WO1997008751A1 - Imaging system and method - Google Patents
Imaging system and method Download PDFInfo
- Publication number
- WO1997008751A1 WO1997008751A1 PCT/EP1996/003559 EP9603559W WO9708751A1 WO 1997008751 A1 WO1997008751 A1 WO 1997008751A1 EP 9603559 W EP9603559 W EP 9603559W WO 9708751 A1 WO9708751 A1 WO 9708751A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- imaging
- imaging device
- support
- mounting
- tile
- Prior art date
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 430
- 238000000034 method Methods 0.000 title claims description 15
- 230000001066 destructive effect Effects 0.000 claims abstract description 16
- 239000004065 semiconductor Substances 0.000 claims description 22
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- 238000012546 transfer Methods 0.000 claims description 7
- 239000004020 conductor Substances 0.000 claims description 3
- 238000001514 detection method Methods 0.000 claims description 3
- 239000000758 substrate Substances 0.000 claims description 3
- 229920001940 conductive polymer Polymers 0.000 claims description 2
- 230000001419 dependent effect Effects 0.000 claims 1
- 230000000694 effects Effects 0.000 claims 1
- 125000006850 spacer group Chemical group 0.000 claims 1
- 230000002950 deficient Effects 0.000 abstract description 6
- 230000005855 radiation Effects 0.000 description 7
- 239000013078 crystal Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 238000009659 non-destructive testing Methods 0.000 description 3
- 210000000038 chest Anatomy 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 238000009607 mammography Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000003908 quality control method Methods 0.000 description 2
- 239000003566 sealing material Substances 0.000 description 2
- 238000003325 tomography Methods 0.000 description 2
- JAYCNKDKIKZTAF-UHFFFAOYSA-N 1-chloro-2-(2-chlorophenyl)benzene Chemical compound ClC1=CC=CC=C1C1=CC=CC=C1Cl JAYCNKDKIKZTAF-UHFFFAOYSA-N 0.000 description 1
- KKQWHYGECTYFIA-UHFFFAOYSA-N 2,5-dichlorobiphenyl Chemical compound ClC1=CC=C(Cl)C(C=2C=CC=CC=2)=C1 KKQWHYGECTYFIA-UHFFFAOYSA-N 0.000 description 1
- 101100084627 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) pcb-4 gene Proteins 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000011976 chest X-ray Methods 0.000 description 1
- 238000002591 computed tomography Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000009658 destructive testing Methods 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000009206 nuclear medicine Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 150000003071 polychlorinated biphenyls Chemical class 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/14603—Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/14618—Containers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/14634—Assemblies, i.e. Hybrid structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14643—Photodiode arrays; MOS imagers
- H01L27/14658—X-ray, gamma-ray or corpuscular radiation imagers
- H01L27/14661—X-ray, gamma-ray or corpuscular radiation imagers of the hybrid type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0203—Containers; Encapsulations, e.g. encapsulation of photodiodes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/30—Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from X-rays
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/30—Transforming light or analogous information into electric information
- H04N5/32—Transforming X-rays
Definitions
- the invention relates to an imaging system and method.
- the invention finds particular application to large area imaging. Imaging systems are used in a wide range of applications, particularly for imaging for medical diagnosis, in biotechnology and in industrial applications for non ⁇ destructive testing and on-line product quality control.
- Imaging For all of these fields of application, the prevailing means of performing imaging is with the use of radiation, usually X-rays, gamma-rays and beta-rays. Radiation is detected by some sort of imaging plane, which need not be planar. Accordingly, the term imaging surface will be used hereinafter. Images are formed either directly on the imaging surfaces (e.g. projection imaging) or data are processed and images are reconstructed in a computer (e.g.. computerized tomography or coded aperture imaging in nuclear medicine). The traditional imaging surface was formed by a film in a cassette. Other imaging surface solutions have been developed over the past 40 years offering digital imaging.
- Such examples are Nal scintillating screens, Nal scintillating crystals, BGO crystals, wire gas chambers, digital imaging plates etc. More recently, semiconductor imaging solutions such as Charged Coupled Devices, Si microstrip detectors and semiconductor pixel detectors have been developed.
- a large imaging area when a large imaging area is needed it is made either as a monolithic structure (e.g.. films, digital imaging plates, Nal screens etc.) or as a mosaic of smaller pieces (tiles) put together and fixed on a support surface (e.g.. gamma cameras with Nal crystals).
- a monolithic large imaging surface if a part of the surface is defective then the whole surface needs to be changed.
- the most precise digital on-line imaging devices proposed so far involve pixel-based semiconductors which cannot be manufactured in large areas (larger than a few square cm at most).
- a large imaging device is made by several detectors joined side by side and arranged in the form of a matrix, the detectors being interconnected and associated with several integrated circuit chips arranged in matrix form behind the detectors for reading the signals from the detectors' elements.
- the integrated circuit chips are displaced relative to the detectors so as to partially overlap two or more detectors.
- the detectors are connected to the integrated circuit chips in an essentially permanent manner by microspheres, and the overlapping of the chips produces a fixed tiled structure.
- each detector is quite narrow and is spaced from adjacent detectors, making this system unsuitable for large area "tiled" image detectors.
- US-A-4891522 describes a 3-dimensional multi-layer high energy particle detector for a calorimeter. Each layer consists of a number of detector modules removably secured to a carrier member by conductive adhesive tape. An essential part of that design is that each detector module includes a feed-through connection pin for electrical connection to a corresponding detector module in an adjacent layer.
- Such a 3-dimensional calorimetric detector does not relate to the field of imaging, and does not address the problems in providing a tiled image detector surface or plane. Further, the resolution is limited to the size of each detector module, which means that the design is not suitable for high resolution pixel imaging.
- An object of the invention is to provide an imaging system and method which, while providing the advantages of the tiling approach, remove or at least mitigate the problems of the prior art.
- an imaging support for supporting a plurality of imaging devices in respective positions to define an imaging surface, the imaging support comprising means for removably mounting the imaging devices on the imaging support in a non-destructive, removable manner.
- an imaging array comprising:
- the invention also relates to an imaging device for use in the aforesaid apparatus and/or method, and to a system based on the aforesaid apparatus.
- the invention is particularly suitable for imaging devices of the type having a plurality of imaging regions from which respectively identifiable output signals may be produced.
- the imaging devices are removable without damage to the device to be removed, the surrounding devices or the support. In this manner, defective devices can readily and quickly be replaced. Moreover, correctly functioning imaging devices can easily be removed and re-used on the same or a different imaging support.
- different imaging surfaces can be constructed without needing to have enough imaging devices for each of the imaging supports.
- modular imaging surfaces can easily and cost effectively be assembled and maintained. In its broadest sense, the invention is not limited by the number of imaging devices to be mounted on the support.
- an imaging support may be configured to mount two imaging devices.
- hundreds of imaging devices might be mounted on one (or more) supports, and even more imaging devices might be used in large image detectors for other applications.
- the imaging support comprises contacts for a transfer of at least a supply, a control signal and a readout signal (output signal) between the imaging support and an imaging device mounted on the imaging support.
- Such an arrangement allows the use of "active" semiconductor imaging devices, which include on-board electronic circuits.
- the imaging devices comprise a semiconductor pixel, or other array, detector and its associated readout chip.
- each imaging device be mounted on the imaging support by mounting means which results in the imaging device being subjected to a force urging the imaging device towards the imaging support.
- the force is maintained on the imaging device in use (until it is desired to release the imaging device).
- the imaging devices are temporarily kept in place on the master plane by means of a reduced air pressure (vacuum).
- said imaging devices are removably secured using nuts and bolts, or screws, ln these and other possible embodiments, an adjustable degree of force can be applied to attach the imaging devices to the imaging supports in order to ensure good alignment and good electrical contact.
- the invention provides an imaging device comprising securing means which can be used in the securing, in a non-destructive, removable manner, of the imaging device to an imaging support.
- the securing means may be threaded, and comprise, for example, a threaded hole or pin, but these are merely examples.
- the imaging device may comprise a plurality of image detection regions, from each of which a respectively identifiable output can be produced.
- the imaging device may comprise a plurality of contacts for a transfer of a supply, a control signal, and a readout signal (output signal) between the imaging device and a said imaging support on which the imaging device is mounted.
- the imaging device may comprise a readout integrated circuit for reading the signal from the or each detection region.
- Figure IA is a schematic cross-sectional view of an imaging device
- Figure IB is a schematic cross-sectional view of part of an imaging support
- Figure IC is a schematic cross-sectional view of the imaging device located on the imaging support
- Figure 2 is a schematic plan view of the imaging support
- Figure 3 is a schematic view of an imaging system
- Figure 4 is a schematic view of an alternative imaging support with the imaging device located thereon;
- Figure 5 is a schematic representation of a further embodiment of an imaging support with an imaging device located thereon;
- Figure 6 is a schematic representation of a further embodiment of an imaging support with an imaging device located thereon.
- Embodiments of the invention provide a new imaging mosaic system and a method for producing imaging mosaics using a plurality of imaging devices (tiles) and an imaging support.
- the imaging devices are positioned and held on the support in a reversible and non-destructive way.
- the removable positioning/fixing means allow individual imaging devices to be removed multiple times so that the same imaging device can be used in a different imaging support or it can be replaced if found to be defective without damaging the imaging support and without affecting the operation of any other imaging device on the imaging support.
- imaging devices can be removed and re-positioned any number of times the same imaging devices can be used in a number of applications. For example imaging devices used for mammography can be quickly transferred on a different imaging support for chest X-rays. A variety of imaging supports can have different sizes and shapes but only one set of imaging devices is needed. Additionally replacing an imaging device can be done by a non-expert and maintenance costs are minimized. Accordingly, contrary to the prior art where large imaging areas have monolithic imaging means or a fixed tiled imaging plane, the invention introduces a new large area imaging system where the imaging mosaic is made of removable imaging devices allowing for multi-purpose use and re-use of the individual imaging devices, while also allowing cost effective maintenance of the imaging areas.
- the imaging devices comprise Active Semiconductor Imaging Devices (ASIDs) as described in the present applicant's patent application PCT/EP95/02056.
- ASID Active Semiconductor Imaging Devices
- An ASID is an active, dynamic semiconductor pixel imaging device with dimensions from possibly few square mm to several square cm.
- FIG. IA A cross-section of one such imaging device (tile) 20 is shown schematically in Figure IA.
- the surface area of the imaging device can vary depending on the application and the semiconductor materials chosen. Typical sizes are of the order of one square millimetre to several square centimetres, although the invention is not limited to imaging devices of these sizes.
- Radiation enters the semiconductor detector 1 from one face (the top face in Figure IA) and upon absorption creates an electric charge. On the exit face of the detector electrode pads define the detector cells or pixels. Charge created from successive radiation this is accumulated on the corresponding pixel circuits 3 which arc connected to the detector pixels via conductive microbumps 2 (e.g. indium bumps).
- conductive microbumps 2 e.g. indium bumps
- the pixel circuits 3 are formed on a semiconductor substrate which is mounted on a mount 4, for example a circuit board (PCB), of said imaging device.
- a mount 4 for example a circuit board (PCB)
- PCB circuit board
- Each such imaging device 20 has tens of thousands of pixels but only needs around 5-1 external lines that will provide control signals, supply voltage and will readout the signal. These lines are provided on the PCB 4 and also on the imaging support 22 on which the imaging device 20 is mounted.
- the imaging device 20 itself carries an equal number of contacts 5 in the form of, for example, small metal spheres or bumps. As shown in Figure IA and IB these metal spheres match an equal number of small appropriately sized metal spherical holes or cavities 7 on a circuit board 9 of the imaging support 22.
- the cavities on the imaging support 22 are connected to the aforementioned control, supply and signal lines (not shown).
- the imaging devices 20 are mounted on the imaging support 22 in a non ⁇ destructive manner so that the imaging device 20 can easily be re-positioned on a different imaging support 22 if needed or the imaging device 20 can be changed.
- non-destructive mounting is provided by an additional small aperture 8 on the imaging support 22 through which air from beneath the imaging device 20 can be extracted, so that the imaging device 20 is held onto the imaging support by the pressure differential between atmospheric pressure on the upper surface of the imaging device 20 and the reduced air pressure below the imaging device 20.
- a gasket 6 formed from a flexible impervious sealing material in a ring shape (e.g. an O'-ring) is provided to ensure that the air pressure differential between the upper and lower surfaces of the imaging device 20 are maintained.
- alignment pins 5a and alignment holes 5b are provided on the imaging device 20 and the imaging support 22, respectively, to assist in locating the imaging device 20 on the imaging support 22 (better than lO ⁇ m positional accuracy is achievable) before suction.
- Pins 5a will ensure that the contacts 5 on the imaging device 20 will properly match the female connectors 7 on the imaging support 22 after suction.
- these pins and holes will help to prevent the imaging devices 20 from falling out of the mounting locations (sockets) for the imaging devices 20 when the arrangement shown in Figure 1 is at an angle to the horizontal or even inverted.
- Figure 2 shows a plan view of the imaging support 22, which provides a support surface, or plane (e.g., a PCB 9) with a plurality of mounting locations (sockets) for the imaging devices 20.
- a support surface e.g., a PCB 9
- the imaging devices 20 have been arranged in a linear array of columns, with adjacent columns being displaced in the column direction. This way the small inactive space between imaging devices 20 will be covered when the imaging support 22 moves in a direction perpendicular to the column axis as described in patent application PCT/EP95/02056. In practice the mounting locations will be closer than illustrated, schematically, in Figure 2.
- all the imaging devices 20 are provided with an aperture for suction and only one common vacuum pipe is needed per imaging support 22 as shown in Figure 3.
- a valve 12 controls the vacuum condition which is monitored from a gauge 14.
- a vacuum container 13 acts as a vacuum buffer to further enhance the vacuum condition when needed.
- the vacuum pump 15 can be located remotely so that it does not cause any disturbance by its presence or as a result of noise.
- an imaging surface of 30cm by 30cm (about 600 imaging devices of the type described in patent application PCT EP95/02056) will be needed.
- the 600 imaging devices will be mounted on a printed circuit board 9 of the imaging support 22.
- one aperture 8 is provided for each imaging device 20. All the apertures are connected to a common vacuum pipe for simultaneously sucking all the imaging devices 20 into position. The vacuum condition is easily monitored with a gauge 14 or pressure threshold sensor and additional air can be sucked out via the buffer container 13. Once imaging devices 20 have been sucked in, the vacuum pipe may be removed from vacuum switch 12 since the gaskets 6 are air-tight.
- FIG. 4A is a schematic cross-sectional view of an imaging device 24 similar to that of Figure IA.
- Figure 4B is a schematic cross-sectional view of part of the alternative imaging support 26.
- Figure 4C is a schematic cross-sectional view of the imaging device 24 located on the alternative imaging support 26.
- Figure 4D is a schematic plan view of the alternative imaging support 26.
- an air-tight gasket 16 is provided at the surface of each of the contacts 17 of the imaging support 26.
- the gaskets 16 are made of a flexible impervious sealing material which is electrically conductive. Any suitable material can be used which is either conductive in itself, or made conductive, for example by impregnating it with conductive material in a suitable manner as will be apparent to one skilled in the art.
- Each gasket 16 surrounds the respective aperture 18 and is also connected to the corresponding lines or wires 19 on the imaging support 26.
- the apertures 18 can be connected to a common vacuum pipe via a common valve, or via separate valves, etc, as required.
- the Figure 4 embodiment differs from the Figure 1 embodiment in that a separate gasket is provided for each contact, rather than each imaging device.
- the use of the individual conducting gaskets 16 which are directly connected to the imaging support lines ensures good contact of each and every bump connector 5 on the imaging device to the corresponding female connector 17 on the imaging support 26.
- removable mounting may be achieved without the use of vacuum, for example by clips, socket arrangements, magnets etc.
- Figure 5 shows another embodiment of the invention. In this embodiment suction is not required for mounting the imaging device tiles to the master plane.
- Figure 5A is a cross-sectional view of the master plane support 9 with an insulating layer 29 and conductive rubber rings in holes in the insulating layer.
- Figure 5B is a cross-sectional view illustrating an imaging device over an imaging device location.
- Figure 5C provides a view of the underside and a cross-sectional view of an imaging device mount (e.g., a PCB) 4.
- Figure 5D is a cross sectional view of an imaging device secured at an imaging device location by engagement of a nut over a screw of the imaging device.
- Each contact between the imaging device mount 4 and the master plane 9 is ensured by a separate conductive rubber ring 16. These are placed in appropriate holes of an electrically insulating support plane 29, which is aligned and glued on top of the master plane 9.
- the holes in the conductive rubber rings are not necessary in this case as no air suction is used. However, they are still useful for aiding alignment of the tile.
- Alternatives to the conductive rubber rings 16, such as conductive polymers or metal springs, may be used.
- a screw 31 is glued into a hole 34 in the imaging device mount 4. This screw is pushed through the hole 32 in the master plane and secured by the nut 33. The nut is tightened to press the metal balls 5 of the imaging device mount 4 against the rubber rings 16 which in turn are pressed against the metal pads of the master plane ensuring good electrical contact.
- This embodiment is particularly suitable for providing an imaging area comprising a plurality of easily removable semiconductor pixel imaging devices as described in PCT/EP95/02056, or other types of pixel semiconductor imaging devices.
- This embodiment can also be used in all of the applications described above.
- This embodiment has the advantage that it is not necessary to provide a vacuum for the mounting of the imaging devices, with a resulting reduction in cost and ease of use.
- By means of the screws and nuts it is also possible individually to adjust the mounting force for each imaging device to ensure good alignment and good electrical contact using flexible contact elements such as the conductive rubber rings. It will be appreciated that the number of imaging devices may vary widely depending on the application.
- the imaging support is for such applications may be configured accordingly.
- hundreds of imaging devices may be needed (these could either be mounted in a single imaging support, or in groups on more than the imaging support).
- wing nuts can be used to aid tightening and subsequent release of nuts.
- the nuts could be provided with an elongate form on the screws, and the holes in the master plane could be in the form of slits, so that the elongate nuts could be inserted through the slots and then tightened so that the elongate nut engages with the rear surface of the master plane.
- an acceptable range of rotary adjustment could be provided.
- a rotatably mounted pin could be provided on the rear of the mount for the imaging device, which pin is provided with at least two perpendicular projections to be passed through an equivalently shaped key hole in the master plane, the pin then being turned after insertion through the keyhole so that the projections engage behind master plane to secure the imaging device.
- FIG. 6 Another embodiment is illustrated in Figure 6.
- the four schematic views 6A, 6B, 6C and 6D correspond generally to those of Figure 5, except that in this case the mount 5 of the imaging device is provided with a threaded hole 35 into which a screw 36, which is rotatably mounted at an imaging device location on the master plane 9, could be engaged to secure the imaging device to the master plane.
- the screw 36 could be inserted through a hole 32 in the master plane 9 at the imaging device location when it is desired to attach an imaging device at that location.
- the imaging device support will have an array of upstanding screws 36 to which the imaging devices with threaded holes can be attached.
- Imaging devices can be properly packaged and supplied separately from the rest of the imaging system and any average technical employee can handle them and relocate them from one plane to another.
- the use of the relatively expensive pixel semiconductor imaging devices is optimized by requiring less imaging devices than are needed simultaneously to equip all systems.
- maintenance becomes cost effective.
- a defective imaging device can be substituted rather than the whole imaging surface (mosaic) and this can be done easily by an average technical employee.
- the invention can be used for any radiation type in any radiation imaging field where areas larger than a few square mm are needed, ln particular it finds application in medical diagnosis imaging (for example, computer tomography) with X-rays and gamma-rays, in biotechnology imaging with beta-rays (where isotopes are used as labels on the samples to be imaged) and in industrial applications for non-destructive testing and product quality control.
- medical diagnosis imaging for example, computer tomography
- X-rays and gamma-rays in biotechnology imaging with beta-rays (where isotopes are used as labels on the samples to be imaged)
- industrial applications for non-destructive testing and product quality control There has, therefore been described a mosaic imaging system and a method for assembling a mosaic imaging plane made of individual imaging devices (tiles). The method comprises the following steps:
- imaging support master plane
- imaging support contacts for each contact on the imaging device, the imaging support contacts being connected to appropriate control, supply and readout signal lines for connection to external circuitry, the imaging support contacts preferably also serving to aid alignment of the imaging device by co-operation with the imaging device contacts; 3) positioning each one of the imaging devices on the master plane with the corresponding contacts being aligned;
- each of the individual imaging devices removably securing the position of each of the individual imaging devices to the imaging support in a non-destructive manner such that the imaging devices may subsequently be removed individually without damage.
- the removable securing is achieved in a non-destructive way such that an imaging devices may be secured to and removed from an imaging support a plurality of times leaving the imaging device, the board(s) and corresponding contacts in substantially the same state.
- the removable mounting may be achieved using alternative techniques including:
- imaging mosaic planes may comprise other semi-conductor devices such as CCD's, photodiodes, amorphous Silicon and Selenium with thin film transitors, and other non-semiconductor pixel devices, such as removable Nal scintillating crystals (such as Nal crystals) or small scale wire gas chambers.
- other contact configurations e.g., pins or plates
- the features of individual embodiments could be combined, for example through the use of suction and screws.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Electromagnetism (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Measurement Of Radiation (AREA)
- Traffic Control Systems (AREA)
- Closed-Circuit Television Systems (AREA)
- Electric Connection Of Electric Components To Printed Circuits (AREA)
- Structures For Mounting Electric Components On Printed Circuit Boards (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
- Air Bags (AREA)
- Vehicle Body Suspensions (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
Description
Claims
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP50977397A JP3912797B2 (en) | 1995-08-29 | 1996-08-08 | Imaging system and method thereof |
EP96929241A EP0847596B1 (en) | 1995-08-29 | 1996-08-08 | Imaging system and method |
DE69631426T DE69631426T2 (en) | 1995-08-29 | 1996-08-08 | PICTURE GENERATION SYSTEM AND METHOD |
IL12340996A IL123409A (en) | 1995-08-29 | 1996-08-08 | Imaging system and method |
AU68725/96A AU698261B2 (en) | 1995-08-29 | 1996-08-08 | Imaging system and method |
AT96929241T ATE258718T1 (en) | 1995-08-29 | 1996-08-08 | IMAGE PRODUCTION SYSTEM AND METHOD |
NO980490A NO980490L (en) | 1995-08-29 | 1998-02-04 | Imaging device and method |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB9517608.7 | 1995-08-29 | ||
GB9517608A GB2305095A (en) | 1995-08-29 | 1995-08-29 | Imaging system with support for imaging devices |
GB9605978A GB2305096B (en) | 1995-08-29 | 1996-03-21 | Imaging system and method |
GB9605978.7 | 1996-03-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1997008751A1 true WO1997008751A1 (en) | 1997-03-06 |
Family
ID=26307642
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP1996/003559 WO1997008751A1 (en) | 1995-08-29 | 1996-08-08 | Imaging system and method |
Country Status (11)
Country | Link |
---|---|
US (2) | US5955733A (en) |
EP (1) | EP0847596B1 (en) |
JP (1) | JP3912797B2 (en) |
CN (1) | CN1139124C (en) |
AT (1) | ATE258718T1 (en) |
AU (1) | AU698261B2 (en) |
DE (1) | DE69631426T2 (en) |
GB (1) | GB2305096B (en) |
IL (1) | IL123409A (en) |
NO (1) | NO980490L (en) |
WO (1) | WO1997008751A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7742560B2 (en) | 2005-05-02 | 2010-06-22 | Oy Ajat Ltd. | Radiation imaging device with irregular rectangular shape and extraoral dental imaging system therefrom |
WO2010116218A1 (en) * | 2009-04-07 | 2010-10-14 | Oy Ajat, Ltd. | A method for manufacturing a radiation imaging panel comprising imaging tiles |
US9332950B2 (en) | 2005-05-02 | 2016-05-10 | Oy Ajat Ltd. | Radiation imaging device with irregular rectangular shape and extraoral dental imaging system therefrom |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999045411A1 (en) * | 1997-02-18 | 1999-09-10 | Simage Oy | Semiconductor imaging device |
GB2332608B (en) * | 1997-12-18 | 2000-09-06 | Simage Oy | Modular imaging apparatus |
GB2332562B (en) * | 1997-12-18 | 2000-01-12 | Simage Oy | Hybrid semiconductor imaging device |
GB2374726A (en) * | 2001-04-20 | 2002-10-23 | Kingpak Tech Inc | Stacked structure of an image sensor having image sensing chip located above integrated circuit |
US7189971B2 (en) * | 2002-02-15 | 2007-03-13 | Oy Ajat Ltd | Radiation imaging device and system |
US7223981B1 (en) | 2002-12-04 | 2007-05-29 | Aguila Technologies Inc. | Gamma ray detector modules |
US7492857B2 (en) * | 2002-12-19 | 2009-02-17 | General Electric Company | Self-aligning scintillator-collimator assembly |
US7177387B2 (en) * | 2003-11-29 | 2007-02-13 | General Electric Company | Self-aligning scintillator-collimator assembly |
US7190759B2 (en) * | 2002-12-19 | 2007-03-13 | General Electric Company | Support structure for Z-extensible CT detectors and methods of making same |
JP2007506961A (en) | 2003-09-24 | 2007-03-22 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Alignment method and apparatus for pixelated detector |
US7235790B2 (en) * | 2004-02-17 | 2007-06-26 | Ge Medical Systems Global Technology Company, Llc | Methods and apparatus for radiation detection |
DE102004044901A1 (en) * | 2004-09-14 | 2006-03-30 | Siemens Ag | A detector comprising a detector housing and a plurality of detector modules and computed tomography apparatus having such a detector |
JP4440749B2 (en) * | 2004-11-02 | 2010-03-24 | ローム株式会社 | Image reading device |
DE102004057533B4 (en) | 2004-11-29 | 2007-12-27 | Siemens Ag | Detector with multiple detector bars and computed tomography device with such a detector |
JP5128052B2 (en) * | 2005-04-22 | 2013-01-23 | 浜松ホトニクス株式会社 | Photodetection unit, photodetection device, and X-ray tomographic imaging apparatus |
CN100559584C (en) * | 2005-05-02 | 2009-11-11 | 日本先进系统株式会社 | Circuit substrate with semiconductor package, semiconductor subassembly, electric circuitry packages and carrying spigots of socket function |
CN101685072B (en) * | 2008-09-28 | 2011-05-11 | 同方威视技术股份有限公司 | Detector module used for radiative imaging and radiative imaging detecting system with same |
US7795573B2 (en) * | 2008-11-17 | 2010-09-14 | Teledyne Scientific & Imaging, Llc | Detector with mounting hub to isolate temperature induced strain and method of fabricating the same |
CN102246057A (en) * | 2008-12-10 | 2011-11-16 | 皇家飞利浦电子股份有限公司 | Autonomous detector module as a building block for scalable pet and spect systems |
US9158369B2 (en) * | 2010-10-12 | 2015-10-13 | Tactonic Technologies, Llc | Sensors having a connecting frame and method for composite sensors |
JP2014150087A (en) * | 2013-01-31 | 2014-08-21 | Kyocer Slc Technologies Corp | Wiring board |
JP2015053418A (en) * | 2013-09-09 | 2015-03-19 | 株式会社東芝 | Semiconductor manufacturing apparatus |
DE102015115812A1 (en) * | 2015-09-18 | 2017-03-23 | Osram Opto Semiconductors Gmbh | Component and method for producing a device |
JP6776024B2 (en) * | 2016-06-30 | 2020-10-28 | キヤノンメディカルシステムズ株式会社 | X-ray detector, X-ray detector module, support member and X-ray CT device |
US9953909B2 (en) * | 2016-07-18 | 2018-04-24 | Intel Corporation | Ball grid array (BGA) with anchoring pins |
CN112951864B (en) * | 2021-04-29 | 2022-08-02 | 中国科学院长春光学精密机械与物理研究所 | Narrow-edge flexible packaging structure of image sensor for splicing and packaging method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3765431A (en) * | 1969-10-16 | 1973-10-16 | Western Electric Co | Apparatus for handling and maintaining the orientation of a matrix of miniature electrical devices |
EP0281026A2 (en) * | 1987-03-02 | 1988-09-07 | Honeywell Inc. | High density optical mosaic detector and method for its fabrication |
US4891522A (en) * | 1988-10-11 | 1990-01-02 | Microtronics Associates, Inc. | Modular multi-element high energy particle detector |
EP0442514A2 (en) * | 1990-02-16 | 1991-08-21 | Mitsubishi Denki Kabushiki Kaisha | Photodetector fixing mechanism |
US5391881A (en) * | 1992-06-30 | 1995-02-21 | Commissariat A L'energie Atomique | Ionizing radiation imaging device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2840965C2 (en) * | 1978-09-20 | 1982-11-11 | Siemens AG, 1000 Berlin und 8000 München | Radiation diagnostic device for the generation of slice images of a subject |
US5065245A (en) * | 1990-04-30 | 1991-11-12 | Eastman Kodak Company | Modular image sensor array |
US5436458A (en) * | 1993-12-06 | 1995-07-25 | Minnesota Mining And Manufacturing Company | Solid state radiation detection panel having tiled photosensitive detectors arranged to minimize edge effects between tiles |
US5635718A (en) * | 1996-01-16 | 1997-06-03 | Minnesota Mining And Manufacturing Company | Multi-module radiation detecting device and fabrication method |
-
1996
- 1996-03-21 GB GB9605978A patent/GB2305096B/en not_active Expired - Fee Related
- 1996-08-08 EP EP96929241A patent/EP0847596B1/en not_active Expired - Lifetime
- 1996-08-08 WO PCT/EP1996/003559 patent/WO1997008751A1/en active IP Right Grant
- 1996-08-08 AU AU68725/96A patent/AU698261B2/en not_active Ceased
- 1996-08-08 IL IL12340996A patent/IL123409A/en not_active IP Right Cessation
- 1996-08-08 DE DE69631426T patent/DE69631426T2/en not_active Expired - Lifetime
- 1996-08-08 AT AT96929241T patent/ATE258718T1/en not_active IP Right Cessation
- 1996-08-08 JP JP50977397A patent/JP3912797B2/en not_active Expired - Lifetime
- 1996-08-08 CN CNB961966424A patent/CN1139124C/en not_active Expired - Lifetime
- 1996-08-12 US US08/695,508 patent/US5955733A/en not_active Expired - Lifetime
-
1997
- 1997-11-19 US US08/974,390 patent/US6163028A/en not_active Expired - Lifetime
-
1998
- 1998-02-04 NO NO980490A patent/NO980490L/en not_active Application Discontinuation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3765431A (en) * | 1969-10-16 | 1973-10-16 | Western Electric Co | Apparatus for handling and maintaining the orientation of a matrix of miniature electrical devices |
EP0281026A2 (en) * | 1987-03-02 | 1988-09-07 | Honeywell Inc. | High density optical mosaic detector and method for its fabrication |
US4891522A (en) * | 1988-10-11 | 1990-01-02 | Microtronics Associates, Inc. | Modular multi-element high energy particle detector |
EP0442514A2 (en) * | 1990-02-16 | 1991-08-21 | Mitsubishi Denki Kabushiki Kaisha | Photodetector fixing mechanism |
US5391881A (en) * | 1992-06-30 | 1995-02-21 | Commissariat A L'energie Atomique | Ionizing radiation imaging device |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7742560B2 (en) | 2005-05-02 | 2010-06-22 | Oy Ajat Ltd. | Radiation imaging device with irregular rectangular shape and extraoral dental imaging system therefrom |
US9332950B2 (en) | 2005-05-02 | 2016-05-10 | Oy Ajat Ltd. | Radiation imaging device with irregular rectangular shape and extraoral dental imaging system therefrom |
EP2902808A1 (en) | 2007-06-25 | 2015-08-05 | OY AJAT Ltd. | Radiation imaging device comprising array of Cd(Zn)Te detectors |
EP3206051A1 (en) | 2007-06-25 | 2017-08-16 | Oy AJAT Ltd. | Radiation imaging device with irregular rectangular shape and extraoral dental imaging system therefrom |
WO2010116218A1 (en) * | 2009-04-07 | 2010-10-14 | Oy Ajat, Ltd. | A method for manufacturing a radiation imaging panel comprising imaging tiles |
US8117741B2 (en) | 2009-04-07 | 2012-02-21 | Oy Ajat Ltd | Method for manufacturing a radiation imaging panel comprising imaging tiles |
US8850697B2 (en) | 2009-04-07 | 2014-10-07 | Oy Ajat Ltd | Method for manufacturing a radiation imaging panel comprising imaging tiles |
Also Published As
Publication number | Publication date |
---|---|
NO980490L (en) | 1998-04-28 |
EP0847596A1 (en) | 1998-06-17 |
GB2305096A (en) | 1997-03-26 |
IL123409A (en) | 2001-11-25 |
ATE258718T1 (en) | 2004-02-15 |
EP0847596B1 (en) | 2004-01-28 |
IL123409A0 (en) | 1998-09-24 |
CN1194725A (en) | 1998-09-30 |
GB9605978D0 (en) | 1996-05-22 |
AU6872596A (en) | 1997-03-19 |
JP2001507862A (en) | 2001-06-12 |
DE69631426D1 (en) | 2004-03-04 |
GB2305096B (en) | 1997-09-10 |
US5955733A (en) | 1999-09-21 |
AU698261B2 (en) | 1998-10-29 |
CN1139124C (en) | 2004-02-18 |
US6163028A (en) | 2000-12-19 |
DE69631426T2 (en) | 2005-01-27 |
JP3912797B2 (en) | 2007-05-09 |
NO980490D0 (en) | 1998-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU698261B2 (en) | Imaging system and method | |
EP0910918B1 (en) | Imaging apparatus having a large sensing area | |
JP4852193B2 (en) | Modular imaging device | |
US7117588B2 (en) | Method for assembling tiled detectors for ionizing radiation based image detection | |
US20060011852A1 (en) | Radiation detector head | |
KR19990077326A (en) | Multi-module radiation detection device and manufacturing method thereof | |
US11474050B2 (en) | Radiation detector module with insulating shield | |
US11067707B2 (en) | Four-side buttable radiation detector unit and method of making thereof | |
US20240313028A1 (en) | Module and methods of assembly for large area flat panel detectors | |
JP2005106692A (en) | Semiconductor radiation detector, and radiation imaging device | |
US7289336B2 (en) | Electronic packaging and method of making the same | |
GB2305095A (en) | Imaging system with support for imaging devices | |
US20070029495A1 (en) | Alignment method and apparatus for pixilated detector | |
EP4220235A1 (en) | Radiation detector unit with three-side buttable read-out integrated circuit | |
US20230243985A1 (en) | Radiation detector unit with three-side buttable read-out integrated circuit and method of making thereof | |
CA3236859A1 (en) | Interposer for semiconductor-based single photon emission computed tomography detector | |
CN1225219A (en) | Imaging apparatus having a large sensing area |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 96196642.4 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AT AU AZ BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN AM AZ BY KG KZ MD RU TJ TM |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
ENP | Entry into the national phase |
Ref document number: 1997 509773 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1996929241 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1996929241 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
NENP | Non-entry into the national phase |
Ref country code: CA |
|
WWG | Wipo information: grant in national office |
Ref document number: 1996929241 Country of ref document: EP |