WO1997000373A1 - Procede de transformation de l'energie thermique en energie mecanique - Google Patents

Procede de transformation de l'energie thermique en energie mecanique Download PDF

Info

Publication number
WO1997000373A1
WO1997000373A1 PCT/RU1996/000147 RU9600147W WO9700373A1 WO 1997000373 A1 WO1997000373 A1 WO 1997000373A1 RU 9600147 W RU9600147 W RU 9600147W WO 9700373 A1 WO9700373 A1 WO 9700373A1
Authority
WO
WIPO (PCT)
Prior art keywords
cycle
heat
energy
working body
refrigerant
Prior art date
Application number
PCT/RU1996/000147
Other languages
English (en)
Russian (ru)
Inventor
Igor Isaakovich Samkhan
Original Assignee
Igor Isaakovich Samkhan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from RU95109983A external-priority patent/RU2117884C1/ru
Application filed by Igor Isaakovich Samkhan filed Critical Igor Isaakovich Samkhan
Priority to AU68646/96A priority Critical patent/AU6864696A/en
Publication of WO1997000373A1 publication Critical patent/WO1997000373A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • F01K17/005Using steam or condensate extracted or exhausted from steam engine plant by means of a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system

Definitions

  • the invention is favored by the energy industry, in particular, by the processes of thermal mechanical transformations, including, among other things, the production of mechanical energy and ( ⁇ ) or ele ⁇ - energy.
  • thermal mechanical transformations including, among other things, the production of mechanical energy and ( ⁇ ) or ele ⁇ - energy.
  • thermal energy including, among other things, the production of mechanical energy and ( ⁇ ) or ele ⁇ - energy.
  • thermal energy including, among other things, the production of mechanical energy and ( ⁇ ) or ele ⁇ - energy.
  • thermal mechanical transformations including, among other things, the production of mechanical energy and ( ⁇ ) or ele ⁇ - energy.
  • thermo mechanical processes including the combination of a direct thermal dynamic cycle of Phen-Kin for the production of heat energy into mechanical and ⁇ bratn ⁇ g ⁇ (therm ⁇ s ⁇ s ⁇ sn ⁇ g ⁇ , ⁇ l ⁇ diln ⁇ g ⁇ ) of the cycle using the work of the pr ⁇ m ⁇ g ⁇ cycle for ⁇ ans- ⁇ mation) thermal energy to higher temperature u ⁇ vnu [2] .
  • the refrigerant gas is expanded with the use of thermal energy at a lower temperature level outside, compressed using mechanical ⁇ y energy and compress with the release of thermal energy at a higher temperature level outside [2] .
  • the purpose of the proposed invention is to increase the efficiency of converting thermal energy into mechanical energy (work) by reducing the consumption of organic ⁇ g ⁇ ⁇ pliva, reduction of emissions in fumes and gases and pr ⁇ extraction of heat exhaust ⁇ d ⁇ s into the environment.
  • This goal is achieved by creating a way of converting thermal energy into mechanical energy, which keeps the combination ⁇ la and ⁇ opratn ⁇ g ⁇ par ⁇ mp ⁇ res- si ⁇ nn ⁇ g ⁇ cycle.
  • ⁇ directly in the steam cycle the liquid working body is compressed, then heated with a change in the steam or gas-different phase due to the heat exchange in the e energies, formed gases or vapors expand with the production of mechanical energy and condense with the release of thermal energy.
  • the refrigerant In a reverse energy cycle, the refrigerant is evaporated with the consumption of raw energy, compressed with the consumption of mechanical energy, cool and cool densiruyuut with the release of thermal energy.
  • the interaction of these cycles and combinations lies in the fact that the refrigerant of the reverse cycle is evaporated with the heat of condensation ⁇ working body pr ⁇ m ⁇ g ⁇ of the cycle, and ⁇ chee ⁇ after compression, initially heat up the heat, released pr ⁇ and condensation of the refrigerant, and then ⁇ external heat l ⁇ v ⁇ g ⁇ source.
  • the indicated goal can also be achieved by a combination of direct steam in the cycle and reverse (heat pump) ha-
  • the liquid working body is compressed, then heated with a change in the steam or gas-different phase due to the heat exchange in the e energies, formed gases or vapors expand with the production of mechanical energy and condense with the release of thermal energy.
  • the gaseous refrigerant is periodically expanded and compressed with consumption and release of thermal energy. The interaction of these cycles lies in the fact that the refrigerant of the reverse cycle is expanded with the consumption of the heat of the working body pr pit of the cycle, and the working body after compression is initially heated by the heat released during compression of the refrigerant, and then warmed up by external heat source .
  • This goal is also achieved by creating a fusion of converting thermal energy into mechanical energy by combining direct gas in the cycle and brother ⁇ g ⁇ ⁇ réelle ⁇ mpr ⁇ essi ⁇ nn ⁇ - g ⁇ of the cycle.
  • billing ⁇
  • Service strobes ⁇ alebes with the division of the ⁇ slovy ANENGIA, nagging ⁇ i ⁇ 11th and ⁇ -naughty with you, you, the mains of the meaning Ana ⁇ gi.
  • the refrigerant is evaporated with the consumption of energy, compressed, cooled and condensed with the release of heat energy.
  • An additional feature of the proposed space is ⁇ , that ⁇ densation of vapor in the working body or compression of gas and temperatures below the ambient temperature.
  • the difference is also ⁇ , that the condensation of the working body is carried out at a temperature of minus 200 ° ⁇ - minus 100 ° ⁇ .
  • Another difference of the proposed space is the use of a heat carrier with a temperature of minus 30 ° ⁇ - plus 200 ° ⁇ as an external heat source.
  • the following difference is due to the fact that the working body compresses to pressures exceeding the critical value.
  • the difference also lies in the fact that air or methane is used as a working body, and nitrogen and methane are used as a refrigerant.
  • a special device including the combination of a direct cycle circuit for the circulation of the working body with a pump, a heater , turbin ⁇ y and ⁇ ndense ⁇ m, and ⁇ nture ⁇ g ⁇ g ⁇ for circulating the refrigerant with evaporator, ⁇ mpr ⁇ m, ⁇ nd ⁇ m ⁇ m ⁇ r ⁇ ssel ⁇ r det ander ⁇ m, in this case the refrigerant evaporator is combined with the ⁇ m the working body, and the condensate of the refrigerant is installed in the direct cycle circuit between the pump and the heater.
  • ⁇ me ⁇ g ⁇ for the ⁇ existence of ⁇ ntur ⁇ g ⁇ from variant ⁇ in sp ⁇ - s ⁇ ba, another device is offered, including the combination of ⁇ ntura pr ⁇ m ⁇ g ⁇ cycle for tsir Cooling of the working body with pump, heater, turbine and heat pump, and circuit of the reverse cycle for the circulation of the coolant with heat pump , heat exchange and expander , in the second expander it is connected to the working body heat exchanger, and the heat exchanger of the return cycle is installed in the circuit pr pit of the cycle between us and the heater.
  • the proposed solution provides the possibility of carrying out the process at a temperature below the level of the condensing environment with the use as a heat source
  • ⁇ , pr ⁇ conducting ⁇ condensation ⁇ - cheg ⁇ of the body ⁇ and temperatu ⁇ réelle ⁇ (-200 ° ⁇ ) - (-140 ° ⁇ ) allows to significantly increase the temperature range of ⁇ cess and it is possible to use low-temperature heat-transfer agents.
  • the Lörenz triangular cycle can be chosen the heat source (working body in the heat exchanger) and the variable temperature of the heat sink - heating- power ⁇ a compressing the worker ⁇ ela, ⁇ . ⁇ . its refrigeration factor is 2-5 times higher than that of the Karn cycle with constant temperatures of heat sources [3] .
  • the working body heating temperatures in this case due to the return of condensation heat, will be significantly lower than the level of the ambient medium, approaching the values of the critical temperature, respectively equal to -82.5 ° ⁇ (190.8 ⁇ ), -146.8 ° ⁇ ( 126.5 K) or -139.2 °C (134.1 K).
  • the specified limitation of the temperature rise of the working body in this case is due to a significant increase in the heat capacity of the liquid when it is heated in the blast and critical temperatures and pressures.
  • refrigerants for such working bodies substances with a higher critical temperature can be used.
  • the difference in the temperature of heating the working body due to the action of the heat in the pump can be estimated by the difference between the critical temp. eratures ⁇ ⁇ . and temperature of condensation ⁇ ⁇ ⁇ chego ⁇ body.
  • the average value of this range on ⁇ pr ⁇ is determined by ⁇ ⁇ mule
  • ⁇ ⁇ ( ⁇ ⁇ - ⁇ ⁇ )/1 ⁇ ( ⁇ ⁇ / ⁇ ⁇ )
  • the cost of mechanical energy for the implementation of the return heat of the cycle can be estimated by the value of ⁇ 15% to 30% ⁇ heat s of condensation of the working body (the heat of condensation at a pressure of 0.1 MPa is for ⁇ 4 - 512.4 kJ / ⁇ g , for air - 196.8 ⁇ J/ ⁇ g), [4].
  • ⁇ a fig. 1 shows a schematic diagram of the device for the implementation of the method, and in fig. 2 - ⁇ -5 diagram of ⁇ am ⁇ g ⁇ and ⁇ bratn ⁇ g ⁇ of the cycle in the proposed ssp ⁇ s ⁇ ba, where ⁇ is the absolute temperature, 8 is the absolute en ⁇ py.
  • the device includes a direct cycle circuit 1 for the circulation of the working body, consisting of a subsequent connected pump 2, a condensate ⁇ refrigerant 3, heater 4, turbine 5 and heat exchanger 6, as well as heat pump 7 with circuits 8 and 9 for circulation of the refrigerant , in ⁇ - ⁇ , consequently, ⁇ mp ⁇ ress ⁇ 10, ⁇ ndensa ⁇ ⁇ refrigerant 3, d ⁇ ssel 11 and the evaporator ⁇ refrigerant 6 are connected.
  • a direct cycle circuit 1 for the circulation of the working body consisting of a subsequent connected pump 2, a condensate ⁇ refrigerant 3, heater 4, turbine 5 and heat exchanger 6, as well as heat pump 7 with circuits 8 and 9 for circulation of the refrigerant , in ⁇ - ⁇ , consequently, ⁇ mp ⁇ ress ⁇ 10, ⁇ ndensa ⁇ ⁇ refrigerant 3, d ⁇ ssel 11 and the evaporator ⁇ refrigerant 6 are connected.
  • the decomposed pairs of the working body are expanded in the turbine 5 with the production of mechanical energy. Passing the turbine, the steam expands and cools down to the condensation temperature, for example, -170 ° ⁇ . After the turbine 5, the pairs of the work body are fed into the work body 6, which cools the boiling refrigerant.
  • the refrigerant circulates in circuits 8 and 9 of pump 7.
  • the liquid refrigerant is evaporated in the evaporator 6 with heat absorption ⁇ body, then refrigerant vapor
  • 6-1 - ⁇ condensation of par ⁇ in the working body in ⁇ ndensa- ⁇ e 6; ⁇ reverse refrigeration (heating us) cycle in fig. 2 shows the following processes: 7-8 - evaporation of the refrigerant in the refrigerant evaporator 6; 8-9 - multi-stage compression of the refrigerant condenser 8 with multi-stage refrigeration and condensation of the refrigerant in the condensate of refrigerant 3 ; 9-7 - multi-stage depletion of the refrigerant condensation in the diffuser 9 before evaporation;
  • Section of the diagram 4-10 in Fig. 2 characterizes the value of the useful work of the ⁇ mbini ⁇ g ⁇ g ⁇ cycle, and section 6-10 is part of the total work produced by us ⁇ s ⁇ m.
  • the devices in fig. 3 includes the circuit of the direct cycle 1 for the circulation of the working body, containing us 2, heat
  • the working body evaporates, and its vapors become overheated.
  • the pairs of working bodies are expanded in turbine 5, which operates the electric generator 6. Through the turbine, the steam expands and cools up to a condensation temperature, for example -173 ° ⁇ .
  • the steam is supplied to the turbine 7, after which the refrigerant of the reverse cycle is fed.
  • the refrigerant circulates in the return cycle 8.
  • the refrigerant circulates in the pressure 9, cooled to a temperature close to ⁇ ⁇ condensation temperature, e.g. -163 °C.
  • Temperatures 9 increase the degree of compression of the refrigerant, while at the same time increasing the temperature of the refrigerant, for example, d ⁇ (-140 °C) - (-110 °C).
  • the refrigerant is cooled in a regenerative heat exchange 13 to the working body condensing temperature, for example, -173 ° ⁇ . This airing ⁇ - is controlled by the brother ⁇ m of the refrigerant leaving the ⁇ ndensat ⁇ - ⁇ réelle 7.
  • additional pressure 14 with an increase in refrigerant pressure, for example, 1.3 - 2 times, and temperature, for example, d ⁇ (-73 ° C) - (-53 ° C). Then the refrigerant is cooled by the working fluid in the heater 3 to a temperature close to the temperature ⁇ ' of the working fluid condensation, and is returned to the temperature s ⁇ 9 for the repetition of the cycle.
  • the reverse gas cycle can also be implemented in other ways, for example, with the use of multiple gas generating machines “Philips” They are used in refrigeration equipment, or with the use of other well-known analogous installations [5] .
  • thermodynamic effect of the benefits of the thermal mechanical processes of the offer is significant exceeds the possible ⁇ . ⁇ . e. of the Karn cycle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

Cette invention concerne un procédé faisant appel à une combinaison d'un cycle de vapeur direct de type Rankine et d'un cycle inverse (de type pompe à chaleur) à gaz ou à vapeur comprimée, ou encore à une combinaison d'un cycle direct à gaz et d'un cycle inverse à vapeur comprimée. Le chauffage initial du fluide de travail préalablement comprimé est effectué à l'aide d'une pompe à chaleur absorbant le dégagement thermique du cycle direct, tandis qu'un chauffage d'appoint ultérieur est ensuite effectué à partir d'une source extérieure. Les paramètres préférés utilisés dans ce procédé sont les suivants: le fluide de travail est de l'air ou du méthane, la température de la source thermique varie entre 20 et 200 °C, tandis que la température de condensation du corps de travail varie entre -200 et -150 °C. Ce dispositif consiste en une combinaison, d'une part, d'une structure de cycle direct (1), laquelle comprend une pompe (2), un réchauffeur (4), une turbine (5) et un condensateur (6) du fluide de travail, et d'autre part, d'une pompe à chaleur (7), laquelle comprend un évaporateur de l'agent de refroidissement (6), un compresseur (10), un condensateur de l'agent de refroidissement (3) et un tube d'étranglement (11). Dans cette combinaison, l'évaporateur de l'agent de refroidissement (6) est associé au condensateur du corps de travail (6), tandis que le condensateur de l'agent de refroidissement (3) est monté dans la structure du cycle direct (1) entre la pompe (2) et le réchauffeur (4).
PCT/RU1996/000147 1995-06-14 1996-06-04 Procede de transformation de l'energie thermique en energie mecanique WO1997000373A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU68646/96A AU6864696A (en) 1995-06-14 1996-06-04 Method of converting thermal energy to mechanical energy

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
RU95109983A RU2117884C1 (ru) 1995-06-14 1995-06-14 Способ и устройство для получения электроэнергии с использованием низкопотенциальных теплоносителей
RU95109983 1995-06-14
RU95111945 1995-07-11
RU95111945 1995-07-11
RU96102959 1996-02-14
RU96102959 1996-02-14

Publications (1)

Publication Number Publication Date
WO1997000373A1 true WO1997000373A1 (fr) 1997-01-03

Family

ID=27354160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU1996/000147 WO1997000373A1 (fr) 1995-06-14 1996-06-04 Procede de transformation de l'energie thermique en energie mecanique

Country Status (2)

Country Link
AU (1) AU6864696A (fr)
WO (1) WO1997000373A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001094197A1 (fr) * 2000-06-07 2001-12-13 Pursuit Dynamics Plc Systeme de propulsion
US9239063B2 (en) 2004-07-29 2016-01-19 Pursuit Marine Drive Limited Jet pump
WO2017101959A1 (fr) * 2015-12-17 2017-06-22 محمود ثروت حافظ أحمد، Dispositif d'absorption et d'exploitation de la chaleur émanant de l'environnement alentour (générateur )
US9931648B2 (en) 2006-09-15 2018-04-03 Tyco Fire & Security Gmbh Mist generating apparatus and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2073862A (en) * 1980-04-15 1981-10-21 Glynwed Group Services Ltd Heat Actuated Heat Pump and Turbine
SU1483054A1 (ru) * 1987-10-27 1989-05-30 Всесоюзный государственный научно-исследовательский и проектно-конструкторский институт "Внипиэнергопром" Способ работы бинарной электростанции
SU1740707A1 (ru) * 1990-06-18 1992-06-15 Ленинградское высшее военное инженерное строительное училище им.генерала армии А.Н.Комаровского Комбинированна теплосилова установка

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2073862A (en) * 1980-04-15 1981-10-21 Glynwed Group Services Ltd Heat Actuated Heat Pump and Turbine
SU1483054A1 (ru) * 1987-10-27 1989-05-30 Всесоюзный государственный научно-исследовательский и проектно-конструкторский институт "Внипиэнергопром" Способ работы бинарной электростанции
SU1740707A1 (ru) * 1990-06-18 1992-06-15 Ленинградское высшее военное инженерное строительное училище им.генерала армии А.Н.Комаровского Комбинированна теплосилова установка

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
D.RE, D. MAKMAIKL, "Teplovye Nasosy", 1982, ENERGOIZDAT, (Moscow), pages 24-25. *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001094197A1 (fr) * 2000-06-07 2001-12-13 Pursuit Dynamics Plc Systeme de propulsion
US9239063B2 (en) 2004-07-29 2016-01-19 Pursuit Marine Drive Limited Jet pump
US9931648B2 (en) 2006-09-15 2018-04-03 Tyco Fire & Security Gmbh Mist generating apparatus and method
WO2017101959A1 (fr) * 2015-12-17 2017-06-22 محمود ثروت حافظ أحمد، Dispositif d'absorption et d'exploitation de la chaleur émanant de l'environnement alentour (générateur )

Also Published As

Publication number Publication date
AU6864696A (en) 1997-01-15

Similar Documents

Publication Publication Date Title
CA2652243C (fr) Procede et systeme de generation d'energie a partir d'une source de chaleur
US6484501B1 (en) Method of heat transformation for generating heating media with operationally necessary temperature from partly cold and partly hot heat loss of liquid-cooled internal combustion piston engines and device for executing the method
Tozer et al. Fundamental thermodynamics of ideal absorption cycles
RU2698566C1 (ru) Органический цикл рэнкина для преобразования сбросного тепла источника тепла в механическую энергию и компрессорная установка, использующая такой цикл
MX2014011444A (es) Sistema y metodo para recuperar calor residual de fuentes de calor dual.
US20100229594A1 (en) Chilling economizer
US12044150B2 (en) Plant based upon combined Joule-Brayton and Rankine cycles working with directly coupled reciprocating machines
WO1997000373A1 (fr) Procede de transformation de l'energie thermique en energie mecanique
EA031586B1 (ru) Устройство для энергосбережения
EP3457052B1 (fr) Moteur à vapeur froide atmosphérique et son procédé de fonctionnement
Staicovici A method of improving the effectiveness of a mechanical vapour compression process and of its applications in refrigeration
US10794232B2 (en) Plant and method for the supply of electric power and/or mechanical power, heating power and/or cooling power
RU91487U1 (ru) Устройство преобразования низкопотенциальной теплоты в электрическую энергию
EP4314507A1 (fr) Système d'alimentation de cycle de récupération
US20210025372A1 (en) Meshod and device to produce alternative energy based on strong compression of atmospheric air
RU2127815C1 (ru) Тепловая силовая установка с холодильником
Shatalov et al. Utilization of secondary energy resources of metallurgical enterprises using heat pump
Bouazzaoui et al. Absorption resorption cycle for heat recovery of diesel engines exhaust and jacket heat
Yadav et al. Effective utilization of waste heat from diesel genset to run air conditioning plant
RU2117884C1 (ru) Способ и устройство для получения электроэнергии с использованием низкопотенциальных теплоносителей
RU1793075C (ru) Парогазова установка
CN115434774A (zh) 双热源联合循环动力装置
Sabir A novel GAX-R heat driven refrigeration/heat pump cycle
CN115370434A (zh) 双热源燃气-蒸汽联合循环动力装置
JP2014173743A (ja) 蒸気発生システム

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN CZ JP KR PL UA US AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA