WO1997002355A1 - Recombinant mva virus, and the use thereof - Google Patents
Recombinant mva virus, and the use thereof Download PDFInfo
- Publication number
- WO1997002355A1 WO1997002355A1 PCT/EP1996/002926 EP9602926W WO9702355A1 WO 1997002355 A1 WO1997002355 A1 WO 1997002355A1 EP 9602926 W EP9602926 W EP 9602926W WO 9702355 A1 WO9702355 A1 WO 9702355A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mva
- recombinant
- virus
- recombinant mva
- cells
- Prior art date
Links
- 241000700605 Viruses Species 0.000 title claims abstract description 59
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 99
- 229960005486 vaccine Drugs 0.000 claims abstract description 45
- 238000012217 deletion Methods 0.000 claims abstract description 32
- 230000037430 deletion Effects 0.000 claims abstract description 31
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 23
- 229920001184 polypeptide Polymers 0.000 claims abstract description 22
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 22
- 238000004519 manufacturing process Methods 0.000 claims abstract description 19
- 239000013603 viral vector Substances 0.000 claims abstract description 9
- 239000003814 drug Substances 0.000 claims abstract description 8
- 229940124597 therapeutic agent Drugs 0.000 claims abstract description 5
- 241001183012 Modified Vaccinia Ankara virus Species 0.000 claims description 173
- 210000004027 cell Anatomy 0.000 claims description 94
- 241000700618 Vaccinia virus Species 0.000 claims description 43
- 239000013598 vector Substances 0.000 claims description 43
- 101710137500 T7 RNA polymerase Proteins 0.000 claims description 41
- 230000014509 gene expression Effects 0.000 claims description 30
- 239000002245 particle Substances 0.000 claims description 26
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 19
- 230000001177 retroviral effect Effects 0.000 claims description 19
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 claims description 18
- 230000003612 virological effect Effects 0.000 claims description 18
- 101000606090 Homo sapiens Tyrosinase Proteins 0.000 claims description 17
- 239000013604 expression vector Substances 0.000 claims description 16
- 230000000890 antigenic effect Effects 0.000 claims description 15
- 239000003550 marker Substances 0.000 claims description 13
- 241000282414 Homo sapiens Species 0.000 claims description 12
- 238000002360 preparation method Methods 0.000 claims description 12
- 241001465754 Metazoa Species 0.000 claims description 10
- 241000725303 Human immunodeficiency virus Species 0.000 claims description 9
- 238000011081 inoculation Methods 0.000 claims description 8
- 230000001717 pathogenic effect Effects 0.000 claims description 8
- 208000030507 AIDS Diseases 0.000 claims description 6
- 108010084873 Human Immunodeficiency Virus nef Gene Products Proteins 0.000 claims description 6
- 238000012258 culturing Methods 0.000 claims description 6
- 210000003527 eukaryotic cell Anatomy 0.000 claims description 6
- 238000002649 immunization Methods 0.000 claims description 6
- 201000001441 melanoma Diseases 0.000 claims description 6
- 108700005077 Viral Genes Proteins 0.000 claims description 5
- 238000011282 treatment Methods 0.000 claims description 5
- 208000031886 HIV Infections Diseases 0.000 claims description 4
- 244000045947 parasite Species 0.000 claims description 4
- 230000002265 prevention Effects 0.000 claims description 4
- 241000894006 Bacteria Species 0.000 claims description 3
- 208000037357 HIV infectious disease Diseases 0.000 claims description 3
- 241000223960 Plasmodium falciparum Species 0.000 claims description 3
- 210000005260 human cell Anatomy 0.000 claims description 3
- 208000033519 human immunodeficiency virus infectious disease Diseases 0.000 claims description 3
- 244000005700 microbiome Species 0.000 claims description 3
- 210000004881 tumor cell Anatomy 0.000 claims description 3
- 241000712461 unidentified influenza virus Species 0.000 claims description 3
- 208000006454 hepatitis Diseases 0.000 claims description 2
- 231100000283 hepatitis Toxicity 0.000 claims description 2
- 241001529453 unidentified herpesvirus Species 0.000 claims 1
- 238000001415 gene therapy Methods 0.000 abstract description 5
- 239000013612 plasmid Substances 0.000 description 35
- 108020004414 DNA Proteins 0.000 description 24
- 208000015181 infectious disease Diseases 0.000 description 18
- 108020004707 nucleic acids Proteins 0.000 description 18
- 102000039446 nucleic acids Human genes 0.000 description 18
- 150000007523 nucleic acids Chemical class 0.000 description 18
- 239000000427 antigen Substances 0.000 description 17
- 108091007433 antigens Proteins 0.000 description 17
- 102000036639 antigens Human genes 0.000 description 17
- 239000002609 medium Substances 0.000 description 11
- 238000000746 purification Methods 0.000 description 11
- 239000012634 fragment Substances 0.000 description 10
- 238000003780 insertion Methods 0.000 description 10
- 230000037431 insertion Effects 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 206010028980 Neoplasm Diseases 0.000 description 9
- 108020005202 Viral DNA Proteins 0.000 description 9
- 238000010276 construction Methods 0.000 description 9
- 238000002255 vaccination Methods 0.000 description 9
- 108020001019 DNA Primers Proteins 0.000 description 8
- 239000003155 DNA primer Substances 0.000 description 8
- 241000588724 Escherichia coli Species 0.000 description 8
- 241000700647 Variola virus Species 0.000 description 8
- 230000001225 therapeutic effect Effects 0.000 description 8
- 108060008724 Tyrosinase Proteins 0.000 description 7
- 206010046865 Vaccinia virus infection Diseases 0.000 description 7
- 238000005119 centrifugation Methods 0.000 description 7
- 102000004169 proteins and genes Human genes 0.000 description 7
- 208000007089 vaccinia Diseases 0.000 description 7
- 108010035563 Chloramphenicol O-acetyltransferase Proteins 0.000 description 6
- 241000713772 Human immunodeficiency virus 1 Species 0.000 description 6
- 108010067390 Viral Proteins Proteins 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 6
- 230000002458 infectious effect Effects 0.000 description 6
- 108700004028 nef Genes Proteins 0.000 description 6
- 101150023385 nef gene Proteins 0.000 description 6
- 239000002953 phosphate buffered saline Substances 0.000 description 6
- 108091008146 restriction endonucleases Proteins 0.000 description 6
- 241000282412 Homo Species 0.000 description 5
- 102000003425 Tyrosinase Human genes 0.000 description 5
- 238000010367 cloning Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000002068 genetic effect Effects 0.000 description 5
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 4
- OPIFSICVWOWJMJ-AEOCFKNESA-N 5-bromo-4-chloro-3-indolyl beta-D-galactoside Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1OC1=CNC2=CC=C(Br)C(Cl)=C12 OPIFSICVWOWJMJ-AEOCFKNESA-N 0.000 description 4
- 101000686777 Escherichia phage T7 T7 RNA polymerase Proteins 0.000 description 4
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 4
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 4
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 4
- 238000002105 Southern blotting Methods 0.000 description 4
- 229930006000 Sucrose Natural products 0.000 description 4
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 4
- 230000002238 attenuated effect Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000012512 characterization method Methods 0.000 description 4
- 230000008029 eradication Effects 0.000 description 4
- 238000004806 packaging method and process Methods 0.000 description 4
- 239000013615 primer Substances 0.000 description 4
- 230000010076 replication Effects 0.000 description 4
- 238000012216 screening Methods 0.000 description 4
- 239000013049 sediment Substances 0.000 description 4
- 239000005720 sucrose Substances 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 238000001890 transfection Methods 0.000 description 4
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 3
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 3
- 241000287828 Gallus gallus Species 0.000 description 3
- 241000712079 Measles morbillivirus Species 0.000 description 3
- 239000007983 Tris buffer Substances 0.000 description 3
- 239000003708 ampul Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 102000005936 beta-Galactosidase Human genes 0.000 description 3
- 108010005774 beta-Galactosidase Proteins 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 230000006801 homologous recombination Effects 0.000 description 3
- 238000002744 homologous recombination Methods 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 210000004962 mammalian cell Anatomy 0.000 description 3
- 239000013600 plasmid vector Substances 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 230000010474 transient expression Effects 0.000 description 3
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 3
- 238000002604 ultrasonography Methods 0.000 description 3
- 241001430294 unidentified retrovirus Species 0.000 description 3
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- 238000012270 DNA recombination Methods 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 108700020134 Human immunodeficiency virus 1 nef Proteins 0.000 description 2
- 206010027476 Metastases Diseases 0.000 description 2
- 241000714177 Murine leukemia virus Species 0.000 description 2
- 101710192141 Protein Nef Proteins 0.000 description 2
- 101000702488 Rattus norvegicus High affinity cationic amino acid transporter 1 Proteins 0.000 description 2
- 230000003127 anti-melanomic effect Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 101150055766 cat gene Proteins 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 239000006285 cell suspension Substances 0.000 description 2
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 2
- 229960005091 chloramphenicol Drugs 0.000 description 2
- 210000000805 cytoplasm Anatomy 0.000 description 2
- 210000002257 embryonic structure Anatomy 0.000 description 2
- 108700004025 env Genes Proteins 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000012894 fetal calf serum Substances 0.000 description 2
- 210000002950 fibroblast Anatomy 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000028993 immune response Effects 0.000 description 2
- 230000003053 immunization Effects 0.000 description 2
- 238000009169 immunotherapy Methods 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000006166 lysate Substances 0.000 description 2
- 210000001161 mammalian embryo Anatomy 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000001466 metabolic labeling Methods 0.000 description 2
- 230000009401 metastasis Effects 0.000 description 2
- 229930182817 methionine Natural products 0.000 description 2
- 229940126619 mouse monoclonal antibody Drugs 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000011321 prophylaxis Methods 0.000 description 2
- 239000003531 protein hydrolysate Substances 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 108700026220 vif Genes Proteins 0.000 description 2
- 230000006648 viral gene expression Effects 0.000 description 2
- 230000029812 viral genome replication Effects 0.000 description 2
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 241000271566 Aves Species 0.000 description 1
- 101710168454 Beta-galactosidase A Proteins 0.000 description 1
- 108091028026 C-DNA Proteins 0.000 description 1
- 101100275473 Caenorhabditis elegans ctc-3 gene Proteins 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 108020004638 Circular DNA Proteins 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 101100004352 Escherichia coli lacZ gene Proteins 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 241000941423 Grom virus Species 0.000 description 1
- 108091006905 Human Serum Albumin Proteins 0.000 description 1
- 102000008100 Human Serum Albumin Human genes 0.000 description 1
- 241000713340 Human immunodeficiency virus 2 Species 0.000 description 1
- 102000014150 Interferons Human genes 0.000 description 1
- 108010050904 Interferons Proteins 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 241001289721 Lethe Species 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 108700026244 Open Reading Frames Proteins 0.000 description 1
- 241000700629 Orthopoxvirus Species 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 239000001888 Peptone Substances 0.000 description 1
- 108010080698 Peptones Proteins 0.000 description 1
- 241000700625 Poxviridae Species 0.000 description 1
- 208000005585 Poxviridae Infections Diseases 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 241001068263 Replication competent viruses Species 0.000 description 1
- 108700008625 Reporter Genes Proteins 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- 101150003725 TK gene Proteins 0.000 description 1
- 108700019146 Transgenes Proteins 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000005975 antitumor immune response Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000000376 autoradiography Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- WQZGKKKJIJFFOK-FPRJBGLDSA-N beta-D-galactose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-FPRJBGLDSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 230000034303 cell budding Effects 0.000 description 1
- 239000013553 cell monolayer Substances 0.000 description 1
- 210000003855 cell nucleus Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012761 co-transfection Methods 0.000 description 1
- 230000001461 cytolytic effect Effects 0.000 description 1
- 230000000120 cytopathologic effect Effects 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 231100000676 disease causative agent Toxicity 0.000 description 1
- 235000013601 eggs Nutrition 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 108700004026 gag Genes Proteins 0.000 description 1
- 108010027225 gag-pol Fusion Proteins Proteins 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 229940079322 interferon Drugs 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 210000003292 kidney cell Anatomy 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 239000012139 lysis buffer Substances 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 210000002752 melanocyte Anatomy 0.000 description 1
- 229940115256 melanoma vaccine Drugs 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- HOVAGTYPODGVJG-UHFFFAOYSA-N methyl beta-galactoside Natural products COC1OC(CO)C(O)C(O)C1O HOVAGTYPODGVJG-UHFFFAOYSA-N 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 230000009456 molecular mechanism Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- LWGJTAZLEJHCPA-UHFFFAOYSA-N n-(2-chloroethyl)-n-nitrosomorpholine-4-carboxamide Chemical compound ClCCN(N=O)C(=O)N1CCOCC1 LWGJTAZLEJHCPA-UHFFFAOYSA-N 0.000 description 1
- 231100000957 no side effect Toxicity 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000007918 pathogenicity Effects 0.000 description 1
- 230000009589 pathological growth Effects 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 235000019319 peptone Nutrition 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 230000007505 plaque formation Effects 0.000 description 1
- 108700004029 pol Genes Proteins 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 229940021993 prophylactic vaccine Drugs 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 239000003104 tissue culture media Substances 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000003146 transient transfection Methods 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 201000008827 tuberculosis Diseases 0.000 description 1
- 230000017613 viral reproduction Effects 0.000 description 1
- 210000002845 virion Anatomy 0.000 description 1
- 230000001018 virulence Effects 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
- A61K48/0091—Purification or manufacturing processes for gene therapy compositions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
- A61P31/16—Antivirals for RNA viruses for influenza or rhinoviruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
- A61P31/18—Antivirals for RNA viruses for HIV
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/20—Antivirals for DNA viruses
- A61P31/22—Antivirals for DNA viruses for herpes viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/04—Immunostimulants
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/005—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/52—Genes encoding for enzymes or proenzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N7/00—Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0055—Oxidoreductases (1.) acting on diphenols and related substances as donors (1.10)
- C12N9/0057—Oxidoreductases (1.) acting on diphenols and related substances as donors (1.10) with oxygen as acceptor (1.10.3)
- C12N9/0059—Catechol oxidase (1.10.3.1), i.e. tyrosinase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/12—Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
- C12N9/1241—Nucleotidyltransferases (2.7.7)
- C12N9/1247—DNA-directed RNA polymerase (2.7.7.6)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/525—Virus
- A61K2039/5256—Virus expressing foreign proteins
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/24011—Poxviridae
- C12N2710/24111—Orthopoxvirus, e.g. vaccinia virus, variola
- C12N2710/24141—Use of virus, viral particle or viral elements as a vector
- C12N2710/24143—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2740/00—Reverse transcribing RNA viruses
- C12N2740/00011—Details
- C12N2740/10011—Retroviridae
- C12N2740/16011—Human Immunodeficiency Virus, HIV
- C12N2740/16311—Human Immunodeficiency Virus, HIV concerning HIV regulatory proteins
- C12N2740/16322—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Definitions
- the present invention relates to recombinant vaccinia viruses derived from the modified vaccinia virus Ankara (MVA) and containing and capable of expressing foreign genes which are inserted at the site of a naturally occuring deletion in the MVA genome, and the use of such recombinant MVA viruses for the production of polypeptides, e.g. antigens or therapeutic agents, or viral vectors for gene therapy, and the use of such recombinant MVA viruses encoding antigens as vaccines.
- VVA modified vaccinia virus Ankara
- Another object of the present invention is to provide a simple, efficient and safe method for the production of polypeptides, e.g. antigens or therapeutic agents, recombinant viruses for vaccines and viral vectors for gene therapy.
- polypeptides e.g. antigens or therapeutic agents, recombinant viruses for vaccines and viral vectors for gene therapy.
- Still another object of the present invention is to provide an expression system based on a recombinant MVA virus expressing T7 RNA polymerase, and methods for the production of polypeptides, e.g. antigens or therapeutic agents, or for generating viral vectors for gene therapy or vaccines, based on this expression system.
- Vaccinia virus a member of the genus Orthopoxvirus in the family of Poxviridae, was used as live vaccine to immunize against the human smallpox disease.
- Successful world ⁇ wide vaccination with vaccinia virus culminated in the eradication of variola virus, the causative agent of the smallpox (The global eradication of smallpox. Final report of the global commission for the certification of smallpox eradication. History of Public Health, No.4, Geneva: World Health Organization, 1980). Since that WHO declaration, vaccination has been universally discontinued except for people at high risk of poxvirus infections (e.g. laboratory workers).
- vaccinia viruses have also been used to engineer viral vectors for recombinant gene expression and for the potential use as recombinant live vaccines (Mackett, M., Smith, G.L. and Moss, B. [1982] P.N.A.S. USA 79, 7415-7419; Smith, G.L, Mackett, M. and Moss, B. [1984] Biotechnology and Genetic Engineering Reviews 2, 383-407).
- This entails DNA sequences (genes) which code for foreign antigens being introduced, with the aid of DNA recombination techniques, into the genome of the vaccinia viruses.
- the gene is integrated at a site in the viral DNA which is non-essential for the life cycle of the virus, it is possible for the newly produced recombinant vaccinia virus to be infectious, that is to say able to infect foreign cells and thus to express the integrated DNA sequence (EP Patent Applications No. 83, 286 and No. 110, 385).
- the recombinant vaccinia viruses prepared in this way can be used, on the one hand, as live vaccines for the prophylaxis of infectious diseases, on the other hand, for the preparation of heterologous proteins in eukaryotic cells.
- Recombinant vaccinia virus expressing the bacteriophage T7 RNA polymerase gene allowed the establishment of widely applicable expression systems for the synthesis of recombinant proteins in mammalian cells ( Moss, B., Elroy-Stein, O., Mizukami, T., Alexander, W.A., and Fuerst T.R. [1990] Nature 348, 91-92.). In all protocols, recombinant gene expression relies on the synthesis of the T7 RNA polymerase in the cytoplasm of eukaryotic cells. Most popular became a protocol for transient-expression (Fuerst, T.R., Niles, E.G., Studier, F.W. and Moss, B. [1986] Proc.
- This transfection protocol is simple because no new recombinant viruses need to be made and very efficient with greater than 80% of the cells expressing the gene of interest (Elroy-Stein, O. and Moss, B. [1990] Proc. Natl. Acad. Sci. USA 87, 6743-6747).
- the advantage of the vaccinia virus/T7 RNA polymerase hybrid system over other transient expression systems is very likely its independence on the transport of plasmids to the cellular nucleus. In the past, the system has been extremely useful for analytical purposes in virology and cell biology (Buonocore, L. and Rose, J.K. [1990] Nature 345, 625-628, Pattnaik, A.K. and Wertz, G.W.
- Vaccinia virus is infectious for humans and upon vaccination during the smallpox eradication campaign occasional serious complications were observed. The best overview about the incidence of complications is given by a national survey in the United States monitoring vaccination of about 12 million people with a vaccine based on the New York City Board of Health strain of vaccinia virus (Lane, J., Ruben, F., Neff, J. and Millar, J. [1969] New Engl. J. Med. 281 , 1201-1208). Therefore the most exciting possibility to use vaccinia virus as vector for the development of recombinant live vaccines has been affected by safety concerns and regulations.
- modified vaccinia virus Ankara has been generated by long-term serial passages of the Ankara strain of vaccinia virus (CVA) on chicken embryo fibroblasts (for review see Mayr, A., Hochstein- Mintzel, V. and Stickl, H. [1975] Infection 3, 6-14; Swiss Patent No. 568, 392).
- the MVA virus was deposited in compliance with the requirements of the Budapest Treaty at CNCM (Institut Pasteur, Collection Nationale de Cultures de Microorganisms, 25, rue du Dondel Roux, 75724 Paris Cedex 15) on Dec. 15, 1987 under Depositary No. 1-721. MVA is distinguished by its great attenuation, that is to say by diminished virulence or infectiosity while maintaining good immunogenicity.
- the MVA virus has been analysed to determine alterations in the genome relative to the wild type CVA strain. Six major deletions of genomic DNA ( deletion I, II, III, IV, V, and VI ) totaling 31,000 base pairs have been identified (Meyer, H., Sutter, G. and Mayr A. [1991] J. Gen. Virol.
- MVA Newcastle disease virus
- the resulting MVA virus became severely host cell restricted to avian cells.
- MVA is characterized by its extreme attenuation.
- MVA was proven to be avirulent even in immunosuppressed animals.
- the excellent properties of the MVA strain have been demonstrated in extensive clinical trials (Mayr et al., Zbl. Bakt. Hyg. I, Abt. Org. B 167, 375-390 [1987], Stickl et al., Dtsch. med. Wschr. 99, 2386-2392 [1974]).
- MVA vaccine no side effects were associated with the use of MVA vaccine.
- MVA replication in human cells was found to be blocked late in infection preventing the assembly to mature infectious virions. Nevertheless, MVA was able to express viral and recombinant genes at high levels even in non-permissive cells and was proposed to serve as an efficient and exceptionally safe gene expression vector (Sutter, G. and Moss, B. [1992] Proc. Natl. Acad. Sci. USA 89, 10847-10851). Recently, novel vaccinia vector systems were established on the basis of MVA, having foreign DNA sequences inserted at the site of deletion III within the MVA genome or within the TK gene ( Sutter, G. and Moss, B. [1995] Dev. Biol. Stand. Basel, Karger 84, 195-200 and US patent 5.185.146).
- the present invention thus, inter alia, comprises the following, alone or in combination:
- a recombinant MVA virus as above containing and capable of expressing at least one foreign gene inserted at the site of deletion II within the MVA genome;
- a recombinant MVA virus as above wherein the foreign gene codes for a marker, a therapeutic gene or an antigenic determinant
- a recombinant MVA virus as above wherein the foreign gene codes for an antigenic determinant from a pathogenic virus, a bacteria, or other microorganism, or from a parasite, or a tumor cell;
- a recombinant MVA virus as above which is MVA-LAInef or MVA-hTYR;
- a recombinant MVA virus as above which is MVA-T7 pol;
- a cell infected by a recombinant MVA virus as above wherein the foreign gene code for T7 RNA polymerase a cell infected by a recombinant MVA virus as above wherein the foreign gene code for T7 RNA polymerase, additionally containing one or more expression vectors carrying one or more foreign genes under transcriptional control of a T7 RNA polymerase promoter;
- an expression vector carrying a retroviral vector construct capable of infecting and directing the expression in target cells of one or more foreign genes carried by said retroviral vector construct
- a vaccine comprising as a first component, a recombinant MVA virus as above wherein the foreign gene code for T7 RNA polymerase in a physiologically acceptable carrier, and as a second component a DNA sequence carrying an antigenic determinant under transcriptional control of a T7 RNA polymerase promoter in a physiologically acceptable carrier, the two components being contained together or separate;
- a vaccine as abiove for the immunisation of a living animal body, including a human, comprising inoculation of said living animal body, including a human, with the first and second component of the vaccine either simultaneously or with a timelag using the same inoculation site;
- gene means any DNA sequence which codes for a protein or peptide.
- the term "foreign gene” means a gene inserted in a DNA sequence in which it is not normally found.
- the foreign gene can be a marker gene, a therapeutic gene, a gene encoding an antigenic determinant, or a viral gene, for example.
- Such genes are well known in the art.
- Modified vaccinia virus Ankara (MVA), a host range restricted and highly attenuated vaccinia virus strain, is unable to multiply in human and most other mammalian cell lines tested. But since viral gene expression is unimpaired in non-permissive cells the recombinant MVA viruses according to the invention may be used as exceptionally safe and efficient expression vectors.
- the present invention relates to recombinant MVA vaccinia viruses which contain a gene which codes for a foreign antigen, preferably of a pathogenic agent, and vaccines containing such a virus in a physiologically acceptable form.
- the invention also relates to methods for the preparation of such recombinant MVA vaccinia viruses or vaccines, and to the use of these vaccines for the prophylaxis of infections caused by such pathogenic agents.
- the foreign gene inserted in the MVA virus is a gene encoding HIV nef.
- Nef vaccinia virus early/late promoter P7.5.
- the regulatory Nef protein of primate lentrviruses is synthesized early in the viral replication cycle and has been shown to be essential for high titer virus replication and disease induction in vivo. This suggests that HIV Nef might play a crucial role in AIDS pathogenesis.
- the molecular mechanism(s) by which Nef contributes to increased viral infectivity and to HIV pathogenicity need to be further elucidated.
- Nef is immunogenic and Nef-specific antigen can be used as a vaccine against HIV infection and AIDS.
- the recombinant MVA virus expressing the HIV nef gene can be used for immunization of human beings, on one hand, as a prophylactic vaccine against human HIV, and on the other hand, for immunotherapy of HIV infected or AIDS patients. Furthermore, the recombinant MVA virus expressing the HIV nef gene can be used for the production of recombinant HIV Nef protein.
- the foreign gene inserted in the MVA virus is a gene encoding human tyrosinase.
- the recombinant MVA virus expressing the human tyrosinase gene can be used in melanoma patients to induce immune reponses that provoke tumor rejection or prevent metastasis.
- Recombinant MVA virus expressing the human tyrosinase gene can be used directly as an anti-melanoma vaccine, or the virus can be used to prepare anti- melanoma vaccines.
- the recombinant MVA virus expressing the human tyrosinase gene can be used for the production of recombinant tyrosinase protein which is used as antigen in vaccine preparations.
- cells derived from a tumor patient can be modified in vitro to express tyrosinase and then transferred back to the patient to induce anti-tumor immune responses.
- a vaccine prepared on the basis of recombinant MVA expressing the human tyrosinase gene can be used either parenterally or locally at the site of the tumor. To prevent tumor metastasis or to phenotypically change the tumor e.g. in size, shape, consistency, vascularization or other features.
- a vaccine prepared on the basis of recombinant MVA expressing the human tyrosinase gene can be used before, during, or after surgical extirpation of the tumor.
- the MVA vaccinia viruses according to the invention are converted into a physiologically acceptable form. This can be done based on the experience in the preparation of MVA vaccines used for vaccination against smallpox (as described by Stickl, H. et al. [1974] Dtsch. med. Wschr. 99, 2386-2392).
- MVA vaccines used for vaccination against smallpox
- about 10 6 -10 8 particles of the recombinant MVA are freeze-dried in 100ml of phosphate-buffered saline (PBS) in the presence of 2% peptone and 1% human albumin in an ampoule, preferably a glass ampoule.
- PBS phosphate-buffered saline
- the lyophilisate can contain extenders (such as mannitol, dextran, sugar, glycine, lactose or polyvinylpyrrolidone) or other aids (such as antioxidants, stabilizers, etc.) suitable for parenteral administration.
- extenders such as mannitol, dextran, sugar, glycine, lactose or polyvinylpyrrolidone
- other aids such as antioxidants, stabilizers, etc.
- the lyophilisate can be dissolved in 0.1 to 0.5 ml of an aqueous solution, preferably physiological saline, and administered either parenterally, for example by intramuscular inoculation or locally, for example by inoculation into a tumor or at the site of a tumor.
- Vaccines or therapeutics according to the invention are preferably injected intramuscularly (Mayr, A. et al. [1978] Zbl. Bakt. Hyg., I. Abt. Orig. B 167, 375-390).
- the mode of administration, the dose and the number of administrations can be optimized by those skilled in the art in a known manner. It is expedient where appropriate to administer the vaccine several times over a lengthy period in order to obtain appropriate immune responses against the foreign antigen.
- the recombinant MVA vaccinia viruses according to the invention can also be used to prepare heterologous polypeptides in eukaryotic cells. This entails cells being infected with the recombinant vaccinia viruses. The gene which codes for the foreign polypeptide is expressed in the cells, and the expressed heterologous polypeptide is isolated.
- the methods to be used for the production of such heterologous polypeptides are generally known to those skilled in the art (EP-A-206, 920 and EP-A- 205, 939).
- the polypeptides produced with the aid of the recombinant MVA viruses are, by reason of the special properties of the MVA viruses, more suitable for use as medicaments in humans and animals.
- MVA viruses that allow expression of the bacteriophage T7 RNA polymerase gene under the control of the vaccinia virus early/late promoter P7.5.
- the usefulness of MVA-T7pol recombinant viruses as expression system has been tested in transient transfection assays to induce expression of recombinant genes under the control of a T7 RNA polymerase promoter. Using the E.
- coli chloramphenicol acetyltransferase (CAT) gene as a reporter gene we found that MVA-T7pol induced CAT gene expression as effectively as a vaccinia/T7pol recombinant virus derived from the replication-competent WR strain of vaccinia virus.
- CAT chloramphenicol acetyltransferase
- the MVA/T7 polymerase hybrid system according to the invention can thus be used as a simple, efficient and safe mammalian expression system for production of polypeptides in the absence of productive vaccinia virus replication.
- This expression system can also be used for generating recombinant viral particles for vaccination or gene therapy by transformation of cell lines infected with recombinant MVA expressing T7 RNA polymerase, with DNA-constructs containing all or some of the genes, and the genome or recombinant genome nessesary for generating viral particles, e.g MVA particles or retroviral particles, under transcriptional control of a T7 RNA polymerase promoter.
- Retroviral vector systems consist of two components:
- the retroviral vector itself is a modified retrovirus (vector plasmid) in which the genes encoding for the viral proteins have been replaced by therapeutic genes and marker genes to be transferred to the target cell. Since the replacement of the genes encoding for the viral proteins effectively cripples the virus it must be rescued by the second component in the system which provides the missing viral proteins to the modified retrovirus.
- vector plasmid vector plasmid
- the second component is:
- This cell line is known as the packaging cell line and consists of a cell line transfected with one or more plasmids carrying the genes (genes encoding the gag, pol and env polypeptides) enabling the modified retroviral vector to be packaged.
- the vector plasmid is transfected into the packaging cell line. Under these conditions the modified retroviral genome including the inserted therapeutic and marker genes is transcribed from the vector plasmid and packaged into the modified retroviral particles (recombinant viral particles).
- This recombinant virus is then used to infect target cells in which the vector genome and any carried marker or therapeutic genes becomes integrated into the target cell's DNA.
- a cell infected with such a recombinant viral particle cannot produce new vector virus since no viral proteins are present in these cells.
- the DNA of the vector carrying the therapeutic and marker genes is integrated in the cell's DNA and can now be expressed in the infected cell.
- the recombinant MVA virus according to the invention expressing T7 RNA polymerase can be used to produce the proteins required for packaging retroviral vectors.
- a retrovirus e.g. the Murine Leukemia Virus (MLV)
- MMV Murine Leukemia Virus
- the expression vectors are then introduced into cells infected with the recombinant MVA virus expressing T7 RNA polymerase, together with an expression vector carrying a retroviral vector construct, possibly under transcriptional control of a T7 RNA polymerase promoter.
- WO 94/29437, WO 89/11539 and WO 96/07748 describes different types of retroviral vector constructs which can be packaged using the packaging system decribed above.
- a further use of the recombinant MVA virus expressing T7 RNA polymerase is to generate recombinant proteins, non-infectious virus particles, or infectious mutant virus particles for the production of vaccines or therapeutics (Buchholz et al., Virology, 204, 770-776 (1994) and EP-B1 -356695).
- viral genes e.g. the gag-pol and env genes of HIV-1
- an expression vector e.g. plasmid or another recombinant MVA virus. This construct is then introduced into cells infected with the recombinant MVA virus expressing T7 RNA polymerase.
- the recombinant viral genes are transcribed with high efficiency, recombinant proteins are made in high amounts and can be purified. Additionally, expressed recombinant viral proteines (e.g. HIV-1 env, gag) may assemble to viral pseudo-particles that budd from the cells and can be isolated from the tissue culture medium.
- viral proteins from e.g. HIV, SIV, Measles virus
- expressed by the MVA-T7 pol system may rescue an additionally introduced mutant virus (derived from e.g. HIV, SIV, Measles virus) by overcoming a defect in attachment and infection, uncoating, nucleic acid replication, viral gene expression, assembly, budding or another step in viral multiplication to allow production and purification of the mentioned mutant virus.
- MVA-T7pol can also be used together with DNA sequences carrying the gene of an antigen of interest (e.g. the gene of HIV, nef, tat, gag, pol , or env or others) for immunization.
- an antigen of interest e.g. the gene of HIV, nef, tat, gag, pol , or env or others
- a coding sequence of a given antigen e.g HIV, HCV, HPV, HSV, measles virus, influenza virus or other
- T7 RNA polymerase promoter preferably in a plasmid vector and the resulting DNA construct is amplified and purified using standard laboratory procedures.
- the vector DNA is inoculated simultaneously or with appropriate limelags together with MVA-T7pol.
- the recombinant gene of interest is expressed transiently in cells containing both the vector DNA and MVA-T7 pol and the corresponding antigen is presented to the host immune system stimulating an antigen-specific immune response.
- This protocol using the non-replication vaccinia vector MVA -T7 pol represents a promising novel approach to nucleic acid vaccination allowing efficient transient expression of a given antigen, but avoiding the potential risk of constitutive gene expression.
- the recombinant MVA vaccinia viruses can be prepared as set out hereinafter.
- a DNA-construct which contains a DNA-sequence which codes for a foreign polypeptide flanked by MVA DNA sequences adjacent to a naturally occuring deletion, e.g. deletion II, within the MVA genome, is introduced into cells infected with MVA, to allow homologous recombination.
- the DNA-construct to be inserted can be linear or circular.
- a circular DNA is prefered, especially a plasmid.
- the DNA-construct contains sequences flanking the left and the right side of a naturally occuring deletion, e.g. deletion II, within the MVA genome ( Altenburger, W., Suter, CP. and Altenburger J. (1989) Arch. Virol. 105, 15-27).
- the foreign DNA sequence is inserted between the sequences flanking the naturally occuring deletion.
- the foreign DNA sequence can be a gene coding for a therapeutic polypeptide, e.g. t-PA or interferon, or an antigenic determinant from a pathogenic agent.
- Pathogenic agents can be viruses, bacteria and parasites which may cause a disease, as well as tumor cells which multiply unrestrictedly in an organism and may thus lead to pathological growths. Examples of such pathogenic agents are described in Davis, B.D. et al. , (Microbiology, 3rd ed., Ha ⁇ er International Edition). Preferred antigens of pathogenic agents are those of human immunodificiency viruses (e.g. HIV-1 and HIV-2), of mycobacteria causing tuberculosis, of the parasite Plasmodium falciparum, and of melanoma cells .
- human immunodificiency viruses e.g. HIV-1 and HIV-2
- promoters are known to those skilled in the art, and includes for example those of the vaccinia 11 kDa gene as are described in EP-A-198, 328, and those of the 7.5 kDa gene (EP-A-110, 385).
- the DNA-construct can be introduced into the MVA infected cells by transfection, for example by means of calcium phospate precipitation (Graham et al., Virol. 52, 456-467 [1973]; Wigler et al., Cell 777-785 [1979] by means of electroporation (Neumann et al., EMBO J. 1, 841-845 [1982]), by microinjection (Graessmann et al., Meth. Enzymology 101 , 482-492 (1983)), by means of liposomes (Straubinger et al., Methods in Enzymology 101 , 512-527 (1983)), by means of spheroplasts (Schaffner, Proc. Natl. Acad. Sci. USA 77, 2163-2167 (1980)) or by other methods known to those skilled in the art. Transfection by means of calcium phosphate precipitation is prefered.
- Figure 1 Schematic map of the genome of MVA and plasmid for insertion of foreign DNA by homologous recombination: H/ndlll restriction sites within the genome of MVA are indicated at the top. The 900-bp HincHtt- H/ndlll N fragment that overlaps the junction of deletion II within the MVA genome is shown. MVA DNA sequences adjacent to deletion II (flanki and flank2) were amplified by PCR and used for the construction of insertion plasmid pUC II LZ.
- FIG. 2 pUC II LZ P7.5: MVA vector plasmid for insertion into deletion II containing P11-LacZ expression cassette and the vaccinia virus early/late promoter P7.5 to express genes of interest that can be cloned into the Smal site of the plasmid.
- FIG. 3 pUCII LZdel P7.5: MVA vector plasmid for insertion of foreign genes at the site of deletion II in the MVA genome, containing a self-deleting P11-LacZ expression cassette and the vaccinia virus eariy/late promoter P7.5 to express genes of interest that can be cloned into the Smal / No ⁇ cloning site of the plasmid.
- FIG. 4 Construction of recombinant virus MVA-T7pol: schematic maps of the
- MVA genome H/ndlll restriction endonuclease sites
- vector plasmid pUC II LZ T7pol that allows insertion of the T7 RNA polymerase gene at the site of deletion II within the Hind ⁇ N fragment of the MVA genome.
- Figure 6 Metabolic labeling of proteins using [ 35 S]methionine. SDS PAGE analysis. Lane 1 : MVA T7pol, Lane 2: MVA, lane 3: CV-1 cells.
- Figure 7 CAT assay: CV-1 cells transfected with plasmid containing CAT gene under control of T7 RNA polymerase promoter and infected with MVA- T/pol or WR-T7pol. Lysates were tested for CAT activity.
- C means chloramphenicol
- 1-AcC and 3-AcC means mono and tri acetylated forms of chloramphenicol.
- Cat activity is expressed as percentage of acetylated product formed in 60 min.
- FIG. 8 Construction of MVA-LAInef: schematic maps of the MVA genome
- FIG. 9 Construction of MVA-hTYR: schematic maps of the MVA genome (/- / ⁇ dlll restriction endonuclease sites) and the vector plasmid pUC II LZdel P7.5-TYR that allows insertion of the human tyrosinase gene at the site of deletion II within the H/ndlll N fragment of the MVA genome
- the MVA virus is a highly attenuated vaccinia virus derived from the vaccinia virus strain Ankara (CVA) by long-term serial passages on primary chicken embryo fibroblast (CEF) cultures.
- CVA vaccinia virus strain Ankara
- CEF primary chicken embryo fibroblast
- CEF cells 11- days old embryos were isolated from incubated chicken eggs, the extremities are removed, and the embryos are minced and dissociated in a solution composed of 0.25% trypsin at 37 9 C for 20 minutes.
- the resulting cell suspension was filtered and cells were sedimented by centrifugation at 2000 rpm in a Sorvall RC-3B centrifuge at room temperature for 5 minutes, resuspended in 10 volumes of medium A (MEM Eagle, for example obtainable from Life Technologies GmbH, Eggenstein, Germany), and sedimented again by centrifugation at 2000 rpm in a Sorvall RC-3B centrifuge at room temperature for 5 minutes.
- medium A MEM Eagle, for example obtainable from Life Technologies GmbH, Eggenstein, Germany
- the cell pellet was reconstituted in medium A containing 10% fetal calf serum (FCS), penicillin (100 units/ml), streptomycin (100 mg/ml) and 2 mM glutamine to obtain a cell suspension containing 500 000 cells/ml.
- CEF cells obtained in this way were spread on cell culture dishes. They were left to grow in medium A in a CO2 incubator at 37°C for 1-2 days, depending on the desired cell density, and were used for infection either directly or after one further cell passage.
- FCS fetal calf serum
- penicillin 100 units/ml
- streptomycin 100 mg/ml
- 2 mM glutamine 2 mM glutamine
- MVA viruses were used for infection as follows. CEF cells were cultured in 175 cm 2 cell culture bottles. At 90-100% confluence, the medium was removed and the cells were incubated for one hour with an MVA virus suspension (0.01 infectious units (IU) per cell, 0.02 ml/cm 2 ) in medium A. Then more medium A was added (0.2 ml/cm 2 ) and the bottles were incubated at 37°C for 2-3 days (until about 90% of the cells show cytopathogenic effect). Crude virus stocks were prepared by scraping cell monolayers into the medium and pelleting the cell material by centrifugation at 3000 rpm in a Sorvall RC-3B centrifuge at 4 5 C for 5 minutes. The crude virus preparation was stored at -20°C before further processing (e.g. virus purification)
- the cell nuclei and the larger cell debris were removed in the subsequent brief centrifugation of the suspension (Sorvall GSA rotor obtainable from DuPont Co., D-6353 Bad Nauheim, FRG; 3 minutes at 3000 ⁇ m and 10° C).
- the sediment was once again suspended in Tris buffer 1 , treated with ultrasound and centrifuged, as described above.
- the collected supematants containing the free virus particles were combined and layered over a cushion of 10 ml of 36% sucrose in 10 mM Tris-HCl, pH 9.0, and centrifuged in a Beckman SW 27/SW 28 rotor for 80 minutes with 13,500 rpm at 4° C.
- the supernatant was discarded, and the sediment containing the virus particles was taken up in 10 ml of 1 mM Tris-HCl, pH 9.0, homogenized by brief treatment with ultrasound (2x10 seconds at room temperature, apparatus as described above), and applied to a 20-40% sucrose gradient (sucrose in 1 mM Tris ⁇ HCl, pH 9.0) for further purification.
- the gradient was centrifuged in Beckmann SW41 rotor at 13,000 rpm for 50 minutes at 4° C. After centrifugation, discrete bands containing virus particles were harvested by pipetting after aspirating volume above band.
- sucrose solution was diluted with three volumes PBS and the virus particles were sedimented again by centrifugation (Beckmann SW 27/28, 60 minutes at 13,500 rpm, 4° C).
- the pellet which now consisted mostly of pure virus particles, was resuspended in PBS and equilibrated to virus concentrations corresponding on average to 1-5 x 10 9 IU/ml.
- the purified virus stock solution was stored at -80 9 C and used either directly or diluted with PBS for subsequent experiments.
- MVA virus obtained from Prof. Anton Mayr was cloned by limiting dilution during three consecutive passages in CEF cultured on 96-well tissue culture plates.
- the MVA clone F6 was selected and amplified in CEF to obtain working stocks of virus that served as starting material for the generation of recombinant MVA viruses described in this patent application as well as for the generation of recombinant MVA viruses described previously (Sutter, G. and Moss, B. [1992] Proc. Natl. Acad. Sci. USA 89, 10847-10851 ; Sutter, G., Wyatt, L, Foley, P., Bennink, J. and Moss, B.
- the primers for the left 600-bp DNA flank were 5'-CAG CAG GGT ACC CTC ATC GTA CAG GAC GTT CTC-3' and 5'-CAG CAG CCC GGG TAT TCG ATG ATT ATT TTT AAC AAA ATA ACA-3' (sites for restriction enzymes Kpn ⁇ and Smal are underlined).
- the primers for the right 550-bp DNA flank were 5'-CAG CAG CTG CAG GAA TCA TCC ATT CCA CTG AAT AGC-3' and 5'-CAG CAG GCA TGC CGA CGA ACA AGG AAC TGT AGC AGA-3' (sites for restriction enzymes Ps1 ⁇ and Spnl are underlined).
- the Escherichia coli lacZ gene under control of the vaccinia virus late promoter P11 (prepared by restriction digest from pill LZ, Sutter, G. and Moss, B. [1992] PNAS USA 89, 10847-10851) was inserted, using the BamHI site, to generate the MVA insertion vector pUCII LZ [ Figure 1].
- a 289 bp fragment containing the vaccinia virus early-late promoter P7.5 together with a Smal site for cloning prepared by restriction digest with EcoR and Xba ⁇ from the plasmid vector pSC11 [Chakrabarti et al.
- coli LacZ open reading frame was amplified by PCR (primers were 5'-CAG CAG GTC GAC CCC GAC CGC CTT ACT GCC GCC-3' and 5'-GGG GGG CTG CAG ATG GTA GCG ACC GGC GCT CAG-3') and cloned into the Sa/I and PstI sites of pUC II LZ P7.5 to obtain the MVA vector pUC II LZdel P7.5 [ Figure 3]. Using the Smal site, this vector plasmid can be used to insert DNA sequences encoding a foreign gene under transcriptional control of the vaccinia virus promoter P7.5 into the MVA genome.
- a 3.1 kbp DNA fragment containing the entire gene of bacteriophage T7 RNA polymerase under control of the vaccinia virus early/late promoter P7.5 was excised with EcoRI from plasmid pTF7-3 (Fuerst, T.R., Niles, E.G., Studier, F.W. and Moss, B., 1986, P. N. A. S. USA 83, 8122-8126), modified by incubation with Klenow DNA polymerase to generate blunt ends, and cloned into a unique Smal restriction site of pUCII LZ to make the plasmid transfer vector pUCII LZ T7pol [ Figure 4].
- the vaccinia virus early/late promoter P7.5 was chosen. Contrary to stronger vaccinia virus late promoters (e.g. P11 ) this promoter system allows expression of recombinant genes immediately after the infection of target cells.
- the plasmid pUCII LZ T7pol that directs the insertion of the foreign genes into the site of deletion II of the MVA genome was used to generate the recombinant virus MVA T7pol.
- CEF cells infected with MVA at a multiplicity of 0.05 TCID 50 per cell were transfected with DNA of plasmid pUCII LZ T7pol as described previously (Sutter, G, Wyatt, L., Foley, P., Bennink, J. and Moss, B. (1994) Vaccine 12, 1032-1040).
- Recombinant MVA virus expressing the T7 RNA polymerase and co-expressing ⁇ -D-galactosidase (MVA P7.5-T7pol) was selected by five consecutive rounds of plaque purification in CEF cells stained with 5-bromo-4-chloro-3-indolyl ⁇ -D-galactoside (300 ⁇ g/ml).
- CAT T7 RNA polymerase promoter
- Transfected and infected CV-1 cells were suspended in 0.2 ml of 0.25 M Tris-HCl (pH 7.5). After three freeze-thaw cycles, the lysates were cleared by centrifugation, the protein content of the supematants was determined, and samples containing 0.5, 0.25, 0.1 ⁇ g total protein were assayed for enzyme activity as described by Mackett, M., Smith, G.L. and Moss, B. (1984) J. Virol. 49, 857-864. After autoradiography, labeled spots were quantitated using the Fuji imaging analysis system.
- a 648 bp DNA fragment containing the entire nef gene of HIV-1 LAI was prepared by PCR from plasmid DNA (pTG1166 kindly provided by M.-P. Kieny, Transgene S.A., France; PCR primers were 5'-CAG CAG GGA TCC ATG GGT GGC AAG TGG TCA AAA AGT AGT-3' and 5'-CAG CAG GGA TCC ATG TCA GCA GTT CTT GAA GTA CTC CGG-3'), digested with restriction endonuclease BamHI, modified by incubation with Klenow DNA polymerase to generate blunt ends, and cloned into the Smal site of pUC II LZdel P7.5 to make the vector pUC II LZdel P7.5-LAInef [Figure 8].
- This plasmid could be used to engineer MVA recombinant virus that expresses the nef gene of HIV-1 LAI under control of the vaccinia virus early/late
- CEF cells infected with MVA at a multiplicity of 0.05 TCID 5 0 per cell were transfected with DNA of plasmid pUC II LZdel P7.5-LAInef as described previously (Sutter, G, Wyatt, L, Foley, P., Bennink, J. and Moss, B. [1994] Vaccine 12, 1032-1040).
- Recombinant MVA viruses containing the nef gene and transiently co-expressing the E. coli LacZ marker gene were selected by consecutive rounds of plaque purification in CEF cells stained with 5-bromo-4-chloro-3-indoiyl ⁇ -D-galactoside (300 ⁇ g/ml).
- recombinant MVA viruses containing the nef gene and having deleted the LacZ marker gene were isolated by three additional consecutive rounds of plaque purification screening for non-staining viral foci in CEF cells in the presence of 5-bromo-4-chloro-3- indolyl ⁇ -D-galactoside (300 ⁇ g/ml). Subsequently, recombinant viruses were amplified by infection of CEF monolayers, and the MVA-LAInef viral DNA was analyzed by PCR to confirm genetic homogeneity of the virus stock. Southern blot analysis of viral DNA confirmed genetic stability of MVA-LAInef and precisely demonstrated integration of the nef gene and deletion of the E. coli LacZ marker gene at the site of deletion II within the viral genome.
- CEF cells infected with MVA at a multiplicity of 0.05 TCID 5 0 per cell were transfected with DNA of plasmid pUC II LZdel P7.5-TYR as described previously (Sutter, G, Wyatt, L, Foley, P., Bennink, J. and Moss, B. (1994) Vaccine 12, 1032-1040).
- Recombinant MVA virus stably expressing the gene for human tyrosinase and transiently co-expressing the E. coli LacZ gene was selected by consecutive rounds of plaque purification in CEF cells stained with 5-bromo-4-chloro-3-indolyl ⁇ -D-galactoside (300 ⁇ g/ml).
- recombinant MVA virus expressing the gene encoding human tyrosinase and having deleted the LacZ marker gene was isolated by three additional consecutive rounds of plaque purification screening for non-staining viral foci in CEF cells in the presence of 5- bromo-4-chloro-3-indolyl ⁇ -D-galactoside (300 ⁇ g/ml). Subsequently, recombinant viruses were amplified by infection of CEF monolayers, and the MVA-hTYR viral DNA was analyzed by PCR to confirm genetic homogeneity of the virus stock.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Medicinal Chemistry (AREA)
- Virology (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biophysics (AREA)
- Immunology (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Epidemiology (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Manufacturing & Machinery (AREA)
- AIDS & HIV (AREA)
- Tropical Medicine & Parasitology (AREA)
- Pulmonology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
Description
Claims
Priority Applications (31)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
UA97126424A UA68327C2 (en) | 1995-07-04 | 1996-03-07 | A recombinant mva virus, an isolated eukaryotic cell, infected with recombinant mva virus, a method for production in vitro of polypeptides with use of said cell, a method for production in vitro of virus parts (variants), vaccine containing the recombinant mva virus, a method for immunization of animals |
HU0402350A HU229261B1 (en) | 1995-07-04 | 1996-07-03 | Recombinant mva-virus comprising a gene encoding a hiv net antigen ar an antigen determinant and use thereof |
MX9800025A MX9800025A (en) | 1995-07-04 | 1996-07-03 | Recombinant mva virus, and the use thereof. |
PL96324347A PL186857B1 (en) | 1995-07-04 | 1996-07-03 | Recombinant mva virus, their use, cells infected thereby and vaccines containing them |
JP50482497A JP4312260B2 (en) | 1995-07-04 | 1996-07-03 | Recombinant MVA virus and uses thereof |
DK96925654T DK0836648T3 (en) | 1995-07-04 | 1996-07-03 | Recombinant MVA virus and its use |
BRPI9609303-0B8A BR9609303B8 (en) | 1995-07-04 | 1996-07-03 | MODIFIED ANKARA VACCINIA VIRUS (MVA), RECOMBINANT, AS A VACCINE CONTAINING THE SAME. |
HU9802217A HU224061B1 (en) | 1995-07-04 | 1996-07-03 | Recombinant mva virus, and the use thereof |
NZ313597A NZ313597A (en) | 1995-07-04 | 1996-07-03 | Recombinant mva virus, and the use thereof |
SI9630623T SI0836648T1 (en) | 1995-07-04 | 1996-07-03 | Recombinant mva virus, and the use thereof |
EEP200300331A EE05138B1 (en) | 1995-07-04 | 1996-07-03 | Recombinant MVA Virus and Its Uses, Isolated Eukaryotic Cell, Method for Recombinant HIV Nef Protein, and Vaccine |
AU66110/96A AU721735B2 (en) | 1995-07-04 | 1996-07-03 | Recombinant MVA virus, and the use thereof |
IL12212096A IL122120A (en) | 1995-07-04 | 1996-07-03 | Recombinant mva virus containing a foreign gene inserted in a naturally occuring deletion within the genome |
CA002225278A CA2225278C (en) | 1995-07-04 | 1996-07-03 | Recombinant mva virus, and the use thereof |
DE69628011T DE69628011T2 (en) | 1995-07-04 | 1996-07-03 | RECOMBINANT MVA VIRUS AND ITS USE |
EE9700344A EE04199B1 (en) | 1995-07-04 | 1996-07-03 | Recombinant MVA virus, isolated eukaryotic cell and vaccine and their use |
EEP200300332A EE04753B1 (en) | 1995-07-04 | 1996-07-03 | Recombinant MVA virus and its use, isolated eukaryotic cell, method for producing recombinant hTyr protein and vaccine |
AT96925654T ATE239796T1 (en) | 1995-07-04 | 1996-07-03 | RECOMBINANT MVA VIRUS AND ITS USE |
EP96925654A EP0836648B1 (en) | 1995-07-04 | 1996-07-03 | Recombinant mva virus, and the use thereof |
NO19980026A NO322476B1 (en) | 1995-07-04 | 1998-01-02 | Recombinant MVA virus and uses thereof |
US09/002,443 US6440422B1 (en) | 1995-07-04 | 1998-01-02 | Recombinant MVA virus, and the use thereof |
HK98110632A HK1009830A1 (en) | 1995-07-04 | 1998-09-15 | Recombinant mva virus, and the use thereof. |
US10/147,284 US7198934B2 (en) | 1995-07-04 | 2002-05-15 | Recombinant MVA virus, and the use thereof |
IL164318A IL164318A (en) | 1995-07-04 | 2004-09-28 | Vaccine comprising a recombinant modified vaccinia ankara virus containing at least one foreign gene inserted at a site of a naturally occuring deletion within the viral genome and preparation thereof |
US11/522,889 US8153138B2 (en) | 1995-07-04 | 2006-09-19 | Recombinant MVA virus |
US11/523,004 US20070071769A1 (en) | 1995-07-04 | 2006-09-19 | Recombinant MVA virus, and the use thereof |
US11/523,030 US20070071770A1 (en) | 1995-07-04 | 2006-09-19 | Recombinant MVA virus, and the use thereof |
IL202448A IL202448A0 (en) | 1995-07-04 | 2009-12-01 | Vaccine comprising recombinant modified vaccine ankara virus and uses thereof |
US12/814,602 US8197825B2 (en) | 1995-07-04 | 2010-06-14 | Recombinant MVA virus and the use thereof |
IL212933A IL212933A0 (en) | 1995-07-04 | 2011-05-17 | Eukaryotic cell comprising a recombinant modified vaccinia ankara (mva) virus |
IL219528A IL219528A0 (en) | 1995-07-04 | 2012-05-02 | Vaccine comprising recombinant modified vaccine ankara virus and uses thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DK78295 | 1995-07-04 | ||
DK0782/95 | 1995-07-04 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/002,443 Continuation US6440422B1 (en) | 1995-07-04 | 1998-01-02 | Recombinant MVA virus, and the use thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1997002355A1 true WO1997002355A1 (en) | 1997-01-23 |
Family
ID=8097499
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP1996/002926 WO1997002355A1 (en) | 1995-07-04 | 1996-07-03 | Recombinant mva virus, and the use thereof |
Country Status (27)
Country | Link |
---|---|
US (6) | US6440422B1 (en) |
EP (3) | EP1312678B1 (en) |
JP (3) | JP4312260B2 (en) |
KR (1) | KR19990028617A (en) |
CN (3) | CN1154742C (en) |
AT (3) | ATE239796T1 (en) |
AU (1) | AU721735B2 (en) |
BR (1) | BR9609303B8 (en) |
CA (3) | CA2608864C (en) |
CZ (1) | CZ292460B6 (en) |
DE (3) | DE69628011T2 (en) |
DK (3) | DK1312678T3 (en) |
EE (3) | EE04199B1 (en) |
ES (3) | ES2249648T3 (en) |
HK (2) | HK1009830A1 (en) |
HU (2) | HU224061B1 (en) |
IL (5) | IL122120A (en) |
MX (1) | MX9800025A (en) |
NO (1) | NO322476B1 (en) |
NZ (1) | NZ313597A (en) |
PL (1) | PL186857B1 (en) |
PT (1) | PT836648E (en) |
RU (1) | RU2198217C2 (en) |
SI (3) | SI1312678T1 (en) |
TW (2) | TW575664B (en) |
UA (3) | UA68327C2 (en) |
WO (1) | WO1997002355A1 (en) |
Cited By (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2784997A1 (en) * | 1998-10-22 | 2000-04-28 | Transgene Sa | Biological material for preparation of pharmaceuticals useful e.g. as anticancer or antiviral agents, comprises a nucleic acid expressing an antibody that activates immune cells |
WO2000073476A1 (en) * | 1999-05-28 | 2000-12-07 | Gsf Forschungszentrum Für Umwelt Und Gesundheit Gmbh | Vector for integration of heterologous sequences into poxviral genomes |
WO2001068820A1 (en) * | 2000-03-14 | 2001-09-20 | Anton Mayr | Altered strain of the modified vaccinia virus ankara (mva) |
EP1188834A1 (en) * | 2000-08-30 | 2002-03-20 | GSF-Forschungszentrum für Umwelt und Gesundheit GmbH | Recombinant MVA expressing the HER-2/neu gene |
WO2002031168A2 (en) * | 2000-10-10 | 2002-04-18 | Genstar Therapeutics | Minimal adenoviral vector and recombinant vaccines based thereon |
WO2002042480A3 (en) * | 2000-11-23 | 2002-08-01 | Bavarian Nordic Res Inst As | Modified vaccinia ankara virus variant |
WO2003023040A2 (en) * | 2001-09-11 | 2003-03-20 | Gsf-Forschungszentrum Für Umwelt Und Gesundheit, Gmbh | Vaccinia virus mva-e3l-knockout-mutants and use thereof |
WO2003054175A1 (en) * | 2001-12-20 | 2003-07-03 | Bavarian Nordic A/S | Method for the recovery and purification of poxviruses from infected cells |
WO2003097845A1 (en) * | 2002-05-16 | 2003-11-27 | Bavarian Nordic A/S | Intergenic regions as insertion sites in the genome of modified vaccinia virus ankara (mva) |
DE10249390A1 (en) * | 2002-10-23 | 2004-05-13 | Ruprecht-Karls-Universität Heidelberg | Recombinant MVA strains as potential vaccines against P. falciparum malaria |
WO2004048582A2 (en) * | 2002-11-25 | 2004-06-10 | Bavarian Nordic A/S | Recombinant poxvirus comprising at least two cowpox ati promoters |
GB2402391A (en) * | 2003-06-04 | 2004-12-08 | Oxxon Pharmaccines Ltd | Fowlpox recombinant genome |
EP1518932A1 (en) * | 2003-09-29 | 2005-03-30 | GSF-Forschungszentrum für Umwelt und Gesundheit GmbH | Modified vaccinia virus Ankara (MVA) mutant and use thereof |
WO2008045346A2 (en) | 2006-10-06 | 2008-04-17 | Bn Immunotherapeutics Inc. | Recombinant modified vaccinia ankara encoding a her-2 antigen for use in treating cancer |
US7445924B2 (en) | 2000-11-23 | 2008-11-04 | Bavarian Nordic A/S | Modified Vaccinia Ankara virus variant and cultivation method |
US7501127B2 (en) | 2002-05-16 | 2009-03-10 | Bavarian Nordic A/S | Intergenic regions as novel sites for insertion of HIV DNA sequences in the genome of Modified Vaccinia virus Ankara |
US7628980B2 (en) | 2000-11-23 | 2009-12-08 | Bavarian Nordic A/S | Modified vaccinia virus ankara for the vaccination of neonates |
WO2009152969A1 (en) * | 2008-06-20 | 2009-12-23 | Bavarian Nordic A/S | Recombinant modified vaccinia virus measles vaccine |
US7695939B2 (en) | 2002-09-05 | 2010-04-13 | Bavarian Nordic A/S | Method for the cultivation of primary cells and for the amplification of viruses under serum free conditions |
US7759116B2 (en) | 2001-12-04 | 2010-07-20 | Bavarian Nordic A/S | MVA virus vector expressing dengue NS1 protein |
US7897156B2 (en) | 2001-11-22 | 2011-03-01 | Bavarian Nordic A/S | Modified vaccinia virus ankara for the vaccination of neonates |
WO2013083254A1 (en) | 2011-12-09 | 2013-06-13 | Bavarian Nordic A/S | Poxvirus vector for the expression of bacterial antigens linked to tetanus toxin fragment c |
US8535682B2 (en) | 2001-04-06 | 2013-09-17 | Merial Limited | Recombinant vaccine against West Nile Virus |
WO2014009438A2 (en) | 2012-07-10 | 2014-01-16 | Transgene Sa | Mycobacterial antigen vaccine |
WO2014009433A1 (en) | 2012-07-10 | 2014-01-16 | Transgene Sa | Mycobacterium resuscitation promoting factor for use as adjuvant |
US9005632B2 (en) | 2009-11-20 | 2015-04-14 | Takeda Vaccines, Inc. | Compositions, methods and uses for poxvirus elements in vaccine constructs against influenza virus subtypes or strains |
US9011874B2 (en) | 2009-11-20 | 2015-04-21 | Takeda Vaccines, Inc. | Compositions, methods and uses for poxvirus elements in vaccine constructs |
WO2015104380A1 (en) | 2014-01-09 | 2015-07-16 | Transgene Sa | Fusion of heterooligomeric mycobacterial antigens |
US9109201B2 (en) | 2007-05-14 | 2015-08-18 | Bavarian Nordic A/S | Purification of vaccinia viruses using hydrophobic interaction chromatography |
US20150231227A1 (en) * | 2000-03-02 | 2015-08-20 | Emory University | Compositions and methods for generating an immune response |
WO2017191147A1 (en) | 2016-05-04 | 2017-11-09 | Transgene Sa | Combination therapy with cpg tlr9 ligand |
WO2018069316A2 (en) | 2016-10-10 | 2018-04-19 | Transgene Sa | Immunotherapeutic product and mdsc modulator combination therapy |
US9988425B2 (en) | 2012-01-27 | 2018-06-05 | Laboratories Del Dr. Esteve S.A. | Immunogens for HIV vaccination |
WO2018234506A2 (en) | 2017-06-21 | 2018-12-27 | Transgene Sa | Personalized vaccine |
US10912824B2 (en) | 2014-07-14 | 2021-02-09 | Ospedale San Raffaele S.R.L. | Vector production |
EP3928789A1 (en) | 2020-06-24 | 2021-12-29 | Consejo Superior de Investigaciones Científicas (CSIC) | Mva-based vaccine against covid-19 expressing sars-cov-2 antigens |
WO2021260065A1 (en) | 2020-06-24 | 2021-12-30 | Consejo Superior De Investigaciones Científicas (Csic) | Mva-based vaccine against covid-19 expressing sars-cov-2 antigens |
EP4108257A1 (en) | 2021-06-23 | 2022-12-28 | Consejo Superior De Investigaciones Científicas | Mva-based vaccine against covid-19 expressing a prefusion-stabilized sars-cov-2 s protein |
WO2022269003A1 (en) | 2021-06-23 | 2022-12-29 | Consejo Superior De Investigaciones Cientificas | MVA-BASED VACCINE EXPRESSING A PREFUSION-STABILIZED SARS-CoV-2 S PROTEIN |
US11666651B2 (en) | 2019-11-14 | 2023-06-06 | Aelix Therapeutics, S.L. | Prime/boost immunization regimen against HIV-1 utilizing a multiepitope T cell immunogen comprising Gag, Pol, Vif, and Nef epitopes |
WO2023213763A1 (en) | 2022-05-02 | 2023-11-09 | Transgene | Poxvirus encoding a binding agent comprising an anti- pd-l1 sdab |
WO2023213764A1 (en) | 2022-05-02 | 2023-11-09 | Transgene | Fusion polypeptide comprising an anti-pd-l1 sdab and a member of the tnfsf |
EP4316514A1 (en) | 2022-08-03 | 2024-02-07 | Consejo Superior de Investigaciones Científicas (CSIC) | Mva-based vectors and their use as vaccine against sars-cov-2 |
WO2024193905A1 (en) | 2023-03-17 | 2024-09-26 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH) | Hbv antigen formulation for treating hepatitis b |
Families Citing this family (76)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
UA68327C2 (en) * | 1995-07-04 | 2004-08-16 | Gsf Forschungszentrum Fur Unwe | A recombinant mva virus, an isolated eukaryotic cell, infected with recombinant mva virus, a method for production in vitro of polypeptides with use of said cell, a method for production in vitro of virus parts (variants), vaccine containing the recombinant mva virus, a method for immunization of animals |
US7118754B1 (en) * | 1996-07-30 | 2006-10-10 | Transgene S.A. | Pharmaceutical composition for treating papillomavirus tumors and infection |
MY150893A (en) * | 1996-09-24 | 2014-03-14 | Bavarian Nordic As | Recombinant mva virus expressing dengue virus antigens, and the use thereof in vaccines |
MY119381A (en) * | 1996-12-24 | 2005-05-31 | Gsf Forschungszentrum Umwelt | Recombinant mva virus, and the use thereof |
US6969609B1 (en) | 1998-12-09 | 2005-11-29 | The United States Of America As Represented By The Department Of Health And Human Serivces | Recombinant vector expressing multiple costimulatory molecules and uses thereof |
US20040265324A1 (en) * | 1999-03-23 | 2004-12-30 | Cardosa Mary Jane | Recombinant MVA virus expressing dengue virus antigens, and the use thereof in vaccines |
DE10143490C2 (en) * | 2001-09-05 | 2003-12-11 | Gsf Forschungszentrum Umwelt | Recombinant MVA with the ability to express HCV structural antigens |
ES2256747T3 (en) * | 2002-05-16 | 2006-07-16 | Bavarian Nordic A/S | EXPRESSION OF GENES IN THE VIRUS OF THE MODIFIED VACCINE, USING THE ATI PROMOTER OF THE VIRUELA DE LA VACA. |
DE602004015418D1 (en) * | 2003-02-18 | 2008-09-11 | Helmholtz Zentrum Muenchen | RECOMBINANT MVA AND METHOD FOR THE PRODUCTION THEREOF |
WO2005048957A2 (en) * | 2003-02-20 | 2005-06-02 | Therion Biologics Corporation | Novel insertion sites in pox vectors |
US7731974B2 (en) * | 2003-03-27 | 2010-06-08 | Ottawa Hospital Research Institute | Mutant vesicular stomatitis viruses and uses thereof |
WO2004085659A2 (en) | 2003-03-27 | 2004-10-07 | Ottawa Health Research Institute | Mutant vesicular stomatitis viruses and uses thereof |
WO2004093905A1 (en) * | 2003-04-16 | 2004-11-04 | City Of Hope | Human cytomegalovirus antigens expressed in mva and methods of use |
DK1648931T3 (en) | 2003-07-21 | 2011-03-07 | Transgene Sa | Multifunctional cytokines |
WO2005017208A1 (en) * | 2003-07-31 | 2005-02-24 | George Mason Intellectual Properties, Inc. | Compositions and methods for treating or preventing hiv infection |
DK1845164T3 (en) | 2003-11-24 | 2010-09-20 | Bavarian Nordic As | Promotes for expression in modified vaccinia virus ankara |
EP1710300A4 (en) | 2003-12-05 | 2007-10-24 | Hokkaido Tech Licensing Office | Highly safe smallpox vaccine virus and vaccinia virus vector |
EP1683870A1 (en) * | 2005-01-24 | 2006-07-26 | GSF-Forschungszentrum für Umwelt und Gesundheit GmbH | Vaccines based on the use of MVA |
US20090269365A1 (en) * | 2005-04-20 | 2009-10-29 | University Of Washington | Immunogenic vaccinia peptides and methods of using same |
EP2023954B1 (en) * | 2006-05-19 | 2013-07-17 | Sanofi Pasteur, Inc. | Immunological composition |
JP5456464B2 (en) * | 2006-06-20 | 2014-03-26 | トランジェーヌ、ソシエテ、アノニム | Method for producing poxvirus and poxvirus composition |
WO2008076157A2 (en) * | 2006-09-08 | 2008-06-26 | Duke University | Modified vaccinia ankara virus vaccine |
WO2009016433A2 (en) * | 2006-09-15 | 2009-02-05 | Ottawa Health Research Institute | Oncolytic rhabdovirus |
US20080241139A1 (en) * | 2006-10-31 | 2008-10-02 | Regents Of The University Of Colorado | Adjuvant combinations comprising a microbial tlr agonist, a cd40 or 4-1bb agonist, and optionally an antigen and the use thereof for inducing a synergistic enhancement in cellular immunity |
US8557764B2 (en) * | 2007-01-26 | 2013-10-15 | The Regents Of The University Of Colorado, A Body Corporate | Methods of modulating immune function |
US20110159018A1 (en) | 2007-05-03 | 2011-06-30 | Medizinische Universitat Innsbruck | Complement factor h-derived short consensus repeat-antibody constructs |
AU2008250596C1 (en) * | 2007-05-14 | 2010-11-25 | Bavarian Nordic A/S | Purification of Vaccinia virus- and recombinant Vaccinia virus-based vaccines |
US8003363B2 (en) | 2007-05-14 | 2011-08-23 | Bavarian Nordic A/S | Purification of vaccinia virus- and recombinant vaccinia virus-based vaccines |
US20100285050A1 (en) * | 2007-10-05 | 2010-11-11 | Isis Innovation Limited | Compositions and Methods |
BRPI0800485B8 (en) * | 2008-01-17 | 2021-05-25 | Univ Minas Gerais | recombinant viral vectors, leishmaniasis vaccine composition and leishmaniasis vaccination method |
MX2010008970A (en) | 2008-02-12 | 2011-05-30 | Sanofi Pasteur Ltd | Methods using ion exchange and gel filtration chromatography for poxvirus purification. |
US8691502B2 (en) | 2008-10-31 | 2014-04-08 | Tremrx, Inc. | T-cell vaccination with viral vectors via mechanical epidermal disruption |
WO2010127115A1 (en) | 2009-04-30 | 2010-11-04 | Centre Hospitalier Universitaire Vaudois Lausanne (Chuv) | Modified immunization vectors |
RU2555346C2 (en) * | 2009-08-07 | 2015-07-10 | Трансген Са | Composition for treating hepatitis b virus infections |
CA2793959C (en) | 2010-03-25 | 2019-06-04 | Oregon Health & Science University | Cmv glycoproteins and recombinant vectors |
GB201006405D0 (en) * | 2010-04-16 | 2010-06-02 | Isis Innovation | Poxvirus expression system |
US20110262965A1 (en) * | 2010-04-23 | 2011-10-27 | Life Technologies Corporation | Cell culture medium comprising small peptides |
WO2012101509A2 (en) | 2011-01-28 | 2012-08-02 | Sanofi Pasteur Sa | Immunological compositions against hiv |
WO2012151272A2 (en) | 2011-05-02 | 2012-11-08 | Tremrx, Inc. | T-cell vaccination with viral vectors via mechanical epidermal disruption |
EP2691530B1 (en) | 2011-06-10 | 2018-03-07 | Oregon Health & Science University | Cmv glycoproteins and recombinant vectors |
ES2813413T3 (en) | 2011-08-05 | 2021-03-23 | Sillajen Biotherapeutics Inc | Methods and compositions for the production of vaccina virus |
US20130189754A1 (en) | 2011-09-12 | 2013-07-25 | International Aids Vaccine Initiative | Immunoselection of recombinant vesicular stomatitis virus expressing hiv-1 proteins by broadly neutralizing antibodies |
CN104039968B (en) * | 2011-09-26 | 2018-10-26 | 赛拉福柯蒂斯公司 | Application of the non-subtype B GAG albumen in slow virus is packed |
US9402894B2 (en) | 2011-10-27 | 2016-08-02 | International Aids Vaccine Initiative | Viral particles derived from an enveloped virus |
ES2631608T3 (en) | 2012-06-27 | 2017-09-01 | International Aids Vaccine Initiative | Env-glycoprotein variant of HIV-1 |
WO2014043535A1 (en) | 2012-09-14 | 2014-03-20 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Compositions for the treatment of cancer |
EP3587455A1 (en) | 2012-10-23 | 2020-01-01 | Emory University | Gm-csf and il-4 conjugates, compositions, and methods related thereto |
US20140286981A1 (en) * | 2013-03-14 | 2014-09-25 | Wisconsin Alumni Research Foundation | Broadly reactive mosaic peptide for influenza vaccine |
DE102013004595A1 (en) | 2013-03-15 | 2014-09-18 | Emergent Product Development Germany Gmbh | RSV vaccines |
US20150065381A1 (en) | 2013-09-05 | 2015-03-05 | International Aids Vaccine Initiative | Methods of identifying novel hiv-1 immunogens |
EP2873423B1 (en) | 2013-10-07 | 2017-05-31 | International Aids Vaccine Initiative | Soluble hiv-1 envelope glycoprotein trimers |
EA037583B1 (en) | 2014-09-26 | 2021-04-16 | Бет Изрейэл Диконисс Медикал Сентер, Инк. | Methods and compositions for inducing protective immunity against human immunodeficiency virus infection |
US11701418B2 (en) | 2015-01-12 | 2023-07-18 | Geovax, Inc. | Replication-deficient modified vaccinia Ankara (MVA) expressing Ebola virus glycoprotein (GP) and matrix protein (VP40) |
WO2016131945A1 (en) | 2015-02-20 | 2016-08-25 | Transgene Sa | Combination product with autophagy modulator |
US10174292B2 (en) | 2015-03-20 | 2019-01-08 | International Aids Vaccine Initiative | Soluble HIV-1 envelope glycoprotein trimers |
EP3072901A1 (en) | 2015-03-23 | 2016-09-28 | International Aids Vaccine Initiative | Soluble hiv-1 envelope glycoprotein trimers |
US10369214B2 (en) | 2015-12-15 | 2019-08-06 | Janssen Vaccines & Prevention B.V. | Synthetic human immunodeficiency virus (HIV) envelope antigen, vectors, and compositions thereof |
AU2017206102C1 (en) | 2016-01-08 | 2022-02-10 | Geovax Inc. | Compositions and methods for generating an immune response to a tumor associated antigen |
WO2017136419A1 (en) | 2016-02-03 | 2017-08-10 | Geovax Inc. | Compositions and methods for generating an immune response to a flavivirus |
EP3419662A4 (en) * | 2016-02-25 | 2019-09-18 | Memorial Sloan Kettering Cancer Center | Recombinant mva or mvadele3l expressing human flt3l and use thereof as immuno-therapeutic agents against solid tumors |
BR112018075785A2 (en) | 2016-06-16 | 2019-04-02 | Janssen Vaccines & Prevention B.V. | hiv vaccine formulation |
US10307477B2 (en) | 2016-09-02 | 2019-06-04 | Janssen Vaccines & Prevention B.V. | Methods for inducing an immune response against human immunodeficiency virus infection in subjects undergoing antiretroviral treatment |
BR112019004593A2 (en) | 2016-09-15 | 2019-07-02 | Janssen Vaccines & Prevention Bv | hiv envelope protein mutations stabilizing trimer |
BR112019026126A2 (en) | 2017-06-15 | 2020-06-30 | Janssen Vaccines & Prevention B.V. | poxvirus vectors encoding HIV antigens and methods of using them |
JP7253529B2 (en) | 2017-07-19 | 2023-04-06 | ヤンセン ファッシンズ アンド プリベンション ベーフェー | Trimer-stabilizing HIV envelope protein mutations |
WO2019018724A1 (en) | 2017-07-21 | 2019-01-24 | Janssen Vaccines & Prevention B.V. | Methods for safe induction of cross-clade immunity against human immunodeficiency virus infection in human |
WO2019055888A1 (en) | 2017-09-18 | 2019-03-21 | Janssen Vaccines & Prevention B.V. | Methods for inducing an immune response against human immunodeficiency virus infection in subjects undergoing antiretroviral treatment |
US11311612B2 (en) | 2017-09-19 | 2022-04-26 | Geovax, Inc. | Compositions and methods for generating an immune response to treat or prevent malaria |
JP7551496B2 (en) | 2017-10-31 | 2024-09-17 | カリヴィル イムノセラピューティクス, インコーポレイテッド | Platform oncolytic vectors for systemic delivery |
JP7320601B2 (en) | 2018-09-11 | 2023-08-03 | 上▲海▼市公共▲衛▼生▲臨▼床中心 | Broad-spectrum anti-influenza vaccine immunogen and its use |
WO2020237052A1 (en) | 2019-05-22 | 2020-11-26 | Janssen Vaccines & Prevention B.V. | Methods for inducing an immune response against human immunodeficiency virus infection in subjects undergoing antiretroviral treatment |
AU2020366460A1 (en) * | 2019-10-16 | 2022-03-24 | Kalivir Immunotherapeutics, Inc. | Producer viruses for generation of retroviruses in SITU |
EP3842065A1 (en) | 2019-12-23 | 2021-06-30 | Transgene | Process for designing a recombinant poxvirus for a therapeutic vaccine |
IL308018A (en) | 2021-04-30 | 2023-12-01 | Kalivir Immunotherapeutics Inc | Oncolytic viruses for modified mhc expression |
WO2023077147A2 (en) | 2021-11-01 | 2023-05-04 | Pellis Therapeutics, Inc. | T-cell vaccines for patients with reduced humoral immunity |
US20230364227A1 (en) | 2022-05-12 | 2023-11-16 | Pellis Therapeutics, Inc. | Poxvirus adjuvant for t-cell vaccination |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0324350A1 (en) * | 1988-01-12 | 1989-07-19 | F. Hoffmann-La Roche Ag | Recombinant vaccinia virus MVA |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE787901A (en) | 1971-09-11 | 1972-12-18 | Freistaat Bayern Represente Pa | ANTIVARIOLIC VACCINE |
AU570940B2 (en) | 1982-11-30 | 1988-03-31 | United States of America, as represented by the Secretary, U.S. Department of Commerce, The | Process for producing poxvirus recombinants for expression offoreign genes |
US5679511A (en) * | 1986-10-06 | 1997-10-21 | Donald Guthrie Foundation For Medical Research, Inc. | CDNA clones for a regulatory protein in the melanin-production pathway |
US5221610A (en) * | 1988-05-26 | 1993-06-22 | Institut Pasteur | Diagnostic method and composition for early detection of HIV infection |
CN1042564A (en) * | 1988-11-11 | 1990-05-30 | 中国科学院上海生物化学研究所 | The preparation method of Hepatitis B virus vaccine and goods thereof |
JPH03271233A (en) | 1990-03-19 | 1991-12-03 | Inst Pasteur | Inducement of protective action against virus infection by synergism between peptides cor- responding to virus envelope glycoprotein and neutral epitope of its glycoprotein |
AU2800392A (en) * | 1991-10-28 | 1993-06-07 | Institut Pasteur | Induction of protection against viral infection by synergy between viral proteins and viral peptides |
AU679965B2 (en) * | 1992-12-22 | 1997-07-17 | Ludwig Institute For Cancer Research | Methods for detection and treatment of individuals having abnormal cells expressing HLA-A2/tyrosinase peptide antigens |
US5620886A (en) * | 1993-03-18 | 1997-04-15 | Ludwig Institute For Cancer Research | Isolated nucleic acid sequence coding for a tumor rejection antigen precursor processed to at least one tumor rejection antigen presented by HLA-A2 |
WO1995011255A1 (en) * | 1993-10-19 | 1995-04-27 | Ajinomoto Co., Inc. | Peptide capable of inducing immune response against hiv and aids preventive or remedy containing the peptide |
US5676950A (en) * | 1994-10-28 | 1997-10-14 | University Of Florida | Enterically administered recombinant poxvirus vaccines |
UA68327C2 (en) * | 1995-07-04 | 2004-08-16 | Gsf Forschungszentrum Fur Unwe | A recombinant mva virus, an isolated eukaryotic cell, infected with recombinant mva virus, a method for production in vitro of polypeptides with use of said cell, a method for production in vitro of virus parts (variants), vaccine containing the recombinant mva virus, a method for immunization of animals |
-
1996
- 1996-03-07 UA UA97126424A patent/UA68327C2/en unknown
- 1996-07-03 EE EE9700344A patent/EE04199B1/en unknown
- 1996-07-03 EE EEP200300332A patent/EE04753B1/en unknown
- 1996-07-03 SI SI9630718T patent/SI1312678T1/en unknown
- 1996-07-03 HU HU9802217A patent/HU224061B1/en active IP Right Grant
- 1996-07-03 JP JP50482497A patent/JP4312260B2/en not_active Expired - Lifetime
- 1996-07-03 IL IL12212096A patent/IL122120A/en not_active IP Right Cessation
- 1996-07-03 AU AU66110/96A patent/AU721735B2/en not_active Expired
- 1996-07-03 EP EP03001378A patent/EP1312678B1/en not_active Expired - Lifetime
- 1996-07-03 HU HU0402350A patent/HU229261B1/en unknown
- 1996-07-03 DK DK03001378T patent/DK1312678T3/en active
- 1996-07-03 EP EP03001379A patent/EP1312679B8/en not_active Expired - Lifetime
- 1996-07-03 EE EEP200300331A patent/EE05138B1/en unknown
- 1996-07-03 RU RU98101904/13A patent/RU2198217C2/en active
- 1996-07-03 EP EP96925654A patent/EP0836648B1/en not_active Expired - Lifetime
- 1996-07-03 ES ES03001379T patent/ES2249648T3/en not_active Expired - Lifetime
- 1996-07-03 DE DE69628011T patent/DE69628011T2/en not_active Expired - Lifetime
- 1996-07-03 PT PT96925654T patent/PT836648E/en unknown
- 1996-07-03 BR BRPI9609303-0B8A patent/BR9609303B8/en active IP Right Grant
- 1996-07-03 CN CNB961952547A patent/CN1154742C/en not_active Expired - Lifetime
- 1996-07-03 UA UA20031212892A patent/UA75411C2/en unknown
- 1996-07-03 CA CA2608864A patent/CA2608864C/en not_active Expired - Lifetime
- 1996-07-03 CA CA002225278A patent/CA2225278C/en not_active Expired - Lifetime
- 1996-07-03 DK DK96925654T patent/DK0836648T3/en active
- 1996-07-03 AT AT96925654T patent/ATE239796T1/en active
- 1996-07-03 AT AT03001378T patent/ATE304057T1/en active
- 1996-07-03 ES ES96925654T patent/ES2199294T3/en not_active Expired - Lifetime
- 1996-07-03 UA UA20031212890A patent/UA75410C2/en unknown
- 1996-07-03 ES ES03001378T patent/ES2249647T3/en not_active Expired - Lifetime
- 1996-07-03 KR KR1019970709939A patent/KR19990028617A/en not_active Application Discontinuation
- 1996-07-03 MX MX9800025A patent/MX9800025A/en unknown
- 1996-07-03 DE DE69635172T patent/DE69635172T2/en not_active Expired - Lifetime
- 1996-07-03 SI SI9630719T patent/SI1312679T1/en unknown
- 1996-07-03 CN CN2004100367144A patent/CN1554764B/en not_active Expired - Lifetime
- 1996-07-03 DE DE69635173T patent/DE69635173T2/en not_active Expired - Lifetime
- 1996-07-03 CA CA2596274A patent/CA2596274C/en not_active Expired - Lifetime
- 1996-07-03 NZ NZ313597A patent/NZ313597A/en not_active IP Right Cessation
- 1996-07-03 WO PCT/EP1996/002926 patent/WO1997002355A1/en active Application Filing
- 1996-07-03 PL PL96324347A patent/PL186857B1/en unknown
- 1996-07-03 SI SI9630623T patent/SI0836648T1/en unknown
- 1996-07-03 DK DK03001379T patent/DK1312679T3/en active
- 1996-07-03 CN CNA2005101248556A patent/CN1782071A/en active Pending
- 1996-07-03 AT AT03001379T patent/ATE304058T1/en active
- 1996-07-03 CZ CZ19974241A patent/CZ292460B6/en not_active IP Right Cessation
- 1996-12-31 TW TW085116379A patent/TW575664B/en not_active IP Right Cessation
- 1996-12-31 TW TW092116681A patent/TWI245075B/en not_active IP Right Cessation
-
1998
- 1998-01-02 US US09/002,443 patent/US6440422B1/en not_active Expired - Lifetime
- 1998-01-02 NO NO19980026A patent/NO322476B1/en not_active IP Right Cessation
- 1998-09-15 HK HK98110632A patent/HK1009830A1/en not_active IP Right Cessation
-
2002
- 2002-05-15 US US10/147,284 patent/US7198934B2/en not_active Expired - Fee Related
-
2004
- 2004-09-28 IL IL164318A patent/IL164318A/en not_active IP Right Cessation
-
2005
- 2005-01-11 HK HK05100216.3A patent/HK1068015A1/en not_active IP Right Cessation
-
2006
- 2006-09-19 US US11/522,889 patent/US8153138B2/en not_active Expired - Fee Related
- 2006-09-19 US US11/523,030 patent/US20070071770A1/en not_active Abandoned
- 2006-09-19 US US11/523,004 patent/US20070071769A1/en not_active Abandoned
-
2007
- 2007-03-12 JP JP2007062631A patent/JP4764367B2/en not_active Expired - Lifetime
- 2007-03-12 JP JP2007062630A patent/JP4764366B2/en not_active Expired - Lifetime
-
2009
- 2009-12-01 IL IL202448A patent/IL202448A0/en unknown
-
2010
- 2010-06-14 US US12/814,602 patent/US8197825B2/en not_active Expired - Fee Related
-
2011
- 2011-05-17 IL IL212933A patent/IL212933A0/en unknown
-
2012
- 2012-05-02 IL IL219528A patent/IL219528A0/en unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0324350A1 (en) * | 1988-01-12 | 1989-07-19 | F. Hoffmann-La Roche Ag | Recombinant vaccinia virus MVA |
Non-Patent Citations (2)
Title |
---|
G.SUTTER ET AL.: "A recombinant vector derived from the host range-restricted and highly attenuated MVA strain of vaccinia virus stimulates protective immunity in mice to influenza virus", VACCINE, vol. 12, no. 11, August 1994 (1994-08-01), GUILDFORD GB, pages 1032 - 1040, XP002019163 * |
V.M.HIRSCH ET AL.: "Limited virus replication following SIV challenge of macaques immunized with attenuated MVA vaccinia expressing SIVsm env and gag-pol", VACCINES 95, COLD SPRING HARBOR LABORATORY PRESS USA, pages 195 - 200, XP000610097 * |
Cited By (110)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000024896A2 (en) * | 1998-10-22 | 2000-05-04 | Transgene S.A. | Biological material for preparing pharmaceutical compositions for treating mammals |
WO2000024896A3 (en) * | 1998-10-22 | 2000-08-03 | Transgene Sa | Biological material for preparing pharmaceutical compositions for treating mammals |
FR2784997A1 (en) * | 1998-10-22 | 2000-04-28 | Transgene Sa | Biological material for preparation of pharmaceuticals useful e.g. as anticancer or antiviral agents, comprises a nucleic acid expressing an antibody that activates immune cells |
US6682742B1 (en) | 1999-05-28 | 2004-01-27 | Gsf Forschungszentrum Fur Unwelt Und Gesundheit Gmbh | Vector for integration of heterologous sequences into poxviral genomes |
WO2000073476A1 (en) * | 1999-05-28 | 2000-12-07 | Gsf Forschungszentrum Für Umwelt Und Gesundheit Gmbh | Vector for integration of heterologous sequences into poxviral genomes |
US7150874B2 (en) * | 1999-05-28 | 2006-12-19 | Gfs Forschungszentrum Fur Umwelt Und Gesundheit Gmbh | Vector for integration of heterologous sequences into poxviral genomes |
US20150231227A1 (en) * | 2000-03-02 | 2015-08-20 | Emory University | Compositions and methods for generating an immune response |
WO2001068820A1 (en) * | 2000-03-14 | 2001-09-20 | Anton Mayr | Altered strain of the modified vaccinia virus ankara (mva) |
US6682743B2 (en) | 2000-03-14 | 2004-01-27 | Bavarian Nordic A/S | Altered strain of the modified vaccinia virus ankara (MVA) |
EP1188834A1 (en) * | 2000-08-30 | 2002-03-20 | GSF-Forschungszentrum für Umwelt und Gesundheit GmbH | Recombinant MVA expressing the HER-2/neu gene |
WO2002031168A2 (en) * | 2000-10-10 | 2002-04-18 | Genstar Therapeutics | Minimal adenoviral vector and recombinant vaccines based thereon |
WO2002031168A3 (en) * | 2000-10-10 | 2003-04-17 | Genstar Therapeutics | Minimal adenoviral vector and recombinant vaccines based thereon |
US7964396B2 (en) | 2000-11-23 | 2011-06-21 | Bavarian Nordic A/S | Modified vaccinia ankara virus variant and cultivation method |
US8163293B2 (en) | 2000-11-23 | 2012-04-24 | Bavarian Nordic A/S | Modified Vaccinia Virus Ankara for the vaccination of neonates |
EP1335987B2 (en) † | 2000-11-23 | 2016-06-15 | Bavarian Nordic A/S | Modified vaccinia ankara virus variant |
WO2002042480A3 (en) * | 2000-11-23 | 2002-08-01 | Bavarian Nordic Res Inst As | Modified vaccinia ankara virus variant |
US8470598B2 (en) | 2000-11-23 | 2013-06-25 | Bavarian Nordic A/S | Modified Vaccinia Ankara virus variant and cultivation method |
US6761893B2 (en) | 2000-11-23 | 2004-07-13 | Bavarian Nordic A/S | Modified vaccinia ankara virus variant |
US8372622B2 (en) | 2000-11-23 | 2013-02-12 | Bavarian Nordic A/S | Modified vaccinia virus ankara for the vaccination of neonates |
US8268325B2 (en) | 2000-11-23 | 2012-09-18 | Bavarian Nordic A/S | Modified Vaccinia Ankara virus variant |
US8268329B2 (en) | 2000-11-23 | 2012-09-18 | Bavarian Nordic A/S | Modified Vaccinia ankara virus variant |
US8236560B2 (en) | 2000-11-23 | 2012-08-07 | Bavarian Nordic A/S | Modified Vaccinia Ankara virus variant and cultivation method |
US6913752B2 (en) | 2000-11-23 | 2005-07-05 | Bavarian Nordic A/S | Modified Vaccinia Ankara virus variant |
US7964398B2 (en) | 2000-11-23 | 2011-06-21 | Bavarian Nordic A/S | Modified vaccinia ankara virus variant and cultivation method |
EP1598425A1 (en) * | 2000-11-23 | 2005-11-23 | Bavarian Nordic A/S | Modified Vaccinia Ankara virus variant |
US7964395B2 (en) | 2000-11-23 | 2011-06-21 | Bavarian Nordic A/S | Modified vaccinia ankara virus variant and cultivation method |
US7939086B2 (en) | 2000-11-23 | 2011-05-10 | Bavarian Nordic A/S | Modified Vaccinia Ankara virus variant |
US7923017B2 (en) | 2000-11-23 | 2011-04-12 | Bavarian Nordic A/S | Modified Vaccinia Ankara virus variant |
AU2002231639B2 (en) * | 2000-11-23 | 2007-01-04 | Bavarian Nordic A/S | Modified vaccinia ankara virus variant |
US7892533B2 (en) | 2000-11-23 | 2011-02-22 | Bavarian Nordic A/S | Modified vaccinia virus ankara for the vaccination of neonates |
US7189536B2 (en) | 2000-11-23 | 2007-03-13 | Bavarian Nordic A/S | Modified vaccinia ankara virus variant |
EP2202315A1 (en) * | 2000-11-23 | 2010-06-30 | Bavarian Nordic A/S | Modified vaccinia ankara virus variant |
US7335364B2 (en) | 2000-11-23 | 2008-02-26 | Bavarian Nordic A/S | Modified Vaccinia Ankara virus variant |
US7628980B2 (en) | 2000-11-23 | 2009-12-08 | Bavarian Nordic A/S | Modified vaccinia virus ankara for the vaccination of neonates |
KR100830295B1 (en) * | 2000-11-23 | 2008-05-16 | 버베리안 노딕 에이/에스 | Modified vaccinia ankara virus variant |
US7384644B2 (en) | 2000-11-23 | 2008-06-10 | Bavarian Nordic A/S | Modified Vaccinia Ankara virus variant |
US7445924B2 (en) | 2000-11-23 | 2008-11-04 | Bavarian Nordic A/S | Modified Vaccinia Ankara virus variant and cultivation method |
US7459270B2 (en) | 2000-11-23 | 2008-12-02 | Bavarian Nordic A/S | Modified Vaccinia Ankara virus variant |
KR100910297B1 (en) * | 2000-11-23 | 2009-08-03 | 버베리안 노딕 에이/에스 | Modified vaccinia ankara virus variant |
US8535682B2 (en) | 2001-04-06 | 2013-09-17 | Merial Limited | Recombinant vaccine against West Nile Virus |
US7049145B2 (en) * | 2001-09-11 | 2006-05-23 | Gsf-Forschungszentrum Fur Umwelt Und Gesundheit, Gmbh | Vaccinia virus MVA-E3L-knockout-mutants and use thereof |
WO2003023040A3 (en) * | 2001-09-11 | 2003-11-27 | Gsf Forschungszentrum Umwelt | Vaccinia virus mva-e3l-knockout-mutants and use thereof |
WO2003023040A2 (en) * | 2001-09-11 | 2003-03-20 | Gsf-Forschungszentrum Für Umwelt Und Gesundheit, Gmbh | Vaccinia virus mva-e3l-knockout-mutants and use thereof |
US7897156B2 (en) | 2001-11-22 | 2011-03-01 | Bavarian Nordic A/S | Modified vaccinia virus ankara for the vaccination of neonates |
US7759116B2 (en) | 2001-12-04 | 2010-07-20 | Bavarian Nordic A/S | MVA virus vector expressing dengue NS1 protein |
US8815501B2 (en) | 2001-12-04 | 2014-08-26 | Bavarian Nordic A/S | Flavivirus NS1 subunit vaccine |
KR100947976B1 (en) * | 2001-12-20 | 2010-03-15 | 버베리안 노딕 에이/에스 | Method for the Recovery and Purification of Poxviruses from Infected Cells |
JP2005512565A (en) * | 2001-12-20 | 2005-05-12 | バヴァリアン・ノルディック・アクティーゼルスカブ | Collection and purification of poxvirus from infected cells |
US7056723B2 (en) | 2001-12-20 | 2006-06-06 | Bavarian Nordic A/S | Method for the recovery and purification of poxviruses from infected cells |
JP2010046093A (en) * | 2001-12-20 | 2010-03-04 | Bavarian Nordic As | Method for recovery and purification of poxvirus from infected cell |
WO2003054175A1 (en) * | 2001-12-20 | 2003-07-03 | Bavarian Nordic A/S | Method for the recovery and purification of poxviruses from infected cells |
SG173216A1 (en) * | 2002-04-19 | 2011-08-29 | Bavarian Nordic As | Modified vaccinia virus ankara for the vaccination of neonates |
EP1420822B2 (en) † | 2002-04-19 | 2017-07-05 | Bavarian Nordic A/S | Modified vaccinia virus ankara for the vaccination of neonates |
US7964374B2 (en) | 2002-05-16 | 2011-06-21 | Bavarian Nordic A/S | Intergenic regions as insertion sites in the genome of modified vaccinia virus ankara (MVA) |
US8288125B2 (en) | 2002-05-16 | 2012-10-16 | Bavarian Nordic A/S | Intergenic regions as insertion sites in the genome of modified vaccinia virus Ankara (MVA) |
US7501127B2 (en) | 2002-05-16 | 2009-03-10 | Bavarian Nordic A/S | Intergenic regions as novel sites for insertion of HIV DNA sequences in the genome of Modified Vaccinia virus Ankara |
US8741308B2 (en) | 2002-05-16 | 2014-06-03 | Bavarian Nordic A/S | Intergenic regions as insertion sites in the genome of modified vaccinia virus ankara (MVA) |
US7550147B2 (en) | 2002-05-16 | 2009-06-23 | Bavarian Nordic A/S | Intergenic regions as insertion sites in the genome of modified vaccinia virus ankara (MVA) |
US8029800B2 (en) | 2002-05-16 | 2011-10-04 | Bavarian Nordic A/S | Recombinant modified vaccinia virus ankara (MVA) comprising human immunodeficiency virus (HIV) genes inserted into one or more intergenic regions (IGRs) |
EA007811B1 (en) * | 2002-05-16 | 2007-02-27 | Бавариан Нордик А/С | Intergenic regions as insertion sites in the genome of modified vaccine virus ankara (mva) |
US8435543B2 (en) | 2002-05-16 | 2013-05-07 | Bavarian Nordic A/S | Intergenic regions as insertion sites in the genome of modified vaccinia virus ankara (MVA) |
US8414900B2 (en) | 2002-05-16 | 2013-04-09 | Bavarian Nordic A/S | Intergenic regions as insertion sites in the genome of modified vaccinia virus ankara (MVA) |
WO2003097845A1 (en) * | 2002-05-16 | 2003-11-27 | Bavarian Nordic A/S | Intergenic regions as insertion sites in the genome of modified vaccinia virus ankara (mva) |
US8197822B2 (en) | 2002-05-16 | 2012-06-12 | Bavarian Nordic A/S | Method for the production of human immunodeficiency virus (HIV) proteins utilizing modified vaccinia virus ankara (MVA) recombinants comprising HIV genes inserted into one or more intergenic regions (IGRs) |
US8198088B2 (en) | 2002-05-16 | 2012-06-12 | Bavarian Nordic A/S | Method for introducing human immunodeficiency virus nucleotide sequences into a cell utilizing modified vaccinia virus Ankara (MVA) recombinants comprising HIV genes inserted into one or more intergenic regions (IGRs) |
US8323661B2 (en) | 2002-05-16 | 2012-12-04 | Bavarian Nordic A/S | Method for generating a stable recombinant modified vaccinia virus ankara (MVA) comprising human immunodeficiency virus (HIV) genes inserted into one or more intergenic regions (IGRs) |
US8309326B2 (en) | 2002-05-16 | 2012-11-13 | Bavarian Nordic A/S | Intergenic regions as insertion sites in the genome of modified vaccinia virus ankara (MVA) |
US8309098B2 (en) | 2002-05-16 | 2012-11-13 | Bavarian Nordic A/S | Recombinant modified vaccinia ankara (MVA) virus containing heterologous DNA inserts encoding human immunodeficiency virus (HIV) antigens inserted into one or more intergenic regions (IGRs) |
US8673318B2 (en) | 2002-09-05 | 2014-03-18 | Bavarian Nordic A/S | Method for the cultivation of primary cells and for the amplification of viruses under serum free conditions |
US7695939B2 (en) | 2002-09-05 | 2010-04-13 | Bavarian Nordic A/S | Method for the cultivation of primary cells and for the amplification of viruses under serum free conditions |
US8329466B2 (en) | 2002-09-05 | 2012-12-11 | Bavarian Nordic A/S | Method for the cultivation of primary cells and for the amplification of viruses under serum free conditions |
US7964397B2 (en) | 2002-09-05 | 2011-06-21 | Bavarian Nordic A/S | Method for the cultivation of primary cells and for the amplification of viruses under serum free conditions |
DE10249390A1 (en) * | 2002-10-23 | 2004-05-13 | Ruprecht-Karls-Universität Heidelberg | Recombinant MVA strains as potential vaccines against P. falciparum malaria |
WO2004048582A2 (en) * | 2002-11-25 | 2004-06-10 | Bavarian Nordic A/S | Recombinant poxvirus comprising at least two cowpox ati promoters |
WO2004048582A3 (en) * | 2002-11-25 | 2004-08-12 | Bavarian Nordic As | Recombinant poxvirus comprising at least two cowpox ati promoters |
US7300658B2 (en) | 2002-11-25 | 2007-11-27 | Bavarian Nordic A/S | Recombinant poxvirus comprising at least two compox ATI promoters |
EA012723B1 (en) * | 2002-11-25 | 2009-12-30 | Бавариан Нордик А/С | Recombinant poxvirus comprising at least two cowpox ati promoters |
GB2402391A (en) * | 2003-06-04 | 2004-12-08 | Oxxon Pharmaccines Ltd | Fowlpox recombinant genome |
US7767209B2 (en) | 2003-09-29 | 2010-08-03 | Gsf-Forschungszentrum Fuer Umwelt Und Gesundheit Gmbh | Modified vaccinia virus Ankara (MVA) mutant and use thereof |
CN1842602B (en) * | 2003-09-29 | 2011-06-29 | 德国慕尼黑亥姆霍兹研究中心健康和环境有限公司 | Modified vaccinia virus ankara (MVA) mutant and use thereof |
EP1518932A1 (en) * | 2003-09-29 | 2005-03-30 | GSF-Forschungszentrum für Umwelt und Gesundheit GmbH | Modified vaccinia virus Ankara (MVA) mutant and use thereof |
WO2005030971A1 (en) * | 2003-09-29 | 2005-04-07 | Gsf-Forschungszentrum Fuer Umwelt Und Gesundheit Gmbh | Modified vaccinia virus ankara (mva) mutant and use thereof |
WO2008045346A2 (en) | 2006-10-06 | 2008-04-17 | Bn Immunotherapeutics Inc. | Recombinant modified vaccinia ankara encoding a her-2 antigen for use in treating cancer |
US9109201B2 (en) | 2007-05-14 | 2015-08-18 | Bavarian Nordic A/S | Purification of vaccinia viruses using hydrophobic interaction chromatography |
WO2009152969A1 (en) * | 2008-06-20 | 2009-12-23 | Bavarian Nordic A/S | Recombinant modified vaccinia virus measles vaccine |
US9005632B2 (en) | 2009-11-20 | 2015-04-14 | Takeda Vaccines, Inc. | Compositions, methods and uses for poxvirus elements in vaccine constructs against influenza virus subtypes or strains |
US9011874B2 (en) | 2009-11-20 | 2015-04-21 | Takeda Vaccines, Inc. | Compositions, methods and uses for poxvirus elements in vaccine constructs |
WO2013083254A1 (en) | 2011-12-09 | 2013-06-13 | Bavarian Nordic A/S | Poxvirus vector for the expression of bacterial antigens linked to tetanus toxin fragment c |
US11325946B2 (en) | 2012-01-27 | 2022-05-10 | Laboratorios Del Dr. Esteve S.A. | Method of treating HIV-1 infection utilizing a multiepitope T cell immunogen comprising gag, pol, vif and nef epitopes |
US9988425B2 (en) | 2012-01-27 | 2018-06-05 | Laboratories Del Dr. Esteve S.A. | Immunogens for HIV vaccination |
US10815278B2 (en) | 2012-01-27 | 2020-10-27 | Laboratorios Del Dr. Esteve S.A. | Immunogens for HIV vaccination |
US11919926B2 (en) | 2012-01-27 | 2024-03-05 | Esteve Pharmaceuticals, S.A. | Method of treating HIV-1 infection utilizing a multiepitope T cell immunogen comprising Gag, Pol, Vif, and Nef epitopes |
WO2014009438A2 (en) | 2012-07-10 | 2014-01-16 | Transgene Sa | Mycobacterial antigen vaccine |
WO2014009433A1 (en) | 2012-07-10 | 2014-01-16 | Transgene Sa | Mycobacterium resuscitation promoting factor for use as adjuvant |
WO2015104380A1 (en) | 2014-01-09 | 2015-07-16 | Transgene Sa | Fusion of heterooligomeric mycobacterial antigens |
US10912824B2 (en) | 2014-07-14 | 2021-02-09 | Ospedale San Raffaele S.R.L. | Vector production |
US11957747B2 (en) | 2014-07-14 | 2024-04-16 | Ospedale San Raffaele S.R.L. | Vector production |
WO2017191147A1 (en) | 2016-05-04 | 2017-11-09 | Transgene Sa | Combination therapy with cpg tlr9 ligand |
WO2018069316A2 (en) | 2016-10-10 | 2018-04-19 | Transgene Sa | Immunotherapeutic product and mdsc modulator combination therapy |
WO2018234506A2 (en) | 2017-06-21 | 2018-12-27 | Transgene Sa | Personalized vaccine |
US11969462B2 (en) | 2017-06-21 | 2024-04-30 | Transgene | Personalized vaccine |
US11666651B2 (en) | 2019-11-14 | 2023-06-06 | Aelix Therapeutics, S.L. | Prime/boost immunization regimen against HIV-1 utilizing a multiepitope T cell immunogen comprising Gag, Pol, Vif, and Nef epitopes |
WO2021260065A1 (en) | 2020-06-24 | 2021-12-30 | Consejo Superior De Investigaciones Científicas (Csic) | Mva-based vaccine against covid-19 expressing sars-cov-2 antigens |
EP3928789A1 (en) | 2020-06-24 | 2021-12-29 | Consejo Superior de Investigaciones Científicas (CSIC) | Mva-based vaccine against covid-19 expressing sars-cov-2 antigens |
EP4108257A1 (en) | 2021-06-23 | 2022-12-28 | Consejo Superior De Investigaciones Científicas | Mva-based vaccine against covid-19 expressing a prefusion-stabilized sars-cov-2 s protein |
WO2022269003A1 (en) | 2021-06-23 | 2022-12-29 | Consejo Superior De Investigaciones Cientificas | MVA-BASED VACCINE EXPRESSING A PREFUSION-STABILIZED SARS-CoV-2 S PROTEIN |
WO2023213763A1 (en) | 2022-05-02 | 2023-11-09 | Transgene | Poxvirus encoding a binding agent comprising an anti- pd-l1 sdab |
WO2023213764A1 (en) | 2022-05-02 | 2023-11-09 | Transgene | Fusion polypeptide comprising an anti-pd-l1 sdab and a member of the tnfsf |
EP4316514A1 (en) | 2022-08-03 | 2024-02-07 | Consejo Superior de Investigaciones Científicas (CSIC) | Mva-based vectors and their use as vaccine against sars-cov-2 |
WO2024193905A1 (en) | 2023-03-17 | 2024-09-26 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH) | Hbv antigen formulation for treating hepatitis b |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0836648B1 (en) | Recombinant mva virus, and the use thereof | |
US6869793B2 (en) | Recombinant MVA virus expressing dengue virus antigens, and the use thereof in vaccines | |
US20040265324A1 (en) | Recombinant MVA virus expressing dengue virus antigens, and the use thereof in vaccines |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 96195254.7 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AU AZ BB BG BR BY CA CN CZ EE GE HU IL IS JP KE KG KP KR KZ LK LR LS LT LV MD MG MK MN MW MX NO NZ PL RO RU SD SG SI SK TJ TM TR TT UA UG US UZ VN AM AZ BY KG KZ MD RU TJ TM |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 313597 Country of ref document: NZ |
|
ENP | Entry into the national phase |
Ref document number: 2225278 Country of ref document: CA Ref document number: 2225278 Country of ref document: CA Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 1997 504824 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1019970709939 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: PV1997-4241 Country of ref document: CZ |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1996925654 Country of ref document: EP Ref document number: 09002443 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: PA/A/1998/000025 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1199800006 Country of ref document: VN |
|
WWP | Wipo information: published in national office |
Ref document number: PV1997-4241 Country of ref document: CZ |
|
WWP | Wipo information: published in national office |
Ref document number: 1996925654 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1019970709939 Country of ref document: KR |
|
WWG | Wipo information: grant in national office |
Ref document number: 1996925654 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: PV1997-4241 Country of ref document: CZ |
|
WWR | Wipo information: refused in national office |
Ref document number: 1019970709939 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 212933 Country of ref document: IL |
|
WWE | Wipo information: entry into national phase |
Ref document number: 219528 Country of ref document: IL |