WO1996036180A1 - Verfahren zur erstellung einer objektmaske für videoüberwachungsanlagen - Google Patents

Verfahren zur erstellung einer objektmaske für videoüberwachungsanlagen Download PDF

Info

Publication number
WO1996036180A1
WO1996036180A1 PCT/DE1996/000717 DE9600717W WO9636180A1 WO 1996036180 A1 WO1996036180 A1 WO 1996036180A1 DE 9600717 W DE9600717 W DE 9600717W WO 9636180 A1 WO9636180 A1 WO 9636180A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
video image
video
parameter
point
Prior art date
Application number
PCT/DE1996/000717
Other languages
English (en)
French (fr)
Inventor
Werner Pöchmüller
Rudolf Mester
Michael Hötter
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to DE59600745T priority Critical patent/DE59600745D1/de
Priority to EP96911917A priority patent/EP0824827B1/de
Publication of WO1996036180A1 publication Critical patent/WO1996036180A1/de

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/181Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a plurality of remote sources
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/285Analysis of motion using a sequence of stereo image pairs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/55Depth or shape recovery from multiple images
    • G06T7/593Depth or shape recovery from multiple images from stereo images
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/04Detecting movement of traffic to be counted or controlled using optical or ultrasonic detectors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • G06T2207/10021Stereoscopic video; Stereoscopic image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20212Image combination
    • G06T2207/20224Image subtraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30236Traffic on road, railway or crossing

Definitions

  • False triggers of the alarm system can result from shadows and light changes, for example Also unacceptable for alarm systems with video surveillance cameras on buildings. False triggers of the alarm system can result from shadows and light changes, for example, when clouds pass by, if there is no automatic post-processing of the video image.
  • the method presented allows a simple segmentation of vehicles on a flat roadway by lighting effects generated by diffuse light scattering, without complex processing with complex algorithms.
  • the advantage over already published 8-parameter methods is the simple, fast and robust calculation of the 10 parameters with a more precise mapping by decoupling the transformations for the x and y axes.
  • Figure 1 shows the recording of a plane (number 3) in a three-dimensional scene by a video camera (number 4). The received image is displayed on a two-dimensional screen (number 1).
  • Figure 2 shows an expansion of the recording system in Figure 1.
  • a second camera (number 5), which delivers images of the same scene from a different point of view from a different point of view on a second screen (number 2), you get a stereo system.
  • Figure 3 shows correspondence points (number 7) of the level under consideration, i.e. Points of the level that can be seen in both screens at the same time and that can be spatially determined and assigned exactly.
  • Figure 4 shows the image of a vehicle (number 10) in the scene under consideration.
  • Figure 5 outlines the procedure for creating object masks.
  • a vehicle (number 10) can be seen on the first (number 1) and second (number 2) screen from different viewing angles. After creating the 10-parameter image, the right image is transformed into the coordinate system of the left image (number 8). All points on the plane are then in the same position as the corresponding points in the first camera image. However, the vehicle is shown distorted (section 11). Now you subtract this distorted image from the second camera from the image from the first camera and you get a result that looks something like the one shown in Section 9.
  • the mapping of a level in a three-dimensional scenery on the two-dimensional screen can be carried out with an 8-parameter transformation (see e.g. Hoetter, M., Thoma, R., "Image Segmentation Based on Object Oriented Mapping Parameter Estimation", Signal Processing, Vol. 15, No. 3, pp. 315-334, October 1988).
  • Figure 1 outlines this.
  • x ⁇ and ⁇ / ⁇ are the coordinates of a point in the plane of the three-dimensional scenery
  • x 2 , y 2 represent the coordinates of the corresponding point in the video image.
  • the mapping is reversible and again leads to an 8-parameter mapping according to equations 1 and 2 (with other coefficients ao - - a 7 ).
  • Figure 2 shows an extension of this case.
  • two cameras observe a common scene at the same time.
  • two 8-parameter images can be formed from the plane x, y ⁇ in the three-dimensional scene into the screen coordinates X 2 , yi or 2: 3 , j / 3 .
  • Hoetter et al. show in "Image Segmentation Based on Object Oriented Mapping Parameter Estimation", Signal Frocessing, Vol. 15, No. 3, pp.
  • V2 ⁇ b 6 x 3 + b 7 y 3 -1- 1 is possible This illustration is only correct for all the points that lie on one level in the three-dimensional scene.
  • This fact can be used for object detection taking into account shadows and effects of diffuse light scattering.
  • the procedure is to set up the 8-parameter transformation from the right camera image to the left camera image. Then the right camera image is transformed with the aid of this illustration into the coordinate system x, y 2 of the left image (see Figure 5, number 8). By simply comparing the left image with the transformed right image, objects can be segmented that are not on the plane because the calculated transformation is wrong for them (see Section 9).
  • Shadow compensation can be improved by decoupling the two maps for the x and y coordinates. Decoupling enables a more precise mapping.
  • x 2 j represents the x coordinate of the i th measuring point from the left image (number 1 in figures) and y ⁇ the y coordinate of the i th measuring point from the right image (number 2 in figures)
  • Vectors x 3 (a. 3 ⁇ , a; 32 , • • • , x 3m ) T
  • the solution to these systems of equations is provided by the parameters -o, ö ⁇ , - • -, 6g.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

Es wird ein Verfahren zur Erstellung einer Objektmaske für Videoüberwachungsanlagen vorgestellt, anhand derer räumliche Objekte von einem Hintergrundbild, das im wesentlichen in einer Ebene liegt, deutlich unterscheidbar sind. Dabei wird das zu überwachende Gebiet von zwei räumlich getrennten Videokameras (4, 5) aufgenommen. Es wird dann eine 10-Parameter-Abbildung von dem einen Videobild (2) in das Koordinatensystem des anderen Videobildes (1) vorgenommen. Anschließend wird noch das projizierte Videobild (8) mit dem korrespondierenden anderen Videobild (1) verglichen.

Description

Verfahren zur Erstellung einer Objektmaske für Videoüberwachungsanlagen
Stand der Technik
Die Erfassung und Verfolgung von Objekten in Videobildsequenzen setzt eine möglichst exakte und schnelle Segmentierung der zu beobachtenden Objekte von ihrem Hintergrund und umgebenden Objekten voraus. In der Regel geschieht dies durch Differenzdetektionsverfahren, die
Änderungen zwischen einem gegenwärtigen und einem zeitlich vorangegangenen Bild oder Änderungen zwischen einem Szenenbild und einem Hintergrundbild detektieren. Diese einfachen Segmentierungsverfahren können jedoch nicht zwischen dem Objekt und von diesem Objekt in seiner unmittelbaren Umgebung hervorgerufenen Helligkeitsänderungen durch Schattenwurf, Reflektion, künstliche Beleuchtung etc. unterscheiden. Im Falle eines Fahrzeugs bedeutet dies, daß nicht nur das Fahrzeug selbst sondern auch Teile seiner Umgebung segmentiert werden, deren Helligkeit z.B. durch Schattenwurf oder Scheinwerfer des Fahrzeugs zeitlich kurzfristig verändert werden. In allen Fällen in denen eine möglichst exakte Lokalisierung des Fahrzeugs notwendig ist, muß daher eine aufwendige Nachbearbeitung erfolgen, die diese Umgebungsteile erkennt und vom Fahrzeug segmentiert. Eine derartige Vorgehensweise ist für Anwendungsfälle z.B. auch für Alarmanlagen mit Videoüberwachungskameras an Gebäuden unakzeptabel. Fehlauslösungen der Alarmanlage können durch Schattenwürfe und Lichtwechsel z.B. bei auch für Alarmanlagen mit Videoüberwachungskameras an Gebäuden unakzeptabel. Fehlauslösungen der Alarmanlage können durch Schattenwürfe und Lichtwechsel z.B. bei vorbeiziehenden Wolken entstehen, wenn keine automatische Nachbearbeitung des Videobildes erfolgt.
In der Literatur ist bereits eine 8-Parameter-Methode zur Erkennung von Objekten auf Ebenen publiziert (s. hierzu Faugeras, 0., Three-Dimensional Computer Vision, The MIT Press, Cambridge, 1993) , die die genannten Nachteile nicht aufweist. Diese Methode besitzt jedoch den Nachteil, daß durch Kopplung der Transformationsgleichungen
Figure imgf000004_0001
und
Figure imgf000004_0002
über die Parameter ag und a.η nicht eine optimale
Kompensation von Schatteneffekten in realen Szenen erreichbar ist.
Ziele und Vorteile der Erfindung
Die vorgestellte Methode erlaubt eine einfache Segmentierung von Fahrzeugen auf einer ebenen Fahrbahn von durch diffuser Lichtstreuung erzeugten Beleuchtungseffekten, ohne aufwendige Verarbeitung mit komplexen Algorithmen. Der Vorteil gegenüber bereits pub¬ lizierten 8-Parameter-Methoden ist die einfache, schnelle und robuste Berechnung der 10 Parameter bei exakterer Abbildung durch eine Entkopplung der Tranformationen für die x- und die y-Achse.
Beschreibung der Zeichnungen
1. Abbildung 1 zeigt die Aufnahme einer Ebene (Ziffer 3) in einer dreidimensionalen Szene durch eine Videokamera (Ziffer 4). Das empfangene Bild wird auf einem zweidimensionalen Bildschirm (Ziffer 1) dargestellt.
2. Abbildung 2 stellt eine Erweiterung des Aufnahmesystems in Abbildung 1 dar. Durch eine zweite Kamera (Ziffer 5), die zu denselben Zeitpunkten wie die erste Kamera aber von einem anderen Standpunkt aus Bilder derselben Szene auf einen zweiten Bildschirm (Ziffer 2) liefert, erhält man ein Stereosystem.
3. Abbildung 3 zeigt Korrespondenzpunkte (Ziffer 7) der betrachteten Ebene, d.h. Punk¬ te der Ebene, die in beiden Bildschirmen gleichzeitig zu sehen sind und die sich räumlich exakt bestimmen und zuordnen lassen.
4. Abbildung 4 zeigt die Aufnahme eines Fahrzeugs (Ziffer 10) in der betrachteten Szene.
5. Abbildung 5 skizziert die Vorgehensweise zur Objektmaskenerstellung. Ein Fahrzeug (Ziffer 10) ist auf dem ersten (Ziffer 1) und zweiten (Ziffer 2) Bildschirm aus verschie¬ denen Blickwinkeln zu sehen. Nach Erstellung der 10-Parameter- Abbildung wird das rechte Bild in das Koordinatensystem des linken Bildes transformiert (Ziffer 8). Alle Punkte der Ebene befinden dann auf derselben Position wie die korrespondierenden Punkte im ersten Kamerabild. Das Fahrzeug wird jedoch verzerrt abgebildet (Ziffer 11). Nun subtrahiert man dieses verzerrte Bild der zweiten Kamera vom Bild der ersten Kamera und erhält damit ein Resultat, daß ungefähr so aussieht, wie in Ziffer 9 dargestellt.
Beschreibung der Erfindung
Die Abbildung einer Ebene in einer dreidimensionalen Szenerie auf den zweidimensionalen Bildschirm läßt sich mit einer 8-Parameter-Transformation durchführen (siehe z.B. Hoetter, M., Thoma, R., "Image Segmentation Based on Object Oriented Mapping Parameter Estimation", Signal Processing, Vol. 15, No. 3, pp. 315-334, October 1988). Bild 1 skizziert diesen Sachverhalt. Dabei sind x\ und ι/ι die Koordinaten eines Punktes in der Ebene der dreidimensionalen Szenerie, während x2, y2 die Koordinaten des entsprechenden Punktes im Videobild darstellen. Die Abbildung ist umkehrbar und führt dabei wieder zu einer 8-Parameter- Abbildung nach Gleichungen 1 und 2 (mit anderen Koeffizienten ao — - a7).
Bild 2 zeigt eine Erweiterung dieses Falles. Bei einer Stereoaufnahme beobachten zwei Kameras zum selben Zeitpunkt eine gemeinsame Szenerie. Hier lassen sich zwei 8- Parameter- Abbildungen von der Ebene x , y\ in der dreidimensionalen Szene in die Bild¬ schirmkoordinaten X2, yi bzw. 2:3, j/3 bilden. Hoetter et al. zeigen in "Image Segmentation Based on Object Oriented Mapping Parameter Estimation", Signal Frocessing, Vol. 15, No. 3, pp. 315-334, October 1988, daß zwei aufeinanderfolgende Abbildungen dieser Art wieder durch eine 8-Parameter- Abbildung beschrieben werden können Dies bedeutet aber, daß auch eine direkte Abbildung eines Punktes x3, 2/3 im rechten Videobild in einen Punkt x2, y2 im linken Videobild nach
_ b0x3 + b y3 + b2 . . b6x + b7y3 + 1 und
_ b3x3 + b4y3 + z. . .
V2 ~ b6x3 + b7y3 -1- 1 möglich ist Diese Abbildung ist nur für all die Punkte korrekt, die auf einer Ebene in der dreidimensionalen Szene liegen.
Diese Tatsache läßt sich für die Objektdetektion unter Berücksichtigung von Schatten und Effekten diffuser Lichtstreuung nutzen. Dabei geht man so vor, daß die 8-Parameter- Transformation vom rechten Kamerabild in das linke Kamerabild aufgestellt wird. Dann transformiert man das rechte Kamerabild mit Hilfe dieser Abbildung in das Koordinaten¬ system x , y2 des linken Bildes (siehe Abbildung 5, Ziffer 8). Durch einfachen Vergleich des linken Bildes mit dem transformierten rechten Bild lassen sich Objekte segmentieren, die nicht auf der Ebene liegen, da für diese die berechnete Transformation falsch ist (siehe Ziffer 9).
Eine Verbesserung der Schattenkompensation läßt sich erreichen, indem man die beiden Abbildungen für die x— und y— Koordinate entkoppelt. Durch die Entkopplung ist eine genauere Abbildung möglich. Resultat ist eine 10-Parameter-Abbildung b0x3 + y3 + b2 ... x2 = (oj b6x3 + b7y3 + l
_ b3x3 + b4y3 + b0- 2 2 ~ ό8Z3 + b9y3 + 1 ' l }
Die Bestimmung der Parameter &o, 6ι, - - - , &9 erfolgt über eine lineare Regression aus m Ebenenkorrespondenzpunktkoordinaten (siehe Abbildung 3, wobei m > $ Sei bx = (ό0, δι, 2, &3, ό4)τ und by — (b5, b6, b , b8, b ,)τ dann bedeutet dies die Lösung der beiden Gleichungen
Figure imgf000006_0001
und
KyK7by = Kyy3. (8) mit
κ~κ- Σ (9)
Figure imgf000007_0001
und
*2ι X - 2iy2iV3i
X2iV2i
Figure imgf000007_0002
i -y vzi
KyKy Σ -y2iy3i (10) χ2iy2iyiι
Figure imgf000007_0003
Figure imgf000007_0004
i vl Äi
Dabei stellt z.B. x2j die x-Koordinate des i-ten Meßpunktes aus dem linken Bild (Ziffer 1 in Abbildungen) und y { die y-Koordinate des i-ten Meßpunktes aus dem rechten Bild (Ziffer 2 in Abbildungen) dar. Die Vektoren x3 = (a.3ι, a;32, • • • , x3m)T, ϊT* = (y3ι, 232, • • • , ϊ/3m)T setzen sich aus den Meßwerten der Koirespondenzpunkte in einem Bildschirm zusammen. Die Lösung dieser Gleichungssysteme liefert die Parameter -o, öι, - • - , 6g.
Zusammenfassende Vorgehensweise zur Erzeugung einer Objekt maske
1. Bestimme mindestens 10 korrespondierende Punkte auf der in beiden Videobildern beobachteten Ebene. Abbildung 3 zeigt einige Punkte, die sich hierfür eignen (Ziffer 7, z.B. Ecken an Fahrbahnmarkierungen und Teerflecken (Ziffer 6)).
2. Berechne aus den Korrespondenzpunkten die Parameter &o. &ι, • •69, der 10-Parame- ter- Abbildung der betrachteten Ebene vom rechten Videobild in das Koordinaten¬ system des linken Videobilds nach Gleichungen 7 und 8.
3. Projiziere das rechte Videobild mit Hilfe der 10-Parameter- Abbildung in das Koor¬ dinatensystem des linken Videobilds. Abbildung 5 zeigt diese Projektion in Ziffer 8. Alle Punkte der Ebene (Straße) werden korrekt abgebildet und sehen so aus, wie im linken Bild. Alle Punkte, die von der Ebene abweichen, wie z.B. das Fahrzeug (Ziffer 11), werden verzerrt abgebildet, da die 10-Parameter- Abbildung nur für Punkte der Ebene gültig ist.
4. Vergleiche das linke Videobild mit dem projizierten rechten Videobild. Unterschiede deuten auf Objektpunkte hin, die nicht in der Fahrbahnebene liegen. In Abbildung 5, Ziffer 9 wurden das pro izierte rechte Bild (Ziffer 8) von dem linken Bild (Ziffer 1) subtrahiert. Alle Punkte der Ebene verschwinden, da sie in beiden Bildern denselben Grauwert an derselben Stelle besitzen, während Punkte außerhalb der Ebene nicht verschwinden (soweit diese Objekte eine strukturierte Oberfläche besitzen).

Claims

Ansprüche
1. Verfahren zur Erstellung einer Objektmaske für
Videoüberwachungsanlagen , anhand derer räumliche Objekte von einem Hintergrundbild deutlich unterscheidbar sind, dadurch gekennzeichnet, daß das zu überwachende Gebiet von zwei räumlich getrennt angeordneten Videokameras aufgenommen wird, so daß eine Stereoaufnahme entsteht, daß das eine
Videobild der Stereoaufnahme mit Hilfe einer 10-Parameter- Abbildung in das Koordinatensystem des anderen Videobildes projiziert wird, wobei die 10 Parameter für die 10-Parameter-Abbildung über eine lineare Regression aus m Ebenenkorrespondenzpunkt-Koordinaten bestimmt werden, mit m>=5 und daß das projizierte Videobild mit dem korrespondierenden anderen Videobild verglichen wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die 10-Parameter-Abbildung nach den folgenden Formeln geschieht,
_ b0x3 + 612/3 + b2 2 '~ b6x3 + b7y3 + 1
Figure imgf000008_0001
wobei x2, Y2 die Koordinaten eines projizierten Punktes, X3, y3 die Koordinaten des unprojizierten Punktes und bg bis bg die 10 Parameter für die 10-Parameter-Abbildung sind.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Vergleich des projizierten Videobildes mit dem korrespondierenden anderen Videobild jeweils durch Subtraktion des Graubildwertes eines Punktes des projizierten Videobildes von dem Graubildwert des Punktes mit den gleichen Koordinaten in dem anderen Videobild geschieht.
PCT/DE1996/000717 1995-05-10 1996-04-25 Verfahren zur erstellung einer objektmaske für videoüberwachungsanlagen WO1996036180A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE59600745T DE59600745D1 (de) 1995-05-10 1996-04-25 Verfahren zur erstellung einer objektmaske für videoüberwachungsanlagen
EP96911917A EP0824827B1 (de) 1995-05-10 1996-04-25 Verfahren zur erstellung einer objektmaske für videoüberwachungsanlagen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19517028A DE19517028A1 (de) 1995-05-10 1995-05-10 Verfahren zur Erstellung einer Objektmaske für Videoüberwachungsanlagen
DE19517028.8 1995-05-10

Publications (1)

Publication Number Publication Date
WO1996036180A1 true WO1996036180A1 (de) 1996-11-14

Family

ID=7761487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1996/000717 WO1996036180A1 (de) 1995-05-10 1996-04-25 Verfahren zur erstellung einer objektmaske für videoüberwachungsanlagen

Country Status (4)

Country Link
EP (1) EP0824827B1 (de)
DE (2) DE19517028A1 (de)
HU (1) HUP9800700A3 (de)
WO (1) WO1996036180A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2802653B1 (fr) 1999-12-21 2003-01-24 Poseidon Procede et systeme pour detecter un objet devant un fond
ES2330499B1 (es) * 2007-12-31 2010-09-21 Imagsa Technologies, S.A. Procedimiento y sistema de deteccion de objetos en movimiento.

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993023823A1 (en) * 1992-05-15 1993-11-25 David Sarnoff Research Center, Inc. Method for fusing images and apparatus therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993023823A1 (en) * 1992-05-15 1993-11-25 David Sarnoff Research Center, Inc. Method for fusing images and apparatus therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BORAIE M T ET AL: "POINTS OF CORRESPONDENCE IN STEREO IMAGES WITH NO SPECIFIC GEOMETRICAL CONSTRAINTS USING MATHEMATICAL MORPHOLOGY", COMPUTERS IN INDUSTRY, vol. 20, no. 3, 1 October 1992 (1992-10-01), AMSTERDAM, NL, pages 295 - 310, XP000305595 *

Also Published As

Publication number Publication date
EP0824827B1 (de) 1998-10-28
EP0824827A1 (de) 1998-02-25
HUP9800700A3 (en) 2002-12-28
DE19517028A1 (de) 1996-11-14
DE59600745D1 (de) 1998-12-03
HUP9800700A2 (hu) 1998-07-28

Similar Documents

Publication Publication Date Title
DE69226512T2 (de) Verfahren zur Bildverarbeitung
DE69601880T2 (de) Verfahren und vorrichtung zur erstellung der lage einer fernsehkamera zur verwendung in einem virtuellen studio
DE69516959T2 (de) Stabilisierungsabschätzung einer zielbereichlokalisierung, abgeleitet von mehrfacherfassten marksteinbereichen auf einem videobild
DE69506856T2 (de) Verbessertes chromakey-system
DE69627138T2 (de) Verfahren zum abschätzen der lage einer bild-zielregion aus mehreren regionen mitverfolgter landmarken
DE69521739T2 (de) Verfahren und Vorrichtung zur Bildverarbeitung
DE19516664C1 (de) Verfahren zum Aufbau einer Farbtabelle in einer Computereinheit zur Klassifikation von Bildpunkten in einem Bild
DE60133386T2 (de) Vorrichtung und verfahren zur anzeige eines ziels mittels bildverarbeitung ohne drei dimensionales modellieren
EP2880853B1 (de) Vorrichtung und verfahren zur bestimmung der eigenlage einer bildaufnehmenden kamera
EP2886043A1 (de) Verfahren zum Fortsetzen von Aufnahmen zum Erfassen von dreidimensionalen Geometrien von Objekten
DE19746910A1 (de) Übertragung von Texturen fotografischer Bilder auf CAD-Ebenen
DE10135300A1 (de) Verfahren und Einrichtung zum Messen dreidimensionaler Information
EP3104330B1 (de) Verfahren zum nachverfolgen zumindest eines objektes und verfahren zum ersetzen zumindest eines objektes durch ein virtuelles objekt in einem von einer kamera aufgenommenen bewegtbildsignal
DE102012009577A1 (de) Verfahren zur Kalibrierung und Verfahren zur Justierung von Einzelbildkameras einer Kameraanordnung
EP3089106A1 (de) Verfahren zur reflexionskorrektur von abbildungen und diesbezügliche vorrichtungen
DE112014006493T5 (de) Bestimmen eines Massstabs dreidimensonaler Informationen
DE4109159C2 (de) Verfahren und Vorrichtung zum Verfolgen eines einem Fahrzeug vorausfahrenden Fahrzeugs
EP3711289B1 (de) Verfahren zur automatischen wiederherstellung eines eingemessenen zustands eines projektionssystems
DE4113992A1 (de) Verfahren zur automatischen dreidimensionalen ueberwachung von gefahrenraeumen
DE102012211961A1 (de) Verfahren und Vorrichtung zum Berechnen einer Veränderung eines Abbildungsmaßstabs eines Objekts
DE19953063A1 (de) Verfahren zur dreidimensionalen optischen Vermessung von Objektoberflächen
EP0824827B1 (de) Verfahren zur erstellung einer objektmaske für videoüberwachungsanlagen
DE19819961A1 (de) Automatische Blickpunktanalyse mit Methoden der Bilderkennung zur Computersteuerung
WO2017017103A1 (de) System zur stereoskopischen darstellung von aufnahmen eines endoskops
DE102012100848B4 (de) System und Verfahren zur stereoskopischen Darstellung von Aufnahmen eines Endoskops

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): HU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1996911917

Country of ref document: EP

ENP Entry into the national phase

Ref country code: US

Ref document number: 1998 952572

Date of ref document: 19980213

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1996911917

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1996911917

Country of ref document: EP