WO1996042113A1 - Cathode stratifiee composite a emission de champ laterale et son procede de fabrication - Google Patents

Cathode stratifiee composite a emission de champ laterale et son procede de fabrication Download PDF

Info

Publication number
WO1996042113A1
WO1996042113A1 PCT/US1996/010066 US9610066W WO9642113A1 WO 1996042113 A1 WO1996042113 A1 WO 1996042113A1 US 9610066 W US9610066 W US 9610066W WO 9642113 A1 WO9642113 A1 WO 9642113A1
Authority
WO
WIPO (PCT)
Prior art keywords
emitter
conductive
layer
anode
recited
Prior art date
Application number
PCT/US1996/010066
Other languages
English (en)
Inventor
Michael D. Potter
Original Assignee
Advanced Vision Technologies, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/490,061 external-priority patent/US5703380A/en
Priority claimed from US08/489,722 external-priority patent/US5647998A/en
Application filed by Advanced Vision Technologies, Inc. filed Critical Advanced Vision Technologies, Inc.
Priority to AU62733/96A priority Critical patent/AU6273396A/en
Publication of WO1996042113A1 publication Critical patent/WO1996042113A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes

Definitions

  • This invention relates in general to integrated field-emission microelectronic devices and relates more particularly to such devices having a field emission cathode with a laminar composite lateral emitter structure and to methods of fabricating such devices.
  • Diamond is used in this specification to mean carbon, whether polycrystalline or monocrystalline (single crystal), having the diamond crystal structure wherein each carbon atom is bonded to four carbon atoms.
  • emitter and cathode are used interchangeably throughout this specification to mean a field emission cathode.
  • control electrode is used herein to denote an electrode that is analogous in function to the control grid in a vacuum-tube triode. Such electrodes have also been called “gates” in the field emission device related art literature.
  • Ohrnic contact is used herein to denote an electrical contact that is non-rectifying.
  • Phosphor is used in this specification to mean a material characterized by cathodoluminescence.
  • a conventional notation is used wherein the chemical formula for a host or matrix compound is given first, followed by a colon and the formula for an activator and or co-activators (an impurity that activates the host crystal to luminesce), as in ZnS: Mn, where zinc sulfide is the host and manganese is the activator.
  • Microelectronic devices using field emission of electrons from cold-cathode emitters have been developed for various purposes to exploit their many advantages including high-speed switching, insensitivity to temperature variations and radiation, low power consumption, etc.
  • Most of the microelectronic field emission devices in the related art have had emitters which point orthogonally to the substrate, generally away from the substrate, but sometimes toward the substrate. Examples of this type of device are shown, for example, in U.S. Pat. No. 3,789,471 to Spindt et al., U.S. Pat. No. 4,721,885 to Brodie, U.S. Pat. No. 5,127,990 to Pribat et al., U.S. Pat. Nos.
  • the anode is typically a transparent faceplate parallel to the substrate and carrying a phosphor which produces the display's light output by cathodoluminescence.
  • a few cold-cathode microelectronic devices have had field emitters oriented in a plane substantially parallel to their substrates, as for example in U.S. Pat. No. 4,728,851 to Lambe, U.S. Pat. No. 4,827,177 to Lee et al., U.S. Pat. No. 5,289,086 to Kane, and U.S. Pat. Nos. 5,233,263 and 5,308,439 to Cronin et al.
  • the terminology “lateral field emission” and “lateral cathode” of the latter two patents to Cronin et al. will be adopted herein to refer to a structure in which the field emitter edge or tip points in a lateral direction, i.e. substantially parallel to the substrate.
  • Some device structures and fabrication processes using lateral cathode configurations have been found to have distinct advantages, such as extremely fine cathode edges or tips and precise control of the inter-element dimensions, alignments, capacitances, and required bias voltages.
  • the prior art lateral emitter field emission devices have had metallic emitters.
  • the prior art lateral emitter field emission devices have had single-component emitters with substantially uniform material composition. Since some of the early experiments in field emission, methods of producing sharp cold-cathode tips have included chemical etching and/or electropolishing of single-component emitter materials.
  • cold cathodes may be advantageously made with a diamond emitting surface having a low work function or negative electron affinity.
  • Cold cathodes of diamond have been discussed by Geis et al. in IEEE Electron Device Letters, Vol. 12, No. 8, Aug. 1991, pp. 456-459 and in "Applications of Diamond Films and Related Materials," Tzeng et al. (Editors), Elsevier Science Publishers B.V., 1991, pp. 309-310.
  • U.S. Pat. No. 4,164,680 to Villalobos discloses a polycrystalline diamond emitter.
  • U.S. Pat. No. 5,138,237 to Kane et al. discloses a field emission electron device employing a modulatable diamond semiconductor emitter controlled by modulation of a junction depletion region.
  • U.S. Pat. No. 5,141,460 and in U.S. Pat. No. 5,258,685 both to Jaskie et al., a field emission electron source employing a diamond coating is disclosed, wherein carbon ions are implanted at a surface to function as nucleation sites for the diamond formation. A conductive layer is deposited over the diamond, and the substrate is removed to leave an electron emitter with a diamond coating.
  • a cathodoluminescent display apparatus employing an electron source including a plurality of diamond crystallites.
  • electron devices are disclosed employing electron sources including a material having a surface exhibiting a very low/negative electron affinity, such as , for example, the (111) crystallographic plane of type II-B diamond.
  • an electron device is disclosed employing a diamond material electron emitter and an anode, both disposed on a supporting substrate so as to define an interelectrode region therebetween.
  • 5,290,610 to Kane et al. discloses a method for forming a diamond material layer on an electron emitter using hydrocarbon reactant gases ionized by emitting electrons.
  • U.S. Pat. No. 5,341,063 to Kumar discloses a field emitter comprising a conductive metal and a diamond emission tip with negative electron affinity in ohmic contact with and protruding above the metal.
  • U.S. Pat. No. 5,199,918 to Kumar discloses a method of fabricating a device of the latter type.
  • One object of the present invention is an improved lateral-emitter field-emission microelectronic device with a novel thin-film emitter capable of emitting electrons from a diamond surface having a low (nearly zero) work-function for electron emission.
  • Another object is a microelectronic field emission device which combines all the advantages of lateral emitter construction with the advantages of a laminar composite emitter.
  • a related object is a microelectronic field emission device which has both a low work function for electron emission and an extremely small emitter radius of curvature.
  • Another object is a laminar composite lateral emission cathode operable with low applied voltages.
  • a more specific related object is a laminar composite lateral emission cathode which takes advantage of the etch resistance of diamond to specific etch processes and also takes advantage of the low work function of diamond.
  • a related object is a microelectronic field emission device which can have a very small gap between emitter and anode, thus allowing higher density in integrated device applications such as arrays.
  • An overall object of the invention is an improved microelectronic device which nevertheless retains all the known advantages of lateral- emitter field emission devices, including the following: extremely fine cathode edges or tips; exact control of the cathode-to-anode distance (to reduce device operating voltage and to reduce device-to-device variability); exact control of the cathode-to- control-electrode distance (to control the control-electrode-to-cathode overlap, and thereby control the inter-electrode capacitances and more precisely control the required bias voltage); inherent alignment of the control-electrode and cathode structures; self-alignment of the anode structure to the control-electrode and cathode; and improved layout density.
  • Another object of the invention in retaining known advantages of lateral-emitter field emission devices is the significant design flexibility provided by an integrated structure which reduces the number of interconnections between devices, thus reducing costs and increasing device reliability and performance.
  • Another important object of the invention is a process using existing microelectronic fabrication techniques and apparatus for making integrated lateral laminar-composite- emitter field emission devices with economical yield and with precise control and reproducibility of device dimensions and alignments. More specifically, another object of the invention is a combination of a plurality of materials having differing etch rates in a laminar structure specially adapted to be formed into an improved lateral emitter by an improved fabrication process, and a fabrication process specially adapted to produce such laminar composite lateral emission cathodes.
  • a novel lateral-emitter electron field emission device structure disclosed herein incorporates a thin film laminar composite emitter structure including two or more films composed of materials having different etch rates when etched by at least one etchant.
  • the laminar composite emitter consists of two ultra-thin layers, etched so that one of the two layers protrudes in a small-radius tip.
  • it is a layered structure composite emitter, of which the most etch- resistant layer is doped-diamond.
  • the diamond layer is doped using one or more N- type dopants.
  • the edge of the thin film diamond layer is the dominant electron emitter with a very low (nearly zero) work function.
  • the laminar structure may be a sandwich structure with three layers. Upper and/or lower supporting metallic layers act as both physical supporting material and as an integral electrical conducting medium. This allows the diamond layer to be very thin, on the order of tens of angstroms (i.e. less than 100 angstroms).
  • an emitting edge of the laminar composite emitter is first formed by a trench etch. During or after fabrication of the trench portion of the structure, a small amount of the supporting upper and/or lower metallic layers is removed, for example by etching in a plasma etch process.
  • a differential etch process is chosen such that one of the layers of the laminar emitter is less effected, and preferably minimally affected or unaffected by the etch. This leaves an ultra thin emitter edge or tip.
  • the more etch-resistant layer is an N-doped diamond layer, which has a nearly zero work function.
  • a preferred differential etch process may be a chemical or electro-chemical etch, differential electropolishing, or differential ablation.
  • Fig. 1 shows a side elevation view in cross-section of a preferred embodiment of a field emission device made in accordance with the invention.
  • Fig. 2 shows a plan view of the preferred embodiment of a field emission device structure of Fig. 1.
  • Fig. 3 shows a side elevation view in cross-section of an alternate embodiment of a field emission device.
  • Fig. 4 shows a side elevation view in cross-section of a field emission device structure having more than one control electrode.
  • Figs. 5 a and 5b together show schematically a flow diagram illustrating a preferred embodiment of a fabrication process performed in accordance with the invention.
  • Figs. 6a and 6b together show a sequence of cross sectional views of a device at various stages of the fabrication process depicted in Figs. 5a and 5b.
  • Fig. 1 shows a side elevation view in cross-section of a preferred embodiment of a field emission microelectronic device structure made in accordance with the invention
  • Fig. 2 shows a plan view of that preferred embodiment of the same device.
  • the microelectronic field emission device is made on a flat starting substrate 20.
  • a flat silicon wafer is a suitable starting substrate, but the starting substrate may be a flat insulator material such as glass, AI2O3 (especially in the form of sapphire), silicon nitride, diamond (in insulating, substantially pure, undoped form), etc.
  • starting substrate 20 is not an insulator, a film of insulating material 30 such as silicon oxide may be deposited to form an insulating substrate.
  • a conductive substrate may be used as a common anode in some embodiments.
  • the starting substrate 20 is an insulator, then a separate film of insulating material 30 is not needed, and the top surface of starting substrate 20 is identical to the top surface of insulating material 30. In either case, the top surface of insulating material 30 defines a reference plane 40 from which the positions of other elements of the structure may be referenced or measured.
  • the structure also has an emitter 50 and an anode denoted generally by 60.
  • Emitter 50 is a lateral field emission cathode preferably consisting of a trilayer laminar composite, with an ultra-thin diamond layer 70 sandwiched between two layers 80 and 90 of conductive material, placed on a plane parallel to and spaced above reference plane 40.
  • the diamond layer 70 is described in more detail herein below.
  • Emitter 50 has an emitting blade edge or tip 100 of diamond, from which electron current is emitted when the device is operated, as described herein below.
  • Anode 60 may be made entirely of a conductive material such as a metal, or may comprise a layer of phosphor 110 on the top surface of a buried anode contact layer 120, as shown in Figs. 2 and 4.
  • Buried anode contact layer 120 makes ohmic electrical contact with anode 60, and is preferably made substantially parallel to reference plane 40, with either its upper surface, or its lower surface, or a plane between the two being substantially coplanar with reference plane 40. In the preferred embodiment of Figs.
  • buried anode contact layer 120 is made recessed into insulating surface 30, with its top surface substantially coplanar with reference plane 40.
  • a recess is formed in the insulating surface 30 and the recess is filled with metallization to form anode contact 120.
  • Buried anode contact layer may extend under part of anode 60 as shown in Fig. 1, or under the entire lower side of anode 60 for some purposes (such as acting as a mirror for light emitted from phosphor 110).
  • An insulating layer 130 selectively - 7 - placed between the plane of buried anode contact layer 120 and the plane of emitter 50, insulates buried anode contact layer 120 from the electron emitter 50.
  • Lateral laminar composite emitter 50 has an emitting blade edge or tip 100 from which electrons are emitted by field emission when the device structure is operated with appropriate electrical bias voltage (anode positive).
  • the ultra-thin diamond layer 70 comprising the center layer of the laminar composite structure is doped with one or more impurities characterized as N-type dopants for diamond. Examples of such N-type dopants are nitrogen, phosphorus, and arsenic.
  • the dopant quantities used are sufficient to ensure that the work function for electron emission from the diamond surface is less than about 3 electron volts and preferably less than about 1 electron volt.
  • the device is operable with a layer 70 comprising an ultra-thin film of carbon in crystalline form other than diamond (such as graphite for example), or even amorphous forms of carbon, but with diminished performance because the work function for electron emission of such films is typically higher than the N-doped diamond used in the preferred embodiment described here.
  • Conductive outer layers 80 and 90 of the trilayer laminar composite of emitter 50 are preferably made of metals that form ohmic contact with diamond. Tungsten, titanium, and alloys of tungsten and titanium are especially preferred for conductive layers 80 and 90 because of their tendency to form good ohmic contact with diamond and because of their compatibility with the preferred process methods described herein below.
  • Conductive layers 80 and 90 may have thicknesses of about 100 angstroms. Conductive layers 80 and 90 thus provide not only electrical contact, but also mechanical support and protection for the diamond film 70, which can thus be an ultra- thin film.
  • the thickness of diamond layer 70 is preferably tens of angstroms, producing a radius of curvature of emitter tip or blade edge 100 of tens of angstroms. This minute radius of curvature, in combination with the extremely low or nearly zero work function for electron emission of the diamond, allows operation of the device of this invention at very low bias voltages. However, it should also be noted that the device is operable even with omission of either one of conductive layers 80 and 90.
  • layer 80 or layer 90 may be made to cover only a portion of diamond emitter layer 70, in order to provide ohmic contact for applying electrical bias voltage to the emitter.
  • laminar composite emitter 50 includes two-layer, three-layer, and multiple-layer laminar composite emitter structures having more than one material but no diamond layer.
  • laminar composite emitter 50 may be etched with sulfur hexafluoride (SFg) plasma, which etching leaves a thin sharp emitting blade edge or tip 100 of aluminum.
  • SFg sulfur hexafluoride
  • Anode 60 is spaced apart laterally from the blade edge or tip 100 of electron emitter by a predetermined lateral distance and extends upward from buried anode contact layer 120.
  • the height of anode 60 may be such that the top surface of anode 60 is at the top surface of the completed device as shown in Fig. 1, or may be such that anode 60 extends to a height less than the distance between reference plane 40 and emitter 50. This latter height places the top surface of anode 60 below the plane of lateral emitter 50.
  • anode 60 also comprises a phosphor layer 110, as shown in Figs. 2 and 4, and it is the top surface of phosphor layer 110 that is preferably positioned below the plane of emitter 50.
  • Anode 60 may consist of a metal anode with a relatively thin film of phosphor for phosphor layer 110.
  • the predetermined gap distance between emitter edge or tip 100 and anode 60 is determined by the width of space 140 shown in Figs. 1, 2 and 4 (which space is determined in a preferred fabrication process by the thickness of a sacrificial layer of conformal material).
  • the space within space 140 between the cathode and anode as well as the space above anode 60 can comprise a vacuum or can contain a gas.
  • a process for making a structure that encloses space 140 is described herein below.
  • An insulating layer 150 covers at least a portion of lateral emitter 50.
  • lateral emitter 50 by emitter contact 160, and to anode 60 by anode contact 170, respectively.
  • the embodiment shown in Figs. 1 and 2 is a preferred structure for applications of the device to displays.
  • an alternative embodiment shown in Fig. 3
  • Other embodiments may use both buried and top-surface contacts.
  • the alternative embodiment illustrated in Fig. 3 omits phosphor layer 110, which is not needed for an application of the device where the device is not required to emit light.
  • These "non- display" applications may include applications of a particular individual device within a overall display array apparatus. Such applications include, for example, those wherein the particular individual device is used to switch other devices.
  • the device may have a control electrode 180, preferably made parallel to (and may be made directly on) reference plane 40 as shown in the embodiment of Fig. 1. Electrical contact is made to it by control electrode contact 190 shown in Fig. 2. Control electrode contact 190 is not shown in Fig. 1, since control electrode 180 extends orthogonally to the plane of Fig. 1 in the embodiment shown. Control electrode 180 has a control electrode edge 200 facing toward anode 60. As shown in the plan view of Fig. 2, and described in more detail herein below in connection with a preferred fabrication process, control electrode edge 200 is automatically aligned with emitter tip or blade edge 100 by the etching of space 140.
  • a suitable electrical control signal applied to control electrode 180 through control electrode contact 190 can control the electron emission current from emitter 50 to anode 60, thus operating the device as a triode. If control electrode 180 is omitted from the device structure, and/or no control signal is applied to control electrode 180, device 10 operates as a diode.
  • Fig. 4 shows an alternative embodiment of the device, having a second control electrode 210 made in a plane spaced from the plane of lateral emitter 50, and insulated from the emitter by insulating layer 150.
  • Second control electrode 210 has a control electrode edge 220 facing anode 60. Control electrode edge 220 is automatically aligned vertically with emitter blade edge or tip 100 in the same manner as control electrode edge 200.
  • Figs. 5a and 5b together show schematically a flow diagram illustrating a preferred embodiment of a fabrication process performed in accordance with the invention, with step numbers indicated by references SI, etc.
  • Figs. 6a and 6b together show a sequence of cross sectional views of a display cell at various stages of the fabrication process depicted in Figs. 5a and 5b.
  • Each cross section of Figs. 6a and 6b shows the result of the process step indicated next to the cross section.
  • the detailed process illustrated is a process for a triode (or tetrode) device with two control electrodes.
  • An overall method of fabricating a field emission device generally comprises the following steps: providing a substrate (step SI); depositing an insulating layer of predetermined thickness (step S7); depositing and patterning a laminar composite emitter layer having a more etch resistant layer (for example of doped diamond) having a thickness of only tens of angstroms between outer layers of conductive material (step S8 comprising substeps S8a - S8d) so as to extend parallel to the upper surface of the substrate to form an emitter structure; providing an opening (step SI 4) through the insulating layer and through the emitter layer, thereby forming an emitter blade edge or tip; etching (step SI 5) the conductive outer layers of the emitter laminar structure back a few angstroms from the tip; depositing a conformal layer of material only on the walls of the opening provided in step SI 4 to a predetermined thickness to make a - 11 - spacer (steps S16 and S17); filling the opening at least partially with an anode
  • step S8a or substep S8c is omitted.
  • the emitter will have a conductive layer either over or under diamond layer 70.
  • a substrate 20 is provided (step SI), which may be a silicon wafer.
  • An insulating layer 30 is deposited (step S2) on the substrate. This may be done, for example, by growing a film of silicon oxide approximately one micrometer thick on a silicon substrate.
  • a pattern is defined on the insulator surface for depositing a conductive material.
  • a pattern of recesses is defined and etched (step S3) into the surface of the insulator layer.
  • metal is deposited in the recesses to form a buried anode contact 120, which is then planarized (step S5).
  • the conductive material deposited in step S4 may be a metal such as aluminum, tungsten, titanium, etc., or may be a transparent conductor such as tin oxide, indium tin oxide etc. (For applications using a common anode for all devices made on a substrate, the substrate may be conductive and perform the function of a buried anode contact.
  • steps S3, S4, and S5 may be omitted, although step S2 may be required to insulate a control electrode if any.
  • a control electrode 180 is to be incorporated into the device structure, a conductive material is deposited and patterned (step S6) on the planarized insulator surface, spaced from the buried anode contact material deposited in step S4.
  • the control electrode 180 may be deposited in a recess pattern and planarized, as in the case of the buried anode contact layer 120.
  • Another insulator layer 130 is deposited (step S7). This may be a chemical vapor deposition of silicon oxide to a thickness of about 0.05 to 2 micrometers, for example.
  • step S8a the laminar composite emitter structure 50 is formed and patterned.
  • a layer of conductive material is deposited (step S8a) to a thickness of about 100 angstroms to form conductive layer 80.
  • the best materials for conductive layers 80 and 90 are those metallic elements that tend to easily form carbide compounds.
  • Preferred materials for conductive layers 80 and 90 are titanium, tungsten, tantalum, molybdenum, or their alloys such as titanium-tungsten alloy.
  • many other conductors may be used, such as aluminum, gold, silver, copper, copper-doped aluminum, platinum, palladium, polycrystalline silicon, etc. or transparent thin film conductors such as tin oxide or indium tin oxide (ITO).
  • step S8b diamond is deposited, for example by chemical vapor deposition to form the inner core layer 70 of emitter 50.
  • the diamond layer deposition in step S8b is controlled to form a film preferably of about 20 - 50 angstroms thickness in order to have an emitter blade edge or tip in the final structure that has a radius of curvature preferably less than 30 angstroms and more preferably less than 20 angstroms.
  • At least one N-type dopant such as nitrogen, phosphorus, or arsenic, is introduced during deposition to dope the deposited diamond film to an effective concentration, preferably between zero and 10*8 dopant atoms/cm ⁇ , in the diamond film to produce a desired low work function.
  • the most important factor in choosing the dopant concentration is its effect in producing a desired low work function for emission of electrons from the diamond emitting edge, preferably below about 3 electron volts.
  • a representative suitable doping level is provided by phosphorus (from P2O5 for example) to a final dopant concentration in the diamond film of about 10 ⁇ phosphorus atoms/cm ⁇ .
  • Another layer of conductive material preferably the same material as conductive layer 80, is deposited (step S8c) over the diamond layer 70 to a thickness of about 100 angstroms to form conductive layer 90, and to form the trilayer laminar composite structure consisting of layers 80, 70, and 90, to have a total thickness of about 200 to 250 angstroms.
  • step S8d the trilayer laminar composite structure consisting of layers 80, 70 and 90 is patterned to complete the formation of emitter layer 50.
  • steps S8a - S8d will be varied to suit the specific materials employed. For example, in the case of a laminar composite emitter consisting of two layers, of tantalum and aluminum respectively, step S8a (or S8c) is omitted, a thin film of aluminum is deposited in step S8b, and a film of tantalum is deposited in step S8c (or S8a if step S8c is omitted).
  • insulator 150 is deposited (step S9) over the emitter layer. Again this may be a chemical vapor deposition of silicon oxide to a thickness of about 0.05 to 2 micrometers, for example. If there are to be two control electrodes and symmetry with respect to the plane of emitter layer 50 is desired, then insulator layer 150 should be made the same thickness as insulator layer 130.
  • control electrode 210 If a second control electrode 210 is to be incorporated, a conductive material is deposited and patterned (step S10) to form the control electrode layer 210, and an insulating layer if desired is deposited and optionally planarized (step Sll). (The control electrode 210 may be deposited in a recess pattern and planarized, as in the case of the buried anode contact layer 120.)
  • step SI 2 contact holes are opened from the upper surface through insulator layer(s) to the emitter layer 50, to one or two control electrode layers 180 and/or 210 if any, and to the buried anode contact layer 120. These contact holes are filled with conductive material by conventional processes in step S13, to form conductive contact studs 160, 170 and 190 extending upward to the top surface. In step SI 4, an opening is provided to the buried anode contact layer 120.
  • This opening is patterned to define space for anode 60 and space 140, and the pattern is made to intersect at least some portions of emitter layer 50 (and of control electrode layers 180 and/or 210 if any), to define emitting edge 100 of emitter layer 50 (and to define edge 200 of first control electrode layer 180 if any, and the corresponding edge 220 of second control electrode layer 210 if any).
  • This step is performed by using conventional directional etching processes such as reactive ion etching sometimes called "trench etching" in the semiconductor fabrication literature.
  • conductive material layers 80 and 90 are further etched back by a few angstroms from emitter blade or tip edge 100, using a plasma etch that etches the conductive layers 80 and 90, but does not etch diamond appreciably.
  • steps S14 and S15 may be combined in a compound process step, such as a directional reactive ion etch with a particular gas at a particular pressure to form the trench, followed by a plasma etch with the same or different gas and/or a different pressure to etch layers 80 and 90 while the device remains in the same etch apparatus.
  • a compound process step such as a directional reactive ion etch with a particular gas at a particular pressure to form the trench, followed by a plasma etch with the same or different gas and/or a different pressure to etch layers 80 and 90 while the device remains in the same etch apparatus.
  • a conformal layer of material is deposited with predetermined thickness.
  • This material could be any of several conformal materials such as parylene.
  • a directional etch is performed to remove the conformal layer everywhere except on the sidewalls of the opening provided in step SI 4.
  • Preferred spacer thickness is in the range 0.1 to 0.4 micrometer. The best spacer dimension depends on a number of variables, such as the emitter work function, the emitter edge radius of curvature, and the operating bias voltage range desired. That spacer will define the predetermined gap width separating the field emitter blade edge or tip 100 from anode 60 in the completed field emission device structure.
  • step S18 an anode material 60 is deposited into the opening onto buried anode contact layer 120, and any excess anode material not in the opening is removed (by chemical-mechanical polishing, for example).
  • a phosphor anode material is deposited in step SI 8
  • the phosphor layer is preferably made of a thickness less that the predetermined thickness of the insulating layer deposited in step S7.
  • Suitable phosphors include zinc oxide(ZnO), zinc sulfide (ZnS) and other compounds, where activators are indicated herein after a colon following the primary phosphor host material, viz.: ZnO:Zn; Sn ⁇ 2:Eu; ZnGa 2 ⁇ 4:Mn; La2 ⁇ 2 S:Tb; Y2 ⁇ 2S:Eu; LaOB ⁇ Tb; ZnS:Zn+In 2 0 3 ; ZnS:Cu,Al+In ⁇ 3; (ZnCd)S:Ag+In2 ⁇ 3; and ZnS:Mn+In2 ⁇ 3.
  • the plus sign (+) denotes a composition containing more than one activator.
  • step SI 9 the conformal layer material is removed, by a conventional plasma etch step, leaving the previously mentioned predetermined gap in space 140 between emitter edge 100 and anode 60.
  • step S20 means are provided for applying suitable electrical bias voltages, and (for devices incorporating control electrodes) suitable signal voltages.
  • Such means may include, for example, contact pads selectively provided at the device top surface to make electrical contact with contacts 160, 170, and 190, and optionally may include wire bonds, means for tape automated bonding, flip-chip or C4 bonding, etc.
  • conventional power supplies and signal sources must be provided to supply the appropriate bias voltages and control signals. These will include providing sufficient voltage amplitude of the correct polarity (anode positive) to cause cold-cathode field emission of electron current from emitter edge 100 to anode 60 and anode buried contact 120.
  • a passivation layer may be applied to the device top surface, except where there are conductive contact studs and/or contact pads needed to make electrical contacts.
  • the opening for the main cavity and the connected auxiliary opening are both filled temporarily with a sacrificial organic material, such as parylene, and then planarized.
  • a sacrificial organic material such as parylene
  • An inorganic insulator is deposited, extending over the entire device surface including over the sacrificial material, to enclose the cavity.
  • a hole is made in the inorganic insulator by reactive ion etching only over the auxiliary opening.
  • the sacrificial organic material is removed from within the cavity by a plasma etch, such as an oxygen plasma etch, which operates through the hole.
  • the atmosphere surrounding the device is then removed to evacuate the cavity. If an inert gas filler is desired, then that gas is introduced at the desired pressure.
  • the hole-plugging step may consist of two or more substeps: viz. depositing a quantity of getter material, and then depositing an inorganic insulator to complete the plug.
  • the plug of inorganic insulator seals the cavity and retains either the vacuum or any inert gas introduced.
  • the gettering material if used, is chosen to getter any undesired gases, such as oxygen or gases containing sulfur, for example.
  • Some suitable getter materials are Ca, Ba, Ti, alloys of Th, etc. or other conventional getter materials known in the art of vacuum tube construction. This process for retaining vacuum or gas atmospheres is not illustrated in Figs. 5a, 5b, 6a, and 6b.
  • integrated arrays of field emission devices may be made by simultaneously performing each step of the fabrication process described herein for a multiplicity of field emission devices on the same substrate, while providing various interconnections among them.
  • An integrated array of field emission devices made in accordance with the present invention has each device made as described herein, and the devices are arranged as cells containing at least one emitter and at least one anode per cell. The cells are arranged along rows and columns, with the anodes interconnected along the columns for example, and the emitters interconnected along the rows.
  • additional electrodes such as screen electrodes may be incorporated into the structures disclosed to perform functions analogous to screen grids and other kinds of electrodes such as those used in tetrodes, pentodes, etc. known in vacuum tube art.
  • the upper surface of the phosphor and/or anode may be made non-planar to shape the electric field and/or to optimize uniformity of the phosphor's light emission.
  • the order of the various fabrication process steps may be varied for some purposes, and some process steps may be omitted for fabrication of the simpler structures. It is intended that the specification and examples be considered as exemplary only, with the true scope and spirit of the invention being defined by the following claims.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cold Cathode And The Manufacture (AREA)

Abstract

L'invention concerne un dispositif (10) d'émission latérale d'électrons par effet de champ qui comprend une structure émettrice (50) stratifiée composite formée de deux ou de plusieurs couches ultraminces (70, 80, 90) composées de matières présentant des vitesses d'attaque différentes. L'émetteur stratifié composite le plus simple est formé de deux couches ultraminces (70 et 80 ou 90) attaquées de manière différente de telle sorte qu'une partie saillante résiduelle de la couche (70) la plus résistante à l'attaque dépasse de la couche (80 ou 90) la moins résistante à l'attaque pour former une pointe (100) de petit rayon. De préférence, la couche la plus résistante à l'attaque (70) est du diamant dopé N qui présente un travail de sortie proche de zéro. La structure émettrice peut être une structure à trois couches avec une couche supérieure et/ou une couche inférieure (80, 90) agissant comme support physique et comme milieu conducteur électrique intégré. On préfére le procédé de fabrication du dispositif qui consiste à former d'abord dans l'émetteur stratifié composite (50) une tranchée directionnelle par attaque. Pendant ou après la réalisation de la tranchée (140), l'émetteur stratifié composite (50) est attaqué de manière différentielle, comme il est décrit plus haut, par attaque chimique ou électro-chimique, par électropolissage différentiel, ou par ablation différentielle, de sorte, qu'après cette opération, une pointe (100) d'émetteur ultramince fasse saillie.
PCT/US1996/010066 1995-06-13 1996-06-11 Cathode stratifiee composite a emission de champ laterale et son procede de fabrication WO1996042113A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU62733/96A AU6273396A (en) 1995-06-13 1996-06-11 Laminar composite lateral field-emission cathode and fabrica tion process

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US08/490,061 US5703380A (en) 1995-06-13 1995-06-13 Laminar composite lateral field-emission cathode
US08/489,722 US5647998A (en) 1995-06-13 1995-06-13 Fabrication process for laminar composite lateral field-emission cathode
US08/489,722 1995-06-13
US08/490,061 1995-06-13

Publications (1)

Publication Number Publication Date
WO1996042113A1 true WO1996042113A1 (fr) 1996-12-27

Family

ID=27049809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1996/010066 WO1996042113A1 (fr) 1995-06-13 1996-06-11 Cathode stratifiee composite a emission de champ laterale et son procede de fabrication

Country Status (2)

Country Link
AU (1) AU6273396A (fr)
WO (1) WO1996042113A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1016113A1 (fr) * 1997-09-17 2000-07-05 Candescent Technologies Corporation Metal double-couche pour afficheur a ecran plat
WO2001008192A1 (fr) * 1999-07-26 2001-02-01 Advanced Vision Technologies, Inc. Composants d'emission de champ d'electrons a grille isolee et leurs procedes de fabrication
WO2001008193A1 (fr) * 1999-07-26 2001-02-01 Advanced Vision Technologies, Inc. Dispositif a effet de champ a vide et procede de fabrication
US7646149B2 (en) 2003-07-22 2010-01-12 Yeda Research and Development Company, Ltd, Electronic switching device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5144191A (en) * 1991-06-12 1992-09-01 Mcnc Horizontal microelectronic field emission devices
US5202571A (en) * 1990-07-06 1993-04-13 Canon Kabushiki Kaisha Electron emitting device with diamond
US5341063A (en) * 1991-11-07 1994-08-23 Microelectronics And Computer Technology Corporation Field emitter with diamond emission tips
US5548185A (en) * 1992-03-16 1996-08-20 Microelectronics And Computer Technology Corporation Triode structure flat panel display employing flat field emission cathode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5202571A (en) * 1990-07-06 1993-04-13 Canon Kabushiki Kaisha Electron emitting device with diamond
US5144191A (en) * 1991-06-12 1992-09-01 Mcnc Horizontal microelectronic field emission devices
US5341063A (en) * 1991-11-07 1994-08-23 Microelectronics And Computer Technology Corporation Field emitter with diamond emission tips
US5548185A (en) * 1992-03-16 1996-08-20 Microelectronics And Computer Technology Corporation Triode structure flat panel display employing flat field emission cathode

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1016113A1 (fr) * 1997-09-17 2000-07-05 Candescent Technologies Corporation Metal double-couche pour afficheur a ecran plat
EP1016113A4 (fr) * 1997-09-17 2005-08-17 Candescent Intellectual Prop Metal double-couche pour afficheur a ecran plat
WO2001008192A1 (fr) * 1999-07-26 2001-02-01 Advanced Vision Technologies, Inc. Composants d'emission de champ d'electrons a grille isolee et leurs procedes de fabrication
WO2001008193A1 (fr) * 1999-07-26 2001-02-01 Advanced Vision Technologies, Inc. Dispositif a effet de champ a vide et procede de fabrication
US7646149B2 (en) 2003-07-22 2010-01-12 Yeda Research and Development Company, Ltd, Electronic switching device

Also Published As

Publication number Publication date
AU6273396A (en) 1997-01-09

Similar Documents

Publication Publication Date Title
US5647998A (en) Fabrication process for laminar composite lateral field-emission cathode
US5644188A (en) Field emission display cell structure
US5666019A (en) High-frequency field-emission device
US5663608A (en) Field emission display devices, and field emisssion electron beam source and isolation structure components therefor
US5700176A (en) Method of gettering and sealing an evacuated chamber of a substrate
US5371431A (en) Vertical microelectronic field emission devices including elongate vertical pillars having resistive bottom portions
US5374868A (en) Method for formation of a trench accessible cold-cathode field emission device
KR100366191B1 (ko) 플랫패널디스플레이시스템및구성소자의제조방법
EP0559156A1 (fr) Procédé pour former des structures de grilles et anneaux de focalisation auto-alignées
US5644190A (en) Direct electron injection field-emission display device
US5703380A (en) Laminar composite lateral field-emission cathode
US5616061A (en) Fabrication process for direct electron injection field-emission display device
US5630741A (en) Fabrication process for a field emission display cell structure
US5628663A (en) Fabrication process for high-frequency field-emission device
US5872421A (en) Surface electron display device with electron sink
WO1996042113A1 (fr) Cathode stratifiee composite a emission de champ laterale et son procede de fabrication
EP0827626A1 (fr) Structure cellulaire d'affichage a emission de champ et procede de fabrication
US5811929A (en) Lateral-emitter field-emission device with simplified anode
US6015324A (en) Fabrication process for surface electron display device with electron sink
WO1997002586A1 (fr) Afficheur a emission de champ et injection directe d'electrons et son procede de fabrication
EP0829093A1 (fr) Dispositif d'emission de champ par emetteur lateral avec anode simplifiee et procede de fabrication dudit dispositif
RU2152662C1 (ru) Катодолюминесцентный экран и способ его изготовления
WO1997009733A1 (fr) Dispositif a emission de champ hf et procede de fabrication
CA2355660A1 (fr) Composants d'emission de champ d'electrons a grille isolee et leurs procedes de fabrication
CA2274664A1 (fr) Dispositif d'affichage electronique a balayage de surface et procede de fabrication

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN HU JP KP KR MX NO NZ PL RU SG TR UA VN AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA