WO1996038914A1 - Semiconductor integrated circuit device and signal processor - Google Patents

Semiconductor integrated circuit device and signal processor Download PDF

Info

Publication number
WO1996038914A1
WO1996038914A1 PCT/JP1995/001084 JP9501084W WO9638914A1 WO 1996038914 A1 WO1996038914 A1 WO 1996038914A1 JP 9501084 W JP9501084 W JP 9501084W WO 9638914 A1 WO9638914 A1 WO 9638914A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
operating potential
potential
semiconductor integrated
power supply
Prior art date
Application number
PCT/JP1995/001084
Other languages
French (fr)
Japanese (ja)
Inventor
Haruo Kamimaki
Yuji Hatano
Koichi Ono
Masanori Otsuka
Mitsuru Hiraki
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP1995/001084 priority Critical patent/WO1996038914A1/en
Publication of WO1996038914A1 publication Critical patent/WO1996038914A1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0008Arrangements for reducing power consumption
    • H03K19/0013Arrangements for reducing power consumption in field effect transistor circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/14Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels

Definitions

  • the present invention relates to a CMOS logic circuit that operates at a low voltage.
  • a power supply voltage supplied to a semiconductor integrated circuit that constitutes a logic circuit is high, and the power supply voltage is divided so that a CM ⁇ S logic circuit can be operated at a low voltage.
  • the power supply voltage of the circuit requires the highest power supply voltage in the system. It is supplied according to the voltage of.
  • FIG. 25 shows the configuration of a general mobile phone.
  • reference numeral 236 denotes an antenna for receiving or transmitting a radio signal
  • reference numeral 235 denotes a modulation / demodulation circuit for demodulating a high-frequency signal from the antenna
  • reference numeral 234 denotes audio coding / decoding for encoding / decoding an audio signal.
  • AZD, D / A converter for converting a digital signal from an audio encoding / decoding circuit into an analog signal or an analog signal into a digital signal
  • AZD, D ZA converter for converting a digital signal from an audio encoding / decoding circuit into an analog signal or an analog signal into a digital signal
  • 230 for AZD, DZA A speaker that reproduces the output of the converter and a microphone 23 that captures the audio signal to be transmitted are shown.
  • the voice coding and decoding circuit 2 3 4 and the modulation and demodulation circuit 2 3 5 are each composed of a semiconductor integrated circuit device and mounted on a printed circuit board.
  • the system power supply voltage (237, 238) is configured so that the highest power supply voltage in the system is supplied in accordance with the required circuit block.
  • the AZD and DZA converters 232 that currently operate at a power supply voltage of 3 V have been put into practical use, and it is thought that further lowering of the voltage is possible.
  • the CM ⁇ S logic circuit such as the voice encoding / decoding circuit 2 3 4 operates at 3 V at present. Research and development is also underway on V operation, and it can operate at voltages lower than 3 V even at this stage.
  • the high-frequency radio circuit 235 is not practical at 3 V or less from the viewpoint of its radio performance rather than circuit technology.
  • the power supply is divided by a voltage follower, and the power consumption of the power supply dividing circuit increases, which may hinder the initial purpose of reducing power consumption.
  • the present invention maintains the miniaturization of a CMOS logic circuit capable of operating at a low voltage even when there is a circuit capable of operating at a low voltage in the same system as a CMOS logic circuit capable of operating at a low voltage.
  • Another object of the present invention is to provide a means for enabling low-voltage operation while performing a low-voltage operation, such as a processor circuit, in a circuit that requires transmission and reception of signals between CM ⁇ S logic circuits. (In addition, for the sake of simplicity of description, the following MOS will be described as including a MIS using a gate insulating film other than an oxide film.)
  • a first operating potential (for example, 3.0 V) and a second operating potential (for example, 0.0 V) are supplied, and the first operating potential and the second operating potential are different from both potentials.
  • a power supply division unit (1) that outputs an operating potential (for example, 1.5 V) of the third operating potential, and operates between the first operating potential and the third operating potential.
  • a first logic circuit (5) configured between the third operating potential and the second operating potential, and a second logic circuit (6) configured by complementary field-effect transistors.
  • a level conversion circuit (?) For converting the amplitude of the output signal of the first logic circuit and inputting the converted signal to the second logic circuit.
  • It has a third logic circuit (10) connected to the first operating potential and the second operating potential.
  • each logic circuit can coexist on a single semiconductor substrate.
  • the power supply division unit is configured to include means (19) for detecting a third potential and means (14) for correcting a third operating potential. This makes it possible to stably supply the third operating potential constituting the internal power supply voltage.
  • the level conversion circuit includes a level shift means (71, 72) for shifting the level of the output signal of the first logic circuit, and a latch circuit (70) for receiving the output signal via the level shift means. ), Wherein the latch circuit is configured to operate between the third operating potential and the second operating potential.
  • a level conversion circuit that connects the first logic circuit and the second logic circuit can be realized with a relatively simple circuit configuration.
  • first level conversion circuit (108) connected between the first logic circuit and the second logic circuit, a second logic circuit and the third logic circuit, And a second level conversion circuit (109) connected between the first logic circuit and the fourth logic circuit.
  • the first level conversion circuit outputs the output signal of the first logic circuit to the third operating potential point and the fourth
  • the second level conversion circuit converts the output signal of the second logic circuit into an amplitude corresponding to the fourth operating potential point and the second operating potential point. Is configured to be converted to
  • the logic circuit it is possible to configure the logic circuit by dividing the external power supply voltage into three or more. Also, a level conversion circuit is provided for transmitting and receiving signals between the layers.
  • the power supply unit is divided into a first potential difference, which is a potential difference between the first operating potential point (2) and the fourth (104) operating potential point, a first operating potential point (2), and the first operating potential point (2).
  • a first comparison circuit (124) for detecting a second potential difference, which is a potential difference from the operating potential point (103), and comparing a half value of the first potential difference with the second potential difference;
  • a third potential difference which is a potential difference between the third operating potential point and the second operating potential point, and a fourth potential difference, which is a potential difference between the third operating potential point and the second operating potential point.
  • a second comparison circuit (125) for detecting and comparing a half value of the third potential difference with the fourth potential difference, and the third and second comparison circuits based on a comparison result of the first and second comparison circuits. 4 is configured to correct the potential at the operating potential point.
  • the potential of each operating potential point can be stably maintained, and each operating potential can be detected with a small number of voltage comparison circuits.
  • a power supply dividing unit (101) is connected to a control circuit (170) that outputs a control signal stored in advance at a predetermined timing, receives a control signal of the control circuit at its gate electrode, and connects each operating potential point. And a transistor connected to the transistor (171), and configured to control the amount of current flowing through the transistor by the control signal. This makes it possible to correct the amount of current in each layer and stabilize the intermediate potential with a simple configuration when the amount of current in the logic circuit in each layer is known in advance.
  • a semiconductor integrated circuit according to another representative embodiment of the present invention includes:
  • a first circuit group that operates at a first amplitude corresponding to the external power supply voltage, a circuit that divides the external power supply voltage to generate at least three internal power supply voltages, and a first circuit group that supports the three internal power supply voltages.
  • a second, a third, and a fourth circuit group operating at an amplitude of 2, a third amplitude, and a fourth amplitude; and a bus related to signal transmission between the circuit groups, and the first circuit.
  • the group includes an interface circuit (205) that receives a signal from the outside and supplies the signal to the bus.
  • the third circuit group is connected to the bus, and connected via the bus. It has an operation unit (203) for performing a predetermined operation on received data.
  • a memory cell array (201) constituting a memory for temporarily storing data supplied from the outside and a memory cell array I ⁇ (200) constituting a memory for storing a program are stored. 2) and As a result, the memory array can be operated at a so-called full amplitude, and stable storage of information becomes possible.
  • the third circuit group includes a sense amplifier circuit (208) for amplifying an output of a memory cell array constituting a memory for storing data supplied from the outside and supplying the amplified signal to the bus.
  • the fourth circuit group has an instruction decoder (206) for decoding a program stored in the memory, and an output of the instruction decoder is a level conversion circuit for converting the amplitude thereof. It is configured to be output to the above bus via 2 16). And By arranging the instruction decoder circuit in the fourth circuit group, it is possible to prevent the circuits from being concentrated on a specific circuit group (layer).
  • a typical form of a signal processing device according to the present invention is:
  • a signal processing device comprising at least a first and a second semiconductor integrated circuit device (234, 235) for supplying an operating potential commonly to the first and second semiconductor integrated circuit devices.
  • the first semiconductor integrated circuit device includes an internal circuit that operates with the first and second operating potentials
  • the second semiconductor integrated circuit device includes a first and a second operating potential generating means.
  • the circuit device is configured to have an internal circuit that operates with an operating potential having a potential difference smaller than the potential difference between the first and second operating potentials (237, 238). This makes it possible to efficiently configure a signal processing device in which a semiconductor integrated circuit having a circuit that cannot operate at a low power supply voltage and a semiconductor integrated circuit that can operate at a low power supply voltage coexist efficiently. The power can be reduced.
  • the second semiconductor integrated circuit device is configured to be a decoding circuit that processes an output signal of the modulation circuit. This makes it possible to efficiently configure a signal processing device including a modulation circuit that is difficult to reduce the power supply voltage and a decoding circuit that can reduce the power supply voltage.
  • FIG. 1 is a block diagram of a logic circuit which is one embodiment of the present invention.
  • FIG. 2 is a diagram showing a power split unit which is one mode of the present invention.
  • FIG. 3 is a diagram showing a control circuit which is one mode of the present invention.
  • FIG. 4 is a diagram showing a voltage comparison circuit which is one mode of the present invention.
  • FIG. 5 is a diagram showing a timing circuit which is one mode of the present invention.
  • FIG. 6 is a diagram showing a dummy gate circuit which is one mode of the present invention.
  • FIG. 7 is a diagram showing a level conversion circuit which is one mode of the present invention.
  • FIG. 8 is a diagram showing a level shifter circuit that can be employed in the present invention.
  • FIG. 9 is a diagram showing another level shifter circuit that can be employed in the present invention.
  • FIG. 10 is a diagram showing an interlayer level conversion circuit which is one mode of the present invention.
  • the first 1 figure, t first 2 Figure is a diagram showing another interlayer level converting circuit which is an embodiment of the present invention is a diagram illustrating another inter-level converting circuit which is an embodiment of the present invention c
  • FIG. 13 is a diagram showing another interlayer level conversion circuit which is an embodiment of the present invention c .
  • FIG. 14 is a diagram showing another interlayer level conversion circuit which is an embodiment of the present invention c
  • FIG. 15 is a diagram showing another logic circuit which is one mode of the present invention.
  • FIG. 16 is a diagram showing another power supply division unit which is an embodiment of the present invention.
  • FIG. 17 is a diagram showing another control circuit which is one mode of the present invention.
  • FIG. 18 is a diagram showing another voltage comparison circuit which is one mode of the present invention.
  • FIG. 19 is a diagram showing another timing circuit which is one mode of the present invention.
  • FIG. 20 is a diagram showing another dummy gate circuit which is one mode of the present invention.
  • FIG. 21 is a diagram showing another power supply division unit which is an embodiment of the present invention.
  • FIG. 22 is a diagram showing another control circuit which is one mode of the present invention.
  • FIG. 23 is a diagram showing another dummy gate circuit which is an embodiment of the present invention.
  • FIG. 24 is a diagram showing a signal processing circuit which is one mode of the present invention.
  • FIG. 25 is a diagram showing a system configuration of a mobile radio telephone. BEST MODE FOR CARRYING OUT THE INVENTION A representative best mode for carrying out the present invention will be described below.
  • FIG. 1 shows a circuit that divides a power supply voltage into a plurality (here, two) according to the present invention and operates a low screw width logic circuit in a plurality of (here, two) voltage layers.
  • the present circuit is configured as a semiconductor integrated circuit device formed on a single semiconductor substrate, and such a semiconductor integrated circuit device is mounted on a print substrate (wiring substrate) together with other semiconductor devices. is there.
  • reference numeral 1 denotes a power supply dividing unit that divides a power supply potential 2 as a first operating potential point into a ground potential 4 as a second operating potential point, and is mounted on a system or a printed circuit board.
  • the power supply voltage to be supplied to each layer is formed from the power supply potential 2 and the ground potential 4 supplied to the other semiconductor devices (the power supply potential 2 and the ground potential or the potential difference between them for the sake of simplicity of the following description).
  • the power supply voltage and the like formed by the power supply unit 1 are collectively referred to as an internal power supply voltage).
  • Reference numerals 5 and 6 denote relatively low-amplitude low-amplitude logic circuits that operate on the internal power supply voltage which is approximately 1Z2 of the external power supply voltage formed by the power supply division unit 1.
  • 5 is also called the first low-amplitude logic circuit or the first layer
  • 6 is also called the second low-amplitude logic circuit or the second layer.
  • Reference numeral 9 denotes a circuit for level-converting the signals output from the low-amplitude logic circuits 5 and 6 and returning the signals to the full amplitude (the amplitude of the external power supply voltage).
  • the provision of the level conversion circuit 9 allows a signal having a relatively low amplitude due to the internal power supply voltage to be converted into a signal having a full amplitude corresponding to the external power supply voltage, thereby facilitating the exchange of signals with the outside.
  • Reference numeral 10 denotes a full amplitude logic circuit which is connected to the external power supply voltage and outputs a full amplitude logic signal corresponding to the external power supply voltage.
  • the interlayer level conversion circuits 7 and 8 output the output of the first low-amplitude logic circuit that operates between the internal power supply voltages 2 and 3, which is set to about 1 external power supply voltage, between the internal power supply voltages 3 and 4.
  • an interlayer level conversion circuit enables signals to be exchanged between the first logic circuit 5 and the second logic circuit 6, and a random logic circuit or the like can be practically formed.
  • the power supply unit i is connected between the power supply potential 2 which is the external power supply voltage and the ground potential 4.
  • the intermediate potential 3 is formed by dividing the space into two, and the first layer where the first low-amplitude logic circuit is formed by the power supply potential 2 and the intermediate potential 3 is formed, and between the intermediate potential 3 and the ground potential 4 Creating a second layer on which a second low amplitude logic circuit is formed. Further, as described later, the power supply division unit 1 corrects the intermediate potential 3 using the clock 23 and the clock 24 delayed by 14 cycles thereof.
  • the low-amplitude logic circuits 5 and 6 operating in these two voltage layers receive an input signal 11 from an input terminal, perform logical processing on each of them, and output an output signal 43 or 44. These output signals 43 and 44 are input to the level conversion circuit 9.
  • the level conversion circuit 9 is connected to the power supply potential 2 and the ground potential 4, and converts the output signals 43, 44 output with substantially half the amplitude of the external power supply voltage to the full amplitude of the external power supply voltage and outputs it.
  • the output signal of this level conversion circuit 9 is output as it is to the outside, or is output from the output terminal 12 as an output signal after being subjected to predetermined processing by a full amplitude logic circuit 10 in the figure.
  • the interlayer level conversion circuits 7 and 8 receive the power supply potential 2, the ground potential 4 and the intermediate potential 3, respectively, and convert the level of the output signal of the first low-amplitude logic circuit 5 to obtain the second low-amplitude logic circuit 6. Also, it works so as to convert the level of the output signal of the second low-amplitude logic circuit 6 and supply it to the first low-amplitude logic circuit 5.
  • the power supply voltage can be effectively reduced by providing the power supply division unit, dividing the external power supply voltage, and providing the logic circuits in a stacked manner. It can be used and low-amplitude logic circuits can be used as internal logic circuits, thereby reducing power consumption.
  • the output of the low-amplitude logic circuit can be easily used in an external semiconductor device or the like that operates on the external power supply voltage. Can be used.
  • the same processing can be performed even when the processing to be performed by the low-amplitude logic circuit and the processing to be performed by the full-amplitude logic circuit are mixed.
  • the processing can be performed in the semiconductor device.
  • signals can be exchanged between the layers, and a logic circuit can be arranged on each layer regardless of whether signals are exchanged between the layers. , Efficient circuit design It becomes possible.
  • the present invention is not limited to this, and three or more layers can be used.
  • the power supply division unit divides the external power supply voltage into three or more and outputs two or more intermediate potentials. Also in this case, it is effective to arrange an interlayer level conversion circuit between each layer.
  • FIG. 2 is a configuration diagram of the power split unit 1.
  • the power supply division unit 1 includes capacitors 15 and 16 for dividing the power supply potential 2 and the ground potential 4 into two, and a dummy gate 14 and an intermediate potential 3 which are means for correcting the fluctuation of the intermediate potential 3. It consists of a control circuit 13 for observing and making the dummy gate follow the fluctuation.
  • the control circuit 13 observes the intermediate potential 3 and outputs control signals 17 and 18 at the timing obtained from the clock signals 23 and 24 based on the observation result.
  • the internal circuit operates based on, 18 and corrects the value of intermediate potential 3 to a normal value.
  • the capacitances of the capacitors 15 and 16 are substantially equal, and the value C can be obtained from the following equation 1 based on the average current consumption I, the voltage V divided into two, and the time constant T.
  • FIG. 3 is a configuration diagram of the control circuit 13.
  • This control circuit includes a voltage comparator 19 and a timing circuit 20.
  • the voltage comparator 19 observes the intermediate potential 3 and is supplied with the power supply potential 2, the ground potential 4 and the intermediate potential 3, and the potential difference between the power supply potential 2 and the intermediate potential 3 is determined by the intermediate potential 3 and the ground potential. It compares whether it is equal to the potential difference with the potential 4 and outputs the result as signals 21 and 22.
  • the timing circuit 20 outputs the outputs 21 and 22 of the voltage comparator 19 as control signals 17 and 18 for a certain time at a certain timing determined by the clocks 23 and 24, and outputs a dummy gate described later. Control.
  • FIG. 4 is a configuration diagram of the voltage comparator 19.
  • This voltage comparison circuit is composed of switches 27, 28, 31, 32, capacitors 29, 30 of almost the same capacity, a comparator 25, and a latch circuit 26.
  • the switches 27 and 28 are closed, the switch 31 is set to the power supply potential 2 side, the switch 32 is set to the intermediate potential 3 side, and the capacitor 29 is connected between the reference potential of the comparator 25 and the power supply potential 2.
  • the potential difference is stored, and the potential difference between the reference potential and the intermediate potential 3 is stored in the capacitor 30.
  • the switches 27 and 28 are opened, the switch 31 is set to the intermediate potential 3 side, and the switch 32 is set to the ground potential 4 side.
  • the potential difference between the power supply potential 2 and the intermediate potential 3 and the potential difference between the intermediate potential 3 and the ground potential 4 are input to the comparator 25.
  • the output 21 is high
  • the output 22 is high.
  • the latch circuit 26 sets the high level of the outputs 21 and 22 to the value of the power supply potential 2 and sets the level of L 0 w to the value of the ground potential 4. According to the configuration of this example, it is possible to compare the power supply voltages of the respective layers and output the result as a signal, and to correct the internal power supply voltage as described later.
  • FIG. 5 shows a configuration of the timing circuit 20 described in FIG.
  • This timing circuit is composed of a counter 33 that determines the timing of the correction process performed at regular intervals, an AND circuit 34 that determines the output timing and the time, and AND circuits 35 and 36 that output control signals 17 and 18. Is done.
  • the counter 33 counts a fixed number of pulses of the clock 23, and outputs "1" (for example, a high level signal) when the number of pulses reaches a fixed number.
  • This is ANDed by the AND circuit 34 with the clock 23 and the clock 24 to obtain a timing signal 37 which becomes "1" for only 1/4 cycle.
  • the AND circuits 35 and 36 synchronize the voltage comparator outputs 21 and 22 with the timing signal 37 and output them as control signals 17 and 18 having only one to four cycles. With such a configuration, in the present embodiment, it is possible to output control signals 17 and 18 for a fixed period according to the comparison result of the voltage comparator. Voltage fluctuations can be corrected.
  • FIG. 6 shows voltage correction means for maintaining the power supply voltage of each layer at an appropriate value in this example. This shows the configuration of a certain dummy gate. This dummy gate circuit is the power supply voltage
  • a current control gate 38 composed of a plurality of MOS transistors (here, NMOS transistors) connected in parallel between 2 and the intermediate potential 3, and connected in parallel between the intermediate potential 3 and the ground potential 4
  • a current control gate 39 composed of a plurality of MOS transistors (here, NMOS transistors).
  • the gate electrodes of these current control gates 38 and 39 are controlled by control signals 17 and 18 from the timing circuit, respectively, and the intermediate potential 3 is corrected by changing the amount of current flowing through each current control gate. Things. For example, if the control signal 17 becomes high level and the drain current of each transistor of the control gate 38 becomes large, the intermediate potential 3 rises, and conversely, the control signal 18 becomes high level and the control gate 39 becomes high. If the drain current of each transistor increases, the intermediate potential 3 drops. In particular, when stacking logic circuits using CM ⁇ ⁇ S, the internal power supply voltage of each layer, here the intermediate potential, fluctuates because the current such as the through current flowing through each layer is not constant.
  • the above problem can be solved by using a means for comparing the values of the power supply voltages of the respective layers and compensating the intermediate potential based on the results as in this example. Further, in this example, by providing the current control gate, the intermediate potential can be stabilized by a relatively simple method such as controlling the amount of current flowing through each layer.
  • Equation (2) can be obtained from the current amount i flowing around and the potential width V corrected at one time.
  • N (CV) / (i t) (Equation 2)
  • the control gate 17 is controlled by the control signal 17.
  • Drive 3 8 to add electric charge from power supply potential 2 to intermediate potential 3 to raise intermediate potential 3.
  • the control gate 39 is driven by the control signal 18, and charges are released from the intermediate potential 3 to the ground potential 5 to lower the intermediate potential 3.
  • FIG. 7 shows the low FIG. 3 shows a configuration of a level conversion circuit for converting a low-amplitude output signal from an amplitude logic circuit into a full-amplitude signal.
  • This level conversion circuit is composed of two level shifter circuits 41 and 42.
  • the level shifter circuit 41 receives the output signal 43 of the first low-amplitude logic circuit and is connected to the power supply potential 2 and the intermediate potential 3, and supplies the output signal 43 of the first-layer low-amplitude CMOS logic circuit 6 to the power supply.
  • the signal is output to the full amplitude logic circuit 10 as the full amplitude signal 45 instead of the voltage signal amplitude.
  • the level shifter circuit 42 receives the output signal 44 of the second low-amplitude logic circuit and is connected to the intermediate potential 3 and the ground potential.
  • the level shifter circuit 42 outputs the output signal 44 of the second-layer low-amplitude CMOS logic circuit 7 to the signal of the power supply voltage.
  • the signal is output to the full amplitude logic circuit 10 as the full amplitude signal 46 instead of the amplitude.
  • an output signal having an amplitude corresponding to the internal power supply voltage can be made an output signal corresponding to the external power supply voltage, and the signal can be transmitted to another external semiconductor device or the like. The exchange can be done easily.
  • FIGS. 8 and 9 show a level shifter circuit that can be employed as the level conversion circuit of this example.
  • the circuit shown in FIG. 8 is a circuit that has already been made in Japanese Patent Application Laid-Open No. 4-97616, but can be used as the level shifter circuit of this example.
  • the circuit in FIG. 8 converts a low-amplitude input signal 50 into an output signal 51 having a power supply level amplitude. More specifically, assuming that the input signal 50 is at a high level, a low-amplitude level 52 is applied to the NMOS transistor 56 and a low-amplitude Low level 53 is applied to the NMOS transistor 57. As a result, the ground potential 4 tends to be applied to both the PMOS transistors 54 and 55, but since the gate voltage of the NMOS transistor 56 is higher, the PM ⁇ S transistor 55 is higher than the PMOS transistor 54.
  • the transistor is turned on earlier, the voltage applied to the gate of the PMOS transistor 54 increases, the PMOS transistor 54 is not turned on, and the source potential of the PMOS transistor 54 becomes the ground potential 4 because the NMOS transistor 56 is on. In order to maintain this, the PMOS transistor 55 always keeps the ON state and fixes the output 51 to the power supply potential 2. Conversely, when the Low potential 53 is applied to the input 50, the PMOS transistor 54 is turned on first, and the output 5 1
  • FIG. 10 shows a specific example of the interlayer level conversion circuits 7 and 8 that can exchange signals between the respective layers shown in FIG.
  • FIG. 10 shows a circuit that performs signal conversion from the upper layer (the first low-amplitude logic circuit) to the lower layer (the second low-amplitude logic circuit).
  • This level conversion circuit is composed of an inverter 69 which operates at the potential of the input signal 66 and is connected to the power supply potential 2 and the intermediate potential 3 and two inverters which operate at the potential of the output signal 67 or 68. It comprises a latch circuit 70 connected to the ground potential 4 and diode-connected NMOS transistor groups 71 and 72 which are level shift means for lowering the signal amplitude by a threshold voltage (hereinafter referred to as Vth).
  • Vth threshold voltage
  • this interlayer level conversion circuit can be used also as a NOT circuit. If 68 is used, this interlayer level conversion circuit can be used as a simple interlayer level conversion circuit without a logical function. it can.
  • the number N of NMQS transistors used in the NMOS transistor groups 71 and 72 can be determined by Equation 3 based on Vth of the NMOS transistor and the voltage difference V between the layers for voltage conversion.
  • N V / V th (Equation 3)
  • the lower layer (low-amplitude logic circuit 6) and the upper layer (low-amplitude logic circuit 5) This is for level conversion, and receives the input signal 73, and shifts the level of the input and output values of the inverter circuit 76 connected to the intermediate potential 3 and the ground potential 4 and the inverter circuit 76.
  • This interlayer level conversion circuit performs the same circuit operation as the interlayer level conversion circuit shown in FIG.
  • FIG. 12 shows an inter-layer level conversion circuit that performs bidirectional level conversion from the upper layer to the lower layer and from the lower layer to the upper layer.
  • latch circuits 63, 6 composed of inverter circuits connected in series with input / output terminals 60, 61 and level shift means 6 for connecting the respective latch circuits.
  • the latch circuit 63 is connected to the power supply potential 2 and the intermediate potential 3
  • the latch circuit 64 is connected to the intermediate potential 35 and the ground potential 4
  • the level shift means 64, 65 are provided. It is composed of multiple NMOS transistors connected in diode. The operation of this circuit can be easily understood from the description of the operation of the interlayer level conversion circuit described above, and thus the description is omitted here. If this circuit is used, the interlayer level conversion circuits 7 and 8 shown in FIG. 1 can be shared by one circuit.
  • FIGS. 13 and 14 show other examples of the structure of the interlayer level conversion circuit. The description of the same parts as those of the level conversion circuits shown in FIGS. 10 and 11 will be omitted.
  • the circuits shown in FIGS. 13 and 14 are similar to the circuits shown in FIGS. 10 and 11 except that the level shift means of the conversion circuits shown in FIGS. 9 is used.
  • FIG. 15 shows an embodiment in which the number of power supply divisions is three.
  • the input signal 11 is processed by the low-amplitude circuit 105 operating at the voltage of the first layer created by the power supply unit 101, and then the signal is changed by the signal level conversion circuit 108.
  • the width is set to the potential of the second layer, and processed by the low-amplitude circuit 106 operating at the voltage of the second layer.
  • the signal amplitude is processed in the low-amplitude logic circuit 107 operated by the voltage of the third layer, and further converted to the full amplitude signal by the level shifter circuit 110.
  • the output signal 12 is processed by the full amplitude logic circuit 10.
  • FIG. 16 is a diagram showing a configuration of a power supply division unit # 01 for dividing the power supply into three parts in the logic circuit shown in FIG.
  • the power supply dividing unit 101 includes capacitors 117, 118, and 119 for dividing the power supply potential 2 and the Durand potential 4 into three, a dummy gate 114 for correcting fluctuations of the intermediate potentials 103 and 104, and an intermediate potential 103. , 104, and a control circuit 113 for causing the dummy gate to follow the fluctuation.
  • the control circuit 113 observes the intermediate potentials 103 and 104, and outputs control signals 120, 121, 122 and 123 at the timing obtained from the clock signals 23 and 24 based on the observation results, and outputs the dummy gate 1 14 Operates the internal circuit based on the control signals 120, 121, 122, 123, and corrects the values of the intermediate potentials 103, 104 to normal values.
  • the capacities of the capacitors 1 17, 1 18, 1 19 are almost equal, and the value C can be obtained by the above-mentioned formula 1 as in the configuration example in the case of dividing by 2.
  • FIG. 17 shows the configuration of the control circuit shown in FIG.
  • This control circuit is composed of two voltage comparators 124, 125 and a timing circuit 126.
  • the voltage comparator 124 observes the intermediate potential 103, compares whether the potential difference between the power supply potential 2 and the intermediate potential 103 is half of the potential difference between the intermediate potential 103 and the ground potential 4, and outputs the result as a signal. Output as 127 and 128.
  • the voltage comparator 125 observes the intermediate potential 104, and compares whether the potential difference between the power supply potential 2 and the intermediate potential 104 is twice as large as the potential difference between the intermediate potential 104 and the ground potential 4. The result is output as signals 129 and 130.
  • the timing circuit 126 uses the outputs 127, 128, 129, 130 of the two voltage comparators 124, 125 as control signals 120, 122, 122, 123 at a fixed timing determined by the clocks 23, 24. Output for a certain period of time.
  • Observing the power supply voltage of each layer can also be realized by providing a voltage comparator that compares the voltage for each layer.However, as in this circuit, the potential difference of the lower layer is the difference between the potential difference of the upper layer and the middle layer. Observe whether it is half or not, By observing whether or not the potential difference of the upper layer is half of the potential difference of the middle layer and the lower layer, the voltage of each layer can be measured with a small number of voltage comparators.
  • FIG. 18 is a block diagram of the voltage comparators 124 and 125.
  • This comparator is composed of switches 138, 1339, 143, 144, 145, 146, capacitors 140, 141, and 142 of the same capacity, a comparator 136, and a latch circuit 137.
  • switches 138 and 139 are closed, switch 145 is set to the input potential 147 side, and switches 143 and 144 are used so that the two capacitors 144 1 and 142 become parallel.
  • the switch 146 is set to the input potential 148 side, the capacitor 140 stores the potential difference between the reference potential of the comparator 136 and the input potential 147, and the capacitors 141 and 142 store the reference potential and the input potential. Save the potential difference from 148.
  • the switches 1 3 8 and 1 3 9 are opened and the switch 1 45 is set to the input potential 148 side.
  • the two capacitors 141 and 142 are connected in series by the switches 143 and 144, and the switch 146 is set to the input potential. 1 Set to the 49 side.
  • the potential difference between the input potentials 147 and 148 and twice the potential difference between the input potentials 148 and 149 are input to the comparator 1336.
  • output 150 will be high
  • twice the potential difference between input potentials 148 and 149 is greater, output 15 1 will be high.
  • the latch circuit 1337 sets the levels of the outputs 150 and 151 to the value of the power supply potential 2 and the level of Low to the value of the ground potential 4.
  • the power supply potential 2 becomes the input potential 147
  • the intermediate potential 103 becomes the input potential 148
  • the ground potential 4 becomes the input potential 1 4 It becomes 9.
  • the output 150 is used as the output 127 in FIG. 17, and the output 151 is used as the output 128.
  • the power supply potential 2 becomes the input potential 149
  • the intermediate potential 104 becomes the input potential 148
  • the ground potential 4 becomes the input potential 147.
  • the output 150 is used as the output 130 in FIG. 17, and the output 151 is used as the output 129.
  • FIG. 19 shows the configuration of the timing circuit 126 shown in FIG.
  • This timing circuit is a counter that determines the timing of the correction process performed at regular intervals. 52, an AND circuit 153 for determining the output timing and its time, and AND circuits 154, 155, 156, 157 for outputting the control signals 120, 121, 122, 123.
  • the counter 152 operates similarly to the counter 33 shown in FIG. 5, and the AND circuit 153 operates similarly to the counter 33 shown in FIG. 5 to generate the timing signal 158.
  • the AND circuits 154, 155, 156 and 157 synchronize the voltage comparator outputs 127, 128, 129 and 130 with the timing signal 158 in the same manner as the AND circuits 35 and 36 in FIG. Are output as control signals 120, 121, 122, and 123.
  • FIG. 20 shows the configuration of a dummy gate.
  • This dummy gate is composed of current control gates 161, 162, 163, 164, 165, 166 composed of a plurality of NMOS transistors.
  • the control gate 161 of this dummy gate raises the potential of the intermediate potential 103 by the control signal 120, and the control gates 162, 164 raise the intermediate potential 104 in conjunction with the control signal 122.
  • the control gates 163 and 165 lower the intermediate potential 103 in conjunction with the control signal 121, and the control gate 166 lowers the intermediate potential 104 according to the control signal 123.
  • the number N of the NMOS transistors constituting each control gate can be obtained from the equation 2 as in the case of the dummy gates 38 and 39 in FIG.
  • the control gate 161 is driven by the control signal 120 and the electric charge is added to the intermediate potential 103 from the power supply potential 2 to apply the intermediate potential. Raise 103.
  • the control signal 121 drives the control gate 162 and the control gate 164, and the intermediate potential 103 releases the electric charge to the ground potential 4 to generate the intermediate potential 103. Lower it.
  • the control signal 122 drives the control gate 163 and the control gate 166, and applies a charge to the intermediate potential 104 from the power supply potential 2 to generate the intermediate potential 104. To raise.
  • the control gate 166 is driven by the control signal 123 to discharge the electric charge from the intermediate potential 104 to the ground potential 4 to lower the intermediate potential 104.
  • FIG. 21 shows another configuration example of the power supply unit.
  • the power supply is divided into three
  • This power dividing unit comprises capacitors 1 1, 1 1 8, 1 19, a control circuit 170, and dummy gates 171, 172, 173 for dividing the power into three.
  • the intermediate potentials 103 and 104 which are divided into three by the capacitors 1 17 and 1 18 and 1 19, are converted into control signals 174 and 175 output from the control circuit 170.
  • 176 operate the dummy gates 171, 172, 173 to stabilize.
  • FIG. 22 shows the configuration of the control circuit 170 of FIG.
  • This control circuit comprises a frequency divider 181, a loop counter 182, an AND circuit 183, a ROM 180, and a timing gate 184.
  • the clock signal 23 is frequency-divided by the frequency divider 18 1 by a certain number.
  • the loop counter 18 2 is counted up by 18 5 and the value of this counter is stored in the address 1 of the ROM 180. Used as 86, the value of ROM 180 is divided into three, and output as control signals 174, 175, 176 by timing gate 184.
  • the timing gate 184 outputs the output timing by the timing signal 187 obtained by ANDing the value 185 obtained by dividing the clock 23 with the frequency divider 18 1 by 1Z4 cycle from the clock 23 with the clock 24 by the AND circuit 183. Is determined.
  • the amount of current flowing through the logic circuits arranged in each layer is grasped in advance by a method such as simulation, instead of compensating for each intermediate potential by comparing the voltage of each layer with a voltage comparator. This is effective in such a case, and controls to equalize the current amount of each layer at each timing according to the data stored in the memory (ROM) in advance.
  • FIG. 23 shows the configuration of the dummy gates 171, 172, 173.
  • the dummy gates 171, 172 and 173 are composed of N NMOS transistors and are operated by control signals 174, 175 and 176 respectively.
  • the control signals 174, 175, and 176 are N-bit signals. Each bit corresponds to the NOMS transistor in the dummy gate, and the number of NOMS transistors depends on the "1" and "2" of each bit. Can be specified.
  • FIG. 24 shows a configuration in which the logic circuit according to the present invention is applied to a DSP (Digital Signal Processor) as a signal processing circuit or a microphone computer. Show.
  • DSP Digital Signal Processor
  • FIG. 24 illustrates an example in which a logic circuit in which an external power supply voltage is divided into three internal power supply voltages is used.
  • the signal processing circuit of this example is a semiconductor integrated circuit (LSI) formed on a single semiconductor substrate, and constitutes a system such as a computer system with other semiconductor devices. is there.
  • LSI semiconductor integrated circuit
  • the DSP consists of a RAM matrix (memory cell array) 201 in which predetermined data required for signal processing is stored and a ROM matrix (memory cell array) 202 in which instructions are stored.
  • the arithmetic unit (EX) 203, the address arithmetic unit (AU) 204, and the I / unit 205, which serves as an interface with the outside, and the ROM matrix that perform predetermined arithmetic operations in accordance with the It consists of an instruction decoder 206 that decodes the executed instructions, a program control unit (PCU) 207 that controls the execution of the program, a RAM sense amplifier 208, and an address decoder 209. .
  • PCU program control unit
  • the I / O unit 205 operates at a so-called full amplitude (amplitude corresponding to the external power supply voltage) to maintain an interface with external circuits such as other semiconductor devices. Is desirably configured to be output. In addition, both the RAM matrix 201 and the ROM matrix 202 operate at full amplitude in the same manner as the I / O unit 205 in consideration of the accuracy and access speed of the stored information. It is desirable to have such a configuration.
  • the bus 220 for transmitting information such as data is connected to a plurality of circuit blocks and needs to transmit data of each circuit block.
  • the bus 220 for transmitting information such as data is connected to a plurality of circuit blocks and needs to transmit data of each circuit block.
  • the arithmetic unit 203 Since the arithmetic unit 203 performs a predetermined arithmetic operation, the number of accesses to the bus 220 is the largest. Therefore, it is necessary to have the same amplitude as the bus. In this case, since the amplitude of the bus 220 is regarded as the amplitude of the second layer for the reason described above, the arithmetic unit 203 is also formed in the second layer, and the amplitude according to the power supply voltage of the second layer is obtained. Input and output signals To be.
  • the sense amplifier 208 that amplifies the output of the RAM matrix that stores data necessary for the operation accesses only the bus 220, it is preferable that the sense amplifier 208 be configured with the same amplitude as the bus 220, that is, the second layer in the middle.
  • the addressing unit 204 and the instruction decoder 206 remain. However, if these are arranged on the same layer, the circuit scales of both are too large, so it is desirable to use separate layers. Here, they are assigned to the first and third layers, respectively.
  • the addressing unit 204 has a smaller circuit scale than the instruction decoder 206, another PCU is also used as the first layer.
  • the RAM address decoder 209 since the RAM address decoder 209 is accessed only from the AU 204, it is the first layer, and sends an address to the RAM matrix 201 via the level conversion circuit 212.
  • the ROM matrix address decoder 210 Since the ROM matrix address decoder 210 is also accessed only from the PCU 207, the ROM decoder sends the address to the ROIV [Matritas] through the level conversion circuit 213 as the first layer.
  • the ROM matrix sense amplifier 214 accesses only the instruction decoder 206, it is a third layer.
  • the bus drive circuit 219 for outputting the value of the external I ⁇ to the bus 220 has the same second layer as the bus 220, and does not require an interlayer level conversion circuit.
  • the signal processing circuit By configuring the signal processing circuit with a multi-layer power supply logic circuit as described above, It is possible to efficiently form a low-power signal processing circuit.
  • FIG. 25 is a diagram schematically showing the system of the mobile radio telephone as described above.
  • the speech encoding / decoding circuit 2 3 4 and the like are configured using the logic circuit of the multi-layer power supply according to the present invention. Therefore, a modem circuit 235 that requires a relatively high external power supply voltage and a logic circuit that can operate with a relatively low power supply voltage can coexist, and from the viewpoint of the scale and power consumption of the system, It is also possible to configure a suitable signal processing system such as a mobile radio telephone.
  • the present invention can be applied to a logic circuit using CMOS, particularly to a CMOS logic circuit operating at low voltage. Further, when the external power supply voltage of the semiconductor integrated circuit constituting the logic circuit is high, a CMOS logic circuit operating at a low voltage can be efficiently configured. Furthermore, by using the present invention, a simple signal processing circuit with low power consumption and a simple system configuration can be configured.

Abstract

A CMOS logic circuit which efficiently uses the relatively high power supply voltage of the system and consumes less electric power. The CMOS circuit is divided into a plurality of circuit blocks (5 and 6) and is formed on layers so as to divide the power supply voltage. A power supply voltage stabilizing unit (1) is provided for each layer and level converting circuits (7 and 8) for transferring signals. The power consumption of a system requiring a relatively high power supply voltage can be reduced without increasing the circuit scale by using a low-voltage CMOS logic circuit constituted of random logics, etc.

Description

明 細 書 半導体集積回路装置及び信号処理装置 技術分野  Description Semiconductor integrated circuit device and signal processing device
本発明は低電圧動作の C MO S論理回路に関するもので、 特に論理回路を構成 する半導体集積回路に供給される電源電圧が高く、 その電源電圧を分割して C M 〇 S論理回路を低電圧で動作させる技術に関する。 背景技術  The present invention relates to a CMOS logic circuit that operates at a low voltage. In particular, a power supply voltage supplied to a semiconductor integrated circuit that constitutes a logic circuit is high, and the power supply voltage is divided so that a CM〇S logic circuit can be operated at a low voltage. Related to operating technology. Background art
従来、 複数の回路ブロックを、 単一のプリント基板上に複数の半導体集積回路 ( L S I ) を用いて構成する場合などには、 その電源電圧はシステム内でもっと も高い電源電圧を必要とする回路の電圧に合わせて供給されている。  Conventionally, when a plurality of circuit blocks are configured using a plurality of semiconductor integrated circuits (LSIs) on a single printed circuit board, the power supply voltage of the circuit requires the highest power supply voltage in the system. It is supplied according to the voltage of.
第 2 5図は一般的な携帯電話の構成を示している。 図中の 2 3 6は無線信号を 受けまたは発信するアンテナ、 2 3 5はアンテナからの高周波信号を復調等する 変復調回路、 2 3 4は音声信号の符号化復号化を行う音声符号化復号化回路、 2 3 2は音声符号化復号化回路からのディジタル信号をアナ口グ信号に変換し又は アナログ信号をディジタル信号に変換する AZD, D /A変換器、 2 3 0は AZ D , D ZA変換器の出力を再生するスピーカ、 2 3 1は送信する音声信号をとら えるマイクロフォンを示している。 特に制限されないが、 AZD, D ZA変換器 FIG. 25 shows the configuration of a general mobile phone. In the figure, reference numeral 236 denotes an antenna for receiving or transmitting a radio signal, reference numeral 235 denotes a modulation / demodulation circuit for demodulating a high-frequency signal from the antenna, and reference numeral 234 denotes audio coding / decoding for encoding / decoding an audio signal. AZD, D / A converter for converting a digital signal from an audio encoding / decoding circuit into an analog signal or an analog signal into a digital signal, and 230 for AZD, DZA A speaker that reproduces the output of the converter and a microphone 23 that captures the audio signal to be transmitted are shown. Although not particularly limited, AZD, D ZA converter
2 3 2、 音声符号化複号化回路 2 3 4、 変復調回路 2 3 5はそれぞれ半導体集積 回路装置で構成され、 プリント基板上に実装されるものであり、 かかるプリント 基板にシステムの電源電圧 (外部電源電圧) として電源電位 2 3 7と接地電位 22 32 2, the voice coding and decoding circuit 2 3 4 and the modulation and demodulation circuit 2 3 5 are each composed of a semiconductor integrated circuit device and mounted on a printed circuit board. The system power supply voltage ( Power supply potential 2 3 7 and ground potential 2
3 8が供給されている。 3 8 have been supplied.
このようなシステムの場合、 システムの電源電圧 (2 3 7、 2 3 8 ) はシステ ム中で最も高い電源電圧が必要な回路プロックに合わせて供給されるよう構成さ れる。 例えば、 図中 AZ D, D ZA変換器 2 3 2は現在電源電圧が 3 Vで動作す るものが実用化されており、 更に低電圧化が可能であると考えられている。 また 音声符号化復号回路 2 3 4の様な C M〇 S論理回路は現在 3 V動作であるが、 1 V動作も研究開発が行われており、 現段階においても 3 Vより更に低い電圧でも 動作可能である。 しかし高周波無線回路 2 3 5は、 回路技術よりもその無線性能 の観点より、 3 V以下は実用的でない。 また携帯電話はその用途上極めて小型化 が重要な要素である為、 極力回路規模を小さくする必要上、 電源電圧は 1種類で あることが望ましい。 このため、 これらのシステムには、 電源電圧 2 3 7 (シス テムの動作電位点) に高周波無線回路 2 3 5に必要な 3 Vを入れグランド 2 3 8 (システムの動作電位点) との間で全ての回路を動作させることになり、 本来比 較的低い動作電圧で動作可能な回路プロックまでもが、 高い電源電圧を必要な回 路ブロックのために、 高い電源電圧の供給を受けるという不都合が生じている。 これに対し、 回路の電源電圧を分割することによって、 電源電圧の効率的利用 を図る従来の技術としては、 バイポーラ トランジスタを用いた I I L論理回路を 積層する技術が特開昭 5 0 - 7 8 2 6 8号公報 (従来技術 1 ) に、 M O Sを用い たものとして特開昭 6 2 - 1 0 5 4 6 3号公報 (従来技術 2 ) 、 特開昭 6 2 - 2 5 0 7 2 0号公報 (従来技術 3 ) 、 特開平 4 - 1 0 9 7 2 0号公報 (従来技術 4 ) 、 特開平 4 - 3 1 5 3 1 3号公報 (従来技術 5 ) 及び" Low- Power On-Chip Supply Voltage Conversion Scheme for Ultrahigh -Density DRAM' s" (IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 28, No. 4, APRIL 1993) (従来技術 6 ) 等が知られて いる。 発明の開示 In such a system, the system power supply voltage (237, 238) is configured so that the highest power supply voltage in the system is supplied in accordance with the required circuit block. For example, in the figure, the AZD and DZA converters 232 that currently operate at a power supply voltage of 3 V have been put into practical use, and it is thought that further lowering of the voltage is possible. Also, the CM〇S logic circuit such as the voice encoding / decoding circuit 2 3 4 operates at 3 V at present. Research and development is also underway on V operation, and it can operate at voltages lower than 3 V even at this stage. However, the high-frequency radio circuit 235 is not practical at 3 V or less from the viewpoint of its radio performance rather than circuit technology. In addition, since miniaturization is an important factor in mobile phones, it is desirable to use only one kind of power supply voltage in order to minimize the circuit scale. Therefore, in these systems, 3 V required for the high-frequency radio circuit 235 is supplied to the power supply voltage 237 (operating potential point of the system), and the ground is connected to 238 (operating potential point of the system). In this case, all circuits operate, and even circuit blocks that can be operated at relatively low operating voltages are disadvantageous in that they receive high power supply voltages due to circuit blocks that require high power supply voltages. Has occurred. On the other hand, as a conventional technique for efficiently using a power supply voltage by dividing a power supply voltage of a circuit, a technique of stacking IIL logic circuits using bipolar transistors is disclosed in Japanese Patent Laid-Open No. 50-7882. No. 68 (Prior Art 1), Japanese Patent Application Laid-Open No. 62-105463 (Prior Art 2), Japanese Patent Application Laid-open No. 62-25070 Gazette (Prior art 3), Japanese Patent Laid-Open No. 4-10972 (Prior art 4), Japanese Patent Laid-Open No. 4-315153 (Prior art 5) and "Low-Power On-Chip" A supply voltage conversion scheme for Ultrahigh-Density DRAM's "(IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 28, No. 4, APRIL 1993) (prior art 6) is known. Disclosure of the invention
近年の携帯端末等の開発では、 システムの小型化同様低消費電力化が求められ ている。 また低消費電力化手段としては、 各回路ブロックを低電圧回路を用いて 低消費電力化する技術が広く用いられているが、 上述のように、 低電圧化出来な い回路がシステム内にある場合、 システム内の低電圧化可能の C M〇 S論理回路 でも、 低電圧化することが出来なくなる。 またシステムの電源電圧を複数準備す ることは、 システムの小型化を妨げる要因となる。  In recent years, development of portable terminals and the like requires low power consumption as well as system miniaturization. As a means for reducing power consumption, a technique for reducing the power consumption of each circuit block using a low-voltage circuit is widely used, but as described above, there are circuits in the system that cannot reduce the voltage. In this case, even the CM〇S logic circuit that can lower the voltage in the system cannot lower the voltage. Also, preparing multiple system power supply voltages is a factor that hinders miniaturization of the system.
これに対し、 上述したような従来の技術が知られているが、 従来技術 1のよう なバイポーラ トランジスタ回路を積層する場合の技術は、 パルス状の貫通電流が 回路を流れる C M O S回路にそのまま適用することができない。 貫通電流の流量 が一定ではないため、 各層間の電源電圧 (電位差) を一定に保持できないためで ある。 On the other hand, although the above-described conventional technologies are known, the technology of laminating bipolar transistor circuits as in the conventional technology 1 is directly applied to a CMOS circuit in which a pulse-like through current flows through the circuit. Can not do. Through current flow rate Is not constant, and the power supply voltage (potential difference) between the layers cannot be kept constant.
また、 従来技術 6のように MO Sを用いた回路であっても、 D R AM (ダイナ ミック ♦ランダム 'アクセス 'メモリ) などのメモリのように積層した上層と下 層の電流量がほぼ一定の回路であれば回路を積層して各層間でシステムの電源電 圧を分割した比較的低い電源電圧を用いることもできるが、 プロセッサやランダ ムロジック回路などの論理回路では電源の分割手段と分割して得られた電圧の安 定化回路が必要となる。  In addition, even in a circuit using MOS as in the prior art 6, even if the stacked upper and lower layers have a substantially constant current amount like a memory such as DRAM (dynamic random access memory). If the circuit is a circuit, it is possible to use a relatively low power supply voltage by laminating the circuits and dividing the system power supply voltage between each layer.However, in logic circuits such as processors and random logic circuits, it is necessary to divide the power supply voltage by means of power supply division means. A circuit for stabilizing the obtained voltage is required.
残る従来技術では、 電源の分割を電圧フォロワで行っており、 電源の分割回路 での消費電力が増大し、 初期の目的である低消費電力化の妨げとなるおそれがあ る。  In the remaining conventional technology, the power supply is divided by a voltage follower, and the power consumption of the power supply dividing circuit increases, which may hinder the initial purpose of reducing power consumption.
さらに、 これらの従来技術では各層に配置された回路は並列に動作することが 前提とされており、 各層での処理の結果がそのまま電源レベル振幅の出力となつ ており、 プロセッサ回路等のように各層に配置された回路間での信号の授受が必 要な回路については考慮されていない。  Furthermore, in these conventional techniques, it is assumed that the circuits arranged in each layer operate in parallel, and the result of the processing in each layer is directly output as the power supply level amplitude, such as a processor circuit. Circuits that need to exchange signals between circuits arranged in each layer are not considered.
本発明は、 低電圧動作可能の C M O S論理回路と同一のシステム内に低電圧動 作不可能な回路がある場合でも、 前記低電圧動作可能の C MO S論理回路におい てシステムの小型化を保持しつつ低電圧動作が行え、 更にはプロセッサ回路等の 低電圧動作の C M〇 S論理回路相互間の信号の授受を必要とする回路においても、 それを可能とする手段を提供することを目的とする (なお、 説明の簡便のため以 下 M O Sという場合には、 ゲート絶緣膜に酸化膜以外のものを用いる M I Sをも 含むものとして説明する) 。  The present invention maintains the miniaturization of a CMOS logic circuit capable of operating at a low voltage even when there is a circuit capable of operating at a low voltage in the same system as a CMOS logic circuit capable of operating at a low voltage. Another object of the present invention is to provide a means for enabling low-voltage operation while performing a low-voltage operation, such as a processor circuit, in a circuit that requires transmission and reception of signals between CM〇S logic circuits. (In addition, for the sake of simplicity of description, the following MOS will be described as including a MIS using a gate insulating film other than an oxide film.)
本発明の代表的な形態による半導体集積回路は、  A semiconductor integrated circuit according to a representative embodiment of the present invention includes:
第 1の動作電位 (例えば 3 . 0 V ) と第 2の動作電位(例えば、 0 . 0 V )と力 供給され、 該第 1の動作電位と該第 2の動作電位から両電位と異なる第 3の動作 電位(例えば 1 . 5 V)を出力する電源分割ユニット (1 ) と、 上記第 1の動作電 位と上記第 3の動作電位との間で動作し、 相補型電界効果型トランジスタで構成 された第 1の論理回路 (5 ) と、 上記第 3の動作電位と上記第 2の動作電位との 間で動作し、 相補型電界効果型トランジスタで構成された第 2の論理回路 (6 ) と、 上記第 1の論理回路の出力信号の振幅を変換し上記第 2の論理回路に入力す るレベル変換回路 (?) とを有して構成される。 A first operating potential (for example, 3.0 V) and a second operating potential (for example, 0.0 V) are supplied, and the first operating potential and the second operating potential are different from both potentials. A power supply division unit (1) that outputs an operating potential (for example, 1.5 V) of the third operating potential, and operates between the first operating potential and the third operating potential. A first logic circuit (5) configured between the third operating potential and the second operating potential, and a second logic circuit (6) configured by complementary field-effect transistors. ) And a level conversion circuit (?) For converting the amplitude of the output signal of the first logic circuit and inputting the converted signal to the second logic circuit.
これにより、 比較的高い外部電源電圧から比較的低い電源電圧で動作する論理 回路を合理的に構成することができる。 さらに、 第 1の論理回路と第 2の論理回 路の間にレベル変換回路を有することにより、 振幅に異なる各論理回路の間で信 号のやりとりが可能となる。  This makes it possible to rationally configure a logic circuit that operates from a relatively high external power supply voltage to a relatively low power supply voltage. Further, by having a level conversion circuit between the first logic circuit and the second logic circuit, signals can be exchanged between the logic circuits having different amplitudes.
本発明の代表的な他の形態による半導体集積回路はさらに、  A semiconductor integrated circuit according to another representative embodiment of the present invention further includes:
第 1の動作電位及び第 2の動作電位に接続された第 3の論理回路 (1 0 ) を有 して構成される。  It has a third logic circuit (10) connected to the first operating potential and the second operating potential.
これにより、 比較的高い電源電圧が必要とされる論理回路が存在する場合でも、 単一の半導体基板上に各論理回路を共存させることができる。  Thus, even when there is a logic circuit requiring a relatively high power supply voltage, each logic circuit can coexist on a single semiconductor substrate.
本発明の代表的な他の形態による半導体集積回路は、  A semiconductor integrated circuit according to another representative embodiment of the present invention includes:
上記電源分割ユニットを、 第 3の電位を検出する手段 (1 9 ) と、 第 3の動作 電位を補正する手段 (1 4 ) とを有して構成される。 これにより、 内部電源電圧 を構成する第 3の動作電位を安定に供給することが可能となる。  The power supply division unit is configured to include means (19) for detecting a third potential and means (14) for correcting a third operating potential. This makes it possible to stably supply the third operating potential constituting the internal power supply voltage.
本発明の代表的な他の形態による半導体集積回路は、  A semiconductor integrated circuit according to another representative embodiment of the present invention includes:
上記レベル変換回路を、 上記第 1の論理回路の出力信号のレベルをシフトする レベルシフ ト手段 (7 1, 7 2 ) と、 上記レベルシフ ト手段を介して上記出力信 号を受けるラッチ回路 (7 0 ) とを有し、 上記ラッチ回路は上記第 3の動作電位 及び上記第 2の動作電位の間で動作するよう構成される。 このように、 本願発明 によれば、 比較的簡便な回路構成により第 1の論理回路と第 2の論理回路を結ぶ レベル変換回路を実現することができる。  The level conversion circuit includes a level shift means (71, 72) for shifting the level of the output signal of the first logic circuit, and a latch circuit (70) for receiving the output signal via the level shift means. ), Wherein the latch circuit is configured to operate between the third operating potential and the second operating potential. As described above, according to the present invention, a level conversion circuit that connects the first logic circuit and the second logic circuit can be realized with a relatively simple circuit configuration.
本発明の代表的な他の形態による半導体集積回路は、  A semiconductor integrated circuit according to another representative embodiment of the present invention includes:
第 1の動作電位点 (2 ) と第 2の動作電位点 (4 ) に接続され、 該両電位点の 電位とは異なる電位を供給する第 3の動作電位点 (1 0 3 ) 及び第 4の動作電位 点 (1 0 4 ) を具備する電源分割ユニット (1 0 1 ) と、 上記第 1の動作電位点 及び上記第 3の動作電位点に接続された第 1の論理回路 (1 0 5 ) と、 上記第 3 の動作電位点及び上記第 4の動作電位点に接続された第 2の論理回路 (1 0 6 ) と、 上記第 4の動作電位点及び上記第 2の動作電位点に接続された第 3の論理回 路 (107) と、 上記第 1の論理回路と上記第 2の論理回路の間に接続される第 1のレベル変換回路 ( 1 08) と、 上記第 2の論理回路と上記第 3の論理回路 の間に接続される第 2のレベル変換回路 (109) と有し、 上記第 1のレベル変 換回路は、 上記第 1の論理回路の出力信号を上記第 3の動作電位点及び上記第 4 の動作電位点に対応した振幅に変換し、 上記第 2のレベル変換回路は、 上記第 2 の論理回路の出力信号を上記第 4の動作電位点及び上記第 2の動作電位点に対応 した振幅に変換するよう構成される。 A third operating potential point (103), which is connected to the first operating potential point (2) and the second operating potential point (4) and supplies a potential different from the potentials of the two operating potential points, and a fourth operating potential point (104). Power supply division unit (101) including the operating potential point (104), and a first logic circuit (105) connected to the first operating potential point and the third operating potential point. ), A second logic circuit (106) connected to the third operating potential point and the fourth operating potential point, and a second logic circuit (106) connected to the fourth operating potential point and the second operating potential point. Connected third logical times (107), a first level conversion circuit (108) connected between the first logic circuit and the second logic circuit, a second logic circuit and the third logic circuit, And a second level conversion circuit (109) connected between the first logic circuit and the fourth logic circuit. The first level conversion circuit outputs the output signal of the first logic circuit to the third operating potential point and the fourth The second level conversion circuit converts the output signal of the second logic circuit into an amplitude corresponding to the fourth operating potential point and the second operating potential point. Is configured to be converted to
このように、 本発明によれば、 外部電源電圧を 3つ以上に分割して論理回路を 構成することが可能となる。 また、 各層間で信号の授受を行うためレベル変換回 路が設けられてる。  As described above, according to the present invention, it is possible to configure the logic circuit by dividing the external power supply voltage into three or more. Also, a level conversion circuit is provided for transmitting and receiving signals between the layers.
本発明の代表的な他の形態による半導体集積回路はさらに、  A semiconductor integrated circuit according to another representative embodiment of the present invention further includes:
電源分割ュニットを、 上記第 1の動作電位点 ( 2 ) と上記第 4 (104) の動 作電位点との電位差である第 1の電位差と、 上記第 1動作電位点 ( 2 ) と上記第 3動作電位点 (103) との電位差である第 2の電位差を検出し、 上記第 1の電 位差の半分の値と上記第 2の電位差を比較する第 1の比較回路 (124) と、 上 記第 3の動作電位点と上記第 2の動作電位点との電位差である第 3の電位差と、 上記第 3動作電位点と上記第 2動作電位点との電位差である第 4の電位差を検出 し、 上記第 3の電位差の半分の値と上記第 4の電位差を比較する第 2の比較回路 (125) と、 上記第 1及び第 2の比較回路の比較結果に基づき上記第 3及び第 4の動作電位点の電位を補正するよう構成される。 これにより、 各動作電位点の 電位を安定に維持することができ、 さらに、 少ない電圧比較回路により各動作電 位の検出を行うことが可能となる。  The power supply unit is divided into a first potential difference, which is a potential difference between the first operating potential point (2) and the fourth (104) operating potential point, a first operating potential point (2), and the first operating potential point (2). (3) a first comparison circuit (124) for detecting a second potential difference, which is a potential difference from the operating potential point (103), and comparing a half value of the first potential difference with the second potential difference; A third potential difference, which is a potential difference between the third operating potential point and the second operating potential point, and a fourth potential difference, which is a potential difference between the third operating potential point and the second operating potential point. A second comparison circuit (125) for detecting and comparing a half value of the third potential difference with the fourth potential difference, and the third and second comparison circuits based on a comparison result of the first and second comparison circuits. 4 is configured to correct the potential at the operating potential point. Thus, the potential of each operating potential point can be stably maintained, and each operating potential can be detected with a small number of voltage comparison circuits.
本発明の代表的な他の形態による半導体集積回路は、  A semiconductor integrated circuit according to another representative embodiment of the present invention includes:
電源分割ユニット (101) を、 所定のタイミングであらかじめ記億された制 御信号を出力する制御回路 (1 70) と、 該制御回路の制御信号をそのゲート電 極に受けるとともに各動作電位点間に接続されたトランジスタ (1 71) とを有 し、 上記制御信号により上記トランジスタに流れる電流量を制御するよう構成さ れる。 これにより、 予め各層の論理回路での電流量が把握できている場合に簡単 な構成により各層の電流量を補正し中間電位を安定化することが可能となる。 本発明の代表的な他の形態による半導体集積回路は、 A power supply dividing unit (101) is connected to a control circuit (170) that outputs a control signal stored in advance at a predetermined timing, receives a control signal of the control circuit at its gate electrode, and connects each operating potential point. And a transistor connected to the transistor (171), and configured to control the amount of current flowing through the transistor by the control signal. This makes it possible to correct the amount of current in each layer and stabilize the intermediate potential with a simple configuration when the amount of current in the logic circuit in each layer is known in advance. A semiconductor integrated circuit according to another representative embodiment of the present invention includes:
外部電源電圧に対応した第 1の振幅で動作する第 1の回路群と、 上記外部電源 電圧を分割し少なくとも 3つの内部電^電圧を作成する回路と、 上記 3つの内部 電源電圧に対応した第 2の振幅、 第 3の振幅、 第 4の振幅で動作する第 2、 第 3、 第 4の回路群と、 上記各回路群間の信号伝送にかかわるバスとを有し、 上記第 1 の回路群は、 外部から信号を受け、 該信号を上記バスに供給するインターフ-ィ ス回路 (2 0 5 ) を有し、 上記第 3の回路群は、 上記バスに接続され、 上記バス を介して受けるデータにたいして所定の演算を行う演算ユニット (2 0 3 ) を有 して構成される。 このようにマイクロプロセッサ等を構成することにより、 外部 とのィンターフェスを保ちつつ内部では低電圧で動作する論理回路を用いること ができる。 また、 バスに頻繁にアクセスする演算ユニットを第 3の振幅を有する 回路で構成することにより余計なレベル変換回路を用いずに効率的な構成とする ことができる。  A first circuit group that operates at a first amplitude corresponding to the external power supply voltage, a circuit that divides the external power supply voltage to generate at least three internal power supply voltages, and a first circuit group that supports the three internal power supply voltages. A second, a third, and a fourth circuit group operating at an amplitude of 2, a third amplitude, and a fourth amplitude; and a bus related to signal transmission between the circuit groups, and the first circuit. The group includes an interface circuit (205) that receives a signal from the outside and supplies the signal to the bus. The third circuit group is connected to the bus, and connected via the bus. It has an operation unit (203) for performing a predetermined operation on received data. By configuring a microprocessor or the like in this way, a logic circuit that operates at a low voltage inside while maintaining an interface with the outside can be used. In addition, by configuring the arithmetic unit that frequently accesses the bus with a circuit having the third amplitude, an efficient configuration can be achieved without using an extra level conversion circuit.
本発明による代表的な他の形態による半導体集積回路は、  A semiconductor integrated circuit according to another representative embodiment according to the present invention includes:
上記第 1の回路群に、 外部から供給されるデータを一時的に記憶するメモリを 構成するメモリセルアレー (2 0 1 ) と、 プログラムが記憶されたメモリを構成 するメモリセルァ I ^一 ( 2 0 2 ) とを有するよう構成される。 これにより、 メモ リアレ一をいわゆるフル振幅で動作させることができ、 安定した情報の記憶が可 能となる。  In the first circuit group, a memory cell array (201) constituting a memory for temporarily storing data supplied from the outside and a memory cell array I ^ (200) constituting a memory for storing a program are stored. 2) and As a result, the memory array can be operated at a so-called full amplitude, and stable storage of information becomes possible.
本発明による代表的な他の形態による半導体集積回路は、  A semiconductor integrated circuit according to another representative embodiment according to the present invention includes:
上記第 3の回路群に、 上記外部から供給されるデータを記憶するメモリを構成 するメモリセルァレ一の出力を増幅して上記バスへ供給するセンスアンプ回路 ( 2 0 8 ) を有するよう構成される。 バスに対して情報を出力するだけのセンス アンプ回路を第 3の回路群に構成することにより、 レベル変換回路を設ける必要 がなく効率的な回路構成とすることができる。  The third circuit group includes a sense amplifier circuit (208) for amplifying an output of a memory cell array constituting a memory for storing data supplied from the outside and supplying the amplified signal to the bus. By configuring a sense amplifier circuit that only outputs information to the bus in the third circuit group, an efficient circuit configuration can be achieved without the need to provide a level conversion circuit.
本発明による代表的な他の形態による半導体集積回路は、  A semiconductor integrated circuit according to another representative embodiment according to the present invention includes:
上記第 4の回路群に、 上記メモリに記億されたプログラムをデコ一ドする命令 デコーダ (2 0 6 ) を有し、 該命令デコーダの出力は、 その振幅を変換するレべ ル変換回路 (2 1 6 ) を介して上記バスに出力されるよう構成される。 そして、 命令デコーダ回路を第 4の回路群に配置することにより特定の回路群 (層) に回 路が集中することを防止できる。 The fourth circuit group has an instruction decoder (206) for decoding a program stored in the memory, and an output of the instruction decoder is a level conversion circuit for converting the amplitude thereof. It is configured to be output to the above bus via 2 16). And By arranging the instruction decoder circuit in the fourth circuit group, it is possible to prevent the circuits from being concentrated on a specific circuit group (layer).
本発明による代表的な他の形態による半導体集積回路は、  A semiconductor integrated circuit according to another representative embodiment according to the present invention includes:
上記第 2の回路群に、 上記バスを介して伝達される信号に基づき上記メモリの アドレスの指定を行うアドレッシングユニッ ト (2 0 4 ) と、 該アドレッシング ユニットの出力を受けるアドレスデコーダ ( 2 0 9 ) とを有するよう構成される。 そして、 ァドレスデコーダ等を第 2の回路群に配置することにより特定の回路群 (層) に回路が集中することを防止できる。  An addressing unit (204) for designating an address of the memory based on a signal transmitted through the bus to the second circuit group; and an address decoder (209) for receiving an output of the addressing unit. ). By arranging the address decoder and the like in the second circuit group, it is possible to prevent the circuits from being concentrated on a specific circuit group (layer).
本発明による代表的な形態の信号処理装置は、  A typical form of a signal processing device according to the present invention is:
少なくとも第 1及び第 2の半導体集積回路装置 (2 3 4, 2 3 5 ) から構成さ れる信号処理装置であって、 上記第 1及び第 2の半導体集積回路装置に共通に動 作電位を供給する第 1及び第 2の動作電位発生手段を有し、 上記第 1の半導体集 積回路装置は上記第 1及び第 2の動作電位により動作する内部回路により構成さ れ、 上記第 2の半導体集積回路装置は上記第 1及び第 2の動作電位 (2 3 7, 2 3 8 ) の電位差よりも小さい電位差の動作電位により動作する内部回路を有する よう構成される。 これにより、 低電源電圧で動作不可能な回路を有する半導体集 積回路と低電源電圧で動作可能な半導体集積回路とが混在する信号処理装置を効 率的に構成することができ、 装置の消費電力を低減することができる。  A signal processing device comprising at least a first and a second semiconductor integrated circuit device (234, 235) for supplying an operating potential commonly to the first and second semiconductor integrated circuit devices. The first semiconductor integrated circuit device includes an internal circuit that operates with the first and second operating potentials, and the second semiconductor integrated circuit device includes a first and a second operating potential generating means. The circuit device is configured to have an internal circuit that operates with an operating potential having a potential difference smaller than the potential difference between the first and second operating potentials (237, 238). This makes it possible to efficiently configure a signal processing device in which a semiconductor integrated circuit having a circuit that cannot operate at a low power supply voltage and a semiconductor integrated circuit that can operate at a low power supply voltage coexist efficiently. The power can be reduced.
本発明の代表的な形態による信号処理装置は、  A signal processing device according to a representative embodiment of the present invention includes:
無線信号を受け上記第 1の半導体集積回路に接続されたアンテナ (2 3 6 ) を 有し、 上記第 1の半導体集積回路装置は、 上記アンテナで受信した信号の変調を 行う変調回路であり、 上記第 2の半導体集積回路装置は、 上記変調回路の出力信 号を処理する復号化回路であるよう構成される。 これにより、 低電源電圧化が難 しい変調回路と低電源電圧化が可能な復号化回路とから構成される信号処理装置 を効率的に構成することができる。  An antenna (236) connected to the first semiconductor integrated circuit for receiving a radio signal, wherein the first semiconductor integrated circuit device is a modulation circuit for modulating a signal received by the antenna; The second semiconductor integrated circuit device is configured to be a decoding circuit that processes an output signal of the modulation circuit. This makes it possible to efficiently configure a signal processing device including a modulation circuit that is difficult to reduce the power supply voltage and a decoding circuit that can reduce the power supply voltage.
本発明の代表的な形態による信号処理装置は、  A signal processing device according to a representative embodiment of the present invention includes:
ディジタル-アナログ変換器 (2 3 2 ) と、 スピーカー ( 2 3 0 ) とを有し、 上記複号化回路の出力を上記ディジタル -アナログ変換器により変換し、 該変換 結果に基づき上記スピーカーを動作させるよう構成される。 図面の簡単な説明 It has a digital-analog converter (232) and a speaker (230), converts the output of the decoding circuit by the digital-analog converter, and operates the speaker based on the conversion result. It is configured to BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本願発明の一形態である論理回路のブロック図である。  FIG. 1 is a block diagram of a logic circuit which is one embodiment of the present invention.
第 2図は、 本願発明の一形態である電源分割ュニットを示す図である。  FIG. 2 is a diagram showing a power split unit which is one mode of the present invention.
第 3図は、 本願発明の一形態である制御回路を示す図である。  FIG. 3 is a diagram showing a control circuit which is one mode of the present invention.
第 4図は、 本願発明の一形態である電圧比較回路を示す図である。  FIG. 4 is a diagram showing a voltage comparison circuit which is one mode of the present invention.
第 5図は、 本願発明の一形態であるタイミング回路を示す図である。  FIG. 5 is a diagram showing a timing circuit which is one mode of the present invention.
第 6図は、 本願発明の一形態であるダミーゲ一ト回路を示す図である。  FIG. 6 is a diagram showing a dummy gate circuit which is one mode of the present invention.
第 7図は、 本願発明の一形態であるレベル変換回路を示す図である。  FIG. 7 is a diagram showing a level conversion circuit which is one mode of the present invention.
第 8図は、 本願発明に採用しうるレベルシフタ回路を示す図である。  FIG. 8 is a diagram showing a level shifter circuit that can be employed in the present invention.
第 9図は、 本願発明に採用しうる他のレベルシフタ回路を示す図である。  FIG. 9 is a diagram showing another level shifter circuit that can be employed in the present invention.
第 1 0図は、 本願発明の一形態である層間レベル変換回路を示す図である。 第 1 1図は、 本願発明の一形態である他の層間レベル変換回路を示す図である t 第 1 2図は、 本願発明の一形態である他の層間レベル変換回路を示す図である c 第 1 3図は、 本願発明の一形態である他の層間レベル変換回路を示す図である c 第 1 4図は、 本願発明の一形態である他の層間レベル変換回路を示す図である c 第 1 5図は、 本願発明の一形態である他の論理回路を示す図である。 FIG. 10 is a diagram showing an interlayer level conversion circuit which is one mode of the present invention. The first 1 figure, t first 2 Figure is a diagram showing another interlayer level converting circuit which is an embodiment of the present invention is a diagram illustrating another inter-level converting circuit which is an embodiment of the present invention c FIG. 13 is a diagram showing another interlayer level conversion circuit which is an embodiment of the present invention c . FIG. 14 is a diagram showing another interlayer level conversion circuit which is an embodiment of the present invention c FIG. 15 is a diagram showing another logic circuit which is one mode of the present invention.
第 1 6図は、 本願発明の一形態である他の電源分割ュニットを示す図である。 第 1 7図は、 本願発明の一形態である他の制御回路を示す図であるである。 第 1 8図は、 本願発明の一形態である他の電圧比較回路を示す図である。  FIG. 16 is a diagram showing another power supply division unit which is an embodiment of the present invention. FIG. 17 is a diagram showing another control circuit which is one mode of the present invention. FIG. 18 is a diagram showing another voltage comparison circuit which is one mode of the present invention.
第 1 9図は、 本願発明の一形態である他のタイミング回路を示す図である。 第 2 0図は、 本願発明の一形態である他のダミーゲート回路を示す図である。 第 2 1図は、 本願発明の一形態である他の電源分割ュニットを示す図である。 第 2 2図は、 本願発明の一形態である他の制御回路を示す図である。  FIG. 19 is a diagram showing another timing circuit which is one mode of the present invention. FIG. 20 is a diagram showing another dummy gate circuit which is one mode of the present invention. FIG. 21 is a diagram showing another power supply division unit which is an embodiment of the present invention. FIG. 22 is a diagram showing another control circuit which is one mode of the present invention.
第 2 3図は、 本願発明の一形態である他のダミーゲ一ト回路を示す図である。 第 2 4図は、 本願発明の一形態である信号処理回路を示す図である。  FIG. 23 is a diagram showing another dummy gate circuit which is an embodiment of the present invention. FIG. 24 is a diagram showing a signal processing circuit which is one mode of the present invention.
第 2 5図は、 移動無線電話のシステム構成を示す図である。 発明を実施するための最良の形態 本発明を実施するための代表的な最良の形態を以下に示す。 FIG. 25 is a diagram showing a system configuration of a mobile radio telephone. BEST MODE FOR CARRYING OUT THE INVENTION A representative best mode for carrying out the present invention will be described below.
第 1図は本発明に基づき電源電圧を複数 (ここでは 2つ) に分割し、 複数 (こ こでは 2つ) の電圧層内において低捩幅論理回路を動作させる回路である。 本回路は特に制限されないが単一の半導体基板上に形成された半導体集積回路 装置として構成され、 かかる半導体集積回路装置は他の半導体装置とともにプリ ント基板 (配線基板) 上に実装されるものである。  FIG. 1 shows a circuit that divides a power supply voltage into a plurality (here, two) according to the present invention and operates a low screw width logic circuit in a plurality of (here, two) voltage layers. Although not particularly limited, the present circuit is configured as a semiconductor integrated circuit device formed on a single semiconductor substrate, and such a semiconductor integrated circuit device is mounted on a print substrate (wiring substrate) together with other semiconductor devices. is there.
第 1図中、 1は第 1の動作電位点である電源電位 2と第 2の動作電位点である グランド電位 4との間を 2分割する電源分割ュニットであり、 システムあるいは プリント基板上に実装された他の半導体装置に供給される電源電位 2とグランド 電位 4とから各層に供給する電源電圧を形成するものである (なお、 以下説明の 簡便のため、 電源電位 2及びグランド電位あるいはその電位差を外部電源電圧と 総称し、 電源分割ュニット 1にて形成される電源電圧等を内部電源電圧と総称す る) 。 また、 5、 6は電源分割ユニット 1で形成された外部電源電圧の略 1 Z 2 の電圧である内部電源電圧で動作する比較的低振幅な低振幅論理回路である。 こ こでは 5を第 1の低振幅論理回路又は第 1層、 6を第 2の低振幅論理回路又は第 2層とも呼ぶ。 また、 9は低振幅論理回路 5、 6から出力された信号をレベル変 換しフル振幅 (外部電源電圧の振幅) に戻すための回路である。 本例ではかかる レベル変換回路 9を有することにより内部電源電圧による比較的低い振幅の信号 を外部電源電圧に対応するフル振幅の信号に変換することができ外部との信号の やりとりを容易にしている。 また、 1 0は外部電源電圧に接続され外部電源電圧 に対応したフル振幅の論理信号を出力するフル振幅論理回路である。 また、 層間 レベル変換回路 7、 8は、 外部電源電圧の約 1ノ 2とされた内部電源電圧 2、 3 間で動作する第 1の低振幅論理回路の出力を、 内部電源電圧 3、 4間で動作する 第 2の低振幅論理回路に入力する際、 又はその逆の場合にその振幅を変換する回 路である。 本例では、 かかる層間レベル変換回路により、 第 1の論理回路 5と第 2の論理回路 6の間で信号のやりとりが可能となり、 ランダム論理回路等を実用 的に形成することが可能となる。  In FIG. 1, reference numeral 1 denotes a power supply dividing unit that divides a power supply potential 2 as a first operating potential point into a ground potential 4 as a second operating potential point, and is mounted on a system or a printed circuit board. The power supply voltage to be supplied to each layer is formed from the power supply potential 2 and the ground potential 4 supplied to the other semiconductor devices (the power supply potential 2 and the ground potential or the potential difference between them for the sake of simplicity of the following description). Are collectively referred to as an external power supply voltage, and the power supply voltage and the like formed by the power supply unit 1 are collectively referred to as an internal power supply voltage). Reference numerals 5 and 6 denote relatively low-amplitude low-amplitude logic circuits that operate on the internal power supply voltage which is approximately 1Z2 of the external power supply voltage formed by the power supply division unit 1. Here, 5 is also called the first low-amplitude logic circuit or the first layer, and 6 is also called the second low-amplitude logic circuit or the second layer. Reference numeral 9 denotes a circuit for level-converting the signals output from the low-amplitude logic circuits 5 and 6 and returning the signals to the full amplitude (the amplitude of the external power supply voltage). In this example, the provision of the level conversion circuit 9 allows a signal having a relatively low amplitude due to the internal power supply voltage to be converted into a signal having a full amplitude corresponding to the external power supply voltage, thereby facilitating the exchange of signals with the outside. . Reference numeral 10 denotes a full amplitude logic circuit which is connected to the external power supply voltage and outputs a full amplitude logic signal corresponding to the external power supply voltage. The interlayer level conversion circuits 7 and 8 output the output of the first low-amplitude logic circuit that operates between the internal power supply voltages 2 and 3, which is set to about 1 external power supply voltage, between the internal power supply voltages 3 and 4. This is a circuit that converts the amplitude when it is input to the second low-amplitude logic circuit that operates in or vice versa. In the present example, such an interlayer level conversion circuit enables signals to be exchanged between the first logic circuit 5 and the second logic circuit 6, and a random logic circuit or the like can be practically formed.
次に、 本例の論理回路の動作を説明する。  Next, the operation of the logic circuit of this example will be described.
電源分割ュニッ ト iは、 外部電源電圧である電源電位 2とグランド電位 4との 間を 2分割して中間電位 3を形成し、 電源電位 2と中間電位 3とにより第 1の低 振幅論理回路が形成される第 1層を作り、 中間電位 3とグランド電位 4との間に 第 2の低振幅論理回路が形成される第 2層を作っている。 さらに、 後述するよう に、 電源分割ユニット 1は、 クロック 2 3とその 1 4サイクル遅れたクロック 2 4とを用いて中間電位 3の補正を行っている。 The power supply unit i is connected between the power supply potential 2 which is the external power supply voltage and the ground potential 4. The intermediate potential 3 is formed by dividing the space into two, and the first layer where the first low-amplitude logic circuit is formed by the power supply potential 2 and the intermediate potential 3 is formed, and between the intermediate potential 3 and the ground potential 4 Creating a second layer on which a second low amplitude logic circuit is formed. Further, as described later, the power supply division unit 1 corrects the intermediate potential 3 using the clock 23 and the clock 24 delayed by 14 cycles thereof.
この 2つの電圧層内で動作する低振幅論理回路 5、 6は、 入力信号 1 1を入力 端子から受け、 それぞれ論理処理を行い出力信号 4 3あるいは 4 4を出力する。 この出力信号 4 3、 4 4はレベル変換回路 9に入力される。 レベル変換回路 9は 電源電位 2とグランド電位 4に接続されており、 外部電源電圧の略半分の振幅で 出力された出力信号 4 3、 4 4を外部電源電圧のフル振幅に変換し出力する。 こ のレベル変換回路 9の出力信号をそのまま外部へ出力されるか、 図中のフル振幅 倫理回路 1 0により所定の処理を経たのち出力信号として出力端子 1 2から外部 へ出力される。  The low-amplitude logic circuits 5 and 6 operating in these two voltage layers receive an input signal 11 from an input terminal, perform logical processing on each of them, and output an output signal 43 or 44. These output signals 43 and 44 are input to the level conversion circuit 9. The level conversion circuit 9 is connected to the power supply potential 2 and the ground potential 4, and converts the output signals 43, 44 output with substantially half the amplitude of the external power supply voltage to the full amplitude of the external power supply voltage and outputs it. The output signal of this level conversion circuit 9 is output as it is to the outside, or is output from the output terminal 12 as an output signal after being subjected to predetermined processing by a full amplitude logic circuit 10 in the figure.
さらに、 層間レベル変換回路 7、 8は電源電位 2、 グランド電位 4、 中間電位 3をそれぞれ受け、 第 1の低振幅論理回路 5の出力信号のレベルを変換して第 2 の低振幅論理回路 6に供給し、 また、 第 2の低振幅論理回路 6の出力信号のレべ ルを変換して第 1の低振幅論理回路 5に供給するよう働く。  Furthermore, the interlayer level conversion circuits 7 and 8 receive the power supply potential 2, the ground potential 4 and the intermediate potential 3, respectively, and convert the level of the output signal of the first low-amplitude logic circuit 5 to obtain the second low-amplitude logic circuit 6. Also, it works so as to convert the level of the output signal of the second low-amplitude logic circuit 6 and supply it to the first low-amplitude logic circuit 5.
上述したように、 本例によれば、 外部電源電圧が比較的大きい場合であっても、 電源分割ュニットを設け外部電源電圧を分割し論理回路を積層して設けることに より電源電圧を有効に利用できるとともに、 内部論理回路として低振幅論理回路 を使用できるため消費電力を削減することができる。 また、 低振幅論理回路の出 力を外部電源電圧に対応したフル振幅に変換するレベル変換回路を有するため、 低振幅論理回路の出力を外部電源電圧で動作する外部の半導体装置等で簡便に利 用することができる。 また、 レベル変換回路の後段にフル振幅で動作する論理回 路を備えることにより、 低振幅論理回路で行うべき処理とフル振幅論理回路で行 うべき処理とが混在するような場合にも同一の半導体装置内で処理を行えるよう 構成することができる。 また、 各層間に層間レベル変換回路を有することにより、 各層間で信号のやりとりを行うことができ、 各層間で信号のやりとりを行うか否 かにかかわりなく各層に論理回路を配置することができ、 効率的な回路設計を行 うことが可能となる。 As described above, according to this example, even when the external power supply voltage is relatively large, the power supply voltage can be effectively reduced by providing the power supply division unit, dividing the external power supply voltage, and providing the logic circuits in a stacked manner. It can be used and low-amplitude logic circuits can be used as internal logic circuits, thereby reducing power consumption. In addition, since there is a level conversion circuit that converts the output of the low-amplitude logic circuit to a full amplitude corresponding to the external power supply voltage, the output of the low-amplitude logic circuit can be easily used in an external semiconductor device or the like that operates on the external power supply voltage. Can be used. In addition, by providing a logic circuit that operates at full amplitude at the subsequent stage of the level conversion circuit, the same processing can be performed even when the processing to be performed by the low-amplitude logic circuit and the processing to be performed by the full-amplitude logic circuit are mixed. The processing can be performed in the semiconductor device. In addition, by having an interlayer level conversion circuit between each layer, signals can be exchanged between the layers, and a logic circuit can be arranged on each layer regardless of whether signals are exchanged between the layers. , Efficient circuit design It becomes possible.
なお、 第 1図では低振幅論理回路は 2層形成されているが、 これに限らず 3層 以上にすることも可能である。 この場合には、 電源分割ユニットは外部電源電圧 を 3以上に分割するとともに 2以上の中間電位を出力するよう構成することが必 要である。 また、 この場合にも各層間には層間レベル変換回路を配置することが 効果的である。  Although the low-amplitude logic circuit is formed in two layers in FIG. 1, the present invention is not limited to this, and three or more layers can be used. In this case, it is necessary that the power supply division unit divides the external power supply voltage into three or more and outputs two or more intermediate potentials. Also in this case, it is effective to arrange an interlayer level conversion circuit between each layer.
次に、 第 1図で示した回路ブロックのうち、 電源分割ユニット 1について説明 する。 第 2図は電源分割ユニット 1の構成図である。  Next, the power supply division unit 1 of the circuit blocks shown in FIG. 1 will be described. FIG. 2 is a configuration diagram of the power split unit 1.
本電源分割ュニット 1は、 電源電位 2とグランド電位 4とを 2分割する為のコ ンデンサ 1 5, 1 6と、 中間電位 3の変動を補正する手段であるダミーゲート 1 4及び中間電位 3を観測しその変動にダミーゲートを追随させる為の制御回路 1 3より構成される。 制御回路 1 3は中間電位 3を観測し、 その観測結果より制御 信号 1 7 , 1 8をクロック信号 2 3, 2 4より求めたタイミングで出力し、 ダミ 一ゲート 1 4はこの制御信号 1 7, 1 8に基づき内部の回路を動作させ、 中間電 位 3の値を正常な値に補正する。  The power supply division unit 1 includes capacitors 15 and 16 for dividing the power supply potential 2 and the ground potential 4 into two, and a dummy gate 14 and an intermediate potential 3 which are means for correcting the fluctuation of the intermediate potential 3. It consists of a control circuit 13 for observing and making the dummy gate follow the fluctuation. The control circuit 13 observes the intermediate potential 3 and outputs control signals 17 and 18 at the timing obtained from the clock signals 23 and 24 based on the observation result. The internal circuit operates based on, 18 and corrects the value of intermediate potential 3 to a normal value.
ここでコンデンサ 1 5 , 1 6の容量は略等しく、 その値 Cは平均消費電流 I と 2分割した電圧 Vと時定数 Tより下記の数式 1により求めることができる。  Here, the capacitances of the capacitors 15 and 16 are substantially equal, and the value C can be obtained from the following equation 1 based on the average current consumption I, the voltage V divided into two, and the time constant T.
C = ( I · T ) ノ V (数式 1 ) 以下、 第 3図、 第 4図、 第 5図を用いて中間電位 3の補正につき詳しく説明す る。  C = (I · T) no V (Equation 1) Hereinafter, the correction of the intermediate potential 3 will be described in detail with reference to FIGS. 3, 4, and 5.
第 3図は上記制御回路 1 3の構成図である。  FIG. 3 is a configuration diagram of the control circuit 13.
本制御回路は電圧比較器 1 9とタイミング回路 2 0とから構成される。 電圧比 較器 1 9は中間電位 3を観測するものであり、 電源電位 2、 ゲランド電位 4、 中 間電位 3が供給され、 電源電位 2と中間電位 3との電位差が中間電位 3とグラン ド電位 4との電位差と等しいか否かを比較し、 その結果を信号 2 1 , 2 2として 出力する。 タイミング回路 2 0は電圧比較器 1 9の出力 2 1, 2 2を制御信号 1 7 , 1 8として、 クロック 2 3 , 2 4より決定する一定のタイミングで一定時間 だけ出力し後述するダミーゲートを制御する。  This control circuit includes a voltage comparator 19 and a timing circuit 20. The voltage comparator 19 observes the intermediate potential 3 and is supplied with the power supply potential 2, the ground potential 4 and the intermediate potential 3, and the potential difference between the power supply potential 2 and the intermediate potential 3 is determined by the intermediate potential 3 and the ground potential. It compares whether it is equal to the potential difference with the potential 4 and outputs the result as signals 21 and 22. The timing circuit 20 outputs the outputs 21 and 22 of the voltage comparator 19 as control signals 17 and 18 for a certain time at a certain timing determined by the clocks 23 and 24, and outputs a dummy gate described later. Control.
第 4図は上記電圧比較器 1 9の構成図である。 この電圧比較回路ははスィッチ 27, 28, 31, 32及び略同一容量のコン デンサ 29, 30と比較器 25, ラッチ回路 26より構成される。 本電圧比較器 は、 まずスィッチ 27, 28を閉にしスィッチ 31を電源電位 2側にし、 スイツ チ 32を中間電位 3側にして、 コンデンサ 29には比較器 25の基準電位と電源 電位 2との電位差を保存し、 コンデンサ 30には基準電位と中間電位 3との電位 差を保存する。 次に、 スィッチ 27, 28を開放しスィッチ 31を中間電位 3側 にし、 スィッチ 32をグランド電位 4側にする。 この結果比較器 25には、 電源 電位 2と中間電位 3との電位差と、 中間電位 3とグランド電位 4との電位差が入 力される。 この時電源電位 2と中間電位 3との電位差との電位差の方が大きけれ ば出力 21が h i g hとなり中間電位 3とグランド電位 4との電位差の方が大き ければ出力 22が h i g hとなる。 またラッチ回路 26はこの出力 21, 22の h i g hのレベルを電源電位 2の値とし、 L 0 wのレベルをグランド電位 4の値 となるようにする。 本例の構成により、 各層の電源電圧を比較しその結果を信号 として出力することが可能となり、 後述するように内部電源電圧の補正が可能と なる。 FIG. 4 is a configuration diagram of the voltage comparator 19. This voltage comparison circuit is composed of switches 27, 28, 31, 32, capacitors 29, 30 of almost the same capacity, a comparator 25, and a latch circuit 26. In this voltage comparator, first, the switches 27 and 28 are closed, the switch 31 is set to the power supply potential 2 side, the switch 32 is set to the intermediate potential 3 side, and the capacitor 29 is connected between the reference potential of the comparator 25 and the power supply potential 2. The potential difference is stored, and the potential difference between the reference potential and the intermediate potential 3 is stored in the capacitor 30. Next, the switches 27 and 28 are opened, the switch 31 is set to the intermediate potential 3 side, and the switch 32 is set to the ground potential 4 side. As a result, the potential difference between the power supply potential 2 and the intermediate potential 3 and the potential difference between the intermediate potential 3 and the ground potential 4 are input to the comparator 25. At this time, if the potential difference between the power supply potential 2 and the intermediate potential 3 is larger, the output 21 is high, and if the potential difference between the intermediate potential 3 and the ground potential 4 is larger, the output 22 is high. The latch circuit 26 sets the high level of the outputs 21 and 22 to the value of the power supply potential 2 and sets the level of L 0 w to the value of the ground potential 4. According to the configuration of this example, it is possible to compare the power supply voltages of the respective layers and output the result as a signal, and to correct the internal power supply voltage as described later.
第 5図は、 第 3図に述べたタイミング回路 20の構成を示したものである。 本タイミング回路は一定時間毎に行う補正処理のタイミングを求めるカウンタ 33と、 出力するタイミングとその時間を決定する AND回路 34と、 制御信号 1 7, 18を出力する AND回路 35, 36とから構成される。  FIG. 5 shows a configuration of the timing circuit 20 described in FIG. This timing circuit is composed of a counter 33 that determines the timing of the correction process performed at regular intervals, an AND circuit 34 that determines the output timing and the time, and AND circuits 35 and 36 that output control signals 17 and 18. Is done.
まずカウンタ 33においてクロック 23のパルスを一定数カウントし一定数に なると "1 (例えば h i g hレベルの信号) " を出力する。 これを AND回路 3 4において、 クロック 23とクロック 24との ANDを取り 1/4サイクルだけ "1" となるタイミング信号 37とする。 AND回路 35, 36は、 電圧比較器 出力 21, 22をタイミング信号 37で同期させ、 1ノ 4サイクルだけとなる制 御信号 1 7, 18として出力させる。 このような構成により本実施例では、 電圧 比較器の比較結果に従い一定期間制御信号 1 7、 18を出力することが可能とな り、 この制御出力により後述するダミーゲートを制御し、 各層の電源電圧の変動 を補正することができる。  First, the counter 33 counts a fixed number of pulses of the clock 23, and outputs "1" (for example, a high level signal) when the number of pulses reaches a fixed number. This is ANDed by the AND circuit 34 with the clock 23 and the clock 24 to obtain a timing signal 37 which becomes "1" for only 1/4 cycle. The AND circuits 35 and 36 synchronize the voltage comparator outputs 21 and 22 with the timing signal 37 and output them as control signals 17 and 18 having only one to four cycles. With such a configuration, in the present embodiment, it is possible to output control signals 17 and 18 for a fixed period according to the comparison result of the voltage comparator. Voltage fluctuations can be corrected.
第 6図は、 本例において各層の電源電圧を適切な値に保持する電圧補正手段で あるダミ一ゲートの構成を示したものである。 このダミーゲ一ト回路は電源電圧FIG. 6 shows voltage correction means for maintaining the power supply voltage of each layer at an appropriate value in this example. This shows the configuration of a certain dummy gate. This dummy gate circuit is the power supply voltage
2と中間電位 3の間に並列に接続された複数の MO S トランジスタ (ここでは N M O S トランジスタ) で構成される電流制御ゲート 3 8と、 中間電位 3とグラン ド電位 4の間に並列に接続された複数の MO S トランジスタ (ここでは NMO S トランジスタ) で構成される電流制御ゲート 3 9から構成される。 A current control gate 38 composed of a plurality of MOS transistors (here, NMOS transistors) connected in parallel between 2 and the intermediate potential 3, and connected in parallel between the intermediate potential 3 and the ground potential 4 And a current control gate 39 composed of a plurality of MOS transistors (here, NMOS transistors).
この電流制御ゲート 3 8、 3 9はそれぞれタイミング回路からの制御信号 1 7、 1 8によりそのゲート電極が制御され、 各電流制御ゲートを流れる電流量が変化 されることにより中間電位 3が補正されるものである。 たとえば、 制御信号 1 7 がハイレベルになり制御ゲート 3 8の各トランジスタのドレイン電流が大きくな れば、 中間電位 3は上昇し、 逆に、 制御信号 1 8がハイレベルになり制御ゲート 3 9の各トランジスタのドレイン電流が大きくなれば、 中間電位 3は下降する。 特に C M〇 Sを用いた論理回路を積層する場合には、 各層を流れる貫通電流など の電流が一定でないため各層の内部電源電圧、 ここでは中間電位、 が変動してし まい現実的な論理回路を構成することができないが、 本例のように、 各層の電源 電圧の値を比較しその結果によって中間電位を補償する手段を用いることにより、 上述の問題点を解決することができる。 さらに、 本例では電流制御ゲートを設け ることにより、 各層に流れる電流量を制御するといった比較的簡潔な方法により 中間電位を安定化することが可能となる。  The gate electrodes of these current control gates 38 and 39 are controlled by control signals 17 and 18 from the timing circuit, respectively, and the intermediate potential 3 is corrected by changing the amount of current flowing through each current control gate. Things. For example, if the control signal 17 becomes high level and the drain current of each transistor of the control gate 38 becomes large, the intermediate potential 3 rises, and conversely, the control signal 18 becomes high level and the control gate 39 becomes high. If the drain current of each transistor increases, the intermediate potential 3 drops. In particular, when stacking logic circuits using CM た め S, the internal power supply voltage of each layer, here the intermediate potential, fluctuates because the current such as the through current flowing through each layer is not constant. However, the above problem can be solved by using a means for comparing the values of the power supply voltages of the respective layers and compensating the intermediate potential based on the results as in this example. Further, in this example, by providing the current control gate, the intermediate potential can be stabilized by a relatively simple method such as controlling the amount of current flowing through each layer.
ここで、 各制御ゲートを構成する NM O S トランジスタの数 Nは、 図 2に示す 電源分割コンデンサ 1 5 , 1 6の容量じと、 NM O S トランジスタを O Nさせる 時間 tと NM O S トランジスタ内を単位時間あたりに流れる電流量 i と、 1回に 補正する電位幅 Vとにより数式 2により求めることができる。  Here, the number N of the NM OS transistors constituting each control gate is represented by the capacity of the power supply dividing capacitors 15 and 16 shown in Fig. 2, the time t for turning on the NM OS transistor, and the unit time in the NM OS transistor. Equation (2) can be obtained from the current amount i flowing around and the potential width V corrected at one time.
N = ( C · V ) / ( i · t ) (数式 2 ) 以上の構成よりなる電源分割ュニット 1では、 中間電位 3が規定の値より低け れば、 制御信号 1 7により制御ゲ一ト 3 8を駆動し、 電源電位 2より中間電位 3 に電荷を加え中間電位 3を上昇させる。 逆に中間電位 3が規定の値より高ければ、 制御信号 1 8により制御ゲ一ト 3 9を駆動し、 中間電位 3よりグランド電位 5に 電荷を放出させて中間電位 3を下降させる。  N = (CV) / (i t) (Equation 2) In the power split unit 1 having the above configuration, if the intermediate potential 3 is lower than the specified value, the control gate 17 is controlled by the control signal 17. Drive 3 8 to add electric charge from power supply potential 2 to intermediate potential 3 to raise intermediate potential 3. Conversely, if the intermediate potential 3 is higher than the specified value, the control gate 39 is driven by the control signal 18, and charges are released from the intermediate potential 3 to the ground potential 5 to lower the intermediate potential 3.
次に、 図 1に示したレベル変換回路 9について説明する。 第 7図は、 各層の低 振幅論理回路からの低振幅の出力信号をフル振幅の信号に変換するためのレベル 変換回路の構成を示したものである。 本レベル変換回路はレベルシフタ回路 41 , 42の 2つで構成される。 レベルシフタ回路 41は、 第 1の低振幅論理回路の出 力信号 43を受けるとともに電源電位 2と中間電位 3に接続され、 .第 1層の低振 幅 CMO S論理回路 6の出力信号 43を電源電圧の信号振幅に換えてフル振幅信 号 45としてフル振幅論理回路 10へ出力する。 またレベルシフタ回路 42は、 第 2の低振幅論理回路の出力信号 44を受けるとともに中間電位 3とグランド電 位に接続され、 第 2層の低振幅 CMOS論理回路 7の出力信号 44を電源電圧の 信号振幅に換えてフル振幅信号 46としてフル振幅論理回路 10へ出力するもの である。 本例ではこのようなレベルシフタ回路を有することにより、 内部電源電 圧に応じた振幅を有する出力信号を外部電源電圧に応じた出力信号とすることが でき、 外部の他の半導体装置等と信号のやりとりを簡便に行うことができるもの である。 Next, the level conversion circuit 9 shown in FIG. 1 will be described. Fig. 7 shows the low FIG. 3 shows a configuration of a level conversion circuit for converting a low-amplitude output signal from an amplitude logic circuit into a full-amplitude signal. This level conversion circuit is composed of two level shifter circuits 41 and 42. The level shifter circuit 41 receives the output signal 43 of the first low-amplitude logic circuit and is connected to the power supply potential 2 and the intermediate potential 3, and supplies the output signal 43 of the first-layer low-amplitude CMOS logic circuit 6 to the power supply. The signal is output to the full amplitude logic circuit 10 as the full amplitude signal 45 instead of the voltage signal amplitude. The level shifter circuit 42 receives the output signal 44 of the second low-amplitude logic circuit and is connected to the intermediate potential 3 and the ground potential. The level shifter circuit 42 outputs the output signal 44 of the second-layer low-amplitude CMOS logic circuit 7 to the signal of the power supply voltage. The signal is output to the full amplitude logic circuit 10 as the full amplitude signal 46 instead of the amplitude. In this example, by having such a level shifter circuit, an output signal having an amplitude corresponding to the internal power supply voltage can be made an output signal corresponding to the external power supply voltage, and the signal can be transmitted to another external semiconductor device or the like. The exchange can be done easily.
第 8図及び第 9図に、 本例のレベル変換回路として採用することのできるレべ ルシフタ回路を示す。  FIGS. 8 and 9 show a level shifter circuit that can be employed as the level conversion circuit of this example.
第 8図に示す回路は、 特開平 4 - 97616号公報により既にしられた回路で あるが、 本例のレベルシフタ回路として用いることのできるものである。 図 8の 回路は、 低振幅の入力信号 50を電源レベル振幅の出力信号 51に変換するもの である。 その動作を詳しく説明すると、 入力信号 50が h i g hレべノレとすると、 NMOSトランジスタ 56に低振幅のレベル 52が印加され、 NMOS トランジ スタ 57に低振幅の L owレベル 53が印加される。 この結果、 PMOSトラン ジスタ 54, 55双方にグランド電位 4が印加されようとするが、 NMOS トラ ンジスタ 56の方がゲート電圧が高いため、 PM〇 S トランジスタ 55の方が P MO S トランジスタ 54よりも早くオンとなり、 PMOS トランジスタ 54のゲ 一トに印加される電圧が上昇し、 PMOS トランジスタ 54はオンされず、 PM OS トランジスタ 54のソース電位は NMOS トランジスタ 56がオンであるた め、 グランド電位 4を持続するため、 PMOS トランジスタ 55は常にオン状態 を維持して出力 5 1を電源電位 2に固定する。 逆に入力 50に L o w電位 53が 印加されている場合は、 PMOS トランジスタ 54が先にオンとなり、 出力 5 1  The circuit shown in FIG. 8 is a circuit that has already been made in Japanese Patent Application Laid-Open No. 4-97616, but can be used as the level shifter circuit of this example. The circuit in FIG. 8 converts a low-amplitude input signal 50 into an output signal 51 having a power supply level amplitude. More specifically, assuming that the input signal 50 is at a high level, a low-amplitude level 52 is applied to the NMOS transistor 56 and a low-amplitude Low level 53 is applied to the NMOS transistor 57. As a result, the ground potential 4 tends to be applied to both the PMOS transistors 54 and 55, but since the gate voltage of the NMOS transistor 56 is higher, the PM〇S transistor 55 is higher than the PMOS transistor 54. The transistor is turned on earlier, the voltage applied to the gate of the PMOS transistor 54 increases, the PMOS transistor 54 is not turned on, and the source potential of the PMOS transistor 54 becomes the ground potential 4 because the NMOS transistor 56 is on. In order to maintain this, the PMOS transistor 55 always keeps the ON state and fixes the output 51 to the power supply potential 2. Conversely, when the Low potential 53 is applied to the input 50, the PMOS transistor 54 is turned on first, and the output 5 1
-: 論理になるようにしたものである。 -: It is made to be logic.
次に、 第 1図に示した各層間の信号のやりとりを可能とする層間レベル変換回 路 7、 8の具体例を第 10図に示す。 なお、 第 10図では上層 (第 1の低振幅論 理回路) から下層 (第 2の低振幅論理回路) への信号の変換を行う回路を示して いる。  Next, FIG. 10 shows a specific example of the interlayer level conversion circuits 7 and 8 that can exchange signals between the respective layers shown in FIG. FIG. 10 shows a circuit that performs signal conversion from the upper layer (the first low-amplitude logic circuit) to the lower layer (the second low-amplitude logic circuit).
本レベル変換回路は、 入力信号 66の電位で動作し、 電源電位 2及び中間電位 3に接続されたインバータ 69と、 出力信号 67もしくは 68の電位で動作する ィンバータ 2個からなり、 中間電位 3及びグランド電位 4に接続されたラツチ回 路 70と、 信号振幅をスレッシュ電圧 (以下 V t hと言う) 分だけ降下させるレ ベルシフト手段であるダイォ一ド接続された NMOS トランジスタ群 71, 72 とにより構成される。  This level conversion circuit is composed of an inverter 69 which operates at the potential of the input signal 66 and is connected to the power supply potential 2 and the intermediate potential 3 and two inverters which operate at the potential of the output signal 67 or 68. It comprises a latch circuit 70 connected to the ground potential 4 and diode-connected NMOS transistor groups 71 and 72 which are level shift means for lowering the signal amplitude by a threshold voltage (hereinafter referred to as Vth). You.
本回路の動作を説明する。 第 10図の電源電位 2が 3 Vで中間電位 3が 1. 5 Vとするとき、 入力信号 66の電位が第 1層 (第 1の低振幅論理回路 5) h i g hのレベルである 3 Vであれば、 NMOS トランジスタ群 72を介してラッチ回 路 70に電位がかかる。 このとき NMOSトランジスタ 1個の V t hが 0. 75 Vであれば、 ラッチ回路 70には第 2層の h i g hレベルである 1. 5Vが入力 され出力信号 67は第 2層の L o wレベルである 0 Vとなり、 出力信号 68は第 2層のレベルである 1. 5Vとなる。 これら出力の値は、 ラッチ回路 70により 補償される。 また出力信号 67, 68の内 68を用いれば、 本層間レベル変換回 路を NOT回路としても使用でき、 68を用いれば本層間レベル変換回路は論理 機能を持たないただの層間レベル変換回路として使用できる。 ここで NMOS ト ランジスタ群 71, 72に用いる NMQS トランジスタの数 Nは NMO S トラン ジスタの V t hと電圧変換する層間の電圧差 Vとにより数式 3により決定するこ とができる。  The operation of this circuit will be described. When the power supply potential 2 in FIG. 10 is 3 V and the intermediate potential 3 is 1.5 V, the potential of the input signal 66 is 3 V which is the high level of the first layer (the first low-amplitude logic circuit 5). If there is, a potential is applied to the latch circuit 70 via the NMOS transistor group 72. At this time, if V th of one NMOS transistor is 0.75 V, the latch circuit 70 receives the high-level 1.5 V of the second layer and the output signal 67 is at the low level of the second layer. 0 V, and the output signal 68 becomes 1.5 V which is the level of the second layer. These output values are compensated by the latch circuit 70. If 68 of the output signals 67 and 68 are used, this interlayer level conversion circuit can be used also as a NOT circuit. If 68 is used, this interlayer level conversion circuit can be used as a simple interlayer level conversion circuit without a logical function. it can. Here, the number N of NMQS transistors used in the NMOS transistor groups 71 and 72 can be determined by Equation 3 based on Vth of the NMOS transistor and the voltage difference V between the layers for voltage conversion.
N = V/V t h (数式 3) また第 1 1図は上記第 10図で示したレベル変換回路と逆に、 下層 (低振幅論 理回路 6) から上層 (低振幅論理回路 5) へ層間レベル変換するためのものであ り、 入力信号 73を受け、 中間電位 3とグランド電位 4に接続されたインバータ 回路 76と、 ィンバ一タ回路 76の入力及び出力の値のレベルをシフ卜する NM O S トランジスタ群 7 8、 7 9と、 電源電位 2及び中間電位 3に接続されたラッ チ回路 (インバ一タ回路 2つの接続により構成) 7 7とを有しラッチ回路 7 7の 両端から出力 7 4、 7 5をとるように構成されている。 この層間レベル変換回路 は第 1 0図で示した層間レベル変換回路と同様な回路動作を行い、 低い側の内部 電源電圧に基づく振幅の信号を変換し高い側の内部電源電圧に基づく振幅の信号 に変換するものである。 本回路の動作については、 第 1 0図に示したレベル変換 回路とほぼ同様であるため、 詳細な説明は省略する。 N = V / V th (Equation 3) In FIG. 11, contrary to the level conversion circuit shown in FIG. 10, the lower layer (low-amplitude logic circuit 6) and the upper layer (low-amplitude logic circuit 5) This is for level conversion, and receives the input signal 73, and shifts the level of the input and output values of the inverter circuit 76 connected to the intermediate potential 3 and the ground potential 4 and the inverter circuit 76. OS transistor groups 7 8 and 7 9, and a latch circuit 7 (configured by connecting two inverter circuits) 7 connected to the power supply potential 2 and the intermediate potential 3, and output from both ends of the latch circuit 7 7 It is configured to take 4, 75. This interlayer level conversion circuit performs the same circuit operation as the interlayer level conversion circuit shown in FIG. 10 to convert a signal having an amplitude based on a lower internal power supply voltage and a signal having an amplitude based on a higher internal power supply voltage. Is converted to The operation of this circuit is almost the same as that of the level conversion circuit shown in FIG. 10, so that the detailed description is omitted.
以上、 第 1 0図に示した回路を第 1図の層間レベル変換回路 7として用い、 第 1 1図に示した回路を第 1図の層間レベル変換回路 8として用いることにより、 振幅のことなる各層間で信号のやりとりを行うことが可能となる。  As described above, by using the circuit shown in FIG. 10 as the interlayer level conversion circuit 7 in FIG. 1 and using the circuit shown in FIG. 11 as the interlayer level conversion circuit 8 in FIG. Signals can be exchanged between the layers.
第 1 2図には、 上層から下層及び下層から上層の双方向のレベル変換を行う層 間レベル変換回路を示す。 第 1 2図に示すように、 入出力端子となる 6 0、 6 1 と直列に接続されたインバータ回路により構成されるラッチ回路 6 3、 6 4と各 ラッチ回路間を接続するレベルシフ ト手段 6 4、 6 5からなり、 ラッチ回路 6 3 は電源電位 2と中間電位 3に接続され、 ラツチ回路 6 4は中間電位 3 5とグラン ド電位 4に接続され、 レベルシフ ト手段 6 4、 6 5はダイオード接続された複数 の NM O S トランジスタにより構成されている。 本回路の動作は、 上述した層間 レベル変換回路の動作の説明から容易に理解できるため、 ここでの説明は省略す る。 本回路を用いれば、 第 1図に示す層間レベル変換回路 7、 8を一つの回路で 兼用することができる。  FIG. 12 shows an inter-layer level conversion circuit that performs bidirectional level conversion from the upper layer to the lower layer and from the lower layer to the upper layer. As shown in FIG. 12, as shown in FIG. 12, latch circuits 63, 6 composed of inverter circuits connected in series with input / output terminals 60, 61 and level shift means 6 for connecting the respective latch circuits. The latch circuit 63 is connected to the power supply potential 2 and the intermediate potential 3, the latch circuit 64 is connected to the intermediate potential 35 and the ground potential 4, and the level shift means 64, 65 are provided. It is composed of multiple NMOS transistors connected in diode. The operation of this circuit can be easily understood from the description of the operation of the interlayer level conversion circuit described above, and thus the description is omitted here. If this circuit is used, the interlayer level conversion circuits 7 and 8 shown in FIG. 1 can be shared by one circuit.
さらに、 第 1 3図及び第 1 4図に層間レベル変換回路の他の構成例を示す。 こ れらの回路のうち第 1 0図及び第 1 1図に示したレベル変換回路と同様な部分に ついては説明を省略する。 第 1 3図及び第 1 4図に示す回路は、 第 1 0図及び第 1 1図に示した変換回路のレベルシフト手段をトランジスタ群の代わりにコンデ ンサ 7 1、 7 2、 7 8、 7 9を用いて構成している。  13 and 14 show other examples of the structure of the interlayer level conversion circuit. The description of the same parts as those of the level conversion circuits shown in FIGS. 10 and 11 will be omitted. The circuits shown in FIGS. 13 and 14 are similar to the circuits shown in FIGS. 10 and 11 except that the level shift means of the conversion circuits shown in FIGS. 9 is used.
第 1 5図は、 電源の分割数を 3にした場合の形態を示すものである。 本形態で は、 入力信号 1 1は電源分割ュニット 1 0 1で作られた第 1層の電圧で動作する 低振幅回路 1 0 5で処理され、 その後層問レベル変換回路 1 0 8において信号振 幅を第 2層の電位とし、 第 2層の電圧で動作する低振幅回路 1 0 6で処理され、 さらに層間レベル変換回路 109において信号振幅を第 3層の電位とし、 第 3層 の電圧で動作する低振幅論理回路 107において処理され、 更にレベルシフタ回 路 1 10によって、 フル振幅信号に変換された後フル振幅論理回路 10で処理さ れ出力信号 12となる。 FIG. 15 shows an embodiment in which the number of power supply divisions is three. In this embodiment, the input signal 11 is processed by the low-amplitude circuit 105 operating at the voltage of the first layer created by the power supply unit 101, and then the signal is changed by the signal level conversion circuit 108. The width is set to the potential of the second layer, and processed by the low-amplitude circuit 106 operating at the voltage of the second layer. Further, after the signal amplitude is set to the potential of the third layer in the interlayer level conversion circuit 109, the signal amplitude is processed in the low-amplitude logic circuit 107 operated by the voltage of the third layer, and further converted to the full amplitude signal by the level shifter circuit 110. The output signal 12 is processed by the full amplitude logic circuit 10.
第 16図は、 第 15図に示した論理回路のうち、 電源を 3分割するための電源 分割ュニット丄 01の構成を示す図である。  FIG. 16 is a diagram showing a configuration of a power supply division unit # 01 for dividing the power supply into three parts in the logic circuit shown in FIG.
本電源分割ュニット 101は、 電源電位 2とダランド電位 4とを三分割する為 のコンデンサ 1 17, 1 18, 1 19と、 中間電位 103, 104の変動を補正 するダミーゲート 1 14及び中間電位 103, 104を観測し、 その変動にダミ 一ゲートを追随させる為の制御回路 1 13より構成される。 制御回路 1 13は中 間電位 103, 104を観測し、 その観測結果より制御信号 120, 121, 1 22, 1 23をクロック信号 23, 24より求めたタイミングで出力し、 ダミー ゲ一ト 1 14はこの制御信号 120, 121, 122, 123に基づき内部の回 路を動作させ、 中間電位 103, 104の値を正常な値に補正する。  The power supply dividing unit 101 includes capacitors 117, 118, and 119 for dividing the power supply potential 2 and the Durand potential 4 into three, a dummy gate 114 for correcting fluctuations of the intermediate potentials 103 and 104, and an intermediate potential 103. , 104, and a control circuit 113 for causing the dummy gate to follow the fluctuation. The control circuit 113 observes the intermediate potentials 103 and 104, and outputs control signals 120, 121, 122 and 123 at the timing obtained from the clock signals 23 and 24 based on the observation results, and outputs the dummy gate 1 14 Operates the internal circuit based on the control signals 120, 121, 122, 123, and corrects the values of the intermediate potentials 103, 104 to normal values.
ここでコンデンサ 1 1 7, 1 18, 1 1 9の容量は略等しく、 その値 Cは 2分 割しば場合の構成例と同様に前述の数式 1により求めることができる。  Here, the capacities of the capacitors 1 17, 1 18, 1 19 are almost equal, and the value C can be obtained by the above-mentioned formula 1 as in the configuration example in the case of dividing by 2.
第 1 7図には、 第 15図に示した制御回路の構成を示す。 本制御回路は 2つの 電圧比較器 1 24, 125とタイミング回路 126とから構成される。 電圧比較 器 1 24は中間電位 103を観測するものであり、 電源電位 2と中間電位 103 との電位差が中間電位 103とグランド電位 4との電位差の半分であるかを比較 し、 その結果を信号 127, 128として出力する。 また電圧比較器 1 25は中 間電位 1 04を観測するものであり、 電源電位 2と中間電位 104との電位差が 中間電位 104とグランド電位 4との電位差の倍であるかを比較し、 その結果を 信号 1 29, 1 30として出力する。 タイミング回路 126は 2つの電圧比較器 1 24, 125の出力 127, 128, 129, 130を制御信号 1 20, 1 2 1, 1 22, 1 23として、 クロック 23, 24より決定する一定のタイミング で一定時間だけ出力する。 各層の電源電圧を観測するためには、 各層ごとに電圧 を比較する電圧比較器を設けることによつても実現できるが、 本回路のように下 層の電位差が上層と中層をあわせた電位差の半分になっているか否かを観測し、 上層の電位差が中層と下層をあわせた電位差の半分になっているか否かを観測す るようにすることにより、 少ない電圧比較器により各層の電圧を測定することが 可能となる。 FIG. 17 shows the configuration of the control circuit shown in FIG. This control circuit is composed of two voltage comparators 124, 125 and a timing circuit 126. The voltage comparator 124 observes the intermediate potential 103, compares whether the potential difference between the power supply potential 2 and the intermediate potential 103 is half of the potential difference between the intermediate potential 103 and the ground potential 4, and outputs the result as a signal. Output as 127 and 128. The voltage comparator 125 observes the intermediate potential 104, and compares whether the potential difference between the power supply potential 2 and the intermediate potential 104 is twice as large as the potential difference between the intermediate potential 104 and the ground potential 4. The result is output as signals 129 and 130. The timing circuit 126 uses the outputs 127, 128, 129, 130 of the two voltage comparators 124, 125 as control signals 120, 122, 122, 123 at a fixed timing determined by the clocks 23, 24. Output for a certain period of time. Observing the power supply voltage of each layer can also be realized by providing a voltage comparator that compares the voltage for each layer.However, as in this circuit, the potential difference of the lower layer is the difference between the potential difference of the upper layer and the middle layer. Observe whether it is half or not, By observing whether or not the potential difference of the upper layer is half of the potential difference of the middle layer and the lower layer, the voltage of each layer can be measured with a small number of voltage comparators.
第 1 8図は上記電圧比較器 1 24, 1 2 5の構成図である。 本比較器はスイツ チ 1 38, 1 3 9, 1 43, 144, 145, 146及び同一容量のコンデンサ 140, 1 4 1, 1 42と比較器 1 36, ラッチ回路 1 3 7より構成される。 本 電圧比較器は、 まずスィッチ 1 38, 1 3 9を閉にしスィッチ 1 45を入力電位 14 7側にし、 スィヅチ 1 43と 144により 2つのコンデンサ 1 4 1 , 1 4 2 が並列になるようにし、 スィッチ 1 46を入力電位 1 48側にして、 コンデンサ 1 40には比較器 1 36の基準電位と入力電位 14 7との電位差を保存し、 コン デンサ 14 1, 142には基準電位と入力電位 148との電位差を保存する。 次 に、 スィッチ 1 3 8, 1 3 9を開放しスィッチ 1 45を入力電位 148側にし、 スィッチ 143と 1 44により 2つのコンデンサ 14 1, 142が直列になるよ うにし、 スィッチ 146を入力電位 1 49側にする。 この結果比較器 1 3 6には、 入力電位 1 4 7と 148との電位差と、 入力電位 1 48と 1 4 9との電位差の 2 倍が入力される。 この時入力電位 14 7と 148との電位差の方が大きければ出 力 1 50が h i g hとなり入力電位 1 48と 14 9との電位差の 2倍の方が大き ければ出力 1 5 1が h i g hとなる。 またラッチ回路 1 3 7はこの出力 1 50, 1 5 1のレベルを電源電位 2の値とし、 L owのレベルをグランド電位 4の値と なるようにする。  FIG. 18 is a block diagram of the voltage comparators 124 and 125. This comparator is composed of switches 138, 1339, 143, 144, 145, 146, capacitors 140, 141, and 142 of the same capacity, a comparator 136, and a latch circuit 137. In this voltage comparator, first, switches 138 and 139 are closed, switch 145 is set to the input potential 147 side, and switches 143 and 144 are used so that the two capacitors 144 1 and 142 become parallel. The switch 146 is set to the input potential 148 side, the capacitor 140 stores the potential difference between the reference potential of the comparator 136 and the input potential 147, and the capacitors 141 and 142 store the reference potential and the input potential. Save the potential difference from 148. Next, the switches 1 3 8 and 1 3 9 are opened and the switch 1 45 is set to the input potential 148 side. The two capacitors 141 and 142 are connected in series by the switches 143 and 144, and the switch 146 is set to the input potential. 1 Set to the 49 side. As a result, the potential difference between the input potentials 147 and 148 and twice the potential difference between the input potentials 148 and 149 are input to the comparator 1336. At this time, if the potential difference between input potentials 147 and 148 is larger, output 150 will be high, and if twice the potential difference between input potentials 148 and 149 is greater, output 15 1 will be high. . The latch circuit 1337 sets the levels of the outputs 150 and 151 to the value of the power supply potential 2 and the level of Low to the value of the ground potential 4.
本電圧比較器は第 1 5図の電圧比較器 1 24として用いる場合は、 電源電位 2 が入力電位 1 4 7に、 中間電位 1 03が入力電位 1 48になりグランド電位 4が 入力電位 1 4 9となる。 そして出力 1 50は第 1 7図中の出力 1 2 7として用い られ、 1 5 1は出力 1 28として用いられる。 また電圧比較器 1 2 5と して用い る場合は、 電源電位 2が入力電位 1 4 9に、 中間電位 1 04が入力電位 1 48に なりグランド電位 4が入力電位 1 4 7となる。 そして出力 1 50は第 1 7図中の 出力 1 30として用いられ、 1 5 1は出力 1 2 9として用いられる。  When this voltage comparator is used as the voltage comparator 124 in Fig. 15, the power supply potential 2 becomes the input potential 147, the intermediate potential 103 becomes the input potential 148, and the ground potential 4 becomes the input potential 1 4 It becomes 9. The output 150 is used as the output 127 in FIG. 17, and the output 151 is used as the output 128. When used as the voltage comparator 125, the power supply potential 2 becomes the input potential 149, the intermediate potential 104 becomes the input potential 148, and the ground potential 4 becomes the input potential 147. The output 150 is used as the output 130 in FIG. 17, and the output 151 is used as the output 129.
第 1 9図は第 1 7図に述べたタイミング回路 1 2 6の構成を示したものである。 本タイミング回路は一定時間毎に行う補正処理のタイミングを求めるカウンタ 1 52と、 出力するタイミングとその時間を決定する AND回路 153と、 制御信 号 120, 121, 122, 123を出力する AND回路 154, 155, 1 5 6, 157とから構成される。 まずカウンタ 152は第 5図に示したカウンタ 3 3と同様に動作し、 AND回路 153は第 5図に示したカウンタ 33と同様に動 作しタイミング信号 1 58生成する。 AND回路 154, 155, 1 56, 15 7は、 第 5図の AND回路 35, 36と同様に、 電圧比較器出力 127, 128, 129, 130をタイミング信号 158で同期させ、 1/4サイクルだけとなる 制御信号 120, 121, 1 22, 123として出力させる。 FIG. 19 shows the configuration of the timing circuit 126 shown in FIG. This timing circuit is a counter that determines the timing of the correction process performed at regular intervals. 52, an AND circuit 153 for determining the output timing and its time, and AND circuits 154, 155, 156, 157 for outputting the control signals 120, 121, 122, 123. First, the counter 152 operates similarly to the counter 33 shown in FIG. 5, and the AND circuit 153 operates similarly to the counter 33 shown in FIG. 5 to generate the timing signal 158. The AND circuits 154, 155, 156 and 157 synchronize the voltage comparator outputs 127, 128, 129 and 130 with the timing signal 158 in the same manner as the AND circuits 35 and 36 in FIG. Are output as control signals 120, 121, 122, and 123.
第 20図はダミーゲートの構成を示したものであり、 本ダミーゲートは複数個 の NMOS トランジスタより構成される電流制御ゲート 161, 162, 163, 164, 165, 166から構成される。 本ダミーゲートの制御ゲート 161は、 制御信号 120により中間電位 103の電位を上昇さ、 制御ゲート 162, 16 4は制御信号 122により連動して、 中間電位 104を上昇させる。 また制御ゲ —ト 163, 165は制御信号 121により連動して中間電位 103を下降させ、 制御ゲート 166は制御信号 123により中間電位 104を下降させる。 ここで、 各制御ゲートを構成する NMOS トランジスタの数 Nは、 第 6図におけるダミ一 ゲート 38, 39同様に数 2により得ることができる。  FIG. 20 shows the configuration of a dummy gate. This dummy gate is composed of current control gates 161, 162, 163, 164, 165, 166 composed of a plurality of NMOS transistors. The control gate 161 of this dummy gate raises the potential of the intermediate potential 103 by the control signal 120, and the control gates 162, 164 raise the intermediate potential 104 in conjunction with the control signal 122. The control gates 163 and 165 lower the intermediate potential 103 in conjunction with the control signal 121, and the control gate 166 lowers the intermediate potential 104 according to the control signal 123. Here, the number N of the NMOS transistors constituting each control gate can be obtained from the equation 2 as in the case of the dummy gates 38 and 39 in FIG.
以上の構成よりなる電源分割ュニット 101では、 中間電位 103が規定の値 より低ければ、 制御信号 1 20により制御ゲート 1 61を駆動し、 電源電位 2よ り中間電位 1 03に電荷を加え中間電位 103を上昇させる。 逆に中間電位 1 0 3が規定の値より高ければ、 制御信号 121により制御ゲ一ト 162と制御ゲー ト 164を駆動し、 中間電位 103よりグランド電位 4に電荷を放出させて中間 電位 103を下降させる。 また中間電位 1 04が規定の値より低ければ、 制御信 号 1 22により制御ゲート 1 63と制御ゲ一ト 166を駆動し、 電源電位 2より 中間電位 1 04に電荷を加え中間電位 1 04を上昇させる。 逆に中間電位 104 が規定の値より高ければ、 制御信号 1 23により制御ゲート 166を駆動し、 中 間電位 104よりグランド電位 4に電荷を放出させて中間電位 1 04を下降させ る。  In the power supply division unit 101 having the above configuration, if the intermediate potential 103 is lower than the specified value, the control gate 161 is driven by the control signal 120 and the electric charge is added to the intermediate potential 103 from the power supply potential 2 to apply the intermediate potential. Raise 103. Conversely, if the intermediate potential 103 is higher than the specified value, the control signal 121 drives the control gate 162 and the control gate 164, and the intermediate potential 103 releases the electric charge to the ground potential 4 to generate the intermediate potential 103. Lower it. If the intermediate potential 104 is lower than the specified value, the control signal 122 drives the control gate 163 and the control gate 166, and applies a charge to the intermediate potential 104 from the power supply potential 2 to generate the intermediate potential 104. To raise. On the other hand, if the intermediate potential 104 is higher than the specified value, the control gate 166 is driven by the control signal 123 to discharge the electric charge from the intermediate potential 104 to the ground potential 4 to lower the intermediate potential 104.
第 2 1図は、 電源分割ュニッ 卜の他の構成例である。 図中では電源を 3つに分 割する場合の例を示しているが、 分割する数が異なる場合でも同様に適用できる。 この電源分割ュニットは電源を三分割するコンデンサ 1 1 7, 1 1 8, 1 1 9 と制御回路 1 70とダミーゲート 1 7 1 , 1 72, 1 7 3よりなる。 本電源分割 ユニットでは、 コンデンサ 1 1 7, 1 1 8, 1 1 9によって三分割して作られた 中間電位 1 03, 1 04を、 制御回路 1 70より出力される制御信号 1 74, 1 75, 1 7 6によりダミーゲート 1 7 1, 1 72, 1 73を動作させて安定化さ せるものである。 FIG. 21 shows another configuration example of the power supply unit. In the figure, the power supply is divided into three Although the example of dividing is shown, the same applies to the case where the number of divisions is different. This power dividing unit comprises capacitors 1 1, 1 1 8, 1 19, a control circuit 170, and dummy gates 171, 172, 173 for dividing the power into three. In this power supply division unit, the intermediate potentials 103 and 104, which are divided into three by the capacitors 1 17 and 1 18 and 1 19, are converted into control signals 174 and 175 output from the control circuit 170. , 176 operate the dummy gates 171, 172, 173 to stabilize.
第 22図には第 2 1図の制御回路 1 70の構成をしめす。 本制御回路は分周器 1 8 1とループカウンタ 1 8 2, AND回路1 83と ROM 1 80とタイミング ゲ一ト 1 84から構成される。 まずク口ック信号 2 3を分周器 1 8 1で一定数分 周し、 その結果 1 8 5によってループカウンタ 1 8 2をカウントアップし、 この カウンタの値を ROM 1 80のア ドレス 1 86として用い、 ROM1 80の値は 3つに分けられ、 タイミングゲート 1 84により制御信号 1 74, 1 75, 1 7 6として出力される。 このタイミングゲート 1 84は、 クロック 2 3を分周器 1 8 1でした値 1 85とクロック 23より 1Z4サイクル遅れたクロック 24とを、 AND回路 1 83で ANDしたタイミング信号 1 8 7により出力タイミングが決 定される。 本例では電圧比較器により各層の電圧を比較して各中間電位を補償す る方法ではなく、 各層に配置された論理回路を流れる電流量をあらかじめシミュ レ一ション等の方法で把握している場合に有効なものであり、 あらかじめメモリ (ROM) に記憶させたデータに従って各タイミングでの各層の電流量を等しく するよう制御するものである。  FIG. 22 shows the configuration of the control circuit 170 of FIG. This control circuit comprises a frequency divider 181, a loop counter 182, an AND circuit 183, a ROM 180, and a timing gate 184. First, the clock signal 23 is frequency-divided by the frequency divider 18 1 by a certain number. As a result, the loop counter 18 2 is counted up by 18 5 and the value of this counter is stored in the address 1 of the ROM 180. Used as 86, the value of ROM 180 is divided into three, and output as control signals 174, 175, 176 by timing gate 184. The timing gate 184 outputs the output timing by the timing signal 187 obtained by ANDing the value 185 obtained by dividing the clock 23 with the frequency divider 18 1 by 1Z4 cycle from the clock 23 with the clock 24 by the AND circuit 183. Is determined. In this example, the amount of current flowing through the logic circuits arranged in each layer is grasped in advance by a method such as simulation, instead of compensating for each intermediate potential by comparing the voltage of each layer with a voltage comparator. This is effective in such a case, and controls to equalize the current amount of each layer at each timing according to the data stored in the memory (ROM) in advance.
第 23図にダミーゲ一ト 1 7 1, 1 72, 1 73の構成を示す。 ダミーゲート 1 7 1 , 1 72, 1 73は N個の NMOS トランジスタによって構成されそれぞ れ制御信号 1 74, 1 7 5, 1 76により動作する。 制御信号 1 74, 1 75, 1 76は Nビットの信号であり各ビットがダミーゲ一ト内の NOMS トランジス タに対応しており、 それぞれのビットの " 1" , "2" によって幾つの NOMS トランジスタを駆動するかを指定することができる。  FIG. 23 shows the configuration of the dummy gates 171, 172, 173. The dummy gates 171, 172 and 173 are composed of N NMOS transistors and are operated by control signals 174, 175 and 176 respectively. The control signals 174, 175, and 176 are N-bit signals. Each bit corresponds to the NOMS transistor in the dummy gate, and the number of NOMS transistors depends on the "1" and "2" of each bit. Can be specified.
第 24図には、 本発明にかかる論理回路を信号処理回路である D S P (デイジ タル ·シグナル .プロセッサ) やマイク口コンピュータに適用した場合の構成を 示す。 第 1図や第 1 5図で示したように多層の論理回路を用いて信号処理回路を 構成する場合にはそれぞれの回路ブロックをどの電源層に割り当てるかが重要で ある。 なお、 第 2 4図では外部電源電圧を 3つの内部電源電圧に分割した論理回 路を用いる場合の例を説明する。 また、 とくに制限されないが、 本例の信号処理 回路は単一の半導体基板の上に形成された半導体集積回路 (L S I ) であり、 他 の半導体装置とともコンピュータシステム等のシステムを構成するものである。 この、 D S Pは、 信号処理に必要な所定のデータ等が記憶される R AMマトリ タス (メモリセルアレー) 2 0 1と命令等が記憶される R OMマトリクス (メモ リセルアレー) 2 0 2と命令に従った所定の演算を行う演算ユニット (E X ) 2 0 3とアドレス演算ユニット (A U ) 2 0 4 , 及び外部とのインターフェスとな る I /Οュニット 2 0 5と R OMマトリクスに記億された命令を解読する命令デ コーダ 2 0 6と、 プログラムの実行を制御するプログラムコントロールュニット ( P C U ) 2 0 7と R AM用センスアンプ 2 0 8 , アドレスデコーダ 2 0 9によ つて構成される。 FIG. 24 shows a configuration in which the logic circuit according to the present invention is applied to a DSP (Digital Signal Processor) as a signal processing circuit or a microphone computer. Show. When a signal processing circuit is configured using multilayer logic circuits as shown in FIGS. 1 and 15, it is important to assign each circuit block to which power supply layer. FIG. 24 illustrates an example in which a logic circuit in which an external power supply voltage is divided into three internal power supply voltages is used. Although not particularly limited, the signal processing circuit of this example is a semiconductor integrated circuit (LSI) formed on a single semiconductor substrate, and constitutes a system such as a computer system with other semiconductor devices. is there. The DSP consists of a RAM matrix (memory cell array) 201 in which predetermined data required for signal processing is stored and a ROM matrix (memory cell array) 202 in which instructions are stored. The arithmetic unit (EX) 203, the address arithmetic unit (AU) 204, and the I / unit 205, which serves as an interface with the outside, and the ROM matrix that perform predetermined arithmetic operations in accordance with the It consists of an instruction decoder 206 that decodes the executed instructions, a program control unit (PCU) 207 that controls the execution of the program, a RAM sense amplifier 208, and an address decoder 209. .
これらの回路プロックの内 I/Oュニット 2 0 5は他の半導体装置等外部の回路 とのインターフェイスを保っためいわゆるフル振幅 (外部電源電源電圧に対応し た振幅) で動作し、 フル振幅の信号を出力できるよう構成されることが望ましい。 また、 R AMマトリクス 2 0 1、 R OMマトリクス 2 0 2の両メモリ回路は、 記憶情報の精度やアクセス速度を考慮して、 I/O ユニッ ト 2 0 5と同様にフル振 幅で動作するよう構成こることが望ましい。  Of these circuit blocks, the I / O unit 205 operates at a so-called full amplitude (amplitude corresponding to the external power supply voltage) to maintain an interface with external circuits such as other semiconductor devices. Is desirably configured to be output. In addition, both the RAM matrix 201 and the ROM matrix 202 operate at full amplitude in the same manner as the I / O unit 205 in consideration of the accuracy and access speed of the stored information. It is desirable to have such a configuration.
また、 データ等の情報を伝送するバス 2 2 0は、 複数の回路ブロックと接続さ れ各回路プロックのデータを伝送する必要があるため、 分割された電源電圧層の 中で真ん中 (3層に分割した場合には第 2層) の振幅に維持することにより、 各 回路プロックからのレベル変換を少なくすることができる (3層に分割した場合 には多くて 1度のレベル変換) ため好適である。  Also, the bus 220 for transmitting information such as data is connected to a plurality of circuit blocks and needs to transmit data of each circuit block. By maintaining the amplitude of the second layer when divided, the level conversion from each circuit block can be reduced (when divided into three layers, the level conversion is performed at most once). is there.
演算ュニット 2 0 3は所定の演算を行うためバス 2 2 0とのアクセス回数が最 も多くなる。 従ってバスと同一の振幅とすることが必要である。 この場合にはバ ス 2 2 0の振幅が上述の理由から第 2層の振幅とされているため、 演算ュニット 2 0 3も第 2層に形成され、 第 2層の電源電圧に従った振幅の信号を入出力する ようにされる。 Since the arithmetic unit 203 performs a predetermined arithmetic operation, the number of accesses to the bus 220 is the largest. Therefore, it is necessary to have the same amplitude as the bus. In this case, since the amplitude of the bus 220 is regarded as the amplitude of the second layer for the reason described above, the arithmetic unit 203 is also formed in the second layer, and the amplitude according to the power supply voltage of the second layer is obtained. Input and output signals To be.
演算に必要なデータを記憶する RAMマトリクスの出力を増幅するセンスアン プ 208はバス 220とのみアクセスするので、 バス 220と同じ振幅、 すなわ ち中間の第 2層で構成することが望ましい。  Since the sense amplifier 208 that amplifies the output of the RAM matrix that stores data necessary for the operation accesses only the bus 220, it is preferable that the sense amplifier 208 be configured with the same amplitude as the bus 220, that is, the second layer in the middle.
つぎに、 アドレッシングユニット 204と命令デコーダ 206が残るが、 これ らを同一の層に配置すると双方とも回路規模が大きすぎるので別々の層とするこ とが望ましい。 ここでは、 どれぞれ第 1層と第 3層に割り当てる。  Next, the addressing unit 204 and the instruction decoder 206 remain. However, if these are arranged on the same layer, the circuit scales of both are too large, so it is desirable to use separate layers. Here, they are assigned to the first and third layers, respectively.
更に命令デコーダ 206よりァドレッシングュニット 204の方が回路規模が 小さくなるため他の PCUも第 1層とする。  Further, since the addressing unit 204 has a smaller circuit scale than the instruction decoder 206, another PCU is also used as the first layer.
次に RAM用ァドレスデコーダ 209は AU 204からのみアクセスされるた め第 1層とし、 レベル変換回路 212を介して RAMマトリクス 201にァドレ スを送る。  Next, since the RAM address decoder 209 is accessed only from the AU 204, it is the first layer, and sends an address to the RAM matrix 201 via the level conversion circuit 212.
また ROMマトリタス用ァドレスデコーダ 210も PCU207からのみァク セスされすため、 第 1層としレベル変換回路 213を通して ROIV [マトリタスへ ァドレスを送る。  Since the ROM matrix address decoder 210 is also accessed only from the PCU 207, the ROM decoder sends the address to the ROIV [Matritas] through the level conversion circuit 213 as the first layer.
更に、 ROMマトリクス用センスアンプ 214は命令デコーダ 206にのみァ クセスすることから第 3層とする。  Further, since the ROM matrix sense amplifier 214 accesses only the instruction decoder 206, it is a third layer.
外部 I 〇の値をバス 220に出力する為のバスドライブ回路 21 9は、 バス 220と同じ第 2層とし層間レベル変換回路を不要とする。  The bus drive circuit 219 for outputting the value of the external I〇 to the bus 220 has the same second layer as the bus 220, and does not require an interlayer level conversion circuit.
最後に命令デコーダからバス 220へデータを出力する時と、 バス 220から AU 204, P CU 218へ値を取り込む時はそれぞれ層間レベル変換回路 2 1 6 , 21 7, 218を介して行う。 またバスから RAMマトリクス 201と I O 205とにデータを送る時はレベルシフタ 21 1, 215をそれぞれ介する用 にし、 逆に RAMマトリクス 201から RAM用センスアンプ 208へデータを 送るときと、 ROM 202から ROM用センスアンプ 214へデータを送るとき と、 I 0205からバス ドライバ 21 9へデータを送るときは、 それぞれフル 振幅の信号を直接送ることとする。 これは MOS回路の入力信号が電源振幅を超 越していても、 動作が可能であるためである。  Finally, when data is output from the instruction decoder to the bus 220, and when values are fetched from the bus 220 to the AU 204 and the PCU 218, they are performed via the interlayer level conversion circuits 211, 217 and 218, respectively. When sending data from the bus to the RAM matrix 201 and the IO 205, use the level shifters 211 and 215, respectively.On the contrary, when sending data from the RAM matrix 201 to the RAM sense amplifier 208 and from the ROM 202 to the ROM When sending data to the sense amplifier 214 and when sending data from I 0205 to the bus driver 219, a full-amplitude signal is sent directly. This is because operation is possible even when the input signal of the MOS circuit exceeds the power supply amplitude.
以上のように信号処理回路を多層電源の論理回路で構成することにより、 消費 電力の小さな信号処理回路を効率的に形成することが可能となる。 By configuring the signal processing circuit with a multi-layer power supply logic circuit as described above, It is possible to efficiently form a low-power signal processing circuit.
第 2 5図は既に説明したように移動無線電話のシステムの概略を示す図である が、 本願発明にかかる多層電源の論理回路を用いて音声符号化復号化回路 2 3 4 等を構成することにより、 比較的高い外部電源電圧を必要とする変復調回路 2 3 5と、 比較的低い電源電圧で動作可能な論理回路とが共存することができ、 シス テムを構成する規模及び消費電力の観点からも好適な移動無線電話等の信号処理 システムを構成することが可能となる。  FIG. 25 is a diagram schematically showing the system of the mobile radio telephone as described above. The speech encoding / decoding circuit 2 3 4 and the like are configured using the logic circuit of the multi-layer power supply according to the present invention. Therefore, a modem circuit 235 that requires a relatively high external power supply voltage and a logic circuit that can operate with a relatively low power supply voltage can coexist, and from the viewpoint of the scale and power consumption of the system, It is also possible to configure a suitable signal processing system such as a mobile radio telephone.
以上説明したように、 本発明によれば、 低電圧動作が難しい回路を含むシステ ムにおいて、 回路規模を増大させることなく、 低電圧 C MO S論理回路を用いて システムの消費電力化が可能となる。 産業上の利用可能性  As described above, according to the present invention, in a system including a circuit in which low-voltage operation is difficult, it is possible to reduce the power consumption of the system using a low-voltage CMOS logic circuit without increasing the circuit scale. Become. Industrial applicability
本発明は、 C MO Sを用いた論理回路、 特に低電圧動作の C MO S論理回路に 適用することができる。 また、 論理回路を構成する半導体集積回路の外部電源電 圧が高い場合に低電圧動作の CM O S論理回路を効率的に構成することができる。 さらに、 本発明を用いることにより、 低消費電力かつシステム構成の簡潔な信号 処理回路を構成することができる。  INDUSTRIAL APPLICABILITY The present invention can be applied to a logic circuit using CMOS, particularly to a CMOS logic circuit operating at low voltage. Further, when the external power supply voltage of the semiconductor integrated circuit constituting the logic circuit is high, a CMOS logic circuit operating at a low voltage can be efficiently configured. Furthermore, by using the present invention, a simple signal processing circuit with low power consumption and a simple system configuration can be configured.

Claims

請 求 の 範 囲 . 第 1の動作電位と第 2の動作電位とが供給され、 該第 1の動作電位と該第 2 の動作電位から両電位と異なる第 3の動作電位を出力する電源分割ュニットと、 上記第 1の動作電位と上記第 3の動作電位との間で動作し、 相補型電界効果 型トランジスタで構成された第 1の論理回路と、 上記第 3の動作電位と上記第 2の動作電位との間で動作し、 相補型電界効果 型トランジスタで構成された第 2の論理回路と、 上記第 1の論理回路の出力信号の振幅を変換し上記第 2の論理回路に入力す るレベル変換回路とを有することを特徴とする半導体集積回路装置。. 第 1の動作電位点と第 2の動作電位点とに接続され、 該第 1の動作電位点の 電位と上記第 2の動作電位点の電位から両電位の略中間となる電位を第 3の動 作電位点から供給する電源分 ュニットと、 上記第 1の動作電位点と上記第 3の動作電位点に接続された第 1の論理回路 と、 上記第 3の動作電位点と上記第 2の動作電位点に接続された第 2の論理回路 上記第 1の論理回路から出力される信号及び上記第 2の論理回路から出力さ れる信号を受けるレベル変換回路とを有し、 上記レベル変換回路は、 上記第 1及び第 2の論理回路から入力された信号を 上記第 1動作電位点の電位から上記第 2動作電位点の電位に対応した振幅を有 する信号に変換するよう構成されたことを特徴とする半導体集積回路装置。. 上記半導体集積回路装置はさらに、 上記第 2の論理回路の出力信号の振幅を変換し上記第 1の論理回路に入力す るレベル変換回路を有することを特徴とする請求の範囲第 1項又は第 2項記載 の半導体集積回路装置。. 上記半導体集積回路装置はさらに、 第 1の動作電位及び第 2の動作電位に接続された第 3の論理回路を有するこ とを特徴とする請求の範囲第 3項記載の半導体集積回路装置- . 上記電源分割ユニットは、 上記第 3の動作電位を検出する手段と、 上記検出手段に基づき、 上記第 3の動作電位を補正する手段とを有すること を特徴とする請求の範囲第 1項記載の半導体集積回路装置。. 上記第 3の動作電位を検出する手段は、 上記第 1の動作電位と上記第 3の動作電位との電位差と、 上記第 3の動作電 位と上記第 2の動作電位との電位差を比較する回路から構成され、 上記第 3の動作電位を補正する手段は、 上記比較結果に基づき流れる電流の 量が制御される電流制御回路により構成されたことを特徴とする請求の範囲第 5項記載の半導体集積回路装置。. 上記レベル変換回路は、 上記第 1の論理回路の出力信号のレベルをシフトするレベルシフト手段と、 上記レベルシフト手段を介して上記出力信号を受けるラッチ回路とを有し、 上記ラッチ回路は上記第 3の動作電位及び上記第 2の動作電位の間で動作す るよう構成されたことを特徴とする請求の範囲第 1項記載の半導体集積回路装 置。. 上記第 2の論理回路の出力信号を変換して上記第 1の論理回路に供給する上 記レベル変換回路は、 上記第 2の論理回路の出力信号のレベルをシフトするレベルシフト手段と、 上記レベルシフト手段を介して上記出力信号を受けるラッチ回路とを有し、 上記ラツチ回路は上記第 1の動作電位及び第 3の動作電位の間で動作するよ う構成されたことを特徴とする請求の範囲 3項記載の半導体集積回路装置。 . 第 1の動作電位点と第 2の動作電位点に接続され、 該両電位点の電位とは異 なる電位を供給する第 3の動作電位点及び第 4の動作電位点を具備する電源分 割ュニットと、 上記第 1の動作電位点及び上記第 3の動作電位点に接続された第 1の論理回 路と、 上記第 3の動作電位点及び上記第 4の動作電位点に接続された第 2の論理回 路と、 上記第 4の動作電位点及び上記第 2の動作電位点に接続された第 3の論理回 路と、 上記第 1の論理回路と上記第 2の論理回路の間に接続される第 1のレベル変 換回路と、 上記第 2の論理回路と上記第 3の論理回路の間に接続される第 2のレベル変 換回路と有し、 上記第 1のレベル変換回路は、 上記第 1の論理回路の出力信号を上記第 3の 動作電位点及び上記第 4の動作電位点に対応した振幅に変換し、 上記第 2のレベル変換回路は、 上記第 2の論理回路の出力信号を上記第 4の 動作電位点及び上記第 2の動作電位点に対応した振幅に変換するよう構成され たことを特徴とする半導体集積回路装置。 0 · 上記電源分割ュニットは、 上記第 3の動作電位点の電位及び上記第 4の動 作電位点の電位を検出し、 その結果に基づき上記第 3の動作電位点及び上記第 の動作電位点の電位を補正するよう構成されたことを特徴とする請求の範囲 第 9項記載の半導体集積回路装置。 Claims 1. A power splitter that is supplied with a first operating potential and a second operating potential, and outputs a third operating potential different from both the first operating potential and the second operating potential. A first logic circuit that operates between the first operating potential and the third operating potential and is configured by a complementary field-effect transistor; And a second logic circuit composed of complementary field-effect transistors, and converts the amplitude of the output signal of the first logic circuit and inputs the converted signal to the second logic circuit. And a level conversion circuit. The third operating potential point is connected to the first operating potential point and the second operating potential point. A power supply unit supplied from the first operating potential point, a first logic circuit connected to the first operating potential point and the third operating potential point, a third operating potential point and the second A second logic circuit connected to the operating potential point of the first logic circuit and a level conversion circuit receiving a signal output from the first logic circuit and a signal output from the second logic circuit; Is configured to convert the signals input from the first and second logic circuits from the potential at the first operating potential point to a signal having an amplitude corresponding to the potential at the second operating potential point. A semiconductor integrated circuit device characterized by the above-mentioned. The semiconductor integrated circuit device further comprises a level conversion circuit for converting the amplitude of the output signal of the second logic circuit and inputting the converted signal to the first logic circuit. 3. The semiconductor integrated circuit device according to claim 2. 4. The semiconductor integrated circuit device according to claim 3, wherein the semiconductor integrated circuit device further includes a third logic circuit connected to the first operating potential and the second operating potential. 2. The power supply dividing unit according to claim 1, wherein the power dividing unit includes means for detecting the third operating potential, and means for correcting the third operating potential based on the detecting means. Semiconductor integrated circuit device. The means for detecting the third operating potential compares the potential difference between the first operating potential and the third operating potential with the potential difference between the third operating potential and the second operating potential. 6. The circuit according to claim 5, wherein the means for correcting the third operating potential is constituted by a current control circuit that controls an amount of a current flowing based on the comparison result. Semiconductor integrated circuit device. The level conversion circuit has level shift means for shifting a level of an output signal of the first logic circuit, and a latch circuit receiving the output signal via the level shift means. 2. The semiconductor integrated circuit device according to claim 1, wherein the semiconductor integrated circuit device is configured to operate between a third operating potential and the second operating potential. The level conversion circuit converts the output signal of the second logic circuit and supplies the output signal to the first logic circuit, wherein the level shift circuit shifts the level of the output signal of the second logic circuit; A latch circuit for receiving the output signal via level shift means, wherein the latch circuit is configured to operate between the first operating potential and the third operating potential. 4. The semiconductor integrated circuit device according to item 3. A power supply connected to the first operating potential point and the second operating potential point and having a third operating potential point and a fourth operating potential point for supplying a potential different from the potentials of the two potential points A split unit, a first logic circuit connected to the first operating potential point and the third operating potential point, and a first logic circuit connected to the third operating potential point and the fourth operating potential point A second logic circuit, a third logic circuit connected to the fourth operating potential point and the second operating potential point, and a connection between the first logic circuit and the second logic circuit. A first level conversion circuit connected to the second logic circuit and a second level conversion circuit connected between the second logic circuit and the third logic circuit; and the first level conversion circuit Converts the output signal of the first logic circuit into an amplitude corresponding to the third operating potential point and the fourth operating potential point, A semiconductor integrated circuit device configured to convert an output signal of the second logic circuit into an amplitude corresponding to the fourth operating potential point and the second operating potential point. . 0 · The power supply unit detects the potential of the third operating potential point and the potential of the fourth operating potential point, and based on the detection results, determines the third operating potential point and the third operating potential point. 10. The semiconductor integrated circuit device according to claim 9, wherein the semiconductor integrated circuit device is configured to correct the potential of the semiconductor integrated circuit.
1 . 上記電源分割ュニットは、  1. The power supply unit is
上記第 1の動作電位点と上記第 4の動作電位点との電位差である第 1の電位 差と、 上記第 1動作電位点と上記第 3動作電位点との電位差である第 2の電位 差を検出し、 上記第 1の電位差の半分の値と上記第 2の電位差を比較する第 1 の比較回路と、  A first potential difference that is a potential difference between the first operating potential point and the fourth operating potential point, and a second potential difference that is a potential difference between the first operating potential point and the third operating potential point And a first comparison circuit for comparing a value of half of the first potential difference with the second potential difference,
上記第 3の動作電位点と上記第 2の動作電位点との電位差である第 3の電位 差と、 上記第 3動作電位点と上記第 2動作電位点との電位差である第 4の電位 差を検出し、 上記第 3の電位差の半分の値と上記第 4の電位差を比較する第 2 の比較回路と、  A third potential difference, which is a potential difference between the third operating potential point and the second operating potential point, and a fourth potential difference, which is a potential difference between the third operating potential point and the second operating potential point A second comparison circuit that detects half of the third potential difference and the fourth potential difference,
上記第 1及び第 2の比較回路の比較結果に基づき上記第 3及び第 4の動作電 位点の電位を補正することを特徴とする請求の範囲第 9項記載の半導体集積回 路装匱。  10. The semiconductor integrated circuit device according to claim 9, wherein the potentials of the third and fourth operating potential points are corrected based on a comparison result of the first and second comparison circuits.
2 . 上記電源分割ュニットは、  2. The power supply unit is
所定のタイミングで、 あらかじめ記憶された制御信号を出力する制御回路と、 該制御回路の制御信号をそのゲート電極に受けるとともに各動作電位点間に接 続されたトランジスタとを有し、 上記制御信号により上記トランジスタに流れ る電流量を制御するよう構成されたことを特徴とする請求の範囲第 1項又は第 9項記載の半導体集積回路装置。 A control circuit that outputs a control signal stored in advance at a predetermined timing; A transistor connected to the gate electrode thereof while receiving a control signal of the control circuit, and configured to control an amount of current flowing through the transistor by the control signal. 10. The semiconductor integrated circuit device according to claim 1, wherein:
3 . 外部電源電圧に対応した第 1の振幅で動作する第 1の回路群と、 3. a first group of circuits operating at a first amplitude corresponding to the external power supply voltage;
上記外部電源電圧を分割し少なくとも 3つの内部電源電圧を作成する回路と、 上記 3つの内部電源電圧に対応した第 2の振幅、 第 3の振幅、 第 4の振幅で 動作する第 2、 第 3、 第 4の回路群と、  A circuit that divides the external power supply voltage to generate at least three internal power supply voltages; and a second and a third operating at a second amplitude, a third amplitude, and a fourth amplitude corresponding to the three internal power supply voltages. , A fourth circuit group,
上記各回路群間の信号伝送にかかわるバスとを有し、  A bus involved in signal transmission between the respective circuit groups,
上記第 1の回路群は、 外部から信号を受け、 該信号を上記バスに供給するィ ンターフェイス回路を有し、  The first circuit group includes an interface circuit that receives a signal from outside and supplies the signal to the bus.
上記第 3の回路群は、 上記バスに接続され、 上記バスを介して受けるデータ にたいして所定の演算を行う演算ュニットを有して構成されることを特徴とす る半導体集積回路装置。  A semiconductor integrated circuit device, wherein the third circuit group is configured to include an operation unit connected to the bus and performing a predetermined operation on data received via the bus.
4 . 上記第 1の回路群はさらに、 4. The first circuit group further includes
外部から供給されるデータを一時的に記憶するメモリを構成するメモリセル アレーと、  A memory cell array constituting a memory for temporarily storing data supplied from the outside;
プログラムが記憶されたメモリを構成するメモリセルアレーとを有すること を特徴とする請求の範囲第 1 3項記載の半導体集積回路装置。 14. The semiconductor integrated circuit device according to claim 13, further comprising: a memory cell array forming a memory in which a program is stored.
5 . 上記第 3の回路群は、 上記外部から供給されるデータを記億するメモリを 構成するメモリセルアレーの出力を増幅して上記バスへ供給するセンスアンプ 回路を有することを特徴とする請求の範囲第 1 4項記載の半導体集積回路装置。 5. The third circuit group includes a sense amplifier circuit for amplifying an output of a memory cell array constituting a memory for storing data supplied from the outside and supplying the amplified signal to the bus. 15. The semiconductor integrated circuit device according to claim 14, wherein
6 . 上記第 4の回路群は、 上記メモリに記憶されたプログラムをデコードする 命令デコーダを有し、 該命令デコーダの出力は、 その振幅を変換するレベル変 換回路を介して上記バスに出力されることを特徴とする請求の範囲第 1 5項記 載の半導体集積回路装置。6. The fourth circuit group has an instruction decoder that decodes a program stored in the memory, and an output of the instruction decoder is output to the bus via a level conversion circuit that converts the amplitude of the instruction decoder. 16. The semiconductor integrated circuit device according to claim 15, wherein:
7 . 上記第 2の回路群は、 上記バスを介して伝達される信号に基づき上記メモ リのァ ドレスの指定を行ぅァドレッシングュニットと、 該ァドレッシングュニ ットの出力を受けるァドレスデコーダとを有することを特徴とする請求の範囲 第 1 6項記載の半導体集積回路装置。 7. The second group of circuits is configured to specify an address of the memory based on a signal transmitted through the bus, and an addressing unit receiving an output of the addressing unit. Claims characterized by having a decoder 17. The semiconductor integrated circuit device according to item 16.
8 . 少なくとも第 1及び第 2の半導体集積回路装置から構成される信号処理装 置であって、 8. A signal processing device including at least the first and second semiconductor integrated circuit devices,
上記第 1及び第 2の半導体集積回路装置に共通に動作電位を供給する第 1及 び第 2の動作電位発生手段を有し、  First and second operating potential generating means for supplying an operating potential commonly to the first and second semiconductor integrated circuit devices,
上記第 1の半導体集積回路装置は上記第 1及び第 2の動作電位により動作す る內部回路により構成され、  The first semiconductor integrated circuit device includes an external circuit that operates at the first and second operating potentials,
上記第 2の半導体集積回路装置は上記第 1及び第 2の動作電位の電位差より も小さい電位差の動作電位により動作する内部回路を有するよう構成されたこ とを特徴とする信号処理装置。 The signal processing device, wherein the second semiconductor integrated circuit device is configured to have an internal circuit that operates with an operating potential having a potential difference smaller than the potential difference between the first and second operating potentials.
9 . 上記信号処理装置はさらに、 9. The signal processing device further includes:
無線信号を受け上記第 1の半導体集積回路に接続されたアンテナを有し、 上記第 1の半導体集積回路装置は、 上記アンテナで受信した信号の変調を行 う変調回路であり、  An antenna connected to the first semiconductor integrated circuit for receiving a radio signal, wherein the first semiconductor integrated circuit device is a modulation circuit for modulating a signal received by the antenna;
上記第 2の半導体集積回路装置は、 上記変調回路の出力信号を処理する復号 化回路であることを特徴とする請求の範囲第 1 8項記載の信号処理装置。 0 . 上記信号処理装置はさらに、  19. The signal processing device according to claim 18, wherein the second semiconductor integrated circuit device is a decoding circuit that processes an output signal of the modulation circuit. 0. The signal processing device further comprises:
ディジタル-アナログ変換器と、 スピーカーとを有し、  A digital-to-analog converter and a speaker,
上記復号化回路の出力を上記ディジタル-アナログ変換器により変換し、 該変換結果に基づき上記スピーカ一を動作させるように構成されたことを特 徴とする請求の範囲第 1 9項記載の信号処理装置。  10. The signal processing device according to claim 19, wherein the output of the decoding circuit is converted by the digital-analog converter, and the speaker is operated based on the conversion result. apparatus.
PCT/JP1995/001084 1995-06-02 1995-06-02 Semiconductor integrated circuit device and signal processor WO1996038914A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1995/001084 WO1996038914A1 (en) 1995-06-02 1995-06-02 Semiconductor integrated circuit device and signal processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1995/001084 WO1996038914A1 (en) 1995-06-02 1995-06-02 Semiconductor integrated circuit device and signal processor

Publications (1)

Publication Number Publication Date
WO1996038914A1 true WO1996038914A1 (en) 1996-12-05

Family

ID=14125974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/001084 WO1996038914A1 (en) 1995-06-02 1995-06-02 Semiconductor integrated circuit device and signal processor

Country Status (1)

Country Link
WO (1) WO1996038914A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55116117A (en) * 1979-03-01 1980-09-06 Nec Corp Information processor
JPS61105114A (en) * 1985-10-29 1986-05-23 Citizen Watch Co Ltd Complementary insulated gate type field effect transistor circuit
JPH04109720A (en) * 1990-08-29 1992-04-10 Toshiba Corp Portable radio telephone set
JPH04315313A (en) * 1991-04-15 1992-11-06 Nec Corp Semiconductor integrated circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55116117A (en) * 1979-03-01 1980-09-06 Nec Corp Information processor
JPS61105114A (en) * 1985-10-29 1986-05-23 Citizen Watch Co Ltd Complementary insulated gate type field effect transistor circuit
JPH04109720A (en) * 1990-08-29 1992-04-10 Toshiba Corp Portable radio telephone set
JPH04315313A (en) * 1991-04-15 1992-11-06 Nec Corp Semiconductor integrated circuit

Similar Documents

Publication Publication Date Title
US6960955B2 (en) Charge pump-type booster circuit
US7612594B2 (en) Latch circuit and semiconductor integrated circuit having the same
US6373459B1 (en) Device and method for driving a TFT-LCD
US6834095B2 (en) Shift-register circuit
US8441382B2 (en) Current steering DAC with switched cascode output current source/sink
US20100039146A1 (en) High-Speed Multiplexer and Semiconductor Device Including the Same
US20020080663A1 (en) Semiconductor integrated circuit
JPH0974347A (en) Mos integrated circuit
US20040169548A1 (en) Simple step-up apparatus including level shift circuits capable of low breakdown voltage
US10908669B2 (en) Methods and apparatus for power management of a memory cell
US6617902B2 (en) Semiconductor memory and holding device
US8232677B2 (en) Cascaded multi-supply power supply
US8094047B2 (en) Data serializer apparatus and methods
US11322199B1 (en) Compute-in-memory (CIM) cell circuits employing capacitive storage circuits for reduced area and CIM bit cell array circuits
KR20110058406A (en) The clock detector and bias current control circuit using the same
WO1996038914A1 (en) Semiconductor integrated circuit device and signal processor
JPH11327514A (en) Driving circuit, display unit and portable equipment using them
US7403148B2 (en) Methods and apparatus to balance reference settling in switched-capacitor pipelined digital to analog converter
KR100838402B1 (en) Sample-and-Hold Amplifier using bootstrapping technique and CMOS A/D converter including the same
US7525467B2 (en) System for displaying image and digital-to-analog converting method
US20160072446A1 (en) Operational amplifying circuit and semiconductor device comprising the same
JP2002176764A (en) Power voltage conversion circuit and control method therefor, display device and portable terminal
US6300801B1 (en) Or gate circuit and state machine using the same
US10361630B1 (en) Systems and methods for a reconfigurable switched capacitor DC-DC converter
US20040189374A1 (en) Bias voltage generating circuit, amplifier circuit, and pipelined AD converter capable of switching current driving capabilities

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase