WO1997000320A1 - Modified polypeptide, dna encoding the same, transformant, and medicinal composition containing the polypeptide - Google Patents
Modified polypeptide, dna encoding the same, transformant, and medicinal composition containing the polypeptide Download PDFInfo
- Publication number
- WO1997000320A1 WO1997000320A1 PCT/JP1996/001609 JP9601609W WO9700320A1 WO 1997000320 A1 WO1997000320 A1 WO 1997000320A1 JP 9601609 W JP9601609 W JP 9601609W WO 9700320 A1 WO9700320 A1 WO 9700320A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mac
- cys
- human
- modified polypeptide
- asn
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
Definitions
- the present invention relates to a modified polypeptide, a DNA encoding the same, a transformant, and a pharmaceutical composition containing the polypeptide.
- the present invention relates to a medicament, in particular, a modified polypeptide having human MAC IF activity, an anti-inflammatory action and an action of suppressing hyperacute rejection at the time of transplantation, a DNA encoding the modified polypeptide, and a DN
- the present invention relates to a recombinant expression vector containing A, a transformant transformed with the recombinant expression vector, a method for producing the modified polypeptide, and a pharmaceutical composition containing the modified polypeptide.
- the human MAC IF activity controls the final stage of a series of activations of the complement system, and forms autologous cells or cells through the formation of a membrane damage complex (hereinafter referred to as MAC). It refers to the activity of inhibiting the damage to self-tissues, or the activity of controlling the complement system, which has the effect of inhibiting the release of cysteine-in, blood coagulation and fibrinolytic factors from cells. Therefore, the modified polypeptide of the present invention is a regulator of the complement system and can be used as a pharmaceutical or the like.
- the present inventors purely isolated a natural complement inhibitory protein, a natural human MAC inhibitor (MAC Inhibit Factor: hereinafter referred to as MAC IF), from human normal erythrocyte membrane.
- MAC IF MAC Inhibit Factor
- the content was disclosed in Japanese Patent Application Laid-Open No. 2-157298.
- glycoprotein has a glycosylphosphatidylinositol anchor (G1ycosylphosphatidylinosito 1 anchor: hereinafter referred to as GPI anchor) at the C-terminal side of F, and is a glycoprotein with a molecular weight of 18,000 ⁇ 1,000. I made it.
- GPI anchor glycosylphosphatidylinositol anchor
- the present inventors isolated a gene encoding human MA CIF from a human monocyte cDNA library using a mixture of oligonucleotides corresponding to the N-terminal amino acid sequence as a probe, and obtained the gene and GP
- a gene encoding a soluble human MAC IF-active protein lacking the I anchor and a portion of the C terminal, an expression vector ligated with these genes, and a transformed cell were prepared.
- An IF active protein was prepared, and its contents were disclosed in Japanese Patent Application Laid-Open No. 3-20198.
- the present inventors have conducted intensive studies on MAC IF modified polypeptides which are useful as pharmaceuticals and have even more excellent activity.As a result, the modified polypeptide represented by SEQ ID NO: 1 in the following sequence listing was unexpectedly found in nucleated cells. Inhibiting the lysis of human umbilical vein vascular endothelial cells (HUVEC) by complement or the release of arachidonic acid metabolite PG12 and inflammatory mediator b-FGF; The present inventors have found that hyperacute rejection is suppressed by a model that reflects transplant hyperacute rejection, and completed the present invention.
- HUVEC human umbilical vein vascular endothelial cells
- the present invention relates to a modified polypeptide having the amino acid sequence represented by SEQ ID NO: 1 in the sequence listing and being in a soluble form.
- the present invention provides a DNA encoding the modified polypeptide, a recombinant expression vector containing the DNA, a transformant characterized by being transformed with the recombinant vector, and a modified product thereof. It also relates to a pharmaceutical composition comprising the polypeptide.
- the present invention also relates to a method for producing the modified polypeptide, which comprises culturing the transformant, producing the modified polypeptide, and collecting the modified polypeptide.
- the modified polypeptide of the present invention lacks the amino acid sequence at the C-terminal side of native human MAC IF, which is a GPI anchor binding signal, and has no GPI anchor.
- asparagine (Asn) at position 18 which is the sugar chain binding site of the polypeptide consisting of amino acid sequences 1 to 77 of the amino acid sequence of the native human MAC IF-active tampon protein c having the amino acid sequence was replaced with glutamine (G in) the
- MAC IF on the membrane shows CD2 ligand activity, but recombinant soluble MAC IF does not show this activity.
- MAC IF and soluble MAC IF are added from outside. It is not known to inhibit arakidonic acid cascade and to inhibit the release of inflammatory mediator b-FGF, and 6) cell lysis by MAC IF when present on the cell membrane. Even if it shows an inhibitory effect, MAC IF and soluble MAC
- the modified protein of the present invention Since it is not known whether or not an inhibitory effect is exhibited when IF is added from the outside, the modified protein of the present invention, in which various activities are confirmed as described later, is an extremely useful protein. It is positioned as being. BRIEF DESCRIPTION OF THE FIGURES
- FIG. 1 shows the sequences of primers used in the preparation of each of the MAC IF (70, N / Q), MAC IF (77, N / Q), and MAC IF (77) genes in Examples 2 to 4.
- FIG. 1 shows the sequences of primers used in the preparation of each of the MAC IF (70, N / Q), MAC IF (77, N / Q), and MAC IF (77) genes in Examples 2 to 4.
- FIG. 1 shows the sequences of primers used in the preparation of each of the MAC IF (70, N / Q), MAC IF (77, N / Q), and MAC IF (77) genes in Examples 2 to 4.
- FIG. 1 shows the sequences of primers used in the preparation of each of the MAC IF (70, N / Q), MAC IF (77, N / Q), and MAC IF (77) genes in Examples 2 to 4.
- FIG. 1 shows the sequences of primers used in the preparation of each of the MAC IF
- FIG. 2 is an explanatory view schematically showing a procedure for preparing the MAC IF (70, N / Q) gene prepared in Example 2.
- FIG. 3 is an explanatory view schematically showing the structure of a MAC IF (77, N / Q) EX expression plasmid prepared in Example 3.
- FIG. 4 shows the nucleotide sequence of the gene prepared in Example 3 and the amino acid deduced from the nucleotide sequence for use in expressing the polypeptide of the present invention, MAC IF (77, N / Q). It is explanatory drawing which shows an arrangement.
- FIG. 5 is a diagram schematically showing the results of SDS-PAGE of MAC IF (77, NXQ) performed in Example 6.
- FIG. 6-1 shows the results of cell lysis by urinary MAC IF or MAC IF (77, N / Q), which is a modified polypeptide of the present invention.
- FIG. 6-2 is a graph showing the results of the cytolytic effect of urinary MAC IF or MAC IF (77, N / Q), which is a modified polypeptide of the present invention.
- FIG. 7-1 is a diagram showing the results of cell lysis using LDH activity as an index when MAC IF (77, N / Q), which is a modified polypeptide of the present invention, is not added.
- FIG. 7-2 shows the results of the b-FGF release inhibitory effect of MAC IF (77, N / Q), which is a modified polypeptide of the present invention.
- FIG. 8 is a graph showing the results of the effect of cytotoxicity on the basis of LDH activity by MAC IF (77, N / Q), which is a modified polypeptide of the present invention.
- Figure 9 is a graph showing the results of, HBSS containing human C 9, of HBSS containing human C 8 and human C 9 PG I 2 release (following Examples 8 (3 1) See for HBSS) HBSS It is.
- FIG. 10 is a graph showing the results of suppression of PGI 2 production by MAC IF (77, N / Q), which is a modified polypeptide of the present invention.
- FIG. 11 shows changes in the perfusion pressure of the guinea pig heart with Krebs buffer containing 3% human plasma (NHP).
- FIG. 11-1-2 shows that the modified polypeptide of the present invention, MAC IF (77, N / Q), was added to a Creps buffer containing 3% human plasma at 10 jt / gZn 1 and 50 g / 1.
- FIG. 9 is a diagram showing the effect of suppressing the increase in the convection pressure in the case of performing the above.
- FIG. 12 shows the temporal changes in the left ventricular pressure and the left ventricular end-systolic pressure of the guinea pig when the control was washed with Krebs buffer containing 3% NHP.
- FIG. 13 is a graph showing the effect of the modified polypeptide of the present invention, MAC IF (77, N / Q), on guinea pig myocardial dysfunction based on human complement activity.
- FIG. 14 is a graph showing the effect of inhibiting the release of creatine phosphokinase by MAC IF (77, N / Q), which is a modified polypeptide of the present invention.
- the modified polypeptide of the present invention is a polypeptide characterized by having the amino acid sequence represented by SEQ ID NO: 1 in the Sequence Listing described below, and comprises the first amino acid sequence of a natural human MAC AC IF active protein. It has an amino acid sequence in which the 18th asparagine (Asn) of the polypeptide consisting of the amino acid sequence of the amino acids Nos. 77 is substituted with glutamine (Gln).
- the modified polypeptide of the present invention can be produced, for example, by a gene recombination technique according to the method described below.
- the DNA of the present invention having the nucleotide sequence encoding the amino acid sequence represented by SEQ ID NO: 1 in the sequence listing can be synthesized by, for example, a genetic recombination method or a chemical synthesis method, or a combination thereof as appropriate. it can.
- a nucleic acid is prepared according to a conventional method such as a phosphoramidite method [Hunkap i 11 er, M. eta 1., Naturo, —310, 105-111 (1 984)) Can be chemically synthesized.
- a naturally-occurring human library can be obtained from a cDNA library prepared from mRNA obtained from human MAC IF-producing cells.
- a clone containing cDNA encoding MAC IF is isolated, and cDNA encoding native human MAC IF is isolated from the isolated clone.
- PCR polymerase "chain" reaction
- the codon corresponding to asparagine, the 18th amino acid is replaced by the codon corresponding to glutamine.
- a partially modified DNA fragment can be obtained.
- the DNA fragment obtained by PCR was replaced with the corresponding portion of cDNA encoding natural human MAC IF, and the template was designed to amplify the desired soluble MAC IF cDNA again as a template.
- the DNA of the present invention can be obtained.
- the DNA of the present invention can be obtained by replacing the DNA fragment obtained by the PCR with a corresponding portion of a previously prepared cDNA fragment encoding a soluble MAC IF. . Specific design of primers, selection of restriction enzyme sites available for replacement, and the like will be described in detail in Examples below.
- the thus obtained full-length portion of the coding region of the DNA encoding the modified polypeptide having human MAC IF activity of the present invention can be expressed using eukaryotes and prokaryotes as hosts. Expression vectors to be incorporated into these host cells are appropriately constructed according to the host cells.
- Prokaryotic hosts include E. coli strains such as E. coli K12 strain 294 (ATCC 314 46), E. coli B, E. coli 1776 (ATCC 31537), E. coli C600 and E. coli W3110 (F-, ⁇ -, prototrophy, ATCC 27375). ), Bacillus strains, for example, Bacillus subtilis, Salmonella typhimuriium or Serratia marcescens, and other intestinal bacteria other than Escherichia coli, and strains of the genus Pseudomonas. Is mentioned.
- one of the vectors is a promoter and an SD base sequence upstream of the gene of the present invention so that the gene of the present invention can be expressed [Shine, J. et al. of Science of USA, 71, 1342 to 1346 (1974)], and an expression plasmid to which ATG necessary for initiation of protein synthesis has been added can be used.
- PUC18 and PUC19 are often used as vectors for 97/00320 E. coli strains and the like.
- the promoter for example tryptophan promoter, p L promoter evening one, lac promoter, lpp promoter mono-, -. Comfortable evening can be used mer lactamase promoter, or the like.
- marker gene examples include an ampicillin resistance gene and a tetracycline resistance gene.
- yeasts are generally used, and among them, yeast belonging to the genus Saccharomyces can be advantageously used.
- yeasts for example, YRp7 can be used.
- Examples of the promoter of an expression vector for yeast expression include 3-phosphoglyceretokinase or enolase, glyceraldehyde-3-phosphodehydrogenase, and hexonase.
- a trpl gene or the like can be used as the marker gene.
- red-haired monkey kidney cells, mosquito larvae cells, African green monkey kidney cells, mouse embryo maintenance blast cells, Chinese hamster ovary cells, and their dihydrofolate reductase-deficient strains [ Ur 1 aub, G., et al., Proceeding ngs of the Nationala l A cademy of Science of the USA, 77, 421 6-4220 (1980)), human cervical epithelial cells, Human fetal kidney cells, moth ovary cells, human myeloma cells, mouse fibroblasts, or the like can be used.
- the vector generally has a functional sequence for expressing the DNA of the present invention in a host cell, such as a replication origin, a promoter to be located upstream of the DNA of the present invention, a ribosome binding site, a polyadenylation site, and a transcription termination sequence. It contains.
- Promoters include, for example, adenovirus 2 major late promoter, SV40 early promoter, SV40 late promoter, and promoters from eukaryotic genes.
- adenovirus 2 major late promoter SV40 early promoter
- SV40 late promoter SV40 late promoter
- promoters from eukaryotic genes E.g., the estrogen-induced chicken egg albumin gene, the in vitro enzyme, the glucocorticoid-induced tyrosine aminotransferase gene, the thymidine kinase gene, the major early and late adenovirus genes, the phosphoglycerate kinase gene, or Factor factor gene).
- adenovirus SV40, ⁇ papilloma virus (BPV), vesicular stomatitis virus (VSV), or a derivative thereof derived from a vector
- BPV ⁇ papilloma virus
- VSV vesicular stomatitis virus
- a marker gene at this time for example, a neomycin resistance gene, a methotrexate-resistant dihydro leaf nucleic acid reductase (DHFR) gene, or the like can be used.
- DHFR methotrexate-resistant dihydro leaf nucleic acid reductase
- an expression vector for higher animal cells it is effective to use a vector such as pEF-BOS, pSR or the like because of high expression efficiency.
- the host, the vector, and the components thereof that can be used for expressing the DNA of the present invention have been exemplified, but the present invention is not limited to these examples.
- the transformant of the present invention can be obtained by introducing the recombinant vector of the present invention obtained above into a desired host according to a conventional method.
- the expression vector plasmid is prepared from a host (eg, E. coli HB101 strain) used for gene construction by a general method such as an alkaline lysis method.
- the method of transforming a host using the prepared vectorplasmid is the calcium phosphate method when using mammalian cells as a host [van der Eb, AJ etal., Method sin Enzymo logy, 65 , 826-839 (1980), Academic Pres s.].
- the transformant of the present invention obtained as described above is cultured according to a conventional method, and the modified polypeptide of the present invention having biological activity is produced and accumulated by the culture.
- the medium used for the culture can be appropriately selected from those commonly used depending on the host used.
- MEM-spun medium may be used, if necessary, such as fetal calf serum (FCS).
- FCS fetal calf serum
- Those to which blood components have been added can be used.
- the expression site of the modified polypeptide of the present invention produced by the transformant may vary depending on the amino acid sequence encoded by the synthesized DNA, the type of vector to be used, the type of host, and a combination thereof. Or can be produced in the culture supernatant of the cells.
- modified polypeptide of the present invention produced from various transformants can be subjected to various separation operations utilizing its physical and chemical properties (for example, Biochemical Data Book II, edited by the Biochemical Society of Japan, p. 1175, No. 1). Edition, 1st printing, 1980, Tokyo Chemical Co., Ltd., etc.).
- Examples of the method include, for example, treatment with a normal protein precipitant, ultrafiltration, molecular sieving chromatography (gel filtration), adsorption chromatography, ion conversion chromatography, affinity chromatography, and high-speed chromatography.
- Examples thereof include various liquid chromatography such as liquid chromatography (HPLC) and the like, a folding method, a combination thereof, and the like. More specifically, the method differs depending on the expression site of the modified polypeptide.
- the modified polypeptide of the present invention produced in the culture supernatant is purified by the following method.
- a target substance is partially purified from the culture supernatant in advance.
- This partial purification is performed, for example, by a treatment using a salt-forming agent such as ammonium sulfate, sodium sulfate, sodium phosphate, or the like, and an ultrafiltration treatment using Z or a transparent membrane, a flat membrane, a hollow fiber membrane, or the like. Be done.
- a salt-forming agent such as ammonium sulfate, sodium sulfate, sodium phosphate, or the like
- ultrafiltration treatment using Z or a transparent membrane, a flat membrane, a hollow fiber membrane, or the like.
- the crude product obtained above is subjected to adsorption chromatography, affinity chromatography, gel filtration, ion exchange chromatography, reverse phase chromatography, etc., and by a combination of these operations, A fraction showing the activity of human MA CIF can be obtained, and the target substance can be isolated as an equivalent substance.
- Recombinant protein produced in cells is treated with an appropriate detergent (eg, NP-40, Triton X-100, octylglycoside) to break the cell membrane and release the recombinant protein into solution. After that, purification can be performed in the same manner as described above.
- an appropriate detergent eg, NP-40, Triton X-100, octylglycoside
- purification can be performed in the same manner as described above.
- the modified polypeptide of the present invention, DNA encoding the polypeptide, an expression vector containing the DNA, a transformant containing the expression vector, and a method for producing the modified polypeptide have been described above. . Industrial applicability
- the modified polypeptide of the present invention is of human origin, it has no antigenicity to humans, is low toxic, and prevents damage to autologous cells and tissues through MAC formation, which is the final stage of the complement activation reaction It can be usefully used as a therapeutic agent for diseases in which complement control components are deleted or reduced.
- the modified polypeptide of the present invention has the following effects: 1) inhibiting lysis of nucleated cells (HUVEC) by complement; Inhibits the release of PG I 2, a metabolite of arachidonic acid, and b-FGF, an inflammatory mediator, by the complement from humans (non-1 etha 1 effect), and 3) a model that reflects transplant hyperacute rejection. Hyperacute rejection was suppressed.
- the modified polypeptide of the present invention is a useful compound that is expected to have the following diseases or clinical applications.
- the modified polypeptide of the present invention suppressed lethal effect of nucleated cells (HUVECs) by complement indicates that the modified polypeptide of the present invention caused reperfusion injury after ischemia. It is expected that it can be used as a preventive drug or as a preventive drug for vasculitis associated with autoimmune diseases and the like and cytotoxicity due to complement.
- complement activation signals complement directly to cells, causing Ca 2+ influx and releasing various inflammatory media such as arachidonic acid metabolites and protein factors out of the cell. It is known that (Immun 0 and Res. 993; 12: 244—). As arachidonic acid metabolites, arachidonic acid, PGE 2 , PGI 2 , TxA 2 , LTB 2 and others are reported to be released from epithelial cells, leukocyte cells, vascular endothelial cells, etc. upon stimulation of complement. Have been. B-FGF, PDGF, vWF, etc. are released from vascular endothelial cells by stimulation of complement. Is reported to be.
- modified polypeptide of the present invention suppressed the release of PG I 2, a metabolite of rachidonic acid and b-FGF, an inflammatory mediator, by complement from HUVEC means that the modified polypeptide of the present invention It is considered to be useful as an agent for preventing and treating inflammatory diseases such as nephritis, atherosclerosis, and chronic inflammation such as rheumatoid arthritis, which are said to be involved in the non-1 et ha 1 effect of these complements. Furthermore, the fact that the modified polypeptide of the present invention showed an effect of inhibiting complement-induced decline in cardiac function in the guinea pig heart Z human plasma port system was demonstrated by a technically difficult transgenic animal (Transgenic animal). l) It is thought that hyperacute rejection can be suppressed by adding the modified polypeptide of the present invention at the time of organ transplantation without requiring preparation, and is extremely useful clinically.
- the modified polypeptide of the present invention is considered to be useful not only in xenotransplantation but also in suppressing hyperacute rejection in transplantation between humans.
- the dosage form of the modified polypeptide of the present invention varies depending on the type and condition of the disease and the condition of the patient, it may be administered orally as a systemic administration route or as an injection, nasal formulation, suppository, implantable preparation, etc. It is administered parenterally.
- a local administration route 2 Administration, implantable preparations for affected area, etc. are used.
- compositions suitable for the respective dosage forms are formulated.
- the modified polypeptide of the present invention is dissolved in, for example, a phosphate buffered saline / dextrose aqueous solution, and if necessary, a stabilizing agent, a dispersing agent, etc. are added, and an injection ampoule is prepared. Or freeze-dried in a vial bottle. When administered, distilled water for injection can be dissolved in physiological saline before use.
- the dose of the modified polypeptide of the present invention is usually 10 to 500 mg, preferably 1 to 50 mg per day for an adult, and it may be reduced once to several times a day. Administer separately.
- Oligonucleotide KM 1 contains the nucleotide sequence from No. 1 to No. 21 of the nucleotide sequence of SEQ ID NO: 4 in the Sequence Listing
- oligonucleotide 5′M1uI is the nucleotide sequence of SEQ ID NO: 4 in the Sequence Listing.
- the oligonucleotide MA CIF NX contains the nucleotide sequence from No. 136 to No. 165
- the oligonucleotide MA CIF NX contains the nucleotide sequence from No. 1 to No. 21 of the nucleotide sequence of SEQ ID NO: 4 in the sequence listing.
- Oligonucleotide M3 having the sequence of SEQ ID NO: 6 in the Sequence Listing, oligonucleotide N / Q having the sequence of SEQ ID NO: 7 in the Sequence Listing, and oligonucleotide 77 having the sequence of SEQ ID NO: 10 in the Sequence Listing
- 97 320 corresponds to the base sequence of the complementary chain of the human MAC IF gene.
- Oligonucleotide M3 contains a nucleotide sequence complementary to the nucleotide sequence from No. 285 to No.
- oligonucleotide N / Q is a nucleotide sequence of SEQ ID NO: 4 in the Sequence Listing.
- Oligonucleotide 77XX contains the nucleotide sequence complementary to the nucleotide sequence from No.156 to No.115 in the nucleotide sequence, and the nucleotide sequence from No.306 to No.287 in the nucleotide sequence of SEQ ID NO: 4 in the sequence listing.
- a base sequence complementary to the base sequence of The base sequence shown in italic letters and broken lines in FIG. 1 is a site recognized by the restriction enzyme described immediately below.
- Each primer designed in the above (1) was synthesized using a DNAZRNA synthesizer (Model 394 DNA / RNA synthesizer: Applied Biosystems). The cycle was performed at 40 nM CE, and the END procedure was performed at END CESS.
- the oligonucleotide purification cartridge (Oli gonuc l e o ti de Purifi ca ti on Car tri dge: Applied Biosystem) Each primer was purified according to the instructions using the following primers and used for the following polymerase-chain reaction (hereinafter referred to as PCR). However, the oligonucleotide MAC I FNX and the oligonucleotide 77XX were purified using a separate oligonucleotide purification cartridge (Oli gopurifi cation Cartridge: Cruach em) according to the instructions. .
- Plasmid p GEM 352-3 (plasmid pGEM 352-3) in which cDNA of human native MAC IF is inserted into plasmid p GEM 4 as a template, and 100 nlV each of oligonucleotide KM 1 and oligonucleotide NZQ as primers — 3 is described in Examples (1) to (5) of JP-A-3-201 985. 10 mM Tris—HCl (pH 8.3), 5 OmM KC, 1.5 mM MgCl 2 , 0.001% (weight Z volume) gelatin, 0.2 mM (51 ⁇ ) DNA polymerase (Takara Shuzo) 2.
- DNA fragment 70a was amplified by performing a PCR reaction in which the temperature was kept at 72 ° C. for 7 minutes.
- DNA fragment 70a was amplified by performing a PCR reaction in which the temperature was kept at 72 ° C. for 7 minutes.
- DNA fragment 7 Ob a DNA fragment (hereinafter referred to as DNA fragment 7 Ob).
- the DNA fragment 70a amplified by PCR in the above (1) is cleaved with restriction enzymes Not I and Ml ⁇ I
- the DNA fragment 70b amplified by PCR in the above (2) is digested with the restriction enzymes Ml ⁇ I and
- the plasmid was digested with EcoRI and the plasmid vector pB1 ⁇ escript II KS + (STRATA GENE) was digested with restriction enzymes NotI and EcoRI.
- These DNA fragments were separated by agarose gel electrophoresis, and a DNA fragment 70a 'of about 0.15 kb, a DNA fragment 70b' of about 0.15 kb, and a vector DNA fragment of about 3.0 kb An agarose gel containing was cut out.
- Extraction and purification of the DNA fragment from the agarose gel pieces were performed using a gel extraction kit (QIAEX> Gel Extrac tion, Kit: QI AGEN).
- the purified DNA fragments are mixed at a molar ratio of 1: 1: 1 and ligated with a ligation kit (Ligation Kit: Takara Shuzo) to transform Escherichia coli JM109 competent cells (Takara Shuzo).
- a ligation kit Ligation Kit: Takara Shuzo
- the DNA base sequence of the plasmid selected in the above (3) was determined.
- a DNA sequencer is performed using a sequencing kit (Prims rea dy Reacti on Dy eDeoxy Terminator Cyclic Sequenci ng Kit: Ap p1 ied B iosys ⁇ em) to perform a DNA sequencer. (ABI).
- a recombinant plasmid having the nucleotide sequence from No. 1 to No.
- Example 2 Using pB1 ⁇ e-MAC IF (70, N / Q) obtained in Example 2 (4) as a template and oligonucleotide MAC I FNX and oligonucleotide 77XX as primers, Example 2 (1 PCR was performed under the same conditions as in the above) to obtain a DNA fragment of about 0.36 kb. These DNA fragments contain the MAC IF (77, N / Q) gene and a restriction enzyme XbaI recognition site and CD at the 5 'end.
- the MAC IF (77, N / Q) gene refers to a DNA having the nucleotide sequence of Nos. 1 to 312 of the nucleotide sequence of SEQ ID NO: 3 in the sequence listing and encoding the polypeptide of the present invention. It is. The amplification of the desired 0.36 kb DNA fragment was confirmed by 2% agarose gel electrophoresis.
- the DNA fragment amplified by PCR in the above (1) was subcloned into a PCR vector (invitrogen) using a cloning kit (TAC10ningTMKit: invitrogen). That is, the PCR reaction solution 11 obtained in the above (1) was added to sterile water 5 ⁇ 10 X ligation buffer 121, PCRII vector solution (25 ng / u1) 11, T4
- Escherichia coli JM109 competent cell (Takara Shuzo) was transformed using the above reaction solution according to the attached instructions, and applied to a selection plate.
- a selection plate agar medium containing ampicillin sodium (Wako Pure Chemical Industries, Ltd.) 501111 and 2% 5-bromo-4 monoclonal 3-indolyl-S-D-galactoside (X — Gal) (Wako Pure Chemical Industries) 501 and 0.1 M isopropyl-111-thio- ⁇ -D-galactone (IPTG) (Sigma) 20-1 were used.
- the selection plate was incubated at 37 ° C overnight, white colonies that appeared were selected, and plasmid DNA was prepared using a plasmid preparation kit (QIAGEN PLASMID MINI KIT: QIAGEN).
- the obtained plasmid DNA was digested with restriction enzyme XbaI and subjected to agarose gel electrophoresis to select a plurality of recombinant plasmids having an inserted fragment of about 0.36 kb.
- the DNA base sequence of the plasmid selected in the above (2) was determined.
- Sequence kit (Pri sm r eady Rea cti on DyeDeoxy Termi na t or A sequence reaction was performed using a Cyclic Sequence Kit (App 1 ied Biosystem) and analyzed with a DNA sequencer (ABI).
- a recombinant plasmid having the nucleotide sequence of SEQ ID NO: 3 in the sequence listing was selected and named pMAC IF (77, N / Q) EX.
- FIG. 4 shows the base sequence of the translation portion and the stop codon of the MAC IF (77, N / Q) EX gene and its deduced amino acid sequence.
- the bases or amino acids underlined in FIG. 4 are different from the base sequence or amino acid sequence of the natural type human MAC IF active protein.
- the plasmid pMACIF (77, N / Q) EX obtained in the above (3) was digested with the restriction enzyme XbaI.
- DHFR methotrexate-resistant dihydroleaf nucleic acid reductase
- a piece of agarose gel and a piece of agarose gel containing a linear plasmid pEBD fragment having XbaI cohesive ends at both ends were cut out.
- Extraction and purification of the target DNA fragment from the agarose gel was performed using a gel extraction kit (QIAEX> Gel Extraction ⁇ Kit: QIAGEN).
- the purified DNA fragments are mixed at a molar ratio of 1: 1 and ligated with a Ligation kit (Takara Shuzo) to transform Escherichia coli JM109. (Wako Pure Chemical Industries) was applied to an L-broth plate containing 50 g / m1. Ligation of DNA fragments and transformation of Escherichia coli were performed according to the attached instructions. An appropriate number of transformants were selected from the transformants that appeared, and a plasmid preparation kit (QI AGEN).
- Plasmid DNA was prepared from each transformant using PLASM IDMIN KIT (QIAGEN). The obtained plasmid DNA is digested with restriction enzymes Not I and EcoRI, and then subjected to agarose gel electrophoresis to obtain DNA fragment MAC IF (77, N / Q) EX plasmid pEBD human A plasmid inserted in the forward direction relative to the elongation factor 1 (EF-1) promoter was selected and named pEBD-MAC IF (77, N / Q) EX. The structure of pEB D—MAC IF (77, N / Q) EX is schematically shown in FIG. As shown in Fig.
- the DNA fragment MAC IF (77) was prepared according to the method described in Example 3 (1) to (4) except that pGEM35 2-3 was used as a template.
- a plasmid (hereinafter referred to as pEBD-MAC IF (77) EX) was prepared in which EX was inserted in the forward direction with respect to the human EF-1 promoter of plasmid p EBD overnight.
- the transfection of CH0 cells was carried out using a ribofectin solution (LIPOFEC TIN TM Reagent: Gibeo—BRL).
- the lipofectin solution 201 and OPT-MEM001 were mixed to prepare solution B.
- the solution A and the solution B were mixed gently, and allowed to stand at room temperature for 15 minutes.
- 1.8 ml of MEM medium (+) medium (Gibco 0-BRL) was added.
- the 1Z1 0 amount of the total cell number were transferred to 25 cm 2 flask, while exchanging [ME Ma (I) medium (G ibeo- BRL Co.) 5 m l containing 1 0% dialyzed FBS] 2-3 days in culture medium
- the transfused CH0 cells were selected by culturing at 37 ° C and 5% carbon dioxide.
- a MEM (-) medium containing 10% FBS permeated with a phosphate buffered saline (hereinafter, referred to as PBS) was used.
- PBS phosphate buffered saline
- MAC IF MAC IF
- MTX methotrexate
- T medium (Wako Pure Chemical) 1 7. 8 3 g / l , glucose 64 g / l, PEG 20 000 lg / l, gentamicin 1 0 mg / l, and NaHCO 3 Add 2 gZl, and add a final concentration of 1.25 mg of insulin, 2.25 mg of transpurin, 2.38 mg of ethanolamine, 0.38 mg of ethanolamine, and sodium selenite 1.08 // gZl of RD-1 medium (Kyokuto Pharmaceutical Co., Ltd.) , 0.001% Tween 80, 500 nM MTX, and 2% FBS.
- An anti-human MAC IF mouse monoclonal antibody (Hatanaka et al., CI ini ca l Immunology and Immunopathology, 69, 52-59, (1993)) was activated by activated Sepharose 4B (Pharma cia) according to the attached instructions to prepare an anti-MAC IF antibody column.
- the culture supernatant of CH0 cells producing MAC IF (77) or MAC IF (77, NXQ) is applied to the anti-MAC IF antibody column to adsorb each product, and then Tris buffer containing 15 OmM sodium chloride is applied. The solution was thoroughly washed with a liquid (pH 7.4) and a Tris buffer (PH 7.4) containing 500 mM sodium chloride.
- MAC IF (77) or MAC IF (77, N / Q) adsorbed on the anti-MACIF antibody column was eluted with a 3 M aqueous solution of potassium thiocyanate, dialyzed against PBS, and subjected to buffer exchange.
- the concentration of the purified protein was assayed using a protein assay kit (Micro BCA protein Assay Kit: Pierce), and the operation was in accordance with the instructions. In addition, the following protein concentration tests were all performed using the above protein assay kit (Micro BCA protein Assay Kit).
- the purified MAC IF (77, N / Q) was subjected to polyacrylamide gel electrophoresis (hereinafter, referred to as SDS-PAGE) (Daiichi Pure Chemicals) in the presence of sodium dodecyl sulfate by a conventional method, and analyzed.
- SDS-PAGE polyacrylamide gel electrophoresis
- FIG. Figure 5 shows the SD 1 is a drawing schematically showing an electrophoretic image of S-PAGE.
- Lane 1 shows a migration image of Protein Molecular Weight Marker 1 (Daiichi Pure Chemicals)
- Lane 2 shows a migration image of purified MAC IF (77, N / Q) of 50 ng.
- MAC IF (77, N / Q) formed a single node at a molecular weight of around 7 kDa.
- Example 7 Comparison of MAC IF (77) and MAC IF (77, N / Q) activities Dessauer et al. ⁇ £ [De ssauer, A. eta 1., Acta Patholofica Mi cr ob iol og ics S candinavia Secti on C Supplement 284, 92, 75-8 1 (1984)] to prepare a human C5b6 complex from human C5 (Cosmo Bio) and 6 (Cosmo Bio). Human C 5 b 6 complex hemolysis rate was diluted to about 50%, in a mixture of guinea pig erythrocytes (2.
- Example 8 Effect of MAC IF (77, N / Q) on inhibition of cell lysis by complement of nucleated cells
- Urine MAC IF has a structure cleaved in the middle of the anchor of natural MAC IF (Archne sof Biochemistry and Biophysics, 31 1 (1), 117-126, (1 994) ) It is known as a protein that has the effect of inhibiting erythrocyte hemolysis in guinea pigs.
- Urine MAC IF was prepared from human urine by the method of Sugita, Y. et al. (Immuno 1 og y, (1994) _8_2_: 34-41).
- heron anti-HUVEC polyclonal antibody For the production of heron anti-HUVEC polyclonal antibody, refer to Broo imans R. According to the method of A. et al. (Eur. J. Immunol., (1992) _2_2_: 31 35-3140).
- a serum fraction (hereinafter, antiserum) according to a conventional method.
- an immunoglobulin G fraction was prepared according to a conventional method, and used as a perch anti-HUVEC polyclonal antibody.
- H BSS (1 38m sodium chloride each Ueru 180 ⁇ 1, 5 mM potassium chloride, 0. 3 mM-phosphate disodium hydrogen ⁇ 12H 2 0, 0. 3mM potassium phosphate, 1. 3 mM calcium chloride, 0. 5 mM chloride magnesium ⁇ 6 ⁇ 2 ⁇ , 0. 4 mM sulfuric acid magnesium ⁇ 7 H 2 0, 5. 6m D- glucose, 1 0mM HEPE S pH7.
- NADH sodium EDTA
- the change with time of the absorbance at a wavelength of 330 nm over 150 seconds was measured every 9 seconds using a THERM max (Molecular Devices) microplate reader, and Vmax (mOD / min) was calculated from the decrease rate of the absorbance. (Sample Vmax).
- the serum-derived LDH activity was determined by adding 2 OmM EDTA to the final reaction solution I (50% human serum) to inactivate complement (background Vmax), while the LDH activity was determined by the total dissolution of HUVEC.
- MAC IF (77, N / Q) or urine MAC IF was added to the final reaction solution I of (3), and its inhibitory effect was examined.
- Human serum is added to PI-PLC-treated HUVEC cells treated with anti-HUVEC polyclonal antibody at a final concentration of 50%, which is a condition closer to the human body, and reacted at 37 ° C for 30 minutes. It was dissolved (Fig. 6-1).
- the naturally occurring soluble urinary MAC IF did not show any inhibitory effect on the lysis of HUVEC cells by this human serum at concentrations up to 250 / ng / 1.
- the MAC IF (77, N / Q) of the present invention very strongly inhibits this cell lysis in a concentration-dependent manner, and its concentration (ED 5 ) showing 50% inhibition is 10%.
- Example 9 MAC IF (77, N / Q) inhibits PGI 2 and bFGF release by complement from HUVEC
- the final reaction solution II was recovered from the solution, and the Lactate Dehydrogenase The activity was measured by the method described in Example 8 (4), and the concentration of basic fibrob last growth factor (hereinafter abbreviated as FGF) was measured by the method described below.
- FGF basic fibrob last growth factor
- the b-FGF concentration in the supernatant was quantified by ELISA.
- the ELISA was performed using Quantikine TM HumanFGF basic Immunoassay (R & D systems) according to the attached protocol.
- HUVEC cultured in a 6-well microtest plate until further growth were treated with PI-PLC.
- PI-PLC PI-PLC-phosphate-semiconductor
- HBSS (hereinafter referred to as final reaction solution II) containing (Quiddel) was added in 601, and incubated at 37 ° C for exactly 10 minutes.
- final reaction solution II a hydrolyzate of prostacyclin
- 6-keto-PGFla 6- keto- prostaglandin Fla
- PG I 2 released into the final reaction solution III is immediately hydrolyzed and stable 6-Convert to keto-PGFla. Therefore, the amount of PGI 2 released from HUVEC was measured by measuring 6-keto-PGFla in the reaction solution.
- concentration of 6-keto-PGFla in the same solution was quantified by ELISA.
- ELISA was performed using 6-keto Prostaglandin Fla Enzyme Immunoassay Kit (Cayman Chemical) according to the attached protocol.
- the LDH activity in the final reaction solution II was determined by the method of Example 8 (4).
- the concentration was measured by the method of (2).
- the cell lysis rate of HUVEC detected using LDH activity as an index was 4.1 ⁇ 5.7 (%), and HUVEC lysis hardly occurred (FIG. 7-1).
- the b-FGF concentration increased from 10.8 ⁇ 0.7 (pg / ml) of the control to 31.0 ⁇ 4.7 (pg / ml). This demonstrated that b-FGF was released by non-lethal activation of complement by the method (1).
- Example 8 When the final reaction solution (3) of (3) was HBSS, HBSS containing human C8, and HBSS containing human C8 and human C9, the LDH activity in each recovered final reaction solution III was determined in Example 8 ( The PGI 2 activity was measured by the method of (4) by the method of (4). Under the above conditions, C5b7, C5b8, and C5b9 are considered to be formed on the cell membrane surface of HUVEC, respectively (JBC 264 (15). 9053-9060. 1989). In any case, almost no LDH activity was detected in the final reaction mixture ⁇ , and even when the reaction was performed with HBSS containing human C8 and human C9, the LDH activity in the final reaction mixture 5. was 5.
- MAC IF (77, N / Q) inhibited PGI 2 release from HUVE by almost 90% at a concentration of 160 / g / m 1 or more, and its IC 5 .
- IC 5 was about 20 z / m 1 (Fig. 10).
- soluble MAC IF of the present invention (77, N / Q), PG I 2 release from HUVECs caused by the formation of C5b9 (MAC: membrane attack complex) by non-lethal complement activation Can be completely suppressed.
- Example 10 Effect of MAC IF (77, N / Q) on Guinea Pig Heart Z Human Plasma Perfusion Injury (1) Preparation of human plasma
- Blood was collected from one human volunteer using citrate as an anticoagulant, and the cell component was centrifuged at 3,000 rpm for 15 minutes to obtain human plasma.
- the obtained human plasma was prepared using a crease buffer (U7 mM sodium chloride, 1 ⁇ 2M chlorinated chloride, 1.1 ml potassium dihydrogen phosphate, 25 mM sodium bicarbonate, 5 mM glucose, 1.2 mM magnesium chloride, 2.6 mM calcium chloride, 5 mM L-glutamate, 2nA! Pyruvate, 10unit / ml insulin, 14unit / ml heparin, 0.25% BSA) were dialyzed sufficiently and used in the experiment.
- a crease buffer U7 mM sodium chloride, 1 ⁇ 2M chlorinated chloride, 1.1 ml potassium dihydrogen phosphate, 25 mM sodium bicarbonate, 5 mM glucose, 1.2 mM magnesium chloride, 2.6 mM calcium chloride, 5 mM
- a small rubber balloon was attached to the tip, and a pressure-measuring force-filler filled with water was inserted into the left ventricle vertically along the longitudinal axis of the heart from the incision in the left atrium. End ventricular end diastolic pressure and left ventricular development pressure were measured. At the same time, the heart rate was recorded from the left ventricle generated E pulse wave. The E of the balloon was adjusted to be about 1 Omm Hg during diastole. The heart paged the ventricular muscle directly through the electrodes, keeping the heart rate constant at 273 beats per minute. The ⁇ flow pressure was measured via the aortic force neuron.
- Guinea pig hearts that were exposed to perfusion with the Langendorff experimental apparatus were preliminarily perfused with Krebs buffer for about 30 minutes. After that, the perfusate was replaced with Krebs buffer containing 3% human plasma, and the perfusion was continued for 60 minutes, and the human plasma was converted to guinea pig cardiac function and And the effects on heart failure were observed.
- the subjects were examined under the condition that the harbor flow was continued for 60 minutes with Krebs buffer solution containing no plasma component.
- the effect of MAC IF (77, N / Q) in this experimental system was added to Crepes buffer containing 3% human plasma to give final concentrations of 10 1 u Zm 1 and 50 ⁇ g / m 1
- Port flow liquid was examined by port flow using the same operation.
- the perfusate discharged from the right atrium is collected over time, and the creatine phosphokinase activity in the permeate is tested using the Monotest CK-MB Kit (Beiringer Mannheim). It was quantified according to the instruction of NO300691).
- FIG. 11 shows the time-dependent changes in the air pressure in each experimental group.
- MAC IF (77, N / Q) was added to 3% human plasma at a final concentration of 10 g / m1 and 50 ugm1 in a Krepp's buffer experiment.
- the MAC IF (77, N / Q) of the present invention has an extremely excellent port flow pressure rise suppressing effect. (Fig. 11-2).
- FIGS. 12 and 13 Changes in the left ventricular pressure over time in each experimental group are shown in FIGS. 12 and 13.
- LVDP left ventricular developed pressure
- LVEDP left ventricular end diastolic pressure
- Creatine phosphokinase is an enzyme present in cardiomyocytes and is widely used as a marker enzyme for studying cardiomyocyte damage because it is released into blood vessels when cardiomyocyte damage occurs. I have. Therefore, in the present experimental system, the damage of the muscle cells was examined by measuring the enzyme activity in the perfusion fluid discharged from the left atrium. The results of the study are shown in Figure 14.
- Prescription example A solution prepared by dissolving 5 g of the modified boreptide of the present invention in 100 ml of physiological saline is subjected to aseptic filtration, and then dispensed into vials in a volume of 2 ml. Then, it is freeze-dried to obtain an injectable preparation containing 100 mg of the modified protein of the present invention in one vial.
- Sequence type nucleic acid
- Sequence type other nucleic acid modified DNA
- Sequence type nucleic acid
- Sequence type nucleic acid
- Sequence type nucleic acid
- Sequence type nucleic acid
- Sequence type nucleic acid
- Sequence type nucleic acid
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Biochemistry (AREA)
- Genetics & Genomics (AREA)
- Gastroenterology & Hepatology (AREA)
- Toxicology (AREA)
- Immunology (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Zoology (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Cell Biology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
A polypeptide having the amino acid sequence wherein Asn at the 18-position of an amino acid sequence consisting of the amino acids at the 1- to 77-positions of the amino acid sequence of natural human MACIF active protein has been replaced by Gln. This polypeptide is produced and harvested by incubating cells transformed by an expression vector containing a DNA encoding the polypeptide. The modified polypeptide inhibits cytolysis by the complements of nuclear cells and the release of PGI2 and b-FGF by the complements from HUVEC. Also, it inhibits a hyperacute rejection in a model reflecting a hyperacute rejection of transplantation.
Description
明 細 書 改変ポリペプチド、 これをコードする DNA、 形質転換体 及び該ポリべプチドを含有する医薬組成物 技術分野 TECHNICAL FIELD The present invention relates to a modified polypeptide, a DNA encoding the same, a transformant, and a pharmaceutical composition containing the polypeptide.
本発明は、 医薬、 殊に、 ヒト MAC I F活性を有し、 抗炎症作用及び移植時の 超急性拒絶を抑制する作用を有する改変ポリべプチド、 この改変ボリべプチドを コードする DNA、 この DN Aを含む組換え発現ベクター、 この組換え発現べク ターで形質転換された形質転換体、 該改変ポリべプチドの製造方法及び該改変ポ リベプチドを含有する医薬組成物に関する。 The present invention relates to a medicament, in particular, a modified polypeptide having human MAC IF activity, an anti-inflammatory action and an action of suppressing hyperacute rejection at the time of transplantation, a DNA encoding the modified polypeptide, and a DN The present invention relates to a recombinant expression vector containing A, a transformant transformed with the recombinant expression vector, a method for producing the modified polypeptide, and a pharmaceutical composition containing the modified polypeptide.
ここで、 ヒト MAC I F活性とは、 補体系の一連の活性化の最終段階を制御し、 膜障害複合体 (Membrane a t t ack comp l ex :以下、 MA Cと称する) 形成を介する自己钿胞若しくは自己組織の損傷を阻害する作用、 又 は細胞からのサイ 力イン、 血液凝固 ·線溶系因子等の放出を阻害する作用を有 する補体系制御活性を意味する。 従って、 本発明の改変ボリペプチドは、 補体系 制御因子であり、 医薬品等として利用することができる。 背景技術 Here, the human MAC IF activity controls the final stage of a series of activations of the complement system, and forms autologous cells or cells through the formation of a membrane damage complex (hereinafter referred to as MAC). It refers to the activity of inhibiting the damage to self-tissues, or the activity of controlling the complement system, which has the effect of inhibiting the release of cysteine-in, blood coagulation and fibrinolytic factors from cells. Therefore, the modified polypeptide of the present invention is a regulator of the complement system and can be used as a pharmaceutical or the like. Background art
本発明者等は、 さきにヒト正常赤血球膜から新規な補体制御タンパク質である 天然型ヒト MAC阻害因子 (MAC I nh i b i t ory Fa c t or :以 下、 MAC I Fと称する) を純粋に単離することに成功し、 その内容を特開平 2 - 157298号公報に開示した。 同時に、 (1) この天然型ヒト MAC I Fが、 補体系の後半成分群の活性化を阻害する点、 すなわち、 ヒト MAC形成を介する 赤血球の溶血を阻害する点で、 補体系前半成分群の活性化を阻害する既知の補体 制御物質とは相違する優れた性質を有するものであること、 (2) この天然型ヒ ト MAC I Fの N—末端アミノ酸配列が、 し eu- Gin- Cys- Tyr- Asn-Cys- Pro- Asn- Pr o-Thr (配列表の配列番号 2)であること、 及び (3) この天然型ヒト MAC I
Fの C一末端側にグリコシルホスファチジルイノシトールアンカー (G 1 y c 0 sy l phospha t i dy l i n o s i t o 1 anchor :以下、 G P Iアンカーと称する) を有する分子量 18, 000 ±1, 000の糖タンパク質 であることを明らかにした。 The present inventors purely isolated a natural complement inhibitory protein, a natural human MAC inhibitor (MAC Inhibit Factor: hereinafter referred to as MAC IF), from human normal erythrocyte membrane. The content was disclosed in Japanese Patent Application Laid-Open No. 2-157298. At the same time, (1) the activity of the first half of the complement system in that the natural type human MAC IF inhibits the activation of the second half of the complement system, ie, the inhibition of erythrocyte hemolysis through human MAC formation. (2) the N-terminal amino acid sequence of this natural human MAC IF is eu-Gin-Cys-Tyr -Asn-Cys-Pro-Asn-Pro-Thr (SEQ ID NO: 2 in the sequence listing); and (3) the natural human MAC I The glycoprotein has a glycosylphosphatidylinositol anchor (G1ycosylphosphatidylinosito 1 anchor: hereinafter referred to as GPI anchor) at the C-terminal side of F, and is a glycoprotein with a molecular weight of 18,000 ± 1,000. I made it.
続いて、 本発明者等は、 前記の N—末端アミノ酸配列に相当するオリゴヌクレ ォチドの混合物をプローブとして、 ヒト単球 cDNAライブラリーよりヒト MA C I Fをコードする遺伝子を単離し、 この遺伝子、 及び GP Iアンカ一と C一末 端の一部とを欠失した可溶型ヒト MAC I F活性タンパク質をコードする遺伝子、 これらの遺伝子を結合した発現ベクター、 及び形質転換細胞を作製し、 並びにヒ ト MAC I F活性タンパク質を作製し、 その内容を特開平 3— 201 985号公 報に開示した。 Subsequently, the present inventors isolated a gene encoding human MA CIF from a human monocyte cDNA library using a mixture of oligonucleotides corresponding to the N-terminal amino acid sequence as a probe, and obtained the gene and GP A gene encoding a soluble human MAC IF-active protein lacking the I anchor and a portion of the C terminal, an expression vector ligated with these genes, and a transformed cell were prepared. An IF active protein was prepared, and its contents were disclosed in Japanese Patent Application Laid-Open No. 3-20198.
そして、 T r a n s ρ 1 a n t a t i 0 n, (1 995) , 59, 1 177に おいては、 マウスの心臓にヒト血清を還流する異種臓器移植の超急性拒絶を反映 する (h y p e r a c u t e r e j e c t i o n)モデルを用い、 トランスジ ェニックアニマル (Transgen i c an ima l) 由来の膜結合型ヒト MAC I Fを発現しているマウスの心臓では、 ヒト補体の活性化による MAC形 成が抑制されたこと、 並びに、 特表平 6— 506604号公報においては、 ヒト 補体による豚内皮細胞の障害反応が、 遺伝子導入の手法を用いて膜結合型ヒト M AC I Fを発現させることにより、 抑制されたことが開示されている。 In Trans ρ 1 antati 0 n, (1 995), 59, 1 177, a model that reflects hyperacute rejection of xenograft transplantation, in which human serum is returned to the mouse heart, is used (hyperacuterejection). In the heart of a mouse expressing a membrane-bound human MAC IF derived from a transgenic animal (Transgenic animal), activation of human complement suppressed MAC formation, and No. 6-506604 discloses that the damage reaction of porcine endothelial cells by human complement was suppressed by expressing a membrane-bound human MAC IF using a gene transfer technique.
一方、 Tr an sp l an t a t i on Pr oc e ed i ngs, (199 5 ) , 27 (1) , 328においては、 同じく膜結合型ヒト MAC I Fタンパク を発現させた豚内皮細胞を用いた実験で、 膜結合型ヒト MAC I Fタンパクがヒ ト補体による豚内皮細胞の障害反応を抑えるのには効果的でないことが記載され ている。 従って、 膜結合型 MAC I Fタンパクを発現した異種の細胞 ·臓器を移 植する際に、 移植部位の超急性拒絶反応が抑制されるか否かについては見解が分 かれており、 明白な状況にはなかった。 加えて、 移植細胞'臓器上に発現させる のではなく、 より汎用性の高い、 移植時にヒト MAC I Fおよび可溶型 MAC I Fを加える方法を採つた場合に関して、 移植部位の超急性拒絶反応が抑制される
か否か不明であった。 発明の開示 On the other hand, in Transplan tati on Proceedings, (1995), 27 (1), 328, a similar experiment was performed using porcine endothelial cells expressing the membrane-bound human MAC IF protein. However, it is described that the membrane-bound human MAC IF protein is not effective in suppressing the damage reaction of porcine endothelial cells by human complement. Therefore, there is a clear view as to whether hyperacute rejection at the transplant site is suppressed when transplanting heterologous cells or organs expressing the membrane-bound MAC IF protein. There was no. In addition, the use of a more versatile method of adding human MAC IF and soluble MAC IF at the time of transplantation, instead of expressing it in the transplanted cell's organ, suppresses the hyperacute rejection at the transplant site Be done It was unknown whether or not. Disclosure of the invention
本発明者等は、 医薬として有用な、 更に優れた活性を有する MAC I F改変ポ リぺプチドについて鋭意研究した結果、 下記配列表の配列番号 1で示される改変 ポリペプチドが意外にも有核細胞であるヒトさい帯静脈血管内皮細胞 (HUVE C) の補体による細胞溶解 (l e tha l e f f c t)或いは、 ァラキドン酸 代謝物である PG 12 や炎症性メディエーターである b— FGFの放出を抑制す ること、 そして移植超急性拒絶を反映するモデルで超急性拒絶反応を抑制するこ とを見出し本発明を完成した。 The present inventors have conducted intensive studies on MAC IF modified polypeptides which are useful as pharmaceuticals and have even more excellent activity.As a result, the modified polypeptide represented by SEQ ID NO: 1 in the following sequence listing was unexpectedly found in nucleated cells. Inhibiting the lysis of human umbilical vein vascular endothelial cells (HUVEC) by complement or the release of arachidonic acid metabolite PG12 and inflammatory mediator b-FGF; The present inventors have found that hyperacute rejection is suppressed by a model that reflects transplant hyperacute rejection, and completed the present invention.
即ち、 本発明は、 配列表の配列番号 1で表されるアミノ酸配列を有し、 可溶型 であることを特徴とする改変ポリペプチドに関する。 That is, the present invention relates to a modified polypeptide having the amino acid sequence represented by SEQ ID NO: 1 in the sequence listing and being in a soluble form.
また、 本発明は、 この改変ポリペプチドをコードする DNA、 この DNAを含 む組換え発現べクタ一、及びこの組換えべクタ一で形質転換されたことを特徴と する形質転換体及びこの改変ポリべプチドを含有することからなる医薬組成物に も関する。 In addition, the present invention provides a DNA encoding the modified polypeptide, a recombinant expression vector containing the DNA, a transformant characterized by being transformed with the recombinant vector, and a modified product thereof. It also relates to a pharmaceutical composition comprising the polypeptide.
更に、 本発明は、 前記の形質転換体を培養し、 前記改変ポリペプチドを生産さ せ、 前記改変ポリぺプチドを採取することを特徴とする、 前記改変ボリぺプチド の製造方法にも関する。 Furthermore, the present invention also relates to a method for producing the modified polypeptide, which comprises culturing the transformant, producing the modified polypeptide, and collecting the modified polypeptide.
本発明の改変ポリペプチドは、 GP Iアンカ一結合シグナルである天然型ヒト MAC I Fの C—末端側のアミノ酸配列を欠失しており GP Iアンカーを有しな い。 加えて天然型ヒト MAC I F活性タンパン質の了ミノ酸配列の第 1番〜第 7 7番のァミノ酸配列からなるポリべプチドの糖鎖結合部位である第 1 8番目のァ スパラギン (Asn) をグルタミン (G i n) に置換したアミノ酸配列を有する c The modified polypeptide of the present invention lacks the amino acid sequence at the C-terminal side of native human MAC IF, which is a GPI anchor binding signal, and has no GPI anchor. In addition, asparagine (Asn) at position 18 which is the sugar chain binding site of the polypeptide consisting of amino acid sequences 1 to 77 of the amino acid sequence of the native human MAC IF-active tampon protein c having the amino acid sequence was replaced with glutamine (G in) the
GP Iアンカーを有する天然型ヒト MAC I Fは、 GP Iアンカーを有さない 可溶型 MAC I Fに比べ、 血清存在下での活性低下が激しく、 医薬品としては、 可溶型 MAC I Fが望ましいと考えられる。 The activity of native human MAC IF with GPI anchor in the presence of serum is more severe than that of soluble MACIF without GPI anchor, and soluble MACIF is considered desirable as a drug. Can be
既述の通り、 この MAC I Fに関しては、 例えば、 HUVEC細胞膜上の天然
型 MAC I Fが補体による細胞の溶解に対して保護作用をもつこと及び GP Iァ ンカーを有しない可溶型 MAC I Fがモルモット赤血球 (無核細胞) の溶血系で 阻害効果を示すこと等が示唆されている。 As described above, regarding this MAC IF, for example, the natural on the HUVEC cell membrane That type MAC IF has a protective effect on cell lysis by complement and that soluble MAC IF without GPI anchor has an inhibitory effect on the lysis of guinea pig erythrocytes (nucleated cells). Is suggested.
しかしながら、 1) モルモッ ト赤血球の補体活性化抑制機構とヒトさい帯静脈 内血管内皮細胞の補体活性化抑制機構が同一であるか否かは現在でも不明である こと、 2)補体の膜制御因子は、 MAC I F以外にも種々のものが知られている が、 細胞種によりその分布は異なること、 3)補体への感受性が、 細胞種、 特に 無核細胞である赤血球と有核細胞で (ま異なること、 等から可溶型 MAC I Fがモ ルモット赤血球の溶血系を阻害しても有核細胞の補体による細胞溶解を阻害する か否かは不明であったこと、 及び 4)膜上の MAC I Fは CD 2リガンド活性を 示すが組換え可溶型 MAC I Fはこの活性がみられず、 膜型がある活性を有して いるからといって可溶型 MAC I Fがその活性を有しているとは必ずしも言えな いこと、 5) MAC I F及び可溶型 MAC I Fを外から加えることによりァラキ ドン酸カスケ一ドを阻害すること並びに炎症性メディエーターである b -FGF 放出を抑制することは知られていないこと、 及び 6)細胞膜上に存在するときに MAC I Fによる細胞溶解に阻害効果を示しても、 MAC I F及び可溶型 MAC However, it is still unknown at present whether 1) the mechanism of complement activation in guinea pig erythrocytes is the same as that of human umbilical vein endothelial cells, and 2) the complement membrane. Various regulatory factors are known in addition to MAC IF, but their distribution varies depending on the cell type.3) The sensitivity to complement depends on the cell type, especially erythrocytes and nucleated cells, which are non-nucleated cells. It was unclear whether soluble MAC IF could inhibit the lysis of nucleated cells by complement even if the soluble MAC IF inhibited the hemolytic system of guinea pig erythrocytes. ) MAC IF on the membrane shows CD2 ligand activity, but recombinant soluble MAC IF does not show this activity. 5) MAC IF and soluble MAC IF are added from outside. It is not known to inhibit arakidonic acid cascade and to inhibit the release of inflammatory mediator b-FGF, and 6) cell lysis by MAC IF when present on the cell membrane. Even if it shows an inhibitory effect, MAC IF and soluble MAC
I Fを外から加えた場合、 阻害効果を示すか否かは不明であったこと等から、 後 述するような種々の活性が確認された本発明の改変夕ンパクは極めて有用な夕ン パクであると位置付けられる。 図面の簡単な説明 Since it is not known whether or not an inhibitory effect is exhibited when IF is added from the outside, the modified protein of the present invention, in which various activities are confirmed as described later, is an extremely useful protein. It is positioned as being. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 実施例 2〜4で、 MAC I F (70, N/Q)、 MAC I F (77, N/Q)、 及び MAC I F (77)各遺伝子の作製に使用するプライマーの配列 を示す説明図である。 FIG. 1 shows the sequences of primers used in the preparation of each of the MAC IF (70, N / Q), MAC IF (77, N / Q), and MAC IF (77) genes in Examples 2 to 4. FIG.
第 2図は、 実施例 2で作製した MAC I F (70, N/Q)遺伝子の作製手順 を模式的に示す説明図である。 FIG. 2 is an explanatory view schematically showing a procedure for preparing the MAC IF (70, N / Q) gene prepared in Example 2.
第 3図は、 実施例 3で作製した MAC I F (77, N/Q) EX発現プラスミ ドの構造を模式的に示す説明図である。
第 4図は、 本発明のポリペプチドである MAC I F (77, N/Q) の発現に 使用するために、 実施例 3で作製した遺伝子の塩基配列と、 その塩基配列から推 定されるアミノ酸配列とを示す説明図である。 FIG. 3 is an explanatory view schematically showing the structure of a MAC IF (77, N / Q) EX expression plasmid prepared in Example 3. FIG. 4 shows the nucleotide sequence of the gene prepared in Example 3 and the amino acid deduced from the nucleotide sequence for use in expressing the polypeptide of the present invention, MAC IF (77, N / Q). It is explanatory drawing which shows an arrangement.
第 5図は、 実施例 6で実施した MAC I F (77, NXQ) の SDS— PAG Eの結果を模式的に示す図である。 FIG. 5 is a diagram schematically showing the results of SDS-PAGE of MAC IF (77, NXQ) performed in Example 6.
第 6— 1図は、 尿 MAC I F又は本発明の改変ポリペプチドである MAC I F (77, N/Q) による細胞溶解の結果を示す図である。 FIG. 6-1 shows the results of cell lysis by urinary MAC IF or MAC IF (77, N / Q), which is a modified polypeptide of the present invention.
第 6 - 2図は、 尿 MAC I F又は本発明の改変ボリペプチドである MAC I F (77, N/Q) による細胞溶解抑制作用の結果を示す図である。 FIG. 6-2 is a graph showing the results of the cytolytic effect of urinary MAC IF or MAC IF (77, N / Q), which is a modified polypeptide of the present invention.
第 7— 1図は、 本発明の改変ポリペプチドである MAC I F (77, N/Q) を加えなレ、場合の L D H活性を指標とした細胞溶解率の結果を示す図である。 第 7— 2図は、 本発明の改変ポリペプチドである MAC I F (77, N/Q) による b— F G F放出抑制作用の結果を示す図である。 FIG. 7-1 is a diagram showing the results of cell lysis using LDH activity as an index when MAC IF (77, N / Q), which is a modified polypeptide of the present invention, is not added. FIG. 7-2 shows the results of the b-FGF release inhibitory effect of MAC IF (77, N / Q), which is a modified polypeptide of the present invention.
第 8図は、 本発明の改変ボリペプチドである MAC I F (77, N/Q) によ る L D H活性からみた細胞障害の影響の結果を示す図である。 FIG. 8 is a graph showing the results of the effect of cytotoxicity on the basis of LDH activity by MAC IF (77, N / Q), which is a modified polypeptide of the present invention.
第 9図は、 HBSS (HBSSについては後記実施例 8 (3- 1) 参照) 、 ヒ ト C 9を含む HBSS、 ヒト C 8及びヒト C 9を含む HBSSの PG I 2 放出の 結果を示す図である。 Figure 9 is a graph showing the results of, HBSS containing human C 9, of HBSS containing human C 8 and human C 9 PG I 2 release (following Examples 8 (3 1) See for HBSS) HBSS It is.
第 1 0図は、 本発明の改変ポリペプチドである MAC I F (77, N/Q) に よる PG I 2 産生の抑制結果を示す図である。 FIG. 10 is a graph showing the results of suppression of PGI 2 production by MAC IF (77, N / Q), which is a modified polypeptide of the present invention.
第 1 1一 1図は、 3%ヒト血漿 (NHP) を含んだクレプス緩衝液でのモルモ ッ ト心臓の漼流圧の変化を示す図である。 FIG. 11 shows changes in the perfusion pressure of the guinea pig heart with Krebs buffer containing 3% human plasma (NHP).
第 1 1一 2図は、 3%ヒト血漿を含んだクレプス緩衝液に本発明の改変ポリべ プチドである MAC I F (77, N/Q) を 1 0 jt/gZn 1及び 50 g/ 1 添加した場合の漼流圧上昇抑制効果を示す図である。 Fig. 11-1-2 shows that the modified polypeptide of the present invention, MAC IF (77, N / Q), was added to a Creps buffer containing 3% human plasma at 10 jt / gZn 1 and 50 g / 1. FIG. 9 is a diagram showing the effect of suppressing the increase in the convection pressure in the case of performing the above.
第 1 2図は、 コントロール、 3 %NHPを含んだクレプス緩衝液で港流した場 合のモルモッ ト心臓左心室発生圧及び左心室収縮末期圧の時間的変化を示す図で あ <Oo
第 1 3図は、 本発明の改変ボリペプチドである MAC I F (77, N/Q) に よるヒト補体活性に基づくモルモット心筋機能障害抑制効果を示す図である。 第 14図は、 本発明の改変ポリペプチドである MAC I F (77, N/Q) に よるクレアチンホスホキナ一ゼ放出抑制効果を示す図である。 発明を実施するための最良の形態 Fig. 12 shows the temporal changes in the left ventricular pressure and the left ventricular end-systolic pressure of the guinea pig when the control was washed with Krebs buffer containing 3% NHP. FIG. 13 is a graph showing the effect of the modified polypeptide of the present invention, MAC IF (77, N / Q), on guinea pig myocardial dysfunction based on human complement activity. FIG. 14 is a graph showing the effect of inhibiting the release of creatine phosphokinase by MAC IF (77, N / Q), which is a modified polypeptide of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
記述の通り、 本発明の改変ボリペプチドは、 後記配列表の配列番号 1で表わさ れるアミノ酸配列を有することを特徴とするポリペプチドであり、 天然型ヒト M AC I F活性タンパク質のアミノ酸配列の第 1番〜第 77番のアミノ酸配列から なるポリペプチドの第 18番目のァスパラギン (Asn) をグルタミン (Gl n) に置換したァミノ酸配列を有する。 As described, the modified polypeptide of the present invention is a polypeptide characterized by having the amino acid sequence represented by SEQ ID NO: 1 in the Sequence Listing described below, and comprises the first amino acid sequence of a natural human MAC AC IF active protein. It has an amino acid sequence in which the 18th asparagine (Asn) of the polypeptide consisting of the amino acid sequence of the amino acids Nos. 77 is substituted with glutamine (Gln).
本発明の改変ボリペプチドは、 例えば、 遺伝子組換え技術によって、 以下に述 ベる方法に従って製造することができる。 The modified polypeptide of the present invention can be produced, for example, by a gene recombination technique according to the method described below.
配列表の配列番号 1で表されるァミノ酸配列をコードする塩基配列を有する本 発明の DNAは、 例えば、 遺伝子組換え法又は化学合成法、 あるいはこれらを適 宜併用することによって合成することができる。 The DNA of the present invention having the nucleotide sequence encoding the amino acid sequence represented by SEQ ID NO: 1 in the sequence listing can be synthesized by, for example, a genetic recombination method or a chemical synthesis method, or a combination thereof as appropriate. it can.
化学合成法を用いる場合、 例えば、 ホスホアミダイト法 〔Hunkap i 1 1 e r, M. e t a 1. , Na t ur e, —310, 105 - 1 1 1 ( 1 984 ) ) 等の常法に従って、 核酸の化学合成を行なうことができる。 In the case of using a chemical synthesis method, for example, a nucleic acid is prepared according to a conventional method such as a phosphoramidite method [Hunkap i 11 er, M. eta 1., Naturo, —310, 105-111 (1 984)) Can be chemically synthesized.
遺伝子組換え法を用いる場合は、 例えば、 前記の特開平 3 - 201 985号公 報に記載されているとおり、 ヒト MAC I F産生細胞から得られる mRNAより 作製された cDNAライブラリーより、 天然型ヒト MAC I Fをコードする cD NAを含むクローンを単離し、 この単離されたクローンより、 天然型ヒト MAC I Fをコードする c DNAを分離する。 この cDNAをテンプレートとして用い、 所望のァミノ酸置換を導入することができるように設計したブライマ一で、 ポリ メラーゼ'チェイン ' リアクション (以下、 PCRと称する) を行なうことによ つて、 天然型ヒト MAC I Fをコードする c DNAの塩基配列中、 第 1 8番目の 了ミノ酸であるァスパラギンに対応するコドンを、 グルタミンに対応するコドン
に改変した部分 DNA断片を得ることができる。 この際に用いるテンプレートと して、 前述の c DNAライブラリーそのもの、 若しくは、 MAC I F発現細胞か ら調整した RN Aより逆転写酵素で合成した c DN Aを使用することも可能であ また、 前記の PCRで得られた DNA断片を天然型ヒト MAC I Fをコードす る c DN Aの対応する部分と置き換えたものをテンプレートとし、 再び所望の可 溶型 MAC I F c DNAを増幅するようにデザインしたプライマ一を用いて P CRすることにより、 本発明の DNAを得ることができる。 或いは、 前記の PC Rで得られた DNA断片を予じめ作製しておいた可溶型 MAC I Fをコードする cDN A断片の対応する部分と置き換えることにより本発明の DN Aを得ること ができる。 具体的なプライマーの設計、 及び置き換えに利用可能な制限酵素部位 の選択等については、 後述の実施例で詳述する。 When the gene recombination method is used, for example, as described in the above-mentioned Japanese Patent Application Laid-Open No. 3-201985, a naturally-occurring human library can be obtained from a cDNA library prepared from mRNA obtained from human MAC IF-producing cells. A clone containing cDNA encoding MAC IF is isolated, and cDNA encoding native human MAC IF is isolated from the isolated clone. By using this cDNA as a template and performing polymerase "chain" reaction (hereinafter referred to as PCR) with a primer designed to introduce the desired amino acid substitution, natural human MAC can be obtained. In the nucleotide sequence of the cDNA encoding IF, the codon corresponding to asparagine, the 18th amino acid, is replaced by the codon corresponding to glutamine. A partially modified DNA fragment can be obtained. As a template to be used at this time, it is also possible to use the above-mentioned cDNA library itself, or cDNA obtained by synthesizing reverse transcriptase from RNA prepared from MAC IF-expressing cells. The DNA fragment obtained by PCR was replaced with the corresponding portion of cDNA encoding natural human MAC IF, and the template was designed to amplify the desired soluble MAC IF cDNA again as a template. By performing PCR using a primer, the DNA of the present invention can be obtained. Alternatively, the DNA of the present invention can be obtained by replacing the DNA fragment obtained by the PCR with a corresponding portion of a previously prepared cDNA fragment encoding a soluble MAC IF. . Specific design of primers, selection of restriction enzyme sites available for replacement, and the like will be described in detail in Examples below.
こうして得られた本発明のヒト MAC I F活性を有する改変ポリべプチドをコ -ドする DNAのコ一ド領域の全長部分は、 真核及び原核生物を宿主として発現 させることが可能である。 これら宿主細胞に組み込まれる発現ベクターは、 宿主 細胞に応じて適宜構築される。 The thus obtained full-length portion of the coding region of the DNA encoding the modified polypeptide having human MAC IF activity of the present invention can be expressed using eukaryotes and prokaryotes as hosts. Expression vectors to be incorporated into these host cells are appropriately constructed according to the host cells.
原核生物の宿主としては、 大腸菌の菌株、 例えば大腸菌 K12株 294 (ATCC 314 46) 、 大腸菌 B、 大腸菌 1776 (ATCC 31537) 、 大腸菌 C600 及び大腸菌 W3110 (F-, λ -, プロトトロフィック, ATCC 27375) 、 バチラス属の菌株、 例えば 枯草菌、 ネズミチフス菌 (S a l mon e l l a t yph i mu r i um) 或 いは霊菌 (S e r r a t i a ma r c e s c e n s) 等の大腸菌以外の腸内钿 菌、 シユードモナス属の菌株等が挙げられる。 Prokaryotic hosts include E. coli strains such as E. coli K12 strain 294 (ATCC 314 46), E. coli B, E. coli 1776 (ATCC 31537), E. coli C600 and E. coli W3110 (F-, λ-, prototrophy, ATCC 27375). ), Bacillus strains, for example, Bacillus subtilis, Salmonella typhimuriium or Serratia marcescens, and other intestinal bacteria other than Escherichia coli, and strains of the genus Pseudomonas. Is mentioned.
上記微生物を宿主として使用する場合のベクタ一としては、 本発明遺伝子が発 現できるように該遺伝子の上流にプロモーター及び SD塩基配列 [Sh i n e, J. e t a l . P r o c e e d i n g s o f t h e Na t i on a l Ac a d emy o f S c i en c e s o f t h e U. S. A. , 7 1 , 1 34 2〜 1 34 6 ( 1 974) ] 、 更に蛋白合成開始に必要な ATGを付与した発 現プラスミ ドが使用できる。
97/00320 大腸菌株等のベクターとしては一般に PUC18. PUC19等がよく用いられる。 プロモーターとしては、 例えばトリプトフアン .プロモーター, pL プロモー 夕一, lacプロモーター, lppプロモータ一, —ラク夕マーゼプロモーター等 を使用することが出来る。 When one of the above microorganisms is used as a host, one of the vectors is a promoter and an SD base sequence upstream of the gene of the present invention so that the gene of the present invention can be expressed [Shine, J. et al. of Science of USA, 71, 1342 to 1346 (1974)], and an expression plasmid to which ATG necessary for initiation of protein synthesis has been added can be used. In general, PUC18 and PUC19 are often used as vectors for 97/00320 E. coli strains and the like. The promoter, for example tryptophan promoter, p L promoter evening one, lac promoter, lpp promoter mono-, -. Comfortable evening can be used mer lactamase promoter, or the like.
マーカ一遺伝子の例としては、 アンピシリン耐性遺伝子、 テトラサイクリン耐 性遺伝子が挙げられる。 Examples of the marker gene include an ampicillin resistance gene and a tetracycline resistance gene.
また真核微生物としては酵母が一般によく用いられ、 その中でもサッカロミセ ス属酵母が有利に利用できる。 該酵母等の真核微生物の発現べクタ一としては、 例えば、 YRp7等を用いることができる。 As eukaryotic microorganisms, yeasts are generally used, and among them, yeast belonging to the genus Saccharomyces can be advantageously used. As an expression vector for eukaryotic microorganisms such as the yeast, for example, YRp7 can be used.
酵母発現用の発現ベクターのプロモーターの例としては、 3—ホスホグリセレ ―トキナ一ゼ又はエノラーゼ、 グリセルアルデヒドー 3—ホスフエ一トデヒドロ ゲナ一ゼ、 へキソナーゼを利用することができる。 Examples of the promoter of an expression vector for yeast expression include 3-phosphoglyceretokinase or enolase, glyceraldehyde-3-phosphodehydrogenase, and hexonase.
マーカ一遺伝子としては、 trpl遺伝子等を利用することができる。 As the marker gene, a trpl gene or the like can be used.
酵母細胞中における転写や翻訳を制御するための複製起源や終始コドン及びそ の他の DN A配列としては、 酵母細胞に適している通常の公知の DN A配列を用 いることができる。 As the origin of replication, termination codon, and other DNA sequences for controlling transcription and translation in yeast cells, ordinary known DNA sequences suitable for yeast cells can be used.
高等動物の培養細^を宿主とする場合は、 赤毛ザル腎臓細胞、 蚊の幼虫の細胞、 アフリカミ ドリサル腎臓細胞、 マウス胎児維持芽細胞、 チャイニーズハムスター 卵巣細胞、 及びそのジヒドロ葉酸レダクタ一ゼ欠損株 〔Ur 1 aub, G. , e t a l. , Pr oc e ed i ngs o f the Na t i ona l A cademy o f Sc i enc e s o f the U. S. A. , 77, 421 6 - 4220 (1 980) 〕 、 ヒト頸上皮細胞、 ヒト胎児腎臓細胞、 蛾卵 巣細胞、 ヒト骨髄腫細胞、 又はマウス繊維芽細胞等を用いることができる。 When cultured cells of higher animals are used as hosts, red-haired monkey kidney cells, mosquito larvae cells, African green monkey kidney cells, mouse embryo maintenance blast cells, Chinese hamster ovary cells, and their dihydrofolate reductase-deficient strains [ Ur 1 aub, G., et al., Proceeding ngs of the Nationa l A cademy of Science of the USA, 77, 421 6-4220 (1980)), human cervical epithelial cells, Human fetal kidney cells, moth ovary cells, human myeloma cells, mouse fibroblasts, or the like can be used.
そのベクターは、 一般に本発明の D N Aを宿主細胞内で発現させるための機能 配列、 例えば複製開始点、 本発明 DNAの上流に位置すべきプロモーター、 リボ ゾーム結合部位、 ポリアデニル化部位、 転写終終始配列を含有している。 The vector generally has a functional sequence for expressing the DNA of the present invention in a host cell, such as a replication origin, a promoter to be located upstream of the DNA of the present invention, a ribosome binding site, a polyadenylation site, and a transcription termination sequence. It contains.
プロモーターは、 例えばアデノウイルス 2主後期プロモーター、 SV40初期 プロモータ一、 SV40後期プロモータ一、 真核生物遺伝子からのプロモータ一
(例えば、 エストロゲン誘導ニヮトリ卵アルブミン遺伝子、 イン夕一フヱロン遺 伝子、 グルココルチコイ ド誘導チロシンアミノ トランスフェラ一ゼ遺伝子、 チミ ジンキナーゼ遺伝子、 主初期及び後期アデノゥィルス遺伝子、 ホスホグリセレー トキナ一ゼ遺伝子、 又はひ因子遺伝子等) が好ましい。 Promoters include, for example, adenovirus 2 major late promoter, SV40 early promoter, SV40 late promoter, and promoters from eukaryotic genes. (E.g., the estrogen-induced chicken egg albumin gene, the in vitro enzyme, the glucocorticoid-induced tyrosine aminotransferase gene, the thymidine kinase gene, the major early and late adenovirus genes, the phosphoglycerate kinase gene, or Factor factor gene).
複製開始点としては、 アデノウイルス、 SV40、 ゥシパピローマウィルス (BPV)、 水疱性口内炎ウィルス (VSV)、 又はそれらの誘導体べクタ一由 来のものを用いることができる。 As an origin of replication, adenovirus, SV40, ゥ papilloma virus (BPV), vesicular stomatitis virus (VSV), or a derivative thereof derived from a vector can be used.
また、 この際のマーカー遺伝子としては、 例えばネオマイシン耐性遺伝子、 メ トトレキセ一ト耐性ジヒドロ葉核酸還元酵素 (DHFR)遺伝子等を用いること ができる。 In addition, as the marker gene at this time, for example, a neomycin resistance gene, a methotrexate-resistant dihydro leaf nucleic acid reductase (DHFR) gene, or the like can be used.
高等動物細胞用の発現べクタ一としては、 例えば、 pEF-BOS, pSRひ 等のベクタ一を用いると発現効率が良いため有効である。 As an expression vector for higher animal cells, it is effective to use a vector such as pEF-BOS, pSR or the like because of high expression efficiency.
以上、 本発明の DNAの発現に利用することができる宿主、 ベクター及びその 構成要素を例示したが、 これらの例示に限定されるわけではない。 As described above, the host, the vector, and the components thereof that can be used for expressing the DNA of the present invention have been exemplified, but the present invention is not limited to these examples.
上記で得られる本発明の組換えべクタ一を、 常法に従い所望の宿主へ導入する ことにより、 本発明の形質転換体を得ることができる。 The transformant of the present invention can be obtained by introducing the recombinant vector of the present invention obtained above into a desired host according to a conventional method.
前記発現べクタ一 ·プラスミ ドは、 遺伝子構築に用いた宿主 (例えば大腸菌 H B 101株等) 中より、 アルカリ溶菌法等の一般的方法により調製される。 調製 したベクター ·プラスミ ドを用いて宿主を形質転換する方法としては、 哺乳動物 紬胞を宿主とする場合はリン酸カルシウム法 〔v an de r Eb, A. J. e t a l. , Me thod s i n Enzymo l ogy, 65, 826 - 839 ( 1 980 ) , Academi c Pr e s s. 〕 等を例示することがで さる。 The expression vector plasmid is prepared from a host (eg, E. coli HB101 strain) used for gene construction by a general method such as an alkaline lysis method. The method of transforming a host using the prepared vectorplasmid is the calcium phosphate method when using mammalian cells as a host [van der Eb, AJ etal., Method sin Enzymo logy, 65 , 826-839 (1980), Academic Pres s.].
上記で得られる本発明の形質転換体を、 常法に従い培養し、 前記培養により生 物活性を有する本発明の改変ポリペプチドが生産、 蓄積される。 前記培養に用い られる培地としては、 採用した宿主に応じて慣用される各種のものを適宜選択で き、 例えば上記 CHO細胞であれば MEM—ひ培地に必要に応じ牛胎児血清 (F C S )等の血液成分を添加したものを使用することができる。
前記形質転換体で生産される本発明の改変ポリべプチドの発現部位は、 合成し た DNAでコードされるアミノ酸配列、 使用するベクターの種類、 宿主の種類、 及びそれらの組合せによって異なり、 細胞内、 又は紬胞培養上清に生産すること ができる。 種々の形質転換体より生産される本発明の改変ポリペプチドは、 その 物理的性質、 化学的性質を利用した各種の分離操作 (例えば、 日本生化学会編 生化学データブック I I、 1175頁、 第 1版、 第 1刷、 1980年、 株式会社東京化学同 人、 等) により、 それらより分離精製することができる。 The transformant of the present invention obtained as described above is cultured according to a conventional method, and the modified polypeptide of the present invention having biological activity is produced and accumulated by the culture. The medium used for the culture can be appropriately selected from those commonly used depending on the host used. For example, in the case of the above CHO cells, MEM-spun medium may be used, if necessary, such as fetal calf serum (FCS). Those to which blood components have been added can be used. The expression site of the modified polypeptide of the present invention produced by the transformant may vary depending on the amino acid sequence encoded by the synthesized DNA, the type of vector to be used, the type of host, and a combination thereof. Or can be produced in the culture supernatant of the cells. The modified polypeptide of the present invention produced from various transformants can be subjected to various separation operations utilizing its physical and chemical properties (for example, Biochemical Data Book II, edited by the Biochemical Society of Japan, p. 1175, No. 1). Edition, 1st printing, 1980, Tokyo Chemical Co., Ltd., etc.).
前記方法としては、 具体的には、 例えば、 通常のタンパク質沈殿剤による処理、 限外濾過、 分子ふるいクロマトグラフィー (ゲル濾過) 、 吸着クロマトグラフィ 一、 イオン変換クロマトグラフィー、 ァフィ二ティ一クロマトグラフィー、 高速 液体クロマトグラフィー (H P L C) 等の各種液体クロマトグラフィー、 透折法、 これらの組合せ等を例示できるが、 より具体的には前記改変ポリべプチドの発現 部位により異なる。 Examples of the method include, for example, treatment with a normal protein precipitant, ultrafiltration, molecular sieving chromatography (gel filtration), adsorption chromatography, ion conversion chromatography, affinity chromatography, and high-speed chromatography. Examples thereof include various liquid chromatography such as liquid chromatography (HPLC) and the like, a folding method, a combination thereof, and the like. More specifically, the method differs depending on the expression site of the modified polypeptide.
培養上清に生産される本発明の改変ポリべプチドは、 以下の方法により精製す る。 The modified polypeptide of the present invention produced in the culture supernatant is purified by the following method.
まず培養上清より予め目的とする物質を部分精製する。 この部分精製は、 例え ば、 硫酸アンモニゥ厶、 硫酸ナトリウム、 リン酸ナトリゥ厶等の塩折剤を用いる 処理及び Z又は透折膜、 平板膜、 中空繊維膜等を用いる限外濾過処理等により行 なわれる。 これらの各処理の操作及び条件は、 通常この種の方法でとられるもの と同様のものとすればよい。 次いで上記で得られた粗精製物を、 吸着クロマトグ ラフィ一、 ァフィ二ティ一クロマトグラフィー、 ゲル濾過、 イオン交換クロマト グラフィー、 逆相クロマトグラフィー等に付すことにより、 また、 これら各操作 の組合せにより、 ヒト MA C I Fの活性が認められる画分を取得し、 かく して目 的物質を均等な物質として単離することができる。 First, a target substance is partially purified from the culture supernatant in advance. This partial purification is performed, for example, by a treatment using a salt-forming agent such as ammonium sulfate, sodium sulfate, sodium phosphate, or the like, and an ultrafiltration treatment using Z or a transparent membrane, a flat membrane, a hollow fiber membrane, or the like. Be done. The operations and conditions for each of these processes may be the same as those usually used in this type of method. Then, the crude product obtained above is subjected to adsorption chromatography, affinity chromatography, gel filtration, ion exchange chromatography, reverse phase chromatography, etc., and by a combination of these operations, A fraction showing the activity of human MA CIF can be obtained, and the target substance can be isolated as an equivalent substance.
細胞内に生産される組換えタンパク質は、 適切な界面活性剤 (例えば、 N P— 4 0、 トライトン X— 1 0 0、 ォクチルグリコシド) 処理により細胞膜を破砕し て組換えタンパク質を溶液中に放出させた後、 上記と同様に精製することができ る。
以上、 本発明の改変ポリペプチド、 このポリペプチドをコードする DNA、 こ の DNAを含む発現ベクター、 この発現ベクターを含む形質転換体、 及び該改変 ポリぺプチドの製造方法にっレ、て説明した。 産業上の利用可能性 Recombinant protein produced in cells is treated with an appropriate detergent (eg, NP-40, Triton X-100, octylglycoside) to break the cell membrane and release the recombinant protein into solution. After that, purification can be performed in the same manner as described above. The modified polypeptide of the present invention, DNA encoding the polypeptide, an expression vector containing the DNA, a transformant containing the expression vector, and a method for producing the modified polypeptide have been described above. . Industrial applicability
本発明の改変ポリペプチドは、 ヒト由来であることから、 ヒトに対する抗原性 がなく、 低毒性であり、 補体活性化反応の最終段階である MAC形成を介する自 己細胞 ·組織の損傷を防止する作用を有するので、 補体制御成分が欠失あるいは 低下している疾患の治療剤として有用に用いることができる。 Since the modified polypeptide of the present invention is of human origin, it has no antigenicity to humans, is low toxic, and prevents damage to autologous cells and tissues through MAC formation, which is the final stage of the complement activation reaction It can be usefully used as a therapeutic agent for diseases in which complement control components are deleted or reduced.
更に詳細には、 後記実施例で詳述される通り、 本発明の改変ボリペプチドは、 1 ) 有核細胞 (HUVEC)の補体による細胞溶解 (l e tha l e f f e c t) を抑制すること、 2) HUVECからの補体によるァラキドン酸代謝物であ る PG I 2 及び炎症性メディエーターである b— FGF放出 (n on— 1 e t h a 1 e f f e c t) を抑制すること及び 3)移植超急性拒絶を反映するモデル で超急性拒絶反応を抑制した。 More specifically, as described in detail in Examples below, the modified polypeptide of the present invention has the following effects: 1) inhibiting lysis of nucleated cells (HUVEC) by complement; Inhibits the release of PG I 2, a metabolite of arachidonic acid, and b-FGF, an inflammatory mediator, by the complement from humans (non-1 etha 1 effect), and 3) a model that reflects transplant hyperacute rejection. Hyperacute rejection was suppressed.
従って、 本発明の改変ボリペプチドは、 以下に述べるような疾病或いは臨床上 の応用が期待される有用な化合物である。 Therefore, the modified polypeptide of the present invention is a useful compound that is expected to have the following diseases or clinical applications.
即ち、 本発明の改変ポリペプチドが、 有核細胞 (HUVEC) の補体による細 胞溶解 (l e t ha l e f f e c t)を抑制したことは、 本発明の改変ポリぺ プチドを虚血後の再漼流障害予防薬、 或いは、 自己免疫疾患等に伴う血管炎、 補 体による細胞障害予防薬として使用できると期待される。 That is, the fact that the modified polypeptide of the present invention suppressed lethal effect of nucleated cells (HUVECs) by complement indicates that the modified polypeptide of the present invention caused reperfusion injury after ischemia. It is expected that it can be used as a preventive drug or as a preventive drug for vasculitis associated with autoimmune diseases and the like and cytotoxicity due to complement.
また、 補体の活性化により、 補体が直接細胞にシグナルを伝え、 Ca2+流入を 引き起こし、 ァラキドン酸代謝産物や蛋白性因子等の種々の炎症性メデイエ一夕 一を細胞外に放出することが知られている ( I mmu n 0 し Re s. 1 993 ; 12 : 244—) 。 ァラキドン酸代謝物としては、 ァラキドン酸、 PGE2 , PG I 2 , TxA2 , LTB2 等が、 上皮細胞、 白血球紬胞、 血管内皮細胞等か ら、 補体の刺激により放出されることが報告されている。 蛋白性因子としては、 b— FGF、 PDGF、 vWF等が、 血管内皮細胞から補体の刺激により放出さ
れることが報告されている。 これらの反応は、 補体のノン リーサル エフェク ト (n on— l e tha l e f f e c t) と呼ばれ、 MAC I F及び可溶型 M AC I Fが阻害することが知られている補体による細胞溶解の機構とは異なる機 構で引き起こされると考えられている。 実際、 これらの現象は細胞を溶解するこ となく引き起こされることが観察される。 炎症疾患では、 ァラキドン酸代謝物で ある PGE2、 TxA2 , LTB4、 b— F G F等が炎症を惹起したり増悪化さ せていることが知られている力、 補体の no n— l e t ha l e f f e c tに よつて放出された炎症性メデイエ一ターも同様に炎症を惹起したり増悪化させた りしていることが予想される。 In addition, complement activation signals complement directly to cells, causing Ca 2+ influx and releasing various inflammatory media such as arachidonic acid metabolites and protein factors out of the cell. It is known that (Immun 0 and Res. 993; 12: 244—). As arachidonic acid metabolites, arachidonic acid, PGE 2 , PGI 2 , TxA 2 , LTB 2 and others are reported to be released from epithelial cells, leukocyte cells, vascular endothelial cells, etc. upon stimulation of complement. Have been. B-FGF, PDGF, vWF, etc. are released from vascular endothelial cells by stimulation of complement. Is reported to be. These reactions are called non-lethal effects of complement, and the mechanism of cell lysis by complement, which is known to inhibit MAC IF and soluble MAC IF, is known. Is thought to be caused by a different mechanism. In fact, it is observed that these phenomena occur without lysing the cells. In inflammatory diseases, arachidonic acid metabolites such as PGE 2 , TxA 2 , LTB 4 and b-FGF are known to induce or exacerbate inflammation, and no n-let of complement It is expected that the inflammatory mediators released by haleffect will also cause or exacerbate inflammation.
本発明の改変ボリぺプチドが、 H U V E Cからの補体による了ラキドン酸代謝 物である PG I 2 及び炎症性メディエーターである b— FGF放出を抑制したこ とは、 本発明の改変ポリペプチドが、 これら補体の non— 1 e t ha 1 e f f e c tが関与するといわれている腎炎、 ァテローム性動脈硬化、 リウマチ関節 炎等の慢性炎症等の炎症性疾患の予防、 治療剤として有用であると考えられる。 更に本発明の改変ポリペプチドがモルモッ ト心臓 Zヒト血漿港流系において、 補体による心機能低下を阻害する効果を示したことは、 技術的に困難なトランス ジエニックアニマル (Tr ansgen i c an ima l)作成を要せずとも 臓器移植時に本発明の改変ポリぺプチドを加えることにより超急性拒絶の抑制が 可能であると考えられ臨床上極めて有用である。 The fact that the modified polypeptide of the present invention suppressed the release of PG I 2, a metabolite of rachidonic acid and b-FGF, an inflammatory mediator, by complement from HUVEC means that the modified polypeptide of the present invention It is considered to be useful as an agent for preventing and treating inflammatory diseases such as nephritis, atherosclerosis, and chronic inflammation such as rheumatoid arthritis, which are said to be involved in the non-1 et ha 1 effect of these complements. Furthermore, the fact that the modified polypeptide of the present invention showed an effect of inhibiting complement-induced decline in cardiac function in the guinea pig heart Z human plasma port system was demonstrated by a technically difficult transgenic animal (Transgenic animal). l) It is thought that hyperacute rejection can be suppressed by adding the modified polypeptide of the present invention at the time of organ transplantation without requiring preparation, and is extremely useful clinically.
臓器移植の際、 移植される臓器は一時的に虚血状態になり、 移植後に血液が再 港流する。 虚血後再漼流の際に細胞障害が起こること、 及び虚血後再漼流障害時 には細胞膜上の MAC I Fが消失することが知られている (Labor a t or y I nve s t i ga t i on 6 , 608〜 61 6 (1992) ) 。 従つ て、 本発明の改変ボリペプチドは、 異種移植時のみでなく、 ヒトノヒト間の移植 時の超急性拒絶の抑制にも有用と考えられる。 At the time of organ transplantation, the transplanted organ temporarily becomes ischemic, and after the transplantation, the blood returns. It is known that cell injury occurs during reperfusion after ischemia, and that MAC IF on the cell membrane disappears during reperfusion injury after ischemia (Labor at or y Inve stigati) on 6, 608-616 (1992)). Therefore, the modified polypeptide of the present invention is considered to be useful not only in xenotransplantation but also in suppressing hyperacute rejection in transplantation between humans.
本発明の改変ポリペプチドの投与形態は、 疾患の種類、 症状、 患者の状態によ り異なるが、 全身投与経路として経口的に或いは、 注射剤、 経鼻剤、 坐薬、 埋め 込み形製剤などの非経口的に投与される。 また、 局所投与経路として、 間接腔内
2 投与、 患部埋め込み形製剤等が用いられる。 Although the dosage form of the modified polypeptide of the present invention varies depending on the type and condition of the disease and the condition of the patient, it may be administered orally as a systemic administration route or as an injection, nasal formulation, suppository, implantable preparation, etc. It is administered parenterally. In addition, as a local administration route, 2 Administration, implantable preparations for affected area, etc. are used.
これらの製剤の調製は、 それぞれ剤形に適した組成物が配合される。 注射剤と して製剤するには、 本発明の改変ポリペプチドを、 例えば、 リン酸緩衝生理食塩 水ゃデキストロース水溶液に溶解し、 必要に応じて安定化剤、 分散剤等を加え、 注射用アンプルに充填するか、 あるいはバイアルびん中で凍結乾燥し、 投与時に 注射用蒸留水あるレ、は生理食塩水に溶解して用いることができる。 In preparing these preparations, compositions suitable for the respective dosage forms are formulated. For preparation as an injection, the modified polypeptide of the present invention is dissolved in, for example, a phosphate buffered saline / dextrose aqueous solution, and if necessary, a stabilizing agent, a dispersing agent, etc. are added, and an injection ampoule is prepared. Or freeze-dried in a vial bottle. When administered, distilled water for injection can be dissolved in physiological saline before use.
本発明の改変ポリペプチドの投与量は、 通常成人 1日あたり 1 0〃g〜 5, 0 0 O m g、 好ましくは 1 m g〜 5 0 O m gであり、 これを 1日 1回乃至数回に分 けて投与する。 The dose of the modified polypeptide of the present invention is usually 10 to 500 mg, preferably 1 to 50 mg per day for an adult, and it may be reduced once to several times a day. Administer separately.
実施例 Example
以下に実施例及び処方例を掲記し、 本発明を更に詳細に説明する。 本発明がこ れら実施例によって何ら限定されるものでないことは言うまでもない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Formulation Examples. It goes without saying that the present invention is not limited by these examples.
実施例 1 :プライマーの合成と精製 Example 1: Synthesis and purification of primer
( 1 ) プライマーの設計 (1) Primer design
ヒト単球よりクロ一ニングしたヒト MA C I F遺伝子の塩基配列 (配列表の配 列番号 4 ) をもとに、 第 1図に示すプライマー 6種を設計した。 配列表の配列番 号 5の配列を有するオリゴヌクレオチド M 1、 配列表の配列番号 8の配列を有す るオリゴヌクレオチド 5 ' M l u 及び配列表の配列番号 9の配列を有するォ リゴヌクレオチド MA C I FNXの塩基配列中、 第 1図に下線で示す塩基配列は、 ヒト MA C I F遺伝子の塩基配列に相当する。 ォリゴヌクレオチ KM 1は、 配列 表の配列番号 4の塩基配列の第 1番から第 2 1番までの塩基配列を含み、 オリゴ ヌクレオチド 5 ' M 1 u Iは、 配列表の配列番号 4の塩基配列の第 1 3 6番から 第 1 6 5番までの塩基配列を含み、 オリゴヌクレオチド MA C I F NXは、 配列 表の配列番号 4の塩基配列の第 1番から第 2 1番までの塩基配列を含む。 配列表 の配列番号 6の配列を有するオリゴヌクレオチド M 3、 配列表の配列番号 7の配 列を有するオリゴヌクレオチド N/Q、 及び配列表の配列番号 1 0の配列を有す るオリゴヌクレオチド 7 7 X Xの塩基配列中、 第 1図に二重下線で示す塩基配列
97 320 は、 ヒト MAC I F遺伝子の相補鎖の塩基配列に相当する。 オリゴヌクレオチド M3は、 配列表の配列番号 4の塩基配列の第 285番から第 265番までの塩基 配列に相補的な塩基配列を含み、 オリゴヌクレオチド N/Qは、 配列表の配列番 号 4の塩基配列の第 1 56番から第 1 15番までの塩基配列に相補的な塩基配列 を含み、 オリゴヌクレオチド 77 X Xは、 配列表の配列番号 4の塩基配列の第 3 06番から第 287番までの塩基配列に相補的な塩基配列を含む。 第 1図に斜体 文字及び破線で示す塩基配列は、 その直下に記載した制限酵素によって認識され る部位である。 Based on the nucleotide sequence of the human MA CIF gene cloned from human monocytes (SEQ ID NO: 4 in the sequence listing), six types of primers shown in FIG. 1 were designed. Oligonucleotide M CI having the sequence of SEQ ID NO: 5 in the Sequence Listing, oligonucleotide 5 ′ M lu having the sequence of SEQ ID NO: 8 in the Sequence Listing, and oligonucleotide MA CI having the sequence of SEQ ID NO: 9 in the Sequence Listing In the nucleotide sequence of FNX, the nucleotide sequence underlined in FIG. 1 corresponds to the nucleotide sequence of the human MA CIF gene. Oligonucleotide KM 1 contains the nucleotide sequence from No. 1 to No. 21 of the nucleotide sequence of SEQ ID NO: 4 in the Sequence Listing, and oligonucleotide 5′M1uI is the nucleotide sequence of SEQ ID NO: 4 in the Sequence Listing. The oligonucleotide MA CIF NX contains the nucleotide sequence from No. 136 to No. 165, and the oligonucleotide MA CIF NX contains the nucleotide sequence from No. 1 to No. 21 of the nucleotide sequence of SEQ ID NO: 4 in the sequence listing. Oligonucleotide M3 having the sequence of SEQ ID NO: 6 in the Sequence Listing, oligonucleotide N / Q having the sequence of SEQ ID NO: 7 in the Sequence Listing, and oligonucleotide 77 having the sequence of SEQ ID NO: 10 in the Sequence Listing In the base sequence of XX, the base sequence shown in double underline in Fig. 1. 97 320 corresponds to the base sequence of the complementary chain of the human MAC IF gene. Oligonucleotide M3 contains a nucleotide sequence complementary to the nucleotide sequence from No. 285 to No. 265 of the nucleotide sequence of SEQ ID NO: 4 in the Sequence Listing, and oligonucleotide N / Q is a nucleotide sequence of SEQ ID NO: 4 in the Sequence Listing. Oligonucleotide 77XX contains the nucleotide sequence complementary to the nucleotide sequence from No.156 to No.115 in the nucleotide sequence, and the nucleotide sequence from No.306 to No.287 in the nucleotide sequence of SEQ ID NO: 4 in the sequence listing. And a base sequence complementary to the base sequence of The base sequence shown in italic letters and broken lines in FIG. 1 is a site recognized by the restriction enzyme described immediately below.
(2) プライマーの合成 (2) Primer synthesis
DNAZRNA合成機 (394型 DNA/RN Aシンセサイザ一: App 1 i e d B i o s y s t em社) を用いて、 前記 ( 1 )で設計した各プライマ一を 合成した。 サイクルは、 40nM CEで行ない、 ENDプロシージャ一は、 E ND CESSで行なった。 Each primer designed in the above (1) was synthesized using a DNAZRNA synthesizer (Model 394 DNA / RNA synthesizer: Applied Biosystems). The cycle was performed at 40 nM CE, and the END procedure was performed at END CESS.
(3) プライマーの精製 (3) Purification of primer
前記 (2)で生成した反応溶液を 56°Cで一晩熱処理した後、 オリゴヌクレオ チド精製用力一トリッジ (Ol i gonuc l eo t i de Pur i f i ca t i on Car t r i dge : App l i ed B i osys t e m社) を用 いて、 指示書に従って各プライマ一を精製し、 以下のポリメラ一ゼ 'チヱイン - リアクション (以下、 PCRと称する) に使用した。 但し、 オリゴヌクレオチド MAC I FNX及びオリゴヌクレオチド 77XXについては、 別のオリゴヌクレ ォチド精製用力一トリ ッジ (O l i gopur i f i ca t i on C a r t r i dge : C r u a c h em社) を用いて、 指示書に従って精製した。 After heat-treating the reaction solution produced in the above (2) at 56 ° C. overnight, the oligonucleotide purification cartridge (Oli gonuc l e o ti de Purifi ca ti on Car tri dge: Applied Biosystem) Each primer was purified according to the instructions using the following primers and used for the following polymerase-chain reaction (hereinafter referred to as PCR). However, the oligonucleotide MAC I FNX and the oligonucleotide 77XX were purified using a separate oligonucleotide purification cartridge (Oli gopurifi cation Cartridge: Cruach em) according to the instructions. .
実施例 2 : MAC I F (70, NZQ)遺伝子の作製 (第 2図) Example 2: Preparation of MAC IF (70, NZQ) gene (Fig. 2)
(1) PCRによる DNA断片 70 aの増幅 (1) Amplification of DNA fragment 70a by PCR
プライマーとしてオリゴヌクレオチ KM 1及びオリゴヌクレオチド NZQ各 1 00 nlV [と、 テンプレートとしてプラスミ ド p GEM 4にヒト天然型 MAC I F の c DNAを挿入しているプラスミ ド p GEM 352— 3 (プラスミ ド pGEM 352— 3は、 特開平 3— 201 985号公報の実施例 ( 1:) 〜 ( 5 ) に記載の
方法に従って作製した) 1 0ngとを含む 10mM Tr i s—HC l (pH8. 3) 、 5 OmM KCし 1. 5mM MgC l2 、 0. 001 % (重量 Z容量) ゼラチン、 0. 2mM (51^丁? 5、 及び丁39 DNA ポリメラ一ゼ (宝酒 造) 2. 5ユニッ トからなる反応溶液 100〃 1の入ったチューブを、 DNA増 幅器 (DNA The rma l Cyc l e r 480 i : PERK I EL MER社) にセットし、 94 °Cで 2分間加熱した後、 続いて、 94°Cで 1分問、 55eCで 1分間、 及び 72°Cで 1分間加熱するサイクルを 30回繰り返し、 最後 に 72°Cで 7分間保温する PCR反応を行なうことによって、 DNA断片 (以下、 DNA断片 70 aと称する) を増幅した。 以下の実施例においては、 特に断らな い限り、 前記の条件で PC Rを行なった。 Plasmid p GEM 352-3 (plasmid pGEM 352-3) in which cDNA of human native MAC IF is inserted into plasmid p GEM 4 as a template, and 100 nlV each of oligonucleotide KM 1 and oligonucleotide NZQ as primers — 3 is described in Examples (1) to (5) of JP-A-3-201 985. 10 mM Tris—HCl (pH 8.3), 5 OmM KC, 1.5 mM MgCl 2 , 0.001% (weight Z volume) gelatin, 0.2 mM (51 ^) DNA polymerase (Takara Shuzo) 2. Place a tube containing 100 反 応 1 of the reaction solution consisting of 5 units in a DNA amplifier (DNA Thermocoupler 480i: PERK I). EL MER), heat at 94 ° C for 2 minutes, and then repeat the cycle of heating at 94 ° C for 1 minute, 55 eC for 1 minute, and 72 ° C for 1 minute 30 times Finally, a DNA fragment (hereinafter, referred to as DNA fragment 70a) was amplified by performing a PCR reaction in which the temperature was kept at 72 ° C. for 7 minutes In the following Examples, unless otherwise specified, the above conditions were used. Performed PCR.
(2) PCRによる DNA断片 70 bの増幅 (2) Amplification of DNA fragment 70b by PCR
プライマ一としてオリゴヌクレオチド 5' M 1 υ I及びオリゴヌクレオチド Μ 3を用いた以外は、 前記 (1) と同じ条件で PC Rを行ない、 DNA断片 (以下、 DNA断片 7 Obと称する) を増幅した。 PCR was performed under the same conditions as in (1) above, except that oligonucleotide 5 ′ M 1 υI and oligonucleotide 3 were used as primers to amplify a DNA fragment (hereinafter referred to as DNA fragment 7 Ob). .
(3) DNA断片 70 aと DNA断片 70 bとの連結 (3) Ligation of DNA fragment 70a and DNA fragment 70b
前記 (1)で PCRにより増幅した DNA断片 70 aを、 制限酵素 N o t I及 び Ml υ Iで切断し、 前記 (2)で PCRにより増幅した DNA断片 70 bを、 制限酵素 Ml υ I及び Ec oR Iで切断し、 プラスミ ドベクタ一 pB 1 υ e s c r i p t II KS+ (STRATA GENE社) を、 制限酵素 N o t I及び E c oR Iで切断した。 これらの DNA断片を、 それぞれァガロースゲル電気泳動 法により分離し、 約 0. 15 kbの DNA断片 70 a' 、 約 0. 15kbの DN A断片 70b' 、 及び約 3. 0 kbのべクタ一 DNA断片を含むァガロースゲル 小片を切り出した。 ァガロースゲル小片からの DNA断片の抽出及び精製は、 ゲ ル抽出キット (Q IAEX〉Ge l Ext r a c t i onく K i t : Q I AG EN社) を用いて行なった。 精製した DNA断片を、 モル比 1 : 1 : 1で混合し、 ライゲーシヨンキッ ト (L i ga t i on Ki t :宝酒造) で連結し、 大腸菌 JM 1 09コンビテントセル (宝酒造) を形質転換し、 アンピシリンナトリウム The DNA fragment 70a amplified by PCR in the above (1) is cleaved with restriction enzymes Not I and MlυI, and the DNA fragment 70b amplified by PCR in the above (2) is digested with the restriction enzymes MlυI and The plasmid was digested with EcoRI and the plasmid vector pB1υescript II KS + (STRATA GENE) was digested with restriction enzymes NotI and EcoRI. These DNA fragments were separated by agarose gel electrophoresis, and a DNA fragment 70a 'of about 0.15 kb, a DNA fragment 70b' of about 0.15 kb, and a vector DNA fragment of about 3.0 kb An agarose gel containing was cut out. Extraction and purification of the DNA fragment from the agarose gel pieces were performed using a gel extraction kit (QIAEX> Gel Extrac tion, Kit: QI AGEN). The purified DNA fragments are mixed at a molar ratio of 1: 1: 1 and ligated with a ligation kit (Ligation Kit: Takara Shuzo) to transform Escherichia coli JM109 competent cells (Takara Shuzo). And ampicillin sodium
(和光純薬) 50 gZmlを含む L一ブロスプレートに塗布した。 DNA断片
の連結及び大腸菌の形質転換は、 添付の指示書に従って行なった。 出現した形質 転換体から適当数の形質転換体を選び、 プラスミ ド調製キッ ト (Q I AGEN PLASM I D M IN I K I T: Q I AG EN社) を用いて、 それぞれの形 質転換体からプラスミ ド DNAを調製した。 得られたプラスミ ド DNAを、 制限 酵素 No t I、 E c oR I及び Z又は Ml u Iで切断した後、 ァガロースゲル電 気泳動することによって、 DNA断片 70 a' と DNA断片 70 b' とが連結し た遺伝子 〔以下、 MAC I F (70, N Q) 遺伝子と称する〕 を有するプラス ミ ドを複数個選択した。 (Wako Pure Chemical Industries) It was applied to an L-broth plate containing 50 gZml. DNA fragment Ligation and transformation of Escherichia coli were performed according to the attached instructions. An appropriate number of transformants were selected from the transformants that appeared, and plasmid DNA was prepared from each transformant using a plasmid preparation kit (QI AGEN PLASM IDM IN IKIT: QI AG EN). . The obtained plasmid DNA is digested with restriction enzymes Not I, EcoRI and Z or MluI, and then subjected to agarose gel electrophoresis, whereby DNA fragment 70a 'and DNA fragment 70b' are separated. A plurality of plasmids having the linked gene [hereinafter referred to as MAC IF (70, NQ) gene] were selected.
(4) DN A塩基配列の決定 (4) Determination of DNA base sequence
前記のプラスミ ド調製キット (Q I AGEN PLASM I D M IN I K I T: Q I AGEN社) によって調製したプラスミ ド DNAを用いて、 前記 (3) で選択したプラスミ ドの DNA塩基配列の決定を行なった。 シークェンス用キッ ト (P r i sm r e a dy Re a c t i on Dy eDe oxy Te rm i n a t o r Cy c l e S e qu e n c i ng K i t : Ap p 1 i e d B i o s y s ΐ em社) を用いてシークェンス反応を行ない、 DNAシークェン サー (AB I社) で解析した。 解折の結果、 配列表の配列番号 3の塩基配列の第 1番から第 28 5番までの塩基配列を有する組換えプラスミ ドを選択し、 pB 1 υ e-MAC I F (70, N/Q) と命名した。 尚、 反応条件等は、 前記シーク エンス用キット (P r i sm r e a dy Re a c t i o n Dy eDe ox y Te rm i n a t o r Cy c l e S e qu e n c i n g K i t) 又は 前記 DNAシークェンサ一 (AB I社) に添付された指示書に全て従った。 Using the plasmid DNA prepared by the above-mentioned plasmid preparation kit (QIAGEN PLASM IDMIN KIT: QIAGEN), the DNA base sequence of the plasmid selected in the above (3) was determined. A DNA sequencer is performed using a sequencing kit (Prims rea dy Reacti on Dy eDeoxy Terminator Cyclic Sequenci ng Kit: Ap p1 ied B iosys ΐ em) to perform a DNA sequencer. (ABI). As a result of the analysis, a recombinant plasmid having the nucleotide sequence from No. 1 to No. 285 of SEQ ID NO: 3 in the sequence listing was selected, and pB1υe-MAC IF (70, N / Q ). The reaction conditions and the like are described in the kit for sequencing (PrimsreadyReactionDyeDeoxyTerminatorCyclic Sequencing Kit) or the DNA Sequencer (ABI). All instructions were followed.
実施例 3 : MAC I F (77, N/Q) 発現プラスミ ドの作製 (第 3図) Example 3: Preparation of MAC IF (77, N / Q) expression plasmid (Fig. 3)
( 1 ) DNA断片MAC I F (77, N/Q) EXの PCRによる増幅 (1) Amplification of DNA fragment MAC I F (77, N / Q) EX by PCR
前記実施例 2 (4) で得られた pB 1 υ e-MAC I F (70, N/Q) をテ ンプレートとして、 オリゴヌクレオチド MAC I FNX及びオリゴヌクレオチド 77XXをプライマーとして、 前記実施例 2 ( 1) と同じ条件で PC Rを行ない、 約 0. 3 6 kbの DNA断片を得た。 これらの DNA断片には、 MAC I F (7 7, N/Q) 遺伝子と、 その 5' 末端側に、 制限酵素 Xb a I認識部位及び CD
4由来の 25 bp 5' 非翻訳領域を含み、 そしてその 3' 末端側に、 制限酵素 X b a I認識部位を導入した DNA断片 MAC I F (77, N/Q) EXが含まれ ている。 なお、 MAC IF (77, N/Q)遺伝子とは、 配列表の配列番号 3の 塩基配列の第 1番〜第 312番の塩基配列を有し、 本発明のポリペプチドをコ一 ドする DNAである。 目的とする約 0. 36 kbの DNA断片が増幅したことを 2 %ァガ口一スゲル電気泳動で確認した。 Using pB1υe-MAC IF (70, N / Q) obtained in Example 2 (4) as a template and oligonucleotide MAC I FNX and oligonucleotide 77XX as primers, Example 2 (1 PCR was performed under the same conditions as in the above) to obtain a DNA fragment of about 0.36 kb. These DNA fragments contain the MAC IF (77, N / Q) gene and a restriction enzyme XbaI recognition site and CD at the 5 'end. It contains a 25 bp 5 ′ untranslated region derived from 4 and a DNA fragment MAC IF (77, N / Q) EX into which a restriction enzyme XbaI recognition site has been introduced at the 3 ′ end. The MAC IF (77, N / Q) gene refers to a DNA having the nucleotide sequence of Nos. 1 to 312 of the nucleotide sequence of SEQ ID NO: 3 in the sequence listing and encoding the polypeptide of the present invention. It is. The amplification of the desired 0.36 kb DNA fragment was confirmed by 2% agarose gel electrophoresis.
(2) PCR産物のサブクロ一ニング (2) Sub-cloning of PCR products
前記 (1)で PCRによって増幅した DNA断片を、 クローニングキット (T A C 10 n i n gTM K i t : i n v i t r o g e n社) を用いて、 P C R Πベクタ一 ( i n v i t r o g e n社) にサブクロ一ニングした。 すなわち、 前 記 ( 1 ) で得られた PC R反応溶液 1 1に、 滅菌水 5〃し 10 Xライゲーシ ヨンバッファ一 2 1、 PCRIIベクタ一溶液 (25n g/u 1 ) 1 1、 T4 The DNA fragment amplified by PCR in the above (1) was subcloned into a PCR vector (invitrogen) using a cloning kit (TAC10ningTMKit: invitrogen). That is, the PCR reaction solution 11 obtained in the above (1) was added to sterile water 5〃10 X ligation buffer 121, PCRII vector solution (25 ng / u1) 11, T4
DNA リガ一ゼ 1 1を加え、 攪拌した後、 14〜1 5°Cで 4時間以上保温 した。 続いて、 上記反応液を用いて、 大腸菌 JM109コンビテントセル (宝酒 造) を、 添付の指示書に従って形質転換し、 選択プレートに塗布した。 選択プレ ートとして、 アンピシリンナトリウム (和光純薬) 50 ノ1111を含むしーブ 口ス寒天培地に、 2 % 5—ブロモ— 4一クロ口— 3—インドリル一 S— D—ガラ クトシド (X— Ga l) (和光純薬) 50 1及び 0. 1Mイソプロピル一 1一 チオー^— D—ガラクトンド ( I PTG) (シグマ社) 20〃 1を塗布したもの を用いた。 選択プレートを 37 °Cで一晩保温し、 出現した白色のコロニーを選択 し、 プラスミ ド調製キット (Q I AGEN PLASMID MINI K IT : Q I AGEN社) を用いて、 プラスミ ド DNAを調製した。 得られたプラスミ ド DNAを、 制限酵素 Xba Iで切断し、 ァガロースゲル電気泳動を行ない、 約 0. 36 kbの挿入断片を有する組換えプラスミ ドを複数個選択した。 After adding DNA ligase 11 and stirring, the mixture was kept at 14 to 15 ° C for 4 hours or more. Subsequently, Escherichia coli JM109 competent cell (Takara Shuzo) was transformed using the above reaction solution according to the attached instructions, and applied to a selection plate. As a selection plate, agar medium containing ampicillin sodium (Wako Pure Chemical Industries, Ltd.) 501111 and 2% 5-bromo-4 monoclonal 3-indolyl-S-D-galactoside (X — Gal) (Wako Pure Chemical Industries) 501 and 0.1 M isopropyl-111-thio-^-D-galactone (IPTG) (Sigma) 20-1 were used. The selection plate was incubated at 37 ° C overnight, white colonies that appeared were selected, and plasmid DNA was prepared using a plasmid preparation kit (QIAGEN PLASMID MINI KIT: QIAGEN). The obtained plasmid DNA was digested with restriction enzyme XbaI and subjected to agarose gel electrophoresis to select a plurality of recombinant plasmids having an inserted fragment of about 0.36 kb.
(3) DNA塩基配列の決定 (3) Determination of DNA base sequence
前記 (2)で調製したプラスミ ド DNAを用いて、 前記 (2)で選択したブラ スミ ドの DNA塩基配列の決定を行なった。 シークェンス用キット (Pr i sm r eady Rea c t i on DyeDeoxy Te rmi na t or
Cy c l e S e qu en c i ng K i t : A p p 1 i e d B i o s y s t em社) を用いてシークェンス反応を行ない、 DNAシークェンサ一 (AB I社) で解析した。 解析の結果、 配列表の配列番号 3の塩基配列を有する組換えプラス ミ ドを選択し、 pMAC I F (77, N/Q) EXと命名した。 尚、 反応条件等 は、 前記シークェンス用キット (P r i sm r e a d y Re a c t i on Dy eDe oxy Te rm i n a t o r Cy c l e S e qu e n c i n g K i t) 又は前記 DNAシークェンサ一 (AB I社) に添付された指示書に全 て従った。 MAC I F (77, N/Q) E X遺伝子の翻訳部分及び停止コドンの 塩基配列とその推定ァミノ酸配列を第 4図に示す。 第 4図で下線で示した塩基又 はアミノ酸は、 天然型ヒト MAC I F活性タンパク質の塩基配列又はアミノ酸配 列と異なる塩基又はアミノ酸である。 Using the plasmid DNA prepared in the above (2), the DNA base sequence of the plasmid selected in the above (2) was determined. Sequence kit (Pri sm r eady Rea cti on DyeDeoxy Termi na t or A sequence reaction was performed using a Cyclic Sequence Kit (App 1 ied Biosystem) and analyzed with a DNA sequencer (ABI). As a result of the analysis, a recombinant plasmid having the nucleotide sequence of SEQ ID NO: 3 in the sequence listing was selected and named pMAC IF (77, N / Q) EX. The reaction conditions and the like are described in the instruction kit attached to the above-mentioned sequence kit (Prism Ready React on Dy Deoxy Terminator Cyclic Sequencing Kit) or the above-mentioned DNA Sequencer (ABI). I followed all. FIG. 4 shows the base sequence of the translation portion and the stop codon of the MAC IF (77, N / Q) EX gene and its deduced amino acid sequence. The bases or amino acids underlined in FIG. 4 are different from the base sequence or amino acid sequence of the natural type human MAC IF active protein.
(4) DNA断片MAC I F (77, N/Q) E Xの発現プラスミ ドへの挿入 (第 3図) (4) Insertion of DNA fragment MAC I F (77, N / Q) EX into expression plasmid (Fig. 3)
前記 (3) で得られたプラスミ ド pMAC I F (77, N/Q) EXを、 制限 酵素 Xb a Iで切断した。 また、 動物細胞用発現プラスミ ド pEF— BOS CM i z u s h imaら, Nu c l e i c Ac i d s R e s e a r c h, 1 8, The plasmid pMACIF (77, N / Q) EX obtained in the above (3) was digested with the restriction enzyme XbaI. In addition, the expression plasmid for animal cells, pEF—BOS CM i s u s h ima et al., Nucl e i c Ac i d s R e s e a r ch h, 18,
5 332, ( 1 9 90) 〕 の制限酵素 A a t 11部位にメトトレキセ一ト耐性ジ ヒドロ葉核酸還元酵素 (以下、 DHFRと称する) 発現ュニットを揷入したブラ スミ ド pEBDを、 制限酵素 Xb a Iで切断し、 アルカリホスファターゼ (宝酒 造) で脱リン酸化した。 それぞれのプラスミ ドを 1 %ァガロースゲル電気泳動し、 目的の断片を含むァガロースゲル小片、 すなわち、 両末端に Xb a I付着末端を 有する約 0. 35 kbの DNA断片 MAC I F (77, NZQ) EXを含むァガ ロースゲル小片と、 両末端に Xb a I付着末端を有する直鎖状のプラスミ ド pE B D断片を含むァガロースゲル小片とを切り出した。 ァガロースゲルからの目的 DN A断片の抽出及び精製は、 ゲル抽出キット (Q I AEX>Ge l Ex t r a c t i on <K i t : Q I AGEN社) を用いて行なった。 精製した DNA断 片を、 モル比 1 : 1で混合し、 ライゲージヨンキット (L i ga t i on K i t :宝酒造) で連結し、 大腸菌 JM 1 0 9を形質転換し、 ァンピシリンナトリウ
ム (和光純薬) 5 0 g/m 1を含む L一ブロスプレートに塗布した。 DNA断 片の連結及び大腸菌の形質転換は、 添付の指示書に従って行なった。 出現した形 質転換体から適当数の形質転換体を選び、 プラスミ ド調製キッ ト (Q I AGEN5332, (1990)], a plasmid pEBD in which a methotrexate-resistant dihydroleaf nucleic acid reductase (hereinafter referred to as DHFR) expression unit is inserted at the A at 11 site, and a restriction enzyme Xba The fragment was digested with I and dephosphorylated with alkaline phosphatase (Takara Shuzo). Each plasmid is subjected to 1% agarose gel electrophoresis and contains a fragment of the agarose gel containing the desired fragment, that is, a DNA fragment MAC IF (77, NZQ) EX of approximately 0.35 kb with Xba I cohesive ends at both ends. A piece of agarose gel and a piece of agarose gel containing a linear plasmid pEBD fragment having XbaI cohesive ends at both ends were cut out. Extraction and purification of the target DNA fragment from the agarose gel was performed using a gel extraction kit (QIAEX> Gel Extraction <Kit: QIAGEN). The purified DNA fragments are mixed at a molar ratio of 1: 1 and ligated with a Ligation kit (Takara Shuzo) to transform Escherichia coli JM109. (Wako Pure Chemical Industries) was applied to an L-broth plate containing 50 g / m1. Ligation of DNA fragments and transformation of Escherichia coli were performed according to the attached instructions. An appropriate number of transformants were selected from the transformants that appeared, and a plasmid preparation kit (QI AGEN
PLASM I D M IN I K I T: Q I AG EN社) を用いて、 それぞれの 形質転換体からプラスミ ド DNAを調製した。 得られたプラスミ ド DNAを、 制 限酵素 No t I及び Ec oR Iで切断した後、 ァガロースゲル電気泳動すること によって、 DN A断片 MAC I F (77, N/Q) EXカ\ プラスミ ド pEBD のヒト延長因子 1 (EF— 1) プロモー夕一に対して順方向に挿入されたプラス ミ ドを選択し、 pEBD— MAC I F (77, N/Q) EXと命名した。 pEB D— MAC I F (77, N/Q) EXの構造を、 第 3図に模式的に示す。 第 3図 に示すように、 MAC I F (77, N/Q) 遺伝子が EF— 1プロモーターに対 して順方向に挿入された場合には、 制限酵素 No t I及び E c oR Iによる切断 によって、 約 1 kbの DNA断片が生じる。 一方、 MAC I F (77, N/Q) 遺伝子が EF— 1プロモーターに対して逆方向に挿入された場合には、 制限酵素 No t I及び E c oR Iによる切断によって、 約 1 kbの DNA断片が生じない。 実施例 4 : MAC I F (77) 発現プラスミ ドの作製 Plasmid DNA was prepared from each transformant using PLASM IDMIN KIT (QIAGEN). The obtained plasmid DNA is digested with restriction enzymes Not I and EcoRI, and then subjected to agarose gel electrophoresis to obtain DNA fragment MAC IF (77, N / Q) EX plasmid pEBD human A plasmid inserted in the forward direction relative to the elongation factor 1 (EF-1) promoter was selected and named pEBD-MAC IF (77, N / Q) EX. The structure of pEB D—MAC IF (77, N / Q) EX is schematically shown in FIG. As shown in Fig. 3, when the MAC IF (77, N / Q) gene was inserted in the forward direction with respect to the EF-1 promoter, cleavage by the restriction enzymes NotI and EcoRI was performed. A DNA fragment of about 1 kb is generated. On the other hand, when the MAC IF (77, N / Q) gene was inserted in the opposite direction to the EF-1 promoter, a DNA fragment of about 1 kb was obtained by digestion with the restriction enzymes Not I and EcoRI. Does not occur. Example 4: Preparation of MAC IF (77) expression plasmid
前記実施例 3 ( 1 ) に記載の方法において、 テンプレートとして pGEM35 2— 3を用いること以外は、 前記実施例 3 ( 1)〜(4) に記載の方法に従って、 DN A断片 MAC I F (77) EXがプラスミ ド p E B Dのヒト E F— 1プロモ 一夕一に対して順方向に挿入されたプラスミ ド 〔以下、 pEBD-MAC I F (77) EXと称する〕 を作製した。 In the method described in Example 3 (1), the DNA fragment MAC IF (77) was prepared according to the method described in Example 3 (1) to (4) except that pGEM35 2-3 was used as a template. A plasmid (hereinafter referred to as pEBD-MAC IF (77) EX) was prepared in which EX was inserted in the forward direction with respect to the human EF-1 promoter of plasmid p EBD overnight.
実施例 5 : MAC I F (77) 又は MAC I F (77, N/Q) 発現 CH〇細胞 の作製 Example 5: Preparation of CH〇 cells expressing MAC IF (77) or MAC IF (77, N / Q)
( 1 ) CH0細胞のトランスフエクシヨン (1) Transfection of CH0 cells
CH0細胞のトランスフエクシヨンは、 リボフェクチン溶液 (L I P0FEC T I N™ R e a gen t : G i b e o— BRL社) を用いて行なった。 プラス ミ ド pEBD— MAC I F (77, N/Q) £ 又は £80—1^八〇 I F (7 7) EX 2 gを、 それぞれ OPT— MEM培地 (G i b e o— BRL社) 1 0
0 n 1 と混合し、 A液とした。 前記リポフエクチン溶液 20 1 と OPT— ME Ml 0 0 1 とを混合し、 B液とした。 A液と B液とを静かに混合し、 室温に 1 5分間静置した後、 MEMひ (+ ) 培地 (G i b c 0— BRL社) 1. 8m lを 加えた。 この溶液を、 MEMひ (+ ) 培地で洗浄した CHO紬胞 (DHFR-) (細胞数 1. 3 X 1 05 個 / 6 cm培養皿) に静かに加え、 37て、 5 %二酸化 炭素条件下で 1 日培養した後、 1 0%ゥシ胎児血清 (以下、 FBSと称する) を 含む MEMひ (+ ) 培地に交換し、 更に 2日間培養した。 全細胞数の 1Z1 0量 を 25 cm2 フラスコに移し、 2〜3日毎に培地 〔1 0%透折 FBSを含む ME Ma (一) 培地 (G i b e o— BRL社) 5m l〕 を交換しながら、 37°C、 5 %二酸化炭素条件下で培養することによって、 トランスフヱクシヨンされた CH 0細胞を選択した。 The transfection of CH0 cells was carried out using a ribofectin solution (LIPOFEC TIN ™ Reagent: Gibeo—BRL). Plasmid pEBD—MAC IF (77, N / Q) £ or £ 80—1 ^ 80 IF (77) EX 2 g each, OPT—MEM medium (Gibeo—BRL) 10 This was mixed with 0 n 1 to obtain solution A. The lipofectin solution 201 and OPT-MEM001 were mixed to prepare solution B. The solution A and the solution B were mixed gently, and allowed to stand at room temperature for 15 minutes. Then, 1.8 ml of MEM medium (+) medium (Gibco 0-BRL) was added. This solution, MEM monument (+) CHO and washed with medium Tsumugi胞(DHFR-) gently added to (cell number 1. 3 X 1 0 5 cells / 6 cm dish), Te 37, 5% carbon dioxide condition After culturing for 1 day, the medium was replaced with a MEM medium (+) containing 10% fetal calf serum (hereinafter referred to as FBS), and further cultured for 2 days. The 1Z1 0 amount of the total cell number were transferred to 25 cm 2 flask, while exchanging [ME Ma (I) medium (G ibeo- BRL Co.) 5 m l containing 1 0% dialyzed FBS] 2-3 days in culture medium The transfused CH0 cells were selected by culturing at 37 ° C and 5% carbon dioxide.
(2) MAC I F (77) 又は MAC I F (77, N/Q) 発現 CHO細胞の育 種 (2) Breeding CHO cells expressing MAC IF (77) or MAC IF (77, N / Q)
トランスフエクシヨンされた CHO細胞の集団を、 トリブシン— EDTA溶液 Transfer the transfected CHO cell population to Tribcine-EDTA solution
(G i b c o— BRL社) で処理した後、 限界希釈し、 9 6ゥヱルプレートに蒔 いた。 培地として、 リン酸緩衝化食塩液 (以下、 PBSと称する) に対して透忻 した 1 0%FBSを含む MEMひ (―) 培地を用いた。 細胞 1個が入っているゥ エルを選択し、 細胞が増殖し、 ほぼコンフルェントになった時点で、 MAC I F(Gibco—BRL), limiting dilution and plating on a 96-well plate. As a medium, a MEM (-) medium containing 10% FBS permeated with a phosphate buffered saline (hereinafter, referred to as PBS) was used. Select a well containing one cell, and when the cells have grown and become almost confluent,
(77) 又は MAC I F (77, N/Q) 高発現クローンを複数個選択した。 選 択したクローンを、 適当な濃度のメトトレキセート (以下、 MTXと称する) と(77) or a plurality of clones with high expression of MAC IF (77, N / Q) were selected. The selected clones were treated with a suitable concentration of methotrexate (hereinafter referred to as MTX).
1 0%透析 83とを含む1^£\ ひ (一) 培地で更に培養し、 遺伝子増幅による 発現量の増加を誘起した。 MTX濃度は 1 O nMから開始し、 最終的に 1 Mに まで段階的に上げ、 それぞれ発現量の最も高い CH〇細胞株を選択した。 Further culturing was performed in a 1 ^ medium (1) medium containing 10% dialysis 83 to induce an increase in the expression level due to gene amplification. The MTX concentration was started at 1 OnM and finally increased to 1 M, and the CH〇 cell line with the highest expression level was selected.
実施例 6 : MAC I F (77) 及び MAC I F (77, N/Q) の精製 Example 6: Purification of MAC IF (77) and MAC IF (77, N / Q)
( 1 ) MAC I F (77) 又は MAC I F (77, N/Q) 発現 CHO細胞の培 養 (1) Culture of CHO cells expressing MAC IF (77) or MAC IF (77, N / Q)
T培地 (和光純薬) 1 7. 8 3 g/lに対して、 グルコース 64 g/l、 PEG 20 000 l g/l、 ゲンタマイシン 1 0mg/l、 及び NaHC03
2 gZlを添加し、 更に終濃度インシュリン 1. 25mgZl、 トランスフヱリ ン 2. SmgZl、 エタノールァミン 0. 38mg し 亜セレン酸ナトリウム 1. 08 //gZlとなる量の RD— 1培地 (極東製薬社) 、 0. 001%Twe en 80、 500 nM MTX、 及び 2 %F B Sを添加して調製した培地を使用 した。 細胞を、 約 3 X 105 個/ m 1で 50 Om 1スピンナ一フラスコに播種し、 培地 50 Om K 回転数 60 r pm、 N2 /02 ガスを上面から 15〜25ml Z分で通気しながら、 4〜 5日間培養を行なつた。 To T medium (Wako Pure Chemical) 1 7. 8 3 g / l , glucose 64 g / l, PEG 20 000 lg / l, gentamicin 1 0 mg / l, and NaHCO 3 Add 2 gZl, and add a final concentration of 1.25 mg of insulin, 2.25 mg of transpurin, 2.38 mg of ethanolamine, 0.38 mg of ethanolamine, and sodium selenite 1.08 // gZl of RD-1 medium (Kyokuto Pharmaceutical Co., Ltd.) , 0.001% Tween 80, 500 nM MTX, and 2% FBS. Cells were seeded at approximately 3 X 10 5 cells / m 1 to 50 Om 1 spinner one flask was aerated medium 50 Om K rotational speed 60 r pm, the N 2/0 2 gas from the top at 15-25 Z min While culturing for 4-5 days.
(2)精製及び定量 (2) Purification and quantification
抗ヒト MAC I Fマウスモノクローナル抗体 (Ha t anakaら、 C I i n i ca l Immuno l ogy and I mmu nopa tho l ogy, 69, 52 - 59, ( 1993 ) )を、 活性化したセファロース 4 B (Ph a r ma c i a社) に、 添付の指示書に従って結合させ、 抗 MAC I F抗体カラムを 作製した。 MAC I F (77)又は MAC IF (77, NXQ) を產生する CH 0細胞の培養上清を、 前記抗 MAC I F抗体カラムにかけ、 各産物を吸着させた 後、 1 5 OmM塩化ナトリウムを含むトリス緩衝液 (pH7. 4)及び 500m M塩化ナトリゥムを含むトリス緩衝液 ( P H 7. 4)で十分洗浄した。 抗 M A C I F抗体カラムに吸着した MAC I F (77)又は MAC I F (77, N/Q) を、 3 Mチォシアン酸カリウム水溶液で溶出した後、 PBSに対して透析し、 バ ッファー交換を行なった。 An anti-human MAC IF mouse monoclonal antibody (Hatanaka et al., CI ini ca l Immunology and Immunopathology, 69, 52-59, (1993)) was activated by activated Sepharose 4B (Pharma cia) according to the attached instructions to prepare an anti-MAC IF antibody column. The culture supernatant of CH0 cells producing MAC IF (77) or MAC IF (77, NXQ) is applied to the anti-MAC IF antibody column to adsorb each product, and then Tris buffer containing 15 OmM sodium chloride is applied. The solution was thoroughly washed with a liquid (pH 7.4) and a Tris buffer (PH 7.4) containing 500 mM sodium chloride. MAC IF (77) or MAC IF (77, N / Q) adsorbed on the anti-MACIF antibody column was eluted with a 3 M aqueous solution of potassium thiocyanate, dialyzed against PBS, and subjected to buffer exchange.
精製したタンパク質の濃度検定は、 タンパク質アツセィキット (Mi c r o BCA pr o t e i n As s ay K i t : P i e r c e社) を用レヽ、 操作 はその指示書に従った。 また、 以下のタンパク質濃度検定は、 前記タンパク質ァ ッセィキッ ト (Mi c r o BCA pr o t e i n As s ay Ki t)で すべて行なった。 The concentration of the purified protein was assayed using a protein assay kit (Micro BCA protein Assay Kit: Pierce), and the operation was in accordance with the instructions. In addition, the following protein concentration tests were all performed using the above protein assay kit (Micro BCA protein Assay Kit).
(3) MAC I F (77, N/Q)の解析 (3) Analysis of MAC IF (77, N / Q)
精製した MAC I F (77, N/Q) を、 常法によりドデシル硫酸ナトリウム 存在下でのポリアクリルァミ ドゲル電気泳動 (以下、 SDS— PAGEと称する) (第一化学薬品社) し、 分析を行なった。 結果を第 5図に示す。 第 5図は、 SD
S— PAGEの泳動像を模式的に示す図面である。 レーン 1は、 タンパク質分子 量マーカ一 (第一化学薬品社) の泳動像を示し、 レーン 2は、 精製した MAC I F (77, N/Q) 50 ngの泳動像を示す。 MAC I F (77, N/Q) は、 分子量 7 kDa付近に単一ノ ンドを形成した。 The purified MAC IF (77, N / Q) was subjected to polyacrylamide gel electrophoresis (hereinafter, referred to as SDS-PAGE) (Daiichi Pure Chemicals) in the presence of sodium dodecyl sulfate by a conventional method, and analyzed. The results are shown in FIG. Figure 5 shows the SD 1 is a drawing schematically showing an electrophoretic image of S-PAGE. Lane 1 shows a migration image of Protein Molecular Weight Marker 1 (Daiichi Pure Chemicals), and Lane 2 shows a migration image of purified MAC IF (77, N / Q) of 50 ng. MAC IF (77, N / Q) formed a single node at a molecular weight of around 7 kDa.
MAC I F (77, N/Q) 5 00 n gを SDS— P AGEに供した後、 転写 用装置 ( I SS—セミ ドライエレクトロブロッター '·第一化学薬品社) を用いて 1 6 OmA. 1時間通電することで、 泳動されたタンパク質を、 PVDF転写膜 (ィモビロン PVDF転写膜:第一化学薬品社) に電気的に転写した。 このィモ ビロン PVDF転写膜を、 ブロッキング溶液 (ブロックエース:大日本製薬) 1 After applying 500 ng of MAC IF (77, N / Q) to SDS-PAGE, 16 OmA. 1 hour using a transfer device (ISS-semi-dry electroblotting 'Daiichi Pure Chemicals Co., Ltd.) By applying a current, the electrophoresed protein was electrically transferred to a PVDF transfer membrane (Immobilon PVDF transfer membrane: Daiichi Kagaku). This Immobilon PVDF transfer membrane is used as a blocking solution (Block Ace: Dainippon Pharmaceutical) 1
0 m 1中に室温で 4時間浸し、 プロッキングした後、 1 〃 g/m 1 ビォチン化ゥ サギ抗 MAC I F抗体 ( I gG) を含む 1 5 OmM Na C I /O. 05%Tw e e n 20/0. 25%BSA/2 OmM Tr i s (pH7. 4) 緩衝液 (T /B/TBS) 1 0m l中で 4°C、 1 2時間反応させた。 ィモビロン P VD F転 写膜を、 1 5 0 mM Na C 1 /0. 0 5% Twe e n 20/2 OmM TrAfter immersion in 0 ml at room temperature for 4 hours and blocking, 1 〃g / m 1 biotinylated ゥ 15 OmM NaCI / O. 05% Tween 20 / containing a heron anti-MAC IF antibody (IgG) The reaction was carried out in 10 ml of 0.25% BSA / 2 OmM Tris (pH 7.4) buffer (T / B / TBS) at 4 ° C. for 12 hours. Immobilon PVD transfer membrane was added to 150 mM NaC 1 / 0.0 5% Tween 20/2 OmM Tr
1 s (pH7. 4) 緩衝液 (TZTBS) 2 Om lで洗浄した後、 1 000倍に 希釈したストレプトアビジン一ピオチン一ホースラディッシュパーォキシダ一ゼ 複合体 (S t r e p t o a v i d i n— b i o t i n— HRPO c omp l e x : Ame r s h am社) を含む TZBZT B S緩衝液 1 0m l中で室温で 1時 間反応させた。 TZTBS 20m lで洗浄した後、 ピオチン化ゥサギ抗 MAC I F抗体の結合を、 HRPO検出用キット (ECLキット : Ame r s h am社) を用いて、 添付の指示書に従い検出した。 その結果、 SDS— PAGEで検出さ れたバンドは染色された。 なお、 ゥサギ抗 MAC I F抗体 ( I gG) のピオチン 化は、 Immun oPu r e NHS - CC— B i o t i n (P i e r c e社) を用い、 添付の指示書に従って行なった。 After washing with 1 s (pH 7.4) buffer (TZTBS) 2 Oml and diluting it 1 000-fold, streptavidin-piotin-horseradish peroxidase complex (Streptoavidin-biotin- HRPO complex) : Amersham) in TZBZT BS buffer containing 10 ml at room temperature for 1 hour. After washing with 20 ml of TZTBS, the binding of the biotinylated ゥ heron anti-MAC IF antibody was detected using a HRPO detection kit (ECL kit: Amersham) according to the attached instructions. As a result, the band detected by SDS-PAGE was stained. In addition, the biosynthesis of Escherichia anti-MAC IF antibody (IgG) was performed using ImmunPure NHS-CC-Biotin (Pierec) according to the attached instructions.
実施例 7 : MAC I F (77) 及び MAC I F (77, N/Q) 活性の比較 De s s a u e rらの方 ί£ 〔De s s a u e r, A. e t a 1. , Ac t a Pa t ho l o f i c a Mi c r ob i o l og i c s S c a n d i n a v i a S e c t i on C Supp l eme n t 284, 92, 75 - 8
1 ( 1 984 ) 〕 により、 ヒト C 5 (コスモバイオ社) とじ 6 (コスモバイオ社) とからヒト C 5 b 6複合体を調製した。 溶血率が 50%程度となるように希釈し たヒト C 5 b 6複合体、 モルモット赤血球 ( 2. 5 X 108 細胞 Zm 1 )及びヒ ト血清 (終希釈 1 60倍) の混合液に、 PBS中の MAC I F (77)及び MA C I F (77, N/Q)の溶液を各種の濃度で添加し、 全量を 1 00 1とし、 37°Cで 30分間反応させた。 試料溶液を加えていないものを、 これと同時に反 応させ、 コントロールとした。 反応後、 2000 xgで 3分間遠心分離を行ない、 その上清の吸光度 (414 nm)を測定した。 試料溶液の吸光度 (414 nm) を A4 14 (s)、 コントロールの吸光度 (414 nm) を A 414 (c) とし、 試料溶液の代わりに EDTA溶液を加えて反応させた場合の吸光度 (414 nm) を A414 (B) とした。 試料の溶血阻害活性 (%) は、 式: Example 7: Comparison of MAC IF (77) and MAC IF (77, N / Q) activities Dessauer et al. Ί £ [De ssauer, A. eta 1., Acta Patholofica Mi cr ob iol og ics S candinavia Secti on C Supplement 284, 92, 75-8 1 (1984)] to prepare a human C5b6 complex from human C5 (Cosmo Bio) and 6 (Cosmo Bio). Human C 5 b 6 complex hemolysis rate was diluted to about 50%, in a mixture of guinea pig erythrocytes (2. 5 X 10 8 cells Zm 1) and human serum (final dilution 1 60-fold), MAC IF (77) and MA CIF (77, N / Q) solutions in PBS were added at various concentrations to make a total volume of 1001, and reacted at 37 ° C for 30 minutes. A sample to which no sample solution was added was reacted at the same time as a control. After the reaction, centrifugation was performed at 2000 × g for 3 minutes, and the absorbance (414 nm) of the supernatant was measured. The absorbance (414 nm) of the sample solution was A414 (s), and the absorbance of the control (414 nm) was A414 (c). The absorbance (414 nm) when an EDTA solution was added instead of the sample solution and reacted. To A414 (B). The hemolytic inhibitory activity (%) of the sample is calculated by the formula:
CA 1 (c) -A41 (s)〕 /〔A414 (c) CA 1 (c) -A41 (s)] / (A414 (c)
-A 14 (B)〕 x 100 -A 14 (B)) x 100
によって算出した。 MAC I F (77, N/Q)の溶血阻害活性の I C 5。は、 M AC I F (77)で 3〃 g/ml程度であつたのに対し、 本発明の MAC I FWas calculated. IC 5 of hemolysis inhibitory activity of the MAC IF (77, N / Q ). Is about 3 μg / ml in the MAC IF (77), whereas the MAC IF
(77, N/Q)では 1 gZmlであり、 本発明の改変ポリペプチドは優位な 効果を示した。 (77, N / Q) was 1 gZml, and the modified polypeptide of the present invention showed a superior effect.
実施例 8 : MAC I F (77, N/Q) による、 有核細胞の補体による細胞^解 抑制作用 Example 8: Effect of MAC IF (77, N / Q) on inhibition of cell lysis by complement of nucleated cells
( 1 )尿 MAC I Fの調製 (1) Preparation of urine MAC IF
尿 MAC I Fは天然型 MAC I Fのアンカー途中で切断された構造を有し (A r chne s o f B i ochemi s t ry and B i ophys i c s, 31 1 (1), 1 17 - 126, ( 1 994 ) ) モルモット赤血球溶血阻害作 用がある蛋白として知られている。 Urine MAC IF has a structure cleaved in the middle of the anchor of natural MAC IF (Archne sof Biochemistry and Biophysics, 31 1 (1), 117-126, (1 994) ) It is known as a protein that has the effect of inhibiting erythrocyte hemolysis in guinea pigs.
尿 MAC I Fの調製は、 ヒト尿から Sugita, Y.らの方法 ( Immu n o 1 o g y, ( 1 994 ) _8_2_: 34-41)で行った。 Urine MAC IF was prepared from human urine by the method of Sugita, Y. et al. (Immuno 1 og y, (1994) _8_2_: 34-41).
(2) ゥサギ抗 HUVECポリクローナル抗体の作製と調製 (2) Preparation and preparation of a heron anti-HUVEC polyclonal antibody
ゥサギ抗 HUVECボリクロ一ナル抗体の作製は、 Br oo imans R.
A. らの方法 (Eu r. J. Immuno l. , ( 1 992) _2_2_ : 31 35- 3140) に準じた。 ゥ For the production of heron anti-HUVEC polyclonal antibody, refer to Broo imans R. According to the method of A. et al. (Eur. J. Immunol., (1992) _2_2_: 31 35-3140).
(2 - 1 ) HUVECの免疫 (2-1) Immunity of HUVEC
5x 1 05 個のヒトさい帯静脈血管内皮細胞 (HUVEC: クラボウ社、 日本) を、 1 m〗のコンプリートアジュバント (和光純薬、 日本) に懸濁し、 ゥサギ5x 1 0 5 pieces of human umbilical vein endothelial cells (HUVEC: Kurabo, Japan) was suspended in 1 m〗's complete adjuvant (Wako Pure Chemical Industries, Ltd., Japan), Usagi
(日本白色種: SLC, 日本) の皮下に注射した。 その 2週間後より 2週間間隔 で計 3回、 同細胞数の HUVECを lmlのインコンプリートアジュバント (和 光純薬、 日本) に懸濁した溶液を同じゥサギの皮下に注射した。 以上の操作で、 HUVECの免疫を完了した。 (Japanese white species: SLC, Japan). Two weeks later, a solution of the same number of HUVECs suspended in 1 ml of incomplete adjuvant (Wako Pure Chemical, Japan) was injected subcutaneously into the same egret three times at two-week intervals. With the above operations, HUVEC immunization was completed.
(2-2) ゥサギ抗 HUVECボリクローナル抗体の調製 (2-2) Preparation of a heron anti-HUVEC polyclonal antibody
免疫完了後 10日目に、 HUVECを免疫したゥサギより採血を行い、 常法に 従い血清画分 (以下、 抗血清) を得た。 得られた抗血清から常法に従いィムノグ ロブリン G画分の調製し、 ゥサギ抗 HUVECポリクローナル抗体とした。 Ten days after completion of the immunization, blood was collected from a heron immunized with HUVEC to obtain a serum fraction (hereinafter, antiserum) according to a conventional method. From the obtained antiserum, an immunoglobulin G fraction was prepared according to a conventional method, and used as a perch anti-HUVEC polyclonal antibody.
(3) HUVECのヒト補体による細胞溶解系 (3) Human complement lysis system of HUVEC
(3— 1) HUVECの P I— PLC処理 (3-1) HUVEC PI-PLC processing
1ゥエル当たり 2. 5 X 103 個の HUVECをフイブロネクチンをコートし た 96ウェルマイク口テストプレート (べクトン 'ディッキンソン、 米国) に植 え、 5%C02 存在下で、 37°Cで 4日間培養した。 各ゥエルを 180〃 1の H BSS (1 38m 塩化ナトリウム、 5mM 塩化カリウム、 0. 3mM リ ン酸水素 2ナトリウム · 12H2 0、 0. 3mM リン酸カリウム、 1. 3mM 塩化カルシウム、 0. 5mM 塩化マグネシウム · 6Η2 〇、 0. 4mM 硫 酸マグネシウム · 7 H2 0、 5. 6m D—グルコース、 1 0mM HEPE S pH7. 2)で洗浄した後、 250 m units/ml Phosphatidyl inosit-Phosp holipase C (ベ一リンガーマンハイム社、 ドイツ) (以下 P I— PLCと略す) および 5%非働化ゥシ胎児血清 (ギブコ社、 米国) (以下 FBSと略す) を含む HBSS 100 1を添加して、 37。Cで 1時間インキュベートし、 180 /1 Ueru per 2. 5 X 10 3 cells of 96-well microphone port test plate HUVEC and coated with fibronectin (Becton 'Dickinson, USA) planting example, in 5% C0 2 presence 4 days at 37 ° C for Cultured. H BSS (1 38m sodium chloride each Ueru 180〃 1, 5 mM potassium chloride, 0. 3 mM-phosphate disodium hydrogen · 12H 2 0, 0. 3mM potassium phosphate, 1. 3 mM calcium chloride, 0. 5 mM chloride magnesium · 6Η 2 〇, 0. 4 mM sulfuric acid magnesium · 7 H 2 0, 5. 6m D- glucose, 1 0mM HEPE S pH7. after washing with 2), 250 m units / ml Phosphatidyl inosit-Phosp holipase C ( Add HBSS 1001 containing Boehringer Mannheim (Germany) (hereinafter PI-PLC) and 5% inactivated fetal serum (Gibco, USA) (FBS) and add 37. Incubate for 1 hour at C
1の HBSSで各ゥエルを洗浄した。 Each well was washed with 1 HBSS.
(3-2) ヒト補体による HUVEC細胞障害系
前項の処理をした各ゥエルに 62. 5 jug rn 1の抗 HUVECポリクロ一ナ ル抗体および 5%非働化 FBSを含む HBSSを 50 n 1添加し、 4 °Cで 1時間 ィンキュベ一トした後、 各ゥエルを 1 80〃 1の HBSSで洗浄した。 これらの ゥエルに 5 0%のヒト血清を含む HBSS (以下、 最終反応液 Iと記す) を 5 0 〃 1添加して、 37°Cで、 正確に 30分間インキュベートした後、 各ゥヱルより 最終反応液 Iを回収し、 同液中の Lactate Dehydrogenase (以下 LDHと略す) 活性を ( 4 ) 項に示す方法で则定した。 最終反応液 Iに 20 mM E D T Aを添 加したものを、 補体を活性化させないコントロールとした。 (3-2) HUVEC cell injury by human complement Add 50 n1 of HBSS containing 62.5 jug rn 1 of anti-HUVEC polyclonal antibody and 5% inactivated FBS to each well treated in the previous section, and incubate at 4 ° C for 1 hour. Each well was washed with 180 1 HBSS. Add 50% of HBSS containing 50% human serum (hereinafter referred to as final reaction solution I) to these wells, incubate at 37 ° C for exactly 30 minutes, and perform final reaction from each well. Liquid I was collected, and the activity of Lactate Dehydrogenase (hereinafter abbreviated as LDH) in the liquid was measured by the method described in (4). The final reaction solution I supplemented with 20 mM EDTA was used as a control that did not activate complement.
(4) LDH活性の測定 (4) LDH activity measurement
(3) の各ゥヱルより回収した最終反応液 I 4 0〃 1を 9 6ゥヱルマイクロウ エル一プレート (Nunc) に移し、 20mM トリス—塩酸 pH 9. 5で 0. 4 mg m 1に溶解した - nicotinamide adenine dinucleotide reduced form Transfer the final reaction solution I 40 〃 1 recovered from each of the tubes in (3) to a 96 ゥ ヱ microwell plate (Nunc) and dissolve it in 0.4 mg ml with 20 mM Tris-HCl pH 9.5-nicotinamide adenine dinucleotide reduced form
(シグマ) (以下 NADHと略す) を 1 0 0〃 1、 2 OmM トリスー塩酸 pH 9. 5で 2. 5mg/m 1に溶解した pyrvate sodium (和光純薬) を 5 0 1添加した。 直ちに、 マイクロプレートリーダ一 THERM max (Molecular Devices ) で、 波長 34 0 nmの吸光度の 1 5 0秒間の経時変化を 9秒毎に測定 し、 吸光度の減少割合から Vmax (mOD/min)を求めた (サンプル Vmax ) 。 血清由来の LDH活性は最終反応液 I (50%ヒト血清) 中に 2 OmM EDT Aを添加し補体を不活化させた値を用い (バックグランド Vmax)、 一方 HUVE Cの全溶解による LDH活性は、 最終反応液 Iに 2%NP - 4 0を添加して細胞 を溶解した場合の値とした (Total Vmax) 。 また補体による HUVE Cからの L DH活性は、 MAC I F (77, N/Q) を添加していないサンプルの値 (補体 Vmax ) を用いた。 (Sigma) (hereinafter abbreviated as NADH) was added in a concentration of 500 mg / m 1 at a concentration of 2.5 mg / m 1 in 100% Tris-hydrochloric acid pH 9.5, and 501 was added. Immediately, the change with time of the absorbance at a wavelength of 330 nm over 150 seconds was measured every 9 seconds using a THERM max (Molecular Devices) microplate reader, and Vmax (mOD / min) was calculated from the decrease rate of the absorbance. (Sample Vmax). The serum-derived LDH activity was determined by adding 2 OmM EDTA to the final reaction solution I (50% human serum) to inactivate complement (background Vmax), while the LDH activity was determined by the total dissolution of HUVEC. The value was obtained when 2% NP-40 was added to the final reaction solution I to lyse the cells (Total Vmax). For the LDH activity from HUVEC by complement, the value (complement Vmax) of the sample to which MAC IF (77, N / Q) was not added was used.
反応サンプルでの HUVE C細胞の溶解率は計算式 Aで、 また MAC I F (7 7, N/Q) および尿 MAC I Fの阻害活性については計算式 Bで示した。 計算式 A (HUVECの溶解率 (%) ) The lysis rate of HUVEC cells in the reaction sample was shown by formula A, and the inhibitory activity of MAC IF (77, N / Q) and urine MAC IF by formula B. Formula A (HUVEC dissolution rate (%))
100 X (サンプル Vmax—バ-/クグ ン Vmax) / (TotalVmax -パックグラン Vmax)
32 100 X (Sample Vmax—Bar / Kung Vmax) / (TotalVmax-Pack Gran Vmax) 32
計算式 B (阻害効果 (%) ) Formula B (Inhibitory effect (%))
100 X (補体 Vmax—サンプル Vmax) / (補体 Vmax— クグラン Vmax) 100 X (complement Vmax—sample Vmax) / (complement Vmax—cogran Vmax)
(5) HUVECのヒト補体による細胞溶解に対する MAC I F (77, N/Q) および尿 M A C I Fの抑制効果 (5) Inhibitory effect of MAC IF (77, N / Q) and urinary MAC IF on cell lysis by human complement of HUVEC
(3) の最終反応液 Iに MAC I F (77, N/Q) もしくは尿 MAC I Fを加 えて、 その抑制効果を調べた。 抗 HUVECポリクローナル抗体を作用させた P I一 PLC処理 HUVEC細胞に、 ヒト血清をより人体に近い条件である終濃 度 5 0%添加し、 37°Cで 30分間反応させると、 90%の細胞が溶解した (第 6— 1図) 。 このヒト血清による HUVEC細胞の溶解に対して、 天然に存在す る可溶型尿 MAC I Fは 25 0 /n g/ 1までの濃度で何ら抑制効果を示さなか つた。 一方、 本発明の MAC I F (77, N/Q) は濃度依存的に非常に強くこ の紬胞溶解を抑制し、 その 5 0%抑制を示す濃度 (ED5。) は 1 0 MAC IF (77, N / Q) or urine MAC IF was added to the final reaction solution I of (3), and its inhibitory effect was examined. Human serum is added to PI-PLC-treated HUVEC cells treated with anti-HUVEC polyclonal antibody at a final concentration of 50%, which is a condition closer to the human body, and reacted at 37 ° C for 30 minutes. It was dissolved (Fig. 6-1). The naturally occurring soluble urinary MAC IF did not show any inhibitory effect on the lysis of HUVEC cells by this human serum at concentrations up to 250 / ng / 1. On the other hand, the MAC IF (77, N / Q) of the present invention very strongly inhibits this cell lysis in a concentration-dependent manner, and its concentration (ED 5 ) showing 50% inhibition is 10%.
であった (第 6— 2図) 。 (Fig. 6-2).
実施例 9 : MAC I F (77, N/Q) による HUVE Cからの補体による PGI2 および bFGF放出抑制作用 Example 9: MAC IF (77, N / Q) inhibits PGI 2 and bFGF release by complement from HUVEC
( 1 ) ヒト血清を用し、た補体活性化反応により非致死的に H UVECから bFG Fを放出させる方法 (1) Non-lethal release of bFGF from HUVEC by complement activation using human serum
( 1 - 1 ) HUVECのP I一 PLC処理 (1-1) HUVEC PI-PLC processing
実施例 8 (3 - 1) と同様に行った。 The same operation as in Example 8 (3-1) was performed.
( 1 - 2) ヒト補体による HUVEC細胞障害系 (1-2) HUVEC cell injury by human complement
前項の処理をした各ゥエルに 1 25 //g/m 1の抗 HUVECポリクロ—ナル 抗体 (実施例 8 (2) ) および 5%非働化 FBSを含む HBSSを 5 0 1添加 し、 4 °Cで 1時間インキュベートした後、 各ゥエルを 1 8 0〃 1の HBSSで洗 浄した。 これらのゥ ルに 1 2. 5%のヒト血清を含む HBSS (以下、 最終反 応液 IIと記す) を 60 1添加して、 37でで、 正確に 1 0分問インキュベート した後、 各ゥエルより最終反応液 IIを回収し、 同液中の Lactate Dehydrogenase
(以下 LDHと略す) 活性を実施例 8 (4) 項に記載した方法で、 basic Fibrob last Growth Factor (以下 b— FGFと略す) 濃度を以下に記載した方法で測定 した。 To each well treated as described in the previous section, add 125 1 / g / m1 anti-HUVEC polyclonal antibody (Example 8 (2)) and HBSS containing 5% inactivated FBS, and add 4 ° C. After incubation for 1 hour in each well, each well was washed with 1801 HBSS. Add HBSS containing 12.5% human serum (hereinafter referred to as final reaction solution II) 60 1 to these wells, incubate at 37 for exactly 10 minutes, and then add each well. The final reaction solution II was recovered from the solution, and the Lactate Dehydrogenase The activity was measured by the method described in Example 8 (4), and the concentration of basic fibrob last growth factor (hereinafter abbreviated as FGF) was measured by the method described below.
(2) b— FGF濃度の測定 (2) b—FGF concentration measurement
( 1 ) の操作で得られた回収最終反応液 I 50 1を用いて、 E L I S A法で 上清中の b - FGF濃度を定量した。 EL I SAは、 QuantikineTM HumanFGF basic Immunoassay (R&D systems社) を用い、 添付のプロトコールに従って 行った。 Using the recovered final reaction solution I501 obtained in the operation of (1), the b-FGF concentration in the supernatant was quantified by ELISA. The ELISA was performed using Quantikine ™ HumanFGF basic Immunoassay (R & D systems) according to the attached protocol.
(3) 精製ヒト補体成分を用いた補体活性化反応により非致死的に HUV ECか ら PG I 2 を產生させる方法 (3) Non-lethal production of PG I 2 from HUV EC by a complement activation reaction using purified human complement components
実施例 8 (3- 1 ) に記載した方法により、 フイブロネクチンをコートした 9 Example 8 Fibronectin was coated by the method described in (3-1).
6ゥヱルマイクロテストプレー卜に一層になるまで培養した HUV ECを P I一 PLC処理した。 各ゥエルに 1 25〃 g/m 1の抗 HUVECポリクローナル抗 体 (実施例 8 (2) ) および 5%非働化 FBSを含む HBSSを 5 0 1添加し て、 4 °Cで 1時間インキュベートした。 その後、 各ゥエルを 1 80〃 1の HBS Sで洗浄し、 35%C 8欠損ヒト血清 (クイ一デル社) を含む HBSSを 50 uHUVEC cultured in a 6-well microtest plate until further growth were treated with PI-PLC. To each well was added 501 of HBSS containing 125 μg / ml anti-HUVEC polyclonal antibody (Example 8 (2)) and 5% inactivated FBS, and the mixture was incubated at 4 ° C. for 1 hour. Thereafter, each well was washed with 180 11 of HBS S, and 50 μl of HBSS containing 35% C8-deficient human serum (Quiddel) was added.
1添加して、 37 で、 1 5分間インキュベートした。 ここまでの反応で、 HU VECの細胞膜表面上に C5b7が形成されていると考えられる (J. B. C. , 2 _64 ( 1 5 ) . 9 0 53 - 9 0 60, ( 1 9 8 9) ) 。 各ゥエルを 1 8 0〃 1の HBSSで洗浄し、 0〜64 0 u g/m 1の MAC I F (77, NXQ)、 0ま たは 8〃gZm 1のヒト C8 (クイ一デル社) および 0又は 8 gZm 1 ヒト C 9One was added and incubated at 37 for 15 minutes. It is thought that C5b7 has been formed on the cell membrane surface of HU VEC by the reactions so far (J.B.C., 2_64 (15) .9053-9060, (1989)). Wash each well with 180 11 HBSS, 0-640 ug / m1 MAC IF (77, NXQ), 0 or 8〃gZm1 human C8 (Quydel) and 0 Or 8 gZm 1 human C 9
(クイ一デル社) を含む HBSS (以下最終反応液 IIと記す) を 6 0 1添加し て、 37°Cで正確に 1 0分間インキュベートした。 最終反応液 IEを回収して、 同 液中の LDH活性を実施例 8 (4) の方法で、 Prostacyclin (以下 PG I 2 と称 す) の加水分解産物である 6- keto- prostaglandin Fla (以下 6- keto- PGFlaと略す) 濃度を (4) の方法で測定した。 HBSS (hereinafter referred to as final reaction solution II) containing (Quiddel) was added in 601, and incubated at 37 ° C for exactly 10 minutes. To recover the final reaction solution IE, and LDH activity in the same solution by the method of Example 8 (4), is a hydrolyzate of prostacyclin (hereinafter be referred as PG I 2) 6- keto- prostaglandin Fla ( hereinafter 6-keto-PGFla) The concentration was measured by the method of (4).
( 4 ) 6- keto- PGFla濃度の測定 (4) Measurement of 6-keto-PGFla concentration
最終反応液 III 中に放出された PG I 2 は、 すぐに加水分解して安定体である
6 - keto-PGFlaへ変換する。 そこで、 反応液中の 6- keto- PGFlaを測定することで、 HUVECからの PG I 2 放出量を測定した。 上記で得た回収最終反応液 50 1を用いて、 同液中の 6- keto- PGFla濃度を EL I S A法により定量した。 EL I S Aは 6- keto Prostaglandin Fla Enzyme Immunoassay Kit (Cayman Chemical) を用いて、 添付のプロトコールに従って行った。 PG I 2 released into the final reaction solution III is immediately hydrolyzed and stable 6-Convert to keto-PGFla. Therefore, the amount of PGI 2 released from HUVEC was measured by measuring 6-keto-PGFla in the reaction solution. Using the recovered final reaction solution 501 obtained above, the concentration of 6-keto-PGFla in the same solution was quantified by ELISA. ELISA was performed using 6-keto Prostaglandin Fla Enzyme Immunoassay Kit (Cayman Chemical) according to the attached protocol.
(5)結果 (5) Results
(5- 1)非致死的な補体活性化による b— FGFの放出に対する MAC I F (5-1) MAC I F for release of b—FGF by non-lethal complement activation
(77, N/Q) の阻害効果 (77, N / Q) inhibitory effect
(1) の最終反応液 Uに MAC I F (77, N/Q) を加えないで反応した場 合の回収最終反応液 II中の LDH活性を実施例 8 (4) の方法で、 b - FGF濃 度を (2) の方法で測定した。 この条件においては、 LDH活性を指標として Ϊ 出した HUVECの細胞溶解率は 4. 1 ±5. 7 (%)であり、 HUVECの溶 解はほとんど起こっていなかった (第 7— 1図) 。 一方、 b— FGF濃度は、 コ ントロールの 10. 8±0. 7 (pg/ml)から、 31. 0±4. 7 (p g/ ml)へと上昇した。 このことより、 (1)の方法による非致死的な補体活性化 によって、 b— FGFを放出することが明らかとなった。 When the final reaction solution U of (1) was reacted without adding MAC IF (77, N / Q) to the final reaction solution U, the LDH activity in the final reaction solution II was determined by the method of Example 8 (4). The concentration was measured by the method of (2). Under these conditions, the cell lysis rate of HUVEC detected using LDH activity as an index was 4.1 ± 5.7 (%), and HUVEC lysis hardly occurred (FIG. 7-1). On the other hand, the b-FGF concentration increased from 10.8 ± 0.7 (pg / ml) of the control to 31.0 ± 4.7 (pg / ml). This demonstrated that b-FGF was released by non-lethal activation of complement by the method (1).
( 1 )の最終反応液 IIに最終濃度が 14、 70、 350〃 gZm 1となるように MAC I F (77, N/Q) を加えても、 回収最終反応液 II中の L DH活性に有 為な変化はなかった (第 7— 1図) 。 しかし、 b— FGFの放出は、 MAC I F Even if MAC IF (77, N / Q) was added to the final reaction solution II of (1) so that the final concentration was 14, 70, or 350 μgZm1, it was still effective for the LDH activity in the recovered final reaction solution II. There were no significant changes (Figure 7-1). However, the release of b—FGF
(77, N/Q) の濃度依存的に減少し、 MAC I F (77, N/Q)濃度 70 gZml以上では、 補体活性化を 2 OmM E DT Aで阻害した場合の値 (1(77, N / Q) decreased in a concentration-dependent manner, and at MAC I F (77, N / Q) concentrations of 70 gZml or more, the value when inhibition of complement activation was inhibited by 2 OmM EDTA (1
0. 8 pgZml)以下にまで抑制された (第 7— 2図) 。 このことは、 本発明 の可溶型 MAC I F (77, N/Q)が、 非致死的な補体活性化による HUVE Cからの b— FGF放出を完全に抑制出来ることを示している。 0.8 pgZml) or less (Figure 7-2). This indicates that the soluble MAC IF (77, N / Q) of the present invention can completely suppress the release of b-FGF from HUVEC by non-lethal complement activation.
( 6 ) 非致死的な補体活性化による P G 12 の產生 (6) Production of PG12 by non-lethal complement activation
(3) の最終反応液 Π [を、 HBSS、 ヒト C8を含む HBSS、 ヒト C8およびヒ ト C9を含む HBSSとした場合について、 それぞれの回収最終反応液 III 中の L DH活性を実施例 8 (4)の方法で、 PG I2 活性を (4) の方法で測定した。
上記の各条件において、 HUVECの細胞膜表面上にはそれぞれ、 C5b7、 C5b8、 C5b9が形成されていると考えられる (J.B. C. 264(15). 9053-9060. 1989)。 何 れの場合においても、 回収最終反応液 ΠΙ 中には LDH活性がほとんど検出され ず、 ヒト C8およびヒト C9を含む HBSSで反応した場合でも、 回収最終反応液 Π 中の LDH活性は、 5. 5±1. 6 (%)であり、 ほとんど細胞障害活性を示さ なかった (第 9図) 。 一方、 最終反応液 Mを HBSSとした場合およびヒト C8を 含む H B S Sとした場合における回収最終反応液 IE中の 6-keto-PGFla濃度はそれ ぞれ 6. 8 ±4. 8 (pg/ml) 、 8. 6 ±4. 8 (pgZml)であり、 P G 12 はほとんど産生されていなかったが、 最終反応液 1Πをヒト C8およびヒト C9 を含む HBSSとした場合には、 回収最終反応液 Π中の 6- keto- PGFla濃度は 12 0. 5±21. (pg/ml) となり、 P G I 2 放出が劇的に上昇した (第 9 図) 。 すなわち、 (3) の方法による C5b9 (MAC:膜攻撃複合体) の形成によ り、 HUVECはほとんど障害を受けずに、 PG I2 を放出する現象が観察され た。 When the final reaction solution (3) of (3) was HBSS, HBSS containing human C8, and HBSS containing human C8 and human C9, the LDH activity in each recovered final reaction solution III was determined in Example 8 ( The PGI 2 activity was measured by the method of (4) by the method of (4). Under the above conditions, C5b7, C5b8, and C5b9 are considered to be formed on the cell membrane surface of HUVEC, respectively (JBC 264 (15). 9053-9060. 1989). In any case, almost no LDH activity was detected in the final reaction mixture ΠΙ, and even when the reaction was performed with HBSS containing human C8 and human C9, the LDH activity in the final reaction mixture 5. was 5. It was 5 ± 1.6 (%), showing almost no cytotoxic activity (FIG. 9). On the other hand, when the final reaction solution M was HBSS and the HBSS containing human C8 was used, the 6-keto-PGFla concentration in the recovered final reaction solution IE was 6.8 ± 4.8 (pg / ml), respectively. 8.6 ± 4.8 (pgZml), and PG12 was hardly produced.However, when 1Π of the final reaction solution was HBSS containing human C8 and human C9, The 6-keto-PGFla concentration was 120.5 ± 21. (Pg / ml), and PGI 2 release was dramatically increased (FIG. 9). That is, (3) the method according C5b9 of: Ri by the formation of the (MAC membrane attack complex), HUVEC in little damaged, a phenomenon of releasing the PG I 2 was observed.
(3) の最終反応液 Πに、 終濃度が 2. 5、 10、 40、 1 60、 64 O^g Zm 1となるように MAC I F (77, N/Q)を加えた場合について、 それぞ れの回収最終反応液 DI中の LDH活性を実施例 8 (4) の方法で、 PG I2 活性 を (4) の方法で測定した。 予想されたように、 LDH活性は MAC I F (77, N/Q) を加えても上昇することは無く、 MAC I F (77, N/Q)蛋白自身 に細胞障害活性のないことが確認出来た (第 8図) 。 一方、 HUVECからの P G I 2 放出は MAC I F (77, N/Q)の濃度依存的に抑制された。 すなわち、 MAC I F (77, N/Q) は 1 60 /g/m 1以上の濃度で HUVEじからの PG I 2 放出をほぼ 90%阻害し、 その I C5。は約 20 z /m 1であった (第 1 0図) 。 このことは、 本発明の可溶型 MAC I F (77, N/Q) 、 非致死 的な補体活性化による C5b9 (MAC:膜攻撃複合体) の形成によって引き起こさ れる HUVECからの PG I 2 放出を完全に抑制出来ることを示している。 For the case where MAC IF (77, N / Q) was added to the final reaction solution (of (3) so that the final concentration was 2.5, 10, 40, 160, 64 O ^ g Zm1, The LDH activity in each recovered final reaction solution DI was measured by the method of Example 8 (4), and the PGI 2 activity was measured by the method of (4). As expected, LDH activity did not increase even when MAC IF (77, N / Q) was added, confirming that the MAC IF (77, N / Q) protein itself had no cytotoxic activity. (Figure 8). On the other hand, PGI 2 release from HUVEC was suppressed in a concentration-dependent manner with MAC IF (77, N / Q). That is, MAC IF (77, N / Q) inhibited PGI 2 release from HUVE by almost 90% at a concentration of 160 / g / m 1 or more, and its IC 5 . Was about 20 z / m 1 (Fig. 10). This indicates that the soluble MAC IF of the present invention (77, N / Q), PG I 2 release from HUVECs caused by the formation of C5b9 (MAC: membrane attack complex) by non-lethal complement activation Can be completely suppressed.
実施例 10 : MAC I F (77, N/Q) によるモルモット心臓 Zヒト血漿漼流 傷害系での抑制効果
( 1 ) ヒト血漿の調製 Example 10: Effect of MAC IF (77, N / Q) on Guinea Pig Heart Z Human Plasma Perfusion Injury (1) Preparation of human plasma
ヒトボランティア一よりクェン酸を抗凝固剤として採血を行った後に、 細胞成 分を 3000回転、 1 5分間遠心分離しヒト血漿を得た。 得られたヒト血漿はク レプス緩衝液(U7mM 塩化ナトリウム, ½M塩化力リゥ厶, 1. lmlil リン酸 2水素 カリウム, 25mM 炭酸水素ナトリウム, 5mM グルコース, 1.2mM塩化マグネシゥ ム, 2.6m 塩化カルシウム, 5mM L-グルタメート, 2nA! ピルビン酸, 10unit/ml インスリン, 14unit/ml へパリン, 0.25%BSA) に対して充分に透析し実験に 使用した。 Blood was collected from one human volunteer using citrate as an anticoagulant, and the cell component was centrifuged at 3,000 rpm for 15 minutes to obtain human plasma. The obtained human plasma was prepared using a crease buffer (U7 mM sodium chloride, ½M chlorinated chloride, 1.1 ml potassium dihydrogen phosphate, 25 mM sodium bicarbonate, 5 mM glucose, 1.2 mM magnesium chloride, 2.6 mM calcium chloride, 5 mM L-glutamate, 2nA! Pyruvate, 10unit / ml insulin, 14unit / ml heparin, 0.25% BSA) were dialyzed sufficiently and used in the experiment.
(2) ランゲンドルフ実験 (2) Langendorff experiment
モルモット心臓のヒト血漿による傷害に対する MAC I F (77, N/Q) の 抑制効果をみる実験は、 モルモッ卜の摘出心臓を用いた常法のランゲンドルフ実 験系で行い、 その方法は Home i s t e r, J. W. 等 (C i r c u 1 a t i on Re s e a r c h, ( 1 992) , 7 1 : 303— 3 1 9) を参照した。 体重約 300 gのハトレー系雄性モルモットをエーテル麻酔後、 心臓を摘出し た。 心臓は直ちにクレプス緩衝液に移し、 心臓内の血液を充分に洗い流した後、 大動脈より大動脈弁の方向へ逆向性に力ニューレを挿入し、 ランゲンドルフ港流 装置に装着し漼流に伏した。 漼流液は 37°Cに加温し、 95%02 - 5%C02 混合ガスで酸素化した。 港流は 7m 1 /m i n . の定流量港流で行った。 An experiment to examine the inhibitory effect of MAC IF (77, N / Q) on human plasma injury in guinea pig heart was performed in a routine Langendorff experimental system using isolated guinea pig hearts. The method was described by Home ister, JW (Circu 1 ati on Research, (1992), 71: 303-3 19). A Hatley male guinea pig weighing about 300 g was anesthetized with ether, and the heart was removed. Immediately after the heart was transferred to Krebs buffer and the blood in the heart was sufficiently washed out, a force neuron was inserted in a retrograde direction from the aorta toward the aortic valve, and the heart was attached to the Langendorff port flow device and diverted downward.漼流solution warmed to 37 ° C, 95% 0 2 - was oxygenated with 5% C0 2 gas mixture. The port flow was a constant flow port flow of 7 m 1 / min.
左心室機能を測定するために先端に小さなゴムバルーンを装着し、 水に満たし た圧測定用力ニューレを左心房の切開口から心臓の縦軸方向に沿つて垂直に左心 室内に挿入し、 左心室拡張終期圧および左心室発生圧を計測した。 また同時に、 左心室発生 E脈波から心拍数を記録した。 バルーンの内 Eは拡張期に約 1 Omm Hgになるように調節した。 心臓は電極に介して心室筋を直接ページングし、 心 拍数を 1分当たり 273回の一定に保った。 また漼流圧は大動脈力ニューレを介 して計測した。 In order to measure left ventricular function, a small rubber balloon was attached to the tip, and a pressure-measuring force-filler filled with water was inserted into the left ventricle vertically along the longitudinal axis of the heart from the incision in the left atrium. End ventricular end diastolic pressure and left ventricular development pressure were measured. At the same time, the heart rate was recorded from the left ventricle generated E pulse wave. The E of the balloon was adjusted to be about 1 Omm Hg during diastole. The heart paged the ventricular muscle directly through the electrodes, keeping the heart rate constant at 273 beats per minute. The 漼 flow pressure was measured via the aortic force neuron.
ランゲンドルフ実験装置で漼流に伏されたモルモット心臓は、 クレプス緩衝液 で約 30分間予備漼流を行った。 その後、 漼流液を 3%ヒト血漿を含んだクレブ ス緩衝液に置換し 60分間漼流を継続して、 ヒト血漿がモルモット心臓機能およ
び心臓障害に与える影響を観察した。 対象としては血漿成分を含まないクレプス 緩衝液で 60分間港流を継続した条件で検討した。 MAC I F (77, N/Q) の本実験系での効果は、 3 %ヒト血漿を含んだクレプス緩衝液に終濃度 1 0〃 u Zm 1および 50〃 g/m 1となるように添加した港流液を、 同様の操作で港流 することで検討した。 Guinea pig hearts that were exposed to perfusion with the Langendorff experimental apparatus were preliminarily perfused with Krebs buffer for about 30 minutes. After that, the perfusate was replaced with Krebs buffer containing 3% human plasma, and the perfusion was continued for 60 minutes, and the human plasma was converted to guinea pig cardiac function and And the effects on heart failure were observed. The subjects were examined under the condition that the harbor flow was continued for 60 minutes with Krebs buffer solution containing no plasma component. The effect of MAC IF (77, N / Q) in this experimental system was added to Crepes buffer containing 3% human plasma to give final concentrations of 10 1 u Zm 1 and 50〃 g / m 1 Port flow liquid was examined by port flow using the same operation.
心筋細胞の傷害を検討するために、 右心房より排出された漼流液を経時的に採 取し、 その漼流液中のクレアチンホスホキナーゼ活性をモノテスト CK一 MBキット (ベ一リンガーマンハイム社 NO300691)の指示書に従い定量した。 In order to examine cardiomyocyte damage, the perfusate discharged from the right atrium is collected over time, and the creatine phosphokinase activity in the permeate is tested using the Monotest CK-MB Kit (Beiringer Mannheim). It was quantified according to the instruction of NO300691).
(4)モルモット心臓 ヒト血漿漼流傷害系での MAC IF (77, N/Q) の 傷害抑制効果 (4) Inhibitory effect of MAC IF (77, N / Q) on guinea pig heart in human plasma perfusion injury system
(4一 1 )港流圧 (Coronany perl us ion pressure(CPP) (4-1) Coronany perl us ion pressure (CPP)
各実験群での漼流圧の経時的変化を第 1 1図に示した。 FIG. 11 shows the time-dependent changes in the air pressure in each experimental group.
3%ヒト血漿を含んだクレプス緩衝液 (Normal human plasma:NHP)を港流した 場合には、 港流開始 20分以降より漼流圧が極度に上昇し 60分後には 88. 1 ±7. 9mmHgの高値を示した (第 1 1一 1図) 。 When Krebs buffer (NHP) containing 3% human plasma flows into the port, the flow pressure increases extremely from 20 minutes after the start of port flow and reaches 88.1 ± 7 after 60 minutes. It showed a high value of 9 mmHg (Fig. 11-1).
一方、 MAC IF (77, N/Q) を終濃度 10 g/m 1および 50 u g m 1になるように 3 %ヒト血漿に添加したクレプス緩衝液での港流実験におレ、て、 MAC I F (77, N/Q) は濃度依存的に港流圧の上昇を有意に抑制し、 50 ^gZml0MAC I F (77, N/Q) の添加群の漼流開始 60分後の漼流圧 は 62± 1 0. 7mmHgに低下した。 このことは、 本発明の MAC I F (77, N/Q)が極めて優れた港流圧上昇抑制効果を有することを示している。 (第 1 1 - 2図) 。 On the other hand, MAC IF (77, N / Q) was added to 3% human plasma at a final concentration of 10 g / m1 and 50 ugm1 in a Krepp's buffer experiment. (77, N / Q) significantly suppressed the rise of port flow pressure in a concentration-dependent manner, and the flow pressure of the group to which 50 ^ gZml0MAC IF (77, N / Q) was added 60 minutes after the start of flow was 62 It decreased to ± 10.7 mmHg. This indicates that the MAC IF (77, N / Q) of the present invention has an extremely excellent port flow pressure rise suppressing effect. (Fig. 11-2).
(4-2)左心室内圧 (4-2) Left ventricular pressure
各実験群での経時的な左心室内圧変化を第 12図および第 1 3図に示した。 図 中では左心室発生圧 (Left ventricular developed pressure: L VD P) および 左心室収縮末期圧 ( Left ventricular end diastolic pressure: LVEDP) を示した。 Changes in the left ventricular pressure over time in each experimental group are shown in FIGS. 12 and 13. In the figure, the left ventricular developed pressure (LVDP) and the left ventricular end diastolic pressure (LVEDP) are shown.
対照実験のクレブス緩衝液での漼流検討では、 L V D P値および L V E D P値
はそれぞれ初期値 62. 5 ± 3. 84および 1 0. 0± 1. 1 4mmHgであり、 検討時間内で一定であった (第 1 2図) 。 In control experiments with Krebs buffer, the LVDP and LVEDP values The initial values were 62.5 ± 3.84 and 10.0 ± 1.14 mmHg, respectively, and were constant within the study time (Fig. 12).
3%ヒト血漿添加クレプス緩衝液での港流では、 漼流開始 20分以降より LV E DP値の極度の上昇が観察され 6 0分後には 38. 5±4. 76mmHgの高 値を示した。 一方、 本発明の MAC I F (77, N/Q) は濃度依存的に有意に このモルモット心機能異常を抑制し、 終濃度 50 g/m 1の MAC I F (77 , NZQ) 添加での港流開始 60分後の LVEDP値を 1 3. 4±4. 1 1 と、 ほぼ対照群の値にまで改善した。 この結果は、 本発明の MAC I F (77, NZ Q) がヒト血漿によるモルモット心機能傷害の抑制に極めて優れた効果を持つこ とを示している (第 1 3図) 。 In the port flow using 3% human plasma-added Krebs buffer, an extreme increase in LVEDP value was observed from 20 minutes after the start of flow, and a high value of 38.5 ± 4.76 mmHg was shown after 60 minutes. . On the other hand, the MAC IF (77, N / Q) of the present invention significantly inhibited this guinea pig cardiac dysfunction in a concentration-dependent manner, and the concentration of MAC IF (77, NZQ) at a final concentration of 50 g / m1 was increased. At 60 minutes after the start, the LVEDP value was improved to 13.4 ± 4.11, almost the value of the control group. These results indicate that the MAC IF (77, NZQ) of the present invention has an extremely excellent effect on suppressing guinea pig cardiac dysfunction caused by human plasma (FIG. 13).
(4— 3) クレアチンホスホキナーゼ放出 (4-3) Creatine phosphokinase release
クレアチンホスホキナーゼは、 心筋細胞に存在する酵素であり、 心筋細胞の傷 害が生じた場合に血管中に流出されるために、 心筋細胞の傷害を検討するための マーカ一酵素として広く利用されている。 そこで、 本実験系における 、筋細胞の 傷害を、 左心房より流出された漼流液中の酵素活性を測定することで検討した。 検討結果は第 1 4図に示した。 Creatine phosphokinase is an enzyme present in cardiomyocytes and is widely used as a marker enzyme for studying cardiomyocyte damage because it is released into blood vessels when cardiomyocyte damage occurs. I have. Therefore, in the present experimental system, the damage of the muscle cells was examined by measuring the enzyme activity in the perfusion fluid discharged from the left atrium. The results of the study are shown in Figure 14.
3 %ヒト血漿添加クレプス緩衝液の港流において、 港流開始 30分以降より港 流液中に放出される同酵素活性は有意に上昇し、 港流開始 6 0分後には 3 1. 8 ±4. 1 9 (international unit:I.U.)の極めて高値を示した。 この結果は、 ヒ ト血漿により心筋細胞の極めて重度な傷害が生じていることを示すものである。 このヒト血漿によるモルモット心筋細胞傷害に与える MAC I F (77, N/ Q) の抑制効果を検討したところ、 MAC I F (77, N/Q) は濃度依存的に 港流液中への同酵素の流出を有意に抑制し、 終濃度 50 fji g/m 1の MAC I F (77, N/Q) 添加群では漼流開始 6 0分後の同酵素流出量は 6. 70 ± 2. 33 I.U. であり、 3%ヒト血漿港流による同酵素の流出をほぼ完全に抑制した c この結果は、 MAC I F (77, N/Q) がヒト血漿港流によるモルモット心筋 細胞の傷害の抑制に極めて優れた効果を持つことを示している。 In the port flow of 3% human plasma-added Krebs buffer, the activity of the enzyme released into the port flow significantly increased from 30 minutes after the port flow started, and 31.8 ± 60 minutes after the port flow started. It showed extremely high value of 4.19 (international unit: IU). This result indicates that human plasma causes extremely severe damage of cardiomyocytes. Investigation of the inhibitory effect of MAC IF (77, N / Q) on guinea pig cardiomyocyte injury caused by human plasma showed that MAC IF (77, N / Q) showed the concentration of the enzyme in the port fluid in a concentration-dependent manner. In the group to which MAC IF (77, N / Q) was added at a final concentration of 50 fji g / m 1, the outflow of the enzyme was 60.70 ± 2.33 IU 60 minutes after the start of the perfusion. There, 3% human plasma c the result of almost completely inhibiting the outflow of the enzyme by Minatoryu is, MAC IF (77, N / Q) is extremely excellent in suppressing injury in guinea pigs cardiomyocytes by human plasma Minatoryu It has an effect.
処方例:
本発明の改変ボリべプチド 5 gを生理食塩水 1 0 0 m lに溶かした溶液を無菌 濾過したのち、 2 m 1づっバイアルビンに分注する。 次いで凍結乾燥して 1バイ アル中本発明の改変タンパクを 1 0 O m g含有する注射用製剤を得る。 Prescription example: A solution prepared by dissolving 5 g of the modified boreptide of the present invention in 100 ml of physiological saline is subjected to aseptic filtration, and then dispensed into vials in a volume of 2 ml. Then, it is freeze-dried to obtain an injectable preparation containing 100 mg of the modified protein of the present invention in one vial.
配列表 Sequence listing
配列番号: 1 SEQ ID NO: 1
配列の長さ : Ί 7 Array length: Ί 7
配列の型:アミノ酸 Sequence type: amino acid
トポロジー:直鎖状 Topology: linear
配列の種類:タンパク質 Sequence type: protein
配列 Array
Leu Gin Cys Tyr Asn Cys Pro Asn Pro Thr Ala Asp Cys Lys Thr Leu Gin Cys Tyr Asn Cys Pro Asn Pro Thr Ala Asp Cys Lys Thr
1 5 10 15 1 5 10 15
Ala Val Gin Cys Ser Ser Asp Phe Asp Ala Cys Leu He Thr Lys Ala Val Gin Cys Ser Ser Asp Phe Asp Ala Cys Leu He Thr Lys
20 25 30 20 25 30
Ala Gly Leu Gin Val Tyr Asn Lys Cys Trp Lys Phe Glu His Cys Ala Gly Leu Gin Val Tyr Asn Lys Cys Trp Lys Phe Glu His Cys
35 40 45 35 40 45
Asn Phe Asn Asp Val Thr Thr Arg Leu Arg Glu Asn Gl u Leu Thr Asn Phe Asn Asp Val Thr Thr Arg Leu Arg Glu Asn Glu Leu Thr
50 55 60 50 55 60
Tyr Tyr Cys Cys Lys Lys Asp Leu Cys Asn Phe Asn Glu Gin Leu Tyr Tyr Cys Cys Lys Lys Asp Leu Cys Asn Phe Asn Glu Gin Leu
65 70 75 65 70 75
Glu Asn 配列番号: 2 Glu Asn SEQ ID NO: 2
配列の長さ : 1 0 Array length: 1 0
配列の型:アミノ酸 Sequence type: amino acid
トポロジー:直鎖伏 Topology: straight chain
配列の種類:タンパク質 Sequence type: protein
配列
Leu Gin Cys Tyr Asn Cys Pro Asn Pro Thr 1 5 10 配列番号: 3 Array Leu Gin Cys Tyr Asn Cys Pro Asn Pro Thr 1 5 10 SEQ ID NO: 3
配列の長さ : 3 1 2 Array length: 3 1 2
配列の型:核酸 Sequence type: nucleic acid
鎖の数:二本鎖 Number of chains: double strand
トポロジー:直鎖状 Topology: linear
配列の種類:他の核酸 改変 DNA
Sequence type: other nucleic acid modified DNA
s ε s ε
篛まニ: ©親 : mourn : ^m Pomani: © Parent: mourn: ^ m
9 OA 9 OA
usy "10
UI9 "1 usv 3Md usy s naq dsy s 2IS OVl VVl IVV WO 1130V3 VV93VV 111 OVV 101013 OVO OVV usy "10 UI9 "1 usv 3Md usy s naq dsy s 2IS OVl VVl IVV WO 1130V3 VV93VV 111 OVV 101013 OVO OVV
99 09 99 99 09 99
s s sAo J JM1 na ni usy ^ 3JV ·^丄 LZ 9VV 391391 OVl 3V103V VIO OVO IVV WO 09V Oil 30333V V3V s s sAo J JM1 na niusy ^ 3JV ^^ LZ 9VV 391391 OVl 3V103V VIO OVO IVV WO 09V Oil 30333V V3V
09 09
1¾Λ dsv usy 3Md usv SAQ S!H si sA dJi s s usy i 1¾Λ dsv usy 3Md usv SAQ S! H si sA dJi s s usy i
^ZZ 310 OVO OVV 311 IVV 3011V3 OVO 111 OVV 001191 OVV OVV IV丄 ^ ZZ 310 OVO OVV 311 IVV 3011V3 OVO 111 OVV 001191 OVV OVV IV 丄
9S OS 2 9S OS 2
ui9 ηθ Xio BIV sX JMl d\] s BIV dsv 9Md dsy J3S ui9 ηθ Xio BIV sX JMl d \] s BIV dsv 9Md dsy J3S
081 010 m Vll 000100 VVV 33V 1丄 V 3131010303V9111 IVO 131 081 010 m Vll 000 100 VVV 33V 1 丄 V 3131010303V9111 IVO 131
OZ 91 01 OZ 91 01
J9S s uio 八 BIV JMl sAq sAQ dsv ¾IV JMl OJd usy OJJ s J9S s uio eight BIV JMl sAq sAQ dsv ¾IV JMl OJd usy OJJ s
SSI VOX 101 WO 310330 VOV VVV 301 OVO 13010V V033VV 133101 SSI VOX 101 WO 310330 VOV VVV 301 OVO 13010V V033VV 133101
3 I 9- 01- usv i s uio naq J3s SIH XlO s SIH SAQ a d I¾ BIV naq 3 I 9- 01- usv i s uio naq J3s SIH XlO s SIH SAQ a d I¾ BIV naq
06 OVV OVl 391 OVO 013 OOV 1V3190 VOX 1V3301311310130010 06 OVV OVl 391 OVO 013 OOV 1V3190 VOX 1V3301311310130010
91- 02- 93- Π91 Π3ΐ nan A aqj na \^ J9S AIO λΐθ "10 311 ^ΐθ 91- 02- 93- Π91 Π3ΐ nan A aqj na \ ^ J9S AIO λΐθ "10 311 ^ ΐθ
^ 310313013010000311013310131090 V90 WO 31V VOO 01V 9I0/96«ir/IDd 0Z£00/Z.6 OW
9 e ^ 310313013010000311013310131090 V90 WO 31V VOO 01V 9I0 / 96 «ir / IDd 0Z £ 00 / Z.6 OW 9 e
001 001
OJd S IH na J3S dJj, BIV BIV BIV A8S VVl 330 1V3 113 30V 001 330 V30 V30 OJd S IH na J3S dJj, BIV BIV BIV A8S VVl 330 1V3 113 30V 001 330 V30 V30
96 06 38 96 06 38
nai 3Md OJd Jiu Λ Π91 ΠΘ naq J¾ sXq nio S na J9S 09S 013 111 m 13V 010 013 013 110 119 VOV VVV OVO V31 Vll 031 nai 3Md OJd Jiu Λ Π91 ΠΘ naq J¾ sXq nio S na J9S 09S 013 111 m 13V 010 013 013 110 119 VOV VVV OVO V31 Vll 031
08 SA OZ. 08 SA OZ.
•iqi AlO usv nio naq uio "19 usy 9qd usv sAQ na dsv sX 51S VOV 090 100 IVV VV9 113 OVO WO OVV 111 OVV 101 913 3V9 OVV Iqi AlO usv nio naq uio "19 usy 9qd usv sAQ na dsv sX 51S VOV 090 100 IVV VV9 113 OVO WO OVV 111 OVV 101 913 3V9 OVV
99 09 59 99 09 59
sAq sAQ s jXi JAI j¾ n9 ni3 usv "10 V naq 3JV LZ OVV 301 301 3V1 3V1 03V VIO 0V9 IVV WO 99V Oil 300 33V V3V sAq sAQ s jXi JAI j¾ n9 ni3 usv "10 V naq 3JV LZ OVV 301 301 3V1 3V1 03V VIO 0V9 IVV WO 99V Oil 300 33V V3V
09 ^ 0 09 ^ 0
Ι¾Λ dsv usy 9Md usv SAQ S IH nio aqj sA cU丄 SAQ sAq usy -ΐλχ Ι¾Λ dsv usy 9Md usv SAQ S IH nio aqj sA cU 丄 SAQ sAq usy -ΐλχ
310 3V0 OVV 311 IVV 301 IVO 0V9 111 OVV 901 101 OVV OVV IVl310 3V0 OVV 311 IVV 301 IVO 0V9 111 OVV 901 101 OVV OVV IVl
9S 08 93 9S 08 93
uio "31 ^IO BIV sA Jiji d\\ na s dsv 3Md dsv S uio "31 ^ IO BIV sA Jiji d \\ na s dsv 3Md dsv S
081 010 m Vll 000 109 VVV 33V丄丄 V 313 101 939 OVO 111 IVO 131 081 010 m Vll 000 109 VVV 33V 丄 丄 V 313 101 939 OVO 111 IVO 131
OZ 91 01 OZ 91 01
J3s SAQ usy ¾IV J 1 sxi SAQ dsy ¾IV JM1 OJd usy OJd s J3s SAQ usy ¾IV J 1 sxi SAQ dsy ¾IV JM1 OJd usy OJd s
2δΙ V01 101 IVV 319 300 VOV VVV 391 3V0 100 1DV V33 OVV 133 191 2δΙ V01 101 IVV 319 300 VOV VVV 391 3V0 100 1DV V33 OVV 133 191
9 ΐ 9- 01- usv J i s uio J9S S IH A19 s S IH SXQ aqd 八 ¾IV na 9 ΐ 9- 01- usv J i s uio J9S S IH A19 s S IH SXQ aqd
06 OVV 3V1 301 OVO 913 30V IVO 109 V31 1V3 391 311 310 130 013 06 OVV 3V1 301 OVO 913 30V IVO 109 V31 1V3 391 311 310 130 013
51- 02- - 51- 02--
ΙΒΛ naq na yi na 八 S 13 ^19 "10 ^I I ^IOΙΒΛ naq na yi na eight S 13 ^ 19 "10 ^ I I ^ IO
^ 010 313 013 010 000 311 013 019 101 000 V09 WO OIV VOO OIV vNaコ : u^ 010 313 013 010 000 311 013 019 101 000 V09 WO OIV VOO OIV vNa
09I0/96df/13d 0 00/ 6 OAV
配列番号: 5 09I0 / 96df / 13d 0 00/6 OAV SEQ ID NO: 5
配列の長さ : 3 0 Array length: 30
配列の型:核酸 Sequence type: nucleic acid
鎖の数:一本鎖 Number of chains: single strand
トポロジー:直鎖状 Topology: linear
配列の種類:他の核酸 プライマー DNA Sequence type: Other nucleic acid Primer DNA
配列 Array
GCGGCCGCCA TGGGAATCCA AGGAGGGTCT 30 配列番号: 6 GCGGCCGCCA TGGGAATCCA AGGAGGGTCT 30 SEQ ID NO: 6
配列の長さ : 3 4 Array length: 3 4
配列の型:核酸 Sequence type: nucleic acid
鎖の数:一本鎮 Number of chains: single
トポロジー:直鎖状 Topology: linear
配列の種類:他の核酸 プライマ一 DNA Sequence type: Other nucleic acid Primer DNA
配列 Array
GCGAATTCTA TTAGTTACAC AGGTCCTTCT TGCA 34 配列番号: Ί GCGAATTCTA TTAGTTACAC AGGTCCTTCT TGCA 34 SEQ ID NO: Ί
配列の長さ : 4 2 Array length: 4 2
配列の型:核酸 Sequence type: nucleic acid
鎖の数:一本鎖 Number of chains: single strand
トポロジー:直鎖状 Topology: linear
配列の種類:他の核酸 プライマー DNA Sequence type: Other nucleic acid Primer DNA
配列 Array
GAGACACGCG TCAAAATCAG ATGAACATTG GACGGCTGTT TT 42
配列番号: 8 GAGACACGCG TCAAAATCAG ATGAACATTG GACGGCTGTT TT 42 SEQ ID NO: 8
配列の長さ : 3 0 Array length: 30
配列の型:核酸 Sequence type: nucleic acid
鎖の数:一本鎖 Number of chains: single strand
トポロジー:直鎖状 Topology: linear
配列の種類:他の核酸 プライマ一 DNA Sequence type: Other nucleic acid Primer DNA
配列 Array
TCTGATTTTG ACGCGTGTCT CATTACCAAA 30 配列番号: 9 TCTGATTTTG ACGCGTGTCT CATTACCAAA 30 SEQ ID NO: 9
配列の長さ : 6 0 Array length: 6 0
配列の型:核酸 Sequence type: nucleic acid
鎖の数:一本鎖 Number of chains: single strand
トポロジー:直鎖状 Topology: linear
配列の種類:他の核酸 プライマ一 DNA Sequence type: Other nucleic acid Primer DNA
配列 Array
TCTAGAGCGG CCGCTCCCCA TCCGCTCAAG CAGGCCACCA TGGGAATCCA AGGAGGGTCT 60 配列番号: 1 0 TCTAGAGCGG CCGCTCCCCA TCCGCTCAAG CAGGCCACCA TGGGAATCCA AGGAGGGTCT 60 SEQ ID NO: 10
配列の長さ : 3 8 Array length: 3 8
配列の型:核酸 Sequence type: nucleic acid
鎖の数:一本鎖 Number of chains: single strand
トポロジー:直鎖伏 Topology: straight chain
配列の種類:他の核酸 プライマー DNA Sequence type: Other nucleic acid Primer DNA
配列 Array
TCTAGACTCG AGCTATTAAT TTTCAAGCTG TTCGTTAA 38
TCTAGACTCG AGCTATTAAT TTTCAAGCTG TTCGTTAA 38
Claims
1 . 下記式 I (配列表の配列番号 1 ) のアミノ酸配列を有することを特徴とす る改変ポリペプチド。 1. A modified polypeptide having the amino acid sequence of the following formula I (SEQ ID NO: 1 in the sequence listing).
式 I Formula I
Leu Gin Cys Tyr Asn Cys Pro Asn Pro Thr Ala Asp Cys Lys Thr Leu Gin Cys Tyr Asn Cys Pro Asn Pro Thr Ala Asp Cys Lys Thr
1 5 10 15 1 5 10 15
Ala Val Gin Cys Ser Ser Asp Phe Asp Ala Cys Leu l ie Thr Lys Ala Val Gin Cys Ser Ser Asp Phe Asp Ala Cys Leu lie Thr Lys
20 25 30 20 25 30
Ala Gly Leu Gin Val Tyr Asn Lys Cys Trp Lys Phe Glu Hi s Cys Ala Gly Leu Gin Val Tyr Asn Lys Cys Trp Lys Phe Glu His Cys
35 40 45 35 40 45
Asn Phe Asn Asp Val Thr Thr Arg Leu Arg Glu Asn Gl u Leu Thr Asn Phe Asn Asp Val Thr Thr Arg Leu Arg Glu Asn Glu Leu Thr
50 55 60 50 55 60
Tyr Tyr Cys Cys Lys Lys Asp Leu Cys Asn Phe Asn Glu Gin Leu Tyr Tyr Cys Cys Lys Lys Asp Leu Cys Asn Phe Asn Glu Gin Leu
65 70 75 65 70 75
Glu Asn Glu Asn
2 . 請求の範囲 1に記載の改変ポリべプチドをコ一ドする D NA。 2. A DNA encoding the modified polypeptide of claim 1.
3 . 請求の範囲 2に記載の D N Aを含む組換え発現ベクター。 3. A recombinant expression vector comprising the DNA according to claim 2.
4 . 請求の範囲 3に記載の組換えべクタ一で形質転換されたことを特徴とする 形質転換体。 4. A transformant transformed by the recombinant vector according to claim 3.
5 . 請求の範囲 4に記載の形質転換体を培養し、 請求の範囲 1に記載の改変ポ リベプチドを生産させ、 このべプチドを採取することを特徴とする請求の範囲 1 に記載の改変ポリぺプチドの製造方法。 5. The modified polypeptide according to claim 1, wherein the transformant according to claim 4 is cultured to produce the modified polypeptide described in claim 1, and this peptide is collected. Manufacturing method of peptide.
6 . 請求の範囲 1に言己載の改変ポリペプチドを含有することからなる医薬組成 物。 6. A pharmaceutical composition comprising the modified polypeptide described in claim 1.
7 . 請求の範囲 1に記載の改変ボリべプチドを含有することからなる補体系阻 害に基づく抗炎症剤である医薬組成物。 7. A pharmaceutical composition which is an anti-inflammatory agent based on inhibition of the complement system, which comprises the modified boreptide according to claim 1.
8 . 臓器移植時の拒絶抑制剤である請求の範囲 6記載の医薬組成物。
8. The pharmaceutical composition according to claim 6, which is an agent for suppressing rejection during organ transplantation.
9. 補体のノン一リーサルエフェク ト (non— l e t ha l e f f e c t) 抑制剤である請求の範囲 6記載の医薬組成物。
9. The pharmaceutical composition according to claim 6, which is a non-lethal effect (complement) inhibitor of complement.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU60156/96A AU6015696A (en) | 1995-06-16 | 1996-06-13 | Modified polypeptide, dna encoding the same, transformant, and medicinal composition containing the polypeptide |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17428295 | 1995-06-16 | ||
JP7/174282 | 1995-06-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1997000320A1 true WO1997000320A1 (en) | 1997-01-03 |
Family
ID=15975946
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1996/001609 WO1997000320A1 (en) | 1995-06-16 | 1996-06-13 | Modified polypeptide, dna encoding the same, transformant, and medicinal composition containing the polypeptide |
Country Status (2)
Country | Link |
---|---|
AU (1) | AU6015696A (en) |
WO (1) | WO1997000320A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6258768B1 (en) | 1995-04-08 | 2001-07-10 | Imperial Chemical Industries Plc | Zeolite P aluminosilicates and their manufacture and use in detergent compositions |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02157298A (en) * | 1988-12-08 | 1990-06-18 | Yamanouchi Pharmaceut Co Ltd | New complement controlling substance |
JPH0348696A (en) * | 1989-07-14 | 1991-03-01 | Toray Ind Inc | Human lymphocyte surface antigen and gene coding the same |
JPH03201985A (en) * | 1989-04-21 | 1991-09-03 | Yamanouchi Pharmaceut Co Ltd | Human macif active protein gene, manifestation vector bonded to same gene, transformed cell and human macif active protein |
-
1996
- 1996-06-13 WO PCT/JP1996/001609 patent/WO1997000320A1/en active Application Filing
- 1996-06-13 AU AU60156/96A patent/AU6015696A/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02157298A (en) * | 1988-12-08 | 1990-06-18 | Yamanouchi Pharmaceut Co Ltd | New complement controlling substance |
JPH03201985A (en) * | 1989-04-21 | 1991-09-03 | Yamanouchi Pharmaceut Co Ltd | Human macif active protein gene, manifestation vector bonded to same gene, transformed cell and human macif active protein |
EP0672683A1 (en) * | 1989-04-21 | 1995-09-20 | Yamanouchi Pharmaceutical Co. Ltd. | Macif protein, genes coding therefor, expression vectors containing said genes, and transformant cells containing said protein |
JPH0348696A (en) * | 1989-07-14 | 1991-03-01 | Toray Ind Inc | Human lymphocyte surface antigen and gene coding the same |
Non-Patent Citations (1)
Title |
---|
IMMUNOLOGY, 82(1) p. 34-41 (1994) p. 34-35, p. 37 and p. 39. * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6258768B1 (en) | 1995-04-08 | 2001-07-10 | Imperial Chemical Industries Plc | Zeolite P aluminosilicates and their manufacture and use in detergent compositions |
Also Published As
Publication number | Publication date |
---|---|
AU6015696A (en) | 1997-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5723318A (en) | DNA coding for megakaryocyte potentiator | |
EP0476983B1 (en) | Vascular endothelial cell growth factor II | |
EP1173567B1 (en) | Tribonectins | |
JP2002516103A (en) | Interleukin 21 and interleukin 22 | |
JP2010189405A (en) | Modified annexin protein, and method for preventing thrombosis | |
JPH11509187A (en) | Regulation of endothelial cell proliferation | |
MXPA01006330A (en) | Methods and compositions for inhibiting neoplastic cell growth. | |
JP2001504324A (en) | Treatment of α-galactosidase A deficiency | |
JPH09509324A (en) | Growth-blocking homeobox gene | |
US7001881B1 (en) | Tribonectins | |
JP2008502323A (en) | Human complement C3 derivative with cobra venom factor-like function | |
CZ303409B6 (en) | Shortened and mutated human chemokine | |
JP2002501077A (en) | METH1 and METH2 polynucleotides and polypeptides | |
EP1183357A2 (en) | Vascular endothelial growth factor dimers | |
JPH02255699A (en) | New anticoagulant and preparation thereof | |
EP1283214B1 (en) | Novel collectins | |
CZ293745B6 (en) | Polynucleotide sequence, DNA, polypeptide, pharmaceutical composition, vector, host, expression system, antibody, protein purification process and hybridoma | |
WO1997000320A1 (en) | Modified polypeptide, dna encoding the same, transformant, and medicinal composition containing the polypeptide | |
JP2001515719A (en) | MPL ligand analog | |
US7425536B2 (en) | Feline hepatocyte growth factor | |
JPH08511157A (en) | Novel polypeptide having XA factor inhibitory activity | |
EP1074622A1 (en) | NOVEL POLYPEPTIDE, cDNA ENCODING THE SAME AND UTILIZATION THEREOF | |
JPH11501205A (en) | Human endothelin-bombesin receptor | |
AU2001274591B2 (en) | Canine liver cell growth factor | |
WO2000077225A1 (en) | A novel insulin signaling molecule |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AU AZ BB BG BR BY CA CN CZ EE GE HU IL IS JP KE KG KR KZ LK LR LS LT LV MD MG MK MN MW MX NO NZ PL RO RU SD SG SI SK TJ TM TR TT UA UG US UZ VN AZ BY KZ RU TJ TM |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: CA |
|
122 | Ep: pct application non-entry in european phase |