 which has been frequently used is replaced with a net 12 for use. In the form, a large number of interposition members 5 are arranged and fixed in the form of springs on the frame 13, and they are used in the same manner as the net 12 .The example shown in FIG. 27 is the same as that shown in FIG. 27. An example in which a similar arrangement of permanent magnets is applied is shown. Industrial applicability
以上のごとく本発明によると、 安価な市販の永久磁石を利用し、 その 配列及び連設の方法を調整する事によって、 装置の平均磁束密度を使用 されている永久磁石単体の磁束密度の 2 0 0 %乃至 3 0 0 %に高めるこ とができ、 このように磁束密度力 s増幅された本発明装置を使用して、 燃 料、 食料、 各種製造原料となる流体を迅速且つ安価に活性化することが できるので、 産業上で使用される全ての活性化を必要とする流体に対し て極めて有効な装置を得ることができ、 現在要求されている璟境保護、 省資源等に有効な解決手段となるものである。 As described above, according to the present invention, by using an inexpensive commercially available permanent magnet and adjusting the arrangement and the method of connecting the permanent magnets, the average magnetic flux density of the device is used as the magnetic flux density of the permanent magnet alone. 0% to can and this increase in 3 0 0%, thus using the present invention apparatus is magnetic flux density forces s amplification, fuel, food, various rapidly and inexpensively activating a raw material to become fluid Therefore, it is possible to obtain a device that is extremely effective for all types of fluids requiring activation that are used in the industry, and the environmental protection, This is an effective solution for saving resources.

Claims

請 求 の 範 囲 The scope of the claims
1 円盤型若しくは多角形盤型の複数個の永久磁石の磁極面を同一平面 上に揃えて連設し、 その一部または全部を磁性体からなり且流体の通過 を許すケーシング若しくはカバーによつて被覆した事を特徴とする、 永 久磁石の磁束密度増幅装置。 1 A plurality of disk-shaped or polygonal disk-shaped permanent magnets are arranged in a row with their magnetic pole surfaces aligned on the same plane, and part or all of them are made of a magnetic material and provided with a casing or cover that allows the passage of fluid. A magnetic flux density amplification device for permanent magnets, characterized by being coated.
2 連設した複数個の永久磁石を、 別途同様に連設した複数個の永久磁 石に重合させた事を特徴とする、 請求項 1記載の永久磁石の磁束密度增 幅装置。  2. The magnetic flux density spreading device for permanent magnets according to claim 1, wherein a plurality of permanent magnets connected in series are superimposed on a plurality of permanent magnets connected in a similar manner.
3 重合された永久磁石の間に磁性体からなる介装部材を介置した事を 特徴とする請求項 2記載の永久磁石の磁束密度増幅装置。  3. The permanent magnet magnetic flux density amplifying device according to claim 2, wherein an interposed member made of a magnetic material is interposed between the superposed permanent magnets.
4 重合された永久磁石の間に非磁性体からなる介装部材を介置した事 を特徴とする請求項 2記載の永久磁石の磁束密度増幅装置。  3. The magnetic flux density amplifying device for a permanent magnet according to claim 2, wherein an interposed member made of a non-magnetic material is interposed between the superposed permanent magnets.
5 ケーシング若しくはカバーと永久磁石との間に磁性体からなる介装 部材を介置した事を特徴とする請求項 1、 2及び 3記載の、 永久磁石の 磁束密度増幅装置。  5. The magnetic flux density amplifying device for a permanent magnet according to claim 1, wherein an interposition member made of a magnetic material is interposed between the casing or the cover and the permanent magnet.
6 ケ一シング若しくはカバーと永久磁石との間に非磁性体からなる介 装部材を介置した事を特徴とする請求項 1、 2及び 3記載の、 永久磁石 の磁束密度増幅装置。  6. The apparatus for amplifying a magnetic flux density of a permanent magnet according to claim 1, wherein an interposing member made of a non-magnetic material is interposed between the casing or the cover and the permanent magnet.
7 ケーシング若しくはカバー内を通過する流体が、 同一平面上に揃え られている永久磁石の磁極面と平行に通過することを特徴とする請求項 1、 2、 3、 4、 5及び 6記載の永久磁石の磁束密度増幅装置。  7. The permanent magnet according to claim 1, wherein the fluid passing through the casing or the cover passes parallel to the pole faces of the permanent magnets aligned on the same plane. Magnet magnetic flux density amplifying device.
8 介装部材が、 網の目状に編み上げられた磁性体若しくは非磁性体の 条線材からなる請求項 3、 4、 5、 及び 6記載の永久磁石の磁束密度増 幅装置。 8. The permanent magnet magnetic flux density increasing device according to claim 3, 4, 5, or 6, wherein the interposition member is made of a magnetic or non-magnetic linear wire woven in a mesh shape.
9 永久磁石の平面的な連設が、 直線的または曲線的若しくは碁盤の目 状に行われる事を特徴とする請求項 1、 2、 3、 4記載の永久磁石の磁 束密度増幅装置。 9 When the permanent magnets are connected in a plane, 5. The apparatus for amplifying a magnetic flux density of a permanent magnet according to claim 1, wherein the magnetic flux density amplifying apparatus is performed in the following manner.
1 0 ケーシング若しくはカバー内を通過する流体力 同一平面上に揃 えられている永久磁石の磁極面に直角に通過することを特徴とする請求 項 8記載の永久磁石の磁束密度増幅装置。  10. The apparatus for amplifying a magnetic flux density of a permanent magnet according to claim 8, wherein a fluid force passing through the inside of the casing or the cover passes at right angles to a magnetic pole surface of the permanent magnet aligned on the same plane.
PCT/JP1996/002662 1995-09-20 1996-09-17 Apparatus for increasing magnetic flux density of permanent magnet WO1997011471A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU69460/96A AU6946096A (en) 1995-09-20 1996-09-17 Apparatus for increasing magnetic flux density of permanent magnet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7/266281 1995-09-20
JP26628195 1995-09-20

Publications (1)

Publication Number Publication Date
WO1997011471A1 true WO1997011471A1 (en) 1997-03-27

Family

ID=17428780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/002662 WO1997011471A1 (en) 1995-09-20 1996-09-17 Apparatus for increasing magnetic flux density of permanent magnet

Country Status (2)

Country Link
AU (1) AU6946096A (en)
WO (1) WO1997011471A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50121799A (en) * 1974-03-15 1975-09-23
JPH05101924A (en) * 1991-10-07 1993-04-23 Kanetetsuku Kk Magnet apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50121799A (en) * 1974-03-15 1975-09-23
JPH05101924A (en) * 1991-10-07 1993-04-23 Kanetetsuku Kk Magnet apparatus

Also Published As

Publication number Publication date
AU6946096A (en) 1997-04-09

Similar Documents

Publication Publication Date Title
US10010891B2 (en) Magnetic filter
EP1904237A1 (en) Device and method for separating magnetic particles
CA2546509A1 (en) Magnetic conditioning of fluids and gases and apparatus therefor
US20140166584A1 (en) Device and method for separating magnetic particles
EP0082925A1 (en) Magnetic separator
JPS6123005B2 (en)
JP3404405B2 (en) Equipment for generating ozone
US5118416A (en) Permanent magnetic power cell circuit for treating fluids to control iron pipes
US20050126974A1 (en) Water purifier having magnetic field generation
WO1997011471A1 (en) Apparatus for increasing magnetic flux density of permanent magnet
KR101711398B1 (en) Magnetized water generation and disinfection appratus in real time
JP7309305B1 (en) gas processor
JP2008121442A (en) Fuel magnetizer
JP2873940B2 (en) Permanent magnet magnetic flux density amplifying device
JP2011056369A (en) Magnetic separator, and magnetic separation system
WO2018081803A1 (en) Device for treating water
JP3223348B2 (en) Magnet-sealed magnetic water treatment system
KR101825466B1 (en) Apparatus for preventing of rust and scale of water pipe
RU1787504C (en) Device for catalytic treatment or filtration of gases and liquids
RU2133710C1 (en) Apparatus for magnetic treatment of liquids
JP2000070951A (en) Water treating device using multipole type magnetic field
JPH031119Y2 (en)
KR101044327B1 (en) Multi ion generator
JP2822275B2 (en) Magnetic flux density amplifying device
JP2002239555A (en) Apparatus for removing magnetic substance in fluid

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN MX RU SG US VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA