WO1997010184A1 - Boule oscillation patterns for producing fused silica glass - Google Patents

Boule oscillation patterns for producing fused silica glass Download PDF

Info

Publication number
WO1997010184A1
WO1997010184A1 PCT/US1996/014551 US9614551W WO9710184A1 WO 1997010184 A1 WO1997010184 A1 WO 1997010184A1 US 9614551 W US9614551 W US 9614551W WO 9710184 A1 WO9710184 A1 WO 9710184A1
Authority
WO
WIPO (PCT)
Prior art keywords
blank
equal
striae
thickness
millimeters
Prior art date
Application number
PCT/US1996/014551
Other languages
French (fr)
Inventor
John E. Maxon
Original Assignee
Corning Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Incorporated filed Critical Corning Incorporated
Priority to DE69634667T priority Critical patent/DE69634667T2/en
Priority to EP96930815A priority patent/EP0850202B1/en
Priority to JP51205997A priority patent/JP3841435B2/en
Publication of WO1997010184A1 publication Critical patent/WO1997010184A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1484Means for supporting, rotating or translating the article being formed
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1415Reactant delivery systems
    • C03B19/1423Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/50Multiple burner arrangements
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/60Relationship between burner and deposit, e.g. position
    • C03B2207/66Relative motion
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/70Control measures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S501/00Compositions: ceramic
    • Y10S501/90Optical glass, e.g. silent on refractive index and/or ABBE number

Definitions

  • This invention relates to the production of fused silica glass and, in particular, to methods for improving the homogeneity of such glass, i.e., for reducing variations in the index of refraction of the glass. DESCRIPTION OF THE TECHNOLOGY
  • Figure 1 shows a prior art furnace 10 for producing fused silica glass.
  • silicon-containing gas molecules are reacted in a flame to form Si0 2 soot particles. These particles are deposited on the hot surface of a rotating body where they consolidate into a very viscous fluid which is later cooled to the glassy (solid) state.
  • glass making procedures of this type are known as vapor phase hydrolysis/oxidation processes or simply as flame hydrolysis processes.
  • the body formed by the deposited particles is often referred to as a "boule" and this terminology is used herein, it being understood that the term includes any silica- containing body formed by a flame hydrolysis process.
  • Furnace 10 includes a crown 12 having multiple deposition burners 14, a ring wall 16 which supports the crown, and a rotatable base 18 mounted on a x-y oscillation table 20.
  • the crown, ring wall, and base are each made of refractory materials.
  • Refractory blocks 22 are mounted on base 18 to form containment vessel 13.
  • the blocks form the vessel's containment wall and the portion of base 18 surrounded by the wall (the bottom of the vessel) is covered with high purity bait sand 24 which collects the initial soot particles.
  • Refractory blocks 22 can be composed of an outer alumina base block 22a and an inner liner 22b made of, for example, zirconia or zircon. Other refractory materials and constructions can, of course, be used if desired.
  • a preferred construction for containment vessel 13, which is suitable for use with the present invention, is described in commonly assigned U.S. patent application Serial No. 60/003,608, entitled "Containment Vessel for Producing Fused Silica Glass, " which was filed on September 12, 1995 in the name of John E. Maxon.
  • plenum 13 and crown 12 which is referred to herein as a "plenum" is vented by a plurality of vents 28 formed at the top of ring wall 16 at its junction with the crown.
  • the vents are connected to a suitable exhaust system by ducting which creates a negative pressure in the plenum.
  • the negative pressure causes air to flow upward through annular gap 30 between the ring wall and the containment vessel.
  • a furnace system which controls for variations in the air flow around the containment vessel and which can be used in the practice of the present invention is described in commonly assigned U.S. patent application Serial No. 60/003,595, entitled “Furnace For Producing Fused Silica Glass", which was filed on September 12, 1995 in the name of Paul M. Schermerhorn.
  • boules having diameters on the order of five feet (1.5 meters) and thicknesses on the order of 5-8 inches (13-20 cm) can be produced using furnaces of the type shown in Figure 1.
  • Multiple blanks are cut from such boules and used to make various products, including optical elements, such as, lenses (including lenses for microlithography systems) , prisms, and the like.
  • the blanks are generally cut in a direction parallel to the axis of rotation of the boule in furnace 10, and the optical axis of a lens element made from such a blank will also generally be parallel to the boule's axis of rotation.
  • this direction will be referred to herein as the "z- direction” or the “z-axis.” Measurements of inhomogeneity made in a direction perpendicular to the z- axis will be referred to as “off-axis” measurements.
  • the amount of variation in the index of refraction of a blank which can be tolerated depends on the product which is to be made from the blank. Homogeneity of a blank or optical element is normally measured using interferometric techniques. When large parts are to be made, a large aperture interferometer is used, e.g., an interferometer having an aperture of 18 inches (46 cm) .
  • Figure 2 shows an 17.3-inch (43.9 cm) interferometer plot (phase plot) for a fused silica boule prepared in accordance with the present invention.
  • the boule was prepared using (1) a furnace of the type shown in Figure 1, (2) a containment vessel whose inner walls were sloped at an angle of 10° with respect to vertical, and (3) the oscillation/rotation pattern referred to below as "process 3".
  • ⁇ n ( ⁇ • PV) / t b , (1)
  • is the wavelength of light used by the interferometer
  • PV is the difference between the highest peak and the lowest valley of the phase plot
  • t b is the thickness of the blank.
  • the homogeneity of a blank can also be expressed in other ways, such as in terms of the root-mean-square (RMS) deviation of the phase plot, which provides a measure of the variations in n between different points of the blank. See, for example, Japanese Patent Application Disclosure No. 6-308717, published November 4, 1994.
  • ⁇ n e.g., ⁇ n values less than or equal to 1.0 x 10 "6 and preferably less than or equal to 0.5 x 10 "6 for blanks having a diameter of 125 mm and larger
  • Microlithography systems are used to produce integrated circuits and generally include a deep UV laser light source, an illumination lens system, and a projection (imaging) lens system. See, for example, Pfau et al. , "Quartz inhomogeneity effects in diffraction- limited deep ultraviolet imaging," Applied Optics. Vol. 31, No. 31, pages 6658-6661 (November 1, 1992) .
  • the illumination lens system expands the laser beam and homogenizes its intensity.
  • the projection lens system projects a very high resolution image of a mask onto a resist-covered IC wafer.
  • Diffraction effects limit the line width produced at the IC wafer and thus limit the density of circuits which can be written onto the wafer.
  • the resolution (R) at the wafer is given by:
  • R K- ⁇ L /NA, (2) where K is a constant whose value depends on the particular system and process used, ⁇ L is the operating wavelength of the laser light source, and NA is the numerical aperture of the projection lens system.
  • lasers having a wavelength of 400 nm or less have come into use in microlithography systems.
  • lasers having a wavelength of 400 nm or less include KrF and ArF excimer lasers which operate at 248 nm and 193 nm, respectively.
  • lens elements used in such a system must be of the highest quality.
  • lens blanks must have high internal transmission values, e.g., above about 99.8% ⁇ 0.1% per centimeter, low levels of inclusions, low birefringence, low fluorescence, and high resistance to laser damage at UV wavelengths.
  • optical elements used in microlithography systems need to have high off-axis homogeneity, again for large blank sizes.
  • Japanese Patent Application Disclosure No. 5-97452 published April 20, 1993, which discusses the need for homogeneity in three directions. This is especially important for prismatic elements used in such systems, where optical planes are formed at angles relative to a blank's z-direction. (See the Pfau et al. article cited above; note that off-axis homogeneity is also important for prisms and other optical elements used in applications other than microlithography systems.)
  • Off-axis homogeneity can be observed and/or measured in various ways, including through the use of a shadowgram in which diverging light from a point source is passed through a sample and the resulting pattern is observed on an observation screen and through diffraction-based techniques where collimated light is passed through a sample and the far-field diffraction pattern is observed in the Fourier transform plane of a long focal length lens (see "Corning Tests for Striae in Fused Silica," Laser Focus World, page 110, August 1993) .
  • a preferred method for measuring off-axis inhomogeneity is by means of an interferometer/camera system which has a sufficiently fine spatial resolution to detect the inhomogeneities of interest, e.g., a spatial resolution of 18-20 pixels/mm of glass.
  • Such resolution can be achieved by employing a high resolution camera or through the use of a beam reducer located between the interferometer and the sample, this latter approach having the disadvantage that only a small portion of a blank or optical element can be examined at a time.
  • processing of the interferometer signal can be performed in accordance with the techniques described in commonly assigned U.S. patent application Serial No. 60/003,607, entitled “Methods for Detecting Striae", which was filed on September 12, 1995 in the names of David R. Fladd and Stephen J. Rieks.
  • FIG. 3 is an off-axis phase plot for a blank prepared using a prior art oscillation/rotation pattern and a furnace of the type shown in Figure 1.
  • a strong periodic off-axis inhomogeneity having an average peak-to-peak period of about a half a millimeter can be clearly seen in this figure.
  • ⁇ n ( ⁇ • PV) / PL
  • the wavelength of light used by the interferometer
  • PV the difference between the highest peak and the lowest valley of the phase plot produced by the interferometer for the striae
  • PL the off-axis path length through the blank.
  • the present invention is directed to reducing this off-axis inhomogeneity, while at the same time maintaining a high level of homogeneity in the z- direction.
  • the invention is directed to increasing the average peak-to-peak period (spacing) of the striae ( ⁇ z striae ) , as well as to reducing their average peak-to-valley magnitude ( ⁇ n striae ) at least to some extent.
  • the ratio of these average values i.e., the ⁇ n striae / ⁇ z striae ratio, can be decreased, which reduces the optical effects of the striae.
  • the off-axis homogeneity of a boule, and thus the off-axis homogeneity of blanks and optical elements made therefrom depends upon two aspects of the oscillation pattern used to produce the boule.
  • the first aspect is the repeat period of the oscillation pattern, i.e., the period of time it takes for the boule to return to substantially the same place in the furnace going in substantially the same direction at substantially the same speed.
  • ⁇ z striae as measured interferometrically, is substantially linearly related to the repeat period. That is, as the repeat period increases, ⁇ z striae increases.
  • An increase in ⁇ z striae means a decrease in the ⁇ n striae / ⁇ z striae ratio, which, as discussed above, means that the optical effects of the striae are reduced.
  • off-axis periodic striae can be significantly reduced if oscillation patterns having repeat periods greater than about 8 minutes and preferably about 10 minutes are used in the boule preparation process.
  • the repeat period of the oscillation pattern is chosen so as to correspond to the deposition of at least about 0.15 mm of glass and preferably about 0.20 mm of glass.
  • the second aspect of the oscillation pattern which affects off-axis periodic striae is the pattern's relationship to the overall rotation of the boule relative to the furnace's burners.
  • periodic off-axis striae can be substantially reduced if the oscillation pattern and the overall rotation rate are selected so that burners traverse substantially spiral paths over the boule.
  • the spiral paths are given at least some wobble to hold ⁇ n within acceptable limits (such paths are referred to herein as “substantially spiral paths” or as “spiral-like paths”).
  • the processing conditions and containment vessel described in the above referenced application entitled “Containment Vessel for Producing Fused Silica Glass” can be used with the spiral or spiral-like patterns to provide the requisite level of z-axis homogeneity.
  • the methods and apparatus of that application provide for:
  • blanks and optical elements can be produced having An striae / ⁇ z Btriae values less than or equal to about 2.0 x IO "8 mm “1 and preferably less than or equal to about 1.5 x 10 "8 mm “1 , and z-axis homogeneity values ( ⁇ n values) less than or equal to 1.0 x 10 "6 and preferably less than or equal to 0.5 x IO "6 for blank (element) sizes (e.g., diameters for cylindrical blanks) greater than or equal to 125 mm, preferably greater than or equal to 150 mm, and most preferably greater than or equal to 200 mm.
  • ⁇ n values less than or equal to 1.0 x 10 "6 and preferably less than or equal to 0.5 x IO "6 for blank (element) sizes (e.g., diameters for cylindrical blanks) greater than or equal to 125 mm, preferably greater than or equal to 150 mm, and most preferably greater than or equal to 200 mm.
  • Figure 1 is a schematic diagram of a prior art furnace used to produce fused silica boules using a flame hydrolysis process.
  • Figure 2 shows an 17.3-inch (43.9 cm) interferometer phase plot for a section of a fused silica boule prepared in accordance with the present invention.
  • the phase plot is taken along the z-axis of the boule.
  • the PST, TLT, and PWR components have been removed from the original raw data (ZYGO terminology; Zygo Corporation, Middlefield, CT) .
  • Figures 3, 4, and 5 are off-axis phase plots for blanks prepared using prior art furnaces of the type shown in Figure 1 and containment vessels whose inner walls were sloped at an angle of 10° with respect to vertical .
  • the boule oscillation and rotation parameters used in preparing these blanks are those referred to in Table 1 as process 1 ( Figure 3) , process 2 ( Figure 4) , and process 3 ( Figure 5) .
  • the phase plots of these figures were prepared using a beam reducer between the interferometer and the sample and thus have an aperture of only about 6.5 mm.
  • the data analysis procedures of the above-referenced application entitled "Methods for Detecting Striae" were not used in the preparation of these plots. As shown, the PST and TLT components have been removed from the raw data for each of these figures.
  • Figure 2 on the one hand and Figures 3, 4, and 5, on the other hand, are different, as are the horizontal scales; in particular, Figures 3, 4, and 5 have expanded scales in both the vertical and horizontal direction as compared to Figure 2.
  • Figures 6A, 7A, and 8A are plots of x(t) versus t for processes 1, 2, and 3, respectively.
  • Figures 6B, 7B, and 8B are plots of y(t) versus t, again for processes 1, 2, and 3, respectively.
  • Figures 9A, IOA, and IIA are "spirogra s" for processes 1, 2, and 3, respectively, at 300 seconds.
  • Figures 9B, 10B, and IIB are the corresponding spirograms at 700 seconds.
  • Figure 12 is a schematic diagram of the burner locations used in producing Figures 9-11.
  • the present invention relates to methods for improving the homogeneity of silica- containing bodies made by vapor deposition techniques.
  • the silica-containing body can be substantially pure fused silica or can contain one or more dopants as desired, e.g., the body can contain a titanium dopant which lowers the coefficient of thermal expansion of the glass. Low levels of contaminates may also be present in the body.
  • This geometry is schematically illustrated in Figure 12, where 100 represents the center of the ringwall and 200 represents the center of the boule.
  • ⁇ 3 represents the boule' s rotation rate about its center in revolutions per minute (rpm) . This overall rotation of the boule is illustrated by reference number 3 in Figure 1.
  • (4) and (5) can be used in the practice of the invention, if desired.
  • more than two frequencies can be used to define x(t) and/or y(t) .
  • Table 1 sets forth three sets of values for r 1# r 2 , ⁇ -_, ⁇ 2 , and ⁇ 3 which illustrate the features of the invention. For convenience, these sets of values will be referred to as "process 1", “process 2", and “process 3". Processes 1 and 2 are patterns that were used in the prior art, while process 3 follows the teachings of the present invention.
  • the values in Table 1 are suitable for producing a boule having a diameter of about five feet (1.5 m) . Suitable values for producing larger or smaller boules can be readily determined by persons skilled in the art from the disclosure herein.
  • the optical effects of periodic off-axis striae can be reduced by using an oscillation pattern having a sufficiently long repeat period.
  • the repeat period can be determined from x(t) and/or y(t) versus time plots of the type shown in Figures 6-8.
  • Figure 6 shows the patterns obtained when ⁇ -, ⁇ ⁇ 2 ;
  • Figure 7 shows the case of ⁇ x « ⁇ 2 ; and Figure 8 shows the case of ⁇ - L ⁇ ⁇ 2 .
  • the repeat period for process l is thus approximately 2.1 minutes.
  • the tracings of Figure 7 show a classical beat pattern, having a beat frequency equal to the magnitude of the difference between ⁇ 2 and ⁇ x .
  • the beat period is simply one over the beat frequency. Accordingly, the repeat period when ⁇ x « ⁇ 2 is simply l/
  • the repeat period is approximately 4.9 minutes (294 seconds).
  • the tracings of Figure 8 illustrate the case where ⁇ -. « ⁇ 2 .
  • the repeat period is substantially the same as the period of the slower oscillation, i.e., the repeat period is approximately l/ ⁇ ⁇ .
  • the repeat period is thus approximately 10 minutes (600 seconds) .
  • the optical effects of periodic striae can be reduced by using a repeat period of at least about 8 minutes. It should be noted that such a repeat period can be achieved for any of the ⁇ x to ⁇ 2 relationships illustrated in Figures 6, 7, and 8, although the relationship of Figure 8, i.e., ⁇ ⁇ ⁇ ⁇ 2 , is preferred. Similarly, the desired repeat period can be achieved for oscillation patterns whose composition is other than two sinusoidal waves.
  • off-axis periodic striae are also dependent upon the relationship between the oscillation pattern and the overall rotation of the boule about its center. In particular, it has been found that off-axis periodic striae can be significantly reduced if the oscillation pattern and the boule's rotation rate are selected so that the paths which the burners trace across the surface of the boule are spirals.
  • FIG. 11 shows calculated laydown patterns for the process 3 parameters for three burners located near to the center 100 of ringwall 16. The relative locations of these burners are shown in Figure 12. Their radial distances from center 100 are 2.75 inches (7.0 cm) for burner 1, 5.00 inches (12.7 cm) for burner 2, and 6.63 inches (16.8 cm) for burner 3.
  • Figure IIA shows the pattern at 300 seconds, while Figure IIB shows it at 700 seconds.
  • Figures 9 and 10 show calculated laydown patterns for the same burner locations when processes 1 and 2 are used. As these figures demonstrate, these processes result in patterns which are not spiral-like, but rather are highly reentrant, i.e., the burner's path crosses and recrosses itself as the pattern develops.
  • Table 2 and Figures 3 (process 1) , 4 (process 2) , and 5 (process 3) illustrate the significant improvement in off-axis periodic striae achieved by the present invention. As shown therein, process 3 results in a significantly lower ⁇ n striae / ⁇ z striae value than either process 1 or process 2. The reduction in this value means that the optical effects of the striae are substantially reduced.
  • boules having a diameter of up to 1.53 meters can be manufactured and used to produce blanks having diameters up to 360 millimeters, ⁇ n values of less than 0.5 x IO "6 , and ⁇ n striae / ⁇ z striae values less than 1.5 x IO "8 mm "1 .
  • Such blanks can be used to produce optical elements for microlithography systems employing, for example, KrF lasers.
  • the required motion can also be achieved by holding the boule stationary and moving the soot particle source or by moving both the boule and the soot particle source.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

Oscillation/rotation patterns for improving the off axis homogeneity of fused silica boules are provided. The patterns reduce the optical effects of periodic off-axis striae by decreasing the ratio of Δnstriae to Δzstriae, where Δnstriae is the average peak-to-valley magnitude of the striae and Δzstriae is their average peak-to-peak period. The oscillation/rotation patterns have long repeat periods and cause soot-producing burners to trace out substantially spiral-shaped patterns on the surface of the boule.

Description

BOULE OSCILLATION PATTERNS FOR PRODUCING
FUSED SILICA GLASS
FIELD OF THE INVENTION
This invention relates to the production of fused silica glass and, in particular, to methods for improving the homogeneity of such glass, i.e., for reducing variations in the index of refraction of the glass. DESCRIPTION OF THE TECHNOLOGY
Figure 1 shows a prior art furnace 10 for producing fused silica glass. In overview, silicon-containing gas molecules are reacted in a flame to form Si02 soot particles. These particles are deposited on the hot surface of a rotating body where they consolidate into a very viscous fluid which is later cooled to the glassy (solid) state. In the art, glass making procedures of this type are known as vapor phase hydrolysis/oxidation processes or simply as flame hydrolysis processes. The body formed by the deposited particles is often referred to as a "boule" and this terminology is used herein, it being understood that the term includes any silica- containing body formed by a flame hydrolysis process.
Furnace 10 includes a crown 12 having multiple deposition burners 14, a ring wall 16 which supports the crown, and a rotatable base 18 mounted on a x-y oscillation table 20. The crown, ring wall, and base are each made of refractory materials.
Refractory blocks 22 are mounted on base 18 to form containment vessel 13. The blocks form the vessel's containment wall and the portion of base 18 surrounded by the wall (the bottom of the vessel) is covered with high purity bait sand 24 which collects the initial soot particles. Refractory blocks 22 can be composed of an outer alumina base block 22a and an inner liner 22b made of, for example, zirconia or zircon. Other refractory materials and constructions can, of course, be used if desired. A preferred construction for containment vessel 13, which is suitable for use with the present invention, is described in commonly assigned U.S. patent application Serial No. 60/003,608, entitled "Containment Vessel for Producing Fused Silica Glass, " which was filed on September 12, 1995 in the name of John E. Maxon. The space 26 between the top of containment vessel
13 and crown 12, which is referred to herein as a "plenum", is vented by a plurality of vents 28 formed at the top of ring wall 16 at its junction with the crown. The vents are connected to a suitable exhaust system by ducting which creates a negative pressure in the plenum. The negative pressure causes air to flow upward through annular gap 30 between the ring wall and the containment vessel. A furnace system which controls for variations in the air flow around the containment vessel and which can be used in the practice of the present invention is described in commonly assigned U.S. patent application Serial No. 60/003,595, entitled "Furnace For Producing Fused Silica Glass", which was filed on September 12, 1995 in the name of Paul M. Schermerhorn. As practiced commercially, boules having diameters on the order of five feet (1.5 meters) and thicknesses on the order of 5-8 inches (13-20 cm) can be produced using furnaces of the type shown in Figure 1. Multiple blanks are cut from such boules and used to make various products, including optical elements, such as, lenses (including lenses for microlithography systems) , prisms, and the like. The blanks are generally cut in a direction parallel to the axis of rotation of the boule in furnace 10, and the optical axis of a lens element made from such a blank will also generally be parallel to the boule's axis of rotation. For ease of reference, this direction will be referred to herein as the "z- direction" or the "z-axis." Measurements of inhomogeneity made in a direction perpendicular to the z- axis will be referred to as "off-axis" measurements.
The amount of variation in the index of refraction of a blank which can be tolerated depends on the product which is to be made from the blank. Homogeneity of a blank or optical element is normally measured using interferometric techniques. When large parts are to be made, a large aperture interferometer is used, e.g., an interferometer having an aperture of 18 inches (46 cm) .
Figure 2 shows an 17.3-inch (43.9 cm) interferometer plot (phase plot) for a fused silica boule prepared in accordance with the present invention. The boule was prepared using (1) a furnace of the type shown in Figure 1, (2) a containment vessel whose inner walls were sloped at an angle of 10° with respect to vertical, and (3) the oscillation/rotation pattern referred to below as "process 3".
Quantitatively, the z-direction homogeneity of a blank is expressed as its Δn value, which is calculated from the inter erometer plot using the equation:
Δn = (λ • PV) / tb, (1) where λ is the wavelength of light used by the interferometer, PV is the difference between the highest peak and the lowest valley of the phase plot, and tb is the thickness of the blank. The homogeneity of a blank can also be expressed in other ways, such as in terms of the root-mean-square (RMS) deviation of the phase plot, which provides a measure of the variations in n between different points of the blank. See, for example, Japanese Patent Application Disclosure No. 6-308717, published November 4, 1994.
An application for fused silica blanks which requires very low values of Δn (e.g., Δn values less than or equal to 1.0 x 10"6 and preferably less than or equal to 0.5 x 10"6 for blanks having a diameter of 125 mm and larger) is in the production of optical elements for microlithography systems.
Microlithography systems are used to produce integrated circuits and generally include a deep UV laser light source, an illumination lens system, and a projection (imaging) lens system. See, for example, Pfau et al. , "Quartz inhomogeneity effects in diffraction- limited deep ultraviolet imaging," Applied Optics. Vol. 31, No. 31, pages 6658-6661 (November 1, 1992) . The illumination lens system expands the laser beam and homogenizes its intensity. The projection lens system projects a very high resolution image of a mask onto a resist-covered IC wafer.
Diffraction effects limit the line width produced at the IC wafer and thus limit the density of circuits which can be written onto the wafer. In particular, the resolution (R) at the wafer is given by:
R = K-λL/NA, (2) where K is a constant whose value depends on the particular system and process used, λL is the operating wavelength of the laser light source, and NA is the numerical aperture of the projection lens system.
Reducing the wavelength of the laser light thus improves the resolution and allows narrower lines to be written on the wafer. Accordingly, in recent years, shorter wavelength lasers, e.g., lasers having a wavelength of 400 nm or less, have come into use in microlithography systems. Examples of such lasers include KrF and ArF excimer lasers which operate at 248 nm and 193 nm, respectively.
At these short (UV) wavelengths, standard optical glasses cannot be used for the optical elements of the system because of their high absorption. Fused silica glass, on the other hand, is transparent in the UV range and has thus become the material of choice for this application. Because the goal of a microlithography system is to produce an image having a resolution in the submicron range, the lens elements used in such a system, and thus the lens blanks used to produce the lens elements, must be of the highest quality. Among other properties, such lens blanks must have high internal transmission values, e.g., above about 99.8% ± 0.1% per centimeter, low levels of inclusions, low birefringence, low fluorescence, and high resistance to laser damage at UV wavelengths. Of critical importance is the blank's Δn value since uncontrolled variations in n manifest themselves as uncorrectable aberrations in the image produced at the IC wafer. Moreover, from equation (2) above, to achieve high resolution, large NA values are needed. Large NA values, in turn, mean large lens elements. Accordingly, not only must Δn be small, it must be small for large blank sizes.
Examples of the efforts which have been made to achieve this combination of a low Δn value and a large blank size include Yamagata et al. , U.S. Patent No. 5,086,352, PCT Publication No. WO 93/00307 published January 7, 1993, Japanese Patent Application Disclosure No. 5-116969 published May 14, 1993, Japanese Patent Application Disclosure No. 6-166527 published July 14, 1994, Japanese Patent Application Disclosure No. 6-234530 published August 23, 1994, and Japanese Patent Application Disclosure No. 6-234531 published August 23, 1994.
In addition to small Δn values for large blank sizes, optical elements used in microlithography systems need to have high off-axis homogeneity, again for large blank sizes. See, for example, Japanese Patent Application Disclosure No. 5-97452, published April 20, 1993, which discusses the need for homogeneity in three directions. This is especially important for prismatic elements used in such systems, where optical planes are formed at angles relative to a blank's z-direction. (See the Pfau et al. article cited above; note that off-axis homogeneity is also important for prisms and other optical elements used in applications other than microlithography systems.)
Off-axis homogeneity can be observed and/or measured in various ways, including through the use of a shadowgram in which diverging light from a point source is passed through a sample and the resulting pattern is observed on an observation screen and through diffraction-based techniques where collimated light is passed through a sample and the far-field diffraction pattern is observed in the Fourier transform plane of a long focal length lens (see "Corning Tests for Striae in Fused Silica," Laser Focus World, page 110, August 1993) .
A preferred method for measuring off-axis inhomogeneity is by means of an interferometer/camera system which has a sufficiently fine spatial resolution to detect the inhomogeneities of interest, e.g., a spatial resolution of 18-20 pixels/mm of glass. Such resolution can be achieved by employing a high resolution camera or through the use of a beam reducer located between the interferometer and the sample, this latter approach having the disadvantage that only a small portion of a blank or optical element can be examined at a time. To distinguish off-axis inhomogeneities from noise, processing of the interferometer signal can be performed in accordance with the techniques described in commonly assigned U.S. patent application Serial No. 60/003,607, entitled "Methods for Detecting Striae", which was filed on September 12, 1995 in the names of David R. Fladd and Stephen J. Rieks.
Using procedures of the foregoing type, off-axis inhomogeneities in the form of periodic (sinusoidal) striae have been observed for blanks made using furnaces of the type shown in Figure 1. Figure 3 is an off-axis phase plot for a blank prepared using a prior art oscillation/rotation pattern and a furnace of the type shown in Figure 1. A strong periodic off-axis inhomogeneity having an average peak-to-peak period of about a half a millimeter can be clearly seen in this figure.
Quantitatively, such striae have been found to have δn values around 10 x 10"8, where δn = (λ PV) / PL, (3) λ is the wavelength of light used by the interferometer, PV is the difference between the highest peak and the lowest valley of the phase plot produced by the interferometer for the striae, and PL is the off-axis path length through the blank.
The present invention is directed to reducing this off-axis inhomogeneity, while at the same time maintaining a high level of homogeneity in the z- direction. In particular, the invention is directed to increasing the average peak-to-peak period (spacing) of the striae (Δzstriae) , as well as to reducing their average peak-to-valley magnitude (Δnstriae) at least to some extent. In this way, the ratio of these average values, i.e., the Δnstriae/Δzstriae ratio, can be decreased, which reduces the optical effects of the striae. SUMMARY OF THE INVENTION
In view of the foregoing, it is an object of this invention to provide improved methods for producing silica-containing boules by the flame hydrolysis process. In particular, it is an object of the invention to improve the off-axis homogeneity of such boules and thus the off-axis homogeneity of blanks and optical elements, including prisms and lens elements, made therefrom. It is a further object of the invention to provide blanks and optical elements which have a high off-axis homogeneity, a high z-axis homogeneity, and a large size. In accordance with the invention, it has been discovered that the off-axis homogeneity of a boule, and thus the off-axis homogeneity of blanks and optical elements made therefrom, depends upon two aspects of the oscillation pattern used to produce the boule.
The first aspect is the repeat period of the oscillation pattern, i.e., the period of time it takes for the boule to return to substantially the same place in the furnace going in substantially the same direction at substantially the same speed. In accordance with the invention, it has been found that Δzstriae, as measured interferometrically, is substantially linearly related to the repeat period. That is, as the repeat period increases, Δzstriae increases. An increase in Δzstriae, in turn, means a decrease in the Δnstriae/Δzstriae ratio, which, as discussed above, means that the optical effects of the striae are reduced.
In particular, it has been found that off-axis periodic striae can be significantly reduced if oscillation patterns having repeat periods greater than about 8 minutes and preferably about 10 minutes are used in the boule preparation process.
It has been further found that there is a substantial difference between the physical amount of glass deposited during a repeat period and the observed Δzstriae. That is, Δzstriae is on the order of 10-15 times greater than the thickness of glass deposited during the repeat period. In accordance with this aspect of the invention, the repeat period of the oscillation pattern is chosen so as to correspond to the deposition of at least about 0.15 mm of glass and preferably about 0.20 mm of glass.
The second aspect of the oscillation pattern which affects off-axis periodic striae is the pattern's relationship to the overall rotation of the boule relative to the furnace's burners. In accordance with the invention, it has been found that periodic off-axis striae can be substantially reduced if the oscillation pattern and the overall rotation rate are selected so that burners traverse substantially spiral paths over the boule.
In accordance with this aspect of the invention, it has been further found that the use of a pure spiral reduces off-axis striae but at the expense of z-axis homogeneity. Accordingly, in accordance with certain preferred embodiments of the invention, the spiral paths are given at least some wobble to hold Δn within acceptable limits (such paths are referred to herein as "substantially spiral paths" or as "spiral-like paths"). In addition, the processing conditions and containment vessel described in the above referenced application entitled "Containment Vessel for Producing Fused Silica Glass" can be used with the spiral or spiral-like patterns to provide the requisite level of z-axis homogeneity. In general terms, the methods and apparatus of that application provide for:
(1) maintaining a sufficiently high boule temperature during the boule formation process so that the boule will flow radially under its own weight with a minimum of head height, specifically, with a head height less than or equal to about 5.0 mm and preferably less than or equal to about 0.125 inches (3.2 mm) of glass;
(2) forming the boule in a containment vessel whose inner radius rv is substantially larger than the radius rb of the outermost of the deposition burners used to form the boule, e.g., the ratio of rv to rb is at least about 1.1; and/or (3) forming the boule in a containment vessel having an inner containment wall or walls whose vertical height h increases with increasing distance d from the center of the vessel at a rate Δh/Δd which is less than or equal to about
3.
By means of the invention, blanks and optical elements can be produced having Anstriae/ΔzBtriae values less than or equal to about 2.0 x IO"8 mm"1 and preferably less than or equal to about 1.5 x 10"8 mm"1, and z-axis homogeneity values (Δn values) less than or equal to 1.0 x 10"6 and preferably less than or equal to 0.5 x IO"6 for blank (element) sizes (e.g., diameters for cylindrical blanks) greater than or equal to 125 mm, preferably greater than or equal to 150 mm, and most preferably greater than or equal to 200 mm. To achieve z-axis homogeneity values of 0.5 x 10"6 or less, the apparatus and methods of the above referenced application entitled "Containment Vessel for Producing Fused Silica Glass" will generally be needed. Depending upon the capabilities of the testing equipment used, satisfaction of the Δnstriae/Δzstriae and the Δn criteria can be determined by testing the blank or element as a whole or by testing representative sections thereof. Values for the Δnstriae/Δzstriae ratio can be determined manually or automatically by computer using a phase plot or preferably a profile line derived therefrom. See the above-referenced application entitled "Methods for Detecting Striae" and, in particular, the discussion of Figure 11 of that application. BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a schematic diagram of a prior art furnace used to produce fused silica boules using a flame hydrolysis process.
Figure 2 shows an 17.3-inch (43.9 cm) interferometer phase plot for a section of a fused silica boule prepared in accordance with the present invention. The phase plot is taken along the z-axis of the boule. As shown, the PST, TLT, and PWR components have been removed from the original raw data (ZYGO terminology; Zygo Corporation, Middlefield, CT) .
Figures 3, 4, and 5 are off-axis phase plots for blanks prepared using prior art furnaces of the type shown in Figure 1 and containment vessels whose inner walls were sloped at an angle of 10° with respect to vertical . The boule oscillation and rotation parameters used in preparing these blanks are those referred to in Table 1 as process 1 (Figure 3) , process 2 (Figure 4) , and process 3 (Figure 5) . The phase plots of these figures were prepared using a beam reducer between the interferometer and the sample and thus have an aperture of only about 6.5 mm. The data analysis procedures of the above-referenced application entitled "Methods for Detecting Striae" were not used in the preparation of these plots. As shown, the PST and TLT components have been removed from the raw data for each of these figures.
It should be noted that the vertical scales in
Figure 2 on the one hand and Figures 3, 4, and 5, on the other hand, are different, as are the horizontal scales; in particular, Figures 3, 4, and 5 have expanded scales in both the vertical and horizontal direction as compared to Figure 2.
Figures 6A, 7A, and 8A are plots of x(t) versus t for processes 1, 2, and 3, respectively. Figures 6B, 7B, and 8B are plots of y(t) versus t, again for processes 1, 2, and 3, respectively.
Figures 9A, IOA, and IIA are "spirogra s" for processes 1, 2, and 3, respectively, at 300 seconds. Figures 9B, 10B, and IIB are the corresponding spirograms at 700 seconds.
Figure 12 is a schematic diagram of the burner locations used in producing Figures 9-11.
The foregoing drawings, which are incorporated in and constitute part of the specification, illustrate the preferred embodiments of the invention, and together with the description, serve to explain the principles of the invention. It is to be understood, of course, that both the drawings and the description are explanatory only and are not restrictive of the invention.
The drawing of Figure 1 is not intended to indicate scale or relative proportions of the elements shown therein. DESCRIPTION OF THE PREFERRED EMBODIMENTS
As discussed above, the present invention relates to methods for improving the homogeneity of silica- containing bodies made by vapor deposition techniques. The silica-containing body can be substantially pure fused silica or can contain one or more dopants as desired, e.g., the body can contain a titanium dopant which lowers the coefficient of thermal expansion of the glass. Low levels of contaminates may also be present in the body.
In accordance with the invention, improved off-axis homogeneity is achieved by means of the oscillation/rotation pattern used during the formation of the boule. The particular patterns used in the experiments reported herein were defined by the following equations: x(t) = r-. sin 2πω1t + r2 sin 27rω2t (4) y(t) = rλ cos 2τrω1t + r2 cos 27rω2t (5) where x(t) and y(t) represent the coordinates of the center of the boule as measured from the center of ringwall 16 as a function of time (t) and time is measured in minutes. This geometry is schematically illustrated in Figure 12, where 100 represents the center of the ringwall and 200 represents the center of the boule. It should be noted that the sum of rχ and r2 must be less than the difference between the radius of the ringwall and the radius of the containment vessel to avoid contact between these structures during formation of the boule. In addition to the four parameters rχ/ r2, ω1# and ω2, the overall motion of the boule is also defined by a fifth parameter, ω3, which represents the boule' s rotation rate about its center in revolutions per minute (rpm) . This overall rotation of the boule is illustrated by reference number 3 in Figure 1.
It should be noted that oscillation patterns that are more or less complex than those defined by equations
(4) and (5) can be used in the practice of the invention, if desired. In particular, more than two frequencies can be used to define x(t) and/or y(t) .
Table 1 sets forth three sets of values for r1# r2, ω-_, ω2, and ω3 which illustrate the features of the invention. For convenience, these sets of values will be referred to as "process 1", "process 2", and "process 3". Processes 1 and 2 are patterns that were used in the prior art, while process 3 follows the teachings of the present invention. The values in Table 1 are suitable for producing a boule having a diameter of about five feet (1.5 m) . Suitable values for producing larger or smaller boules can be readily determined by persons skilled in the art from the disclosure herein.
As discussed above, in accordance with certain aspects of the invention, it has been found that the optical effects of periodic off-axis striae can be reduced by using an oscillation pattern having a sufficiently long repeat period. The repeat period can be determined from x(t) and/or y(t) versus time plots of the type shown in Figures 6-8. Figure 6 shows the patterns obtained when ω-, < ω2;
Figure 7 shows the case of ωx « ω2; and Figure 8 shows the case of ω-L << ω2.
An examination of, for example, Figure 6A shows that at t=0 and again at about t=120 seconds, x(t) is at its maximum. This maximum corresponds to sin 2πω1t and sin 27rω2t both being equal to or approximately equal to +1, which occurs when the arguments of these sin functions are each substantially equal to 2nτr, n being different for ω-. and ω2. In particular, maximums of x(t) occur whenever ω12 is substantially equal to n1/n2. The maximum for t around 120 seconds corresponds to nx = 3 and n2 = 7. This maximum occurs at approximately 2.1 minutes (126 seconds) where 2πω2t = 147. and 2πω-t = 67τ. The repeat period for process l is thus approximately 2.1 minutes. The tracings of Figure 7 show a classical beat pattern, having a beat frequency equal to the magnitude of the difference between ω2 and ωx. The beat period is simply one over the beat frequency. Accordingly, the repeat period when ωx « ω2 is simply l/|ω2 - ω | . For the process 2 parameters of Table 1, the repeat period is approximately 4.9 minutes (294 seconds).
The tracings of Figure 8 illustrate the case where ω-. « ω2. For this condition, the repeat period is substantially the same as the period of the slower oscillation, i.e., the repeat period is approximately l/ωχ. For the process 3 parameters of Table 1, the repeat period is thus approximately 10 minutes (600 seconds) .
As discussed above, in accordance with the invention it has been found that the optical effects of periodic striae can be reduced by using a repeat period of at least about 8 minutes. It should be noted that such a repeat period can be achieved for any of the ωx to ω2 relationships illustrated in Figures 6, 7, and 8, although the relationship of Figure 8, i.e., ωλ << ω2, is preferred. Similarly, the desired repeat period can be achieved for oscillation patterns whose composition is other than two sinusoidal waves.
In addition to being dependent upon the repeat period of the oscillation pattern, the off-axis periodic striae are also dependent upon the relationship between the oscillation pattern and the overall rotation of the boule about its center. In particular, it has been found that off-axis periodic striae can be significantly reduced if the oscillation pattern and the boule's rotation rate are selected so that the paths which the burners trace across the surface of the boule are spirals.
A set of ω's and r's which is suitable for use in producing a boule which has a diameter of about five feet (1.5 m) and which produce such a spiral pattern is as follows: rx = 0; r2 = 2.5 inches (6.35 cm); ωx = 0 rpm; ω2 = 0.45 rpm; and ω3 = 6.0 rpm. Note that ω3 is greater than ω as is required to produce a spiral path on the boule. Suitable values for producing larger or smaller boules can be readily determined by persons skilled in the art from the present disclosure.
Although a spiral pattern is effective in dealing with off-axis periodic striae, it has the disadvantage that it tends to produce relatively large Δn values. In accordance with the preferred embodiments of the invention, this problem is addressed by using burner paths which are substantially spirals, but not pure spirals. The parameters of process 3 produce such spiral-like burner patterns. Figure 11 shows calculated laydown patterns for the process 3 parameters for three burners located near to the center 100 of ringwall 16. The relative locations of these burners are shown in Figure 12. Their radial distances from center 100 are 2.75 inches (7.0 cm) for burner 1, 5.00 inches (12.7 cm) for burner 2, and 6.63 inches (16.8 cm) for burner 3. Figure IIA shows the pattern at 300 seconds, while Figure IIB shows it at 700 seconds. The spiral-like nature of the burner paths is evident in these figures. For comparison, Figures 9 and 10 show calculated laydown patterns for the same burner locations when processes 1 and 2 are used. As these figures demonstrate, these processes result in patterns which are not spiral-like, but rather are highly reentrant, i.e., the burner's path crosses and recrosses itself as the pattern develops.
Table 2 and Figures 3 (process 1) , 4 (process 2) , and 5 (process 3) illustrate the significant improvement in off-axis periodic striae achieved by the present invention. As shown therein, process 3 results in a significantly lower Δnstriae/Δzstriae value than either process 1 or process 2. The reduction in this value means that the optical effects of the striae are substantially reduced.
For example, in the shadowgram test in which diverging light is passed through a sample and the resulting pattern is observed on a screen, samples prepared using process 1 produced easily visible parallel lines of high contrast on the screen and those prepared using process 2 produced slightly visible parallel lines of low contrast. Process 3, on the other hand, produced samples for which the pattern on the screen was nearly invisible, which is the goal.
As discussed above, it has been found that there is a substantial difference between the observed Δzstriae and the physical amount of glass deposited during a repeat period. Although not visible in the phase plots of Figures 3-5, the underlying structure of the glass which produces the periodic striae of those plots can be seen using the shadowgram technique. Specifically, movement of a sample away from the shadowgram' s light source to a position close to the shadowgram' s screen has been found to cause a pattern to appear on the screen having a spatial frequency much higher than that observed when the sample is close to the light source. Although not wishing to be bound by any particular theory of operation, it is believed that this finer pattern corresponds to the fine structure of the glass which causes the periodic striae observed in the phase plots. By means of the invention, significant improvements in homogeneity and off-axis homogeneity have been achieved. For example, using process 3 and the apparatus and methods of the above-referenced application entitled "Containment Vessel for Producing Fused Silica Glass," boules having a diameter of up to 1.53 meters can be manufactured and used to produce blanks having diameters up to 360 millimeters, Δn values of less than 0.5 x IO"6, and Δnstriae/Δzstriae values less than 1.5 x IO"8 mm"1. Such blanks can be used to produce optical elements for microlithography systems employing, for example, KrF lasers. Although specific embodiments of the invention have been described and illustrated, it is to be understood that modifications can be made without departing from the invention's spirit and scope. For example, although the invention has been described in terms of stationary burners and a moving boule, it is the relative motion between the source of the soot particles and the boule which is important. Accordingly, in addition to using a stationary source and a moving boule as described above
(the preferred approach) , the required motion can also be achieved by holding the boule stationary and moving the soot particle source or by moving both the boule and the soot particle source.
A variety of other modifications which do not depart from the scope and spirit of the invention will be evident to persons of ordinary skill in the art from the disclosure herein. The following claims are intended to cover the specific embodiments set forth herein as well as such modifications, variations, and equivalents. TABLE 1
r1 r2 ω2 ω3 inches inches (rpm) (rpm) (rpm) (cm) (cm)
Process 1 1.0 (2.54) 1.5 (3.81) 1.4375 3.354 4.04615
Process 2 1.0(2.54) 1.5 (3.81) 5.3046 5.09852 6.7018
Process 3 0.6(1.52) 1.9 (4.83) 0.1 0.41 6.9
TABLE 2
PV PL Δnstπae zstrιae Δn8tr.aβ Δzstπaβ (mm) (mm) (mm"1)
Process 1 0.015 180.6 5.2 x 10"8 0.560 9.29 x 10"8
Process 2 0.017 169.8 6.3 x 10"8 1.710 3.68 x 10"8
Process 3 0.015 232.9 4.1 x IO"8 2.997 1.37 x 10"8

Claims

What is claimed is:
1. A method for forming a silica-containing body comprising:
(a) providing a source of soot particles;
(b) collecting the soot particles to form the body, said collection causing the thickness of the body to increase; and
(c) providing relative oscillatory motion between the source and the body as the soot particles are collected, said oscillatory motion being orthogonal to the thickness of the body and having a repeat period; said collection and oscillation being performed so that the thickness of the body increases by at least about 0.15 mm during the repeat period.
2. The method of Claim 1 wherein the thickness of the body increases by at least about 0.2 mm during the repeat period.
3. A method for forming a silica-containing body comprising:
(a) providing a source of soot particles;
(b) collecting the soot particles to form the body, said collection causing the thickness of the body to increase; and
(c) providing relative oscillatory motion between the source and the body as the soot particles are collected, said oscillatory motion being orthogonal to the thickness of the body and having a repeat period of at least about eight minutes.
4. The method of Claim 3 wherein the repeat period is about 10 minutes.
5. A method for forming a silica-containing body comprising:
(a) providing a source of soot particles;
(b) collecting the soot particles to form the body, said collection causing the thickness of the body to increase; and (c) rotating the body and providing relative oscillatory motion between the source and the body as the soot particles are collected, said oscillatory motion being orthogonal to the thickness of the body and said rotation and oscillatory motion being such that the projection of the source onto the body traces out a path which is substantially a spiral.
6. The method of Claim 5 wherein the path is a pure spiral.
7. The method of Claim 5 wherein the source comprises a plurality of soot producing burners and each burner traces out a path which is substantially a spiral .
8. The method of Claim 5 wherein the oscillatory motion has a repeat period and the collection and oscillation are performed so that the thickness of the body increases by at least about 0.15 mm during the repeat period.
9. The method of Claim 8 wherein the thickness of the body increases by at least about 0.2 mm during the repeat period.
10. The method of Claim 5 wherein the oscillatory motion has a repeat period of at least about eight minutes .
11. The method of Claim 10 wherein the repeat period is about 10 minutes.
12. A silica-containing body made by the method of Claim 1, 3, or 5.
13. The silica-containing body of Claim 12 wherein the body contains a dopant.
14. A blank made from the silica-containing body of Claim 12.
15. An optical element made from the blank of Claim 14.
16. A method for reducing off-axis periodic striae in the index of refraction of a blank formed from a silica-containing body, said striae having an average peak- o-valley magnitude Δnstriae and an average peak-to- peak period Δzstriae, said method comprising:
(a) providing a source of soot particles;
(b) collecting the soot particles to form the body, said collection causing the thickness of the body to increase; and
(c) providing relative oscillatory motion between the source and the body as the soot particles are collected, said oscillatory motion being orthogonal to the thickness of the body and having a repeat period which is sufficiently long so that Δnstriae/Δzstriae for the blank is less than or equal to about 2.0 x 10"8 mm"1.
17. The method of Claim 16 wherein the repeat period is sufficiently long so that Δnstriae/Δzstriae for the blank is less than or equal to about 1.5 x IO"8 mm"1.
18. The method of Claim 16 wherein the blank has a z-axis homogeneity Δn which is less than or equal to 1.0 x 10"6 for a blank size greater than or equal to 125 millimeters .
19. The method of Claim 17 wherein the blank has a z-axis homogeneity Δn which is less than or equal to 1.0 x 10"6 for a blank size greater than or equal to 125 millimeters .
20. The method of Claim 16 wherein the blank has a z-axis homogeneity Δn which is less than or equal to 0.5 x IO"6 for a blank size greater than or equal to 125 millimeters.
21. The method of Claim 17 wherein the blank has a z-axis homogeneity Δn which is less than or equal to 0.5 x 10"6 for a blank size greater than or equal to 125 millimeters .
22. The method of Claim 18, 19, 20, or 21 wherein the blank size is greater than or equal to 150 millimeters .
23. The method of Claim 18, 19, 20, or 21 wherein the blank size is greater than or equal to 200 millimeters.
24. The method of Claim 16 wherein the body is rotated and the rotation and the oscillatory motion causes the projection of the source onto the body to trace out a path which is substantially a spiral.
25. The method of Claim 24 wherein the path is a pure spiral .
26. The method of Claim 24 wherein the source comprises a plurality of soot producing burners and each burner traces out a path which is substantially a spiral .
27. A blank made by the method of Claim 16.
28. The blank of Claim 27 wherein the blank contains a dopant .
29. An optical element made from the blank of Claim 27.
30. A fused silica blank which has:
(a) a Δnstriae/Δzεtriae value which is less than or equal to about 2.0 x 10"8 mm"1, where Δnstriae and Δzstriae are the average peak-to-valley magnitude and the average peak-to-peak period, respectively, of the blank's off- axis striae; and
(b) a z-axis homogeneity Δn which is less than or equal to 1.0 x IO"6 for a blank size greater than or equal to 125 millimeters.
31. The fused silica blank of Claim 30 wherein the blank's Δnstriae/Δzstriae value is less than or equal to about 1.5 x 10"8 mm'1.
32. The fused silica blank of Claim 30 wherein the blank has a z-axis homogeneity Δn which is less than or equal to 0.5 x 10"6 for a blank size greater than or equal to 125 millimeters.
33. The fused silica blank of Claim 31 wherein the blank has a z-axis homogeneity Δn which is less than or equal to 0.5 x 10"6 for a blank size greater than or equal to 125 millimeters.
34. The fused silica blank of Claim 30, 31, 32 or 33 wherein the blank size is greater than or equal to 150 millimeters.
35. The fused silica blank of Claim 30, 31, 32 or 33 wherein the blank size is greater than or equal to 200 millimeters.
36. An optical element made from the blank of Claim 30.
37. A lens element made from the blank of Claim 30.
38. A prism made from the blank of Claim 30.
PCT/US1996/014551 1995-09-12 1996-09-11 Boule oscillation patterns for producing fused silica glass WO1997010184A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE69634667T DE69634667T2 (en) 1995-09-12 1996-09-11 BOULE OSCILLATION PATTERN FOR THE PRODUCTION OF MELTED QUARTZ GLASS
EP96930815A EP0850202B1 (en) 1995-09-12 1996-09-11 Boule oscillation patterns for producing fused silica glass
JP51205997A JP3841435B2 (en) 1995-09-12 1996-09-11 Boule vibration pattern for producing fused silica glass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US359695P 1995-09-12 1995-09-12
US60/003,596 1995-09-12

Publications (1)

Publication Number Publication Date
WO1997010184A1 true WO1997010184A1 (en) 1997-03-20

Family

ID=21706621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1996/014551 WO1997010184A1 (en) 1995-09-12 1996-09-11 Boule oscillation patterns for producing fused silica glass

Country Status (5)

Country Link
US (1) US5696038A (en)
EP (2) EP1524246A1 (en)
JP (1) JP3841435B2 (en)
DE (1) DE69634667T2 (en)
WO (1) WO1997010184A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998051630A1 (en) * 1997-05-15 1998-11-19 Schott Ml Gmbh Method and device for producing a homogenous sheet of quartz glass without streaks
EP1063203A1 (en) * 1999-06-21 2000-12-27 Nikon Corporation Silica glass member
EP1069083A1 (en) * 1999-07-05 2001-01-17 Agilent Technologies, Inc., a corporation of the State of Delaware Process and apparatus for depositing silica glass on a planar substrate using a plasma torch
EP2211232B1 (en) * 2002-03-05 2015-09-02 Corning Incorporated Reduced striae extreme ultraviolet elements
US11986418B2 (en) 2017-12-22 2024-05-21 Coloplast A/S Medical system and monitor device with angular leakage detection

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3369730B2 (en) * 1994-06-16 2003-01-20 株式会社ニコン Evaluation method of optical member for optical lithography
WO1997010182A1 (en) * 1995-09-12 1997-03-20 Corning Incorporated Furnace, method of use, and optical product made by furnace in producing fused silica glass
US6574991B1 (en) 1998-08-13 2003-06-10 Corning Incorporated Pure fused silica, furnace and method
DE50009548D1 (en) 1999-10-14 2005-03-24 Schott Ag ARRANGEMENT FOR THE PRODUCTION OF OPTICALLY HOMOGENEOUS, LACEMAKED QUARTZ GLASS BODIES BY FLAMMED HYDROLYSIS
US6410192B1 (en) 1999-11-15 2002-06-25 Corning Incorporated Photolithography method, photolithography mask blanks, and method of making
US6314766B1 (en) 2000-01-19 2001-11-13 Corning Incorporated Apparatus for minimizing air infiltration in the production of fused silica glass
US6403508B1 (en) 2000-05-31 2002-06-11 Corning Incorporated Fused silica with constant induced absorption
US7797966B2 (en) * 2000-12-29 2010-09-21 Single Crystal Technologies, Inc. Hot substrate deposition of fused silica
US20020083739A1 (en) * 2000-12-29 2002-07-04 Pandelisev Kiril A. Hot substrate deposition fiber optic preforms and preform components process and apparatus
US20020083740A1 (en) * 2000-12-29 2002-07-04 Pandelisev Kiril A. Process and apparatus for production of silica grain having desired properties and their fiber optic and semiconductor application
US6606883B2 (en) * 2001-04-27 2003-08-19 Corning Incorporated Method for producing fused silica and doped fused silica glass
US20020174684A1 (en) * 2001-05-23 2002-11-28 Danielson Paul S. Fused silica furnace and method
JP2005503316A (en) * 2001-09-27 2005-02-03 コーニング インコーポレイテッド Improved method and furnace for quartz glass production
JP4158009B2 (en) * 2001-12-11 2008-10-01 信越化学工業株式会社 Synthetic quartz glass ingot and method for producing synthetic quartz glass
JP5367204B2 (en) * 2003-04-03 2013-12-11 旭硝子株式会社 Silica glass containing TiO2 and optical member for EUV lithography
US7155936B2 (en) * 2003-08-08 2007-01-02 Corning Incorporated Doped silica glass articles and methods of forming doped silica glass boules and articles
US20100154474A1 (en) * 2005-12-21 2010-06-24 Lorrie Foley Beall Reduced striae low expansion glass and elements, and a method for making same
US20070137253A1 (en) * 2005-12-21 2007-06-21 Beall Lorrie F Reduced striae low expansion glass and elements, and a method for making same
US20070137252A1 (en) * 2005-12-21 2007-06-21 Maxon John E Reduced striae low expansion glass and elements, and a method for making same
US20070263281A1 (en) * 2005-12-21 2007-11-15 Maxon John E Reduced striae low expansion glass and elements, and a method for making same
US8230701B2 (en) * 2008-05-28 2012-07-31 Corning Incorporated Method for forming fused silica glass using multiple burners
US8713969B2 (en) * 2009-08-31 2014-05-06 Corning Incorporated Tuning Tzc by the annealing of ultra low expansion glass
US9505649B2 (en) 2013-09-13 2016-11-29 Corning Incorporated Ultralow expansion glass
US10410456B1 (en) 2019-01-08 2019-09-10 American Security Products Co. Physical article exchange using a safe

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4363647A (en) * 1981-05-14 1982-12-14 Corning Glass Works Method of making fused silica-containing material
US5049175A (en) * 1982-11-02 1991-09-17 Heraeus Quarzschmelze Gmbh Method of manufacturing a glass body having a non-uniform refractive index
US5086352A (en) * 1989-06-09 1992-02-04 Shin-Etsu Quartz Products Co., Ltd. Optical members and blanks or synthetic silica glass and method for their production
US5364433A (en) * 1991-06-29 1994-11-15 Shin-Etsu Quartz Products Company Limited Optical member of synthetic quartz glass for excimer lasers and method for producing same

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1363233A (en) * 1963-04-16 1964-06-12 Corning Glass Works Method for manufacturing solid masses, in particular glasses and ceramics, and processing apparatus
US3806570A (en) * 1972-03-30 1974-04-23 Corning Glass Works Method for producing high quality fused silica
US3859073A (en) * 1973-10-19 1975-01-07 Corning Glass Works Method of producing glass by flame hydrolysis
US4135901A (en) * 1974-12-18 1979-01-23 Sumitomo Electric Industries, Ltd. Method of manufacturing glass for optical waveguide
US3930819A (en) * 1975-02-06 1976-01-06 Fabrication De Maquinas, S.A. Press molded hot glassware handling apparatus
US3966446A (en) * 1975-10-23 1976-06-29 Bell Telephone Laboratories, Incorporated Axial fabrication of optical fibers
US4017288A (en) * 1975-12-15 1977-04-12 Bell Telephone Laboratories, Incorporated Method for making optical fibers with helical gradations in composition
US4065280A (en) * 1976-12-16 1977-12-27 International Telephone And Telegraph Corporation Continuous process for manufacturing optical fibers
US4231774A (en) * 1978-04-10 1980-11-04 International Telephone And Telegraph Corporation Method of fabricating large optical preforms
US4263031A (en) * 1978-06-12 1981-04-21 Corning Glass Works Method of producing glass optical filaments
US4203744A (en) * 1979-01-02 1980-05-20 Corning Glass Works Method of making nitrogen-doped graded index optical waveguides
FR2446264A1 (en) * 1979-01-10 1980-08-08 Quartz & Silice PROCESS FOR PREPARING A PREFORM FOR AN OPTICAL WAVEGUIDE
US4784465A (en) * 1982-07-26 1988-11-15 Corning Glass Works Method of making glass optical fiber
US4568370A (en) * 1982-09-29 1986-02-04 Corning Glass Works Optical fiber preform and method
US5221309A (en) * 1984-05-15 1993-06-22 Sumitomo Electric Industries, Ltd. Method for producing glass preform for optical fiber
JPH0618234B2 (en) * 1985-04-19 1994-03-09 日本電信電話株式会社 Method for joining semiconductor substrates
US5028246A (en) * 1986-02-03 1991-07-02 Ensign-Bickford Optical Technologies, Inc. Methods of making optical waveguides
US4935046A (en) * 1987-12-03 1990-06-19 Shin-Etsu Handotai Company, Limited Manufacture of a quartz glass vessel for the growth of single crystal semiconductor
US5325230A (en) * 1989-06-09 1994-06-28 Shin-Etsu Quartz Products Co., Ltd. Optical members and blanks of synthetic silica glass and method for their production
JPH0825763B2 (en) * 1990-04-26 1996-03-13 信越石英株式会社 Method for producing soot-like silica body, apparatus therefor, and synthetic quartz glass using the silica body
US5152819A (en) * 1990-08-16 1992-10-06 Corning Incorporated Method of making fused silica
US5043002A (en) * 1990-08-16 1991-08-27 Corning Incorporated Method of making fused silica by decomposing siloxanes
US5410428A (en) * 1990-10-30 1995-04-25 Shin-Etsu Quartz Products Co. Ltd. Optical member made of high-purity and transparent synthetic silica glass and method for production thereof or blank thereof
JP2588447B2 (en) * 1991-06-29 1997-03-05 信越石英株式会社 Method of manufacturing quartz glass member for excimer laser
US5330941A (en) * 1991-07-24 1994-07-19 Asahi Glass Company Ltd. Quartz glass substrate for polysilicon thin film transistor liquid crystal display
JP2566349B2 (en) * 1991-10-02 1996-12-25 信越化学工業株式会社 Method for manufacturing synthetic quartz glass member
JP2814795B2 (en) * 1991-10-25 1998-10-27 株式会社ニコン Manufacturing method of quartz glass
JPH05273426A (en) * 1991-12-06 1993-10-22 Sumitomo Electric Ind Ltd Production of optical waveguide film and production of optical waveguide by using the same
JP2985540B2 (en) * 1992-11-27 1999-12-06 株式会社ニコン Manufacturing method of quartz glass
JP3656855B2 (en) * 1993-04-23 2005-06-08 株式会社ニコン Quartz glass material for optical lithography
JP2814867B2 (en) * 1993-02-10 1998-10-27 株式会社ニコン Manufacturing method of quartz glass
JP2814866B2 (en) * 1993-02-10 1998-10-27 株式会社ニコン Manufacturing method of quartz glass
JP3334219B2 (en) * 1993-02-19 2002-10-15 住友電気工業株式会社 Manufacturing apparatus and manufacturing method for glass base material
US5332702A (en) * 1993-04-16 1994-07-26 Corning Incorporated Low sodium zircon refractory and fused silica process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4363647A (en) * 1981-05-14 1982-12-14 Corning Glass Works Method of making fused silica-containing material
US5049175A (en) * 1982-11-02 1991-09-17 Heraeus Quarzschmelze Gmbh Method of manufacturing a glass body having a non-uniform refractive index
US5086352A (en) * 1989-06-09 1992-02-04 Shin-Etsu Quartz Products Co., Ltd. Optical members and blanks or synthetic silica glass and method for their production
US5364433A (en) * 1991-06-29 1994-11-15 Shin-Etsu Quartz Products Company Limited Optical member of synthetic quartz glass for excimer lasers and method for producing same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0850202A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998051630A1 (en) * 1997-05-15 1998-11-19 Schott Ml Gmbh Method and device for producing a homogenous sheet of quartz glass without streaks
US6415630B1 (en) 1997-05-15 2002-07-09 Schott Glas Method and device for producing a homogenous sheet of quartz glass without streaks
EP1063203A1 (en) * 1999-06-21 2000-12-27 Nikon Corporation Silica glass member
US6473226B1 (en) 1999-06-21 2002-10-29 Nikon Corporation Silica glass member
EP1069083A1 (en) * 1999-07-05 2001-01-17 Agilent Technologies, Inc., a corporation of the State of Delaware Process and apparatus for depositing silica glass on a planar substrate using a plasma torch
EP2211232B1 (en) * 2002-03-05 2015-09-02 Corning Incorporated Reduced striae extreme ultraviolet elements
US11986418B2 (en) 2017-12-22 2024-05-21 Coloplast A/S Medical system and monitor device with angular leakage detection

Also Published As

Publication number Publication date
EP1524246A1 (en) 2005-04-20
DE69634667T2 (en) 2006-04-27
EP0850202A1 (en) 1998-07-01
JPH11512383A (en) 1999-10-26
JP3841435B2 (en) 2006-11-01
US5696038A (en) 1997-12-09
EP0850202A4 (en) 2002-03-13
DE69634667D1 (en) 2005-06-02
EP0850202B1 (en) 2005-04-27

Similar Documents

Publication Publication Date Title
EP0850202B1 (en) Boule oscillation patterns for producing fused silica glass
EP0850201B1 (en) Containment vessel for producing fused silica glass
EP0850199B1 (en) Method and Furnace for the Production of Silica Glass containing less striae
EP2211232B1 (en) Reduced striae extreme ultraviolet elements
EP2038230B1 (en) Method for making reduced striae low expansion glass
JPH08262201A (en) Optical member for photolithography
JP3965734B2 (en) Quartz glass and method for producing the same
JP2011201771A (en) Method of producing synthetic quartz glass and thermal treatment apparatus
US6698248B2 (en) Methods and furnaces for fused silica production
US20070263281A1 (en) Reduced striae low expansion glass and elements, and a method for making same
US20070137253A1 (en) Reduced striae low expansion glass and elements, and a method for making same
US20100154474A1 (en) Reduced striae low expansion glass and elements, and a method for making same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 1997 512059

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1996930815

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1996930815

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1996930815

Country of ref document: EP