WO1997010051A1 - Adsorbent and method for treatment of exhaust gas - Google Patents

Adsorbent and method for treatment of exhaust gas Download PDF

Info

Publication number
WO1997010051A1
WO1997010051A1 PCT/JP1996/002593 JP9602593W WO9710051A1 WO 1997010051 A1 WO1997010051 A1 WO 1997010051A1 JP 9602593 W JP9602593 W JP 9602593W WO 9710051 A1 WO9710051 A1 WO 9710051A1
Authority
WO
WIPO (PCT)
Prior art keywords
adsorbent
exhaust gas
dust
coal ash
dioxins
Prior art date
Application number
PCT/JP1996/002593
Other languages
French (fr)
Japanese (ja)
Inventor
Hideo Kato
Masao Yashiro
Toshiyuki Higuchi
Masayuki Tuchida
Original Assignee
The Sangyo Shinko Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP7235540A external-priority patent/JPH0975667A/en
Priority claimed from JP7235538A external-priority patent/JPH0975719A/en
Application filed by The Sangyo Shinko Co., Ltd. filed Critical The Sangyo Shinko Co., Ltd.
Publication of WO1997010051A1 publication Critical patent/WO1997010051A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • B01D53/70Organic halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/3236Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3291Characterised by the shape of the carrier, the coating or the obtained coated product
    • B01J20/3293Coatings on a core, the core being particle or fiber shaped, e.g. encapsulated particles, coated fibers

Definitions

  • the present invention relates to an adsorbent for exhaust gas treatment for efficiently separating and removing organochlorine compounds contained in exhaust gas, and a method for treating exhaust gas.
  • Exhaust gas generated from garbage incinerators and the like contains harmful substances such as nitrogen oxides, sulfur oxides, hydrogen chloride, and heavy metals, and technologies for removing them have been developed and put into practical use from the viewpoint of environmental protection. ing.
  • the dry method, the wet method, or a combination of these methods is being put to practical use for the removal of trace amounts of organic chlorine compounds such as highly toxic dioxins, which have recently become a problem, but the system is simplified.
  • the dry method which has a compact equipment size, is dominant.
  • the conventional bag filter dust collection method with slaked lime powder is improved and powdered activated carbon or activated carbon is added to the bag filter surface.
  • powdered activated carbon or activated carbon is added to the bag filter surface.
  • Japanese Unexamined Patent Publication No. Hei 4-887624 discloses a test in which dioxin was removed from flue gas using a combination of slaked lime and activated carbon, which is currently considered to be the most effective adsorbent for bag filters. The results are described. According to the results, the efficiency of dioxin removal from exhaust gas has been improved to around 97%. However, even with such a high removal efficiency, it is difficult to achieve a global dioxin emission allowance (emission control concentration of 0.1 ng—TEQ / m 3 N ).
  • an object of the present invention is to provide an adsorbent for exhaust gas treatment that efficiently adsorbs an organic chlorine-based compound with respect to an adsorbent used in a dry method for adsorbing and removing an organic chlorine-based compound.
  • Another object of the present invention is to provide a dry method for adsorptive removal of organic chlorine-based compounds, etc., by efficiently removing organic chlorine-based compounds from exhaust gas, thereby reducing the amount of waste generated in the exhaust gas treatment.
  • An object of the present invention is to provide a method for treating exhaust gas which can suppress an increase in the amount of exhaust gas.
  • the invention according to claim 1 is an adsorbent for an organochlorine compound, wherein a porous aluminoate crystal is laminated on the surface of a hollow spherical particle.
  • the invention described in claim 2 is directed to a coal ash containing at least 10 wt% of alumina and having an amorphous alumina ratio of at least 50 wt% in the alumina, having a concentration of at least 1.5 N.
  • the invention according to claim 3 is characterized in that the adsorbent according to claim 1 or 2 is formed into a granular form using an inorganic binder, and the adsorbent according to claim 3 is characterized in that it absorbs an organochlorine compound. It is a material.
  • the invention according to claim 4 is a method for removing an organochlorine compound in an exhaust gas, and the method according to claim 1, 2, or 3, further comprising: A method for adsorbing an organic chlorine compound in an exhaust gas by contacting the exhaust gas with the exhaust gas.
  • the invention according to claim 5 is the method for treating exhaust gas according to claim 4, wherein in the adsorption step, exhaust gas that has passed through a dust collection step is brought into contact with the adsorbent. Processing method.
  • organochlorine compounds represented by dioxins are particularly produced by reaction in an exhaust gas treatment line, and the production temperature range is about 300 to 500 e C. This temperature range is located between the melting point and boiling point of the compound, but in the exhaust gas treatment process after the production of the substance, the process temperature gradually decreases (see Fig. 2),
  • the existence form is a mixture of solid state, liquid state (mist state) and gaseous state.
  • organic chlorine-based compounds such as dioxins are easily soluble in oils, are mixed in oily substances in exhaust gas, and those in a liquid phase have a high affinity for a water-absorbing and oil-absorbing adsorbent.
  • dioxins are generated from precursors on fly ash such as aromatic hydrocarbons and gas phase precursors such as chlorine gas in exhaust gas. After that, it is desorbed from the fly ash to produce gaseous dioxin, dechlorinated on the fly ash to produce low chlorinated dioxins, or decomposed on the fly ash . Also, once gasified dioxins may be in liquid phase or solid phase, and dioxins on fly ash may be desorbed in the liquid or solid state as they are.
  • the present inventor has obtained these findings and, based on these findings, has been found to use a microbore (2 nm or less) excellent in gas adsorption and a liquid phase It is concluded that a spherical adsorbent that has both mesopores (pore diameter of 2 to 50 nm) and macropores (pore diameter of 50 nm or more), which are excellent in adsorbing substances, is effective, and adsorbs this compound efficiently. It has been found that contacting this adsorbent with the exhaust gas is effective in removing and suppressing the increase in the amount of waste associated with the exhaust gas treatment.
  • the exhaust gas referred to in the present invention contains an organic chlorine-based compound, and a representative example thereof is exhaust gas generated when garbage or industrial waste is treated in a combustion furnace, a reaction furnace, or a melting furnace. it can.
  • organochlorine compound of the present invention examples include polychlorodibenzo-P-dioxin (PCDD) which is a dioxin and polychlorodibenzofuran (PCDF) which is a dibenzofuran.
  • PCDD polychlorodibenzo-P-dioxin
  • PCDF polychlorodibenzofuran
  • the adsorbent useful in the present invention is obtained by laminating a porous aluminoate crystal on the surface of a hollow spherical particle.
  • the aluminoate crystals on the surface of the adsorbent have micropores in the crystal structure with a diameter of about 0.4 to 0.5 nm, and as shown in FIG. A three-dimensional laminated structure with a layer thickness of about zm is formed. Then, as a result of lamination of these crystals 200, there is a mesopore having a diameter of 2 to 50 nm between the crystals 200, so that the crystal has a distribution of two types of bore sizes.
  • An example of the pore size distribution of the adsorbent is shown in FIG.
  • the skeleton portion of the adsorbent is composed of hollow spherical particles 220, and the particle size of the particles 220 is 2 to several tens of m, and cracks and pinholes are included in the particles 220. Since there is usually 240 (see Fig. 5), this surface layer has a macropore (pore hole 50 nm or more) smaller than the particle diameter, and the hollow inside of the particle 220 An oily or aqueous liquid material can be stored in the cavity.
  • gaseous dioxins and other organic chlorine compounds can be adsorbed in the micropores' mesopores of the adsorbent.
  • the mesopores and the macropores adsorb the organic chlorine-based compound in the liquid phase, and further trap and remove the solid-phase organic chlorine-based compound in the powder adsorbent layer. You can leave.
  • the surface of the three-dimensional laminated structure of the aluminosilicate crystal body 200 is uneven, an oily or aqueous substance is removed on the uneven surface. It can also be adsorbed.
  • the shape of the adsorbent is spherical, it has low airflow resistance and is excellent as a gas adsorption treatment material.
  • the adsorbent has a form of hollow spherical particles.
  • the adsorbent in the form of hollow spherical particles can be easily attached to and detached from the filter cloth.
  • the basicity of the adsorbent is preferably pH 8 or more. This is because it is also useful for the action of adsorbing and removing hydrogen chloride and the like that promote the production of dioxins and the like.
  • the basicity is measured with an electrode pH meter after mixing and stirring at a ratio of water 5 to adsorbent 2 to form a slurry.
  • This upgraded coal ash, eluted by amorphous structure component having an (S i 0 2, A 1 2 0 3) months ⁇ coal ash contained in coal ash is treated Al Chikararinetsu water,
  • the structure as the above-mentioned adsorbent is formed by being precipitated and crystallized as aluminoate on the surface of the coal ash. That is, the hollow spherical particles, which are the skeleton part of the adsorbent, are hollow spherical particles of coal ash, and the crystals of the porous aluminoate on the surface are aluminoates precipitated and crystallized by hydrothermal treatment. is there.
  • modified coal ash are generally chemical composition, M e O ⁇ A 1 2 0 3 ⁇ m S i 0 2 ⁇ n H 2 ⁇ (M e is such N a 2, K 2, C a
  • M e is such N a 2, K 2, C a
  • This is a porous compound containing zeolite, which is an alkali metal or an alkaline earth metal and varies depending on the alkali component used.
  • the crystal structure of zeolite contained is mainly P-type (filpsite), but it is also possible to manufacture those with H-type (hydroxyl sodalite) structure by changing the concentration of alkaline aqueous solution. Can be done.
  • modified coal ash generally has a high cation exchange capacity (CEC)
  • Adsorbents made from coal ash are inexpensive and non-combustible, so It is more economical and safer than activated carbon as a material, and the adsorbent is more hydrophilic than water-repellent activated carbon. It is also superior.
  • a NaOH solution having a concentration of 1.5 N or more is preferable. Since NaOH is inexpensive and easily available, there is an advantage that the cost of the exhaust gas treatment process can be reduced.
  • the cation exchange capacity and the specific surface area were measured using the Shorenberger method and the BET method, respectively.
  • the coal ash reforming conditions in Table 1 are the same as those in the examples described later.
  • the crystal morphology distribution (amorphous alumina / total alumina) of alumina contained in the raw material is 50 wt% or more in order to secure a spherical shape. . If the crystal form distribution is less than 5 Owt, the proportion of crushed particles increases.
  • the cation exchange capacity which is representative of the crystallization rate of aluminoate.
  • the proportion of total alumina in the raw material coal ash must be 10 wt% or more.
  • modified coal ash having two pore sizes suitable for the present invention specifically, JP-A-59-86667, JP-A-61-109745 and JP-A-61-1
  • a modified coal ash obtained by the method disclosed in Japanese Patent Publication No. 7841/16 is a porous crystal obtained by adding an alkaline solution such as caustic soda to coal ash and heat-treating it at 70 to 100 ° C. Has a function.
  • an alkaline aqueous solution and a coal ash are added to a coal ash by adding an aqueous solution of alkali metal and performing hot water treatment to modify the porous ash.
  • Coal ash reforming method characterized by agitating and treating with hot water with a reaction solid-liquid ratio of 0.5 to 3.0 liters / kg (Japanese Patent Application No. 5-107090) (2) After adjusting the solid-liquid ratio of the slurry after the hot water treatment to 2.5 liters Zkg or more, the surplus aqueous solution and the porous crystal are continuously separated.
  • Coal ash modified by the method for modifying coal ash Japanese Patent Application No. 5-107090).
  • adsorbent used in the present invention those obtained by granulating these adsorbents with an appropriate inorganic binder are also suitable.
  • Such granulated adsorbents include, for example, a modified coal ash and a cell having a blending amount of 15% by weight or more based on the dry weight of the entire raw material.
  • the raw material is mixed with the initial rotational speed given, and the applied mechanical force allows water to flow out from the modified coal ash of the raw material to form a paste, which is then rotated at a lower speed than the initial rotational speed.
  • Ion exchange granulation of modified coal ash characterized in that kneading and drying are performed at a speed and granulation and drying are performed at a rotation speed suitable for the target particle size when the appropriate granulated moisture is reached.
  • the granulated products obtained by the methods described in Japanese Patent Application Nos. 5-1111569 and 5-1150770 can be mentioned.
  • sodium-type zeolite is replaced by calcium-type zeolite, or a part of sodium is replaced by calcium, and both sodium-type zeolite and calcium-type zeolite are mixed. It is a thing that goes.
  • a modified coal ash obtained by further pulverizing the granulated material may be used.
  • Organic chlorine compounds such as gasified dioxins are adsorbed in the microbore / mesopore of the adsorbent. Therefore, in the exhaust gas treatment step after the generation of dioxins and the like, by disposing this adsorbent, the dioxins in a gasified state after the generation are adsorbed and the dioxins and the like are removed from the exhaust gas.
  • the organic chlorine-based compound in a liquid phase is adsorbed to the mesopores and macropores, and the organic chlorine-based compound in a solid phase is captured and removed in the powder adsorbent layer. Therefore, in the exhaust gas treatment process after the generation of dioxins, by disposing this adsorbent, dioxins in a liquid phase or a solid phase are adsorbed or supplemented and removed, and dioxins are removed from exhaust gas.
  • the abundance of the aromatic compound having a benzene ring, which is a precursor of dioxins, in the liquid phase is high.
  • an oily substance such as an aromatic compound is adsorbed to the mesopore or macropore, and a chlorine-based substance, which is another precursor of dioxin, is adsorbed by a microbore. Therefore, by disposing this adsorbent in the exhaust gas treatment step before or during the generation of dioxins, the precursors described above are adsorbed and removed, and the generation of dioxins is suppressed.
  • the present inventors have found that in order to more effectively remove organic chlorine-based compounds using this adsorbent and to suppress an increase in the amount of waste, the contact between the dust in the exhaust gas and the adsorbent must be reduced. It was important to avoid as much as possible.
  • the airflow resistance of the treatment device is stably maintained at a low level, and the adsorption performance of the organic chlorine compound to the limit of the amount of the organic chlorine compound adsorbed by the adsorbent is exhibited.
  • the increase in waste is suppressed. Specifically, the increase in waste will be reduced by a factor of about 40 compared to the past.
  • the processing equipment can be stably and continuously operated for two weeks or more.
  • the method of collecting dust from the exhaust gas is not particularly limited. Any means can be used as long as it can capture and collect dust in the exhaust gas.
  • an electric dust collector or a bag filter can be used. .
  • the dust concentration of the exhaust gas does not exceed 0.5 g / m 3 N, it is effective to capture dust in the exhaust gas at the same time as the step of adsorbing the organic salt compound.
  • the dust concentration of the exhaust gas does not exceed 0.5 g Zm 3 N, that is, when the dust concentration is sufficiently low, the increase in the ventilation resistance of the adsorbent layer due to dust is suppressed, and the dust is not removed for a long time.
  • the adsorbent makes it possible to simultaneously capture and remove dust and adsorb and remove organochlorine compounds.
  • the ventilation resistance is stabilized at a low level, stable operation is possible for a long period of time, the adsorption performance of organic chlorine compounds can be exhibited to the limit of the adsorbent, and no excessive adsorbent is required, and the amount of waste is reduced. The increase is suppressed.
  • a conventional exhaust gas treatment device capable of performing a dust collection process can perform both the dust collection process and the organic chlorine compound adsorption process. What In addition, efficient removal of organic chlorine compounds and suppression of increase in waste volume are achieved. In addition, the equipment is compact and the processing time is reduced.
  • the adsorbent that adsorbed the organochlorine compound was simultaneously captured. It is effective to have a step of discharging together with the dust, and to separate the dust from the adsorbent, and to further use this adsorbent to carry out the step of adsorbing the organochlorine compound.
  • the size of the dust is within the above range, it is possible to separate the adsorbent and the dust, take out only the adsorbent, and reuse the adsorbent.
  • the adsorbent that adsorbs organochlorine compounds and captures dust is discharged from the exhaust gas treatment process, and then the mixture is subjected to classification and sieving operations. Only the adsorbent is recovered using the body separation method, and reused in the exhaust gas treatment process again for the adsorption of organochlorine compounds.
  • the adsorbent and the trapped dust are separated from the adsorbent, and the adsorbent is reused to reach the limit of the original adsorbed amount of the adsorbent. Adsorption performance can be demonstrated.
  • the adsorbent when the adsorbent is in the form of granules, it is possible to form a moving bed that makes orthogonal contact with the exhaust gas.
  • the organic chlorine-based compound is adsorbed by the granular adsorbent, and the dust can be captured in the bed.
  • the granular adsorbent in the moving bed, is moving downward, is discharged together with the dust captured from the lower part of the moving bed, and after separating the dust by the classification and sieving operation, transports the adsorbent again above the moving bed.
  • the granular adsorbent can be easily reused.
  • the presence ratio of aromatic compounds having a benzene ring, which are precursors of dioxins, are high in the liquid phase.
  • mesopores and macropores can adsorb oily substances such as aromatic compounds, and chlorinated substances as precursors can be adsorbed by microbore. Therefore, by disposing this adsorbent in the exhaust gas treatment step, the precursor can be adsorbed and removed, and the regeneration of dioxins can be suppressed.
  • unreacted aromatic compounds and Adsorb and remove chlorine-based compounds to further purify exhaust gas Can be
  • the temperature of the exhaust gas in the dust collection step is preferably from 120 ° C to 450 ° C.
  • the reason for setting the temperature at 450 ° C or lower is that organic chlorine-based compounds such as dioxins often exist in the liquid phase, so that it is effective to adsorb in the liquid phase, and the heat resistance temperature of the adsorbent. Is 500 ° C.
  • the temperature is lower than 120 ° C, the acid gas (SO x , NO, etc.) contained in the exhaust gas generates a dew point, and the probability of damaging the exhaust gas treatment equipment increases.
  • the adsorbent used in the removal process of the organic chlorine-based compound is desorbed from the filter medium, and then put into an incinerator, melting furnace, or reaction furnace, etc., and adsorbed at a high temperature under high temperature. Can be decomposed.
  • Coal ash and alkali solution are charged into reaction vessel (2) so as to have a predetermined solid-liquid ratio, mixed, stirred and boiled at a predetermined temperature to convert coal ash into porous crystalline material I do.
  • the raw material coal ash used in the present invention is not particularly limited, and fly ash, clean ash, coal combustion ash, or the like can be used.
  • Such coal ash is, for example, coal ash generated when pulverized coal or the like is burned by thermal power generation or the like, and is collected from the flue of a flue. Therefore, the particle size of coal ash at the time of collection is rather small and can be used as it is.
  • particles of 50 m or less are 98% or more, preferably particles of 20 m or less are 50% or more, and more preferably particles of 10 m or less are 40% or more. It is preferable to use it after adjusting.
  • the concentration of the adjusted alkali solution is not particularly limited, but is usually in the range of 1 to 4 N, preferably 1.5 to 3 N, and more preferably 1.8 to 2.3 N. is there.
  • the concentration of the alkaline solution is less than 1 N, the cation exchange capacity (CEC) of the obtained porous crystal is not sufficient, and when the concentration exceeds 4 N, although the CEC of the obtained porous crystal material is sufficient, the crystal structure of the porous crystal material having a flip-site structure (effective minimum diameter of 4 to 5 angstroms) is greatly reduced, and the height of the hole is reduced.
  • the alkali solution used in the present invention is not particularly limited.
  • an aqueous solution such as sodium hydroxide or potassium hydroxide can be used.
  • the solid-liquid ratio between the coal ash and the alkaline solution used in the present invention is usually 0
  • the range is from 5 to 3.0 liters Z kg, preferably from 1.5 to 2.5 liters kg, more preferably from 2.0 to 2.2 liters Zkg.
  • the temperature at the time of the hydrothermal reaction is usually 90 to 100, preferably 95 to 100'C, more preferably 98 to 100 ° C. If the temperature is less than 9 (TC, the reaction rate is greatly reduced and the reaction takes a long time.If it exceeds 100, large pressure equipment is required and heating is required. It is not preferable because the effect is not enough to justify the cost.
  • the slurry after the reaction is solid-liquid separated by a dewatering device.
  • the filter cake of the slurry obtained from the liquid B is further stirred and washed with washing water.
  • an adsorbent having various types of aluminosilicate crystal structures, for example, changing a sodium type into a calcium type.
  • the cation to be ion-exchanged may be a cation-exchangeable cation regardless of sodium calcium.
  • this adsorbent can be granulated into granules with an inorganic binder. The adsorbent thus obtained is used so as to be brought into contact with the exhaust gas in the exhaust gas treatment step of the gas-permeable fixed bed system or the moving bed system.
  • the adsorbent of the present invention can be used as an adsorbent used in a conventionally known fixed bed type adsorption step.
  • a powdery adsorbent can be attached to the surface of a filter cloth to form an adsorbent layer, placed in an exhaust gas treatment process, and brought into contact with exhaust gas to remove organochlorine compounds.
  • an adsorbent layer may be formed by laminating or filling a granular adsorbent.
  • the adsorbent of the present invention can be used as an adsorbent used in a conventionally known moving bed type adsorption step.
  • the adsorbent may be moved so as to be orthogonal to the direction of exhaust gas flow, and the moving adsorbent may be brought into contact with the exhaust gas to remove organic chlorine-based compounds. it can.
  • the adsorbent is preferably in the form of granules.
  • the adsorbent can also adsorb the precursor of the organochlorine compound, it can be effectively used by contacting the exhaust gas with a fixed bed or a moving bed before or during the formation of the organochlorine compound. Therefore, the production of the organochlorine compound can be suppressed, and the subsequent adsorption and removal of the organochlorine compound can be efficiently performed.
  • this adsorbent is adhered and retained for adsorption of organochlorine compounds.
  • a bag filter 104 can be provided. According to this exhaust gas treatment method, dust in the exhaust gas is removed by the dust collecting bag filter 1102, so that the adsorbent does not become clogged with dust.
  • the adsorption of the organochlorine compound is similarly performed by the moving bed method using the granular adsorbent.
  • the bag filter 1 12 for collecting the exhaust gas from the incinerator 110 The adsorbent can be provided so as to adhere and hold it, thereby capturing dust and simultaneously removing the organic chlorine-based compound. According to this exhaust gas treatment method, it is possible to prevent an increase in the airflow resistance of the adsorbent layer due to the adhesion of dust, and to adsorb the organic chlorine-based compound at the same time as capturing the dust for a long period of time.
  • the external dimensions of the dust contained in the exhaust gas are 50 ⁇ m or more, or If the specific gravity is 2 g Z cm 3 or more, this adsorbent is introduced into the exhaust gas treatment process from the incinerator 120 as shown in Fig. 8, and the exhaust gas is The adsorbent that captures the dust and adsorbs the organochlorine compound is discharged and collected, and the adsorbent and the dust are separated and separated by the separation / separation device 124, and the adsorbent is discharged again. It can be recycled to return to the processing step. According to this exhaust gas treatment method, since the dust and the adsorbent can be separated, the adsorbent can be reused while avoiding an increase in the ventilation resistance due to the dust. Simultaneous removal of chlorine-based compounds is possible.
  • a moving bed 1332 that is perpendicular to the direction of exhaust gas flow from the incinerator 130 is formed, And adsorb the organochlorine compound to the granular adsorbent, and capture dust in this layer.
  • the moving bed can be continuously used, and the granular adsorbent and the dust can be separated by the separating device 134 to be circulated and used again so as to return to the exhaust gas treatment step. According to this method, regardless of the dust concentration, the ventilation resistance is low and stable, and the dust and organic chlorine compounds can be removed simultaneously, and the granular adsorbent can be reused. It is possible.
  • an organic chlorine-based compound in a gas state or a liquid phase can be adsorbed in an exhaust gas treatment step, so that the organic chlorine-based compound is efficiently removed from the exhaust gas. be able to.
  • the exhaust gas treatment method of the present invention by contacting the exhaust gas with an adsorbent obtained by laminating a porous aluminoate crystal on the surface of the hollow spherical particles, the exhaust gas can be efficiently used by the adsorbent. It is possible to adsorb and remove the organic chlorine compounds in the waste gas and to suppress the amount of waste increased by the exhaust gas treatment.
  • Fig. 1 is a diagram showing the outline of a garbage incinerator and the area where organochlorine compounds are generated in the exhaust gas treatment process.
  • FIG. 2 is a diagram showing a temperature range for generating an organochlorine compound in an exhaust gas treatment step.
  • FIG. 3 shows the mechanism of the production of dioxins in the exhaust gas treatment process.
  • FIG. 4 is a diagram showing the distribution of the bore size of the adsorbent.
  • FIG. 5 is a partial cross-sectional view of the adsorbent showing the structure of the adsorbent.
  • FIG. 6 is a diagram schematically showing an embodiment of the present invention.
  • FIG. 7 is a diagram schematically showing an embodiment of the present invention.
  • FIG. 8 is a diagram schematically showing an embodiment of the present invention.
  • FIG. 9 is a diagram schematically showing an embodiment of the present invention.
  • FIG. 10 is a diagram showing an outline of the device configuration of the embodiment.
  • coal ash, total A 1 2 0 3 minutes is 2 3 wt%, Of these, the proportion of amorphous A 12 0 3 is 7 OWT, particle size, the average 1 It was 0 zm.
  • 100 kg of this coal ash and 2100 L of a 2 N aqueous sodium hydroxide solution adjusted to 100 were charged into a reaction tank, the reaction temperature was adjusted to 100 ° C, and the stirrer of the reaction tank was used. stirring, subjected to boiling, the coal ash, the chemical composition mainly, Na 2 0, a l 2 0 3 - 3. 5 S i 0 2 - 4.
  • P type represented by 5 H 2 0 (Fi Rippusai g) The reaction was performed for 5 hours to obtain a modified coal ash, which is a porous crystalline material having the following crystal structure.
  • the slurry containing the porous crystals after the hot water treatment was drained, and the obtained filter cake was washed with a water washing tank and then dehydrated.
  • the solid matter was added with calcium chloride equivalent to 15% by weight in a weight ratio. Add, add 5 times more water to form a slurry, stir, perform reaction for 2 hours, then remove, wash, and dehydrate to form a porous crystal having a Ca-type zeolite crystal structure. Substance-containing solid was obtained. Further, this solid was dried at 1 3 0 e C, to give a powdered adsorbent C a type Zeorai preparative porous crystalline ⁇ to the surface to be hollow spherical particles were.
  • the obtained powder particles had a three-dimensional laminated structure in which calcium zeolite (calcium aluminosilicate) crystals were precipitated on the surface of hollow spherical particles having a diameter of about 10 m. Cracks and pinholes are generated on the surface of the hollow spherical particles, and a 2 nm-diameter mesh formed by the in-layer structure of zeolite crystal particles. It had a microbore of 0.5 nm based on the crystal structure of soboa and zeolite.
  • calcium zeolite calcium aluminosilicate
  • This powder was actually incinerated by a device shown in FIG. 10 and an adsorption test of PCDD and PCDF was performed using a part of the exhaust gas from the incinerator.
  • the test equipment consists of an incinerator 10, a cooler 12, a dust filter 14, a suction device 16, and a bag filter (test machine) 18 for removing organic chlorine-based compounds.
  • the high-temperature exhaust gas discharged from the incinerator 10 is cooled by the cooler 12, sent to the bag filter 14 to remove dust, and the exhaust gas that has passed through the bag filter 14 is filtered by the bag filter 18.
  • PCD polychlorodibenzo- ⁇ -dioxin
  • PCDF polychlorodibenzofuran
  • a cylindrical body was provided in the bag filter 18, and the adsorbent was held by spraying the adsorbent onto the filter cloth wound around the cylindrical body.
  • the filter cloth was made of heat-resistant nylon.
  • the adsorption test was performed under the following conditions
  • the temperature characteristics of the gas were as follows.
  • PCDs, etc. and their low chlorinated products which are formed on fly ash and remain attached to the fly ash, and decomposed products, fly to the bag filter.
  • PCDs that are attached to the ash and are dispersed and gasified in the exhaust gas, PCDs in the liquid phase after gasification, and PCDs that are still attached to some fly ash are bugs. After passing through the filter, it was adsorbed and removed by the adsorbent adhering to the filter cloth in the testing machine ⁇ .
  • the temperature of the exhaust gas was 100. C and is in contact is, in this temperature range, although dioxins are below the melting point, for example, 2, 3, 7, the vapor pressure of 8- TCDD is 1 0 4 kingdom, during the process, It is known that it exists not only in liquid and solid phases but also in gaseous state. That is, according to the adsorbent, dioxins and the like in any existing form can be adsorbed, so that dioxins and the like can be removed from the exhaust gas that has passed through the bag filter 14 with high efficiency.
  • dioxins and the like from the exhaust gas are removed from the exhaust gas that has passed through the dust collection step, so that the adsorbent layer formed on the bag filter 18 is prematurely blocked by dust.
  • the adsorption activity of the adsorbent was maintained for a long time, and the adsorption of dioxins and the like was performed efficiently.
  • ⁇ period of adsorbent becomes more than a 5 day, generated gas amount is 1 0 0, 0 0 O m 3 / even when using the incinerator hr, waste due to the removal of organic chlorine compounds
  • the increase was reduced to about 4 tons per month.
  • the tester is provided after the dust collection step using a bag filter.
  • this adsorbent has a macropore and a mesopore capable of adsorbing oily substances and the like efficiently, the collection is performed. Removal of dust and dioxins can be performed simultaneously.
  • powder is used as the adsorbent, but the adsorbent of the present invention may be granulated with an inorganic binder. In the granulated product, it is used not only as a fixed bed but also as a moving bed in a direction perpendicular to the direction of exhaust gas flow, and adsorbs and captures dioxins and other substances together with an adsorbent using a bag filter. It can be used effectively.

Abstract

An adsorbent for use in the dry exhaust gas treatment method for removing organochlorine compounds or the like by adsorption, which comprises balloon particles and porous aluminosilicate crystals layered on the surface of each particle; and a method for treating exhaust gas containing organochlorine compounds or the like therewith.

Description

明細書 排ガス処理用吸着材及び排ガス処理方法  Description Adsorbent for exhaust gas treatment and exhaust gas treatment method
〔技術分野〕 〔Technical field〕
この発明は、 排ガス中に含まれる有機塩素系化合物を効率良く分離除去する排 ガス処理用の吸着材及び排ガスの処理方法に関する。  The present invention relates to an adsorbent for exhaust gas treatment for efficiently separating and removing organochlorine compounds contained in exhaust gas, and a method for treating exhaust gas.
〔背景技術〕  (Background technology)
ゴミ焼却炉等から発生する排ガス中には、 酸化窒素、 酸化硫黄、 塩化水素、 重 金属等の有害物質が含まれており、 環境保護の観点からそれらの除去技術が開発 され、 実用化されてきている。  Exhaust gas generated from garbage incinerators and the like contains harmful substances such as nitrogen oxides, sulfur oxides, hydrogen chloride, and heavy metals, and technologies for removing them have been developed and put into practical use from the viewpoint of environmental protection. ing.
加えて、 近年問題になってきている毒性の強いダイォキシン類等の極微量な有 機塩素系化合物の除去についても、 乾式法、 湿式法又はその組み合わせ法が実用 化されつつあるが、 システムが簡略で設備規模もコンパク 卜な乾式法が主流を占 めているのが現状である。  In addition, the dry method, the wet method, or a combination of these methods is being put to practical use for the removal of trace amounts of organic chlorine compounds such as highly toxic dioxins, which have recently become a problem, but the system is simplified. At present, the dry method, which has a compact equipment size, is dominant.
乾式法には、 例えば、 特開平 4 - 8 7 6 2 4号公報に開示されるように、 従来 の消石灰粉添加バグフィルター集塵法を改善し、 バグフィルター表面に粉末状活 性炭や活性白土の粉体層を形成させ、 排ガスをこの粉体層を通過させることによ り、 集塵とともに有機塩素系化合物の除去を図る方法がある。  In the dry method, for example, as disclosed in Japanese Patent Application Laid-Open No. 4-87664, the conventional bag filter dust collection method with slaked lime powder is improved and powdered activated carbon or activated carbon is added to the bag filter surface. There is a method of forming a clay powder layer and passing exhaust gas through this powder layer to remove organic chlorine-based compounds together with dust collection.
特開平 4 - 8 7 6 2 4号公報には、 バグフィルタ一の吸着材として現状では最 も効果的とされる消石灰と活性炭等との併用方式にて、 燃焼排ガスからダイォキ シンを除去した試験結果が記載されている。 この結果によれば、 排ガスからのダ ィォキシンンの除去効率は 9 7 %前後となり改善されてきている。 しかしながら 、 このような高い除去効率にあっても、 世界的なダイォキシンの排出許容基準 ( 排出規制濃度 0 . 1 n g— TEQ /m3 N ) を達成することは困難である。 Japanese Unexamined Patent Publication No. Hei 4-887624 discloses a test in which dioxin was removed from flue gas using a combination of slaked lime and activated carbon, which is currently considered to be the most effective adsorbent for bag filters. The results are described. According to the results, the efficiency of dioxin removal from exhaust gas has been improved to around 97%. However, even with such a high removal efficiency, it is difficult to achieve a global dioxin emission allowance (emission control concentration of 0.1 ng—TEQ / m 3 N ).
また、 本発明者の研究によれば、 上記バグフィルター方式によって、 消石灰と 活性炭等とを連続して排ガス処理工程に投入するためには、 投入装置を 2系列併 設する必要が生じる。 2系列の投入装置の設置は、 経済的にも過大なものである 。 また、 投入したこれらの吸着除去材を連铳して排出する必要が生じることによ り、 発生する廃棄物の量も 2 . 2 g /m 3 ー排ガス分増加するために、 廃棄物の 処理に過大な負担がかかってしまう。 Further, according to the study of the present inventor, in order to continuously feed slaked lime and activated carbon to the exhaust gas treatment process by the above-mentioned bag filter method, it is necessary to provide two charging devices in parallel. The installation of two sets of input devices is economically excessive. In addition, it is necessary to discharge these adsorbing and removing materials continuously. Ri, the amount of waste generated in order to increase 2. 2 g / m 3 over the exhaust gas content, it takes an excessive burden on waste disposal.
すなわち、 例えば排ガス量が、 時間あたり約 1 0 0、 0 0 0 m 3 規模の焼却炉 においては、 上記した消石灰と活性炭との一日当たりの、 廃棄物の増加分は、 1 0 0、 0 0 0 m 3 /時間 X 2 4時間 X 2 . 2 g = 5 2 8 0 k gとなり、 1ヶ月 3 0日間稼働したとすると、 1ヶ月で、 約〖 5 8 トンという莫大な量の廃棄物が増 加することになる。 That is, for example, the amount of exhaust gas is, in about 1 0 0, 0 0 0 m 3 scale incinerator per hour, per day of the slaked lime and active carbon as described above, the increase in waste 1 0 0 0 0 0 m 3 / hour X 2 4 hours X 2.2 g = 5280 kg, and if it is operated for 30 days a month, a huge amount of waste of about 〖58 tons increases in a month. Will be added.
そこで、 本発明の目的は、 有機塩素系化合物等を吸着除去するための乾式法に 用いる吸着材に関して、 効率よく有機塩素系化合物を吸着する排ガス処理用の吸 着材を提供することである。  Accordingly, an object of the present invention is to provide an adsorbent for exhaust gas treatment that efficiently adsorbs an organic chlorine-based compound with respect to an adsorbent used in a dry method for adsorbing and removing an organic chlorine-based compound.
さらに、 本発明の他の目的は、 有機塩素系化合物等を吸着除去するための乾式 法に関して、 排ガス中から有機塩素系化合物を効率よく除去することにより、 排 ガス処理に伴って発生する廃棄物量の増加を抑制できる排ガスの処理方法を提供 することである。  Further, another object of the present invention is to provide a dry method for adsorptive removal of organic chlorine-based compounds, etc., by efficiently removing organic chlorine-based compounds from exhaust gas, thereby reducing the amount of waste generated in the exhaust gas treatment. An object of the present invention is to provide a method for treating exhaust gas which can suppress an increase in the amount of exhaust gas.
〔発明の開示〕  [Disclosure of the Invention]
上記目的を達成するために、 本発明では、 排ガス処理工程におけるダイォキシ ン類等の有機塩素系化合物の生成等に関して鋭意検討した結果、 排ガス処理工程 における有機塩素系化合物が生成される温度域及び、 排ガス処理工程における有 機塩素系化合物の存在形態に着目することにより、 排ガス処理工程における有機 塩素系化合物を効率的に吸着できる排ガス処理用の吸着材及排ガス処理方法を見 いだし、 以下の発明を完成した。  In order to achieve the above object, according to the present invention, as a result of intensive studies on the production of organic chlorine-based compounds such as dioxins in the exhaust gas treatment step, the temperature range in which the organic chlorine-based compound is produced in the exhaust gas treatment step, By focusing on the presence of organic chlorine compounds in the exhaust gas treatment process, we have found an adsorbent for exhaust gas treatment and an exhaust gas treatment method that can efficiently adsorb organic chlorine compounds in the exhaust gas treatment process. Was completed.
請求の範囲 1に記載の発明は、 中空球伏粒子表面に多孔質アルミノゲイ酸塩の 結晶体を積層させたことを特徴とする有機塩素系化合物の吸着材である。  The invention according to claim 1 is an adsorbent for an organochlorine compound, wherein a porous aluminoate crystal is laminated on the surface of a hollow spherical particle.
請求の範囲 2に記載の発明は、 アルミナを 1 0 wt %以上含有し、 該アルミナに おける非晶質アルミナの比率が 5 0 wt %以上である石炭灰に、 1 . 5 N以上の濃 度のアル力リ溶液を加えて水熱反応にて生成したことを特徴とする請求の範囲 1 の有機塩素系化合物の吸着材である。  The invention described in claim 2 is directed to a coal ash containing at least 10 wt% of alumina and having an amorphous alumina ratio of at least 50 wt% in the alumina, having a concentration of at least 1.5 N. 2. The adsorbent for an organochlorine compound according to claim 1, wherein the adsorbent is formed by a hydrothermal reaction by adding an aqueous solution.
請求の範囲 3に記載の発明は、 請求の範囲 1又は 2に記載の吸着材を、 無機質 のバインダーを用いて顆粒状に成形したことを特徴とする有機塩素系化合物の吸 着材である。 The invention according to claim 3 is characterized in that the adsorbent according to claim 1 or 2 is formed into a granular form using an inorganic binder, and the adsorbent according to claim 3 is characterized in that it absorbs an organochlorine compound. It is a material.
請求の範囲 4に記載の発明は、 排ガス中の有機塩素系化合物を除去するための 方法であって、 請求の範囲 1、 2又は 3のいずれかに記載の有機塩素系化合物の 吸着材に排ガスを接触させることにより排ガス中の有機塩素化合物を吸着するェ 程を実施することを特徴とする排ガスの処理方法である。  The invention according to claim 4 is a method for removing an organochlorine compound in an exhaust gas, and the method according to claim 1, 2, or 3, further comprising: A method for adsorbing an organic chlorine compound in an exhaust gas by contacting the exhaust gas with the exhaust gas.
請求の範囲 5に記載の発明は、 請求の範囲 4に記載の排ガスの処理方法であつ て、 前記吸着工程において、 前記吸着材に集塵工程を経た排ガスを接触させるこ とを特徴とする排ガスの処理方法である。  The invention according to claim 5 is the method for treating exhaust gas according to claim 4, wherein in the adsorption step, exhaust gas that has passed through a dust collection step is brought into contact with the adsorbent. Processing method.
以下、 本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.
(排ガス処理工程における有機塩素系化合物)  (Organic chlorine compounds in exhaust gas treatment process)
第 1図及び第 2図に示すように、 ダイォキシン類に代表される有機塩素系化合 物は、 特に、 排ガス処理ライン中にて反応生成され、 その生成温度域はおおよそ 3 0 0〜5 0 0 eCとされている。 この温度域は、 該化合物の融点と沸点の中間に 位置しているが、 該物質の生成以後の排ガス処理工程においては、 徐々に工程温 度は低下し (第 2図参照) 、 生成以後の存在形態は、 固相伏態、 液相状態 (ミ ス ト状態) 及び気相状態の混じり合つたものとなる。 特に、 ダイォキシン類等の有 機塩素系化合物は、 油分に溶けやすく、 排ガス中では油状物質中に混在し、 また 、 液相状態のものは、 吸水吸油性の吸着材と親和性が高い。 As shown in FIG. 1 and FIG. 2, organochlorine compounds represented by dioxins are particularly produced by reaction in an exhaust gas treatment line, and the production temperature range is about 300 to 500 e C. This temperature range is located between the melting point and boiling point of the compound, but in the exhaust gas treatment process after the production of the substance, the process temperature gradually decreases (see Fig. 2), The existence form is a mixture of solid state, liquid state (mist state) and gaseous state. In particular, organic chlorine-based compounds such as dioxins are easily soluble in oils, are mixed in oily substances in exhaust gas, and those in a liquid phase have a high affinity for a water-absorbing and oil-absorbing adsorbent.
また、 第 3図に示すように、 ダイォキシン類は、 芳香族炭化水素等の飛灰上の 前駆体と、 排ガス中の塩素ガス等のガス相の前駆体とから生成される。 さらに、 その後、 飛灰上から脱離して、 ガス状のダイォキシンを生成したり、 飛灰上で脱 塩素化されて低塩素化ダイォキシン類を生成したり、 飛灰上で分解を受けたりす る。 また、 一旦ガス化したダイォキシン類も、 液相伏態あるいは固相伏態になる 場合もあり、 また、 飛灰上のダイォキシン類もそのまま、 液相あるいは固相状態 で脱離される場合もある。  Also, as shown in FIG. 3, dioxins are generated from precursors on fly ash such as aromatic hydrocarbons and gas phase precursors such as chlorine gas in exhaust gas. After that, it is desorbed from the fly ash to produce gaseous dioxin, dechlorinated on the fly ash to produce low chlorinated dioxins, or decomposed on the fly ash . Also, once gasified dioxins may be in liquid phase or solid phase, and dioxins on fly ash may be desorbed in the liquid or solid state as they are.
したがって、 ダイォキシン類を効率よく吸着するためには、 これらのいずれの 存在形態においても吸着性能を有する吸着材が必要となる。  Therefore, in order to adsorb dioxins efficiently, an adsorbent having adsorption performance in any of these existing forms is required.
本発明者は、 これらの知見を得るとともにこれらに基づいて、 有機塩素系化合 物の吸着除去には、 ガス吸着に優れたマイクロボア ( 2 n m以下) 、 液相状態の 物質の吸着に優れたメソポア (孔径 2〜5 0 n m ) 、 マクロポア (孔径 5 0 n m 以上) を兼備し球形である吸着材が有効であるとの結論に至り、 この化合物を効 率的に吸着除去して、 排ガス処理に伴う廃棄物量の増加を抑制するには、 この吸 着材と排ガスとを接触させることが有効であることを見いだしたのである。 The present inventor has obtained these findings and, based on these findings, has been found to use a microbore (2 nm or less) excellent in gas adsorption and a liquid phase It is concluded that a spherical adsorbent that has both mesopores (pore diameter of 2 to 50 nm) and macropores (pore diameter of 50 nm or more), which are excellent in adsorbing substances, is effective, and adsorbs this compound efficiently. It has been found that contacting this adsorbent with the exhaust gas is effective in removing and suppressing the increase in the amount of waste associated with the exhaust gas treatment.
本発明にいう排ガスとしては、 有機塩素系化合物を含有したものであり、 その 代表例として、 ゴミゃ産業廃棄物を燃焼炉、 反応炉、 溶融炉で処理した際の排ガ スを挙げることができる。  The exhaust gas referred to in the present invention contains an organic chlorine-based compound, and a representative example thereof is exhaust gas generated when garbage or industrial waste is treated in a combustion furnace, a reaction furnace, or a melting furnace. it can.
本発明の有機塩素系化合物とは、 ダイォキシン類であるボリクロロジベンゾー P 一ジォキシン (P C D D ) ゃジベンゾフラン類であるポリクロロジベンゾフラ ン (P C D F ) 等を挙げることができる。  Examples of the organochlorine compound of the present invention include polychlorodibenzo-P-dioxin (PCDD) which is a dioxin and polychlorodibenzofuran (PCDF) which is a dibenzofuran.
(有機塩素系化合物の吸着材)  (Adsorbent for organic chlorine compounds)
本発明に有用な吸着材は、 中空球状粒子表面に多孔質アルミノゲイ酸塩の結晶 体を積層させたものである。  The adsorbent useful in the present invention is obtained by laminating a porous aluminoate crystal on the surface of a hollow spherical particle.
吸着材表面にあるアルミノゲイ酸塩の結晶体は、 結晶構造において直径 0 . 4 〜0 . 5 n m程度のマイクロポアを有するとともに、 第 5図に示すように、 この 結晶体 2 0 0は、 1 z m程度の層厚の 3次元積層構造を形成している。 そして、 これらの結晶体 2 0 0が積層された結果、 結晶体 2 0 0の間に直径 2〜5 0 n m のメソポアを有するため、 2種類のボアサイズの分布を有するものとなっている 。 かかる吸着材のポアサイズの分布の一例を第 4図に示す。  The aluminoate crystals on the surface of the adsorbent have micropores in the crystal structure with a diameter of about 0.4 to 0.5 nm, and as shown in FIG. A three-dimensional laminated structure with a layer thickness of about zm is formed. Then, as a result of lamination of these crystals 200, there is a mesopore having a diameter of 2 to 50 nm between the crystals 200, so that the crystal has a distribution of two types of bore sizes. An example of the pore size distribution of the adsorbent is shown in FIG.
さらに、 この吸着材の骨格部分は、 中空球状粒子 2 2 0からなり、 かかる粒子 2 2 0の粒径は、 2〜数十〃 mであるとともに、 この粒子 2 2 0にはクラック . ピンホール 2 4 0があるのが通常であるために (第 5図参照) 、 この表層部には 、 粒子径より小さいマクロボア (孔怪 5 0 n m以上) を有し、 粒子 2 2 0の中空 内部の空胴部に油性 ·水性の液伏物質を貯蔵することができる。  Further, the skeleton portion of the adsorbent is composed of hollow spherical particles 220, and the particle size of the particles 220 is 2 to several tens of m, and cracks and pinholes are included in the particles 220. Since there is usually 240 (see Fig. 5), this surface layer has a macropore (pore hole 50 nm or more) smaller than the particle diameter, and the hollow inside of the particle 220 An oily or aqueous liquid material can be stored in the cavity.
(有機塩素系化合物の吸着機能)  (Adsorption function of organic chlorine compounds)
この吸着材のマイクロボア ' メソボアにて、 ガス化したダイォキシン類等の有 機塩素系化合物を吸着することができる。  The gaseous dioxins and other organic chlorine compounds can be adsorbed in the micropores' mesopores of the adsorbent.
また、 メソポア、 さらにはマクロポアでは、 液相状態の有機塩素系化合物を吸 着し、 さらに、 該粉体吸着材層において、 固相伏態の有機塩素系化合物を捕捉除 去することができる。 In addition, the mesopores and the macropores adsorb the organic chlorine-based compound in the liquid phase, and further trap and remove the solid-phase organic chlorine-based compound in the powder adsorbent layer. You can leave.
また、 第 5図に示すように、 このアルミノケィ酸塩の結晶体 2 0 0の 3次元積 層構造の表面は凹凸状となっているために、 この凹凸表面において、 油性あるい は水性物質を吸着することもできる。 また、 吸着材形状が球形であることから、 通気抵抗が少なくガス吸着処理材として優れている。  Further, as shown in FIG. 5, since the surface of the three-dimensional laminated structure of the aluminosilicate crystal body 200 is uneven, an oily or aqueous substance is removed on the uneven surface. It can also be adsorbed. In addition, since the shape of the adsorbent is spherical, it has low airflow resistance and is excellent as a gas adsorption treatment material.
また、 この吸着材は、 中空球状粒子の形態を有している。 中空球状粒子の形態 を持つ吸着材は、 ろ布への脱着が容易である。  The adsorbent has a form of hollow spherical particles. The adsorbent in the form of hollow spherical particles can be easily attached to and detached from the filter cloth.
吸着材の塩基度は、 p H 8以上であることが好ましい。 ダイォキシン類等の生 成を促す塩化水素等を吸着除去する作用にも有用であるからである。 ここで、 塩 基度は、 吸着材 2に対して水 5の比率で混合撹拌してスラリ一状となした後に、 電極式 p Hメータにて測定される。  The basicity of the adsorbent is preferably pH 8 or more. This is because it is also useful for the action of adsorbing and removing hydrogen chloride and the like that promote the production of dioxins and the like. Here, the basicity is measured with an electrode pH meter after mixing and stirring at a ratio of water 5 to adsorbent 2 to form a slurry.
(吸着材の製法)  (Adsorbent manufacturing method)
かかる構造を有する吸着材としては、 石炭灰をアル力リ熱水処理することによ つて得られる改質石炭灰がある。  As an adsorbent having such a structure, there is a modified coal ash obtained by treating coal ash with hot water.
この改質石炭灰では、 石炭灰中に含まれる非晶質構造を有する成分 (S i 0 2 、 A 1 2 0 3 ) カ^ 石炭灰がアル力リ熱水処理されることによって溶出され、 石 炭灰の表面にアルミノゲイ酸塩として析出、 結晶化されることにより、 上記の吸 着材としての構造が形成されている。 すなわち、 吸着材の骨格部分である中空球 状粒子が、 中空球状粒子の石炭灰であり、 表面の多孔質アルミノゲイ酸塩の結晶 体が、 熱水処理により折出結晶化されたアルミノゲイ酸塩である。 This upgraded coal ash, eluted by amorphous structure component having an (S i 0 2, A 1 2 0 3) months ^ coal ash contained in coal ash is treated Al Chikararinetsu water, The structure as the above-mentioned adsorbent is formed by being precipitated and crystallized as aluminoate on the surface of the coal ash. That is, the hollow spherical particles, which are the skeleton part of the adsorbent, are hollow spherical particles of coal ash, and the crystals of the porous aluminoate on the surface are aluminoates precipitated and crystallized by hydrothermal treatment. is there.
得られた改質石炭灰は、 一般に化学組成が、 M e O · A 1 2 03 · m S i 0 2 ■ n H 2 ◦ (M eは、 N a 2 、 K 2 、 C aなどのアルカリ金属またはアルカリ土 類金属であって、 用いるアルカリ成分によって異なる。 ) で示されるゼォライ ト を含有する多孔性の化合物である。 含まれるゼォライ トの結晶構造は、 主として P型 (フィ リ ップサイ ト) であるが、 アルカリ水溶液の濃度などを変えることに より H型 (ハイ ドロキシソ一ダライ ト) の構造を持つものも製造することができ る。 また、 改質石炭灰は、 一般に、 高い陽イオン交換容量 (C E C ) を備えてい る Resulting modified coal ash are generally chemical composition, M e O · A 1 2 0 3 · m S i 0 2 ■ n H 2 ◦ (M e is such N a 2, K 2, C a This is a porous compound containing zeolite, which is an alkali metal or an alkaline earth metal and varies depending on the alkali component used. The crystal structure of zeolite contained is mainly P-type (filpsite), but it is also possible to manufacture those with H-type (hydroxyl sodalite) structure by changing the concentration of alkaline aqueous solution. Can be done. In addition, modified coal ash generally has a high cation exchange capacity (CEC)
石炭灰を原料とした吸着材は、 安価であり、 かつ不燃物であることから、 吸着 材としての活性炭よりも、 経済性及び安全性に優れており、 はつ水性である活性 炭に比べて、 該吸着材は親水性であり、 液伏物質の吸着性にも優れており、 機能 的にも優位である。 Adsorbents made from coal ash are inexpensive and non-combustible, so It is more economical and safer than activated carbon as a material, and the adsorbent is more hydrophilic than water-repellent activated carbon. It is also superior.
石炭灰を、 特に、 アルカ リ溶液で熱水処理する場合、 濃度 1. 5 N以上の N a OH溶液が好ましい。 なお、 N a OHは、 安価で入手が容易なため、 排ガス処理 工程のコストを低滅できるという利点がある。  In particular, when coal ash is subjected to hydrothermal treatment with an alkaline solution, a NaOH solution having a concentration of 1.5 N or more is preferable. Since NaOH is inexpensive and easily available, there is an advantage that the cost of the exhaust gas treatment process can be reduced.
以下に、 典型的な改質石炭灰の組成等を示す。 表 1  The composition of a typical modified coal ash is shown below. table 1
Figure imgf000008_0001
Figure imgf000008_0001
真比重: 約 2.5 陽イオン交換容量: 約 200meq/100g  True specific gravity: about 2.5 Cation exchange capacity: about 200meq / 100g
嵩比重: 約 0.7 比表面積 : 約 70m2/g Bulk specific gravity: about 0.7 Specific surface area: about 70m 2 / g
平均粒径: 10 Aim  Average particle size: 10 Aim
なお、 陽イオン交換容量及び比表面積は、 それぞれショーレンべルガ一法及び B ET法を用いて測定した。 また、 なお、 表 1における石炭灰の改質条件は、 後 述する実施例と同条件である。 石炭灰を原料に用いた場合には、 球状形状を確保するには、 原料中に含まれる アルミナの結晶形態配分( 非晶質アルミナ/ 全アルミナ) が 5 0wt%以上である ことか必要である。 この結晶形態配分が 5 Owt 未満であると、 破砕状の粒子の 割合が増大するからである。  The cation exchange capacity and the specific surface area were measured using the Shorenberger method and the BET method, respectively. The coal ash reforming conditions in Table 1 are the same as those in the examples described later. When coal ash is used as a raw material, it is necessary that the crystal morphology distribution (amorphous alumina / total alumina) of alumina contained in the raw material is 50 wt% or more in order to secure a spherical shape. . If the crystal form distribution is less than 5 Owt, the proportion of crushed particles increases.
また、 吸着材としての改質石炭灰に、 高い吸着機能を保持させる為には、 アル ミノゲイ酸塩結晶化率を代表する陽イオン交換容量 (C E C) が十分に高い必要 がある。 陽イオン交換容量の高い石炭灰を得るには、 表 2に例示した如く、 原料 の石炭灰中の全アルミナの比率が 1 0 wt%以上であることが必要である。 表 2 In addition, in order for modified coal ash as an adsorbent to maintain a high adsorption function, the cation exchange capacity (CEC), which is representative of the crystallization rate of aluminoate, must be sufficiently high. In order to obtain coal ash having a high cation exchange capacity, as shown in Table 2, the proportion of total alumina in the raw material coal ash must be 10 wt% or more. Table 2
Figure imgf000009_0001
本発明に適する 2ポアサイズを有する改質石炭灰として、 具体的には、 特開昭 5 9 - 8 6 6 8 7号公報、 同 6 1 — 9 0 7 4 5号公報及び同 6 1 — 1 7 8 4 1 6 号公報に開示されている方法により得られる改質石炭灰がある。 この改質石炭灰 は、 石炭灰に苛性ソーダなどのアルカリ溶液を添加して 7 0〜 1 0 0 °Cにて熱処 理することにより得られる多孔質結晶物であり、 陽イオン交換機能及び吸着機能 を有する。
Figure imgf000009_0001
As the modified coal ash having two pore sizes suitable for the present invention, specifically, JP-A-59-86667, JP-A-61-109745 and JP-A-61-1 There is a modified coal ash obtained by the method disclosed in Japanese Patent Publication No. 7841/16. This modified coal ash is a porous crystal obtained by adding an alkaline solution such as caustic soda to coal ash and heat-treating it at 70 to 100 ° C. Has a function.
なお、 石炭灰の改質方法として、 好ましくは、 例えば、 ( 1 ) 石炭灰にアル力 リ水溶液を添加し、 熱水処理して多孔質結晶物に改質するに際して、 アルカリ水 溶液と石炭灰の反応固液比を 0 . 5〜3 . 0 リッ トル/ k gの範囲として攪拌、 熱水処理することを特徴とする石炭灰の改質方法 (特願平 5— 1 0 7 0 9 0号) 、 ( 2 ) 熱水処理後のスラリーの固液比を 2 . 5 リッ トル Z k g以上に調整した 後に、 連繞的に余剰のアル力リ水溶液と多孔質結晶物を分離することを特徴とす る石炭灰の改質方法 (特願平 5— 1 0 7 0 9 0号) による改質石炭灰などが挙げ られる。  As a method for modifying coal ash, preferably, for example, (1) an alkaline aqueous solution and a coal ash are added to a coal ash by adding an aqueous solution of alkali metal and performing hot water treatment to modify the porous ash. Coal ash reforming method characterized by agitating and treating with hot water with a reaction solid-liquid ratio of 0.5 to 3.0 liters / kg (Japanese Patent Application No. 5-107090) (2) After adjusting the solid-liquid ratio of the slurry after the hot water treatment to 2.5 liters Zkg or more, the surplus aqueous solution and the porous crystal are continuously separated. Coal ash modified by the method for modifying coal ash (Japanese Patent Application No. 5-107090).
(顆粒状の吸着材)  (Granular adsorbent)
さらに、 本発明において使用される吸着材としては、 これらの吸着材を適当な 無機質バインダーで造粒したものも好適である。 かかる造粒吸着材としては、 例 えば、 改質石炭灰および原料全体の乾燥重量に対する配合量 1 5重量%以上のセ メン トバインダーを主原料とし、 該原料に初期回転速度を付与して混合し、 加え た機械力により原料の改質石炭灰より水分を湧出させてペースト状とした後に、 初期回転速度より低い回転速度にて混練、 乾燥を行い、 適性造粒水分になった時 点で、 目標粒子径に適した回転速度にて造粒、 乾燥を行うことを特徴とする改質 石炭灰のイオン交換造粒法など特願平 5 — 1 1 5 7 6 9号、 特願平 5 - 1 1 5 7 7 0号に記載の方法により得られた造粒物を挙げることができる。 この造粒物は 、 ナトリウム型ゼオライ トからカルシウム型ゼオライ トに置換されていたり、 あ るいはナト リゥムの一部がカルシウムに置換されてナトリゥム型ゼォライ トとカ ルシゥム型ゼオライ トの双方が混在されていたりするものである。 なお、 この造 粒物を、 さらに微粉砕することにより得られた改質石炭灰を用いてもよい。 Further, as the adsorbent used in the present invention, those obtained by granulating these adsorbents with an appropriate inorganic binder are also suitable. Such granulated adsorbents include, for example, a modified coal ash and a cell having a blending amount of 15% by weight or more based on the dry weight of the entire raw material. Using the ment binder as the main raw material, the raw material is mixed with the initial rotational speed given, and the applied mechanical force allows water to flow out from the modified coal ash of the raw material to form a paste, which is then rotated at a lower speed than the initial rotational speed. Ion exchange granulation of modified coal ash, characterized in that kneading and drying are performed at a speed and granulation and drying are performed at a rotation speed suitable for the target particle size when the appropriate granulated moisture is reached. The granulated products obtained by the methods described in Japanese Patent Application Nos. 5-1111569 and 5-1150770 can be mentioned. In this granulated product, sodium-type zeolite is replaced by calcium-type zeolite, or a part of sodium is replaced by calcium, and both sodium-type zeolite and calcium-type zeolite are mixed. It is a thing that goes. In addition, a modified coal ash obtained by further pulverizing the granulated material may be used.
(排ガス処理工程における吸着材の効果)  (Effect of adsorbent in exhaust gas treatment process)
この吸着材のマイクロボア · メソボア中に、 ガス化したダイォキシン類等の有 機塩素系化合物が吸着される。 したがって、 ダイォキシン類等生成以後の排ガス 処理工程において、 この吸着材を配設することにより、 生成後ガス化した状態の ダイォキシン類を吸着して排ガスからダイォキシン類等が除去される。  Organic chlorine compounds such as gasified dioxins are adsorbed in the microbore / mesopore of the adsorbent. Therefore, in the exhaust gas treatment step after the generation of dioxins and the like, by disposing this adsorbent, the dioxins in a gasified state after the generation are adsorbed and the dioxins and the like are removed from the exhaust gas.
また、 メソポアやマクロボアには、 液相状態の有機塩素系化合物が吸着され、 さらに、 該粉体吸着材層において、 固相状態の有機塩素系化合物を捕捉除去され る。 したがって、 ダイォキシン類生成以後の排ガス処理工程において、 この吸着 材を配設することにより、 液相あるいは固相状態のダイォキシン類が吸着され、 あるいは補足除去されて、 排ガスからダイォキシン類が除去される。  The organic chlorine-based compound in a liquid phase is adsorbed to the mesopores and macropores, and the organic chlorine-based compound in a solid phase is captured and removed in the powder adsorbent layer. Therefore, in the exhaust gas treatment process after the generation of dioxins, by disposing this adsorbent, dioxins in a liquid phase or a solid phase are adsorbed or supplemented and removed, and dioxins are removed from exhaust gas.
さらに、 排ガス処理工程においては、 ダイォキシン類の前駆体であるベンゼン 環を有する芳香族化合物等の液相伏憨での存在比率が高い。 ここに、 メソポアや マクロポアには、 芳香族化合物等の油状物質が吸着され、 さらに、 ダイォキシン のもう一方の前駆体である塩素系物質がマイクロボアにて吸着される。 したがつ て、 ダイォキシン類生成前、 あるいは生成時の排ガス処理工程に、 この吸着材を 配設することにより、 前記した前駆体類が吸着除去され、 ダイォキシン類の生成 が抑制される。  Furthermore, in the exhaust gas treatment step, the abundance of the aromatic compound having a benzene ring, which is a precursor of dioxins, in the liquid phase is high. Here, an oily substance such as an aromatic compound is adsorbed to the mesopore or macropore, and a chlorine-based substance, which is another precursor of dioxin, is adsorbed by a microbore. Therefore, by disposing this adsorbent in the exhaust gas treatment step before or during the generation of dioxins, the precursors described above are adsorbed and removed, and the generation of dioxins is suppressed.
加えて、 ダイォキシン類生成後の工程にこの吸着材を配設しても、 未反応の芳 香族化合物や塩素系化合物を吸着、 除去して、 排ガスをより清浄化することがで きる。 In addition, even if this adsorbent is provided in the process after dioxins are produced, it is possible to adsorb and remove unreacted aromatic compounds and chlorine compounds to further purify exhaust gas. Wear.
さらに、 本発明者らは、 より効果的にこの吸着材を用いて有機塩素系化合物を 除去し、 廃棄物量の増加を抑制するには、 排ガス中のダスト (塵) と吸着材との 接触をできるだけ避けることが重要であることを見いだした。  Furthermore, the present inventors have found that in order to more effectively remove organic chlorine-based compounds using this adsorbent and to suppress an increase in the amount of waste, the contact between the dust in the exhaust gas and the adsorbent must be reduced. It was important to avoid as much as possible.
すなわち、 本吸着材による有機塩素系化合物の吸着に先んじて、 排ガスの集塵 工程を実施することが有効である。 排ガス中のダストを予め除去することにより 、 処理装置の通気抵抗が低位に安定維持されて、 本吸着材の有機塩素系化合物の 吸着量の限界まで有機塩素系化合物の吸着性能を発揮する。 この結果、 過剰な量 の吸着材を供給する必要がなく、 廃棄物量の増加は抑制される。 具体的には、 従 来に比して廃棄物の増加量は約 4 0分の 1に低減される。  That is, it is effective to carry out the exhaust gas dust collection step prior to the adsorption of the organochlorine compound by the adsorbent. By removing the dust in the exhaust gas in advance, the airflow resistance of the treatment device is stably maintained at a low level, and the adsorption performance of the organic chlorine compound to the limit of the amount of the organic chlorine compound adsorbed by the adsorbent is exhibited. As a result, there is no need to supply an excessive amount of adsorbent, and the increase in waste is suppressed. Specifically, the increase in waste will be reduced by a factor of about 40 compared to the past.
さらに、 本来の吸着材の使用期間に渡って、 吸着材を使用できるため、 頻繁な 吸着材の取り替えを回避することができる。 具体的には、 処理装置を 2週間以上 安定して連続運転することができる。  Furthermore, since the adsorbent can be used over the original usage period of the adsorbent, frequent replacement of the adsorbent can be avoided. Specifically, the processing equipment can be stably and continuously operated for two weeks or more.
このように、 集塵工程以後の排ガス処理工程において、 この吸着材を配設する ことにより、 生成後ガス状態、 液相状態あるいは固相状態のダイォキシン類を吸 着して排ガスからダイォキシン類等を除去することができる。  In this way, in the exhaust gas treatment process after the dust collection process, by disposing this adsorbent, dioxins in a gas state, a liquid phase state or a solid phase state are absorbed after generation, and dioxins and the like are removed from the exhaust gas. Can be removed.
また、 排ガスの集塵は、 特に手段を問うものではなく、 排ガス中の塵を捕捉 . 収集することができるものであればよく、 例えば、 電気集塵装置やバグフィルタ 一等を用いることができる。  The method of collecting dust from the exhaust gas is not particularly limited. Any means can be used as long as it can capture and collect dust in the exhaust gas. For example, an electric dust collector or a bag filter can be used. .
また、 排ガスの含塵濃度が 0 . 5 g /m 3Nを越えない場合には、 前記有機塩 系化合物の吸着工程と同時に、 排ガス中のダストを捕捉することが有効である。 排ガスの含塵濃度が 0 . 5 g Zm 3Nを越えない場合、 すなわち、 含塵濃度が十 分に低い場合には、 ダストによる吸着材層の通気抵抗の増大が抑制され、 長期に わたり本吸着材により、 同時にダストの捕捉除去と有機塩素系化合物の吸着除去 が可能である。 すなわち、 通気抵抗が低位に安定化され、 長期間にわたって安定 運転が可能であり、 吸着材の限界まで有機塩素系化合物の吸着性能を発揮できて 、 過剰な吸着材を必要とせず、 廃棄物量の増加が抑制される。 また、 この同時除 去によれば、 従来の、 集塵工程を実施可能な排ガス処理装置にて、 集塵工程と有 機塩素系化合物吸着工程を兼ねることができるため、 新たな設備を設けることな く、 効率的に有機塩素系化合物の除去と廃棄物量の増大の抑制が達成される。 ま た、 装置もコンパク ト化され、 処理時間も短縮される。 When the dust concentration of the exhaust gas does not exceed 0.5 g / m 3 N, it is effective to capture dust in the exhaust gas at the same time as the step of adsorbing the organic salt compound. When the dust concentration of the exhaust gas does not exceed 0.5 g Zm 3 N, that is, when the dust concentration is sufficiently low, the increase in the ventilation resistance of the adsorbent layer due to dust is suppressed, and the dust is not removed for a long time. The adsorbent makes it possible to simultaneously capture and remove dust and adsorb and remove organochlorine compounds. In other words, the ventilation resistance is stabilized at a low level, stable operation is possible for a long period of time, the adsorption performance of organic chlorine compounds can be exhibited to the limit of the adsorbent, and no excessive adsorbent is required, and the amount of waste is reduced. The increase is suppressed. In addition, according to this simultaneous removal, a conventional exhaust gas treatment device capable of performing a dust collection process can perform both the dust collection process and the organic chlorine compound adsorption process. What In addition, efficient removal of organic chlorine compounds and suppression of increase in waste volume are achieved. In addition, the equipment is compact and the processing time is reduced.
また、 排ガス中に含まれるダストの外形寸法が、 5 0 m以上かあるいは、 そ の比重が 2 g Z c m 3 以上の場合には、 有機塩素系化合物を吸着した前記吸着材 を、 同時に捕捉したダストとともに排出する工程を有し、 この吸着材からダスト を分離することにより、 この吸着材を用いて、 さらに、 有機塩素系化合物の吸着 工程を実施することが有効である。 When the external dimensions of the dust contained in the exhaust gas were 50 m or more or the specific gravity was 2 g Z cm 3 or more, the adsorbent that adsorbed the organochlorine compound was simultaneously captured. It is effective to have a step of discharging together with the dust, and to separate the dust from the adsorbent, and to further use this adsorbent to carry out the step of adsorbing the organochlorine compound.
ダストの大きさが、 上記範囲内にある場合には、 吸着材とダストとを分離して 、 吸着材のみを取り出し、 吸着材を再利用することが可能となる。 吸着材とダス 卜の分離処理には、 有機塩素系化合物を吸着しさらにダストを捕捉した吸着材を 排ガス処理工程から排出させた後に、 この混合物から、 分級、 篩分け操作等、 公 知の粉体の分離方法を用いて吸着材のみを回収し、 再び、 排ガス処理工程にて、 有機塩素系化合物の吸着に再利用する。  When the size of the dust is within the above range, it is possible to separate the adsorbent and the dust, take out only the adsorbent, and reuse the adsorbent. For the separation of adsorbent and dust, the adsorbent that adsorbs organochlorine compounds and captures dust is discharged from the exhaust gas treatment process, and then the mixture is subjected to classification and sieving operations. Only the adsorbent is recovered using the body separation method, and reused in the exhaust gas treatment process again for the adsorption of organochlorine compounds.
この方法によれば、 ダストによる吸着材層の閉塞が生じる前に、 吸着材から吸 着材と捕捉したダストを分離し、 吸着材を再利用することにより、 吸着材本来の 吸着量の限界まで吸着性能を発揮できる。  According to this method, before the adsorbent layer is clogged by dust, the adsorbent and the trapped dust are separated from the adsorbent, and the adsorbent is reused to reach the limit of the original adsorbed amount of the adsorbent. Adsorption performance can be demonstrated.
また、 特に、 吸着材を顆粒状とした場合には、 排ガスと直交接触となる移動層 を形成することができる。 この場合、 顆粒状吸着材により有機塩素系化合物が吸 着されるとともに、 層内においてダストの捕捉が可能となる。  In particular, when the adsorbent is in the form of granules, it is possible to form a moving bed that makes orthogonal contact with the exhaust gas. In this case, the organic chlorine-based compound is adsorbed by the granular adsorbent, and the dust can be captured in the bed.
また、 移動層では、 顆粒状吸着材が下方に移動しており、 移動層下部より捕捉 したダストとともに排出され、 分級、 篩分け操作によりダストを分雜後に、 再び 吸着材を移動層上方に搬送して、 顆粒状吸着材の再利用が容易に行われる。  Also, in the moving bed, the granular adsorbent is moving downward, is discharged together with the dust captured from the lower part of the moving bed, and after separating the dust by the classification and sieving operation, transports the adsorbent again above the moving bed. Thus, the granular adsorbent can be easily reused.
さらに、 排ガス処理工程においては、 ダイォキシン類の前駆体であるベンゼン 環を有する芳香族化合物等は液相状態での存在比率が高いものである。 ここに、 メソボアやマクロポアでは、 芳香族化合物等の油状物質を吸着することができ、 さらに、 前駆体となる塩素系物質は、 マイクロボアにて吸着することができる。 したがって、 排ガス処理工程に、 この吸着材を配設することにより、 前記した前 駆体を吸着除去して、 ダイォキシン類の再生成を抑制することができ、 加えて、 未反応の芳香族化合物や塩素系化合物を吸着、 除去して、 排ガスをより清浄化す ることができる。 Furthermore, in the exhaust gas treatment step, the presence ratio of aromatic compounds having a benzene ring, which are precursors of dioxins, are high in the liquid phase. Here, mesopores and macropores can adsorb oily substances such as aromatic compounds, and chlorinated substances as precursors can be adsorbed by microbore. Therefore, by disposing this adsorbent in the exhaust gas treatment step, the precursor can be adsorbed and removed, and the regeneration of dioxins can be suppressed. In addition, unreacted aromatic compounds and Adsorb and remove chlorine-based compounds to further purify exhaust gas Can be
なお、 集塵工程における排ガスの温度は、 1 2 0 °C以上 4 5 0 °C以下が好まし い。 4 5 0 °C以下としたのは、 ダイォキシン類等の有機塩素系化合物が液相状態 で存在する場合が多くなり、 液相状態で吸着することが有効であることと、 吸着 材の耐熱温度が 5 0 0 °Cであるからである。 また、 1 2 0 °Cより低くては、 排ガ ス中に含有する酸性ガス (S O x , N O , 等) が露点を生じ、 排ガス処理設備を 損傷する確率が上昇するからである。 The temperature of the exhaust gas in the dust collection step is preferably from 120 ° C to 450 ° C. The reason for setting the temperature at 450 ° C or lower is that organic chlorine-based compounds such as dioxins often exist in the liquid phase, so that it is effective to adsorb in the liquid phase, and the heat resistance temperature of the adsorbent. Is 500 ° C. On the other hand, if the temperature is lower than 120 ° C, the acid gas (SO x , NO, etc.) contained in the exhaust gas generates a dew point, and the probability of damaging the exhaust gas treatment equipment increases.
有機塩素系化合物の除去工程で使用した吸着材は、 ろ材から脱離された後、 焼 却炉、 溶融炉、 あるいは反応炉等に投入して高温下で、 吸着された有機塩素系化 合物を分解処理することができる。  The adsorbent used in the removal process of the organic chlorine-based compound is desorbed from the filter medium, and then put into an incinerator, melting furnace, or reaction furnace, etc., and adsorbed at a high temperature under high temperature. Can be decomposed.
以下、 本発明を実施の形態に基づき、 より詳細に説明する。  Hereinafter, the present invention will be described in more detail based on embodiments.
石炭灰とアルカリ溶液とを、 所定の固液比となるように、 反応槽內に投入し、 混合し、 所定温度にて、 撹拌、 煮沸し、 石炭灰を多孔質結晶物に改質する反応を 行う。  Coal ash and alkali solution are charged into reaction vessel (2) so as to have a predetermined solid-liquid ratio, mixed, stirred and boiled at a predetermined temperature to convert coal ash into porous crystalline material I do.
ここに、 本発明に用いられる原料の石炭灰としては、 特に限定されるものでは なく、 フライアッシュ、 クリン力アッシュ又は石炭燃焼灰などを用いることがで きる。 こうした石炭灰は、 例えば、 火力発電などで微粉炭などを燃焼させた際に 発生する石炭灰であり、 煙道の気流中等から採取される。 したがって、 採取した 時点での石炭灰の粒径はかなり紬かく、 そのまま用いることもできる。  Here, the raw material coal ash used in the present invention is not particularly limited, and fly ash, clean ash, coal combustion ash, or the like can be used. Such coal ash is, for example, coal ash generated when pulverized coal or the like is burned by thermal power generation or the like, and is collected from the flue of a flue. Therefore, the particle size of coal ash at the time of collection is rather small and can be used as it is.
反応性を高めるためには、 通常 5 0 m以下の粒子が 9 8 %以上、 好ましくは 2 0 m以下の粒子が 5 0 %以上、 より好ましくは 1 0 m以下の粒子が 4 0 % 以上となるように調整して用いることが好ましい。  In order to enhance the reactivity, usually, particles of 50 m or less are 98% or more, preferably particles of 20 m or less are 50% or more, and more preferably particles of 10 m or less are 40% or more. It is preferable to use it after adjusting.
該石炭灰が 3 0 z m以下の粒子が 3 0 %以下の場合には、 アル力リ溶液との接 触面積が低下し、 反応効率が低下するため、 結晶化率が低くなるなど好ましくな い。  When the content of the coal ash having a particle size of 30 zm or less is 30% or less, the contact area with the alkaline solution is reduced, and the reaction efficiency is reduced. .
次に、 濃度調整したアルカリ溶液の濃度としては、 特に限定されるものでない が通常 1〜4 N、 好ましくは 1 . 5〜3 N、 より好ましくは、 1 . 8〜2 . 3 N の範囲である。 該アルカリ溶液の濃度が 1 N未満の場合には、 得られた多孔質結 晶物の陽イオン交換容量 (C E C ) が十分でなく、 また、 4 Nを越える場合には 、 得られる多孔質結晶物の C ECは十分であるが、 多孔質結晶物の結晶構造がフ ィ リ ップサイ ト構造 (有効最小径 4〜5オングストローム) のものが大幅に減少 し、 ハイ ド口キシソ一ダライ ト構造 (有効最小径 2〜 3オングストローム) のも のが急増するため、 分子サイズの大きいガス吸着が困難となるため好ましくない 。 なお、 本発明に用いられるアルカリ溶液は、 特に、 制限されるものではないが 、 例えば、 水酸化ナトリウム、 水酸化カリウムなどの水溶液を用いることができ る o Next, the concentration of the adjusted alkali solution is not particularly limited, but is usually in the range of 1 to 4 N, preferably 1.5 to 3 N, and more preferably 1.8 to 2.3 N. is there. When the concentration of the alkaline solution is less than 1 N, the cation exchange capacity (CEC) of the obtained porous crystal is not sufficient, and when the concentration exceeds 4 N, Although the CEC of the obtained porous crystal material is sufficient, the crystal structure of the porous crystal material having a flip-site structure (effective minimum diameter of 4 to 5 angstroms) is greatly reduced, and the height of the hole is reduced. It is not preferable because the xiso-dalite structure (effective minimum diameter: 2 to 3 angstroms) rapidly increases, and it becomes difficult to adsorb a gas having a large molecular size. The alkali solution used in the present invention is not particularly limited. For example, an aqueous solution such as sodium hydroxide or potassium hydroxide can be used.
また、 本発明に用いられる石炭灰とアルカリ溶液との固液比としては、 通常 0 The solid-liquid ratio between the coal ash and the alkaline solution used in the present invention is usually 0
. 5〜 3. 0リ ッ トル Z kg、 好ましくは 1. 5〜2. 5リ ッ トルノ k g、 より 好ましくは、 2. 0〜2. 2リ ッ トル Zk gの範囲である。 また、 熱水反応時の 温度は、 通常 9 0〜 1 0 0で、 好ましくは 95〜 1 0 0'C、 より好ましくは 9 8 〜 1 00°Cの範囲である。 該温度が 9 (TC未満の場合には、 反応速度が大幅に低 下し、 反応に長時間要し、 また、 1 00でを越える場合には、 大型の高圧設備を 必要として、 加熱に要するコストに見合うだけの十分な効果が得られず好ましく ない。 The range is from 5 to 3.0 liters Z kg, preferably from 1.5 to 2.5 liters kg, more preferably from 2.0 to 2.2 liters Zkg. The temperature at the time of the hydrothermal reaction is usually 90 to 100, preferably 95 to 100'C, more preferably 98 to 100 ° C. If the temperature is less than 9 (TC, the reaction rate is greatly reduced and the reaction takes a long time.If it exceeds 100, large pressure equipment is required and heating is required. It is not preferable because the effect is not enough to justify the cost.
反応後のスラリーは、 脱液装置により固液分離される。 B 液されたスラリーの ろ過ケーキは、 さらに洗浄水により撹拌洗浄を行う。  The slurry after the reaction is solid-liquid separated by a dewatering device. The filter cake of the slurry obtained from the liquid B is further stirred and washed with washing water.
洗浄後の多孔質結晶物含有スラリーは、 脱水され、 得られた多孔質結晶物を含 有する固形物は、 このまま風乾等により乾燥して、 化学組成が、 MeO * A l 23 · mS i 02 · nH2 0 (Meは、 Na2 、 K2 、 C aなどのアルカリ金属 またはアル力リ土類金属であって、 用いるアル力リ溶液の種類によって異なる。 ) で示されるゼォライ トを含有する改質石炭灰とされ、 本発明の吸着材とされる o Porous crystalline material containing slurry after washing, dried, the solids and containing not obtained porous crystalline material, this state was dried by air drying or the like, the chemical composition, MeO * A l 23 · mS i 0 2 · nH 20 (Me is an alkali metal such as Na 2 , K 2 , or Ca or an alkaline earth metal, and depends on the type of alkaline solution used.) O The modified coal ash contained is considered as the adsorbent of the present invention.
さらに、 異なるカチオン水溶液を用いてイオン交換することにより、 例えば、 ナトリゥム型をカルシウム型にする等、 種々のタイプのアルミノケィ酸塩の結晶 構造体を有する吸着材とすることができる。 なお、 イオン交換するカチオンは、 ナトリゥムゃカルシウムにかかわらず、 陽イオン交換可能なカチオンであればよ レ、。 また、 この吸着材は、 無機質バインダーにより顆粒状に造粒することもでき o このようにして得られた吸着材は、 通気型固定層方式あるいは移動層方式の排 ガス処理工程において、 排ガスと接触させるように用いられる。 Further, by performing ion exchange using different cation aqueous solutions, it is possible to obtain an adsorbent having various types of aluminosilicate crystal structures, for example, changing a sodium type into a calcium type. The cation to be ion-exchanged may be a cation-exchangeable cation regardless of sodium calcium. Also, this adsorbent can be granulated into granules with an inorganic binder. The adsorbent thus obtained is used so as to be brought into contact with the exhaust gas in the exhaust gas treatment step of the gas-permeable fixed bed system or the moving bed system.
本発明の吸着材は、 従来公知の固定層方式の吸着工程で用いられる吸着材とし て使用できる。 例えば、 粉末状の吸着材をろ布材表面に付着させて吸着材層を形 成し、 排ガス処理工程中に配置して、 排ガスと接触させて有機塩素系化合物の除 去を図ることができる。 また、 顆粒状の吸着材を積層あるいは充塡して吸着材層 を形成してもよい。  The adsorbent of the present invention can be used as an adsorbent used in a conventionally known fixed bed type adsorption step. For example, a powdery adsorbent can be attached to the surface of a filter cloth to form an adsorbent layer, placed in an exhaust gas treatment process, and brought into contact with exhaust gas to remove organochlorine compounds. . Further, an adsorbent layer may be formed by laminating or filling a granular adsorbent.
同様に、 本発明の吸着材は、 従来公知の移動層方式の吸着工程で用いられる吸 着材として使用できる。 例えば、 排ガス処理工程中において、 排ガスの通気方向 に対して直交するように、 吸着材を移動させて、 移動する吸着材と排ガスとを接 触させて、 有機塩素系化合物の除去を図ることができる。 この場合の吸着剤は、 顆粒状であることが好ましい。  Similarly, the adsorbent of the present invention can be used as an adsorbent used in a conventionally known moving bed type adsorption step. For example, during the exhaust gas treatment process, the adsorbent may be moved so as to be orthogonal to the direction of exhaust gas flow, and the moving adsorbent may be brought into contact with the exhaust gas to remove organic chlorine-based compounds. it can. In this case, the adsorbent is preferably in the form of granules.
さらに、 この吸着材は、 有機塩素系化合物の前駆体も吸着することができるの で、 有機塩素系化合物の生成前あるいは生成時において、 固定層あるいは移動層 にて排ガスを接触させることにより、 有効に有機塩素系化合物の生成を抑制して 、 その後の有機塩素系化合物の吸着除去を効率的に行うことができる。  Furthermore, since the adsorbent can also adsorb the precursor of the organochlorine compound, it can be effectively used by contacting the exhaust gas with a fixed bed or a moving bed before or during the formation of the organochlorine compound. Therefore, the production of the organochlorine compound can be suppressed, and the subsequent adsorption and removal of the organochlorine compound can be efficiently performed.
例えば、 第 6図に示すように、 焼却炉 1 0 0からの排ガスを集塵用のバグフィ ルター 1 0 2を通過させた後に、 有機塩素系化合物吸着用に、 本吸着材を付着保 持させたバグフィルター 1 0 4を設けることができる。 この排ガス処理方法によ れば、 排ガス中のダストは集塵用バグフィルタ一 1 0 2で除かれているため、 吸 着材には、 ダストによる閉塞が発生しない。 なお、 有機塩素系化合物の吸着は、 顆粒状吸着材による移動層方式によっても、 同様に行われる。  For example, as shown in Fig. 6, after passing exhaust gas from incinerator 100 through bag filter 102 for dust collection, this adsorbent is adhered and retained for adsorption of organochlorine compounds. A bag filter 104 can be provided. According to this exhaust gas treatment method, dust in the exhaust gas is removed by the dust collecting bag filter 1102, so that the adsorbent does not become clogged with dust. In addition, the adsorption of the organochlorine compound is similarly performed by the moving bed method using the granular adsorbent.
さらに、 排ガスの含塵濃度が 0 . 5 g Zm 3 N を越えない場合には、 第 7図に 示すように、 焼却炉 1 1 0からの排ガスの集塵用バグフィルター 1 1 2に、 本吸 着材を付着保持させ、 この吸着材により、 ダストを捕捉し、 同時に、 有機塩素系 化合物を除去するよう設けることができる。 この排ガス処理方法によれば、 ダス トの付着による吸着材層の通気抵抗の増加が防止できて、 長期間にわたり、 ダス 卜の捕捉と同時に有機塩素系化合物の吸着が行われる。 Furthermore, when the dust concentration of the exhaust gas does not exceed 0.5 g Zm 3 N, as shown in Fig. 7, the bag filter 1 12 for collecting the exhaust gas from the incinerator 110 The adsorbent can be provided so as to adhere and hold it, thereby capturing dust and simultaneously removing the organic chlorine-based compound. According to this exhaust gas treatment method, it is possible to prevent an increase in the airflow resistance of the adsorbent layer due to the adhesion of dust, and to adsorb the organic chlorine-based compound at the same time as capturing the dust for a long period of time.
さらに、 排ガス中に含まれるダストの外形寸法が、 5 0〃m以上かあるいは、 その比重が 2 g Z c m 3 以上の場合には、 第 8図に示すように、 本吸着材を焼却 炉 1 2 0からの排ガス処理工程に導入し、 バグフィルタ一 1 2 2表面上で排ガス と接触させるともに、 ダストを捕捉し有機塩素系化合物を吸着した吸着材を排出 、 回収し、 分极 ·分別装置 1 2 4により吸着材とダストとを分雜除去して、 吸着 材を再び排ガス処理工程に戻すように循環使用することができる。 この排ガス処 理方法によれば、 ダストと吸着材とが分離可能であるため、 ダストによる通気抵 抗の上昇を回避しつつ吸着材を再利用でき、 含塵濃度にかかわらず、 ダストと有 機塩素系化合物の同時除去が可能である。 Furthermore, the external dimensions of the dust contained in the exhaust gas are 50〃m or more, or If the specific gravity is 2 g Z cm 3 or more, this adsorbent is introduced into the exhaust gas treatment process from the incinerator 120 as shown in Fig. 8, and the exhaust gas is The adsorbent that captures the dust and adsorbs the organochlorine compound is discharged and collected, and the adsorbent and the dust are separated and separated by the separation / separation device 124, and the adsorbent is discharged again. It can be recycled to return to the processing step. According to this exhaust gas treatment method, since the dust and the adsorbent can be separated, the adsorbent can be reused while avoiding an increase in the ventilation resistance due to the dust. Simultaneous removal of chlorine-based compounds is possible.
また、 吸着材を顆粒状とした場合には、 第 9図に示すように、 焼却炉 1 3 0か らの排ガスの通気方向と直交する移動層 1 3 2を形成して、 移動層と排ガスとを 接触させて有機塩素系化合物を顆粒状吸着材に吸着させるとともに、 この層內に ダストを捕捉する。 この移動層を連続して、 分极 '分別装置 1 3 4により顆粒状 吸着材とダストとを分離して、 顆粒状吸着材を再び排ガス処理工程に戻すように 循環使用することができる。 この方法によれば、 含塵濃度にかかわらず、 通気抵 抗は低位に安定された伏態で、 ダストと有機塩素系化合物の同時除去が可能であ り、 しかも顆粒状吸着材の再利用が可能である。  When the adsorbent is in the form of granules, as shown in Fig. 9, a moving bed 1332 that is perpendicular to the direction of exhaust gas flow from the incinerator 130 is formed, And adsorb the organochlorine compound to the granular adsorbent, and capture dust in this layer. The moving bed can be continuously used, and the granular adsorbent and the dust can be separated by the separating device 134 to be circulated and used again so as to return to the exhaust gas treatment step. According to this method, regardless of the dust concentration, the ventilation resistance is low and stable, and the dust and organic chlorine compounds can be removed simultaneously, and the granular adsorbent can be reused. It is possible.
以上説明したように、 本発明の吸着材によれば、 排ガス処理工程におけるガス 状態あるい液相状態の有機塩素系化合物を吸着することができるため、 効率よく 有機塩素系化合物を排ガスから除去することができる。  As described above, according to the adsorbent of the present invention, an organic chlorine-based compound in a gas state or a liquid phase can be adsorbed in an exhaust gas treatment step, so that the organic chlorine-based compound is efficiently removed from the exhaust gas. be able to.
また、 本発明の排ガス処理方法によれば、 排ガスと、 中空球伏粒子表面に多孔 質アルミノゲイ酸塩の結晶体を積層させた吸着材とを接触させることにより、 こ の吸着材により効率よく排ガス中の有機塩素系化合物を吸着 ·除去するとともに 、 排ガス処理により増加する廃棄物量を抑制することができる。  Further, according to the exhaust gas treatment method of the present invention, by contacting the exhaust gas with an adsorbent obtained by laminating a porous aluminoate crystal on the surface of the hollow spherical particles, the exhaust gas can be efficiently used by the adsorbent. It is possible to adsorb and remove the organic chlorine compounds in the waste gas and to suppress the amount of waste increased by the exhaust gas treatment.
〔図面の簡単な説明〕  [Brief description of drawings]
第 1図は、 ゴミ焼却炉の概略及び、 その排ガス処理工程での有機塩素系化合物 の生成域を示した図である。  Fig. 1 is a diagram showing the outline of a garbage incinerator and the area where organochlorine compounds are generated in the exhaust gas treatment process.
第 2図は、 排ガス処理工程における有機塩素系化合物の生成温度域を示す図で あ 。  FIG. 2 is a diagram showing a temperature range for generating an organochlorine compound in an exhaust gas treatment step.
第 3図は、 排ガス処理工程におけるダイォキシン類の生成等のメカニズムを示 す図である。 Figure 3 shows the mechanism of the production of dioxins in the exhaust gas treatment process. FIG.
第 4図は、 吸着材のボアサイズの分布を示す図である。  FIG. 4 is a diagram showing the distribution of the bore size of the adsorbent.
第 5図は、 吸着材の構造を示す吸着材の一部断面図である。  FIG. 5 is a partial cross-sectional view of the adsorbent showing the structure of the adsorbent.
第 6図は、 本発明の一実施形態の概略を示す図である。  FIG. 6 is a diagram schematically showing an embodiment of the present invention.
第 7図は、 本発明の一実施形態の概略を示す図である。  FIG. 7 is a diagram schematically showing an embodiment of the present invention.
第 8図は、 本発明の一実施形態の概略を示す図である。  FIG. 8 is a diagram schematically showing an embodiment of the present invention.
第 9図は、 本発明の一実施形態の概略を示す図である。  FIG. 9 is a diagram schematically showing an embodiment of the present invention.
第 1 0図は、 実施例の装置構成の概略を示す図である。  FIG. 10 is a diagram showing an outline of the device configuration of the embodiment.
〔発明を実施するための最良の形態〕 [Best mode for carrying out the invention]
以下、 本発明の実施例について説明する。  Hereinafter, examples of the present invention will be described.
本実施例で用いた、 石炭灰は、 全 A 12 03 分が 2 3wt%であり、 このうち、 非晶質 A 12 03 の比率は、 7 Owt であり、 粒径は、 平均 1 0 zmであった。 この石炭灰 1 0 0 k gと 1 0 0てに調整した 2 N水酸化ナトリウム水溶液 2 1 0 Lとを、 反応槽に投入し、 反応温度を 1 0 0°Cとし、 反応槽の撹拌機により撹拌 、 煮沸を行い、 石炭灰から、 化学組成が主に、 Na 2 0 , A l 2 03 - 3. 5 S i 02 - 4. 5 H2 0で示される P型 (フィ リップサイ ト) の結晶構造を持つ多 孔質結晶物たる改質石炭灰とする反応を 5時間行った。 Used in this embodiment, coal ash, total A 1 2 0 3 minutes is 2 3 wt%, Of these, the proportion of amorphous A 12 0 3 is 7 OWT, particle size, the average 1 It was 0 zm. 100 kg of this coal ash and 2100 L of a 2 N aqueous sodium hydroxide solution adjusted to 100 were charged into a reaction tank, the reaction temperature was adjusted to 100 ° C, and the stirrer of the reaction tank was used. stirring, subjected to boiling, the coal ash, the chemical composition mainly, Na 2 0, a l 2 0 3 - 3. 5 S i 0 2 - 4. P type represented by 5 H 2 0 (Fi Rippusai g) The reaction was performed for 5 hours to obtain a modified coal ash, which is a porous crystalline material having the following crystal structure.
この熱水処理後の多孔質結晶物含有スラリーを、 脱液し、 得られたろ過ケーキ は、 水洗槽にて洗浄した後に脱水し、 この固形物に重量比で 1 5wt%相当の塩化 カルシウムを添加、 さらに、 5倍の水を加えてスラリー状となし、 撹拌 .反応処 理を 2時間行った後に脱液、 水洗、 脱水して C a型ゼオライ トの結晶構造を有す る多孔質結晶物含有固形物を得た。 さらに、 この固形物を、 1 3 0eCで乾燥し、 C a型ゼォライ トの多孔質結晶を表面に镜層させた中空球状粒子の吸着材の粉末 を得た。 The slurry containing the porous crystals after the hot water treatment was drained, and the obtained filter cake was washed with a water washing tank and then dehydrated. The solid matter was added with calcium chloride equivalent to 15% by weight in a weight ratio. Add, add 5 times more water to form a slurry, stir, perform reaction for 2 hours, then remove, wash, and dehydrate to form a porous crystal having a Ca-type zeolite crystal structure. Substance-containing solid was obtained. Further, this solid was dried at 1 3 0 e C, to give a powdered adsorbent C a type Zeorai preparative porous crystalline镜層to the surface to be hollow spherical particles were.
得られた粉末粒子は、 直径約 1 0 mの中空球状粒子の表面に、 カルシウム型 のゼォライ ト (アルミノケィ酸カルシウム) の結晶が析出してなる 3次元積層構 造を有していた。 そして、 中空球状粒子表面には、 クラック , ピンホールが発生 しているとともに、 ゼォライ ト結晶粒子の接層構造で形成される直径 2 nmのメ ソボアと、 ゼォライ トの結晶構造に基づく 0. 5 nmのマイクロボアを有してい た。 The obtained powder particles had a three-dimensional laminated structure in which calcium zeolite (calcium aluminosilicate) crystals were precipitated on the surface of hollow spherical particles having a diameter of about 10 m. Cracks and pinholes are generated on the surface of the hollow spherical particles, and a 2 nm-diameter mesh formed by the in-layer structure of zeolite crystal particles. It had a microbore of 0.5 nm based on the crystal structure of soboa and zeolite.
この粉末につき、 第 1 0図に概略構成を示す装置により、 実際にゴミ焼却を行 い、 焼却炉の排ガスの一部を使つて P CDD及び P CDFの吸着試験を行つた。 試験装置は、 焼却炉 1 0と、 クーラー 1 2と、 集塵用バグフィルター 1 4と、 吸引装置 1 6と、 有機塩素系化合物除去用バグフィルター (試験機) 1 8とから なる排ガス処理装置であり、 焼却炉 1 0から排出される高温の排ガスをクーラー 1 2で冷却し、 バグフィルター 1 4に送り、 ダストを除去し、 さらに、 バグフィ ルター 1 4を通過した排ガスをバグフィルタ一 1 8において本実施例の吸着材で P CDD (ポリクロロジベンゾー ρ—ジォキシン) 及び PCDF (ボリクロロジ ベンゾフラン) を吸着しょうとするものである。  This powder was actually incinerated by a device shown in FIG. 10 and an adsorption test of PCDD and PCDF was performed using a part of the exhaust gas from the incinerator. The test equipment consists of an incinerator 10, a cooler 12, a dust filter 14, a suction device 16, and a bag filter (test machine) 18 for removing organic chlorine-based compounds. The high-temperature exhaust gas discharged from the incinerator 10 is cooled by the cooler 12, sent to the bag filter 14 to remove dust, and the exhaust gas that has passed through the bag filter 14 is filtered by the bag filter 18. In this example, PCD (polychlorodibenzo-ρ-dioxin) and PCDF (polychlorodibenzofuran) are to be adsorbed by the adsorbent of this embodiment.
バグフィルター 1 8内には、 筒状体が配設され、 筒状体に巻き付けられたろ布 には吸着材を吹き付けすることにより吸着材を保持させた。 なお、 ろ布の材質は 、 耐熱ナイロンを使用した。  A cylindrical body was provided in the bag filter 18, and the adsorbent was held by spraying the adsorbent onto the filter cloth wound around the cylindrical body. The filter cloth was made of heat-resistant nylon.
吸着試験は以下の条件で行った  The adsorption test was performed under the following conditions
〔試験条件〕  〔Test condition〕
試験機吸着層面積 1 0. 8 m2 Test machine adsorption layer area 1 0.8 m 2
吸着材の量 2 0 k g  Amount of adsorbent 20 kg
処理風量 1 0m" /Ίτι i η  Processing air volume 1 0m "/ Ίτι i η
なお、 ガスの温度特性は以下のとおりであった <  The temperature characteristics of the gas were as follows.
〔ガス温度特性〕  [Gas temperature characteristics]
バグフィルター入口 2 5 0。C  Bag filter entrance 250. C
バグフィルター出口 1 2 0。C  Bag filter exit 1 2 0. C
試験機入口 1 0 0。C  Testing machine entrance 100. C
試験機出口 ほぼ 6 0 'Cで一定  Testing machine outlet Constant at almost 60'C
なお、 ダイォキシン類及びジベンゾフラン類の分析は、 (財) 廃棄物研究財団 発行 「廃棄物処理におけるダイォキシン類測定分析マニュアル」 に準じて行った 試験の結果を表 3に示す c The analysis of dioxins and dibenzofurans was performed according to the Manual for Measurement and Analysis of Dioxins in Waste Disposal, issued by the Waste Management Foundation. C showing the results of test are shown in Table 3
表 3 Table 3
Figure imgf000019_0001
Figure imgf000019_0001
N.D.: 検出限界以下(0.033ng/m3 N 以下) ND: below detection limit (less than 0.033ng / m 3 N )
TEQ : 2.2.1, 8-T4CDD 毒性等価濃度、 換算係数は、 前述の Γ廃棄物処理にお るダイォキシン類測定分析マニュアル」 による。 この結果からは以下のことが明らかである。 TEQ: 2.2.1, 8-T 4 CDD toxic equivalent concentration, conversion factor, due to your Ru dioxins measurement analysis Manual "to the above-mentioned Γ waste processing. The following is clear from this result.
すなわち、 この試験装置におけるバグフィルタ一 1 4以後の排ガスにおいては 、 除去用バグフィルター 1 8の入口では、 P CDD及び P CD Fが検出されてい るが、 除去用バグフィルター 1 8の出口では、 全種類の物質につき、 検出限界以 下であった。 この結果から、 この試験装置におけるバグフィルター 1 8以後の排 ガスにおいては、 P CDD及び P CDFはほぼ 100 %除去されていた。  That is, in the exhaust gas after the bag filter 14 in this test apparatus, PCDD and PCDF are detected at the inlet of the removing bag filter 18, but at the outlet of the removing bag filter 18, The detection limit was below the detection limit for all types of substances. From this result, almost 100% of PCDD and PCDF were removed from the exhaust gas after the bag filter 18 in this test apparatus.
すなわち、 第 1 0図に示したように、 飛灰上で生成され、 その飛灰に付着した ままの P CDD等及びその低塩素化体、 さらには分解物は、 そのほとんどがバグ フィルターに飛灰とともに付着され、 排ガス中に分散しガス化した P CDD等や 、 ガス化した後の液相状態の P CDD等、 さらには、 一部の飛灰に付着したまま の P CDD等は、 バグフィルターを通過して、 試験機內におけるろ布に付着させ た吸着材により吸着除去されたのである。  In other words, as shown in Fig. 10, most of the PCDs, etc. and their low chlorinated products, which are formed on fly ash and remain attached to the fly ash, and decomposed products, fly to the bag filter. PCDs that are attached to the ash and are dispersed and gasified in the exhaust gas, PCDs in the liquid phase after gasification, and PCDs that are still attached to some fly ash are bugs. After passing through the filter, it was adsorbed and removed by the adsorbent adhering to the filter cloth in the testing machine 內.
また、 このバグフィルター 1 8において、 排ガスの温度が 1 0 0。Cとなってお り、 この温度帯においては、 ダイォキシン類は融点以下であるが、 例えば、 2、 3、 7、 8— TCDDの蒸気圧は 1 0— 4國 であり、 工程中においては、 液相や 固相状態だけでなく、 ガス状態でも存在していることがわかっている。 すなわち 、 この吸着材によれば、 どの存在形態のダイォキシン類等をも吸着できるため、 バグフィルター 1 4を通過した排ガスから、 かかる高効率でダイォキシン類等を 除去することができる。 In this bag filter 18, the temperature of the exhaust gas was 100. C and is in contact is, in this temperature range, although dioxins are below the melting point, for example, 2, 3, 7, the vapor pressure of 8- TCDD is 1 0 4 kingdom, during the process, It is known that it exists not only in liquid and solid phases but also in gaseous state. That is, according to the adsorbent, dioxins and the like in any existing form can be adsorbed, so that dioxins and the like can be removed from the exhaust gas that has passed through the bag filter 14 with high efficiency.
さらに、 本実施例では、 排ガスからのダイォキシン類等の除去を集塵工程を経 た排ガスに対して行っているため、 バグフィルター 1 8に形成した吸着材層のダ ストによる早期閉塞が観察されず、 吸着材の吸着活性が長期に渡って維持され、 ダイォキシン類等の吸着が効率よく行われていた。 その結果、 吸着材の酎用期間 は 1 5日以上となり、 発生排ガス量が 1 0 0, 0 0 O m3 /h rの焼却炉に用い た場合でも、 有機塩素系化合物の除去による廃棄物の増加量は 4 トン Z月程度に 低減された。 Further, in the present embodiment, dioxins and the like from the exhaust gas are removed from the exhaust gas that has passed through the dust collection step, so that the adsorbent layer formed on the bag filter 18 is prematurely blocked by dust. However, the adsorption activity of the adsorbent was maintained for a long time, and the adsorption of dioxins and the like was performed efficiently. As a result,酎用period of adsorbent becomes more than a 5 day, generated gas amount is 1 0 0, 0 0 O m 3 / even when using the incinerator hr, waste due to the removal of organic chlorine compounds The increase was reduced to about 4 tons per month.
なお、 本実施例では、 バグフィルターによる集塵工程の後に試験機を設ける構 成としたが、 この吸着材は、 油状物質等を効率良く吸着できるマクロボアゃメソ ポアを有しているため、 集塵とダイォキシン類等の除去を同時に行い得る。 また、 本実施例では、 吸着材として粉体を用いたが、 本発明の吸着材を無機質 バインダーで造粒したものも使用することができる。 造粒物においては、 固定層 として用いるだでけでなく、 移動層として排ガスの通気方向と直交状に流通させ て、 バグフィルターで吸着材とともにダイォキシン類その外の物質を吸着させて 、 捕捉するのに有効に利用することができる。 In this embodiment, the tester is provided after the dust collection step using a bag filter. However, since this adsorbent has a macropore and a mesopore capable of adsorbing oily substances and the like efficiently, the collection is performed. Removal of dust and dioxins can be performed simultaneously. In the present embodiment, powder is used as the adsorbent, but the adsorbent of the present invention may be granulated with an inorganic binder. In the granulated product, it is used not only as a fixed bed but also as a moving bed in a direction perpendicular to the direction of exhaust gas flow, and adsorbs and captures dioxins and other substances together with an adsorbent using a bag filter. It can be used effectively.

Claims

請求の範囲 The scope of the claims
1 . 中空球状粒子表面に多孔質アルミノケィ酸塩の結晶体を積層させたことを特 徴とする有機塩素系化合物の吸着材。 1. An adsorbent for organochlorine compounds, characterized in that porous aluminosilicate crystals are laminated on the surface of hollow spherical particles.
2 . アルミナを 1 O wt %以上含有し、 該アルミナにおける非晶質アルミナの比率 が 5 O wt %以上である石炭灰に、 1 . 5 N以上の濃度のアルカリ溶液を加えて水 熱反応にて生成したことを特徴とする請求の範囲 1の有機塩素系化合物の吸着材 2. To a coal ash containing 1 O wt% or more of alumina and having an amorphous alumina ratio of 5 O wt% or more in the alumina, add an alkaline solution having a concentration of 1.5 N or more to the hydrothermal reaction. An adsorbent for an organochlorine compound according to claim 1, wherein the adsorbent is formed by
3 . 請求の範囲 1又は 2に記載の吸着材を、 無機質のバインダーを用いて顆粒状 に成形したことを特徴とする有機塩素系化合物の吸着材。 3. An adsorbent for an organochlorine compound, wherein the adsorbent according to claim 1 or 2 is formed into a granular shape using an inorganic binder.
4 . 排ガス中の有機塩素系化合物を除去するための方法であって、 請求の範囲 1 、 2又は 3のいずれかに記載の有機塩素系化合物の吸着材に排ガスを接触させる ことにより排ガス中の有機塩素化合物を吸着する工程を実施することを特徴とす る排ガスの処理方法。 4. A method for removing an organochlorine compound in an exhaust gas, wherein the exhaust gas is brought into contact with the adsorbent for an organochlorine compound according to any one of claims 1, 2, and 3 to thereby remove the organochlorine compound from the exhaust gas. A method for treating exhaust gas, which comprises a step of adsorbing an organic chlorine compound.
5 . 請求の範囲 4に記載の排ガスの処理方法であって、 前記吸着工程において、 前記吸着材に集塵工程を経た排ガスを接触させることを特徴とする排ガスの処理 方法。 5. The method for treating exhaust gas according to claim 4, wherein in the adsorption step, exhaust gas that has passed through a dust collection step is brought into contact with the adsorbent.
PCT/JP1996/002593 1995-09-13 1996-09-11 Adsorbent and method for treatment of exhaust gas WO1997010051A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP7235540A JPH0975667A (en) 1995-09-13 1995-09-13 Treatment of exhaust gas
JP7/235540 1995-09-13
JP7235538A JPH0975719A (en) 1995-09-13 1995-09-13 Adsorbent of organochlorine compound
JP7/235538 1995-09-13

Publications (1)

Publication Number Publication Date
WO1997010051A1 true WO1997010051A1 (en) 1997-03-20

Family

ID=26532184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/002593 WO1997010051A1 (en) 1995-09-13 1996-09-11 Adsorbent and method for treatment of exhaust gas

Country Status (1)

Country Link
WO (1) WO1997010051A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106215616A (en) * 2016-08-29 2016-12-14 合肥合意环保科技工程有限公司 A kind of administering method of gaseous contaminant

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5935019A (en) * 1982-08-17 1984-02-25 Sumitomo Sekitan Kogyo Kk Preparation of zeolite
JPH0340915A (en) * 1989-07-10 1991-02-21 Nippon Steel Corp Production of pellet-shaped zeolite from fly ash
JPH06100314A (en) * 1992-09-17 1994-04-12 Kobe Steel Ltd Production of a type zeolite
JPH06114260A (en) * 1992-10-08 1994-04-26 Nippon Steel Corp Granular gas cleaning material for dust collector
JPH06321528A (en) * 1993-05-18 1994-11-22 Nippon Steel Corp Granulation of modified calcite
JPH06321529A (en) * 1993-05-18 1994-11-22 Nippon Steel Corp Ion-exchange granulation of modified calcite
JPH06321524A (en) * 1993-05-07 1994-11-22 Nippon Steel Corp Method for modifying coal ash

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5935019A (en) * 1982-08-17 1984-02-25 Sumitomo Sekitan Kogyo Kk Preparation of zeolite
JPH0340915A (en) * 1989-07-10 1991-02-21 Nippon Steel Corp Production of pellet-shaped zeolite from fly ash
JPH06100314A (en) * 1992-09-17 1994-04-12 Kobe Steel Ltd Production of a type zeolite
JPH06114260A (en) * 1992-10-08 1994-04-26 Nippon Steel Corp Granular gas cleaning material for dust collector
JPH06321524A (en) * 1993-05-07 1994-11-22 Nippon Steel Corp Method for modifying coal ash
JPH06321528A (en) * 1993-05-18 1994-11-22 Nippon Steel Corp Granulation of modified calcite
JPH06321529A (en) * 1993-05-18 1994-11-22 Nippon Steel Corp Ion-exchange granulation of modified calcite

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106215616A (en) * 2016-08-29 2016-12-14 合肥合意环保科技工程有限公司 A kind of administering method of gaseous contaminant

Similar Documents

Publication Publication Date Title
US10926218B2 (en) Sorbents for the oxidation and removal of mercury
AU2003232091B2 (en) Sorbents and methods for the removal of mercury from combustion gases
US5659110A (en) Process of purifying combustion exhaust gases
EP2429685B1 (en) Sorbents for the oxidation and removal of mercury
US20070092418A1 (en) Sorbents for Removal of Mercury from Flue Gas
US20090145343A1 (en) Sorbents for Removal of Mercury From Flue Gas Cross Reference To Related Applications
JPH0829219B2 (en) Method for removing mercury vapor and / or vapor of harmful organic compounds and / or nitrogen oxides from flue gas generated from incinerator equipment
WO2005030641A1 (en) Highly activated coke powder and process for producing the same
JPH0975667A (en) Treatment of exhaust gas
KR20170049894A (en) Deodorizer Using Powder Type Adsorber
WO1997010051A1 (en) Adsorbent and method for treatment of exhaust gas
CA2229945A1 (en) Method for purifying gas loaded with dust
JPH0975719A (en) Adsorbent of organochlorine compound
JP4350866B2 (en) Exhaust gas treatment method and apparatus
JP2001170481A (en) Coal-based molded active carbon and method of treating exhaust gas containing dioxins
JP2000042363A (en) Removing method of dioxins in waste gas
Bhattacharyya et al. for Mercury Removal
JP2002045648A (en) Method for treating exhaust gas and device used for the method
CZ294601B6 (en) Process for removing acid pollutants such as sulfur dioxide SOi2, chlorine Cl, fluorine F, polycondensed aromatic hydrocarbons, polychlorinated dibenzodioxines and dibenzofurans, and other organic substances and volatile toxic metals form chimney gases
JPH10202057A (en) Method of removing harmful material of low concentration particularly chlorinated hydrocarbon and heavy metal from exhaust gas and purifying material used in the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA