WO1997007323A1 - Gas and steam turbine plant and process for operating such a plant, also waste heat steam generator for a gas and steam turbine plant - Google Patents

Gas and steam turbine plant and process for operating such a plant, also waste heat steam generator for a gas and steam turbine plant Download PDF

Info

Publication number
WO1997007323A1
WO1997007323A1 PCT/DE1996/001475 DE9601475W WO9707323A1 WO 1997007323 A1 WO1997007323 A1 WO 1997007323A1 DE 9601475 W DE9601475 W DE 9601475W WO 9707323 A1 WO9707323 A1 WO 9707323A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
gas
pressure stage
steam turbine
turbine
Prior art date
Application number
PCT/DE1996/001475
Other languages
German (de)
French (fr)
Inventor
Hermann Brückner
Erich Schmid
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO1997007323A1 publication Critical patent/WO1997007323A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Definitions

  • the invention relates to a gas and steam turbine system with a waste heat generator connected downstream of the gas turbine on the flue gas side, the heating surfaces of which are connected into the water-steam cycle of the steam turbine having a number of pressure stages. It is further directed to a method for operating such a system and to a heat recovery steam generator for such a system.
  • the heat contained in the relaxed working fluid from the gas turbine is used to generate steam for the steam turbine.
  • the heat transfer takes place in a heat recovery steam generator downstream of the gas turbine, in which heating surfaces are arranged in the form of tubes or tube bundles. These in turn are connected to the water-steam cycle of the steam turbine.
  • the water-steam cycle comprises several, for example three, pressure stages, each pressure stage having a preheating and evaporator heating surface.
  • a gas and steam turbine system with three pressure stages is known from EP 0 436 536.
  • this known system in order to achieve a high degree of efficiency, it is provided that medium pressure steam generated in the waste heat steam generator is mixed with high pressure steam released to medium pressure in a high pressure part of the steam turbine and this mixture after overheating in an intermediate superheater arranged in the steam generator to the medium pressure part the steam turbine.
  • a particularly high overall efficiency of, for example, about 38% is achieved with a gas turbine designed for a turbine inlet temperature of 1200 ° C.
  • the invention has for its object to provide an alternative gas and steam turbine system with a particularly high thermodynamic efficiency.
  • the gas and steam turbine plant should have a particularly suitable waste heat steam generator.
  • a particularly suitable method for operating such a gas and steam turbine plant is to be specified.
  • a first pressure stage of the steam turbine is connected on the steam outlet side via an intermediate superheater arranged in the waste heat steam generator to the steam inlet of a second pressure stage of the steam turbine, and in that a superheater arranged in the waste heat steam generator the output side is connected to the outlet of the reheater and to the steam inlet of the second pressure stage, the superheater and the reheater being arranged in the heat recovery steam generator in the region of the same flue gas temperature.
  • the heating surfaces of the waste heat steam generator are advantageously designed in such a way that steam operating from the superheater and steam leaving the intermediate superheater have the same temperature during operation of the. Mixing of two steam flows with different temperatures and thus cooling of a hot steam flow by mixing with a colder steam flow is therefore avoided. Thus, an exergy loss due to mixing, ie a loss of the technically usable portion of energy through mixing, no longer occurs, so that the efficiency of the system is increased. In addition, thermal stresses of the pipe system at the mixing point are avoided, which reduces the maintenance effort for such a system. In addition, temperature imbalances in the heating surface system and the resulting distribution or stability problems in the water-steam cycle of the system no longer occur.
  • the interconnected outputs of the reheater and the superheater are expediently connected to the steam inlet of the second pressure stage via an additional reheater arranged in the waste heat steam generator .
  • the second pressure stage is advantageously a medium pressure stage or a low pressure stage.
  • the stated object is achieved according to the invention with an intermediate superheater which can be connected on the inlet side to the steam outlet of a first pressure stage of a steam turbine, which is connected on the outlet side to the outlet of a superheater and to the steam inlet of a second pressure stage the steam turbine can be connected.
  • the stated object is achieved according to the invention in that, in a first pressure stage of the steam turbine, the steam is overheated and one The second pressure stage of the superheated live steam supplied to the steam turbine is mixed, the superheated steam and the superheated live steam being at the same temperature.
  • the advantages achieved by the invention are, in particular, that two steam flows to be mixed can be adjusted to the same temperature in a particularly simple and effective manner. On the one hand, this leads to an increase in the overall efficiency of the system and, on the other hand, to avoid thermal stresses and similar problems due to high temperature differences.
  • the arrangement of the superheater and the intermediate superheater in the waste heat steam generator in the region of the same flue gas temperature also allows temperature adjustment between the steam stream leaving the superheater and the steam stream leaving the intermediate superheater to be particularly effectively possible.
  • FIG. 1 shows schematically a gas and steam turbine plant.
  • the gas and steam turbine system 1 comprises a gas turbine system la and a steam turbine system lb.
  • the gas turbine system 1 a comprises a gas turbine 2 with a coupled air compressor 4 and a combustion chamber 6 connected upstream of the gas turbine 2 and which is connected to a fresh air line 8 of the air compressor 4.
  • a fuel line 10 opens into the combustion chamber 6 of the gas turbine 2.
  • the gas turbine 2 and the air compressor 4 as well as a generator 12 sit on a common shaft 14.
  • the steam turbine system 1b comprises a steam turbine 20 with a coupled generator 22 and, in a water-steam circuit 24, a capacitor 26 connected downstream of the steam turbine 20 and a waste heat steam generator 30.
  • the steam turbine 20 consists of a first pressure stage or a high pressure part 20a and a second pressure stage or a medium pressure part 20b as well as a third pressure stage or a low-pressure part 20c, which drive the generator 22 via a common shaft 32.
  • An exhaust pipe 34 is connected to an input 30a of the heat recovery steam generator 30 in order to supply working medium AM ′ or flue gas relaxed in the gas turbine 2 to the heat recovery steam generator 30.
  • the relaxed working medium AM 1 from the gas turbine 2 leaves the heat recovery steam generator 30 via its outlet 30b in the direction of a chimney (not shown).
  • the waste heat steam generator 30 comprises a high-pressure preheater or economizer 36, which is connected to a high-pressure drum 42 via a line 40 that can be shut off with a valve 38.
  • the high-pressure drum 42 is connected to a high-pressure evaporator 44 arranged in the steam generator 30 to form a water-steam circulation 46.
  • the high-pressure drum 42 is connected to a high-pressure superheater 48 which is arranged in the steam generator 30 and is connected on the output side to the steam inlet 49 of the high-pressure part 20a of the steam turbine 20.
  • the steam outlet 50 of the high-pressure part 20a of the steam turbine 20 is connected via a steam line 52 ("cold CLOSE") to an intermediate superheater 54, the outlet 56 of which is via a
  • Steam line 58 is connected to the steam inlet 60 of the medium pressure part 20b of the steam turbine 20. Its steam outlet 62 is connected via an overflow line 64 to the steam inlet 66 of the low-pressure part 20c of the steam turbine 20.
  • the steam outlet 68 of the low-pressure part 20c of the steam turbine 20 is connected to the condenser 26 via a steam line 70. This is connected to the economizer 36 via a feed water line 72.
  • the economizer 36 is connected to a first expansion tank or via a partial power line 74 which branches off the line 40 and into which a motor-driven valve 76 is connected Medium pressure relaxer 78 connected.
  • a steam line 80 into which a first superheater 82 arranged inside the steam generator 30 in the area of the economizer 35 and a inside the steam generator 30 in the area of the intermediate superheater 54 are connected, connects a steam-side outlet 86 of the first expansion valve ⁇ container 78 with a mixing point 88 provided on the output side of the intermediate superheater 54 and connected to the outlet 87 of the second superheater 84.
  • the first relaxation tank 78 is connected to a second relaxation tank or low-pressure expansion device 90.
  • a water-side outlet 92 of the first expansion tank 78 is connected to the second relaxation tank 90 via a hot water line 94, into which a motor-driven valve 96 is connected.
  • the second relaxation tank 90 is connected to the feed water line 72 via a water line 98.
  • the second expansion tank 90 is also connected to the low-pressure part 20c via a steam line 100 connected to the overflow line 64
  • the water-steam circuit 24 shown in the figure is thus constructed from three pressure stages. However, it can also be built up from only two or even more than three pressure stages.
  • the evaporation in the medium and in the low pressure stage of the water-steam circuit 24 takes place in the embodiment shown in the figure in the relaxation tanks 78 and 90.
  • the medium and / or the low pressure stage of the water Steam circuit 24 can also be designed in a form analogous to the water-steam circuit 46 of the high-pressure stage.
  • the steam generator 30 comprises the heating surfaces necessary for this, such as a medium pressure preheater, a medium pressure evaporator, a low pressure preheater and / or a low pressure evaporator.
  • the combustion chamber 6 is injected with liquid or gaseous fuel B, e.g. B. natural gas or heating oil, zuge ⁇ leads.
  • the fuel B is burned to produce a working medium AM for the gas turbine 2 in the combustion chamber 6 with compressed fresh air L from the air compressor 4.
  • the hot and high-pressure flue gas or working medium AM produced during the combustion is expanded in the gas turbine 2 and drives it and the air compressor 4 ⁇ as well as the generator 12.
  • the relaxed work equipment AM 'emerging from the turbine 2 is introduced into the waste heat steam generator 30 via the exhaust line 34 and used there in the area of the first pressure stage to generate high-pressure steam for the steam turbine 20.
  • the flue gas flow and the water-steam circuit 24 are linked to one another in countercurrent within the heat recovery steam generator 30.
  • the partially released steam emerging from the high-pressure part 20a of the steam turbine 20 is overheated again in the intermediate superheater 54 and supplied to the medium-pressure part 20b of the steam turbine 20 in the superheated state.
  • the steam which has been expanded to low pressure in the medium pressure part 20b is completely relaxed in the low pressure part 20c and is fed to the condenser 26 via the steam line 70.
  • the feed water or condensate K is conveyed via a condensate pump 102 and a feed water pump 104 into the economizer 36 of the first or high-pressure stage and preheated there. A part of the preheated condensate K 'flows into the high-pressure drum 42.
  • the partial flow t] _ of the preheated condensate K' is released, the steam or medium pressure steam being under medium pressure and under medium pressure or boiling water.
  • the medium-pressure water is supplied to the second relaxation tank 90 via the hot water line 94, where it is transformed into steam or low-pressure steam under low pressure and water under low pressure.
  • the low-pressure steam is fed to the low-pressure part 20c of the steam turbine 20 via the steam line 100.
  • the low-pressure water from the second expansion tank 90 is mixed with the condensate K to be preheated via the water line 98.
  • This admixture takes place via a heat exchanger 106.
  • This is connected on the one hand into the water line 98 and on the other hand into the condensate line 72.
  • the water which cools within the heat exchanger 106 from the second expansion tank 90 is fed to the condensate K flowing out of the condenser 26 on the suction side of the feed water pump 104 coupled to the condensate pump 102 via a motor 108.
  • the condensate pump 102 and the feed water pump 104 form a combined unit together with the motor 108 common to them, but a separate arrangement is also possible.
  • a motor-operated valve 110 is connected into the water line 98 between the heat exchanger 106 and the feed water pump 104 - on the suction side thereof.
  • Another valve or minimum quantity valve 112 is connected between the feed water pump 104 - on its pressure side - and the heat exchanger 106 in the feed water line 72.
  • the low-pressure steam is overheated by throttling the low-pressure steam generated within the second expansion tank 90.
  • a throttle device 120 is provided in the steam line 100.
  • the low-pressure steam can also be overheated in a suitable heat exchanger - for example with hot water from the relaxation tank 78 - or in a suitable heating surface arranged in the steam generator 30.
  • the medium pressure steam generated in the first release tank 78 is fed to the first superheater 82 via the steam line 80 and overheated there in a first stage.
  • the ⁇ o superheated medium-pressure steam is overheated again in a second stage in the second superheater 84 and in the process brought to a temperature which approximates the temperature of the steam D leaving the intermediate superheater 54.
  • the steam D expanded in the high-pressure stage 20a of the steam turbine 20 and reheated in the intermediate superheater 54 is mixed in the mixing point 88 with the superheated live steam F "to be fed to the medium pressure part 20b of the steam turbine 20.
  • a further intermediate superheater arranged within the steam generator 30 can be connected into the steam line 58 - in the flow direction of the steam D or the fresh steam F "after the mill 88 - in a system which, in addition to the reheater 54, also has one or has a plurality of further intermediate superheaters, several or all intermediate superheaters can each have a superheater analogous to the second superheater 84 such that steam D leaving the respective intermediate superheater and admixed fresh steam F leaving the respective superheater when the system is in operation "have the same temperature.

Abstract

A gas and steam turbine plant (1) has a waste heat steam generator (30) that is connected downstream of the gas turbine (2) on the flue gas side and that has its heating surfaces connected into the water-steam circuit (24) of the steam turbine (20), which has a number of pressure stages (20a, 20b, 20c). To achieve a very high degree of thermodynamic effectiveness in such a plant, the invention provides that a first pressure stage (20a) of the steam turbine (20) is connected on the steam output side to the steam inlet (60) of a second pressure stage (60) through a resuperheater (54) in the waste heat steam generator (30), a superheater (84) in the waste heat steam generator (30) being connected on the output side to the output (56) of the resuperheater (54) and to the steam inlet (60) of the second pressure stage (20b). In the operation of such a plant (1), steam released in the first pressure stage (20a) of the steam turbine (20) is resuperheated and mixed with the live steam (F') superheated in the superheater (84) for conveyance to the second pressure stage (20b) of the steam turbine (20). The resuperheated steam (D) and the superheated live steam (F') have the same temperature.

Description

Beschreibungdescription
Gas- und Dampfturbinenanlage und Verfahren zum Betreiben ei¬ ner derartigen Anlage sowie Abhitzedampferzeuger für eine Gas- und DampfturbinenanlageGas and steam turbine plant and method for operating such a plant as well as waste heat steam generator for a gas and steam turbine plant
Die Erfindung betrifft eine Gas- und Dampfturbinenanlage mit einem der Gasturbine rauchgasseitig nachgeschalteten Abhitze¬ dampferzeuger, dessen Heizflächen in den Wasser-Dampf-Kreis- lauf der eine Anzahl von Druckstufen aufweisenden Dampftur¬ bine geschaltet sind. Sie richtet sich weiter auf ein Verfah¬ ren zum Betreiben einer derartigen Anlage und auf einen Ab¬ hitzedampferzeuger für eine derartige Anlage.The invention relates to a gas and steam turbine system with a waste heat generator connected downstream of the gas turbine on the flue gas side, the heating surfaces of which are connected into the water-steam cycle of the steam turbine having a number of pressure stages. It is further directed to a method for operating such a system and to a heat recovery steam generator for such a system.
Bei einer Gas- und Dampfturbinenanlage wird die im entspann¬ ten Arbeitsmittel aus der Gasturbine enthaltene Wärme zur Er¬ zeugung von Dampf für die Dampfturbine genutzt. Die Wärme¬ übertragung erfolgt in einem der Gasturbine nachgeschalteten Abhitzedampferzeuger, in dem Heizflächen in Form von Rohren oder Rohrbündeln angeordnet sind. Dieεe wiederum sind in den Wasser-Dampf-Kreislauf der Dampfturbine geschaltet. Der Was¬ ser-Dampf-Kreislauf umfaßt mehrere, zum Beispiel drei, Druck¬ stufen, wobei jede Druckstufe eine Vorwärm- und Verdampfer- Heizfläche aufweist.In a gas and steam turbine system, the heat contained in the relaxed working fluid from the gas turbine is used to generate steam for the steam turbine. The heat transfer takes place in a heat recovery steam generator downstream of the gas turbine, in which heating surfaces are arranged in the form of tubes or tube bundles. These in turn are connected to the water-steam cycle of the steam turbine. The water-steam cycle comprises several, for example three, pressure stages, each pressure stage having a preheating and evaporator heating surface.
Aus der Druckschrift EP 0 436 536 ist eine Gas- und Dampftur¬ binenanlage mit drei Druckstufen bekannt. Bei dieser bekann¬ ten Anlage ist zur Erzielung eines hohen Wirkungsgrads vorge¬ sehen, im Abhitzedampferzeuger erzeugten Mitteldruckdampf mit in einem Hochdruckteil der Dampfturbine auf Mitteldruck ent¬ spannten Hochdruckdampf zu vermischen und dieses Gemisch nach einer Überhitzung in einem im Dampferzeuger angeordneten Zwi¬ schenüberhitzer dem Mitteldruckteil der Dampfturbine zuzufüh¬ ren. Mit diesem sogenannten Drei-Druck-ZÜ-Prozeß wird ein be- sonders hoher Gesamtwirkungsgrad von beispielsweise etwa 38 % bei einer für eine Turbineneintrittstemperatur von 1200 °C ausgelegte Gasturbine erreicht. Der Erfindung liegt die Aufgabe zugrunde, eine alternative Gas- und Dampfturbinenanlage mit einem besonders hohen ther- modynamisehen Wirkungsgrad anzugeben. Des weiteren soll die Gas- und Dampfturbinenanlage einen besonders geeigneten Ab- hitzedampferzeuger aufweisen. Ferner soll ein besonders ge¬ eignetes Verfahren zum Betreiben einer derartigen Gas- und Dampfturbinenanlage angegeben werden.A gas and steam turbine system with three pressure stages is known from EP 0 436 536. In this known system, in order to achieve a high degree of efficiency, it is provided that medium pressure steam generated in the waste heat steam generator is mixed with high pressure steam released to medium pressure in a high pressure part of the steam turbine and this mixture after overheating in an intermediate superheater arranged in the steam generator to the medium pressure part the steam turbine. With this so-called three-pressure ZÜ process, a particularly high overall efficiency of, for example, about 38% is achieved with a gas turbine designed for a turbine inlet temperature of 1200 ° C. The invention has for its object to provide an alternative gas and steam turbine system with a particularly high thermodynamic efficiency. Furthermore, the gas and steam turbine plant should have a particularly suitable waste heat steam generator. Furthermore, a particularly suitable method for operating such a gas and steam turbine plant is to be specified.
Bezüglich der Gas- und Dampfturbinenanlage wird die genannte Aufgabe erfindungsgemäß gelöst, indem eine erste Druckstufe der Dampfturbine dampfausgangsseitig über einen im Abhitze¬ dampferzeuger angeordneten Zwischenüberhitzer mit dem Dampf- einlaß einer zweiten Druckstufe der Dampfturbine verbunden ist, und indem ein im Abhitzedampferzeuger angeordneter Über- hitzer ausgangsseitig an den Ausgang des Zwischenüberhitzers und an den Dampfeinlaß der zweiten Druckstufe angeschlossen ist, wobei der Überhitzer und der Zwischenüberhitzer im Ab¬ hitzedampferzeuger im Bereich gleicher Rauchgastemperatur an¬ geordnet sind.With regard to the gas and steam turbine system, the stated object is achieved according to the invention in that a first pressure stage of the steam turbine is connected on the steam outlet side via an intermediate superheater arranged in the waste heat steam generator to the steam inlet of a second pressure stage of the steam turbine, and in that a superheater arranged in the waste heat steam generator the output side is connected to the outlet of the reheater and to the steam inlet of the second pressure stage, the superheater and the reheater being arranged in the heat recovery steam generator in the region of the same flue gas temperature.
Die Heizflächen des Abhitzedampferzeugers sind dabei vorteil¬ hafterweise derart ausgelegt, daß beim Betrieb der .?i-αlage den Überhitzer verlassender Dampf und den Zwischenüberhitzer ver¬ lassender Dampf die gleiche Temperatur aufweisen. Daher ist eine Vermischung zweier Dampfströme mit unterschiedlicher Temperatur und somit eine Abkühlung eines heißeren DampfStroms durch Vermischung mit einem kälteren Dampfström vermieden. Somit tritt ein Exergie-Verlust durch Mischung, das heißt ein Verlust an technisch nutzbarem Anteil von Ener- gie durch Mischung, nicht mehr auf, so daß der Wirkungsgrad der Anlage gesteigert ist. Darüber hinaus sind Wärmespannun¬ gen des Rohrsystems an der Mischstelle vermieden, was den Wartungsaufwand für eine derartige Anlage herabsetzt. Außer¬ dem treten Temperatur-Schieflagen im Heizflächensystem und daraus resultierende Verteilungs- oder Stabilitätsprobleme im Wasser-Dampf-Kreislauf der Anlage nicht mehr auf. Um eine weitere Überhitzung der vermischten Dampfströme zu ermöglichen und somit den Wirkungsgrad der Anlage noch weiter zu steigern, sind zweckmäßigerweise die miteinander verbunde¬ nen Ausgänge des Zwischenüberhitzers und des Überhitzers über einen zusätzlichen im Abhitzedampferzeuger angeordneten wei¬ teren Zwischenüberhitzer an den Dampfeinlaß der zweiten Druckstufe angeschlossen. Die zweite Druckstufe ist dabei vorteilhafterweise eine Mitteldruckstufe oder eine Nieder¬ druckstufe.The heating surfaces of the waste heat steam generator are advantageously designed in such a way that steam operating from the superheater and steam leaving the intermediate superheater have the same temperature during operation of the. Mixing of two steam flows with different temperatures and thus cooling of a hot steam flow by mixing with a colder steam flow is therefore avoided. Thus, an exergy loss due to mixing, ie a loss of the technically usable portion of energy through mixing, no longer occurs, so that the efficiency of the system is increased. In addition, thermal stresses of the pipe system at the mixing point are avoided, which reduces the maintenance effort for such a system. In addition, temperature imbalances in the heating surface system and the resulting distribution or stability problems in the water-steam cycle of the system no longer occur. In order to enable the mixed steam streams to overheat further and thus to further increase the efficiency of the system, the interconnected outputs of the reheater and the superheater are expediently connected to the steam inlet of the second pressure stage via an additional reheater arranged in the waste heat steam generator . The second pressure stage is advantageously a medium pressure stage or a low pressure stage.
Bezüglich eines für eine derartige Anlage besonders geeigne¬ ten Abhitzedampferzeugers wird die genannte Aufgabe erfin¬ dungsgemäß gelöst mit einem eingangsseitig an den Dampfauslaß einer ersten Druckstufe einer Dampfturbine anschließbaren Zwischenüberhitzer, der ausgangsseitig an den Ausgang eines Überhitzers angeschlossen und an den Dampfeinlaß einer zwei¬ ten Druckstufe der Dampfturbine anschließbar ist.With regard to a heat recovery steam generator particularly suitable for such a system, the stated object is achieved according to the invention with an intermediate superheater which can be connected on the inlet side to the steam outlet of a first pressure stage of a steam turbine, which is connected on the outlet side to the outlet of a superheater and to the steam inlet of a second pressure stage the steam turbine can be connected.
Bezüglich des Verfahrens zum Betreiben einer Gas- und Dampf- turbinenanlage, bei dem im Abgas der Gasturbine enthaltene Wärme zur Erzeugung von Dampf für die Dampfturbine genutzt wird, wird die genannte Aufgabe erfindungsgemäß gelöst, indem in einer ersten Druckstufe der Dampfturbine entspannter Dampf zwischenüberhitzt und einer zweiten Druckstufe der Dampftur- bine zugeführtem überhitztem Frischdampf zugemischt wird, wo¬ bei der zwischenüberhitzte Dampf und der überhitzte Frisch¬ dampf die gleiche Temperatur aufweisen.With regard to the method for operating a gas and steam turbine system, in which the heat contained in the exhaust gas of the gas turbine is used to generate steam for the steam turbine, the stated object is achieved according to the invention in that, in a first pressure stage of the steam turbine, the steam is overheated and one The second pressure stage of the superheated live steam supplied to the steam turbine is mixed, the superheated steam and the superheated live steam being at the same temperature.
Die mit der Erfindung erzielten Vorteile bestehen insbeson- dere darin, daß zwei zu vermischende Dampfströme besonders einfach und effektiv auf die gleiche Temperatur einstellbar sind. Dieε führt einerseits zu einer Erhöhung des Gesamtwir¬ kungsgrades der Anlage und andererseitε zu einer Vermeidung von Wärmespannungen und ähnlichen Problemen aufgrund hoher Temperaturdifferenzen. Durch die Trennung der Heizfläche für die Überhitzung des aus dem Wasser-Dampf-Kreislaufε der An¬ lage entnommenen, der zweiten Druckstufe der Dampfturbine zu- zuführenden Dampfes von der Heizfläche für die Zwischenüber- hitzung des in der ersten Druckstufe der Dampfturbine teil- entspannten Dampfes ist es zudem möglich, an besondere Rand¬ bedingungen angepaßte Systemdrücke oder Austrittstemperaturen zu realisieren. Somit ist eine derartige Anlage, insbesondere auch bei der Auskopplung von Prozeßdampf, besonders flexibel. Zudem ist eine gegenseitige Beeinflussung der Druckstufen des Wasser-Dampf-Kreislaufs der Anlage verringert, was die Stabi¬ lität und somit die Zuverlässigkeit der Anlage erhöht. Durch die Anordnung des Überhitzers und des Zwischenüberhitzers im Abhitzedampferzeuger im Bereich gleicher Rauchgastemperatur ist zudem eine Temperaturangleichung zwischen dem den Über¬ hitzer verlassenden Dampfstrom und dem den Zwischenüberhitzer verlassenden Dampfström besonders effektiv möglich.The advantages achieved by the invention are, in particular, that two steam flows to be mixed can be adjusted to the same temperature in a particularly simple and effective manner. On the one hand, this leads to an increase in the overall efficiency of the system and, on the other hand, to avoid thermal stresses and similar problems due to high temperature differences. By separating the heating surface for the overheating of the second pressure stage of the steam turbine taken from the water-steam circuit of the plant. supplying steam from the heating surface for the intermediate overheating of the steam partially expanded in the first pressure stage of the steam turbine, it is also possible to realize system pressures or outlet temperatures adapted to special boundary conditions. Such a system is therefore particularly flexible, particularly when coupling out process steam. In addition, a mutual influence of the pressure levels of the water-steam cycle of the system is reduced, which increases the stability and thus the reliability of the system. The arrangement of the superheater and the intermediate superheater in the waste heat steam generator in the region of the same flue gas temperature also allows temperature adjustment between the steam stream leaving the superheater and the steam stream leaving the intermediate superheater to be particularly effectively possible.
Ein Ausführungsbeispiel der Erfindung wird anhand einer Zeichnung näher erläutert. Darin zeigt die Figur schematisch eine Gas- und Dampfturbinenanlage.An embodiment of the invention is explained in more detail with reference to a drawing. The figure shows schematically a gas and steam turbine plant.
Die Gas- und Dampfturbinenanlage 1 gemäß der Figur umfaßt eine Gasturbinenanlage la und eine Dampfturbinenanlage lb. Die Gasturbinenanlage la umfaßt eine Gasturbine 2 mit ange¬ koppeltem Luftverdichter 4 und eine der Gasturbine 2 vorge¬ schaltete Brennkammer 6, die an eine Frischluftleitung 8 des Luftverdichters 4 angeschlossen ist. In die Brennkammer 6 der Gasturbine 2 mündet eine Brennstoffleitung 10. Die Gasturbine 2 und der Luftverdichter 4 sowie ein Generator 12 sitzen auf einer gemeinsamen Welle 14.The gas and steam turbine system 1 according to the figure comprises a gas turbine system la and a steam turbine system lb. The gas turbine system 1 a comprises a gas turbine 2 with a coupled air compressor 4 and a combustion chamber 6 connected upstream of the gas turbine 2 and which is connected to a fresh air line 8 of the air compressor 4. A fuel line 10 opens into the combustion chamber 6 of the gas turbine 2. The gas turbine 2 and the air compressor 4 as well as a generator 12 sit on a common shaft 14.
Die Dampfturbinenanlage lb umfaßt eine Dampfturbine 20 mit angekoppeltem Generator 22 und in einem Wasser-Dampf-Kreis¬ lauf 24 einen der Dampfturbine 20 nachgeschalteten Kondensa¬ tor 26 sowie einen Abhitzedampferzeuger 30.The steam turbine system 1b comprises a steam turbine 20 with a coupled generator 22 and, in a water-steam circuit 24, a capacitor 26 connected downstream of the steam turbine 20 and a waste heat steam generator 30.
Die Dampfturbine 20 besteht aus einer ersten Druckstufe oder einem Hochdruckteil 20a und einer zweiten Druckstufe oder ei¬ nem Mitteldruckteil 20b sowie einer dritten Druckstufe oder einem Niederdruckteil 20c, die über eine gemeinsame Welle 32 den Generator 22 antreiben.The steam turbine 20 consists of a first pressure stage or a high pressure part 20a and a second pressure stage or a medium pressure part 20b as well as a third pressure stage or a low-pressure part 20c, which drive the generator 22 via a common shaft 32.
Zum Zuführen von in der Gasturbine 2 entspanntem Arbeitsmit- tel AM' oder Rauchgas in den Abhitzedampferzeuger 30 ist eine Abgasleitung 34 an einen Eingang 30a des Abhitzedampferzeu¬ gers 30 angeschlosεen. Daε entεpannte Arbeitsmittel AM1 auε der Gaεturbine 2 verläßt den Abhitzedampferzeuger 30 über desεen Auεgang 30b in Richtung auf einen nicht dargeεtellten Kamin.An exhaust pipe 34 is connected to an input 30a of the heat recovery steam generator 30 in order to supply working medium AM ′ or flue gas relaxed in the gas turbine 2 to the heat recovery steam generator 30. The relaxed working medium AM 1 from the gas turbine 2 leaves the heat recovery steam generator 30 via its outlet 30b in the direction of a chimney (not shown).
Der Abhitzedampferzeuger 30 umfaßt in einer ersten Druckstufe oder Hochdruckstufe des Wasεer-Dampf-Kreiεlaufε 24 einen Hochdruck-Vorwärmer oder Economizer 36, der über eine mit ei- nem Ventil 38 abεperrbare Leitung 40 an eine Hochdruck-Trom¬ mel 42 angeschloεεen iεt. Die Hochdruck-Trommel 42 ist mit einem im Dampferzeuger 30 angeordneten Hochdruckverdampfer 44 zur Bildung eines Wasser-Dampf-Umlaufs 46 verbunden. Zum Ab¬ führen von Frischdampf F ist die Hochdruck-Trommel 42 an ei- nen im Dampferzeuger 30 angeordneten Hochdrucküberhitzer 48 angeschloεεen, der auεgangεεeitig mit dem Dampfeinlaß 49 deε Hochdruckteilε 20a der Dampfturbine 20 verbunden iεt. Der Dampfauεlaß 50 deε Hochdruckteils 20a der Dampfturbine 20 ist über eine Dampfleitung 52 ("kalte ZU") mit einem Zwischen- Überhitzer 54 verbunden, dessen Ausgang 56 über eineIn a first pressure stage or high-pressure stage of the water-steam circuit 24, the waste heat steam generator 30 comprises a high-pressure preheater or economizer 36, which is connected to a high-pressure drum 42 via a line 40 that can be shut off with a valve 38. The high-pressure drum 42 is connected to a high-pressure evaporator 44 arranged in the steam generator 30 to form a water-steam circulation 46. To discharge live steam F, the high-pressure drum 42 is connected to a high-pressure superheater 48 which is arranged in the steam generator 30 and is connected on the output side to the steam inlet 49 of the high-pressure part 20a of the steam turbine 20. The steam outlet 50 of the high-pressure part 20a of the steam turbine 20 is connected via a steam line 52 ("cold CLOSE") to an intermediate superheater 54, the outlet 56 of which is via a
Dampfleitung 58 an den Dampfeinlaß 60 des Mitteldruckteilε 20b der Dampfturbine 20 angeεchloεεen iεt. Deεεen Dampfauεlaß 62 iεt über eine Überεtrömleitung 64 mit dem Dampfeinlaß 66 deε Niederdruckteilε 20c der Dampfturbine 20 verbunden. Der Dampfauεlaß 68 deε Niederdruckteils 20c der Dampfturbine 20 ist über eine Dampfleitung 70 an den Kondensator 26 ange¬ εchloεsen. Dieεer iεt über eine Speiεewaεεerleitung 72 mit dem Economizer 36 verbunden.Steam line 58 is connected to the steam inlet 60 of the medium pressure part 20b of the steam turbine 20. Its steam outlet 62 is connected via an overflow line 64 to the steam inlet 66 of the low-pressure part 20c of the steam turbine 20. The steam outlet 68 of the low-pressure part 20c of the steam turbine 20 is connected to the condenser 26 via a steam line 70. This is connected to the economizer 36 via a feed water line 72.
Der Economizer 36 iεt über eine von der Leitung 40 abzwei¬ gende Teilεtromleitung 74, in die ein motorgetriebeneε Ventil 76 geεchaltet ist, an einen ersten Entspannungsbehälter oder Mitteldruckentspanner 78 angeschloεεen. Eine Dampfleitung 80, in die ein innerhalb deε Dampferzeugers 30 im Bereich deε Economizers 35 angeordneter erster Überhitzer 82 und ein in¬ nerhalb deε Dampferzeugers 30 im Bereich des Zwischenüberhit- zers 54 angeordneter zweiter Überhitzer 84 geschaltet sind, verbindet einen dampfseitigen Auεlaß 86 deε ersten Entspan¬ nungsbehälters 78 mit einer auf der Ausgangεseite des Zwi- εchenüberhitzerε 54 vorgeεehenen und an den Auεgang 87 deε zweiten Überhitzerε 84 angeεchloεsenen Mischstelle 88.The economizer 36 is connected to a first expansion tank or via a partial power line 74 which branches off the line 40 and into which a motor-driven valve 76 is connected Medium pressure relaxer 78 connected. A steam line 80, into which a first superheater 82 arranged inside the steam generator 30 in the area of the economizer 35 and a inside the steam generator 30 in the area of the intermediate superheater 54 are connected, connects a steam-side outlet 86 of the first expansion valve ¬ container 78 with a mixing point 88 provided on the output side of the intermediate superheater 54 and connected to the outlet 87 of the second superheater 84.
Der erste Entεpannungεbehälter 78 iεt mit einem zweiten Ent¬ spannungsbehälter oder Niederdruck-Entspanner 90 verbunden. Dazu ist ein waεεerεeitiger Auεlaß 92 deε ersten Entspan- nungεbehälterε 78 über eine Heißwaεεerleitung 94, in die ein motorgetriebenes Ventil 96 geschaltet ist, an den zweiten Entεpannungεbehälter 90 angeschlossen. Der zweite Entspan- nungεbehälter 90 iεt über eine Waεεerleitung 98 mit der Spei- εewaεεerleitung 72 verbunden. Der zweite Entspannungsbehälter 90 ist außerdem über eine an die Überströmleitung 64 ange- εchloεεene Dampfleitung 100 mit dem Niederdruckteil 20c derThe first relaxation tank 78 is connected to a second relaxation tank or low-pressure expansion device 90. For this purpose, a water-side outlet 92 of the first expansion tank 78 is connected to the second relaxation tank 90 via a hot water line 94, into which a motor-driven valve 96 is connected. The second relaxation tank 90 is connected to the feed water line 72 via a water line 98. The second expansion tank 90 is also connected to the low-pressure part 20c via a steam line 100 connected to the overflow line 64
Dampfturbine 20 verbunden.Steam turbine 20 connected.
Der in der Figur dargeεtellte Waεεer-Dampf-Kreiεlauf 24 ist somit auε drei Druckεtufen aufgebaut. Er kann aber auch auε lediglich zwei oder auch auε mehr alε drei Druckεtufen aufge¬ baut εein. Die Verdampfung in der Mittel- und in der Nieder¬ druckstufe des Wasser-Dampf-Kreislaufs 24 erfolgt bei dem in der Figur gezeigten Ausführungεbeiεpiel in den Entεpannungε- behältern 78 bzw. 90. Alternativ kann die Mittel- und/oder die Niederdruckεtufe deε Waεεer-Dampf-Kreiεlaufs 24 auch in einer dem Wasser-Dampf-Umlauf 46 der Hochdruckstufe analogen Form ausgebildet sein. In diesem Fall umfaßt der Dampferzeu¬ ger 30 die dafür notwendigen Heizflächen, wie beispielsweise einen Mitteldruckvorwärmer, einen Mitteldruckverdampfer, ei- nen Niederdruckvorwärmer und/oder einen Niederdruckverdamp¬ fer. Beim Betrieb der Gas- und Dampfturbinenanlage 1 wird der Brennkammer 6 über die Brennstoffleitung 10 flüεεiger oder gaεförmiger Brennstoff B, z. B. Erdgas oder Heizöl, zuge¬ führt. Der Brennεtoff B wird zur Erzeugung eines Arbeitsmit- tels AM für die Gaεturbine 2 in der Brennkammer 6 mit ver¬ dichteter Friεchluft L auε dem Luftverdichter 4 verbrannt. Daε bei der Verbrennung entstehende heiße und unter hohem Druck stehende Rauchgas oder Arbeitsmittel AM wird in der Gasturbine 2 entspannt und treibt dabei diese und den Luft- Verdichter 4 εowie den Generator 12 an. Daε auε der Gaεtur¬ bine 2 auεtretende entεpannte Arbeitsmittel AM' wird über die Abgaεleitung 34 in den Abhitzedampferzeuger 30 eingeleitet und dort im Bereich der erεten Druckstufe zur Erzeugung von Hochdruckdampf für die Dampfturbine 20 genutzt. Zu dieεem Zweck εind innerhalb des Abhitzedampferzeugers 30 der Rauch- gaεεtrom und der Wasser-Dampf-Kreislauf 24 im Gegenstrom mit¬ einander verknüpft.The water-steam circuit 24 shown in the figure is thus constructed from three pressure stages. However, it can also be built up from only two or even more than three pressure stages. The evaporation in the medium and in the low pressure stage of the water-steam circuit 24 takes place in the embodiment shown in the figure in the relaxation tanks 78 and 90. Alternatively, the medium and / or the low pressure stage of the water Steam circuit 24 can also be designed in a form analogous to the water-steam circuit 46 of the high-pressure stage. In this case, the steam generator 30 comprises the heating surfaces necessary for this, such as a medium pressure preheater, a medium pressure evaporator, a low pressure preheater and / or a low pressure evaporator. When the gas and steam turbine system 1 is in operation, the combustion chamber 6 is injected with liquid or gaseous fuel B, e.g. B. natural gas or heating oil, zuge¬ leads. The fuel B is burned to produce a working medium AM for the gas turbine 2 in the combustion chamber 6 with compressed fresh air L from the air compressor 4. The hot and high-pressure flue gas or working medium AM produced during the combustion is expanded in the gas turbine 2 and drives it and the air compressor 4 ε as well as the generator 12. The relaxed work equipment AM 'emerging from the turbine 2 is introduced into the waste heat steam generator 30 via the exhaust line 34 and used there in the area of the first pressure stage to generate high-pressure steam for the steam turbine 20. For this purpose, the flue gas flow and the water-steam circuit 24 are linked to one another in countercurrent within the heat recovery steam generator 30.
Der auε dem Hochdruckteil 20a der Dampfturbine 20 auεtretende teilweise entεpannte Dampf wird in dem Zwiεchenüberhitzer 54 erneut überhitzt und in überhitztem Zuεtand dem Mitteldruck¬ teil 20b der Dampfturbine 20 zugeführt. Der im Mitteldruck¬ teil 20b auf niedrigen Druck entspannte Dampf wird in dem Niederdruckteil 20c vollständig entspannt und über die Dampfleitung 70 dem Kondensator 26 zugeführt. Daε Speiεewaε- ser oder Kondensat K wird über eine Kondensatpumpe 102 und eine Speisewasεerpumpe 104 in den Economizer 36 der erεten oder Hochdruckεtufe gefördert und dort vorgewärmt. Ein Teil deε vorgewärmten Kondenεatε K' strömt in die Hochdruck-Trom- mel 42.The partially released steam emerging from the high-pressure part 20a of the steam turbine 20 is overheated again in the intermediate superheater 54 and supplied to the medium-pressure part 20b of the steam turbine 20 in the superheated state. The steam which has been expanded to low pressure in the medium pressure part 20b is completely relaxed in the low pressure part 20c and is fed to the condenser 26 via the steam line 70. The feed water or condensate K is conveyed via a condensate pump 102 and a feed water pump 104 into the economizer 36 of the first or high-pressure stage and preheated there. A part of the preheated condensate K 'flows into the high-pressure drum 42.
Ein weiterer Teilstrom t]_ deε vorgewärmten Kondensats K' strömt über die Teilstromleitung 74 in den ersten Entspan¬ nungsbehälter 78. Dort wird der Teilstrom t]_ des vorgewärmten Kondensatε K' entεpannt, wobei unter mittlerem Druck εtehen- der Dampf oder Mitteldruckdampf und unter mittlerem Druck εtehendeε Waεεer oder Siedewaεεer entεtehen. Daε Mitteldruckwaεεer wird über die Heißwaεεerleitung 94 dem zweiten Entεpannungεbehälter 90 zugeführt und dort in unter niedrigem Druck εtehenden Dampf oder Niederdruckdampf und un¬ ter niedrigem Druck εtehendeε Waεεer umgeformt. Der Nieder- druckdampf wird über die Dampfleitung 100 dem Niederdruckteil 20c der Dampfturbine 20 zugeführt. Daε Niederdruckwasser aus dem zweiten Entspannungsbehälter 90 wird über die Wasserlei¬ tung 98 dem vorzuwärmenden Kondensat K zugemischt. Diese Zu¬ mischung erfolgt über einen Wärmetauscher 106. Dieser iεt ei- nerseitε in die Waεserleitung 98 und andererseitε in die Kon- denεatleitung 72 geschaltet. Das innerhalb des Wärmetauscherε 106 sich abkühlende Wasser aus dem zweiten Entspannungεbehäl- ter 90 wird dem auε dem Kondenεator 26 abströmenden Kondenεat K auf der Saugεeite der mit der Kondenεatpumpe 102 über einen Motor 108 gekoppelten Speisewaεεerpumpe 104 zugeführt. Die Kondenεatpumpe 102 und die Speisewaεεerpumpe 104 bilden zu¬ sammen mit dem ihnen gemeinsamen Motor 108 eine kombinierte Einheit, es iεt aber auch eine getrennte Anordnung möglich. Zwiεchen dem Wärmetauεcher 106 und der Speisewasserpumpe 104 - auf deren Saugseite - ist in die Wasserleitung 98 ein mo¬ torbetriebenes Ventil 110 geschaltet. Ein weiteres Ventil oder Mindeεtmengenventil 112 iεt zwiεchen der Speiεewasser- pumpe 104 - auf deren Druckseite - und dem Wärmetauscher 106 in die Speisewasεerleitung 72 geεchaltet.A further partial flow t ] _ of the preheated condensate K 'flows via the partial flow line 74 into the first expansion tank 78. There, the partial flow t] _ of the preheated condensate K' is released, the steam or medium pressure steam being under medium pressure and under medium pressure or boiling water. The medium-pressure water is supplied to the second relaxation tank 90 via the hot water line 94, where it is transformed into steam or low-pressure steam under low pressure and water under low pressure. The low-pressure steam is fed to the low-pressure part 20c of the steam turbine 20 via the steam line 100. The low-pressure water from the second expansion tank 90 is mixed with the condensate K to be preheated via the water line 98. This admixture takes place via a heat exchanger 106. This is connected on the one hand into the water line 98 and on the other hand into the condensate line 72. The water which cools within the heat exchanger 106 from the second expansion tank 90 is fed to the condensate K flowing out of the condenser 26 on the suction side of the feed water pump 104 coupled to the condensate pump 102 via a motor 108. The condensate pump 102 and the feed water pump 104 form a combined unit together with the motor 108 common to them, but a separate arrangement is also possible. A motor-operated valve 110 is connected into the water line 98 between the heat exchanger 106 and the feed water pump 104 - on the suction side thereof. Another valve or minimum quantity valve 112 is connected between the feed water pump 104 - on its pressure side - and the heat exchanger 106 in the feed water line 72.
Die Überhitzung deε Niederdruckdampfes erfolgt durch Drosse¬ lung des innerhalb des zweiten Entspannungεbehälterε 90 ent¬ stehenden Niederdruckdampfes. Dazu ist in der Dampfleitung 100 eine Drosselvorrichtung 120 vorgeεehen. Alternativ kann die Überhitzung deε Niederdruckdampfeε aber auch in einem ge¬ eigneten Wärmetauεcher - beiεpielεweiεe mit Heißwaεεer auε dem Entεpannungsbehälter 78 - oder in einer geeigneten, im Dampferzeuger 30 angeordneten Heizfläche erfolgen.The low-pressure steam is overheated by throttling the low-pressure steam generated within the second expansion tank 90. For this purpose, a throttle device 120 is provided in the steam line 100. Alternatively, the low-pressure steam can also be overheated in a suitable heat exchanger - for example with hot water from the relaxation tank 78 - or in a suitable heating surface arranged in the steam generator 30.
Der im erεten Entεpannungsbehälter 78 entstehende Mittel¬ druckdampf wird über die Dampfleitung 80 dem ersten Überhit¬ zer 82 zugeführt und dort in einer ersten Stufe überhitzt. Der εo überhitzte Mitteldruckdampf wird im zweiten Überhitzer 84 in einer zweiten Stufe erneut überhitzt und dabei auf eine Temperatur gebracht, die die Temperatur des den Zwiεchenüber- hitzer 54 verlassenden Dampfes D annähert. Der in der Hoch- druckεtufe 20a der Dampfturbine 20 entspannte und im Zwi- εchenüberhitzer 54 zwiεchenüberhitzte Dampf D wird in der Mischεtelle 88 dem dem Mitteldruckteil 20b der Dampfturbine 20 zuzuführenden überhitzten Frischdampf F" zugemiεcht. Durch die Angleichung der Temperaturen des Dampfes D und deε Frischdampfes F" werden dabei Exergie-Verluεte durch Miεchung von Dampf unterεchiedlicher Temperaturen vermieden.The medium pressure steam generated in the first release tank 78 is fed to the first superheater 82 via the steam line 80 and overheated there in a first stage. The εo superheated medium-pressure steam is overheated again in a second stage in the second superheater 84 and in the process brought to a temperature which approximates the temperature of the steam D leaving the intermediate superheater 54. The steam D expanded in the high-pressure stage 20a of the steam turbine 20 and reheated in the intermediate superheater 54 is mixed in the mixing point 88 with the superheated live steam F "to be fed to the medium pressure part 20b of the steam turbine 20. By equalizing the temperatures of the steam D and deε In this case, exergy losses are avoided by mixing steam at different temperatures.
In die Dampfleitung 58 kann - in Strömungsrichtung des Damp¬ fes D oder des Frischdampfeε F" geεehen nach der Miεchεtelle 88 - ein weiterer, innerhalb deε Dampferzeugerε 30 angeordne¬ ter Zwiεchenüberhitzer geεchaltet sein. Bei einer Anlage, die zusätzlich zu dem Zwischenüberhitzer 54 noch einen oder meh¬ rere weitere Zwiεchenüberhitzer aufweist, kann mehreren oder allen Zwischenüberhitzern jeweils ein dem zweiten Überhitzer 84 analoger Überhitzer derart zugeεchaltet εein, daß bei ei¬ nem Betrieb der Anlage den jeweiligen Zwiεchenüberhitzer ver¬ lassender Dampf D und diesem zuzumischender den jeweiligen Überhitzer verlassender Frischdampf F" die gleiche Temperatur aufweiεen. A further intermediate superheater arranged within the steam generator 30 can be connected into the steam line 58 - in the flow direction of the steam D or the fresh steam F "after the mill 88 - in a system which, in addition to the reheater 54, also has one or has a plurality of further intermediate superheaters, several or all intermediate superheaters can each have a superheater analogous to the second superheater 84 such that steam D leaving the respective intermediate superheater and admixed fresh steam F leaving the respective superheater when the system is in operation "have the same temperature.

Claims

Patentanεprüche Claims
1. Gaε- und Dampfturbinenanlage mit einem der Gaεturbine (2) rauchgaεεeitig nachgeschalteten Abhitzedampferzeuger (30) , dessen Heizflächen in den Wasser-Dampf-Kreislauf (24) der eine Anzahl von Druckstufen (20a, 20b, 20c) aufweisenden Dampfturbine (20) geεchaltet εind, wobei eine erεte Druck¬ εtufe (20a) der Dampfturbine (20) dampfauεgangεεeitig über einen im Abhitzedampferzeuger (30) angeordneten Zwischenüber- hitzer (54) mit dem Dampfeinlaß (60) einer zweiten Druckεtufe (20b) der Dampfturbine (20) verbunden iεt, wobei ein im Ab¬ hitzedampferzeuger (30) angeordneter Überhitzer (84) aus- gangsseitig an den Auεgang (56) deε Zwischenüberhitzers (54) und an den Dampfeinlaß (60) der zweiten Druckstufe (20b) an- geεchloεεen iεt, und wobei der Überhitzer (84) und der Zwi¬ εchenüberhitzer (54) im Abhitzedampferzeuger (30) im Bereich gleicher Rauchgaεtemperatur angeordnet εind.1. Gas and steam turbine system with a waste gas steam generator (30) connected downstream of the gas turbine (2) on the smoke gas side, the heating surfaces of which are switched into the water-steam circuit (24) of the steam turbine (20) having a number of pressure stages (20a, 20b, 20c) A first pressure stage (20a) of the steam turbine (20) on the steam outlet side is connected to the steam inlet (60) of a second pressure stage (20b) of the steam turbine (20) via an intermediate superheater (54) arranged in the waste heat steam generator (30) , a superheater (84) arranged in the heat recovery steam generator (30) being connected on the outlet side to the outlet (56) of the reheater (54) and to the steam inlet (60) of the second pressure stage (20b), and the Superheater (84) and the intermediate superheater (54) in the waste heat steam generator (30) are arranged in the region of the same smoke gas temperature.
2. Anlage nach Anεpruch 1, d a d u r c h g e k e n n z e i c h n e t , daß die Heiz¬ flächen (54, 84) deε Abhitzedampferzeugerε (30) derart auεge- legt εind, daß bei Betrieb der Anlage (1) den Zwischenüber¬ hitzer (54) verlaεεender Dampf (D) und den Überhitzer (84) verlaεεender Frischdampf (F") die gleiche Temperatur aufwei- εen.2. Plant according to claim 1, characterized in that the heating surfaces (54, 84) of the waste heat steam generator (30) are designed such that steam (D) leaving the reheater (54) during operation of the plant (1) and the live steam (F ") leaving the superheater (84) has the same temperature.
3. Anlage nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t , daß die mit¬ einander verbundenen Ausgänge (56, 87) des Zwischenüberhit- zerε (54) und deε Überhitzerε (84) über einen zuεätzlichen im Dampferzeuger (30) angeordneten Zwiεchenüberhitzer an den Dampfeinlaß (60) der zweiten Druckεtufe (20b) angeεchloεεen sind.3. Installation according to claim 1 or 2, characterized in that the interconnected outputs (56, 87) of the intermediate superheater (54) and deer superheater (84) via an additional intermediate superheater arranged in the steam generator (30) to the steam inlet ( 60) of the second pressure stage (20b) are connected.
4. Anlage nach einem der Ansprüche 1 biε 3, d a d u r c h g e k e n n z e i c h n e t , daß die zweite Druckεtufe (20b) eine Mitteldruckεtufe oder eine Nie- derdruckεtufe ist .4. Plant according to one of claims 1 biε 3, characterized in that the second pressure stage (20b) is a medium pressure stage or a low pressure stage.
5. Abhitzedampferzeuger für eine Gaε- und Dampfturbinenanlage mit einem eingangεεeitig an den Dampfauεgang (50) einer er¬ sten Druckεtufe (20a) einer Dampfturbine (20) anεchließbaren Zwischenüberhitzer (54) , der ausgangsseitig an den Ausgang (87) eines Überhitzers (84) angeεchloεεen und an den Dampf- einlaß (60) einer zweiten Druckstufe (20b) der Dampfturbine (20) anschließbar ist.5. Heat recovery steam generator for a gas and steam turbine system with an intermediate superheater (54) which can be connected on the inlet side to the steam outlet (50) of a first pressure stage (20a) of a steam turbine (20) and which on the outlet side to the outlet (87) of a superheater (84) connected and connected to the steam inlet (60) of a second pressure stage (20b) of the steam turbine (20).
6. Verfahren zum Betreiben einer Gas- und Dampfturbinenan¬ lage, bei dem im Abgas der Dampfturbine (2) enthaltene Wärme zur Erzeugung von Dampf für die Dampfturbine (20) genutzt wird, wobei in einer ersten Druckεtufe (20a) der Dampfturbine (20) entεpannter Dampf (D) zwiεchenüberhitzt und einer zwei¬ ten Druckstufe (20b) der Dampfturbine (20) zuzuführendem überhitztem Frischdampf (F") zugemischt wird, wobei der zwi¬ schenüberhitzte Dampf (D) und der überhitzte Friεchdampf (F") die gleiche Temperatur aufweiεen. 6. Method for operating a gas and steam turbine system, in which heat contained in the exhaust gas of the steam turbine (2) is used to generate steam for the steam turbine (20), the steam turbine (20) being in a first pressure stage (20a). expanded steam (D) is superheated and admixed with a superheated live steam (F ") to be fed to a second pressure stage (20b) of the steam turbine (20), the superheated steam (D) and superheated steam (F") being at the same temperature have.
PCT/DE1996/001475 1995-08-18 1996-08-07 Gas and steam turbine plant and process for operating such a plant, also waste heat steam generator for a gas and steam turbine plant WO1997007323A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19530491.8 1995-08-18
DE19530491 1995-08-18

Publications (1)

Publication Number Publication Date
WO1997007323A1 true WO1997007323A1 (en) 1997-02-27

Family

ID=7769852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1996/001475 WO1997007323A1 (en) 1995-08-18 1996-08-07 Gas and steam turbine plant and process for operating such a plant, also waste heat steam generator for a gas and steam turbine plant

Country Status (1)

Country Link
WO (1) WO1997007323A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1662096A1 (en) * 2004-11-30 2006-05-31 Siemens Aktiengesellschaft Method of operating a steam power plant, in particular of a steam power plant of a power station for the production of at least electricity and corresponding steam power plant
WO2013170916A1 (en) * 2012-05-14 2013-11-21 Siemens Aktiengesellschaft Method and device for cleaning waste process water
US9719676B2 (en) 2012-12-19 2017-08-01 Siemens Aktiengesellschaft Draining a power plant

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0062932A1 (en) * 1981-04-03 1982-10-20 BBC Aktiengesellschaft Brown, Boveri & Cie. Combined steam and gas turbine power plant
WO1992005344A1 (en) * 1990-09-21 1992-04-02 Siemens Aktiengesellschaft Combined gas and steam turbine plant
EP0515911A1 (en) * 1991-05-27 1992-12-02 Siemens Aktiengesellschaft Method of operating a gas and steam turbine plant and corresponding plant
DE19527537C1 (en) * 1995-07-27 1996-09-26 Siemens Ag Combined gas and steam turbine plant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0062932A1 (en) * 1981-04-03 1982-10-20 BBC Aktiengesellschaft Brown, Boveri & Cie. Combined steam and gas turbine power plant
WO1992005344A1 (en) * 1990-09-21 1992-04-02 Siemens Aktiengesellschaft Combined gas and steam turbine plant
EP0515911A1 (en) * 1991-05-27 1992-12-02 Siemens Aktiengesellschaft Method of operating a gas and steam turbine plant and corresponding plant
DE19527537C1 (en) * 1995-07-27 1996-09-26 Siemens Ag Combined gas and steam turbine plant

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1662096A1 (en) * 2004-11-30 2006-05-31 Siemens Aktiengesellschaft Method of operating a steam power plant, in particular of a steam power plant of a power station for the production of at least electricity and corresponding steam power plant
WO2006058845A1 (en) * 2004-11-30 2006-06-08 Siemens Aktiengesellschaft Method for the operation of a steam power station, especially a steam power station of a power plant used for generating at least electric power, and corresponding steam power station
JP2008522124A (en) * 2004-11-30 2008-06-26 シーメンス アクチエンゲゼルシヤフト Steam driving equipment, in particular, a method of operating steam driving equipment of a power plant for generating at least electric energy and the steam driving equipment
US7886538B2 (en) 2004-11-30 2011-02-15 Siemens Aktiengesellschaft Method for operating a steam power plant, particularly a steam power plant in a power plant for generating at least electrical energy, and corresponding steam power plant
CN101065559B (en) * 2004-11-30 2011-07-13 西门子公司 A steam power station operation method, and corresponding steam power device
JP4901749B2 (en) * 2004-11-30 2012-03-21 シーメンス アクチエンゲゼルシヤフト Steam driving equipment, in particular, a method of operating steam driving equipment of a power plant for generating at least electric energy and the steam driving equipment
WO2013170916A1 (en) * 2012-05-14 2013-11-21 Siemens Aktiengesellschaft Method and device for cleaning waste process water
US9719676B2 (en) 2012-12-19 2017-08-01 Siemens Aktiengesellschaft Draining a power plant
EP2923149B1 (en) * 2012-12-19 2020-02-05 Siemens Aktiengesellschaft Draining a power plant

Similar Documents

Publication Publication Date Title
EP0523467B1 (en) Method of operating a gas and steam turbines plant and plant for carrying out the method
EP0783619B1 (en) Method of operating a gas and steam turbine plant
EP1023526B1 (en) Gas and steam turbine installation and method for operating an installation of this type
EP0778397B1 (en) Method of operating a combined power plant with a waste heat boiler and a steam user
EP2368021B1 (en) Waste heat steam generator and method for improved operation of a waste heat steam generator
EP0898641B1 (en) Gas and steam turbine plant and method of operating the same
WO1992005344A1 (en) Combined gas and steam turbine plant
EP2187051A1 (en) Method and device for intermediate heating in a solar thermal power plant with indirect steam
EP0515911B1 (en) Method of operating a gas and steam turbine plant and corresponding plant
DE102018123663A1 (en) Fuel preheating system for a combustion gas turbine
EP0523466B1 (en) Method for operating a gas and steam turbine plant and plant for carrying out the method
EP0981681B1 (en) Gas and steam turbine system, and refrigeration of the coolant intended for the gas turbine in such a system
EP0840837B1 (en) Process for running a gas and steam turbine plant and plant run by this process
DE10155508C2 (en) Method and device for generating electrical energy
DE19627425A1 (en) Method of operating hybrid solar powered combined plant
DE19720789A1 (en) Steam generation procedure
EP0586425B1 (en) Energy generating process in a combined gas/steam generating power station
WO2012126727A1 (en) Method for quickly connecting a steam generator
WO1997007323A1 (en) Gas and steam turbine plant and process for operating such a plant, also waste heat steam generator for a gas and steam turbine plant
DE4409811C1 (en) Method of driving heat steam producer partic. for gas and steam turbine installation
EP2801759A1 (en) Steam bypass in a waste heat steam generator
WO2003006801A1 (en) Method for operating a steam power plant and steam power plant for carrying out said method
EP0926318A1 (en) Cooling system for the gas turbine of a combined power plant
DE19648642A1 (en) Steam circuit cleaning method for power station boiler and steam pipes

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR RU SG UA US VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase