WO1996036053A1 - Ion beam emitter equipped with secondary particle detector, and secondary particle detection method - Google Patents

Ion beam emitter equipped with secondary particle detector, and secondary particle detection method Download PDF

Info

Publication number
WO1996036053A1
WO1996036053A1 PCT/JP1995/000907 JP9500907W WO9636053A1 WO 1996036053 A1 WO1996036053 A1 WO 1996036053A1 JP 9500907 W JP9500907 W JP 9500907W WO 9636053 A1 WO9636053 A1 WO 9636053A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion beam
objective lens
secondary particle
detector
sample
Prior art date
Application number
PCT/JP1995/000907
Other languages
French (fr)
Japanese (ja)
Inventor
Hifumi Tamura
Hiroyuki Sumiya
Katsumi Muto
Original Assignee
Hitachi, Ltd.
Hitachi Instruments Engineering Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd., Hitachi Instruments Engineering Co., Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP1995/000907 priority Critical patent/WO1996036053A1/en
Publication of WO1996036053A1 publication Critical patent/WO1996036053A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/3002Details
    • H01J37/3005Observing the objects or the point of impact on the object
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/25Tubes for localised analysis using electron or ion beams
    • H01J2237/2505Tubes for localised analysis using electron or ion beams characterised by their application
    • H01J2237/2516Secondary particles mass or energy spectrometry
    • H01J2237/2527Ions [SIMS]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3174Etching microareas

Definitions

  • the present invention relates to an ion beam irradiation device with a secondary particle detector and a secondary particle detection method.
  • SIMS secondary ion mass spectrometer
  • SIM Scanning Ion Microscope scanning ion microscope
  • FIB Focused Ion Beam a secondary ion mass spectrometer
  • SIMS the sample is irradiated with ions, and the secondary ions generated by the irradiation are analyzed by mass to identify the elements contained in the sample.
  • SIM the shape of the sample is observed by detecting secondary electrons generated from the sample.
  • FIB the sample is irradiated with ions again according to the observation result of the sample, and the sample is processed.
  • a general configuration is to extract ions from an ion source as a beam, focus the ions with a lens, irradiate the sample, and detect secondary particles generated from the sample.
  • the conventional technology is remarkable especially in the semiconductor field, but cannot be used in an ultra-small area. Since the ion beam cannot be narrowed in this way, for example, it was difficult to evaluate the characterization of an extremely small region required for various material evaluations in SIMS. Also, with SIM, it was difficult to evaluate the processing accuracy in the processing step in the ultra-fine area. Furthermore, in FIB, there is a limit to miniaturization of processing.
  • An object of the present invention is to improve the narrowing of an incident ion beam and to perform analysis of a very small area, observation of a fine structure, and ultrafine processing. Disclosure of the invention
  • the present invention provides a system in which ions from an ion source are focused on a lens group and irradiated on a sample, and secondary particles emitted from the sample are detected by a secondary particle detector.
  • the secondary particle detector was configured such that the secondary particle detector was arranged above the objective lens.
  • a magnetic field is formed near the sample, near the lens, or between the sample and the objective lens.
  • the distance between the objective lens and the sample is determined by the secondary particle detector. Therefore, the distance between the lens and the sample can be sufficiently reduced. Therefore, the focal length of the objective lens can be shortened, and accordingly, the spread of the beam due to various aberrations can be suppressed. As a result, the incident ion beam can be narrowed.
  • the secondary particles are subjected to a magnetic field confinement action, whereby the secondary particles are guided to the detector.
  • FIG. 1 is a diagram showing the entire apparatus (ion beam apparatus).
  • FIG. 2 is a diagram showing details of secondary particle detection.
  • FIG. 3 is a diagram showing details of the detector.
  • FIG. 4 is a diagram showing a second embodiment.
  • FIG. 5 is a diagram showing a third embodiment.
  • FIG. 6 is a diagram showing a fourth embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
  • Fig. 1 is an overall view of the ion beam device.
  • Ga-LMIS Liquid Metal Ion Source
  • Duoplasmatron are mainly used as ion sources, and an ion beam is generated.
  • the ion beam 10 generated from the ion source 1 is guided to the condenser lens 4 through the condenser lens aperture 3, reduced, and further passes through the objective lens aperture 6 to enter the objective lens 7.
  • the objective lens 7 has a function of focusing the incident beam 10 on the sample 8.
  • Deflection voltage provided between condenser lens 4 and objective lens 7
  • the pole 5 has the role of deflecting and scanning the primary ion beam 10 on the sample under arbitrary conditions.
  • the scanning power supply 14 has a role for synchronously scanning the primary ion beam 10 and the electron beam of the CRT 10.
  • the first order beam 10 is subjected to CPU control, and is irradiated to an arbitrary position on the sample.
  • the present ion beam apparatus is used as a SIM or SIMS, it is controlled so that the ion beam 10 is scanned over an arbitrary predetermined area on the sample.
  • an ion beam 10 is irradiated to a predetermined position for repairing a circuit pattern.
  • a magnetic field generating coil 18 is provided outside the objective lens 7 and the sample 8 so as to surround them.
  • the secondary particles secondary ions in the SIMS, secondary electrons or secondary negative ions in the SIMS
  • the secondary particles are pinched by the magnetic field of the magnetic field generating coil 18 ( Utilizing the confinement effect, it is efficiently guided above the objective lens 7 (from the sample 8 to the ion source 1).
  • the secondary particles are guided by a deflecting magnetic field source 16 in a direction perpendicular to the ion beam, and are detected by a secondary particle detection system 17.
  • the signal of the secondary particle detection system 17 is amplified by the amplifier 15 and used as a video signal of the CRT 13 to form a secondary electron image.
  • the secondary particle detection system 17, SIM, and FIB are secondary electron or secondary negative ion detectors, and the secondary ion detection system is SIMS.
  • FIG. 2 shows the periphery of the objective lens shown in FIG. 1 in detail.
  • the secondary particle detection system 17 is a (secondary electron detection system or secondary ion detection system) objective lens 7, sample 8 vacuum housing 12, primary ion beam, secondary electron 11 and In the present invention And a secondary electron deflection electrode 16 and a secondary particle detector 17.
  • the magnetic field generating coil 18 is provided around the objective lens 7 and is provided inside the vacuum housing 12. As a result, a magnetic field distribution 19 in the same direction as the primary ion beam 11 is formed between the objective lens 7 and the sample 8.
  • a secondary electron deflection magnetic pole 16 and a secondary particle detection system 17 are mounted on the upper part of the objective lens 7.
  • the irradiation of the primary ion beam 10 causes the secondary particles to be guided to the upper part of the objective lens while performing cycloidal motion (pinched by the magnetic field) by the action of a magnetic field.
  • the radius r of the cycloid motion is determined by the following equation (1).
  • V is determined by the initial energy of the secondary electron and is about several volts.
  • the secondary electrons are guided to the upper part of the objective lens 7. Further, the secondary particles guided to the upper part of the objective lens 7 are guided in the vertical direction by the magnetic field of the deflecting magnetic field generation source 16, and are detected by the secondary particle detection system 17.
  • the magnetic field confinement region of the secondary electrons can be arbitrarily changed by changing the magnetic field strength.
  • the influence of the magnetic field on the primary ion beam focusing is particularly affected by the secondary electrons and secondary ions.
  • the energy is as small as a few eV and the secondary electrons are negligible, especially because the mass is smaller than Yon.
  • the secondary particle detection system 17 is a detector that combines a scintillator and a photomultiplier.
  • the secondary particle detection system 17 is a scintillator 17c, a metal vapor-deposited thin film 17a attached to the scintillator surface, a supporting electrode 17b for applying the post-acceleration voltage and supporting the scintillator 17c. It consists of a post-acceleration power supply 17e, a scintillator 1c, a metal-deposited thin film 17a, and a photomultiplier tube 17d.
  • a positive voltage of several 100 V to several kV is applied to the metal-deposited thin film 17 a adhered to the surface of the scintillator 17 c from the post-acceleration power supply 17 e through the support electrode 17 b through the support electrode 17 b. ing. Secondary electrons incident on the metal-deposited thin film 17 a are accelerated by the post-acceleration voltage at the subsequent stage, irradiate the scintillator 17 c, convert the electrons into light, and are detected by the photomultiplier tube 17 d. The output of the photomultiplier tube 17d is used for image formation as a video signal.
  • the sample position can approach the objective lens 7 to a desired distance, and the focal length of the objective lens 7 can be shortened.
  • the secondary particle detection system 17 was provided between the sample 8 and the objective lens 7 so that the focal length was at least about 30 mm.However, with this technique, the focal length can be reduced to 10 mm or less.
  • a current density of about 30 A / cm 2 was obtained, which was about three times higher, and the processing speed was improved about three times as compared with the Si sample. Also, the resolution of the scanned image was improved from 150 A to 30 A.
  • FIG. 4 differs from the first embodiment only in that the magnetic field generating coil 31 for confining the secondary particles is taken out of the vacuum.
  • the implementation results of this technique are exactly the same as in the first embodiment, and a description thereof will be omitted.In this case, since the confinement magnetic field generating coil 31 is taken out of the vacuum, it has a feature that the evacuation and the like are facilitated.
  • a third embodiment will be described with reference to FIG.
  • FIG. 5 the use of the solenoid coil 41 bent in an arc shape as a means for guiding the secondary particles 11 guided to the upper part of the objective lens 7 to the secondary particle detection system 17 is shown in Examples 1 and 2. Different from 2.
  • the primary ion beam passage of the solenoid coil 41 has a hole for passing the beam.
  • a magnetic field is formed along the axis of the solenoid coil 41,
  • the magnetic field generating coil 18 provided on the outer periphery of the sample 8 and the objective lens 7 was used for both installation in a vacuum and installation outside the vacuum (not shown) to obtain similar results.
  • the detection system is formed differently (that is, FIG. 6 shows a secondary particle detection system 17 using the secondary electron multiplier 51.
  • FIG. 6 shows a secondary particle detection system 17 using the secondary electron multiplier 51.
  • the configuration is shown in FIG. A commercially available secondary electron multiplier is used.
  • the detection of secondary particles by this detector is almost the same as in Examples 1 to 3 and is omitted here.
  • the effect that the objective lens 7 can be used at a short focus is as follows.
  • the refinement of the primary ion beam has been improved, and the processing miniaturization limit and SIM image (Scanning Ion microscopy Image) image resolution have been reduced by one-third and one-third, respectively. And reduced to about 1/5. Furthermore, since the signal is acquired from the same direction as the primary ion beam incident direction, the observation of the sample surface without shadows is possible, and the processing accuracy and the image quality of SIM have been significantly improved. In addition, the use of a short focus has become possible, the current density of the primary ion beam on the sample has been improved, and the processing speed in micromachining has been improved by about three times. In addition, the brightness of the SIM image was improved about three times. In addition, the limit of SIMS microanalysis has been improved from 1 O nm to 2 nm.
  • a secondary electron as a signal is guided to the upper part of the objective lens, and the sample and the objective lens space can be made a free space. Close to the lens.
  • the objective lens can be used with a short focal length, the beam divergence due to various aberrations is minimized, and the formation of a high-density microbeam is facilitated.
  • secondary electrons as signals are extracted from the primary ion beam irradiation direction, which has the characteristic that correct signals can be obtained.
  • the following effects can be practically obtained.
  • the purpose is microfabrication such as the fabrication of various microelements such as I C.
  • an incident beam can be narrowed, and it is possible to cope with a miniaturized region, which is useful for an apparatus and a method using an ion beam.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

It is an object of the present invention to provide an ion beam emitter for producing a thin, high-density ion beam that is used for micromachining and observation of a high-resolution secondary ion image (SIM image). The ion beam emitter comprises a selenoid (18), which surrounds a sample (8) and an objective lens (7) and produces a magnetic field in the same direction as the axis of the ion beam; and a secondary particle detection system (17) disposed over the objective lens (7) to detect the secondary electrons. Since the sample (8) can be placed in the proximity of the objective lens (7) in this structure, the objective lens (7) can be used for a short focus and thus a thin, high-density beam can be formed. As a result, high-precision micromachining can be made by utilizing the present invention, and high-sensitivity and high-resolution image observation can be realized.

Description

明 細 書  Specification
2次粒子検出器付イオンビーム  Ion beam with secondary particle detector
照射装置及び 2次粒子検出方法 技術分野  Irradiation equipment and secondary particle detection method
本発明は 2次粒子検出器付ィォンビーム照射装置及び 2次粒子検出方 法に関する。 背景技術  The present invention relates to an ion beam irradiation device with a secondary particle detector and a secondary particle detection method. Background art
近年、 イオンを試料に照射することによって試料の分析, 観察及び加 ェがなされるようになってきた。 このようなものには、 例えば、 2次ィ オン質量分析計 ( S I MS Secondary Ion Mass Spectrometry ) , 走 査形イオン顕微鏡 (S I M Scanning Ion Microscope ) 及び集束ィォ ンビーム加工装置 (F I B Focused Ion Beam) 等がある。 S I M Sで は、 イオンを試料に照射し、 これによつて発生する 2次イオンを質量分 祈し、 試料に含まれる元素を同定する。 また、 S I Mでは、 試料から発 生する 2次電子を検出することによリ試料の形状を観察する。 さらに、 F I Bでは、 試料の観察結果に応じて、 再び試料にイオンを照射して、 試料を加工するものである。  In recent years, sample analysis, observation, and addition have been performed by irradiating the sample with ions. Such devices include, for example, a secondary ion mass spectrometer (SIMS Secondary Ion Mass Spectrometry), a scanning ion microscope (SIM Scanning Ion Microscope), and a FIB Focused Ion Beam. There is. In SIMS, the sample is irradiated with ions, and the secondary ions generated by the irradiation are analyzed by mass to identify the elements contained in the sample. In SIM, the shape of the sample is observed by detecting secondary electrons generated from the sample. Furthermore, in FIB, the sample is irradiated with ions again according to the observation result of the sample, and the sample is processed.
これらについて、 一般的な構成は、 イオン源からのイオンをビームと して取り出し、 これをレンズで集束させ、 さらに試料に照射し、 試料か ら発生する 2次粒子を検出するものである。  In these cases, a general configuration is to extract ions from an ion source as a beam, focus the ions with a lens, irradiate the sample, and detect secondary particles generated from the sample.
ところで、 例えば、 F I B加工法 (野田保, 田村一二三) ぶんせき 1: 2 ( 1 9 8 9 ) 、 2次イオン質量分析、 日本表面科学会編表面分析図鑑 9 2 ( 1 9 94 ) 及び走査形イオン顕微鏡(M.T.Bernius, G.H.Morrison) Rev. Sci , I ns trun, 5 8 ( 1 0 ) 1 9 8 9に記載されているように、 従来 では、 2次粒子検出器を、 レンズと試料の間に設けていた。 そのため、 レンズと試料の距離を検出器のために、 間隔を離して配置していた。 上記従来の技術では、 レンズと試料の間隔が離れているため、 イオン 源からのイオンを試料上で充分に集束することができなかった。 すなわ ち、 レンズと試料との間隔が離れているため、 レンズの焦点距離を長く 設定せざるを得なく、 そのため、 レンズの諸収差が比較的に大きく、 ィ ォンビーム細束化に限界を与えていた。 By the way, for example, FIB processing method (Tamotsu Noda, Hijiri Tamura) Bunseki 1: 2 (19989), secondary ion mass spectrometry, Surface Analysis Guidebook edited by The Surface Science Society of Japan 92 (1994) and Scanning ion microscope (MTBernius, GHMorrison) Conventionally, as described in Rev. Sci, Instrun, 58 (10) 1989, a secondary particle detector is provided between a lens and a sample. For this reason, the distance between the lens and the sample was set to be large for the detector. In the above conventional technique, the distance between the lens and the sample is large, so that ions from the ion source cannot be sufficiently focused on the sample. In other words, since the distance between the lens and the sample is large, the focal length of the lens has to be set long.Therefore, various aberrations of the lens are relatively large, which limits the narrowing of the ion beam. I was
そのため、 従来の技術では、 特に半導体分野で顕著であるが、 超微小 領域での使用に耐えられなかった。 このように、 イオンビームの細束化 ができないので、 例えば、 S I M Sでは、 各種材料評価に必要な極微小 領域のキャラクタ リゼーシヨンの評価が困難であった。 また、 S I Mで は、 超微細領域での加工工程における加工精度の評価が困難であった。 さらに、 F I Bでは、 加工の微細化に限界が生じている。  For this reason, the conventional technology is remarkable especially in the semiconductor field, but cannot be used in an ultra-small area. Since the ion beam cannot be narrowed in this way, for example, it was difficult to evaluate the characterization of an extremely small region required for various material evaluations in SIMS. Also, with SIM, it was difficult to evaluate the processing accuracy in the processing step in the ultra-fine area. Furthermore, in FIB, there is a limit to miniaturization of processing.
本発明の目的は、 入射イオンビームの細束化を向上させ、 よリ微小領 域の分析, 微細構造観察および超微細加工を行うことにある。 発明の開示  An object of the present invention is to improve the narrowing of an incident ion beam and to perform analysis of a very small area, observation of a fine structure, and ultrafine processing. Disclosure of the invention
本発明は、 上記課題を解決するために、 イオン源からのイオンをレン ズ群で収束させて試料に照射し、 試料から放出される 2次粒子を 2次粒 子検出器で検出する系において、 2次粒子検出器を対物レンズ上部に二 次粒子検出器を配置する構成とした。  In order to solve the above-mentioned problems, the present invention provides a system in which ions from an ion source are focused on a lens group and irradiated on a sample, and secondary particles emitted from the sample are detected by a secondary particle detector. The secondary particle detector was configured such that the secondary particle detector was arranged above the objective lens.
さらに好ましくは、 試料の近傍, レンズの近傍、 あるいは、 試料と対 物レンズとの間に、 磁場を形成するように構成した。  More preferably, a magnetic field is formed near the sample, near the lens, or between the sample and the objective lens.
上記構成によれば、 対物レンズと試料との距離が 2次粒子検出器によ つて拘束されることが少なく、 レンズと試料との距離を充分に小さくす ることができる。 そのため、 対物レンズの焦点距離を短くすることがで き、 これに伴い、 諸収差によるビームの広がりを抑えることができる。 結果として、 入射イオンビームの細束化が可能となる。 According to the above configuration, the distance between the objective lens and the sample is determined by the secondary particle detector. Therefore, the distance between the lens and the sample can be sufficiently reduced. Therefore, the focal length of the objective lens can be shortened, and accordingly, the spread of the beam due to various aberrations can be suppressed. As a result, the incident ion beam can be narrowed.
また、 さらに好ましい構成では、 前記対物レンズの外側に磁場を形成 することにより、 2次粒子は磁場閉じ込め作用を受け、 これにより、 2 次粒子は検出器に導かれることになる。 図面の簡単な説明  In a further preferred configuration, by forming a magnetic field outside the objective lens, the secondary particles are subjected to a magnetic field confinement action, whereby the secondary particles are guided to the detector. BRIEF DESCRIPTION OF THE FIGURES
第 1 図は全体装置 (イオンビーム装置) を示す図である。  FIG. 1 is a diagram showing the entire apparatus (ion beam apparatus).
第 2図は 2次粒子検出の詳細を示す図である。  FIG. 2 is a diagram showing details of secondary particle detection.
第 3図は検出器の詳細を示す図である。  FIG. 3 is a diagram showing details of the detector.
第 4図は第 2の実施例を示す図である。  FIG. 4 is a diagram showing a second embodiment.
第 5図は第 3の実施例を示す図である。  FIG. 5 is a diagram showing a third embodiment.
第 6図は第 4の実施例を示す図である。 発明を実施するための最良の形態  FIG. 6 is a diagram showing a fourth embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施例を図面を用いて説明する。 第 1 図はイオンビー ム装置の全体図である。 第 1 図において、 イオン源としては主に G a— L M I S (Liquid Metal Ion Source ) およびデュオプラズマトロンが 利用され、 イオンビームが生成される。 イオン源 1 より生成されたィォ ンビーム 1 0はコンデンサレンズ絞リ 3 を通ってコンデンサレンズ 4に 導かれ、 縮小され、 さらに対物レンズ絞り 6 を通過して対物レンズ 7に 入射する。 対物レンズ 7は入射ビーム 1 0を試料 8上に集束させる役割 をもつ。 コンデンサレンズ 4 と対物レンズ 7 との間に設けられた偏向電 極 5は 1次イオンビーム 1 0を試料上で任意条件で偏向, 走査する役割 を有する。 走査電源 1 4は 1次イオンビーム 1 0と CRT 1 0の電子ビ ームを同期走査するための役割をもつ。 ここでは省略するが、 1次ィォ ンビ一ム 1 0は、 C PU制御されており、 試料上の任意の位置に照射さ れる。 例えば、 本イオンビーム装置が S I Mや S I MSとして用いられ た場合は、 イオンビーム 1 0が試料上における任意所定面積にわたって 走査 (scan) されるように制御される。 また、 F I Bとして用いられた 場合には、 回路パターンの補修のために、 イオンビーム 1 0が所定の位 置に照射される。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Fig. 1 is an overall view of the ion beam device. In Fig. 1, Ga-LMIS (Liquid Metal Ion Source) and Duoplasmatron are mainly used as ion sources, and an ion beam is generated. The ion beam 10 generated from the ion source 1 is guided to the condenser lens 4 through the condenser lens aperture 3, reduced, and further passes through the objective lens aperture 6 to enter the objective lens 7. The objective lens 7 has a function of focusing the incident beam 10 on the sample 8. Deflection voltage provided between condenser lens 4 and objective lens 7 The pole 5 has the role of deflecting and scanning the primary ion beam 10 on the sample under arbitrary conditions. The scanning power supply 14 has a role for synchronously scanning the primary ion beam 10 and the electron beam of the CRT 10. Although omitted here, the first order beam 10 is subjected to CPU control, and is irradiated to an arbitrary position on the sample. For example, when the present ion beam apparatus is used as a SIM or SIMS, it is controlled so that the ion beam 10 is scanned over an arbitrary predetermined area on the sample. When used as a FIB, an ion beam 10 is irradiated to a predetermined position for repairing a circuit pattern.
対物レンズ 7及び試料 8の外側に、 これらを囲うように、 磁場発生コ ィル 1 8が設置される。 詳しくは後述するが、 試料から発生する 2次粒 子 ( S I MSにおいては、 2次イオン, S I Mにおいては 2次電子また は 2次負イオン) は、 磁場発生コイル 1 8の磁場による磁場ピンチ (閉 じ込め) 効果を利用して、 対物レンズ 7上方 (試料 8からイオン源 1の 方法) に効率よく導かれる。 2次粒子は偏向磁場発生源 1 6により、 ィ オンビームと垂直の方向に導かれ、 2次粒子検出系 1 7により検出され る。 さらに、 2次粒子検出系 1 7の信号は増幅器 1 5により増幅され、 C RT 1 3の映像信号として利用し、 2次電子像を形成する。 なお、 2 次粒子検出系 1 7, S I M, F I Bにおいては、 2次電子または 2次負 イオン検出器であり、 また、 S I M Sにおいては 2次イオン検出系であ る。  A magnetic field generating coil 18 is provided outside the objective lens 7 and the sample 8 so as to surround them. As will be described in detail later, the secondary particles (secondary ions in the SIMS, secondary electrons or secondary negative ions in the SIMS) generated from the sample are pinched by the magnetic field of the magnetic field generating coil 18 ( Utilizing the confinement effect, it is efficiently guided above the objective lens 7 (from the sample 8 to the ion source 1). The secondary particles are guided by a deflecting magnetic field source 16 in a direction perpendicular to the ion beam, and are detected by a secondary particle detection system 17. Further, the signal of the secondary particle detection system 17 is amplified by the amplifier 15 and used as a video signal of the CRT 13 to form a secondary electron image. The secondary particle detection system 17, SIM, and FIB are secondary electron or secondary negative ion detectors, and the secondary ion detection system is SIMS.
さらに、 これらを詳細に説明する。 第 2図は第 1図の対物レンズの周 辺を詳細に記載したものである。 第 2図において、 2次粒子検出系 1 7 は ( 2次電子検出系、 又は 2次イオン検出系) の対物レンズ 7, 試料 8 真空ハウジング 1 2, 1次イオンビーム, 2次電子 1 1および本発明に 関する磁場発生用コイル 1 8および 2次電子偏向電極 1 6, 2次粒子検 出器 1 7より構成されている。 磁場発生用コイル 1 8は、 対物レンズ 7 の周辺部に設けてあり、 真空ハウジング 1 2の内側に設けてある。 これ により、 1次イオンビーム 1 1 と同一方向の磁場分布 1 9が対物レンズ 7 と試料 8 との間に形成される。 対物レンズ 7の上部には 2次電子偏向 磁極 1 6および 2次粒子検出系 1 7が取り付けられている。 Further, these will be described in detail. FIG. 2 shows the periphery of the objective lens shown in FIG. 1 in detail. In Fig. 2, the secondary particle detection system 17 is a (secondary electron detection system or secondary ion detection system) objective lens 7, sample 8 vacuum housing 12, primary ion beam, secondary electron 11 and In the present invention And a secondary electron deflection electrode 16 and a secondary particle detector 17. The magnetic field generating coil 18 is provided around the objective lens 7 and is provided inside the vacuum housing 12. As a result, a magnetic field distribution 19 in the same direction as the primary ion beam 11 is formed between the objective lens 7 and the sample 8. A secondary electron deflection magnetic pole 16 and a secondary particle detection system 17 are mounted on the upper part of the objective lens 7.
1次イオンビーム 1 0の照射により 2次粒子が磁場作用によリ (磁場 によりピンチされ) サイクロィ ド運動をしながら対物レンズ上部に導か れる。 このとき、 サイクロィ ド運動の半径 rは以下の式 ( 1 ) で決まる。  The irradiation of the primary ion beam 10 causes the secondary particles to be guided to the upper part of the objective lens while performing cycloidal motion (pinched by the magnetic field) by the action of a magnetic field. At this time, the radius r of the cycloid motion is determined by the following equation (1).
r ozf V (s in e ) / H …式 ( 1 )  r ozf V (sine) / H… Equation (1)
V: 2次粒子の初期エネルギー  V: Initial energy of secondary particle
Θ : 磁場方向に対する 2次電子の入射角  Θ: Secondary electron incidence angle with respect to magnetic field direction
H : 磁場発生コイルによる磁場  H: Magnetic field generated by the magnetic field generating coil
すなわち、 この式 ( 1 ) より、 Vは 2次電子の初期エネルギーよリ定 まり、 数ボルト程度であり、 比較的弱い磁場 : 数百ガウス (H ) により、 小さい半径内に電子を閉じ込めて一定方向に導くことが可能であること がわかる。 イオンビーム装置への適用に際しては、 試料と対物レンズ 7 上部までのイオンビーム通路空間にイオンビームと同方向に 2次粒子 That is, from this equation (1), V is determined by the initial energy of the secondary electron and is about several volts. A relatively weak magnetic field: a few hundred gauss (H) confines the electron within a small radius and is constant. It turns out that it is possible to guide in the direction. When applied to an ion beam device, the sample and secondary particles in the ion beam path space up to the objective lens 7 in the same direction as the ion beam
( 2次電子又は 2次イオン) を閉じ込めるに必要な磁場を与える。 これ により、 2次電子は、 対物レンズ 7上部に導かれる。 さらに、 対物レン ズ 7上部に導かれた 2次粒子は、 偏向磁場発生源 1 6の磁界により、 垂 直方向に導かれ、 2次粒子検出系 1 7によリ検出される。 (Secondary electrons or secondary ions). Thereby, the secondary electrons are guided to the upper part of the objective lens 7. Further, the secondary particles guided to the upper part of the objective lens 7 are guided in the vertical direction by the magnetic field of the deflecting magnetic field generation source 16, and are detected by the secondary particle detection system 17.
なお、 2次電子の磁場閉じ込め領域は磁場強度を変化させることによ り任意に変えられる。 また、 検出粒子が 2次電子の場合には、 特に、 該 磁場の 1次イオンビーム集束への影響は 2次電子および二次イオンのェ ネルギ一が数 e Vと小さいことと 2次電子に関しては、 特に質量がィォ ンに比較して小さいことの理由から無視出来る。 The magnetic field confinement region of the secondary electrons can be arbitrarily changed by changing the magnetic field strength. In addition, when the detected particles are secondary electrons, the influence of the magnetic field on the primary ion beam focusing is particularly affected by the secondary electrons and secondary ions. The energy is as small as a few eV and the secondary electrons are negligible, especially because the mass is smaller than Yon.
次に、 第 3図を用いて 2次粒子検出系 1 7の詳細を説明する。 2次粒 子検出系 1 7は、 シンチレータとホトマルチプライヤを組み合わせた検 出器である。 2次粒子検出系 1 7はシンチレ一タ 1 7 c, シンチレ一タ 表面に付着させた金属蒸着薄膜 1 7 a, 後段加速電圧印加およびシンチ レータ 1 7 c を支持するための支持電極 1 7 b, 後段加速電源 1 7 e , シンチレ一タ 1 Ί c, 金属蒸着薄膜 1 7 aおよび光電子増倍管 1 7 dよ リ構成されている。 動作時シンチレータ 1 7 cの表面に付着された金属 蒸着薄膜 1 7 aには、 支持電極 1 7 bを通して後段加速電源 1 7 eより 数 1 0 0 V〜数 k Vの正の電圧が印加されている。 金属蒸着薄膜 1 7 a に入射する 2次電子は後段加速電圧により後段加速され、 シンチレータ 1 7 cを照射し、 電子を光に変換され、 光電子増倍管 1 7 dによリ検出 される。 光電子増倍管 1 7 dの出力は、 映像信号として像形成に利用さ れる。  Next, the details of the secondary particle detection system 17 will be described with reference to FIG. The secondary particle detection system 17 is a detector that combines a scintillator and a photomultiplier. The secondary particle detection system 17 is a scintillator 17c, a metal vapor-deposited thin film 17a attached to the scintillator surface, a supporting electrode 17b for applying the post-acceleration voltage and supporting the scintillator 17c. It consists of a post-acceleration power supply 17e, a scintillator 1c, a metal-deposited thin film 17a, and a photomultiplier tube 17d. During operation, a positive voltage of several 100 V to several kV is applied to the metal-deposited thin film 17 a adhered to the surface of the scintillator 17 c from the post-acceleration power supply 17 e through the support electrode 17 b through the support electrode 17 b. ing. Secondary electrons incident on the metal-deposited thin film 17 a are accelerated by the post-acceleration voltage at the subsequent stage, irradiate the scintillator 17 c, convert the electrons into light, and are detected by the photomultiplier tube 17 d. The output of the photomultiplier tube 17d is used for image formation as a video signal.
この実施例において、 試料 8と対物レンズ 7 との間には障害物がない ので、 試料位置は対物レンズ 7に所望の距離まで接近でき、 対物レンズ 7の焦点距離を短くできる。 従来は 2次粒子検出系 1 7 を試料 8と対物 レンズ 7 との間に設けることから焦点距離は最小 3 0 mm程度であつたが, 本技法では 1 0丽以下にでき、 試料上での電流密度として約 3倍の 3 0 A /cm2 が得られ、 S i試料に対して加工速度が約 3倍向上した。 また、 走査像に関しては分解能が 1 5 0 Aから 3 0 Aに改善された。 In this embodiment, since there is no obstacle between the sample 8 and the objective lens 7, the sample position can approach the objective lens 7 to a desired distance, and the focal length of the objective lens 7 can be shortened. Conventionally, the secondary particle detection system 17 was provided between the sample 8 and the objective lens 7 so that the focal length was at least about 30 mm.However, with this technique, the focal length can be reduced to 10 mm or less. A current density of about 30 A / cm 2 was obtained, which was about three times higher, and the processing speed was improved about three times as compared with the Si sample. Also, the resolution of the scanned image was improved from 150 A to 30 A.
次に、 第 2の実施例を第 4図を用いて説明する。 この実施例において、 第 1の実施例と異なる部分を説明し、 他の部分は第 1の実施例と同様で あるので説明を省略する。 以下、 第 3, 第 4の実施例においても同様で ある。 Next, a second embodiment will be described with reference to FIG. In this embodiment, parts different from the first embodiment will be described, and the other parts are the same as those in the first embodiment, and thus description thereof will be omitted. Hereinafter, the same applies to the third and fourth embodiments. is there.
第 4図において、 2次粒子の閉じ込め用磁場発生コイル 3 1 を真空外 に出したことのみが第 1の実施例と異なる。 本技法の実施結果は第 1の 実施例と全く同じであリ省略するが、 この場合は閉じ込め用磁場発生コ ィル 3 1 を真空外に出したので、 真空排気などが容易になる特徴がある c さらに、 第 3の実施例を第 5図を用いて説明する。 第 5図において、 対物レンズ 7の上部に導いた 2次粒子 1 1 を 2次粒子検出系 1 7に導く 手段として弓形に曲げたソレノィ ドコイル 4 1 を採用していることが、 実施例 1および 2と異なる。 ソレノイ ドコイル 4 1における 1次イオン ビーム通過部にはビームを通すための穴が開けられている。 本技法では、 ソレノィ ドコイル 4 1の軸に添って磁場が形成されており、 2次電子FIG. 4 differs from the first embodiment only in that the magnetic field generating coil 31 for confining the secondary particles is taken out of the vacuum. The implementation results of this technique are exactly the same as in the first embodiment, and a description thereof will be omitted.In this case, since the confinement magnetic field generating coil 31 is taken out of the vacuum, it has a feature that the evacuation and the like are facilitated. C. Further, a third embodiment will be described with reference to FIG. In FIG. 5, the use of the solenoid coil 41 bent in an arc shape as a means for guiding the secondary particles 11 guided to the upper part of the objective lens 7 to the secondary particle detection system 17 is shown in Examples 1 and 2. Different from 2. The primary ion beam passage of the solenoid coil 41 has a hole for passing the beam. In this technique, a magnetic field is formed along the axis of the solenoid coil 41,
1 1は磁場に閉じ込められてコイル 4 1の中心軸上に添って 2次電子検 出系 1 7に導かれる。 この実施例においても試料 8と対物レンズ 7の外 周に設けた磁場発生コイル 1 8は、 真空中設置および真空外設置 (図で は省略) の両者に対して実施して同様な結果を得た。 11 is confined in a magnetic field and guided to the secondary electron detection system 17 along the central axis of the coil 41. Also in this embodiment, the magnetic field generating coil 18 provided on the outer periphery of the sample 8 and the objective lens 7 was used for both installation in a vacuum and installation outside the vacuum (not shown) to obtain similar results. Was.
次に第 4の実施例を、 第 6図を用いて説明する。 この実施例では、 第 Next, a fourth embodiment will be described with reference to FIG. In this embodiment,
1の実施例〜第 3の実施例において、 検出系が異なって形成されている ( すなわち、 第 6図に 2次電子増倍管 5 1による 2次粒子検出系 1 7を示 す。 構成は市販の 2次電子増倍管を利用する。 この検出器による 2次粒 子検出はほぼ実施例 1〜 3と同様でありここでは省略する。 In the first to third embodiments, the detection system is formed differently ( that is, FIG. 6 shows a secondary particle detection system 17 using the secondary electron multiplier 51. The configuration is shown in FIG. A commercially available secondary electron multiplier is used.The detection of secondary particles by this detector is almost the same as in Examples 1 to 3 and is omitted here.
以上のように、 本発明の実施例では、 主に次のような結果が見出され た。 F I B加工装置および 2次イオン質量分析装置 ( S I M S装置) に おいて、 対物レンズ 7が短焦点で利用できるようになった効果として、 As described above, the following results were mainly found in the examples of the present invention. In the FIB processing device and the secondary ion mass spectrometer (SIMS device), the effect that the objective lens 7 can be used at a short focus is as follows.
1次イオンビームの細束化が向上し、 加工の微細化限界および S I M像 (Scanning Ion microscopy Image ) の像分解能がそれぞれ 3分の 1お よび 5分の 1程度に減少した。 さらに 1次イオンビーム入射方向と同じ 一方向から信号取リ込みを行っていることから、 影のない試料表面の観 察が可能となリ、 加工精度および S I Mの像質改善が著しく向上した。 さらに短焦点使用が可能となり、 1次イオンビームの試料上での電流密 度が向上し、 微細加工における加工速度が約 3倍向上した。 また、 S IM 像においても像の明るさが約 3倍向上した。 さらに S I M Sの微小領域 分析限界においても従来の 1 O n mから 2 n mに向上した。 The refinement of the primary ion beam has been improved, and the processing miniaturization limit and SIM image (Scanning Ion microscopy Image) image resolution have been reduced by one-third and one-third, respectively. And reduced to about 1/5. Furthermore, since the signal is acquired from the same direction as the primary ion beam incident direction, the observation of the sample surface without shadows is possible, and the processing accuracy and the image quality of SIM have been significantly improved. In addition, the use of a short focus has become possible, the current density of the primary ion beam on the sample has been improved, and the processing speed in micromachining has been improved by about three times. In addition, the brightness of the SIM image was improved about three times. In addition, the limit of SIMS microanalysis has been improved from 1 O nm to 2 nm.
さらに詳細に、 本実施例について説明すれば、 一般イオンビーム装置 において、 信号としての 2次電子を対物レンズ上部に導き、 試料と対物 レンズ空間をフリーな空間とすることが出来るので、 試料を対物レンズ に近接することができる。 その結果として対物レンズを短焦点距離で利 用でき、 諸収差によるビーム広がりを最小限に押さえられ、 高密度微小 ビームの形成が容易になった。 さらに 1次イオンビーム照射方向から信 号としての 2次電子を取り出しており、 正しい信号が得られる特徴があ る。  To explain this embodiment in more detail, in a general ion beam apparatus, a secondary electron as a signal is guided to the upper part of the objective lens, and the sample and the objective lens space can be made a free space. Close to the lens. As a result, the objective lens can be used with a short focal length, the beam divergence due to various aberrations is minimized, and the formation of a high-density microbeam is facilitated. In addition, secondary electrons as signals are extracted from the primary ion beam irradiation direction, which has the characteristic that correct signals can be obtained.
これらの特徴から、 実用上次のような効果が上げられる。 まず、 I C をはじめとする各種微細素子製作などの微細加工を目的とした場合は、 次の効果が上げられる。  From these characteristics, the following effects can be practically obtained. First, the following effects can be achieved when the purpose is microfabrication such as the fabrication of various microelements such as I C.
1 ) ビームの細束化により微細性および加工精度の向上  1) Improvement of fineness and processing accuracy by narrowing the beam
2 ) ビーム密度の増加により加工速度が向上  2) Processing speed is improved by increasing beam density
次に S I M Sなどの分析装置への応用に関しては次のように効果が上 げられる。  Next, the following effects can be obtained when applied to analyzers such as SIMS.
I ) 1次イオンビーム入射方向から信号としての 2次電子を取り込ん でおり、 影のないリアルな像の観察が可能 (像質改善)  I) Secondary electrons are captured as signals from the primary ion beam incident direction, enabling real images without shadows (improved image quality)
Π ) ビームの極細束が可能であり、 像分解能が著しく向上 in ) ビ一ム密度向上により信号料が増加し、 明るい像形成が可能 産業上の利用可能性 Π) Ultra fine bundle of beams is possible and image resolution is significantly improved in) Signal density increases due to improved beam density, enabling bright image formation Industrial applicability
以上説明したように、 本発明によれば、 入射ビームの細束化ができ、 微細化領域での対応が可能となり、 イオンビームを用いた装置及び方法 に有用である。  As described above, according to the present invention, an incident beam can be narrowed, and it is possible to cope with a miniaturized region, which is useful for an apparatus and a method using an ion beam.

Claims

請 求 の 範 囲 The scope of the claims
1 . イオンを発生するイオン源と、 前記イオンをビームとして取り出す 手段と前記イオンビームを集束させて試料に照射するレンズ群と、 前記 試料から放出される 2次粒子を検出する検出器を有する 2次粒子検出器 付イオンビーム照射装置において、 前記検出器を前記レンズ群の対物レ ンズの前記イオン源側に設けたことを特徵とする 2次粒子検出器付ィォ ンビーム照射装置。  1. An ion source that generates ions, a unit that extracts the ions as a beam, a lens group that focuses the ion beam and irradiates the sample, and a detector that detects secondary particles emitted from the sample 2 An ion beam irradiation apparatus with a secondary particle detector, wherein the detector is provided on the ion source side of an objective lens of the lens group.
2 . 前記試料の近傍, 前記対物レンズの近傍、 あるいは、 前記試料と対 物レンズとの間に磁場を形成する磁場形成手段を設けたことを特徴とす る請求の範囲第 1項記載の 2次粒子検出器付イオンビーム照射装置。 2. The method according to claim 1, wherein magnetic field forming means for forming a magnetic field near the sample, near the objective lens, or between the sample and the objective lens is provided. Ion beam irradiation device with secondary particle detector.
3 . 前記対物レンズ及び前記磁場形成手段は供にほぼ真空下におかれて いることを特徴とする請求の範囲第 2項記載の 2次粒子検出器付イオン ビーム照射装置。 3. The ion beam irradiation apparatus with a secondary particle detector according to claim 2, wherein said objective lens and said magnetic field forming means are both placed under substantially vacuum.
4 . 前記対物レンズをほぼ真空下に保っための真空室を有し、 さらに、 前記磁場発生手段を前記真空室の外に設けることを特徴とする請求の範 囲第 2項記載の 2次粒子検出器付イオンビーム照射装置。  4. The secondary particles according to claim 2, further comprising a vacuum chamber for keeping the objective lens substantially under a vacuum, and further comprising providing the magnetic field generating means outside the vacuum chamber. Ion beam irradiation device with detector.
5 . 前記検出器は 2次粒子を光に変換して光を検出するタイプを含んで なることを特徴とする請求の範囲第 1項記載の 2次粒子検出器付イオン ビーム照射装置。  5. The ion beam irradiation device with a secondary particle detector according to claim 1, wherein the detector includes a type that converts secondary particles into light and detects the light.
6 . 前記検出器は電子を検出するタイプを含んでなることを特徴とする 請求の範囲第 1項記載の 2次粒子検出器付イオンビーム照射装置。 6. The ion beam irradiation device with a secondary particle detector according to claim 1, wherein the detector includes a type that detects electrons.
7 . 前記対物レンズを通過した 2次粒子を前記検出器に導くための磁場 発生手段を有したことを特徴とする請求の範囲第 1項記載の 2次粒子検 出器付イオンビーム照射装置。 7. The ion beam irradiation apparatus with a secondary particle detector according to claim 1, further comprising a magnetic field generating means for guiding the secondary particles passing through the objective lens to the detector.
8 . 前記対物レンズを通過した 2次粒子をソレノィ ドコイルを用いて前 記検出器に導くように構成したことを特徴とする請求の範囲第 1項記載 の 2次粒子検出器付イオンビーム照射装置。 8. The secondary particles that have passed through the objective lens are forwarded using a solenoid coil. The ion beam irradiation device with a secondary particle detector according to claim 1, wherein the ion beam irradiation device is configured to be guided to the detector.
9 . 前記レンズ群は少なく とも対物レンズ及びコンデンサレンズよリ構 成され、 前記検出器は前記対物レンズと前記コンデンサレンズの間に配 置されたことを特徴とする請求の範囲第 1項記載の 2次粒子検出器付ィ オンビーム照射装置。  9. The lens system according to claim 1, wherein the lens group includes at least an objective lens and a condenser lens, and the detector is disposed between the objective lens and the condenser lens. An ion beam irradiation device with a secondary particle detector.
1 0 . イオンを発生させ、 これをイオンビームとして取り出し、 このィ オンビームを集束させて試料に照射し、 前記集束の点よリ前記イオンの 発生する側で前記照射によリ発生する 2次粒子を検出することを特徴と する 2次粒子検出方法。  10. Generate ions, take them out as an ion beam, focus this ion beam and irradiate it to the sample. Secondary particles generated by the irradiation on the side where the ions are generated from the point of the convergence A secondary particle detection method characterized by detecting a particle.
1 1 . 前記集束の点の近傍に磁場を発生させることを特徴とする請求の 範囲第 1 0項記載の 2次粒子検出方法。  11. The secondary particle detection method according to claim 10, wherein a magnetic field is generated in the vicinity of the focal point.
PCT/JP1995/000907 1995-05-12 1995-05-12 Ion beam emitter equipped with secondary particle detector, and secondary particle detection method WO1996036053A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1995/000907 WO1996036053A1 (en) 1995-05-12 1995-05-12 Ion beam emitter equipped with secondary particle detector, and secondary particle detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1995/000907 WO1996036053A1 (en) 1995-05-12 1995-05-12 Ion beam emitter equipped with secondary particle detector, and secondary particle detection method

Publications (1)

Publication Number Publication Date
WO1996036053A1 true WO1996036053A1 (en) 1996-11-14

Family

ID=14125925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/000907 WO1996036053A1 (en) 1995-05-12 1995-05-12 Ion beam emitter equipped with secondary particle detector, and secondary particle detection method

Country Status (1)

Country Link
WO (1) WO1996036053A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59134540A (en) * 1983-01-21 1984-08-02 Hitachi Ltd Secondary electron detector
JPH01296555A (en) * 1988-05-25 1989-11-29 Hitachi Ltd Convergent ion beam device
JPH025337A (en) * 1988-03-09 1990-01-10 Seiko Instr Inc Charged particle beam device and sample observing method thereby

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59134540A (en) * 1983-01-21 1984-08-02 Hitachi Ltd Secondary electron detector
JPH025337A (en) * 1988-03-09 1990-01-10 Seiko Instr Inc Charged particle beam device and sample observing method thereby
JPH01296555A (en) * 1988-05-25 1989-11-29 Hitachi Ltd Convergent ion beam device

Similar Documents

Publication Publication Date Title
US7960697B2 (en) Electron beam apparatus
EP1150327B1 (en) Multi beam charged particle device
JP2919170B2 (en) Scanning electron microscope
US5872358A (en) Scanning electron microscope
JP4215282B2 (en) SEM equipped with electrostatic objective lens and electrical scanning device
US6365896B1 (en) Environmental SEM with a magnetic field for improved secondary electron direction
JP2875940B2 (en) Electron beam device equipped with sample height measuring means
EP1305816B1 (en) Collection of secondary electrons through the objective lens of a scanning electron microscope
US5008537A (en) Composite apparatus with secondary ion mass spectrometry instrument and scanning electron microscope
US10622187B2 (en) Charged particle beam apparatus and sample processing observation method
US10971326B2 (en) Multi-electron-beam imaging apparatus with improved performance
JP3170680B2 (en) Electric field magnetic lens device and charged particle beam device
JP2024099014A (en) Multiple beam inspection device and multiple beam inspection method
JP2004513477A (en) SEM with adjustable final electrode for electrostatic objective
JPH08138611A (en) Charged particle beam device
JP2003151484A (en) Scanning type charged particle beam device
JPH0955181A (en) Scanning electron microscope
WO1996036053A1 (en) Ion beam emitter equipped with secondary particle detector, and secondary particle detection method
JP3494152B2 (en) Scanning electron microscope
JP3014369B2 (en) Electron beam device equipped with sample height measuring means
US20220384140A1 (en) Method for operating a particle beam device, computer program product and particle beam device for carrying out the method
KR100711198B1 (en) Scanning electron microscope
JP3814968B2 (en) Inspection device
JP3101141B2 (en) Electron beam equipment
JP2004247321A (en) Scanning electron microscope

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase