WO1997007252A1 - Erzeugnis zur führung eines heissen, oxidierenden gases - Google Patents

Erzeugnis zur führung eines heissen, oxidierenden gases Download PDF

Info

Publication number
WO1997007252A1
WO1997007252A1 PCT/DE1996/001465 DE9601465W WO9707252A1 WO 1997007252 A1 WO1997007252 A1 WO 1997007252A1 DE 9601465 W DE9601465 W DE 9601465W WO 9707252 A1 WO9707252 A1 WO 9707252A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
alloy
aluminum
product according
gallium
Prior art date
Application number
PCT/DE1996/001465
Other languages
English (en)
French (fr)
Inventor
Norbert Czech
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19615012A external-priority patent/DE19615012A1/de
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to RU98104113/02A priority Critical patent/RU2149202C1/ru
Priority to EP96925650A priority patent/EP0845050B1/de
Priority to DE59602015T priority patent/DE59602015D1/de
Priority to JP9508815A priority patent/JPH11511203A/ja
Publication of WO1997007252A1 publication Critical patent/WO1997007252A1/de
Priority to US09/023,951 priority patent/US5939204A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/058Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades

Definitions

  • the invention relates to a product for guiding a hot, oxidizing gas with a surface to be acted upon by the gas, which is formed by an alloy which has the following essential parts by weight: chromium 10% to 40%, optionally further elements, including Aluminum 0% to 20%, silicon 0% to 10%, reactive elements from the group comprising yttrium, scandium and the elements of rare earths, the basis of at least one element from the group comprising iron, cobalt and nickel.
  • the invention relates in particular to a product for carrying a hot, oxidizing gas, the gas having properties which are usually present in a flue gas in a gas turbine;
  • the invention relates in particular to a component which serves to guide a flue gas in a gas turbine.
  • This component can be a rotor blade or guide blade, a heat shield or another thermally highly stressed component of a gas turbine.
  • Particular consideration is given to 1 such a component which, in operation, carries a flue gas with an average temperature of more than 1000 ° C., in particular between 1200 ° C. and 1400 ° C.
  • the alloy in the product is in particular an alloy of the MCrAlY type, where M stands for the base of the alloy and denotes at least one element from the group comprising iron, cobalt and nickel, and the alloy is further characterized by parts by weight of Chromium, aluminum and yttrium or an element equivalent to the yttrium, selected from a group comprising scandium and the elements of the rare earths.
  • the alloy of the MCrAlY type can also have proportions by weight of other elements; Rhenium may be mentioned as an example.
  • the invention also relates to a product with a substrate made of a nickel-based or cobalt-based superalloy, for example a gas turbine blade or another thermally and chemically highly stressed component of a gas turbine, which has a protective layer made of an alloy of the mentioned type.
  • a substrate made of a nickel-based or cobalt-based superalloy, for example a gas turbine blade or another thermally and chemically highly stressed component of a gas turbine, which has a protective layer made of an alloy of the mentioned type.
  • Substrates for thermally and chemically highly stressed products are preferably made from nickel or cobalt based super alloys, depending on the super alloy used, by casting or forging.
  • a technique known as "directional solidification" which provides a substrate with an anisotropic and / or spatially ordered structure, in particular a single-crystal structure.
  • the superalloys which are generally suitable are generally distinguished by excellent mechanical properties at the temperatures which occur during operation of the products produced therefrom; however, their chemical properties are sometimes such that they require special measures to protect against corrosion.
  • special protective layers for superalloys have been developed, in particular the protective layers made of MCrAlY alloys.
  • a protective layer with great resistance to corrosion and oxidation which is characterized in that it contains a proportion by weight of rhenium.
  • the protective layer has the individual weight fractions of the following elements: 1% to 20% rhenium, 22% to 50% chromium, 0% to 15% aluminum, the weight fractions of chromium and aluminum together at least 25% and at most 53% amount, 0.3% to 2% yttrium or an element equivalent to the yttrium and 0% to 3% silicon.
  • the basis of the alloy forming the protective layer tion consists of at least one of the elements iron, nickel and cobalt, as well as manufacturing-related impurities in the usual proportions by weight.
  • the protective layer can additionally contain parts by weight of the following elements: hafnium up to 5%, tungsten up to 12%, manganese up to 10%,
  • compositions for protective layers made of alloys of the MCrAlY type are described in EP 0 532 150 A1, nickel being used as the basis of the alloy.
  • nickel being used as the basis of the alloy.
  • the elements rhenium, hafnium, yttrium, silicon, zirconium, carbon and boron can be considered as additional elements.
  • the weight fraction of aluminum in such an alloy is between 6% and 12%.
  • US Pat. No. 4,451,299 describes protective layers of the type MCrAlY or MCrAlHf (Hf stands for hafnium, which can possibly replace yttrium), which have a weight fraction of aluminum between 7% and 20%.
  • Nickel, cobalt and iron or mixtures of at least two of these elements come into consideration as the basis for the alloys described.
  • up to 10% by weight of the elements platinum, rhenium, silicon, tantalum and manganese can be present.
  • the protective layers produced from the alloys should be suitable for a temperature range between 650 ° C and 820 ° C.
  • EP 0 207 874 A2 describes a composition for an alloy which contains the following weight fractions 7.5% to 11% aluminum, 9% to 16% chromium, 2% to 8% tantalum, 0% to 25% cobalt , and the basis of which is essentially nickel.
  • a protective layer applied to a substrate made of a correspondingly selected superalloy, should have a particularly high diffusion stability.
  • the diffusion stability should consist in that only a small diffusion zone is formed between the substrate and the protective layer applied thereon, in which elements from the substrate are mixed with elements from the protective layer. This ensures that at most an insignificant proportion of the aluminum diffuses out of the protective layer into the substrate, as a result of which the protective layer could lose the ability to form a film of aluminum oxide which is essential for the oxidation resistance on its surface.
  • the US Patents 4,321,310 and 4,321,311 each relate to a product in the form of a gas turbine component, consisting of a substrate made of a superalloy, a metallic protective layer of the McrAlY type applied thereon and a columnar crystalline ceramic layer applied thereon, which functions as a so-called thermal insulation layer.
  • This thermal insulation layer makes it possible to increase the thermal load-bearing capacity of the product, since the thermal insulation layer absorbs a high temperature difference and thus prevents the metallic parts of the product from being subjected to unacceptable loads.
  • the thermal insulation layer is bonded to the product via a thin film made of aluminum oxide, which is formed by surface oxidation of the metallic protective layer. This surface oxidation can be carried out before or after the application of the ceramic layer.
  • US Pat. No. 5,262,245 describes an attempt to modify a superalloy for a product of the type in question so that it is itself capable of forming a thin aluminum oxide film on its surface and thus the use of a metallic protective layer for anchoring a ceramic layer as described above.
  • US Pat. No. 3,134,670 relates to corrosion-protected alloys which mainly consist of iron, cobalt or nickel and which are characterized by an alloy of gallium.
  • the alloys are to be used for the manufacture of crowns, fillings and the like in dental technology, and for the manufacture of household items such as tableware.
  • the addition of gallium is said to improve the machinability and polishability of an alloy without impairing its hardness and toughness.
  • the addition of gallium should also improve the castability of the alloy and contribute to the formation of a fine-grained structure. There is no indication of the use of a described alloy in the context of a pronounced high-temperature application.
  • a protective oxide film on the surface of the protective layer is an important function for an alloy in connection with a product of the type described at the beginning. Since such an oxide film wears out continuously during operation, it needs constant renewal. This renewal takes place through the constant oxidation of aluminum, which diffuses from the protective layer to the surface, where it reacts with oxygen and thus supplements the film.
  • the maximum service life of a protective layer is accordingly measured by its aluminum content, since with the loss of aluminum the protective layer loses its ability to form the protective oxide film, and thus its protective effect. From the point of view of longevity, a high proportion by weight of aluminum in an alloy for a protective layer is desirable.
  • a high proportion by weight of aluminum causes the alloy to become brittle.
  • the aluminum is not stored in elementary form in the alloy, but rather, at least to a substantial extent, in the form of intermetallic compounds, in particular intermetallic compounds made of nickel and aluminum or cobalt and aluminum. nium.
  • the proportion by weight of aluminum in an alloy intended as a protective layer must remain limited to a certain extent. This measure is determined by many different factors, and admixtures of elements such as rhenium can increase the maximum possible weight fraction of aluminum in an alloy. As a general guideline for an upper limit, a weight percentage of aluminum of 15% can be viewed. Such a proportion by weight already requires very careful measures to match the proportion by weight of the other elements in the protective layer in order to keep their brittleness within reasonable limits.
  • a product for guiding a hot, oxidizing gas with a surface to be acted upon by the gas which is formed by an alloy and has the following weight fractions: Chrome 10% to 40%
  • the alloying of gallium into an alloy according to the invention can ensure a desired resistance to oxidation, the gallium completely or partially substituting for the aluminum or silicon that has always been required.
  • gallium is able to form a protective film of firmly adhering oxide on a surface of the alloy when this surface is exposed to oxygen, possibly at an elevated temperature. The close chemical relationship of gallium to aluminum and silicon is advantageous.
  • Gallium forms a very stable oxide (Ga2 ⁇ 3) with an enthalpy of formation of - 1815 kJ / mol.
  • Al oxide (AI2O3) and silicon dioxide (Si ⁇ 2) this enthalpy of formation is - 1675 and - 860 kJ / mol, respectively.
  • the melting point of gallium oxide at 1725 ° C is very high and comparable to the melting point of aluminum oxide at 2045 ° C and silicon oxide at 1713 ° C.
  • Gallium forms intermetallic compounds with nickel, in particular an NiGa intermetallic compound, which in all properties under consideration is similar to corresponding intermetallic compounds made of nickel and aluminum; if necessary, intermetallic compounds of nickel, gallium and aluminum, for example NiGaAl, can also be formed.
  • NiGaAl intermetallic compounds of nickel, gallium and aluminum
  • similar ratios can be expected because of the great chemical similarity of cobalt and nickel; comparable ratios can also be expected for systems with iron and gallium and possibly aluminum.
  • the gallium which is very volatile in its pure form, can be incorporated into the alloy as an intermetallic compound and thus be available at elevated temperatures to form a stable oxide on the surface of the alloy.
  • the proportion by weight of chromium in the alloy according to the invention is between 10% and 40%.
  • the proportion by weight of aluminum in the alloy which forms the surface of the product according to the invention is preferably up to 10%. This ensures in particular that that there can be no undesirable embrittlement of the alloy by the aluminum.
  • the proportion by weight of silicon in the alloy of the product according to the invention is preferably limited to a value of up to 2%.
  • the alloy of the product contains a proportion by weight of a reactive element from the
  • the reactive element is preferably yttrium and its weight fraction is up to 2%.
  • the base contains cobalt and / or nickel, but not iron. This is also known from the relevant practice with the MCrAlY alloys.
  • the alloy of the product also preferably contains a proportion by weight of aluminum, so that the gallium is effective in addition to the aluminum.
  • the proportion by weight of aluminum is preferably up to 10%, since the gallium at least partially supports and supplements the effect of the aluminum. In this sense, the proportion by weight of aluminum is preferably greater than the proportion by weight of gallium, the sum of the proportions by weight of aluminum or gallium preferably being up to 20%.
  • the weight fraction of gallium in the alloy is up to 15%.
  • the alloy up a proportion by weight of rhenium ⁇ points.
  • the weight fraction of rhenium is in particular up to 20%, preferably up to 15%.
  • Another further development of the product is characterized in that it has a surface which is covered by a film consisting at least partially of gallium oxide.
  • a particularly preferred embodiment of the product is characterized by an alloy with a basis of nickel and the following elements: cobalt 5% to 20%, chromium 20% to 30%, aluminum 5% to 12%, gallium 3% to 8 %, Yttrium 0.2% to 1% and rhenium 0% to 5%.
  • cobalt 5% to 20% cobalt 5% to 20%
  • chromium 20% to 30% aluminum 5% to 12%
  • gallium 3% to 8 % aluminum 5% to 12%
  • gallium 3% to 8 % gallium 3% to 8 %
  • Yttrium 0.2% to 1% Yttrium 0.2% to 1%
  • rhenium 0% to 5% The presence of production-related impurities in the usual proportions by weight is of course to be taken into account, and the proportion by weight of further elements and additives can also be considered.
  • a particularly preferred composition for the alloy just described is characterized by the following weight fractions: cobalt 8% to 16%, chromium 21% to 27%, aluminum 6% to 10%, gallium 4% to 6%, Yttrium 0.4% to 0.8% and rhenium 2% to 4%.
  • any of the alloys described can additionally have further elements, in particular: hafnium 0% to 5%, tungsten 0% to 12%, manganese 0% to 10%, tantalum 0% to 5%, titanium 0% to 5%, niobium 0% to 4% and zirconium 0% to
  • the alloy in the article is preferably one
  • Protective layer on a metallic substrate in particular on a substrate made of a nickel-based or cobalt-based superalloy.
  • the substrate is in particular a component for guiding a hot, oxidizing gas, particularly in a gas turbine.
  • a gas-permeable ceramic layer is preferably applied to the protective layer of the product, this ceramic layer in particular having a crystalline structure.
  • Such a ceramic layer is provided in particular as a heat insulation layer for a product in the form of a component for a gas turbine, the product being exposed to a temperature during its operation which substantially exceeds 1000 ° C. and, depending on the application, up to can approach the melting point of the substrate.
  • the ceramic layer preferably consists of a partially stabilized zirconium oxide, that is to say of a material which, apart from zirconium oxide, has another main component besides zirconium oxide, for example lanthanum oxide, cerium oxide, calcium oxide, yttrium oxide or magnesium oxide.
  • the addition of the other oxide stabilizes the crystalline structure of the zirconium oxide and prevents a phase transition in the zirconium oxide under thermal stress, during which the crystalline structure of the zirconium oxide changes significantly.
  • the ceramic layer preferably adheres to a film adhering to the surface and containing galium oxide, which is formed by oxidation of the alloy before or after the application of the ceramic layer.
  • a composition with a base of Nik ⁇ kei and additional elements in the following proportions by weight is preferred: 0.06% to 0.14% carbon, 10% to 20% chromium, 6% up to 11% cobalt, 1% to 3% molybdenum, 1% to 6, tungsten, 1% to 6% tantalum, 0% to 2% niobium, 1% to 6% aluminum, 1% to 6% titanium, 0% to 0.3% boron and 0% to 0.2% zirconium.
  • An alloy is applied to a substrate in the form of a thermally, mechanically and corrosively highly loaded component of a gas turbine, in particular a turbine blade for a gas turbine, which is operationally exposed to a hot flue gas at a temperature of 1300 ° C. or more applied as a protective layer, the application being carried out by vacuum plasma spraying with customary post-treatments.
  • the alloy is based on nickel and also has the following proportions by weight: 10% cobalt, 23% chromium, 8% aluminum, 5% gallium, 3% rhenium and 0.6% yttrium.
  • the substrate consists of a nickel-based superalloy of conventional type, such superalloys are known under the names IN 738 and PWA 1483.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • the protective layer when it is loaded with a flue gas which contains oxygen, will be covered with a film which at least partially consists of gallium oxide. It is also expected that the protective layer has a significantly improved ductility compared to a protective layer which does not contain gallium but does have a correspondingly increased proportion by weight of aluminum, but has a significantly longer service life. In this way, the protective layer containing gallium is significantly less susceptible to crack formation, which has an additional, very positive effect on its service life.
  • gallium is expected to result in a significantly longer service life for the alloy compared to the alloys of the prior art. If the thermal load on the product is very high during its operation, that of the surface formed of the alloy is coated with a ceramic layer, preferably a ceramic layer with a stem-crystalline structure and consisting of partially stabilized zirconium oxide. The layer is in particular bound to a film containing gallium oxide, formed by oxidation of the alloy, which adheres to the surface.

Abstract

Die Erfindung betrifft ein Erzeugnis zur Führung eines heißen, oxidierenden Gases, insbesondere eines Rauchgases in einer Gasturbine, mit einer von dem Gas zu beaufschlagenden Oberfläche. Diese ist gebildet von einer Legierung, welche an Gewichtsanteilen 10 % bis 40 % Chrom, 1 % bis 20 % Gallium, wahlweise weitere bestimmte Elemente in einer Grundlage umfassend zumindest ein Element aus der Gruppe enthaltend Eisen, Kobalt und Nickel aufweist. In der Legierung substituiert das Gallium Aluminium und/oder Silizium. Die Legierung ist insbesondere als Schutzschicht auf einem metallischen Substrat, insbesondere auf einem Substrat aus einer Superlegierung, aufgetragen, und ggf. bedeckt von einer gasdurchlässigen keramischen Schicht.

Description

Beschreibung
Erzeugnis zur Führung eines heißen, oxidierenden Gases
Die Erfindung betrifft ein Erzeugnis zur Führung eines hei¬ ßen, oxidierenden Gases mit einer von dem Gas zu beaufschla¬ genden Oberfläche, welche von einer Legierung gebildet ist, die folgende wesentliche Gewichtsanteile aufweist: Chrom 10 % bis 40 %, wahlweise weitere Elemente, darunter Aluminium 0 % bis 20 %, Silizium 0 % bis 10 %, reaktive Elemente aus der Gruppe umfassend Yttrium, Scandium und die Elemente der Sel¬ tenen Erden, Grundlage zumindest ein Element aus der Gruppe umfassend Eisen, Kobalt und Nickel.
Die Erfindung bezieht sich insbesondere auf ein Erzeugnis zur Führung eines heißen, oxidierenden Gases, wobei das Gas Ei¬ genschaften hat, die üblicherweise bei einem Rauchgas in ei¬ ner Gasturbine vorliegen; die Erfindung bezieht sich in die¬ sem Zusammenhang besonders auf ein Bauteil, welches in einer Gasturbine zur Führung eines Rauchgases dient. Dieses Bauteil kann eine Laufschaufei oder Leitschaufel, ein Hitzeschild oder ein anderes thermisch hochbelastetes Bauteil einer Gasturbine sein. Besonders in Betracht gezogen wird1 ein sol¬ ches Bauteil, welches betrieblich ein Rauchgas mit einer mittleren Temperatur von mehr als 1000 °C, insbesondere zwi¬ schen 1200 °C und 1400 °C führt.
Die Legierung in dem Erzeugnis ist insbesondere eine Legie¬ rung der Art MCrAlY, wobei M für die Grundlage der Legierung steht und zumindest ein Element aus der Gruppe umfassend Ei¬ sen, Kobalt und Nickel bezeichnet, und wobei die Legierung weiterhin gekennzeichnet ist durch Gewichtsanteile von Chrom, Aluminium und Yttrium oder einem dem Yttrium äquivalenten Element, ausgewählt aus einer Gruppe umfassend Skandium sowie die Elemente der Seltenen Erden. Auch kann die Legierung des Typs MCrAlY Gewichtsanteile weiterer Elemente aufweisen; als Beispiel genannt sei Rhenium. Die Erfindung bezieht sich auch auf ein Erzeugnis mit einem Substrat aus einer Nickel-Basis- oder Kobalt-Basis-Superle- gierung, beispielsweise eine Gasturbinenschaufel oder ein an¬ deres thermisch und chemisch hoch belastetes Bauteil einer Gasturbine, welches eine Schutzschicht aus einer Legierung des genannten Typs aufweist.
Substrate für thermisch und chemisch hoch belastete Erzeug¬ nisse, wie sie insbesondere in Gasturbinen verbaut sind, wer- den vorzugsweise aus Superlegierungen auf Nickel- oder Ko- baltbasis hergestellt , je nach verwendeter Superlegierung durch Gießen oder Schmieden. Beim Gießen eines derartigen Substrats kann unter Umständen zurückgegriffen werden auf eine Technik, die als "gerichtetes Erstarren" bekannt ist und ein Substrat mit anisotropen und/oder räumlich geordnetem Ge¬ füge, insbesondere einkristallinem Gefüge, liefert. Die all¬ gemein in Frage kommenden Superlegierungen zeichnen sich ge¬ nerell aus durch hervorragende mechanische Eigenschaften bei den während des Betriebs der daraus hergestellten Erzeugnisse auftretenden Temperaturen; ihre chemischen Eigenschaften sind mitunter jedoch derart, daß sie besondere Maßnahmen zum Schutz gegen Korrosion erfordern. Um diesen Schutz zu bieten, sind spezielle Schutzschichten für Superlegierungen entwik- kelt worden, insbesondere die Schutzschichten aus Legierungen des Typs MCrAlY.
Typische Schutzschichten solcher Art sind bekannt aus der
EP 0 412 397 AI. In dieser Schrift ist eine Schutzschicht mit großer Korrosions- und Oxidationsbeständigkeit beschrieben, die gekennzeichnet ist dadurch, daß sie einen Gewichtsanteil von Rhenium enthält. Die Schutzschicht weist im einzelnen Ge¬ wichtsanteile folgender Elemente auf: 1 % bis 20 % Rhenium, 22 % bis 50 % Chrom, 0 % bis 15 % Aluminium, wobei die Ge¬ wichtsanteile von Chrom und Aluminium zusammen mindestens 25 % und höchstens 53 % betragen, 0,3 % bis 2 % Yttrium oder eines dem Yttrium äquivalenten Elements sowie 0 % bis 3 % Si¬ licium. Die Grundlage der die Schutzschicht bildenden Legie- rung besteht aus mindestens einem der Elemente Eisen, Nickel und Kobalt, daneben herstellungsbedingte Verunreinigungen in üblichen Gewichtsanteilen. Wahlweise kann die Schutzschicht zusätzlich Gewichtsanteile folgender Elemente enthalten: Haf- nium bis zu 5 %, Wolfram bis zu 12 %, Mangan bis zu 10 %,
Tantal bis zu 5 %, Titan bis zu 5 %, Niob bis zu 4 % und Zir¬ konium bis zu 2 %. Die Summe der Gewichtsanteile dieser Ele¬ mente soll maximal 15 % betragen.
Weitere Zusammensetzungen für Schutzschichten aus Legierungen des Typs MCrAlY sind beschrieben in der EP 0 532 150 AI, wo¬ bei als Grundlage der Legierung jeweils Nickel verwendet wird. Neben den stets anwesenden Elementen Kobalt, Chrom und Aluminium kommen die Elemente Rhenium, Hafnium, Yttrium, Si- lizium, Zirkonium, Kohlenstoff und Bor als zusätzliche Ele¬ mente in Frage. In jedem Fall liegt der Gewichtsanteil von Aluminium in einer solchen Legierung zwischen 6 % und 12 %.
In dem US-Patent 4,451,299 sind Schutzschichten des Typs MCrAlY oder MCrAlHf (Hf steht für Hafnium, das unter Umstän¬ den Yttrium ersetzen kann) beschrieben, die Gewichtsanteile von Aluminium zwischen 7 % und 20 % aufweisen. Nickel, Kobalt und Eisen oder Mischungen aus zumindest zweien dieser Ele¬ mente kommen als Grundlagen für die beschriebenen Legierungen in Betracht. Zusätzlich können Gewichtsanteile bis zu 10 % der Elemente Platin, Rhenium, Silizium, Tantal und Mangan vorhanden sein. Die aus den Legierungen hergestellten Schutz¬ schichten sollen für einen Temperaturbereich zwischen 650 °C und 820 °C geeignet sein.
In der EP 0 207 874 A2 ist eine Zusammensetzung für eine Le¬ gierung angegeben, die folgende Gewichtsanteile enthält 7,5 % bis 11 % Aluminium, 9 % bis 16 % Chrom, 2 % bis 8 % Tantal, 0 % bis 25 % Kobalt, und deren Grundlage im wesentlichen Nickel ist. Eine solche Schutzschicht soll, aufgetragen auf einem Substrat aus einer entsprechend ausgewählten Superle- gierung, eine besonders hohe Diffusionsstabilität besitzen. Die Diffusionsstabilität soll darin bestehen, daß sich zwi¬ schen dem Substrat und der darauf aufgetragenen Schutzschicht nur eine geringe Diffusionszone bildet, in der sich Elemente aus dem Substrat mit Elementen aus der Schutzschicht vermi- sehen. Hierdurch wird erreicht, daß allenfalls ein unwesent¬ licher Anteil des Aluminiums aus der Schutzschicht in das Substrat hineindiffundiert, wodurch die Schutzschicht die Fähigkeit zur Bildung eines für die Oxidationsbeständigkeit wesentlichen Films von Aluminiumoxid auf ihrer Oberfläche verlieren könnte.
Die US-Patente 4,321,310 und 4,321,311 betreffen jeweils ein Erzeugnis in Form einer Gasturbinenkomponente, bestehend aus einem Substrat aus einer Superlegierung, einer darauf aufge- brachten metallischen Schutzschicht des Typs McrAlY und einer auf dieser angebrachten, stengelkristallinen keramischen Schicht, welche als sogenannte Wärmedämmschicht fungiert. Durch diese Wärmedämmschicht ist es möglich, die thermische Belastbarkeit des Erzeugnisses zu erhöhen, da die Wärmedämm- schicht eine hohe Temperaturdifferenz aufnimmt und so verhin¬ dert, daß die metallischen Teile des Erzeugnisses unzuträg¬ lich belastet werden. Die Wärmedämmschicht wird an das Er¬ zeugnis angebunden über einen dünnen Film aus Aluminiumoxid, welcher durch oberflächliche Oxidation der metallischen Schutzschicht gebildet wird. Diese oberflächliche Oxidation kann vor oder nach der Aufbringung der keramischen Schicht vorgenommen werden.
Das US-Patent 5,262,245 beschreibt einen Versuch, eine Super- legierung für ein Erzeugnis der in Rede stehenden Art so zu modifizieren, daß sie selbst fähig ist zur Ausbildung eines dünnen Aluminiumoxidfilms auf ihrer Oberfläche und somit die Verwendung einer metallischen Schutzschicht zur Verankerung einer keramischen Schicht, wie vorstehend beschrieben, über- flüssig macht. Das US-Patent 3,134,670 betrifft korrosionsgeschützte Legie¬ rungen, die hauptsächlich aus Eisen, Kobalt oder Nickel be¬ stehen, und die gekennzeichnet sind durch eine Zulegierung von Gallium. Die Legierungen sollen benutzt werden zur Her- Stellung von Kronen, Füllungen und dergleichen in der Zahn¬ technik, sowie zur Herstellung von Haushaltsgegenständen wie Tafelbestecke. Durch die Zugabe von Gallium soll die Zerspan- barkeit und Polierfähigkeit einer Legierung verbessert wer¬ den, ohne ihre Härte und Zähigkeit zu verschlechtern. Auch soll die Zugabe von Gallium die Gießbarkeit der Legierung verbessern und zur Entstehung eines feinkörnigen Gefüges bei¬ tragen. Es gibt keinerlei Hinweis auf einen Einsatz einer be¬ schriebenen Legierung im Rahmen einer ausgesprochenen Hoch¬ temperaturanwendung.
Die Bildung eines schützenden Oxidfilms auf der Oberfläche der Schutzschicht ist für eine Legierung im Zusammenhang mit einem Erzeugnis des eingangs beschriebenen Typs eine wichtige Funktion. Da sich ein solcher Oxidfilm während des Betriebs stetig abnutzt, bedarf er einer ständigen Erneuerung. Diese Erneuerung erfolgt durch stetige Oxidation von Aluminium, welches aus der Schutzschicht an die Oberfläche diffundiert, dort mit Sauerstoff reagiert und somit Film ergänzt. Die ma¬ ximale Lebensdauer einer Schutzschicht bemißt sich dement- sprechend an ihrem Aluminiumgehalt, da der Schutzschicht mit dem Verlust von Aluminium die Fähigkeit zur Bildung des schützenden Oxidfilms, und damit ihre Schutzwirkung, verlo¬ rengeht. Unter dem Aspekt der Langlebigkeit ist also ein ho¬ her Gewichtsanteil von Aluminium in einer Legierung für eine Schutzschicht erwünscht.
Ein hoher Gewichtsanteil von Aluminium führt allerdings dazu, daß die Legierung versprödet. Das Aluminium wird nämlich nicht in elementarer Form in der Legierung gespeichert, son- dern, zumindest zu einem wesentlichen Anteil, in Form inter¬ metallischer Verbindungen, insbesondere intermetallischer Verbindungen aus Nickel und Aluminium oder Kobalt und Alumi- nium. Dementsprechend muß der Gewichtsanteil von Aluminium in einer als Schutzschicht bestimmten Legierung auf ein gewisses Maß beschränkt bleiben. Dieses Maß wird von vielerlei Fakto¬ ren bestimmt, und Beimischungen von Elementen wie Rhenium können den maximal möglichen Gewichtsanteil von Aluminium in einer Legierung erhöhen. Als allgemeiner Richtwert für eine obere Grenze kann ein Gewichtsanteil des Aluminiums in Höhe von 15 % angesehen werden. Ein solcher Gewichtsanteil erfor¬ dert bereits sehr sorgfältige Maßnahmen zur Abstimmung der Gewichtsanteile der übrigen Elemente in der Schutzschicht, um ihre Sprödheit in vertretbaren Grenzen zu halten.
Ähnliche Probleme wie beim Aluminium gibt es auch bei dem Element Silizium, das als Bestandteil von Schutzschichten be- kannt ist, und welches ebenfalls einen schützenden Oxidfilm auf einer Legierung entwickeln kann. Auch hohe Zugaben von Silizium verspröden eine Legierung, so daß auch ein Gewichts¬ anteil des Siliziums eine gewisse Grenze nicht überschreiten darf. Für Silizium werden Gewichtsanteile meistens kleiner als 1% gehalten.
In Ansehung der geschilderten Problematik ist es die Aufgabe der Erfindung, eine Alternative zu den bisher bekannten und erprobten Erzeugnissen zur Führung heißer, oxidierender Gase anzugeben, wobei eine Legierung zum Einsatz kommen soll, die die durch Zugabe von Aluminium und/oder Silizium erzielbaren Vorteile, insbesondere die Fähigkeit zur Ausbildung eines schützenden Oxidfilms, wahrt, jedoch die Gefahr der Versprö- dung, die für die bisher bekannten Zusammensetzungen stets gegeben war, vermeidet.
Zur Lösung dieser Aufgabe angegeben wird erfindungsgemäß ein Erzeugnis zur Führung eines heißen, oxidierenden Gases mit einer von dem Gas zu beaufschlagenden Oberfläche, welche von einer Legierung gebildet ist, die folgende Gewichtsanteile aufweist: Chrom 10 % bis 40 %
Gallium 1 % bis 20 % Aluminium 0 % 20 % Silizium 0 % bis 10 % ein reaktives Element aus der Gruppe umfassend Yttrium, Scan- dium und die Elemente der Seltenen Erden
0 % bis 2 %
Hafnium 0 bis 5 %
Mangan 0 bis 10 %
NNiioobb 00 % bis 4 %
Platin 0 bis 10 %
Rhenium 0 bis 20 %
Tantal 0 bis 10 %
Titan 0 bis 5 %
WWoollffrraamm 00 % bis 12 %
Zirkonium 0 bis 2 %
Grundlage zumindest ein Element aus der Gruppe umfassend Ei¬ sen, Kobalt und Nickel.
Es versteht sich, daß in der Legierung mit der Anwesenheit üblicher, herstellungsbedingter Verunreinigungen in üblichen Anteilen zu rechnen ist. Als Beispiel für derartige Verunrei¬ nigungen seien ohne Anspruch auf Vollständigkeit genannt Phosphor und Schwefel.
Die erfindungsgemäße Zulegierung von Gallium zu einer Legie¬ rung kann eine gewünschte Oxidationsbeständigkeit sicherstel¬ len, wobei das Gallium vollständig oder teilweise das bisher stets erforderliche Aluminium oder Silizium substituiert. Hierdurch ergibt sich eine Legierung, die bei einem Gewichts¬ anteil von Aluminium von deutlich unter 15 % eine Oxidations¬ beständigkeit haben kann, die der Oxidationsbeständigkeit ei¬ ner bekannten Legierung mit einem Gewichtsanteil von Alumi¬ nium von mehr als 15 % entspricht, wobei die Duktilität (das Gegenteil von "Sprödheit") der Gallium enthaltenden Legierung jedoch deutlich besser ist. Wie Aluminium und Silizium vermag Gallium einen schützenden Film aus fest haftendem Oxid auf einer Oberfläche der Legie¬ rung zu bilden, wenn diese Oberfläche Sauerstoff ausgesetzt wird, gegebenenfalls unter erhöhter Temperatur. Vorteilhaft ist dabei die nahe chemische Verwandtschaft des Galliums zu Aluminium und Silizium. Gallium bildet ein sehr stabiles Oxid (Ga2θ3) mit einer Bildungsenthalpie von - 1815 kJ/Mol. Für Aluminiumoxid (AI2O3) und Siliziumdioxid (Siθ2) liegt diese Bildungsenthalpie bei - 1675 bzw. - 860 kJ/Mol. Zudem ist der Schmelzpunkt des Galliumoxids mit 1725 °C sehr hoch und ver¬ gleichbar mit dem Schmelzpunkt des Aluminiumoxids bei 2045 °C und des Siliciumoxids bei 1713 °C.
Gallium bildet mit Nickel intermetallische Verbindungen, ins- besondere eine intermetallische Verbindung NiGa, die in allen in Betracht kommenden Eigenschaften entsprechenden interme¬ tallischen Verbindungen aus Nickel und Aluminium ähnelt; ge¬ gebenenfalls kann es auch zur Bildung intermetallischer Ver¬ bindungen aus Nickel, Gallium und Aluminium, beispielsweise NiGaAl, kommen. Für chemische Systeme, die Kobalt und Gallium sowie eventuell Aluminium enthalten, sind ähnliche Verhält¬ nisse zu erwarten wegen der großen chemischen Ähnlichkeit von Kobalt und Nickel; auch für Systeme mit Eisen und Gallium so¬ wie eventuell Aluminium ist mit vergleichbaren Verhältnissen zu rechnen. In jedem Fall kann das in reiner Form sehr flüch¬ tige Gallium als intermetallische Verbindung in die Legierung eingelagert werden und so auch bei erhöhten Temperaturen zur Bildung eines stabilen Oxids an der Oberfläche der Legierung zur Verfügung stehen.
Der Gewichtsanteil von Chrom in der erfindungsgemäßen Legie¬ rung liegt zwischen 10 % und 40 %.
Der Gewichtsanteil des Aluminiums in der Legierung, die die Oberfläche des erfindungsgemäßen Erzeugnisses bildet, beträgt vorzugsweise bis 10 %. Damit ist insbesondere sichergestellt, daß es zu keiner unerwünschten Versprödung der Legierung durch das Aluminium kommen kann.
Aus einer analogen Überlegung heraus, wie soeben ausgeführt, ist der Gewichtsanteil des Siliziums in der Legierung des er¬ findungsgemäßen Erzeugnisses vorzugsweise begrenzt auf einen Wert bis 2 %.
Ebenfalls bevorzugt ist es, daß die Legierung des Erzeugnis- ses einen Gewichtsanteil eines reaktiven Elements aus der
Gruppe umfassend Yttrium, Scandium und die Metalle der Selte¬ nen Erden enthält. Die Wirkung solcher reaktiver Elemente ist aus der Praxis mit MCrAlY-Legierungen gut bekannt und wird in vergleichbarer Weise auch für die Legierung im vorliegenden Zusammenhang erwartet. Das reaktive Element ist vorzugsweise Yttrium, und sein Gewichtsanteil beträgt bis 2 %.
Ebenfalls bevorzugt ist es, daß die Grundlage Kobalt und/oder Nickel, jedoch kein Eisen enthält. Auch dies ist bekannt aus der einschlägigen Praxis mit den MCrAlY-Legierungen.
Weiterhin bevorzugt enthält die Legierung des Erzeugnisses einen Gewichtsanteil von Aluminium, so daß das Gallium neben dem Aluminium zur Wirkung kommt. Der Gewichtsanteil von Alu- minium beträgt vorzugsweise bis 10 %, da das Gallium die Wir¬ kung des Aluminiums zumindest teilweise unterstützt und er¬ gänzt. In diesem Sinne ist der Gewichtsanteil von Aluminium weiterhin bevorzugt größer als der Gewichtsanteil von Gal¬ lium, wobei außerdem bevorzugt die Summe der Gewichtsanteile von Aluminium bzw. Gallium bis 20 % beträgt.
Generell ist es bevorzugt, daß der Gewichtsanteil von Gallium in der Legierung bis 15 % beträgt.
Außerdem bevorzugt ist eine Weiterbildung des Erzeugnisses, bei der die Legierung einen Gewichtsanteilvon Rhenium auf- weist. Der Gewichtsanteil von Rhenium beträgt dabei insbeson¬ dere bis zu 20 %, vorzugsweise bis zu 15 %.
Eine andere Weiterbildung des Erzeugnisses zeichnet sich da- durch aus, daß es eine Oberfläche hat, die von einem zumin¬ dest teilweise aus Galliumoxid bestehenden Film bedeckt ist.
Eine besonders bevorzugte Ausgestaltung des Erzeugnisses zeichnet sich aus durch eine Legierung mit einer Grundlage von Nickel und Gewichtsanteile folgender Elemente: Kobalt 5 % bis 20 %, Chrom 20 % bis 30 %, Aluminium 5 % bis 12 %, Gal¬ lium 3 % bis 8 %, Yttrium 0,2 % bis 1 % sowie Rhenium 0 % bis 5 %. Die Anwesenheit herstellungsbedingter Verunreinigungen in üblichen Gewichtsanteilen ist selbstverständlich in Be- tracht zu ziehen, auch kommen Gewichtsanteile weiterer Ele¬ mente und Zusätze in Frage.
Eine besonders bevorzugte Zusammensetzung für die soeben be¬ schriebene Legierung zeichnet sich aus durch folgende Ge- wichtsanteile: Kobalt 8 % bis 16 %, Chrom 21 % bis 27 %, Alu¬ minium 6 % bis 10 %, Gallium 4 % bis 6 %, Yttrium 0,4 % bis 0,8 % sowie Rhenium 2 % bis 4 %.
Jedwede der beschriebenen Legierungen kann zusätzlich weitere Elemente aufweisen, insbesondere: Hafnium 0 % bis 5 %, Wolf¬ ram 0 % bis 12 %, Mangan 0 % bis 10 %, Tantal 0 % bis 5 %, Titan 0 % bis 5 %, Niob 0 % bis 4 % sowie Zirkonium 0 % bis
Die Legierung in dem Erzeugnis ist bevorzugtermaßen eine
Schutzschicht auf einem metallischen Substrat, insbesondere auf einem Substrat aus einer Nickelbasis- oder Kobaltbasis- Superlegierung. Das Substrat ist dabei insbesondere ein Bau¬ teil zur Führung eines heißen, oxidierenden Gases, insbeson- dere in einer Gasturbine. Auf der Schutzschicht des Erzeugnisses ist weiterhin vorzugs¬ weise eine gasdurchlässige keramische Schicht aufgetragen, wobei diese keramische Schicht insbesondere ein stengelkri¬ stallines Gefüge hat. Eine solche keramische Schicht ist ins- besondere als Wärmedämmschicht für ein Erzeugnis in Form ei¬ ner Komponente für eine Gasturbine vorgesehen, wobei das Er¬ zeugnis während seines Betriebs einer Temperatur ausgesetzt ist, die 1000 °C wesentlich überschreitet und je nach Anwen¬ dung bis knapp an den Schmelzpunkt des Substrates heranrei- chen kann. Die keramische Schicht besteht vorzugsweise aus einem teilstabilierten Zirkonoxid, d.h. aus einem Werkstoff, welcher außer Zirkonoxid als Hauptbestandteil ein anderes Oxid, beispielsweise Lanthanoxid, Ceroxid, Calciumoxid, Yt¬ triumoxid oder Magnesiumoxid aufweist. Durch die Beimischung des anderen Oxids wird die kristalline Struktur des Zirkon¬ oxids stabilisiert und verhindert, daß es in dem Zirkonoxid unter thermischer Belastung zu einem Phasenübergang kommt, bei welchem sich die kristalline Struktur des Zirkonoxids we¬ sentlich verändert. Außerdem vorzugsweise haftet die kerami- sehe Schicht auf einem auf der Oberfläche haftenden und Gal¬ liumoxid enthaltenden Film, welcher gebildet wird durch Oxi¬ dation der Legierung vor oder nach dem Auftragen der kerami¬ schen Schicht.
Für das Substrat, auf dem die Legierung aufgetragen sein soll, wird eine Zusammensetzung mit einer Grundlage von Nik¬ kei und zusätzlichen Elementen in folgenden Gewichtsanteilen bevorzugt: 0,06 % bis 0,14 % Kohlenstoff, 10 % bis 20 % Chrom, 6 % bis 11 % Kobalt, 1 % bis 3 % Molybdän, 1 % bis 6 , Wolfram, 1 % bis 6 % Tantal, 0 % bis 2 % Niob, 1 % bis 6 % Aluminium, 1 % biε 6 % Titan, 0 % bis 0,3 % Bor und 0 % bis 0,2 % Zirkonium.
Es folgt eine Beschreibung eines bevorzugten Ausführungsbei- spiels der Erfindung: Auf ein Substrat in Form einer thermisch, mechanisch und kor¬ rosiv hoch belasteten Komponente einer Gasturbine, insbeson¬ dere einer Turbinenschaufel für eine Gasturbine, welche be¬ trieblich einem heißen Rauchgas mit einer Temperatur von 1300 °C oder mehr ausgesetzt ist, wird eine Legierung als Schutzschicht aufgetragen, wobei das Auftragen durch Vakuum- Plasmaspritzen mit üblichen Nachbehandlungen erfolgt. Die Le¬ gierung hat eine Grundlage von Nickel und weist darüber hin¬ aus folgende Gewichtsanteile auf: 10 % Kobalt, 23 % Chrom, 8 % Aluminium, 5 % Gallium, 3 % Rhenium und 0,6 % Yttrium. Das Substrat besteht aus einer Nickelbasis-Superlegierung herkömmlichen Typs,- solche Superlegierungen sind unter den Bezeichnungen IN 738 sowie PWA 1483 bekannt.
Neben dem Vakuum-Plasmaspritzen sind andere Möglichkeiten zum Aufbringen der Schutzschicht die verschiedenen und an sich bekannten Verfahren der physikalischen Dampfabscheidung (PVD) bzw. der chemischen Dampfabscheidung (CVD) . Zum Aufbringen einer keramischen Schicht auf die Schutzschicht kommt insbesondere ein PVD-Verfahren zum Einsatz.
Es wird erwartet, daß sich die Schutzschicht während des Be¬ triebs, wenn sie mit einem Rauchgas belastet wird, welches Sauerstoff enthält, mit einem Film überzieht, welcher zumin- dest teilweise aus Galliumoxid besteht. Es wird außerdem er¬ wartet, daß die Schutzschicht bei deutlich erhöhter Lebens¬ dauer eine gegenüber einer Schutzschicht, die kein Gallium, dafür aber einen entsprechend erhöhten Gewichtsanteil aus Aluminium aufweist, deutlich verbesserte Duktilität hat. Auf diese Weise ist die Gallium enthaltende Schutzschicht deut¬ lich weniger anfällig gegenüber Rißbildung, was einen zusätz¬ lichen sehr positiven Effekt auf ihre Lebensdauer hat.
Durch den Zusatz von Gallium wird eine gegenüber den Legie- rungen des Standes der Technik deutlich erhöhte Lebensdauer für die Legierung erwartet. Ist die thermische Belastung des Erzeugnisses während seines Betriebes sehr hoch, kann die von der Legierung gebildete Oberfläche mit einer keramischen Schicht, vorzugsweise einer keramischen Schicht mit Stengel- kristallinem Gefüge und bestehend aus teilstabilisiertem Zir¬ konoxid, überzogen werden. Die Schicht wird dabei insbeson¬ dere angebunden an einen Galliumoxid enthaltenden, durch Oxi¬ dation der Legierung gebildeten Film, welcher auf der Ober¬ fläche haftet.

Claims

Patentansprüche
1. Erzeugnis zur Führung eines heißen, oxidierenden Gases mit einer von dem Gas zu beaufschlagenden Oberfläche, welche von einer Legierung gebildet ist, die folgende Gewichtsanteile aufweist:
Chrom 10 bis 40
Gallium 1 o bis 20
Aluminium 0 % bis 20
Silizium 0 o bis 10 ein reaktives Element aus der Gruppe umfassend Yttrium, Scandium und die Elemente der Seltenen Erden
0 % bis 2 %
Hafnium 0 % bis 5
Mangan 0 % bis 10
Niob 0 % bis 4
Platin 0 % bis 10
Rhenium 0 o bis 20
Tantal 0 % bis 10
Titan 0 % bis 5
Wolfram 0 g„ o bis 12
Zirkonium 0 % bis 2
Grundlage zumindest ein Element aus der Gruppe umfassend Eisen, Kobalt und Nickel.
2.Erzeugnis nach Anspruch 1, bei dem der Gewichtsanteil des Aluminiums bis 10 % beträgt.
3. Erzeugnis nach Anspruch 1 oder 2, bei dem der Gewichtsan- teil des Siliziums bis 2 % beträgt.
4. Erzeugnis nach einem der vorigen Ansprüche, bei dem daε reaktive Element Yttrium ist und sein Gewichtsanteil bis 2% beträgt.
5. Erzeugnis nach einem der vorigen Ansprüche, bei dem die Legierung als Grundlage nur Kobalt und/oder Nickel enthält.
6. Erzeugnis nach einem der vorigen Ansprüche, bei dem die Legierung Aluminium enthält.
7. Erzeugnis nach Anspruch 6, bei dem der Gewichtsanteil des Aluminiums größer ist als der Gewichtsanteil des Galliums.
8. Erzeugnis nach Anspruch 6 oder 7, bei dem die Summe der Gewichtsanteile von Aluminium bzw. Gallium bis 20 % beträgt.
9. Erzeugnis nach einem der vorigen Ansprüche, bei dem der Gewichtsanteil des Galliums bis bis 15 % beträgt.
10. Erzeugnis nach einem der vorigen Ansprüche, bei dem der Gewichtsanteil des Rheniums bis zu 15 % beträgt.
11. Erzeugnis nach einem der vorigen Ansprüche, bei dem die Oberfläche von einem zumindest teilweise aus Galliumoxid bestehenden Film bedeckt ist.
12. Erzeugnis nach einem der vorigen Ansprüche,bei dem die
Grundlage der Legierung Nickel ist und die Legierung folgende Gewichtsanteile aufweist:
Kobalt 5 g,
'S bis 20
Chrom 20 % bis 30
Aluminium 5 g,
"o bis 12
Gallium 3 g, *o bis 8
Yttrium 0,2 % bis 1
Rhenium 0 % bis 5
13. Erzeugnis nach Anspruch 12, bei dem die Legierung folgende Gewichtsanteile aufweist:
Kobalt 8 "O bis 16
Chrom 21 % bis 27
Aluminium 6 % bis 10
Gallium 4 % bis 6
Rhenium 2 g, o bis 4 s*
Yttrium 0,4 % bis 0,8
14. Erzeugnis nach einem der vorigen Ansprüche, bei dem die Legierung als Schutzschicht auf einem metallischen Substrat, insbesondere auf einem Substrat aus einer Nickelbasis- oder Kobaltbasis-Superlegierung, aufgetragen ist.
15. Erzeugnis nach Anspruch 14, bei dem eine gasdurchlässige keramische Schicht, die insbesondere ein stengelkristallines Gefüge hat, auf die Oberfläche aufgetragen ist.
16. Erzeugnis nach Anspruch 15, bei dem die keramische Schicht aus einem teilstabilisierten Zirkonoxid besteht.
17. Erzeugnis nach Anspruch 15 oder 16, bei dem die kera¬ mische Schicht auf einem Galliumoxid enthaltenden, auf der Oberfläche haftenden Film haftet.
18. Erzeugnis nach einem der Ansprüche 14 bis 17, bei dem das Substrat eine Grundlage von Nickel hat und folgende Gewichts¬ anteile aufweist: 0,06 % bis 0,14 % Kohlenstoff
10 g, bis 20 g, o Chrom
6 % bis 11 % Kobalt
1 % bis 3 % Molybdän
1 % bis 6 % Wolfram
1 % bis 6 g. Tantal
0 % bis 2 g, *o Niob
1 g, o bis 6 g, Aluminium
1 % bis 6 g, o Titan
0 % bis 0,3 % Bor
0 % bis 0,2 g„ o Zirkonium.
PCT/DE1996/001465 1995-08-16 1996-08-06 Erzeugnis zur führung eines heissen, oxidierenden gases WO1997007252A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
RU98104113/02A RU2149202C1 (ru) 1996-04-16 1996-08-06 Изделие для направления горячего, окисляющего газа
EP96925650A EP0845050B1 (de) 1995-08-16 1996-08-06 Erzeugnis zur führung eines heissen, oxidierenden gases
DE59602015T DE59602015D1 (de) 1995-08-16 1996-08-06 Erzeugnis zur führung eines heissen, oxidierenden gases
JP9508815A JPH11511203A (ja) 1995-08-16 1996-08-06 高温酸化性ガスの案内部品
US09/023,951 US5939204A (en) 1995-08-16 1998-02-17 Article for transporting a hot, oxidizing gas

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19530125 1995-08-16
DE19530125.0 1996-04-16
DE19615012.4 1996-04-16
DE19615012A DE19615012A1 (de) 1995-08-16 1996-04-16 Erzeugnis zur Führung eines heißen, oxidierenden Gases

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/023,951 Continuation US5939204A (en) 1995-08-16 1998-02-17 Article for transporting a hot, oxidizing gas

Publications (1)

Publication Number Publication Date
WO1997007252A1 true WO1997007252A1 (de) 1997-02-27

Family

ID=26017747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1996/001465 WO1997007252A1 (de) 1995-08-16 1996-08-06 Erzeugnis zur führung eines heissen, oxidierenden gases

Country Status (4)

Country Link
EP (1) EP0845050B1 (de)
JP (1) JPH11511203A (de)
IN (1) IN189468B (de)
WO (1) WO1997007252A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1820883A1 (de) * 2006-01-17 2007-08-22 Siemens Aktiengesellschaft Legierung, Schutzschicht und Bauteil
US7750104B2 (en) 1998-11-02 2010-07-06 Dow Global Technologie Inc. Shear thinning ethylene/α-olefin interpolymers and their preparation
US8025984B2 (en) 2003-10-17 2011-09-27 Siemens Aktiengesellschaft Protective layer for protecting a component against corrosion and oxidation at high temperatures, and component
EP2971243B1 (de) 2013-03-13 2020-02-26 General Electric Company Beschichtungen für metallische substrate

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69732046T2 (de) * 1997-10-30 2005-12-08 Alstom Schutzbeschichtung für hochtemperatur
CH699206A1 (de) * 2008-07-25 2010-01-29 Alstom Technology Ltd Hochtemperaturlegierung.

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3898081A (en) * 1973-12-13 1975-08-05 Vasily Valentinovich Kukhar Nickel base alloy for precision resistors
EP0532150A1 (de) * 1991-09-09 1993-03-17 General Electric Company Verstärkte Schutzbeschichtungen für Superlegierungen
US5262245A (en) * 1988-08-12 1993-11-16 United Technologies Corporation Advanced thermal barrier coated superalloy components

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3898081A (en) * 1973-12-13 1975-08-05 Vasily Valentinovich Kukhar Nickel base alloy for precision resistors
US5262245A (en) * 1988-08-12 1993-11-16 United Technologies Corporation Advanced thermal barrier coated superalloy components
EP0532150A1 (de) * 1991-09-09 1993-03-17 General Electric Company Verstärkte Schutzbeschichtungen für Superlegierungen

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7750104B2 (en) 1998-11-02 2010-07-06 Dow Global Technologie Inc. Shear thinning ethylene/α-olefin interpolymers and their preparation
US8025984B2 (en) 2003-10-17 2011-09-27 Siemens Aktiengesellschaft Protective layer for protecting a component against corrosion and oxidation at high temperatures, and component
EP1820883A1 (de) * 2006-01-17 2007-08-22 Siemens Aktiengesellschaft Legierung, Schutzschicht und Bauteil
EP2971243B1 (de) 2013-03-13 2020-02-26 General Electric Company Beschichtungen für metallische substrate

Also Published As

Publication number Publication date
EP0845050B1 (de) 1999-05-26
IN189468B (de) 2003-03-01
EP0845050A1 (de) 1998-06-03
JPH11511203A (ja) 1999-09-28

Similar Documents

Publication Publication Date Title
EP1306454B1 (de) Rhenium enthaltende Schutzschicht zum Schutz eines Bauteils gegen Korrosion und Oxidation bei hohen Temperaturen
DE69732046T2 (de) Schutzbeschichtung für hochtemperatur
EP0786017B1 (de) Schutzschicht zum schutz eines bauteils gegen korrosion, oxidation und thermische überbeanspruchung sowie verfahren zu ihrer herstellung
DE602005002334T2 (de) Werkstück auf Superlegierungsbasis mit einer Gamma-Strich-Nickelaluminid-Beschichtung
DE60305329T2 (de) Hochoxidationsbeständige komponente
DE60030668T2 (de) Hochfeste Aluminiumlegierung
DE2758618C3 (de) Mittel zur Herstellung einestemPenltart>estiindi8en· abriebfesten Überzugs
DE19983957B4 (de) Beschichtungszusammensetzung für Hochtemperturschutz
DE2327250A1 (de) Verfahren zur herstellung eines metallurgisch abgedichteten ueberzugs
EP3175008B1 (de) Kobaltbasissuperlegierung
DE3030961A1 (de) Bauteile aus superlegierungen mit einem oxidations- und/oder sulfidationsbestaendigigen ueberzug sowie zusammensetzung eines solchen ueberzuges.
WO1991002108A1 (de) Hochtemperaturfeste korrosionsschutzbeschichtung, insbesondere für gasturbinenbauteile
CH639426A5 (de) Korrosionsbestaendige superlegierung auf nickelbasis und damit hergestellte verbundschaufel.
DE2829369B2 (de) Verfahren zum Ausbilden von harten, verschleißfestenMetallkarbide enthaltenden Überzügen
DE1928509A1 (de) Oxydation-erosion-bestaendige Nickel-Superlegierung
EP3063309B1 (de) Oxidationsbarriereschicht
EP0581204A1 (de) Hochwarmfester Werkstoff
DE60311686T2 (de) Ein Schutzüberzug
WO1999023270A1 (de) Erzeugnis mit einem schichtsystem zum schutz gegen ein heisses aggressives gas
DE60209661T2 (de) Hafnium enthaltende Nickelaluminid-Beschichtung und daraus hergestellte Beschichtungssysteme
EP1188845A1 (de) Nickelbasislegierung für die Hochtemperaturtechnik
EP1498504A1 (de) Aluminiumbasierte multinäre Legierungen und deren Verwendung als wärme- und korrosionsschützende Beschichtungen
EP3333281A1 (de) Hochtemperaturschutzschicht für titanaluminid - legierungen
DE3036206A1 (de) Verschleissfester, vor oxidation und korrosion schuetzender ueberzug, korrosions- und verschleissfeste ueberzugslegierung, mit einem solchen ueberzug versehener gegenstand und verfahren zum herstellen eines solchen ueberzugs
EP0845050A1 (de) Erzeugnis zur führung eines heissen, oxidierenden gases

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN CZ JP KR RU SG UA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1996925650

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1997 508815

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09023951

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1996925650

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1996925650

Country of ref document: EP