WO1996040321A1 - Dialysis blood tubing set - Google Patents

Dialysis blood tubing set Download PDF

Info

Publication number
WO1996040321A1
WO1996040321A1 PCT/US1996/009755 US9609755W WO9640321A1 WO 1996040321 A1 WO1996040321 A1 WO 1996040321A1 US 9609755 W US9609755 W US 9609755W WO 9640321 A1 WO9640321 A1 WO 9640321A1
Authority
WO
WIPO (PCT)
Prior art keywords
access site
tubing
pod
fluid chamber
chamber
Prior art date
Application number
PCT/US1996/009755
Other languages
French (fr)
Inventor
James M. Brugger
Keith J. Maniga
William G. Palsulich
Original Assignee
Cobe Laboratories, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cobe Laboratories, Inc. filed Critical Cobe Laboratories, Inc.
Priority to CA002219817A priority Critical patent/CA2219817C/en
Priority to DE69630887T priority patent/DE69630887T2/en
Priority to EP96919280A priority patent/EP0836488B1/en
Priority to JP50198297A priority patent/JP3784071B2/en
Publication of WO1996040321A1 publication Critical patent/WO1996040321A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3639Blood pressure control, pressure transducers specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3639Blood pressure control, pressure transducers specially adapted therefor
    • A61M1/3641Pressure isolators

Definitions

  • the present invention relates to blood tubing sets for use in dialysis procedures.
  • dialysis hemodialysis
  • the patient's blood is removed from the patient's body, anticoagulated, circulated by an extracorporeal tubing circuit through an artificial kidney, or dialyzer, to remove toxic substances, such as urea and creatinine, as well as excess fluid, and returned to the patient.
  • Hemodialysis is typically performed on a patient about every three days.
  • the extracorporeal tubing circuit typically consists of cannulae for drawing blood from and returning blood to a patient, the dialyzer and a blood tubing set.
  • the blood tubing set typically comprises a plurality of sections of medical tubing, bubble traps or drip chambers (collectively "bubble traps" herein) , pressure monitoring sites, air bubble detection sites, access sites connectors, clamps, peristaltic pump headers and accessories of various sorts.
  • Pressure monitoring sites are typically disposable pressure pods which transmit the pressure of blood, or another fluid, to a pressure sensor while simultaneously isolating the blood or other fluid from the pressure sensor.
  • Access sites are typically disposable septa and associated housing for sampling the patient's blood or adding medication. Access sites may require two hands to operate, one to hold the site steady, another to operate a sampling or injection syringe. This may increase the risk of needle sticks to the hand holding the access site.
  • Bubble traps typically retain a relatively large volume of blood during normal operation. Blood trauma also can occur at an air-blood interface such as are found in typical bubble traps and drip chambers. It would further be advantageous to eliminate or reduce the need to add anticoagulant to the blood, further reducing the physical stress on the patient.
  • One significant aspect of the present invention is a combined pressure sensing pod and needle access site ("pod/site" herein) which reduces treatment cost by reducing the cost of the blood tubing set.
  • the pod/site combines, in a single device, the functions of transmitting pressure from blood or other fluid to a pressure sensor without the blood contacting the pressure sensor and providing a site for injecting fluids into or withdrawing fluids from the blood or other fluid.
  • the cost of the blood tubing set is reduced in accordance with this aspect of the invention by reducing the manufacturing cost of the pressure pods and needle access sites by combining them in a single part and further by reducing tubing set assembly cost by reducing the number of parts.
  • a needle access site is provided on a front or top face of a pressure pod, thus combining two functions into a single device and achieving the additional result that the needle access site may be used to remove air from the pod/site.
  • a needle guard and flow diverter is provided to protect the diaphragm of the pressure pod from accidental needle punctures and to prevent blood flowing in the pod/site from flowing directly through the pod/site. The flow diverter forces the pod/site to trap air, which may subsequently be removed with a needle through the access site. Further, the pod/site is typically held securely, obviating the need to hold the pod/site during sampling from or injecting into the pod/site.
  • a blood tubing set is provided which facilitates the detection of, and protection of the patient against, the well known problems of air bubbles, without the use of the typical bubble traps.
  • a pod/site is provided at a location in the blood tubing set normally occupied by an arterial bubble trap.
  • This arterial pod/site is further provided with a saline line connection to permit the addition of saline solution to the blood tubing set, as for priming.
  • a pod/site is provided at a location typically occupied by a venous bubble trap.
  • This venous pod/site is provided with a filter to prevent particulate matter from entering a patient and with a connection to permit adding medication to the blood returning to the patient.
  • FIG. 1 is a schematic diagram of a hemodialysis apparatus having a blood tubing set in accordance with the present invention.
  • Fig. 2 is a pictorial representation of the blood tubing set of Fig. 1.
  • Fig. 3 is a partially cut away perspective view of a pod/site of the present invention mounted to a pod/site holder.
  • Fig. 4 is a top perspective view of a portion of the pod/site shown in Fig. 3.
  • Fig. 5 is a bottom perspective view of a portion of the pod/site shown in Fig. 4.
  • Fig. 6 is a plan view of the portion of the pod/site shown in Fig. 4.
  • Fig. 7 is a sectional side view of the portion of the pod/site shown in Fig. 6 viewed from line 7-7.
  • Fig. 8 is a bottom view of the portion of the pod/site shown in Fig. 4.
  • Fig. 9 is a top perspective of an alternative embodiment of the portion of the pod/site shown in Fig. 4.
  • Fig. 10 is a top perspective view of a further alternative embodiment of the pod/site shown in Fig. 4.
  • Fig. 11 is a side sectional view of the portion of the pod/site shown in Fig. 10, viewed from line 11-11.
  • FIG. 1 illustrates a hemodialysis apparatus 20 incorporating the blood tubing set 22 of the present invention.
  • Blood typically referred to as arterial blood
  • the arterial segment 28 includes a pump header tubing section 30 which is acted on by a rotor of a peristaltic pump 32 to move the blood through the hemodialysis apparatus 20.
  • the blood then passes into a dialyzer 34 which is divided into a blood chamber 36 and a dialysate chamber 38 by a semi-permeable membrane 40.
  • Substances such as urea and creatanine, as well as excess fluid, are transferred from the blood in the blood chamber 36 across the semi-permeable membrane 40, to dialysate flowing in the dialysate chamber 38 in a well known manner.
  • the dialysate chamber 38 of the dialyzer 34 is connected to a source of fresh dialysate (not shown) and a disposal line for spent dialysate (not shown) .
  • the hemodialysis apparatus 20 is provided with a bubble detector 46 of a type which can detect the presence of bubbles in the fluid flowing in the tubing through the walls of the tubing of the tubing set 22.
  • a bubble detector is disclosed in U.S. Patent No. 5,394,732 to Johnson et al., which is assigned to the assignee of the present invention, the entire disclosure of which is incorporated herein by reference.
  • the bubble detector 46 may provide a signal to an automatic venous clamp 48 to cause the automatic venous clamp 48 to close, interrupting the flow of blood to the patient 24 in the event the bubble detector 46 detects air bubbles which are potentially harmful to the patient 24.
  • the blood tubing set 22 will be described in more detail by reference to FIG. 2.
  • the arterial segment 28 will be described sequentially from the point where the arterial cannula and cannula line 26 connects to the arterial segment 28 of blood tubing set 22, to the point where the arterial segment 28 connects to the dialyzer 34.
  • the venous segment 42 will then be described sequentially from the point where the venous segment 42 connects to the dialyzer 34, to the point where the venous segment 42 connects to the venous cannula and cannula line 44.
  • the arterial segment 28 of the blood tubing set 22 is a continuous flow communication path comprising an arterial capped connector 50, adapted to be connected to a priming waste handling system, such as that described in U.S. Patent No.
  • the arterial capped priming connector 50 is then connected to an arterial rotating collar luer connector 52 which connects to the arterial cannula and cannula line 26.
  • a first tubing section 54 connects the arterial rotating collar luer connector 52 to an inlet 56 of an arterial pod/site 58.
  • a manually activated arterial pinch clamp 57 is interposed on the first tubing section 54 at a location near the arterial rotating collar luer connector 52.
  • the arterial pod/site 58 has a principal outlet 60 and a secondary outlet 62.
  • a second tubing section 64 connects the secondary outlet 62 of the arterial pod/site 58 to a luer lock connector 66 which is, in turn, connected to a saline capped priming connector 68.
  • the saline capped priming connector 68 is similar to the arterial capped priming connector 50 and facilitates introduction of saline solution and other fluids into the tubing set.
  • the pump header tubing section 30, which has a diameter and length coordinated to interfit with the peristaltic pump 32 (FIG. 1) , extends from the principal outlet 60 of the arterial pod/site 58 to a ferrule 72, which may be a reducing ferrule.
  • a third tubing segment 74 then extends from the ferrule 72 to an arterial dialyzer connector 76, which is adapted to connect the arterial segment 28 of the tubing set 22 to the dialyzer 34.
  • the arterial dialyzer connector 76 may be a luer-lock connector or the like.
  • the venous segment 42 of the blood tubing set 22 comprises a venous dialyzer connector 78, which may also be a luer-lock connector or the like which is connected by a fourth section of tubing 80 to an inlet 82 of a venous pod/site 84.
  • the venous pod/site 84 has a principal outlet 86 and a secondary outlet 88.
  • the secondary outlet 88 of the venous pod/site 84 is connected by a fifth tubing section 90 to a luer connector 92 which is adapted to receive dispensing apparatus, such as a luer connected syringe (not shown) , for medication to be administered to the patient 24 (FIG. 1) by injection in the patient's blood flowing in the venous segment 42.
  • dispensing apparatus such as a luer connected syringe (not shown)
  • the venous pod/site has within it a tubular particulate filter 94, which prevents particulates entering the venous pod/site 84 through the inlet 82 from exiting the pod/site 84 through the principal outlet 86.
  • the principal outlet 86 of the venous pod/site 84 is connected by a sixth tubing section 96 to a venous rotating collar luer connector 98.
  • Interposed on the sixth tubing segment 96 near the venous rotating collar luer connector 98 is a manually activated venous pinch clamp 100.
  • the sixth tubing section 96 interfits with the air bubble detector 46 and automatic venous clamp 48 between the venous pod/site 84 and the venous pinch clamp 100.
  • the rotating collar luer connector 98 is then terminated with a venous capped priming connector 102.
  • the tubing set 22 of the present invention is assembled using conventional medical tubing connectors and connection techniques well known in the art.
  • Patent No. 5,322,516 which is assigned to the assignee of the present invention and which is incorporated herein by reference in its entirety.
  • the combination pressure pod/access site 150 will be described by reference to FIG. 3. It will be appreciated by one skilled in the art that this description covers one specific pressure pod design and one specific access site design but the invention is not so limited. In particular, it is within the scope of the present invention to combine many different pressure pod designs with many different access site designs in order to achieve the objects of the present invention.
  • the pod/site 150 of the present invention comprises a pod base 152, a pod cap 154 and an elastomeric pressure transmission diaphragm such as a silicone diaphragm 156, sandwiched sealingly between the pod cap 154 and the pod base 152.
  • the pod base 152 and pod cap 154 may be injection molded from any of a variety of plastic materials', such as polyethylene terephthalate glycol (PETG) , selected at least in part for their biocompatible properties.
  • PETG polyethylene terephthalate glycol
  • the pod cap 154 is preferably transparent.
  • the pod base 152 further comprises a generally circular disk-like member with a central orifice 158 that mates removably and sealingly with a pressure sensing member 160.
  • the pod cap 154 comprises a generally cylindrical chamber 162 having two co-linearly extending tubing connections 164, 166 in fluid communication with the interior 180 of chamber 162.
  • the pod cap 154 has a bottom portion 170 having a generally annularly extending peripheral L-shaped flange 172 which matches a annularly extending upwardly facing peripheral mating ledge 174 on the pod base 152.
  • a downward facing, annularly extending cap ridge 171 is located in the interior 180 of the pod cap 154 inwardly of the flange 172.
  • An upward facing annularly extending base ridge 173 matching the cap ridge 171 is located on the pod base 152.
  • the pod base 152 interfits with the bottom 170 of the pod cap 154 with the flange 172 of the pod cap 154 mating with the mating ledge 174 of the base 152.
  • the flange 172 and cap ridge 171 of the cap 154 and the base ridge 173 and an annular ledge 177 inward of the mating ledge 174 of the base 152 cooperate to define an annular retention cavity 176 opening into an interior 180 of the chamber 162 of the cap 154.
  • the interior 180 of the chamber 162 receives and retains a portion of the fluid, typically blood, the pressure of which is to be measured by the pod/site 150.
  • the diaphragm 156 is generally disc-like and may have a shape adapted to facilitate the transfer of pressures , from the fluid in the interior 180 of the chamber 162 to a pressure measuring space 182 between the pod base 152 of the pod/site 150 and the diaphragm 156, and from there to the pressure sensing element 160.
  • the diaphragm has a thickened peripheral portion 184 which is retained in the retention cavity 176.
  • the remainder of the disk-like diaphragm 156 cooperates with the cap ridge 171 and the base ridge 173 to form a fluidly sealed resilient pressure transmissive barrier between the interior 180 of the chamber 162 of the pod cap 154 and the pressure metering space 182 between the diaphragm 156 and the pod base 152.
  • the pod base 152 and pod cap 154 are typically joined by ultrasonic welding.
  • the cap further comprises an access extension 186, also in fluid communication with the interior 180.
  • the access extension 186 is a generally tubular member extending from the top 188 of the cap 154. It should be understood that the terms top and bottom are used for reference only.
  • the pod/site may be installed in several orientations, a common one being with the cap top 188 facing away from a dialysis machine 20 and the bottom 150 of the cap 154 towards the machine.
  • the access extension 186 has an exterior peripheral ring 190. Extending downwardly from the access extension 186, and in fluid communication with the interior 180 of the chamber 162 is a needle guard portion 192.
  • the needle guard portion has a solid floor 194.
  • the needle guard portion 192 further has a wall that has lateral windows 196 which are positioned so that fluid entering or leaving the access site 150 through the tubing connections, 164, 166 cannot flow directly into the windows 196 of the needle guard portion 192, but rather are diverted by the needle guard portion's 192 extension into the interior 180 of the chamber 162 to flow around the needle guard portion, 92 when flowing from one inlet tube 164 to the other tube 166 or the reverse. Fluid may only flow into and out of the interior 180 of the chamber from and to an interior 198 of the needle guard portion 192 through the windows 196.
  • the windows 196 are preferably too small for the smallest expected needles to pass through the windows, preferably no more than 0.020 inches in at least one dimension, but large enough to pass air and blood freely.
  • a septum plug 200 is inserted into the access extension 186 into the interior 198 of the access extension 186.
  • a shoulder 201 defines an orifice 203 in the interior 198 of the access extension 186 that is smaller than the diameter of the septum plug 200.
  • the shoulder 201 in the interior 198 of the access extension 186 retains and sealingly mates with the septum plug 200.
  • the septum plug 200 is held in place by a retention ring 202 which fits over the access extension 186 and mates with the peripheral ring 190 of the access extension 186 and has a lip 204 for retaining the septum plug 200 in place in the access extension 186.
  • the septum plug may be an injection molded cylinder of a silicone impregnated thermoplastic styrene-ethylene/bytylene-styrene block polymer having a Shore A durometer hardness of 15 to 40, such as C-FLEX TM manufactured by Consolidated Polymer
  • the septum may be any of several types including a septum for a sharp needle, a septum for a blunt needle, or a pre-split septum for a blunt needle or cannula.
  • the needle guard portion 192 is located so that the floor 194 of the needle guard portion is above the diaphragm 156 and so that a sharp or blunt needle or cannula (not shown) penetrating the septum plug 200 will be blocked by the floor 194 and cannot damage the diaphragm 156.
  • the pod site may be releasably mounted to a hemodialysis apparatus 20 by a pod/site mounting assembly
  • a pod/site retention member 208 which may, for example, retain the pod/access site by a pair of clip arms 210 which interfit with, and hook around, the tubing connections 164, 166.
  • the resilient frustoconical seal 161 of the pressure sensor 160 is compressed when the pod/site 150 is installed, biasing the pod/site upward to retain it in the clip arms 210 of the pod/site retention member 208.
  • the cap will be described in more detail with reference to FIGS. 4-8.
  • the cap comprises the chamber
  • the access extension 186 with its ring 190 extends vertically from the cap.
  • the needle guard portion 192 extends into the flow path defined by the axis 212 from the access site extension 186.
  • the needle guard portion 192 partially obstructs the flow path along the axis 212 so that fluid entering either tubing connection 164, 166 is prevented from flowing in a straight path through the interior 180 of the cap 154 to the other tubing connection 164, 166 but is instead diverted to one side or the other, or below the floor 194, of the needle guard portion 192.
  • the needle guard portion 192 floor 194 is connected to the top 188 of the chamber 162 by a vertically extending wall 214.
  • the vertically extending walls 214 generally block the direct passage of fluid between the tubing connections 164, 166 and are contoured to smoothly direct impinging flow downward.
  • the tubing connections 56, 62, 82, 86, 88, 164, 166 may be the typical welded push fit sockets for typical medical flexible tubing as are well known in the art.
  • FIG. 9 illustrates a cap 350 adapted for use on the simplified blood tubing set 22 of the present invention for use as the arterial pod/site 58.
  • the arterial cap 350 comprises, in addition to the co-linear tubing connections 56, 60, a secondary tubing connection of smaller diameter 62 offset from and parallel to, the axis 212 defined by the co-linear tubing connectors 60, 56. This offset secondary tubing connector 62 adjacent to one of the co-linear tubing connections 60 and is further in fluid communication with the interior 180 of the cap 350.
  • the venous cap 355 comprises the secondary tubing connection 88 offset from the axis of the co-linear tubing connectors 82,86 and adjacent to, and parallel to one of the co-linear connectors 86.
  • the tubular filter 94 is installed within the venous cap 355.
  • the tubular filter 94 has a flange 357 at its base and a porous tubular filtration portion 359.
  • a shoulder in one of the tubing connectors 86 has a shoulder 361 that defines an orifice 363 into the interior 180 of the chamber 164 that is smaller than the flange 357 and larger than the diameter of the filter portion 359.
  • the filter 94 is installed by passing the filter portion 359 through the orifice until the flange 357 is sealingly engaged with the shoulder 361.
  • the filter 94 is then retained by the end 365 of a medical tubing section 96 secured in the tubing connector 86 against the flange 361, as has been well known for many years.
  • the access extension 186 may be of a length as necessary to bring the needle guard portion 192 above the filter 92.

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Cardiology (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • External Artificial Organs (AREA)

Abstract

A combination pressure pod and access site apparatus (150) is suitable for use in a medical tubing set (22). The combination pressure pod and access site (150) comprises a pressure sensing chamber (182) and a measured fluid chamber (162) separated by a pressure transmissive diaphragm (156). An access site (150) having a neeedle or needle-less septum (200) is in fluid communication with the measured fluid chamber (162) and permits injecting fluids into and withdrawing fluids from, the measured fluid chamber (162) through the access site (150). One or more of the combination pressure sites and access sites (150) may be provided in a simplified blood tubing set (22) for an extracorporeal blood treatment apparatus, such as a hemodialysis apparatus.

Description

DIALYSIS BLOOD TUBING SET
Field of the Invention The present invention relates to blood tubing sets for use in dialysis procedures.
Background of the Invention Tremendous advances have been made in the treatment of end stage renal disease. Through dialysis with artificial kidneys it is possible to keep patients alive, and to permit them to lead relatively normal lives, even after loss of kidney function. One form of dialysis is hemodialysis, where the patient's blood is removed from the patient's body, anticoagulated, circulated by an extracorporeal tubing circuit through an artificial kidney, or dialyzer, to remove toxic substances, such as urea and creatinine, as well as excess fluid, and returned to the patient. Hemodialysis is typically performed on a patient about every three days. The extracorporeal tubing circuit typically consists of cannulae for drawing blood from and returning blood to a patient, the dialyzer and a blood tubing set. The blood tubing set typically comprises a plurality of sections of medical tubing, bubble traps or drip chambers (collectively "bubble traps" herein) , pressure monitoring sites, air bubble detection sites, access sites connectors, clamps, peristaltic pump headers and accessories of various sorts. Pressure monitoring sites are typically disposable pressure pods which transmit the pressure of blood, or another fluid, to a pressure sensor while simultaneously isolating the blood or other fluid from the pressure sensor. Access sites are typically disposable septa and associated housing for sampling the patient's blood or adding medication. Access sites may require two hands to operate, one to hold the site steady, another to operate a sampling or injection syringe. This may increase the risk of needle sticks to the hand holding the access site.
Because hemodialysis must be performed frequently, it is important to keep the cost of each treatment as low as possible. Further, it is desirable to minimize the amount of blood outside a patient's body in the extracorporeal circuit, thereby minimizing the stress on the patient as well as minimizing the potential for trauma to the blood. Bubble traps typically retain a relatively large volume of blood during normal operation. Blood trauma also can occur at an air-blood interface such as are found in typical bubble traps and drip chambers. It would further be advantageous to eliminate or reduce the need to add anticoagulant to the blood, further reducing the physical stress on the patient.
It is against this background that the blood tubing set of the present invention developed.
Summary of the Invention One significant aspect of the present invention is a combined pressure sensing pod and needle access site ("pod/site" herein) which reduces treatment cost by reducing the cost of the blood tubing set. The pod/site combines, in a single device, the functions of transmitting pressure from blood or other fluid to a pressure sensor without the blood contacting the pressure sensor and providing a site for injecting fluids into or withdrawing fluids from the blood or other fluid. The cost of the blood tubing set is reduced in accordance with this aspect of the invention by reducing the manufacturing cost of the pressure pods and needle access sites by combining them in a single part and further by reducing tubing set assembly cost by reducing the number of parts. In accordance with this aspect of the invention, a needle access site is provided on a front or top face of a pressure pod, thus combining two functions into a single device and achieving the additional result that the needle access site may be used to remove air from the pod/site. Further in accordance with this aspect of the invention, a needle guard and flow diverter is provided to protect the diaphragm of the pressure pod from accidental needle punctures and to prevent blood flowing in the pod/site from flowing directly through the pod/site. The flow diverter forces the pod/site to trap air, which may subsequently be removed with a needle through the access site. Further, the pod/site is typically held securely, obviating the need to hold the pod/site during sampling from or injecting into the pod/site.
Another significant aspect of the present invention is a simplified blood tubing set incorporating the pod/sites to achieve still further significant benefits. In accordance with this aspect of the invention a blood tubing set is provided which facilitates the detection of, and protection of the patient against, the well known problems of air bubbles, without the use of the typical bubble traps. In accordance with this aspect of the invention, a pod/site is provided at a location in the blood tubing set normally occupied by an arterial bubble trap. This arterial pod/site is further provided with a saline line connection to permit the addition of saline solution to the blood tubing set, as for priming. Further in accordance with this aspect of the invention a pod/site is provided at a location typically occupied by a venous bubble trap. This venous pod/site is provided with a filter to prevent particulate matter from entering a patient and with a connection to permit adding medication to the blood returning to the patient.
Cost is reduced by eliminating the two bubble traps and by reducing assembly cost by reducing the number of parts in the blood tubing set. Further, the extracorporeal blood volume is greatly reduced by eliminating the bubble traps, thereby reducing blood trauma potential. Blood trauma potential is further reduced by the elimination of the air-blood interfaces of the bubble traps. The reduction in extracorporeal blood volume, and therefore the amount of time that blood is circulated outside the patient's body, may reduce or eliminate the need for anticoagulant.
Further significant aspects of the present invention will be apparent to one skilled in the art from the drawings, detailed description of the preferred embodiment and the claims.
Brief Description of the Drawings Fig. 1 is a schematic diagram of a hemodialysis apparatus having a blood tubing set in accordance with the present invention.
Fig. 2 is a pictorial representation of the blood tubing set of Fig. 1.
Fig. 3 is a partially cut away perspective view of a pod/site of the present invention mounted to a pod/site holder.
Fig. 4 is a top perspective view of a portion of the pod/site shown in Fig. 3.
Fig. 5 is a bottom perspective view of a portion of the pod/site shown in Fig. 4.
Fig. 6 is a plan view of the portion of the pod/site shown in Fig. 4.
Fig. 7 is a sectional side view of the portion of the pod/site shown in Fig. 6 viewed from line 7-7. Fig. 8 is a bottom view of the portion of the pod/site shown in Fig. 4.
Fig. 9 is a top perspective of an alternative embodiment of the portion of the pod/site shown in Fig. 4. Fig. 10 is a top perspective view of a further alternative embodiment of the pod/site shown in Fig. 4. Fig. 11 is a side sectional view of the portion of the pod/site shown in Fig. 10, viewed from line 11-11.
Detailed Description of the Preferred Embodiment FIG. 1 illustrates a hemodialysis apparatus 20 incorporating the blood tubing set 22 of the present invention. Blood, typically referred to as arterial blood, is withdrawn from a patient 24 through an arterial cannula and cannula line 26 into an arterial segment 28 of the blood tubing set 22. The arterial segment 28 includes a pump header tubing section 30 which is acted on by a rotor of a peristaltic pump 32 to move the blood through the hemodialysis apparatus 20. The blood then passes into a dialyzer 34 which is divided into a blood chamber 36 and a dialysate chamber 38 by a semi-permeable membrane 40. Substances such as urea and creatanine, as well as excess fluid, are transferred from the blood in the blood chamber 36 across the semi-permeable membrane 40, to dialysate flowing in the dialysate chamber 38 in a well known manner. The dialysate chamber 38 of the dialyzer 34 is connected to a source of fresh dialysate (not shown) and a disposal line for spent dialysate (not shown) . Blood exits the blood chamber 36 of the dialyzer 34 into a venous segment 42 of the blood tubing set 22 and from there returns to the patient 24 through a venous cannula and cannula line 44.
The hemodialysis apparatus 20 is provided with a bubble detector 46 of a type which can detect the presence of bubbles in the fluid flowing in the tubing through the walls of the tubing of the tubing set 22. Such a bubble detector is disclosed in U.S. Patent No. 5,394,732 to Johnson et al., which is assigned to the assignee of the present invention, the entire disclosure of which is incorporated herein by reference. The bubble detector 46 may provide a signal to an automatic venous clamp 48 to cause the automatic venous clamp 48 to close, interrupting the flow of blood to the patient 24 in the event the bubble detector 46 detects air bubbles which are potentially harmful to the patient 24.
The blood tubing set 22 will be described in more detail by reference to FIG. 2. The arterial segment 28 will be described sequentially from the point where the arterial cannula and cannula line 26 connects to the arterial segment 28 of blood tubing set 22, to the point where the arterial segment 28 connects to the dialyzer 34. The venous segment 42 will then be described sequentially from the point where the venous segment 42 connects to the dialyzer 34, to the point where the venous segment 42 connects to the venous cannula and cannula line 44. The arterial segment 28 of the blood tubing set 22 is a continuous flow communication path comprising an arterial capped connector 50, adapted to be connected to a priming waste handling system, such as that described in U.S. Patent No. 5,041,215 to Chamberlain et al., which is assigned to the assignee of the present invention, the entire disclosure of which is incorporated herein by reference. The arterial capped priming connector 50 is then connected to an arterial rotating collar luer connector 52 which connects to the arterial cannula and cannula line 26. A first tubing section 54 connects the arterial rotating collar luer connector 52 to an inlet 56 of an arterial pod/site 58. A manually activated arterial pinch clamp 57 is interposed on the first tubing section 54 at a location near the arterial rotating collar luer connector 52.
The arterial pod/site 58 has a principal outlet 60 and a secondary outlet 62. A second tubing section 64 connects the secondary outlet 62 of the arterial pod/site 58 to a luer lock connector 66 which is, in turn, connected to a saline capped priming connector 68. The saline capped priming connector 68 is similar to the arterial capped priming connector 50 and facilitates introduction of saline solution and other fluids into the tubing set.
The pump header tubing section 30, which has a diameter and length coordinated to interfit with the peristaltic pump 32 (FIG. 1) , extends from the principal outlet 60 of the arterial pod/site 58 to a ferrule 72, which may be a reducing ferrule.
A third tubing segment 74 then extends from the ferrule 72 to an arterial dialyzer connector 76, which is adapted to connect the arterial segment 28 of the tubing set 22 to the dialyzer 34. The arterial dialyzer connector 76 may be a luer-lock connector or the like. The venous segment 42 of the blood tubing set 22 comprises a venous dialyzer connector 78, which may also be a luer-lock connector or the like which is connected by a fourth section of tubing 80 to an inlet 82 of a venous pod/site 84. The venous pod/site 84 has a principal outlet 86 and a secondary outlet 88. The secondary outlet 88 of the venous pod/site 84 is connected by a fifth tubing section 90 to a luer connector 92 which is adapted to receive dispensing apparatus, such as a luer connected syringe (not shown) , for medication to be administered to the patient 24 (FIG. 1) by injection in the patient's blood flowing in the venous segment 42.
The venous pod/site has within it a tubular particulate filter 94, which prevents particulates entering the venous pod/site 84 through the inlet 82 from exiting the pod/site 84 through the principal outlet 86. The principal outlet 86 of the venous pod/site 84 is connected by a sixth tubing section 96 to a venous rotating collar luer connector 98. Interposed on the sixth tubing segment 96 near the venous rotating collar luer connector 98 is a manually activated venous pinch clamp 100. The sixth tubing section 96 interfits with the air bubble detector 46 and automatic venous clamp 48 between the venous pod/site 84 and the venous pinch clamp 100. The rotating collar luer connector 98 is then terminated with a venous capped priming connector 102. The tubing set 22 of the present invention is assembled using conventional medical tubing connectors and connection techniques well known in the art.
The general construction and function of pressure pods is described in U.S. Patent No. 4,666,598 which is assigned to the assignee of the present invention, the entire disclosure of which is incorporated herein by reference. Access sites take many forms. Exemplary access sites are described in U.S. Patent Application Serial No. 08/483,740, Internally Lubricated Elastomers for Use in Biomedical Applications filed June 7, 1995, assigned to the assignee of the present invention which is a continuation-in-part of U.S. Patent Application Serial No. 08/047,856, filed April 15, 1993, the entire disclosure of which is incorporated herein by reference. Further examplary access sites are described in U.S.
Patent No. 5,322,516 which is assigned to the assignee of the present invention and which is incorporated herein by reference in its entirety.
The combination pressure pod/access site 150 will be described by reference to FIG. 3. It will be appreciated by one skilled in the art that this description covers one specific pressure pod design and one specific access site design but the invention is not so limited. In particular, it is within the scope of the present invention to combine many different pressure pod designs with many different access site designs in order to achieve the objects of the present invention.
The pod/site 150 of the present invention comprises a pod base 152, a pod cap 154 and an elastomeric pressure transmission diaphragm such as a silicone diaphragm 156, sandwiched sealingly between the pod cap 154 and the pod base 152. The pod base 152 and pod cap 154 may be injection molded from any of a variety of plastic materials', such as polyethylene terephthalate glycol (PETG) , selected at least in part for their biocompatible properties. The pod cap 154 is preferably transparent. The pod base 152 further comprises a generally circular disk-like member with a central orifice 158 that mates removably and sealingly with a pressure sensing member 160. An 161 resilient elastomeric frustoconical seal surrounds the pressure sensing member 160 and seals the orifice 158 to the pressure sensing member 160 at a lower radiused edge 163 of the orifice 158. The pod cap 154 comprises a generally cylindrical chamber 162 having two co-linearly extending tubing connections 164, 166 in fluid communication with the interior 180 of chamber 162. The pod cap 154 has a bottom portion 170 having a generally annularly extending peripheral L-shaped flange 172 which matches a annularly extending upwardly facing peripheral mating ledge 174 on the pod base 152. A downward facing, annularly extending cap ridge 171 is located in the interior 180 of the pod cap 154 inwardly of the flange 172. An upward facing annularly extending base ridge 173 matching the cap ridge 171 is located on the pod base 152. The pod base 152 interfits with the bottom 170 of the pod cap 154 with the flange 172 of the pod cap 154 mating with the mating ledge 174 of the base 152. The flange 172 and cap ridge 171 of the cap 154 and the base ridge 173 and an annular ledge 177 inward of the mating ledge 174 of the base 152 cooperate to define an annular retention cavity 176 opening into an interior 180 of the chamber 162 of the cap 154.
The interior 180 of the chamber 162 receives and retains a portion of the fluid, typically blood, the pressure of which is to be measured by the pod/site 150. The diaphragm 156 is generally disc-like and may have a shape adapted to facilitate the transfer of pressures , from the fluid in the interior 180 of the chamber 162 to a pressure measuring space 182 between the pod base 152 of the pod/site 150 and the diaphragm 156, and from there to the pressure sensing element 160. The diaphragm has a thickened peripheral portion 184 which is retained in the retention cavity 176. The remainder of the disk-like diaphragm 156 cooperates with the cap ridge 171 and the base ridge 173 to form a fluidly sealed resilient pressure transmissive barrier between the interior 180 of the chamber 162 of the pod cap 154 and the pressure metering space 182 between the diaphragm 156 and the pod base 152. The pod base 152 and pod cap 154 are typically joined by ultrasonic welding.
The cap further comprises an access extension 186, also in fluid communication with the interior 180. The access extension 186 is a generally tubular member extending from the top 188 of the cap 154. It should be understood that the terms top and bottom are used for reference only. The pod/site may be installed in several orientations, a common one being with the cap top 188 facing away from a dialysis machine 20 and the bottom 150 of the cap 154 towards the machine. The access extension 186 has an exterior peripheral ring 190. Extending downwardly from the access extension 186, and in fluid communication with the interior 180 of the chamber 162 is a needle guard portion 192. The needle guard portion has a solid floor 194. The needle guard portion 192 further has a wall that has lateral windows 196 which are positioned so that fluid entering or leaving the access site 150 through the tubing connections, 164, 166 cannot flow directly into the windows 196 of the needle guard portion 192, but rather are diverted by the needle guard portion's 192 extension into the interior 180 of the chamber 162 to flow around the needle guard portion, 92 when flowing from one inlet tube 164 to the other tube 166 or the reverse. Fluid may only flow into and out of the interior 180 of the chamber from and to an interior 198 of the needle guard portion 192 through the windows 196. The windows 196 are preferably too small for the smallest expected needles to pass through the windows, preferably no more than 0.020 inches in at least one dimension, but large enough to pass air and blood freely.
A septum plug 200 is inserted into the access extension 186 into the interior 198 of the access extension 186. A shoulder 201 defines an orifice 203 in the interior 198 of the access extension 186 that is smaller than the diameter of the septum plug 200. The shoulder 201 in the interior 198 of the access extension 186 retains and sealingly mates with the septum plug 200. The septum plug 200 is held in place by a retention ring 202 which fits over the access extension 186 and mates with the peripheral ring 190 of the access extension 186 and has a lip 204 for retaining the septum plug 200 in place in the access extension 186. The septum plug may be an injection molded cylinder of a silicone impregnated thermoplastic styrene-ethylene/bytylene-styrene block polymer having a Shore A durometer hardness of 15 to 40, such as C-FLEX TM manufactured by Consolidated Polymer
Technologies, Inc. The septum may be any of several types including a septum for a sharp needle, a septum for a blunt needle, or a pre-split septum for a blunt needle or cannula.
The needle guard portion 192 is located so that the floor 194 of the needle guard portion is above the diaphragm 156 and so that a sharp or blunt needle or cannula (not shown) penetrating the septum plug 200 will be blocked by the floor 194 and cannot damage the diaphragm 156.
The pod site may be releasably mounted to a hemodialysis apparatus 20 by a pod/site mounting assembly
206 which comprises the pressure sensor 160 and a pod/site retention member 208 which may, for example, retain the pod/access site by a pair of clip arms 210 which interfit with, and hook around, the tubing connections 164, 166. The resilient frustoconical seal 161 of the pressure sensor 160 is compressed when the pod/site 150 is installed, biasing the pod/site upward to retain it in the clip arms 210 of the pod/site retention member 208.
The cap will be described in more detail with reference to FIGS. 4-8. The cap comprises the chamber
162 and the two tubing connections 164, 166 which extend along, and define a flow path about, an axis 212 and which are in fluid communication with the interior 180 of the chamber 162. The access extension 186 with its ring 190 extends vertically from the cap. The needle guard portion 192 extends into the flow path defined by the axis 212 from the access site extension 186. The needle guard portion 192 partially obstructs the flow path along the axis 212 so that fluid entering either tubing connection 164, 166 is prevented from flowing in a straight path through the interior 180 of the cap 154 to the other tubing connection 164, 166 but is instead diverted to one side or the other, or below the floor 194, of the needle guard portion 192. The needle guard portion 192 floor 194 is connected to the top 188 of the chamber 162 by a vertically extending wall 214. The vertically extending walls 214 generally block the direct passage of fluid between the tubing connections 164, 166 and are contoured to smoothly direct impinging flow downward. Interposed in the wall 214, on an axis 216 perpendicular to the axis 212 of the tubing connectors 164, 166, are the two windows 196 which provide fluid communication between the interior 180 of the cap 154 and the interior 198 of the access extension 186. The tubing connections 56, 62, 82, 86, 88, 164, 166 may be the typical welded push fit sockets for typical medical flexible tubing as are well known in the art. The tubing connections 56, 62, 82, 86, 88, 164, 166 may be the typical welded push fit sockets for typical medical flexible tubing as are well known in the art. FIG. 9 illustrates a cap 350 adapted for use on the simplified blood tubing set 22 of the present invention for use as the arterial pod/site 58. The arterial cap 350 comprises, in addition to the co-linear tubing connections 56, 60, a secondary tubing connection of smaller diameter 62 offset from and parallel to, the axis 212 defined by the co-linear tubing connectors 60, 56. This offset secondary tubing connector 62 adjacent to one of the co-linear tubing connections 60 and is further in fluid communication with the interior 180 of the cap 350. FIGS. 10 and 11 illustrate another embodiment of the cap 355 which may be adaptable for use on the venous pod/site 84. In this embodiment the venous cap 355 comprises the secondary tubing connection 88 offset from the axis of the co-linear tubing connectors 82,86 and adjacent to, and parallel to one of the co-linear connectors 86.
The tubular filter 94 is installed within the venous cap 355. The tubular filter 94 has a flange 357 at its base and a porous tubular filtration portion 359. A shoulder in one of the tubing connectors 86 has a shoulder 361 that defines an orifice 363 into the interior 180 of the chamber 164 that is smaller than the flange 357 and larger than the diameter of the filter portion 359. The filter 94 is installed by passing the filter portion 359 through the orifice until the flange 357 is sealingly engaged with the shoulder 361. The filter 94 is then retained by the end 365 of a medical tubing section 96 secured in the tubing connector 86 against the flange 361, as has been well known for many years. To accommodate the filter 92 the access extension 186 may be of a length as necessary to bring the needle guard portion 192 above the filter 92.
A presently preferred embodiment of the present invention has been described. Many variations of the invention may be made which are within the spirit and scope of the invention as claimed in the following claims.

Claims

The invention claimed is:
1. A combination pressure pod and access site apparatus for use in a medical tubing set comprising: a pressure sensing chamber; a measured fluid chamber; a pressure transmissive diaphragm sealingly separating the pressure sensing chamber from the measured fluid chamber; an access site in fluid communication with the measured fluid chamber; and a septum forming a portion of the access site that permits injecting fluids into, and withdrawing fluids from, the measured fluid chamber through the access site.
2. An apparatus as defined in claim 1 further comprising: a needle guard configured and located to prevent damaging the pressure transmissive diaphragm during use of the septum while permitting fluid to be transferred from the measured fluid chamber to the access site and from the access site to the measured chamber.
3. An apparatus as defined in claim 1 further comprising at least one tubing connection in fluid communication with the measured fluid chamber.
4. An apparatus as defined in claim 3 comprising: two co-linear tubing connections each in fluid communication with the measured fluid chamber; a flow diverter to prevent flow entering the measured fluid chamber from flowing in a straight line from one of the tubing connections to another one of the tubing connections.
5. An apparatus as defined in claim 4 further comprising a third tubing connection in fluid communication with the measured fluid chamber.
6. An apparatus as defined in claim 4 further comprising: a needle guard configured and located to prevent damaging the pressure transmissive diaphragm during use of the septum while permitting fluid to be transferred from the measured fluid chamber to the access site and from the access site to the measured chamber.
7. An apparatus as defined in claim 3 further comprising a filter interfit with the tubing connection.
8. Blood tubing set apparatus for use with an extracorporeal blood treatment apparatus comprising: at least one combination pressure pod and access site for use in a medical tubing set comprising: a pressure sensing chamber; a measured fluid chamber; a pressure transmissive diaphragm sealingly separating the pressure sensing chamber from the measured fluid chamber; an access site in fluid communication with the measured fluid chamber; and a septum forming a portion of the access site that permits injecting fluids into, and withdrawing fluids from, the measured fluid chamber through the access site.
9. A blood tubing set apparatus as defined in claim 8 wherein: the at least one combination pressure pod and access site further comprises: a needle guard configured and located to prevent damaging the pressure transmissive diaphragm during use of the septum while permitting fluid to be transferred from the measured fluid chamber to the access site and from the access site to the measured chamber.
10. A blood tubing set apparatus as defined in claim 9 wherein: the at least one combination pressure pod and access site comprises a first pressure pod and access site further comprising: two co-linear tubing connections each in fluid communication with the measured fluid chamber; a flow diverter to prevent flow entering the measured fluid chamber from flowing in a straight line from one of the tubing connections to another one of the tubing connections; and a third tubing connection in fluid communication with the measured fluid chamber.
11. A blood tubing set apparatus as defined in claim 9 wherein: the at least one combination pressure pod and access site further comprises a second pressure pod and access site, further comprising: two co-linear tubing connections each in fluid communication with the measured fluid chamber; a third tubing connection in fluid communication with the measured fluid chamber. a filter interfit with one of the co- linear tubing connections.
PCT/US1996/009755 1995-06-07 1996-06-07 Dialysis blood tubing set WO1996040321A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA002219817A CA2219817C (en) 1995-06-07 1996-06-07 Dialysis blood tubing set
DE69630887T DE69630887T2 (en) 1995-06-07 1996-06-07 BLOOD LINE SET FOR DIALYSIS
EP96919280A EP0836488B1 (en) 1995-06-07 1996-06-07 Dialysis blood tubing set
JP50198297A JP3784071B2 (en) 1995-06-07 1996-06-07 Dialysis blood piping set

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/480,856 1995-06-07
US08/480,856 US5693008A (en) 1995-06-07 1995-06-07 Dialysis blood tubing set

Publications (1)

Publication Number Publication Date
WO1996040321A1 true WO1996040321A1 (en) 1996-12-19

Family

ID=23909619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1996/009755 WO1996040321A1 (en) 1995-06-07 1996-06-07 Dialysis blood tubing set

Country Status (7)

Country Link
US (1) US5693008A (en)
EP (1) EP0836488B1 (en)
JP (1) JP3784071B2 (en)
CA (1) CA2219817C (en)
DE (1) DE69630887T2 (en)
ES (1) ES2211960T3 (en)
WO (1) WO1996040321A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016048445A1 (en) * 2014-09-26 2016-03-31 Fresenius Medical Care Holdings, Inc. Pressure output device for extracorporeal hemodialysis machine
US9808567B2 (en) 2012-12-14 2017-11-07 Gambro Lundia Ab Diaphragm repositioning for pressure pod using position sensing

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5772624A (en) * 1995-07-20 1998-06-30 Medisystems Technology Corporation Reusable blood lines
US6852090B2 (en) 1997-02-14 2005-02-08 Nxstage Medical, Inc. Fluid processing systems and methods using extracorporeal fluid flow panels oriented within a cartridge
US6979309B2 (en) * 1997-02-14 2005-12-27 Nxstage Medical Inc. Systems and methods for performing blood processing and/or fluid exchange procedures
US6187198B1 (en) 1997-10-21 2001-02-13 Dsu Medical Corporation Automatic priming of connected blood sets
US6383158B1 (en) * 1998-12-01 2002-05-07 Dsu Medical Corporation Dialysis pressure monitoring with clot suppression
DE19900937A1 (en) * 1999-01-13 2000-07-20 Ulrich Gmbh & Co Kg Injector for the application of liquids with a pressure measuring system
US6322551B1 (en) 1999-07-09 2001-11-27 Gambro Inc. Break-apart tubing connectors for use in dialysis blood tubing sets
US6786884B1 (en) * 1999-10-29 2004-09-07 Bard Access Systems, Inc. Bolus tip design for a multi-lumen catheter
US6517508B1 (en) 1999-11-03 2003-02-11 Dsu Medical Corporation Set for blood processing
US6508790B1 (en) 1999-11-15 2003-01-21 William K. Lawrence Vascular access sheath
US7780619B2 (en) 1999-11-29 2010-08-24 Nxstage Medical, Inc. Blood treatment apparatus
US20030083901A1 (en) * 2001-06-22 2003-05-01 Bosch Juan P. Process for providing dialysis and other treatments
US20060173395A1 (en) * 2002-02-12 2006-08-03 Brugger James M Set for blood processing
US20060089586A1 (en) * 2004-10-22 2006-04-27 Kaus Stanley B Convertible extracorporeal blood perfusion systems
US8092414B2 (en) * 2005-11-09 2012-01-10 Nxstage Medical, Inc. Diaphragm pressure pod for medical fluids
US20070197922A1 (en) * 2006-02-17 2007-08-23 Honeywell International Inc. Disposable pressure sensor systems and packages therefor
US8152751B2 (en) 2007-02-09 2012-04-10 Baxter International Inc. Acoustic access disconnection systems and methods
US10463778B2 (en) 2007-02-09 2019-11-05 Baxter International Inc. Blood treatment machine having electrical heartbeat analysis
US8210049B2 (en) * 2007-03-15 2012-07-03 Nxstage Medical, Inc. Pressure measurement device
US8535522B2 (en) 2009-02-12 2013-09-17 Fresenius Medical Care Holdings, Inc. System and method for detection of disconnection in an extracorporeal blood circuit
US8040493B2 (en) 2007-10-11 2011-10-18 Fresenius Medical Care Holdings, Inc. Thermal flow meter
US8240636B2 (en) 2009-01-12 2012-08-14 Fresenius Medical Care Holdings, Inc. Valve system
US9308307B2 (en) 2007-09-13 2016-04-12 Fresenius Medical Care Holdings, Inc. Manifold diaphragms
US8105487B2 (en) 2007-09-25 2012-01-31 Fresenius Medical Care Holdings, Inc. Manifolds for use in conducting dialysis
US9358331B2 (en) 2007-09-13 2016-06-07 Fresenius Medical Care Holdings, Inc. Portable dialysis machine with improved reservoir heating system
US8597505B2 (en) 2007-09-13 2013-12-03 Fresenius Medical Care Holdings, Inc. Portable dialysis machine
CA2960103C (en) 2007-11-29 2020-03-10 Fredenius Medical Care Holdings, Inc. System and method for conducting hemodialysis and hemofiltration
ES2558961T3 (en) 2008-06-26 2016-02-09 Gambro Lundia Ab Method and device for processing a time dependent measurement signal
AU2009302327C1 (en) 2008-10-07 2015-09-10 Fresenius Medical Care Holdings, Inc. Priming system and method for dialysis systems
MX347636B (en) 2008-10-30 2017-04-03 Fresenius Medical Care Holdings Inc Modular, portable dialysis system.
WO2010114932A1 (en) 2009-03-31 2010-10-07 Xcorporeal, Inc. Modular reservoir assembly for a hemodialysis and hemofiltration system
US8344281B2 (en) * 2009-04-28 2013-01-01 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Use of beam deflection to control an electron beam wire deposition process
CN104689402B (en) 2009-06-26 2017-06-13 甘布罗伦迪亚股份公司 Dialysis machine and the apparatus and method for being processed signal
EP2305204A1 (en) 2009-09-30 2011-04-06 Fresenius Medical Care Deutschland GmbH Tubing set having an insert for the infusion of drugs
US8753515B2 (en) 2009-12-05 2014-06-17 Home Dialysis Plus, Ltd. Dialysis system with ultrafiltration control
ES2646821T3 (en) 2009-12-28 2017-12-18 Gambro Lundia Ab Apparatus and method for predicting rapid symptomatic decrease in blood pressure
US8529491B2 (en) * 2009-12-31 2013-09-10 Fresenius Medical Care Holdings, Inc. Detecting blood flow degradation
US8501009B2 (en) 2010-06-07 2013-08-06 State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Fluid purification system
US9551625B2 (en) 2011-05-31 2017-01-24 Nxstage Medical, Inc. Pressure measurement devices, methods, and systems
JP2014533133A (en) 2011-10-07 2014-12-11 ホーム・ダイアリシス・プラス・リミテッドHome DialysisPlus, Ltd. Purification of heat exchange fluids for dialysis systems
US9201036B2 (en) 2012-12-21 2015-12-01 Fresenius Medical Care Holdings, Inc. Method and system of monitoring electrolyte levels and composition using capacitance or induction
US9157786B2 (en) 2012-12-24 2015-10-13 Fresenius Medical Care Holdings, Inc. Load suspension and weighing system for a dialysis machine reservoir
AU2014234479B2 (en) 2013-03-20 2018-08-02 Gambro Lundia Ab Monitoring of cardiac arrest in a patient connected to an extracorporeal blood processing apparatus
US9433721B2 (en) 2013-06-25 2016-09-06 Fresenius Medical Care Holdings, Inc. Vial spiking assemblies and related methods
US9354640B2 (en) * 2013-11-11 2016-05-31 Fresenius Medical Care Holdings, Inc. Smart actuator for valve
US8960010B1 (en) 2013-12-23 2015-02-24 Fresenius Medical Care Holdings, Inc. Automatic detection and adjustment of a pressure pod diaphragm
ES2864727T3 (en) 2014-04-29 2021-10-14 Outset Medical Inc Dialysis system and methods
US9974942B2 (en) 2015-06-19 2018-05-22 Fresenius Medical Care Holdings, Inc. Non-vented vial drug delivery
US10413654B2 (en) 2015-12-22 2019-09-17 Baxter International Inc. Access disconnection system and method using signal metrics
WO2018035520A1 (en) 2016-08-19 2018-02-22 Outset Medical, Inc. Peritoneal dialysis system and methods
WO2018045102A1 (en) * 2016-08-30 2018-03-08 Nxstage Medical, Inc. Parameter monitoring in medical treatment systems
JP6857095B2 (en) * 2017-07-05 2021-04-14 サーパス工業株式会社 Pressure detector
CN107823741A (en) * 2017-10-27 2018-03-23 冯新庆 A kind of pressure detecting interface for extracorporeal circulation of blood pipeline
US10814057B2 (en) 2018-04-05 2020-10-27 Baxter International Inc. Disposable set for a gravity fed dialysis system
AU2020241517A1 (en) 2019-03-15 2021-09-30 Nxstage Medical, Inc. Pressure measurement devices, methods, and systems
IT201900004193A1 (en) * 2019-03-22 2020-09-22 Eurosets Srl BIOMEDICAL CONNECTION DEVICE FOR THE MEASUREMENT OF PHYSICAL QUANTITIES
CN114728109A (en) * 2019-11-12 2022-07-08 费森尤斯医疗护理德国有限责任公司 Blood treatment system
US11491269B2 (en) 2020-01-21 2022-11-08 Fresenius Medical Care Holdings, Inc. Arterial chambers for hemodialysis and related systems and tubing sets

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0142866A2 (en) * 1983-11-22 1985-05-29 Consolidated Controls Corporation Compact implantable medication infusion unit and method of filling and sealing the pressure stabilizing chamber thereof
GB2176595A (en) * 1985-06-05 1986-12-31 Warner Lambert Co Pressure sensing device
US4819653A (en) * 1986-04-11 1989-04-11 Lloyd A. Marks Multi-function fluid communication control system
EP0341488A1 (en) * 1988-05-11 1989-11-15 Klaus Dipl.-Ing. Mokros Pressure membrane device for infusions
WO1990012606A2 (en) * 1989-04-10 1990-11-01 Baxter International Inc. iRE-SLIT INJECTION SITE AND TAPERED CANNULA

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK123336B (en) * 1970-05-04 1972-06-12 Danske Sukkerfab Pressure transfer mechanism for use in pressure measurement in extracorporeal fluid systems.
US3908653A (en) * 1974-01-23 1975-09-30 Vital Assists Blood chamber
US4303068A (en) * 1978-02-28 1981-12-01 Rensselaer Polythechnic Institute Method and apparatus for single pass hemodialysis with high flux membranes and controlled ultrafiltration
US4666598A (en) * 1985-06-25 1987-05-19 Cobe Laboratories, Inc. Apparatus for use with fluid flow transfer device
US4758228A (en) * 1986-11-17 1988-07-19 Centaur Sciences, Inc. Medical infusion pump with sensors
US4798580A (en) * 1987-04-27 1989-01-17 Site Microsurgical Systems, Inc. Disposable peristaltic pump cassette system
US5116308A (en) * 1989-01-13 1992-05-26 Terumo Kabushiki Kaisha Apparatus for processing fluid and method of driving the same
US5053012A (en) * 1989-09-29 1991-10-01 Harmac Medical Products, Inc. Disposable pressure cuff having flow-through pressure gauge
US5041215A (en) * 1989-11-22 1991-08-20 Cobe Laboratories, Inc. Dialysis unit priming
US5203340A (en) * 1990-09-07 1993-04-20 Becton, Dickinson And Company Apparatus for rezeroing an in vivo pressure sensor and method for rezeroing
US5242406A (en) * 1990-10-19 1993-09-07 Sil Medics Ltd. Liquid delivery device particularly useful for delivering drugs
CA2083555A1 (en) * 1992-11-23 1994-05-24 David H. Laing Portable infusion device
US5322516A (en) * 1993-05-20 1994-06-21 Cobe Laboratories, Inc. Safety needle system and method for using the same
US5348539A (en) * 1993-06-29 1994-09-20 Glenn Herskowitz Infusion pump for use with prepackaged IV bags
US5394732A (en) * 1993-09-10 1995-03-07 Cobe Laboratories, Inc. Method and apparatus for ultrasonic detection of air bubbles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0142866A2 (en) * 1983-11-22 1985-05-29 Consolidated Controls Corporation Compact implantable medication infusion unit and method of filling and sealing the pressure stabilizing chamber thereof
GB2176595A (en) * 1985-06-05 1986-12-31 Warner Lambert Co Pressure sensing device
US4819653A (en) * 1986-04-11 1989-04-11 Lloyd A. Marks Multi-function fluid communication control system
EP0341488A1 (en) * 1988-05-11 1989-11-15 Klaus Dipl.-Ing. Mokros Pressure membrane device for infusions
WO1990012606A2 (en) * 1989-04-10 1990-11-01 Baxter International Inc. iRE-SLIT INJECTION SITE AND TAPERED CANNULA

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9808567B2 (en) 2012-12-14 2017-11-07 Gambro Lundia Ab Diaphragm repositioning for pressure pod using position sensing
WO2016048445A1 (en) * 2014-09-26 2016-03-31 Fresenius Medical Care Holdings, Inc. Pressure output device for extracorporeal hemodialysis machine
US10398826B2 (en) 2014-09-26 2019-09-03 Fresenius Medical Care Holdings, Inc. Pressure output device for extracorporeal hemodialysis machine

Also Published As

Publication number Publication date
DE69630887T2 (en) 2004-11-04
EP0836488A1 (en) 1998-04-22
ES2211960T3 (en) 2004-07-16
US5693008A (en) 1997-12-02
JP3784071B2 (en) 2006-06-07
JPH11507268A (en) 1999-06-29
DE69630887D1 (en) 2004-01-08
CA2219817A1 (en) 1996-12-19
EP0836488B1 (en) 2003-11-26
CA2219817C (en) 2006-07-04

Similar Documents

Publication Publication Date Title
CA2219817C (en) Dialysis blood tubing set
US4436620A (en) Integral hydraulic circuit for hemodialysis apparatus
EP1529545B1 (en) Integrated blood treatment module
US6299589B1 (en) Flow-through treatment method
EP1532994B1 (en) Degassing device and end-cap assembly for a filter
US20110126714A1 (en) Blood treatment dialyzer/filter for permitting gas removal
GB1601856A (en) Dialysis apparatus
JP2000512173A (en) Blood processing system
US4188948A (en) Filter device
EP2745859B1 (en) Disposable cassette with luer locks and method for packaging
JP2577940B2 (en) Purging system for blood tube network
US11918772B2 (en) Fluid sampling or infusion device for an extracorporeal blood treatment apparatus
CN114980940B (en) Arterial chamber for hemodialysis and related systems and tubing sets
JPH056994Y2 (en)
JPH054838Y2 (en)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 1997 501982

Kind code of ref document: A

Format of ref document f/p: F

ENP Entry into the national phase

Ref document number: 2219817

Country of ref document: CA

Ref country code: CA

Ref document number: 2219817

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1996919280

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1996919280

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1996919280

Country of ref document: EP