WO1996035236A1 - Detector for indicating ionising radiation and process for its production - Google Patents

Detector for indicating ionising radiation and process for its production Download PDF

Info

Publication number
WO1996035236A1
WO1996035236A1 PCT/DE1996/000824 DE9600824W WO9635236A1 WO 1996035236 A1 WO1996035236 A1 WO 1996035236A1 DE 9600824 W DE9600824 W DE 9600824W WO 9635236 A1 WO9635236 A1 WO 9635236A1
Authority
WO
WIPO (PCT)
Prior art keywords
gaas
layer
detector
electrodes
disk
Prior art date
Application number
PCT/DE1996/000824
Other languages
German (de)
French (fr)
Inventor
Frantisek Dubecky
Juraj Darmo
Pier Giovanni Pelfer
Peter Kordos
Arno Förster
Original Assignee
Forschungszentrum Jülich GmbH
Universität Zu Florenz
Elektrotechnicky Ustav Sav
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from SK583-95A external-priority patent/SK282934B6/en
Priority claimed from IT95FI000091A external-priority patent/IT1285788B1/en
Application filed by Forschungszentrum Jülich GmbH, Universität Zu Florenz, Elektrotechnicky Ustav Sav filed Critical Forschungszentrum Jülich GmbH
Priority to DE19680300T priority Critical patent/DE19680300D2/en
Publication of WO1996035236A1 publication Critical patent/WO1996035236A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/085Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors the device being sensitive to very short wavelength, e.g. X-ray, Gamma-rays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/115Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation
    • H01L31/118Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation of the surface barrier or shallow PN junction detector type, e.g. surface barrier alpha-particle detectors

Definitions

  • the invention relates to a detector for displaying ionizing radiation and a method for its production.
  • the invention relates to the field of detectors for displaying ionizing radiation by means of semiconductors, in particular a device relating to GaAs materials.
  • the invention also relates to the methods for producing the detector.
  • Detectors for the display of ionizing GaAs radiation are the subject of in-depth research, particularly as regards the way they work at room temperature, the increased resistance to radiation and a higher adsorption coefficient for X-rays compared to Si devices.
  • Such detectors have several Areas of application, such as, for example, the field of medicine, metereology, for physical experiments for researching the particles and in the field of nuclear physics, astronomy, for the monitoring of industrial production lines, national security, etc., in particular those fields of application in which Si detectors cannot be used, since they do not have sufficient display power and have low radiation resistance.
  • Semi-insulating GaAs materials which have not been doped and which have been used with the known method Liquid Encapsulated Czochraiski (LEC) (1-10) are used as the starting material for the production of detectors of ionizing radiation such as GaAs.
  • This material has a high resistance, which is greater than 10 ohm cm at room temperature and leads to an excellent compensation of the flat impurities by deep impurities (deep), which are named EL2, with a concentration of around 10 ⁇ e cm "3 and an activation energy of 0.75 eV compared to the lower level of the conduction band edge .
  • This material is more suitable for those cases where the resistance to radiation from
  • the material GaAs is used in a pure state and is produced using epitaxy technology (5, 10-13).
  • Almost all detectors for displaying radiation which are currently used on a GaAs basis are preferably made with Schottky and ohmic contacts, usually Au or Ti, as described in (1,3,5,6,8 , 10, 11, 15), or sometimes by means of two Schottky contacts on both sides, preferably by means of Au, as described in (14, 15), for metallizing the electrodes.
  • Au is a metal that forms a high Schottky barrier q ⁇ b , where q is the charge of the
  • Electrons and ⁇ b represents the height of the Schottky barrier of approx. 0.92 eV compared to the Fermi level in the interface with GaAs (16).
  • the level of the deep impurity EL2 to which the compensation can be attributed is in the vicinity of the interface above the Fermi level, so that complete ionization takes place, and a control is carried out on account of its dominant concentration the thickness of the emptied layer, as shown in (17, 18) and the intensity of the electric field in the active area of the detector.
  • the standard embodiment of the contacts on GaAs detectors is not symmetrical, ie there is a small contact on one side (above) and a large contact on the other side (below) usually takes place as large as the entire area of the detector .
  • This form of formation of the contacts of the detector is not optimal since the distribution of the electric field scatters very strongly and for this reason the resolution of the detector decreases.
  • the leakage current for the transport of the charge carriers via inactive parts of the detector increases.
  • only insulating layers made of silicon oxide or silicon nitride (2, 10, 20) are used to cover the free surface of the GaAs, ie the surface on which no metallization of the contacts is provided.
  • the resistance to radiation influences of this layer is particularly important.
  • measurements of the breakdown voltage have been carried out to date in the GaAs radiation detectors as previously carried out corresponded to approximately one volt per 1 ⁇ m of the thickness of the detector (21) and that the best value determined for the absorption capacity of the charge was close to 75% and the resolution in energy is greater than 10% for a detector with a thickness of approximately 200 ⁇ m, provided that the ⁇ particles are indicated with an energy around MeV (10).
  • the resistance to radiation of the GaAs detectors that have been manufactured to date is limited by the resistance to radiation of the layers of insulating material that are used to cover the surfaces, such as SiO 2 or SiN 4 , for example. These usually have a resistance to radiation which is lower than that of the GaAs materials due to the decomposition of the insulating material, due to the introduction of charges which take place during the interactive process with the ionizing particles (22).
  • GaAs radiation detector It is a GaAs radiation detector, the features of which have been significantly improved, using sandwich electrodes which are advantageously arranged symmetrically and in a mirror image on both sides of the GaAs wafer.
  • the free surface of the pane is covered at least on one side with a monocrystalline semi-insulating layer made of GaAs, and this layer has a concentration of trapping points which is greater than 10 cm " .
  • At least one of the electrodes arranged forms one Energy lock, the amount of which is opposite the interface with GaAs is less than 1.1 times the energy difference between the lowest level of the conduction band edge and the Fermi level in the semiconductor.
  • the GaAs, at least on one side of the pane is advantageously removed by means of etching technology to a depth of greater than 60 ⁇ m in the zones where the metallization for the electrodes is deposited.
  • the above invention relates generally to a GaAs detector for radiation display with a higher value for the breakdown voltage and a higher degree of absorption for the charge as well as a better resolution
  • the invention further relates to a method for its production.
  • the GaAs detector includes:
  • a monocrystalline cover layer with high resistance (LTG) with a trap density greater than 10 17 cm "3 the layer at least on one side of the GaAs wafer, above the GaAs surface, in advance
  • electrodes which are preferably arranged symmetrically and in a mirror-image manner with a metal coating which is arranged on at least one side of the GaAs pane on the windows from which the LTG layer has been removed with the aid of an etching technique.
  • GaAs is preferably removed under
  • a number of detectors for displaying the GaAs radiation which was produced in accordance with the present invention, had a better display property for the GaAs display than the devices described, which were produced from halobolating metal disks.
  • the breakdown voltage is approx. 2 V per ⁇ m of the thickness of the pane due to the metallization of the electrodes, which forms an energy source at the interface with GaAs, in such a way that the main plane which creates the compensation EL2 is not above the Fermi level comes because of a band bending in the interface; this fact prevents the complete ionization of this plane. This leads to a substantial reduction in the electric field in the interface and also to the creation of a wider, empty zone.
  • the resistance to radiation of the GaAs detector is no longer dependent on the radiation resistance of the cover layer as in the case of SiO 2 or Si 3 N 4 , but only on the radiation resistance of the original GaAs material. This is due to the use of a cover layer made of the same GaAs material as the basic material.
  • Figure 1 Cross section for each of the four possible embodiments for a GaAs detector according to the invention
  • FIG. 2 the dependence of the current on the polarization voltage when the surface is treated differently, also with a cover according to the preceding invention
  • FIG. 3 shows the dependence of the current on the polarization voltage measured on GaAs detectors using panes which were produced by three different manufacturers according to the invention
  • FIG. 4 spectrum of ⁇ -particles which were recognized by the GaAs detector and which were manufactured in accordance with the above invention
  • FIG. 5 spectrum of the ⁇ particles with three different types of energy, which are displayed by a Si display device and by a GaAs detector according to the present invention
  • Figure la shows in cross section the basic principle for producing a GaAs detector according to the invention.
  • a layer made of a monocrystalline homoepitaxial material LTG was placed over the side 3 of the GaAs wafer, which is semiconducting and undoped (USI) (5)
  • Another preferred method for producing the GaAs cover layer LTG in accordance with the above invention, method which can be carried out more easily, quickly and cost-effectively, continues to use the MBE with molecular flows Ga and As at a temperature of 380 ° C. for the thicker pane.
  • the resistance of the layer is approximately 10 6 ohm cm at room temperature and the trapping point density corresponds to approximately 10 18 cm "3. This layer does not require any subsequent thermal treatment in an As atmosphere and under high pressure as an additional technological step .
  • window-like openings (7) are introduced using standardized photolithographic techniques.
  • the layer (6) was made from these openings using etching techniques and using a Solution based on sulfuric acid removed. Over the freshly stripped layer are under a high vacuum metallization (8,9) evaporated, this in preparation for the electrodes (1,2).
  • the combination W + Ti / Au and Ti + Pt / Au are used as metallization for the electrodes (8,9).
  • this metallization of the electrode keeps the guiding band and the valence band flat in the interface with the GaAs. It should be pointed out that other metallizations also have this property.
  • a suitable technology for treating the surface before the vapor deposition process or an additional thermal treatment of the metallization layer that has already been vapor-deposited can also be carried out with the purpose of reducing the energy barrier in the interface of the medium as necessary to achieve tallization with the GaAs.
  • the preparation of the detector described according to FIG. 1a is that which is most similar to the general embodiment. The difference is in the application of a better covering with a layer of GaAs (6) and in the metallization for the upper contact (8). This preparation of the GaAs display device already remarkably improves its functional parameters.
  • FIG. 1b essentially shows the same technological process that has already been described for FIG. 1 a in accordance with the above invention.
  • the electrodes of the detector (1, 2) are arranged in mirror image symmetry on both sides (3, 4) of the GaAs disc (5).
  • a photolithographic process is used which works on two sides.
  • the electric field is arranged much more evenly between the electrodes of the detector (1, 2), essentially in accordance with the symmetrical arrangement, which leads to a substantial improvement in the resolution of the detector and to a lowering of the Leakage current leads over the inactive parts of the construction volume of the detector.
  • FIG. 1c shows essentially the same technological method according to the above invention as already described above, with the difference that the cover layers (6, 6 ') are deposited on both sides of the GaAs wafer (5) and with the provision of window-like openings which are arranged in mirror image and symmetrically (1, 1 '), the cover layer (6, 6') being exposed using a pickling process.
  • This exemplary embodiment suppresses the leakage currents of the interface and the surface as much as possible, which improve the resolution of the detector and the noise parameters.
  • FIG. 1d shows an embodiment of the detector like the device according to the invention described in FIG. 1b, with the difference that on one side, in the present case on the lower side (4) of the GaAs wafer (5), with an initial thickness of 300 ⁇ m,
  • the GaAs is removed in recesses for the lower electrodes (2) using a pickling technique (10) to a depth of approx. 100 ⁇ m (h), a combined dry pickling process with ions (RIE) in the plasma CC1 2 F 2 together with a wet pickling process is carried out as a final treatment with a solution based on sulfuric acid, before the metallization (9) for the lower electrode is evaporated.
  • RIE dry pickling process with ions
  • the RIE pickling process is of essential importance for achieving a sufficiently high anisotropy in the pickling process.
  • the results obtained show that with optimized pickling processes a higher anisotropy ratio of 15: 1 can be achieved when using RIE with a flatness of the walls of the pickled recesses that is acceptable.
  • This embodiment is particularly suitable for the case in which series production of the detector with very thin active parts is to be possible.
  • the electrical field in this exemplary embodiment is considerably more homogeneous and the leakage currents from the interface and surface are due to suppresses the special embodiment of the detector, which makes it possible to dispense with an additional cover layer on the underside.
  • the component of the detector is completely encased by a further insulating layer consisting, for example, of SiO 2 , this layer serves mainly as protection against mechanical damage and against further external influences.
  • FIG. 4 shows the particle spectrum ⁇ with an energy of 5.48 MeV Am 247, which was detected by a GaAs detector according to the above invention in an embodiment according to FIG. 1b with a disk thickness of the GaAs of 200 ⁇ m.
  • the resolution of the detector is below 5% FWHM, and the effectiveness of recording the load corresponds to approx. 90% at a polarization voltage of 100 V compared to a Si detector. It should be noted that these results are among the best ever published values for undoped remi-isolating GaAs with a thickness of 200 ⁇ m.
  • FIG. 5 shows the spectrum of the ⁇ particles with the various energies 5.15 MeV of Pu 239 , 4.8 MeV of Am 241 and 5.795 MeV of Cm 44 , which were detected with a detector Si and with a detector according to GaAs of the above invention. Here the same geometry and the same arrangement according to FIG. 4 were chosen.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Measurement Of Radiation (AREA)

Abstract

The invention relates to a GaAs detector for radiation detection with a high breakdown voltage and a high degree of absorption for the charge and a better energy resolution and higher radiation resistance. The invention also relates to a process for its production. Here, the GaAs detector contains a monocrystalline coating layer (6) with a high resistance and a trap density of over 1017 cm-3, in which the layer is deposited on at least one side of the GaAs wafer, over the GaAs surface, preferably by epitaxial growth using molecular bunches (MBE) with molecular flow of the Ga and the As at reduced temperature to form a layer which is of non-stoichiometric structure to a high degree and has a maximum thickness of 20 nm.

Description

B e s c h r e i b u n gDescription
Detektor zum Anzeigen einer ionisierenden Strahlung und Verfahren für seine HerstellungIonizing radiation detector and method for its manufacture
Die Erfindung betrifft einen Detektor zum Anzeigen ei¬ ner ionisierenden Strahlung und Verfahren für seine Herstellung.The invention relates to a detector for displaying ionizing radiation and a method for its production.
1. Zugehörigkeitsgebiet der Erfindung1. Field of the invention
Die Erfindung betrifft das Gebiet der Detektoren zum Anzeigen einer ionisierenden Strahlung mittels Halblei¬ ter, besonders ein Gerät, das sich auf GaAs-Materialien bezieht, ferner betrifft die Erfindung die Verfahren für die Herstellung des Detektors.The invention relates to the field of detectors for displaying ionizing radiation by means of semiconductors, in particular a device relating to GaAs materials. The invention also relates to the methods for producing the detector.
2. Stand der Technik2. State of the art
Detektoren zum Anzeigen ionisierender GaAs-Strahlung sind Gegenstand einer vertieften Forschung, besonders was die Arbeitsweise bei Raumtemperatur, die erhöhte Widerstandsfähigkeit gegen Strahlung und einen höheren Adsorptionskoeffizienten für X-Strahlen gegenüber Si- Geräten betrifft. Solche Detektoren haben verschiedene Anwendungsgebiete, wie z.B. das Gebiet der Medizin, der Metereologie, für physikalische Experimente zur Erfor¬ schung der Partikel sowie auf dem Gebiete der Nuklear¬ physik, der Astronomie, für die Überwachung von indu- striellen Fertigungsstraßen, der nationalen Sicherheit usw., besonders auf jenen Anwendungsgebieten, auf wel¬ chen Si-Detektoren nicht verwendet werden können, da sie eine nicht ausreichende Anzeigeleistung haben und niedrige Widerstandsfähigkeit gegen Strahlen aufweisen.Detectors for the display of ionizing GaAs radiation are the subject of in-depth research, particularly as regards the way they work at room temperature, the increased resistance to radiation and a higher adsorption coefficient for X-rays compared to Si devices. Such detectors have several Areas of application, such as, for example, the field of medicine, metereology, for physical experiments for researching the particles and in the field of nuclear physics, astronomy, for the monitoring of industrial production lines, national security, etc., in particular those fields of application in which Si detectors cannot be used, since they do not have sufficient display power and have low radiation resistance.
Als Ausgangsmaterial für die Herstellung von Detektoren von ionisierender Strahlung wie GaAs werden halbisolie¬ rende GaAs-Materialien verwendet, die nicht dotiert wurden und mit dem bekannten Verfahren Liquid Encapsu- lated Czochraiski (LEC) (1-10) herangezogen wurden. Die¬ ses Material weist einen hohen Widerstand auf, der grö¬ ßer als 10 ohm cm bei Raumtemperatur ist und auf eine hervorragende Kompensierung der flachen Störstellen durch tiefe Störstellen (deep) führt, die mit EL2 be- nannt sind, mit einem Konzentrationsgrad um 10ιe cm"3 und eine Aktivierungsenergie von 0,75 eV gegenüber dem niedrigeren Niveau der Leitungsbandkante.Semi-insulating GaAs materials which have not been doped and which have been used with the known method Liquid Encapsulated Czochraiski (LEC) (1-10) are used as the starting material for the production of detectors of ionizing radiation such as GaAs. This material has a high resistance, which is greater than 10 ohm cm at room temperature and leads to an excellent compensation of the flat impurities by deep impurities (deep), which are named EL2, with a concentration of around 10 ιe cm "3 and an activation energy of 0.75 eV compared to the lower level of the conduction band edge .
Dieses Material ist mehr für jene Fälle geeignet, bei denen der Widerstand gegen Strahlungseinwirkung vonThis material is more suitable for those cases where the resistance to radiation from
Wichtigkeit ist. Für verschiedene spezielle Anwendungs¬ gebiete, z.B. auf dem Gebiete der Nuklearspektrometrie oder der Röntgen-Strahlung, wird das Material GaAs in reinem Zustand eingesetzt und mit Epitaxie-Technologie hergestellt (5,10-13). Fast alle Detektoren zum Anzeigen von Strahlung, die zur Zeit auf GaAs-Grundlage verwendet werden, sind vor¬ zugsweise mit Schottky- und ohmschen Kontakten, übli- cherweise Au oder Ti hergestellt, wie beschrieben in (1,3,5,6,8,10,11,15), oder manchmal mittels zweier Schottky-Kontakte auf beiden Seiten, vorzugsweise mit¬ tels Au, wie beschrieben in (14,15), zum Metallisieren der Elektroden. Au ist ein Metall, das eine hohe Schottky-Barriere qφb bildet, wobei q die Ladung desImportance is. For various special fields of application, for example in the field of nuclear spectrometry or X-ray radiation, the material GaAs is used in a pure state and is produced using epitaxy technology (5, 10-13). Almost all detectors for displaying radiation which are currently used on a GaAs basis are preferably made with Schottky and ohmic contacts, usually Au or Ti, as described in (1,3,5,6,8 , 10, 11, 15), or sometimes by means of two Schottky contacts on both sides, preferably by means of Au, as described in (14, 15), for metallizing the electrodes. Au is a metal that forms a high Schottky barrier qφ b , where q is the charge of the
Elektrons und φb die Höhe der Schottky-Barriere von ca. 0,92 eV gegenüber dem Fermi-Niveau in der Grenzfläche zu GaAs (16) darstellt. Aus diesem Grunde liegt das Ni¬ veau der tiefen Störstelle EL2, auf das die Kompensa- tion zurückzuführen ist, in der Nähe der Grenzfläche über dem Fermi-Niveau,so daß eine vollständige Ionisie¬ rung stattfindet, und aufgrund seiner dominierenden Konzentration erfolgt eine Kontrolle der Dicke der ent¬ leerten Schicht, wie dargestellt in (17,18) sowie der Intensität des elektrischen Feldes im Aktivgebiet des Detektors.Electrons and φ b represents the height of the Schottky barrier of approx. 0.92 eV compared to the Fermi level in the interface with GaAs (16). For this reason, the level of the deep impurity EL2, to which the compensation can be attributed, is in the vicinity of the interface above the Fermi level, so that complete ionization takes place, and a control is carried out on account of its dominant concentration the thickness of the emptied layer, as shown in (17, 18) and the intensity of the electric field in the active area of the detector.
Daraus folgt eine kleine Dicke der entleerten Zone im Bereich von μm, ein sehr starkes elektrisches Feld in der Kontakt-Grenzfläche zu GaAs und ein sehr niedriges elektrisches Feld in dem fast neutralen Teil des Detek¬ tors, wie dies den Berechnungen zu entnehmen ist (18,19). Ferner führt das starke elektrische Feld, das in der Kontaktstelle vorhanden ist, zu einer Zerstörung der Sperre mit niedrigen Spannungen an den Enden des Detektors. Ein Vorschlag zur Lösung dieses Problems wurde von Brozei (13) gemacht und beruhte auf dem Grundgedanken, die Konzentration von EL2 im Ausgangsma¬ terial zu senken. Es kann ausgeführt werden, daß dieses Verfahren möglich ist, aber eine erhebliche Problematik mit sich bringt. Ferner ist das Verfahren zeitund ko¬ stenaufwendig, da es die Entwicklung einer neuen Wachs¬ tumstechnologie für GaAs zur Verwendung in Detektoren mit sich bringt. Die Standardausführungsform der Kon- takte an GaAs-Detektoren ist nicht symmetrisch, d.h. auf einer Seite (oben) erfolgt ein kleiner Kontakt und auf der anderen Seite (unten) erfolgt ein großer Kon¬ takt üblicherweise so groß wie die ganze Fläche des De¬ tektors. Diese Ausbildungsform der Kontakte des Detek- tors ist nicht optimal, da die Verteilung des elektri¬ schen Feldes sehr stark streut und aus diesem Grund die Auflösung des Detektors abnimmt. Ferner nimmt der Ver¬ luststrom für den Transport der Ladungsträger über nicht aktive Teile des Detektors zu. Als Abdeckung der freien Fläche des GaAs, d.h. der Fläche, an der keine Metallisierung der Kontakte vorgesehen ist, werden in der Praxis nur Isolierschichten aus Siliziumoxid oder Siliziumnitrit (2,10,20) verwendet.This results in a small thickness of the emptied zone in the range of μm, a very strong electric field in the contact interface with GaAs and a very low electric field in the almost neutral part of the detector, as can be seen from the calculations (18 , 19). Furthermore, the strong electric field present in the contact point leads to destruction of the barrier with low voltages at the ends of the Detector. A proposal to solve this problem was made by Brozei (13) and was based on the basic idea of reducing the concentration of EL2 in the starting material. It can be said that this method is possible, but it presents considerable problems. Furthermore, the method is time-consuming and costly since it involves the development of a new growth technology for GaAs for use in detectors. The standard embodiment of the contacts on GaAs detectors is not symmetrical, ie there is a small contact on one side (above) and a large contact on the other side (below) usually takes place as large as the entire area of the detector . This form of formation of the contacts of the detector is not optimal since the distribution of the electric field scatters very strongly and for this reason the resolution of the detector decreases. Furthermore, the leakage current for the transport of the charge carriers via inactive parts of the detector increases. In practice, only insulating layers made of silicon oxide or silicon nitride (2, 10, 20) are used to cover the free surface of the GaAs, ie the surface on which no metallization of the contacts is provided.
Im Falle von GaAs, hauptsächlich für Anwendungsgebiete, bei denen ein hoher Widerstand gegen große Strahlung erforderlich ist, ist der Widerstand gegen Strahlungs¬ einflüsse dieser Schicht besonders bedeutend. Gegenüber dem bekannten Stand der Technik kann gesagt werden, daß bisher durchgeführte Messungen der Durchbruchspannung in den GaAs-Strahlungsdetektoren, wie sie bisher durch¬ geführt wurden, ca. einem Volt pro 1 μm der Dicke des Detektors (21) entsprach und daß der beste festge¬ stellte Wert für die Aufnahmefähigkeit der Ladung in der Nähe von 75 % lag und die Auflösung in Energie grö¬ ßer als 10 % für einen Detektor mit einer Dicke von ca. 200 μm ist, sofern die α-Partikel mit einer Energie um MeV angezeigt sind (10) . Der Widerstand gegen Strahlung der GaAs-Detektoren, die bislang hergestellt wurden, ist durch die Widerstandsfähigkeit gegen Strahlung der Schichten aus Isoliermaterial, die zum Abdecken der Flächen, wie z.B. Si02 oder SiN4, verwendet werden, be¬ schränkt. Diese haben üblicherweise eine Widerstandsfä¬ higkeit gegen Strahlung, die niedriger ist als die der GaAs-Materialien aufgrund des Zerfalls des Isolierma- teriales, bedingt durch das Einbringen von Ladungen, die während des interaktiven Vorganges mit den ionisie¬ renden Partikeln (22) erfolgt.In the case of GaAs, mainly for areas of application in which a high resistance to large radiation is required, the resistance to radiation influences of this layer is particularly important. Compared to the known prior art, it can be said that measurements of the breakdown voltage have been carried out to date in the GaAs radiation detectors as previously carried out corresponded to approximately one volt per 1 μm of the thickness of the detector (21) and that the best value determined for the absorption capacity of the charge was close to 75% and the resolution in energy is greater than 10% for a detector with a thickness of approximately 200 μm, provided that the α particles are indicated with an energy around MeV (10). The resistance to radiation of the GaAs detectors that have been manufactured to date is limited by the resistance to radiation of the layers of insulating material that are used to cover the surfaces, such as SiO 2 or SiN 4 , for example. These usually have a resistance to radiation which is lower than that of the GaAs materials due to the decomposition of the insulating material, due to the introduction of charges which take place during the interactive process with the ionizing particles (22).
Es handelt sich um einen GaAs-Strahlendetektor, dessen Merkmale wesentlich verbessert wurden, unter Verwendung von Sandwich-Elektroden, die in vorteilhafter Weise symmetrisch und spiegelbildlich auf beiden Seiten der GaAs-Scheibe angeordnet sind. Die freie Fläche der Scheibe ist wenigstens auf einer Seite mit einer mono¬ kristallinen halbisolierenden Schicht aus GaAs abge¬ deckt, und diese Schicht weist eine Konzentration an Fangstellen auf, die größer als 10 cm" ist. Wenig¬ stens eine der angeordneten Elektroden bildet eine Energiesperre, deren Höhe gegenüber der Schnittstelle mit GaAs kleiner als 1,1 mal der Energiedifferenz zwi¬ schen dem niedrigsten Niveau der Leitungsbandkante und dem Fermi-Niveau im Halbleiter ist. Das GaAs, wenig¬ stens auf einer Seite der Scheibe, wird in vorteilhaf- 5 ter Weise mittels Abätztechnik bis auf eine Tiefe von größer 60 μm in den Zonen abgelöst, wo die Metallisie¬ rung für die Elektroden abgelagert wird.It is a GaAs radiation detector, the features of which have been significantly improved, using sandwich electrodes which are advantageously arranged symmetrically and in a mirror image on both sides of the GaAs wafer. The free surface of the pane is covered at least on one side with a monocrystalline semi-insulating layer made of GaAs, and this layer has a concentration of trapping points which is greater than 10 cm " . At least one of the electrodes arranged forms one Energy lock, the amount of which is opposite the interface with GaAs is less than 1.1 times the energy difference between the lowest level of the conduction band edge and the Fermi level in the semiconductor. The GaAs, at least on one side of the pane, is advantageously removed by means of etching technology to a depth of greater than 60 μm in the zones where the metallization for the electrodes is deposited.
4. Beschreibung der Erfindung4. Description of the invention
^10^ 10
Die vorstehende Erfindung betrifft im allgemeinen einen GaAs-Detektor zur Strahlungsanzeige mit einem höheren Wert für die Durchbruchspannung und einem höheren Auf¬ nahmegrad für die Ladung sowie einer besseren AuflösungThe above invention relates generally to a GaAs detector for radiation display with a higher value for the breakdown voltage and a higher degree of absorption for the charge as well as a better resolution
15 in Energie und einem größeren Widerstand gegen Strah¬ lung. Ferner betrifft die Erfindung ein Verfahren zur seiner Herstellung.15 in energy and a greater resistance to radiation. The invention further relates to a method for its production.
Der GaAs-Detektor beinhaltet:The GaAs detector includes:
20 a) eine monokristalline Abdeckschicht mit hohem Wider¬ stand (LTG) mit einer Fangstellendichte, die größer als 1017 cm"3 ist, wobei die Schicht wenigstens auf einer Seite der GaAs-Scheibe, über der GaAs-Fläche, in bevor-20 a) a monocrystalline cover layer with high resistance (LTG) with a trap density greater than 10 17 cm "3 , the layer at least on one side of the GaAs wafer, above the GaAs surface, in advance
25 zugter Weise aufgrund Epitaxie-Wachstums mittels mole¬ kularer Bündel (MBE) mit Molekularflüssen des Ga und des As bei einer abgesenkten Temperatur der Scheibe zur Bildung einer Schicht, die in hohem Grade nicht stöchiometrisch aufgebaut ist, und einer größten Dicke25 Zugter due to epitaxial growth by means of molecular bundles (MBE) with molecular flows of Ga and As at a reduced temperature of the disc to form a layer which is not highly stoichiometric, and a maximum thickness
30 von 20 nm abgelagert ist. b) Elektroden, die vorzugsweise symmetrisch und spie¬ gelbildlich angeordnet sind mit einer Metallauflage, die wenigstens auf einer Seite der Scheibe GaAs an den Fenstern angeordnet ist, an denen die Schicht LTG unter Zuhilfenahme einer Ätztechnik entfernt wurde.30 of 20 nm is deposited. b) electrodes which are preferably arranged symmetrically and in a mirror-image manner with a metal coating which is arranged on at least one side of the GaAs pane on the windows from which the LTG layer has been removed with the aid of an etching technique.
c) Eine Metallisierung der Elektroden mindestens auf einer Seite der GaAs-Scheibe, die vorzugsweise eine Energiesperre bildet, deren Höhe in der Schnittstelle mit dem GaAs kleiner als 1,1 mal die Energiedifferenz zwischen dem niedrigsten Niveau der Leitungsbandkante und dem Fermi-Niveau im Halbleiter ist.c) A metallization of the electrodes on at least one side of the GaAs wafer, which preferably forms an energy barrier, the height of which in the interface with the GaAs is less than 1.1 times the energy difference between the lowest level of the conduction band edge and the Fermi level in the semiconductor is.
d) Vorzugsweise erfolgt ein Entfernen von GaAs unterd) GaAs is preferably removed under
Verwendung einer Ätztechnik bis zu einer Tiefe von mehr als 60 μm des Ätzgrabens für die Elektroden vor Auf¬ bringen der Metallschicht.Use of an etching technique to a depth of more than 60 μm of the etching trench for the electrodes before the metal layer is applied.
Eine Anzahl von Detektoren zum Anzeigen der GaAs-Strah¬ lung, die gemäß der vorliegenden Erfindung hergestellt wurde, hatte eine bessere Anzeigeeigenschaft für die GaAs-Anzeige als die beschriebenen Geräte, die aus hal¬ bisolierenden Metallscheiben erstellt wurden. Die Durchbruchspannung beträgt ca. 2 V pro μm der Dicke der Scheibe aufgrund der Metallisierung der Elektroden, die zur Grenzfläche zu GaAs eine Energiequelle bildet, der¬ art, daß die Hauptebene, welche die Kompensation EL2 schafft, nicht über dem Fermi-Niveau zu liegen kommt, dies aufgrund einer Bandverbiegung in der Grenzfläche; diese Tatsache verhindert die vollständige Ionisierung dieser Ebene. Dies führt zu einer wesentlichen Vermin¬ derung des elektrischen Feldes in der Grenzfläche und ferner zur Schaffung einer breiteren entleerten Zone. Dies hat auch positive Auswirkungen hinsichtlich der Verteilung des elektrischen Feldes im Detektor. Auf¬ grund dieser Verbesserungen wird eine verbesserte Lei¬ stung hinsichtlich der Aufnahme der Ladung zur Anzeige der α-Partikel mit einer Energie von 5,48 MeV von Am241 und zwischen 85 und 93 % für einen Detektor mit 200 μm Dicke erreicht. Aufgrund der spiegelbildlich symmetri¬ schen Anordnung der Elektroden sowie der Verwendung der Abdeckschicht wird für die α-Partikel eine Energieauf¬ lösung erreicht, die kleiner als 6 % ist. Dies ist in einer gleichmäßigeren Verteilung des elektrischen Fel¬ des im Volumen des Detektors zu sehen, wie auch in ei¬ ner Verminderung der Verlustströme in der Schnittstelle und an der Oberfläche. Ferner ist die Widerstandsfähig¬ keit gegen Strahlung des GaAs-Detektors nicht mehr von der Strahlenwiderstandsfähigkeit der Abdeckschicht ab¬ hängig wie im Falle von Si02 oder Si3N4, sondern ledig¬ lich vom Strahlenwiderstand des ursprünglichen GaAs-Ma¬ terials. Dies ist auf die Verwendung einer Abdeck¬ schicht aus dem gleichen GaAs-Material als Grundmateri- al zurückzuführen.A number of detectors for displaying the GaAs radiation, which was produced in accordance with the present invention, had a better display property for the GaAs display than the devices described, which were produced from halobolating metal disks. The breakdown voltage is approx. 2 V per μm of the thickness of the pane due to the metallization of the electrodes, which forms an energy source at the interface with GaAs, in such a way that the main plane which creates the compensation EL2 is not above the Fermi level comes because of a band bending in the interface; this fact prevents the complete ionization of this plane. This leads to a substantial reduction in the electric field in the interface and also to the creation of a wider, empty zone. This also has positive effects on the distribution of the electric field in the detector. On the basis of these improvements, an improved performance with regard to the absorption of the charge for displaying the α-particles with an energy of 5.48 MeV of Am 241 and between 85 and 93% for a detector with a thickness of 200 μm is achieved. Due to the mirror-symmetrical arrangement of the electrodes and the use of the cover layer, an energy resolution is achieved for the α-particles which is less than 6%. This can be seen in a more uniform distribution of the electrical field in the volume of the detector, and also in a reduction in the leakage currents in the interface and on the surface. Furthermore, the resistance to radiation of the GaAs detector is no longer dependent on the radiation resistance of the cover layer as in the case of SiO 2 or Si 3 N 4 , but only on the radiation resistance of the original GaAs material. This is due to the use of a cover layer made of the same GaAs material as the basic material.
Im folgenden wird die Erfindung anhand eines Ausfüh¬ rungsbeispiels näher erläutert. Es zeigen: Figur 1: Querschnitt für jede der vier möglichen Aus- führungsformen für einen GaAs-Detektor gemäß der Erfindung;The invention is explained in more detail below with the aid of an exemplary embodiment. Show it: Figure 1: Cross section for each of the four possible embodiments for a GaAs detector according to the invention;
Figur 2: die Abhängigkeit des Stromes von der Polari- sierungsSpannung bei verschiedenartiger Be¬ handlung der Oberfläche auch mit einer Abdek- kung entsprechend der vorstehenden Erfindung;FIG. 2: the dependence of the current on the polarization voltage when the surface is treated differently, also with a cover according to the preceding invention;
Figur 3 die Abhängigkeit des Stromes von der Polari- sierungsspannnung gemessen an GaAs-Detektoren unter Verwendung von Scheiben, die von drei unterschiedlichen Herstellern nach der Erfin¬ dung hergestellt wurden;FIG. 3 shows the dependence of the current on the polarization voltage measured on GaAs detectors using panes which were produced by three different manufacturers according to the invention;
Figur 4: Spektrum von α-Partikeln, die vom GaAs-Detek¬ tor erkannt wurden und welche entsprechend der vorstehenden Erfindung gefertigt wurden;FIG. 4: spectrum of α-particles which were recognized by the GaAs detector and which were manufactured in accordance with the above invention;
Figur 5: Spektrum der α-Partikel mit drei unterschied¬ lichen Energiearten, die von einem Si-Anzeige¬ gerät und von einem GaAs-Detektor entsprechend der vorstehenden Erfindung angezeigt werden;FIG. 5: spectrum of the α particles with three different types of energy, which are displayed by a Si display device and by a GaAs detector according to the present invention;
6. Genaue Beschreibung einiger Ausführungsbeispiele der6. Detailed description of some embodiments of the
Erfindung.Invention.
Figur la zeigt im Querschnitt das Grundprinzip zur Her- Stellung eines GaAs-Detektors gemäß der Erfindung. Über der Seite 3 der GaAs-Scheibe, die halbleitend und nicht dotiert ausgeführt ist (USI) (5) , wurde eine Schicht aus einem monokristallinen homoepitaxialen Material LTGFigure la shows in cross section the basic principle for producing a GaAs detector according to the invention. A layer made of a monocrystalline homoepitaxial material LTG was placed over the side 3 of the GaAs wafer, which is semiconducting and undoped (USI) (5)
(6) mit einer Störstellendichte von 10 19 cm-3 und einer Dicke (d6) von ca. 500 nm mit einem Widerstand von ca. 10'3 ohm cm bei Raumtemperatur mittels MBE mit molekula¬ ren Flüssen von Ga und As aufgetragen. Diese Schicht bedeckt im wesentlichen die gesamte Scheibe aus GaAs auf einer Seite der polierten Seite, ab. Die Scheibe mit der LTG-Schicht wurde thermisch in As-Atmosphäre bei einer Temperatur von 600°C für 10 Minuten behan¬ delt. Nach diesem Verfahren nimmt der Widerstand der Schicht Werte an, die größer als 10 ohm cm bei Raum¬ temperatur sind, und die Fangstellendichte vermindert
Figure imgf000012_0001
(6) with an impurity density of 10 19 cm-3 and a thickness (d6) of approx. 500 nm with a resistance of approx. 10 '3 ohm cm at room temperature by means of MBE with molecular fluxes of Ga and As. This layer essentially covers the entire disk made of GaAs on one side of the polished side. The pane with the LTG layer was treated thermally in an As atmosphere at a temperature of 600 ° C. for 10 minutes. According to this method, the resistance of the layer takes on values which are greater than 10 ohm cm at room temperature and the trapping point density is reduced
Figure imgf000012_0001
Ein weiteres bevorzugtes Verfahren zur Herstellung der GaAs-Abdeckschicht LTG, entsprechend der vorstehenden Erfindung, Verfahren das einfacher und schneller sowie kostengünstiger durchzufahren ist, verwendet weiterhin die MBE mit Molekularflüssen Ga und As bei einer Tempe¬ ratur von 380°C für die dickere Scheibe. Der Widerstand der Schicht ist ungefähr 106 ohm cm bei Raumtemperatur und die Fangstellendichte entspricht ca. 1018 cm"3. Die- se Schicht benötigt keine anschließende thermische Be¬ handlung in As-Atmosphäre und unter hohem Druck als zu¬ sätzlichen weiteren technologischen Schritt.Another preferred method for producing the GaAs cover layer LTG, in accordance with the above invention, method which can be carried out more easily, quickly and cost-effectively, continues to use the MBE with molecular flows Ga and As at a temperature of 380 ° C. for the thicker pane. The resistance of the layer is approximately 10 6 ohm cm at room temperature and the trapping point density corresponds to approximately 10 18 cm "3. This layer does not require any subsequent thermal treatment in an As atmosphere and under high pressure as an additional technological step .
In der LTG-Schicht aus GaAs, die aufgetragen wurde (6) , sind fensterartige Öffnungen (7) unter Verwendung von standardisierten fotolithographischen Techniken einge¬ bracht, aus diesen Öffnungen wurde die Schicht (6) un¬ ter Verwendung von Ätztechniken und unter Verwendung einer Lösung auf der Grundlage von Schwefelsäure ent- fernt. Über die frisch abgebeizte Schicht werden unter einem Hochvakuum Metallisierungen (8,9) aufgedampft, dies zur Vorbereitung der Elektroden (1,2). Die Kombi¬ nation W+Ti/Au und Ti+Pt/Au werden als Metallisierung für die Elektroden (8,9) verwendet.In the LTG layer made of GaAs, which has been applied (6), window-like openings (7) are introduced using standardized photolithographic techniques. The layer (6) was made from these openings using etching techniques and using a Solution based on sulfuric acid removed. Over the freshly stripped layer are under a high vacuum metallization (8,9) evaporated, this in preparation for the electrodes (1,2). The combination W + Ti / Au and Ti + Pt / Au are used as metallization for the electrodes (8,9).
Es ist darauf hinzuweisen, daß die Metallisierung mit W(S) , die hier als obere Elektrode (1) eingesetzt wird, eine Energiehöhe der Sperre in der Grenzfläche mit dem GaAs von ca. 0,65 eV festlegt, was ungefähr der Energie des Fermi-Niveaus in undotiertem remiisolierendem GaAs gegenüber der niedrigeren Leiterbande entspricht. Mit anderen Worten, diese Metallisierung der Elektrode hält die Führungsbande und die Valenzenbande flach in der Schnittstelle mit dem GaAs. Es ist darauf hinzuweisen, daß auch andere Metallisierungen diese Eigenschaft auf¬ weisen. Neben diesem kann auch eine geeignete Technolo¬ gie zum Behandeln der Oberfläche vor dem Aufdampfvor¬ gang oder eine zusätzliche thermische Behandlung der Metallisierungsschicht, die bereits aufgedampft wurde, durchgeführt werden mit dem Zweck, eine notwendige Ab¬ senkung der Energiesperre in der Schnittstelle der Me¬ tallisierung mit dem GaAs zu erreichen.It should be noted that the metallization with W (S), which is used here as the upper electrode (1), determines an energy level of the barrier in the interface with the GaAs of approximately 0.65 eV, which is approximately the energy of the Fermi Levels in undoped remi-isolating GaAs compared to the lower conductor band. In other words, this metallization of the electrode keeps the guiding band and the valence band flat in the interface with the GaAs. It should be pointed out that other metallizations also have this property. In addition to this, a suitable technology for treating the surface before the vapor deposition process or an additional thermal treatment of the metallization layer that has already been vapor-deposited can also be carried out with the purpose of reducing the energy barrier in the interface of the medium as necessary to achieve tallization with the GaAs.
Die Vorbereitung des beschriebenen Detektors gemäß Fi- gur la ist die, welche der allgemeinen Ausführungsform am ähnlichsten ist. Der Unterschied besteht im Aufbrin¬ gen einer besseren Abdeckung mit einer Schicht GaAs (6) und in der Metallisierung für den oberen Kontakt (8) . Bereits diese Vorbereitung des Anzeigegerätes GaAs ver- bessert in bemerkenswerter Weise seine Funktionsparame¬ ter.The preparation of the detector described according to FIG. 1a is that which is most similar to the general embodiment. The difference is in the application of a better covering with a layer of GaAs (6) and in the metallization for the upper contact (8). This preparation of the GaAs display device already remarkably improves its functional parameters.
Figur lb zeigt im wesentlichen das gleiche technologi- sehe Verfahren, das bereits für Figur la gemäß der vor¬ stehenden Erfindung beschrieben wurde. Der einzige Un¬ terschied besteht darin, daß die Elektroden des Detek¬ tors (1,2) spiegelbildlich symmetrisch auf beiden Sei¬ ten (3,4) der GaAs-Scheibe (5) angeordnet sind. Für die Herstellung des Detektors findet ein fotolithographi¬ sches Verfahren Einsatz, das zweiseitig arbeitet. Bei diesem Ausführungsbeispiel ist das elektrische Feld we¬ sentlich gleichmäßiger zwischen den Elektroden des De¬ tektors (1,2) angeordnet, im wesentlichen in Überein- Stimmung mit der symmetrischen Anordnung, was zu einer wesentlichen Verbesserung der Auflösung des Detektors und zu einem Absenken des Verluststromes über die nicht aktiven Teile des Bauvolumens des Detektors führt.FIG. 1b essentially shows the same technological process that has already been described for FIG. 1 a in accordance with the above invention. The only difference is that the electrodes of the detector (1, 2) are arranged in mirror image symmetry on both sides (3, 4) of the GaAs disc (5). For the manufacture of the detector, a photolithographic process is used which works on two sides. In this embodiment, the electric field is arranged much more evenly between the electrodes of the detector (1, 2), essentially in accordance with the symmetrical arrangement, which leads to a substantial improvement in the resolution of the detector and to a lowering of the Leakage current leads over the inactive parts of the construction volume of the detector.
Figur lc zeigt im wesentlichen das gleiche technologi¬ sche Verfahren gemäß der vorstehenden Erfindung, wie bereits im Vorangegangenen beschrieben, mit dem Unter¬ schied, daß die Abdeckschichten (6,6') auf beiden Sei¬ ten der GaAs-Scheibe (5) abgelegt sind und unter Vorse- hung von fensterartigen Öffnungen, die spiegelbildlich und symmetrisch angeordnet sind (1 , 1 ' ) , wobei die Ab¬ deckschicht (6,6') unter Verwendung eines Abbeizverfah¬ rens freigelegt wurde. Dieses Ausführungsbeispiel un¬ terdrückt auf größtmögliche Weise die Verlustströme der Schnittstelle und der Oberfläche, was zu einer wesent- liehen Verbesserung der Auflösung des Detektors sowie der Rauschparameter führt.FIG. 1c shows essentially the same technological method according to the above invention as already described above, with the difference that the cover layers (6, 6 ') are deposited on both sides of the GaAs wafer (5) and with the provision of window-like openings which are arranged in mirror image and symmetrically (1, 1 '), the cover layer (6, 6') being exposed using a pickling process. This exemplary embodiment suppresses the leakage currents of the interface and the surface as much as possible, which improve the resolution of the detector and the noise parameters.
Figur ld zeigt eine Ausführungsform des Detektors wie das in Figur lb beschriebene erfindungsgemässe Gerät mit dem Unterschied, daß auf einer Seite, im vorliegen¬ den Falle auf der unteren Seite (4) der GaAs-Scheibe (5) von der Anfangsdicke von 300 μm, in Ausnehmungen für die unteren Elektroden (2) ein Abtragen des GaAs unter Verwendung einer Abbeiztechnik (10) bis zu einer Tiefe von ca 100 μm (h) erfolgt, wobei ein kombiniertes Trockenabbeizverfahren mit Ionen (RIE) im Plasma CC12F2 zusammen mit einem Naßabbeizverfahren als Endbehandlung mit einer Lösung auf der Basis von Schwefelsäure er- folgt, dies vor Aufdampfen der Metallisierung (9) für die untere Elektrode.FIG. 1d shows an embodiment of the detector like the device according to the invention described in FIG. 1b, with the difference that on one side, in the present case on the lower side (4) of the GaAs wafer (5), with an initial thickness of 300 μm, The GaAs is removed in recesses for the lower electrodes (2) using a pickling technique (10) to a depth of approx. 100 μm (h), a combined dry pickling process with ions (RIE) in the plasma CC1 2 F 2 together with a wet pickling process is carried out as a final treatment with a solution based on sulfuric acid, before the metallization (9) for the lower electrode is evaporated.
Es ist zu bemerken, daß das Abbeizverfahren RIE wesent¬ liche Bedeutung zum Erzielen einer ausreichend hohen Anisotropie des Abbeizprozesses erlangt. Die erzielten Ergebnisse zeigen, daß bei optimierten Abbeizvorgangen ein höheres Anisotropieverhältnis von 15 : 1 bei Ver¬ wendung von RIE erzielt werden kann bei einer Ebenheit der Wände der abgebeizten Ausnehmungen, die annehmbar ist. Diese Ausführungsform ist besonders für den Fall geeignet, bei dem eine Serienproduktion des Detektors mit sehr dünn ausgeführten Aktivteilen möglich werden soll. Ferner ist das elektrische Feld bei diesem Aus¬ führungsbeispiel wesentlich homogener und die Verlust- ströme von Schnittstelle und Oberfläche werden aufgrund der besonderen Ausführungsform des Detektors unter¬ drückt, was es ermöglicht, auf eine zusätzliche Abdeck¬ schicht auf der Unterseite verzichten zu können. Als standardisiertes Endverfahren wird das Bauteil des De- tektors vollständig ummantelt durch eine weitere Iso¬ lierschicht, bestehend z.B. aus Si02, diese Schicht dient hauptsächlich als Schutz gegen mechanische Be¬ schädigung und gegen weitere äußere Einflüsse.It should be noted that the RIE pickling process is of essential importance for achieving a sufficiently high anisotropy in the pickling process. The results obtained show that with optimized pickling processes a higher anisotropy ratio of 15: 1 can be achieved when using RIE with a flatness of the walls of the pickled recesses that is acceptable. This embodiment is particularly suitable for the case in which series production of the detector with very thin active parts is to be possible. Furthermore, the electrical field in this exemplary embodiment is considerably more homogeneous and the leakage currents from the interface and surface are due to suppresses the special embodiment of the detector, which makes it possible to dispense with an additional cover layer on the underside. As a standardized final process, the component of the detector is completely encased by a further insulating layer consisting, for example, of SiO 2 , this layer serves mainly as protection against mechanical damage and against further external influences.
Figur 2 zeigt die Abhängigkeit des Stromes von derFigure 2 shows the dependence of the current on the
Spannung der GaAs-Detektoren, die auf der 250 μm dicken Scheibe eines einzigen Produktes aufgebaut sind. Die Geometrie der Elektroden und die Metallisierung wurden über drei verschiedene Behandlungsvorgänge der Oberflä- ehe aufgebracht: ohne eine weitere Schutzschicht (1A) mit einer isolierenden Schutzschicht, bestehend aus Si3N4(lB) und schließlich mit einer Abdeckschicht ent¬ sprechend der vorstehenden Erfindung (IC) aufzutragen. Es kann der Schluß gezogen werden, daß der niedrigste Verluststrom im Falle (IC) auftritt (der Strom ist un¬ gefähr zwei Größenordnungen kleiner als bei Detektoren 1A oder 1B) . Hier ist die Ausführungsform der Detekto¬ ren gemäß Figur la gewählt.Voltage of the GaAs detectors, which are built on the 250 μm thick disc of a single product. The geometry of the electrodes and the metallization were applied via three different treatment processes of the surface: without a further protective layer (1A) with an insulating protective layer consisting of Si 3 N 4 (IB) and finally with a covering layer according to the above invention (IC) to be applied. It can be concluded that the lowest leakage current occurs in the case (IC) (the current is approximately two orders of magnitude smaller than in the case of detectors 1A or 1B). The embodiment of the detectors according to FIG. 1a is selected here.
Figur 3 zeigt die Abhängigkeit des Stromes von derFigure 3 shows the dependence of the current on the
Spannung der GaAs-Detektoren, entsprechend der vorste¬ henden Erfindung für ein Ausführungsbeispiel, das in Figur la gezeigt ist, mit gleicher Geometrie und Metal¬ lisierung der Kontakte, unter Verwendung von GaAs- Scheiben, die von drei Herstellern und mit gleicher Dicke erzeugt wurden. Wie erkennbar ist, ist die Durch¬ bruchspannung für den Detektor (1) ca. 450 V und für Detektoren 2 und 3 ist die Spannung über 500 V. Diese Ergebnisse führen zu einem Mittelwert der Durchbruch- Spannung, der größer als 2 V pro 1 μm der Dicke des De¬ tektors ist und doppelt so groß wie der Wert, der dem Schrifttum zu entnehmen ist.Voltage of the GaAs detectors, according to the above invention for an exemplary embodiment, which is shown in FIG. 1a, with the same geometry and metalization of the contacts, using GaAs disks, from three manufacturers and with the same Thickness were generated. As can be seen, the breakdown voltage for the detector (1) is approximately 450 V and for detectors 2 and 3 the voltage is above 500 V. These results lead to an average value of the breakdown voltage which is greater than 2 V per 1 μm is the thickness of the detector and twice as large as the value that can be found in the literature.
Figur 4 zeigt das Partikelspektrum α mit einer Energie von 5,48 MeV Am 247 , di■e von einem GaAs-Detektor ent¬ sprechend der vorstehenden Erfindung in einer Ausfüh¬ rungsform nach Figur lb mit einer Scheibendicke des GaAs von 200 μm erfaßt wurde. Die Auflösung des Detek¬ tors ist unter 5 % FWHM, und die Wirksamkeit der Auf- nähme der Belastung entspricht ca. 90 % bei einer Pola- risationsspannung von 100 V im Vergleich zu einem Si- Detektor. Es ist darauf hinzuweisen, daß diese Ergeb¬ nisse zu den besten jemals veröffentlichten Werten für Detektoren undotiertes remiisolierendes GaAs mit einer Dicke von 200 μm gehören.FIG. 4 shows the particle spectrum α with an energy of 5.48 MeV Am 247, which was detected by a GaAs detector according to the above invention in an embodiment according to FIG. 1b with a disk thickness of the GaAs of 200 μm. The resolution of the detector is below 5% FWHM, and the effectiveness of recording the load corresponds to approx. 90% at a polarization voltage of 100 V compared to a Si detector. It should be noted that these results are among the best ever published values for undoped remi-isolating GaAs with a thickness of 200 μm.
Figur 5 zeigt das Spektrum der α-Partikel mit den ver¬ schiedenen Energien 5,15 MeV von Pu239, 4,8 MeV von Am 241 und 5,795 MeV von Cm44, die mit einem Detektor Si erfaßt wurden und mit einem Detektor GaAs gemäß der vorstehenden Erfindung. Hier wurde die gleiche Geome¬ trie und die gleiche Anordnung gemäß Figur 4 gewählt. LiteraturlisteFIG. 5 shows the spectrum of the α particles with the various energies 5.15 MeV of Pu 239 , 4.8 MeV of Am 241 and 5.795 MeV of Cm 44 , which were detected with a detector Si and with a detector according to GaAs of the above invention. Here the same geometry and the same arrangement according to FIG. 4 were chosen. Bibliography
1. Harding, W.R. et al. , Nature 187 (1960) 4051. Harding, W.R. et al. , Nature 187 (1960) 405
2. Bertin, R., et al. Nucl. Instr. and Meth. A294 (1990) 2112. Bertin, R., et al. Nucl. Instr. and Meth. A294 (1990) 211
3. Summer, TJ. et al. Nucl. Instr. and Meth. A322 (1992) 5143. Summer, TJ. et al. Nucl. Instr. and Meth. A322 (1992) 514
4. Benz, K.W. et al., Nucl. Instr. and Meth. A322 (1992) 4934. Benz, K.W. et al., Nucl. Instr. and Meth. A322 (1992) 493
5. Beaumont^.P. et al., Nucl. Instr. and Meth. A321 (1992) 1725. Beaumont ^ .P. et al., Nucl. Instr. and Meth. A321 (1992) 172
6. Beaumont, S.P., et al., Nucl. Instr. and Meth. A326 (1993) 3136. Beaumont, S.P., et al., Nucl. Instr. and Meth. A326 (1993) 313
7. Nava, F., etal. Nucl. Instr. and Meth. A349 (1994) 1567. Nava, F., et al. Nucl. Instr. and Meth. A349 (1994) 156
8. Beaumont, S.P. , et al., Nucl. Instr. and Meth. A342 (1994) 838. Beaumont, S.P. , et al., Nucl. Instr. and Meth. A342 (1994) 83
9. Dogru, M. etal., Nucl. Instr. and Meth. A348 (1994) 5109. Dogru, M. et al., Nucl. Instr. and Meth. A348 (1994) 510
10. Bauser, E. et al.. Inst. Phys. Conf. Ser. No. 136, IOP Publ. Ltd., Bristol, 1995, p33510. Bauser, E. et al. Inst. Phys. Conf. Ser. No. 136, IOP Publ. Ltd., Bristol, 1995, p335
11. Eberhardt, J.E. et al. , Nucl. Instr. and Meth. 94 (1991) 46311. Eberhardt, J.E. et al. , Nucl. Instr. and Meth. 94 (1991) 463
12. Alexiev, D., Nucl. Instr. and Meth. A317 (1992) 11112. Alexiev, D., Nucl. Instr. and Meth. A317 (1992) 111
13. BrozeI,M.R.. 20th Eloisatron Work.shop WSPC Ltd., 1992, p. 23613. BrozeI, M.R .. 20th Eloisatron Work.shop WSPC Ltd., 1992, p. 236
14. Bencivelli, W., et al. , Nucl. Instr. and Meth. A338 (1994) 54914. Bencivelli, W., et al. , Nucl. Instr. and Meth. A338 (1994) 549
15. Beaumont, S.P., et al., Nucl. Instr. and Meth. A348 (1994) 51415. Beaumont, S.P., et al., Nucl. Instr. and Meth. A348 (1994) 514
16. Rhoderick, E.H. and Williams, R.H., Metal-Semiconductor Contacts, Oxford, 198816. Rhoderick, E.H. and Williams, R.H., Metal-Semiconductor Contacts, Oxford, 1988
17. Dubecky, F. et al., Semicond. S i. Technol. 9 (1994) 165417. Dubecky, F. et al., Semicond. S i. Technol. 9 (1994) 1654
18. Kubicki, T. et al., Nucl. Ins r. and Meth. A345 (1994) 46818. Kubicki, T. et al., Nucl. Ins r. and Meth. A345 (1994) 468
19. Mc Gregor, D.S. et al. IEEE Trans, on Nucl. Sei.39 (1992) 122619. Mc Gregor, D.S. et al. IEEE Trans, on Nucl. Sci. 39 (1992) 1226
20. Karpinsky, W., et al., Nucl. Instr. and Meth. A323 (1992) 635 •21. D'Auria, S.D., et al., Nucl. Instr. and Meth. B32 (1993) 296 22. Roderick, A.3. , IEEE Trans. Nucl. Sei. 41 (1994) 452 20. Karpinsky, W., et al., Nucl. Instr. and Meth. A323 (1992) 635 • 21. D'Auria, S.D., et al., Nucl. Instr. and Meth. B32 (1993) 296 22. Roderick, A.3. , IEEE Trans. Nucl. Be. 41 (1994) 452

Claims

P a t e n t a n s p r ü c h e Patent claims
1. Detektor für ionisierende Strahlung von GaAs und Verfahren für seine Herstellung mit folgenden Ver¬ fahrensschritten:1. Detector for ionizing radiation from GaAs and process for its production with the following process steps:
a) Bildung einer monokristallinen Schicht mit hohem ho¬ moepitaxialen Widerstand aus GaAs, welches in hohem Grade nicht stöchiometrisch ist, mit wenigstens ei¬ nem Überschuß an As entsprechend 0,3 %, der Konzen¬ trierung von Fangstellen größer als 1017 cm"3 und ei- ner Dicke größer als 20 nm über einem Substrat aus GaAs,a) Formation of a monocrystalline layer with high homo-epitaxial resistance made of GaAs, which is to a high degree not stoichiometric, with at least an excess of As corresponding to 0.3%, the concentration of trapping sites greater than 10 17 cm "3 and a thickness greater than 20 nm over a substrate made of GaAs,
b) Bildung einer fensterartigen Öffnung in der Schicht mit der Ausnehmung zur Ablagerung der Metallisierung für die Elektroden, wobei die Schicht unter Verwen¬ dung von Abbeiztechniken entfernt wird,b) formation of a window-like opening in the layer with the recess for depositing the metallization for the electrodes, the layer being removed using pickling techniques,
c) Bildung einer Metallisierung für die Elektrode in den fensterartigen Ausnehmungen der Schicht, die auf der Oberfläche des GaAs vorgesehen sind, d) Schaffung einer Metallisierung für die Elektrode auf der dem GaAs gegenüberliegenden Fläche.c) formation of a metallization for the electrode in the window-like recesses of the layer which are provided on the surface of the GaAs, d) Creation of a metallization for the electrode on the surface opposite the GaAs.
2. Verfahren nach Patentanspruch 1, bei welchem eine Schicht mit hohem Widerstandswert auf der GaAs- Oberflache gebildet wird, unter Verwendung der Epi¬ taxie mit molekularen Bündeln mit molekularen Flüs- sen von Ga und As bei einer Temperatur der GaAs-2. The method according to claim 1, in which a layer with a high resistance value is formed on the GaAs surface, using the epi-taxy with molecular bundles with molecular flows of Ga and As at a temperature of the GaAs.
Scheibe zwischen 150°C und 350°C und thermischer Be¬ handlung in As-Atmosphäre bei einer Temperatur grö¬ ßer als 450°C.Disc between 150 ° C and 350 ° C and thermal treatment in an As atmosphere at a temperature greater than 450 ° C.
3. Verfahren nach Patentanspruch 2, wobei die Schicht mit hohem Widerstand bei einer Temperatur der Schei¬ be zwischen 320°C und 450°C ohne anschließende ther¬ mische Behandlung gebildet wird.3. The method according to claim 2, wherein the layer with high resistance is formed at a temperature of the disc between 320 ° C and 450 ° C without subsequent thermal treatment.
4. Detektor nach Patentanspruch 1, wobei wenigstens ei¬ ne der eingebrachten Elektroden eine Energiesperre bildet, deren Höhe kleiner dem 1,1-fachen der Diffe- renz der Energie zwischen dem untersten Niveau des Leiterbandes und dem Fermi-Niveau im GaAs ent¬ spricht.4. Detector according to claim 1, wherein at least one of the electrodes introduced forms an energy barrier, the height of which is less than 1.1 times the difference in energy between the lowest level of the Conductor band and the Fermi level in the GaAs corresponds.
5. Detektor nach Patentanspruch 1 und 4 sowie dem Ver¬ fahren nach Anspruch 2 oder 3, wobei die Schicht le¬ diglich auf einer Seite der Scheibe angeordnet ist und eine Elektrode mit großer Fläche auf der gegen¬ überliegenden Seite der GaAs-Scheibe angeordnet ist,5. Detector according to claims 1 and 4 and the method according to claim 2 or 3, wherein the layer is arranged only on one side of the disk and an electrode with a large area is arranged on the opposite side of the GaAs disk ,
6. Detektor nach Patentanspruch 1 und 4 und Verfahren nach Anspruch 2 oder 3, wobei die Schicht lediglich auf einer Seite der Scheibe angeordnet ist und die Anordnung der Elektroden spiegelbildlich, symme¬ trisch mit entsprechender Geometrie und der besten Form gemäß 75 % auf den zwei Seiten der Scheibe GaAs angeordnet ist.6. Detector according to claim 1 and 4 and method according to claim 2 or 3, wherein the layer is arranged only on one side of the disc and the arrangement of the electrodes in mirror image, symmetrical with appropriate geometry and the best shape according to 75% on the two Side of the disk GaAs is arranged.
7. Detektor nach Patentanspruch 1 und 4 und Verfahren nach Patentanspruch 2 oder 3, wobei die Schicht auf beiden gegenüberliegenden Seiten der Scheibe ange¬ ordnet ist und die Anordnung der Elektroden Spiegel- bildlich, symmetrisch mit entsprechender Form und mit bester Geometrie gemäß 75 % durch die fensterar¬ tigen Öffnungen in den Aufnahmen durch Elektroden gebildet ist, wobei die Schicht durch Abbeizverfah¬ ren entfernt wurde.7. Detector according to claim 1 and 4 and method according to claim 2 or 3, wherein the layer is arranged on both opposite sides of the disk and the arrangement of the electrodes is mirror-image, symmetrical with a corresponding shape and with the best geometry in accordance with 75% is formed by the window-like openings in the receptacles by electrodes, the layer being removed by pickling.
8. Detektor nach Patentanspruch 1, 4 und 6 und Verfah¬ ren nach Patentanspruch 2 oder 3, wobei das GaAs mittels eines Abbeizvorganges bis zu einer Tiefe von größer als 60 μm in der Aufnahme der Elektrode vor deren Anordnung auf wenigstens einer Seite der Scheibe GaAs entfernt wird.8. Detector according to patent claims 1, 4 and 6 and method according to patent claim 2 or 3, wherein the GaAs by means of a pickling process to a depth of greater than 60 μm in the receptacle of the electrode prior to its arrangement on at least one side of the disk GaAs Will get removed.
9. Detektor nach Patentanspruch 1, 4 und 7 und Verfah¬ ren gemäß Anspruch 2 oder 3, wobei das GaAs mittels Abbeiz organges entfernt wird bis zu einer Tiefe, die größer ist als 60 μm in der Ausnehmung der Elek¬ trode vor seiner Anordnung auf wenigstens einer Sei- te der GaAs-Scheibe. 9. Detector according to patent claims 1, 4 and 7 and method according to claim 2 or 3, wherein the GaAs is removed by means of pickling to a depth which is greater than 60 μm in the recess of the electrode before its arrangement at least one side of the GaAs disc.
PCT/DE1996/000824 1995-05-05 1996-05-03 Detector for indicating ionising radiation and process for its production WO1996035236A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19680300T DE19680300D2 (en) 1995-05-05 1996-05-03 Ionizing radiation detector and method for its manufacture

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
SK583-95A SK282934B6 (en) 1995-05-05 1995-05-05 Ionising radiation detector and its preparation method
ITFI95A000091 1995-05-05
IT95FI000091A IT1285788B1 (en) 1995-05-05 1995-05-05 Ionizing radiation detector and method for its manufacture
SKPV0583-95 1995-05-05

Publications (1)

Publication Number Publication Date
WO1996035236A1 true WO1996035236A1 (en) 1996-11-07

Family

ID=26330542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1996/000824 WO1996035236A1 (en) 1995-05-05 1996-05-03 Detector for indicating ionising radiation and process for its production

Country Status (2)

Country Link
DE (1) DE19680300D2 (en)
WO (1) WO1996035236A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109192794A (en) * 2018-09-12 2019-01-11 哈尔滨工业大学 Enhanced interdigital electrode diamond ultraviolet detector of backboard and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4060822A (en) * 1973-06-27 1977-11-29 Siemens Aktiengesellschaft Strip type radiation detector and method of making same
US4692782A (en) * 1983-06-08 1987-09-08 Fuji Electric Corporate Research & Development Co., Ltd. Semiconductor radioactive ray detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4060822A (en) * 1973-06-27 1977-11-29 Siemens Aktiengesellschaft Strip type radiation detector and method of making same
US4692782A (en) * 1983-06-08 1987-09-08 Fuji Electric Corporate Research & Development Co., Ltd. Semiconductor radioactive ray detector

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
BAUSER E ET AL: "Room temperature gallium arsenide radiation detectors", GALLIUM ARSENIDE AND RELATED COMPOUNDS 1993. PROCEEDINGS OF THE TWENTIETH INTERNATIONAL SYMPOSIUM ON GALLIUM ARSENIDE AND RELATED COMPOUNDS, PROCEEDINGS OF 20TH INTERNATIONAL SYMPOSIUM ON GALLIUM ARSENIDE AND RELATED COMPOUNDS, FREIBURG, GERMANY, 29, ISBN 0-7503-0295-X, 1994, BRISTOL, UK, IOP PUBLISHING, UK, pages 355 - 360, XP000601427 *
BEAUMONT S P ET AL: "Charge transport properties of undoped SI LEC GaAs solid-state detectors", SIXTH EUROPEAN SYMPOSIUM ON SEMICONDUCTOR DETECTORS, MILAN, ITALY, 24-26 FEB. 1992, vol. A326, no. 1-2, ISSN 0168-9002, NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH, SECTION A (ACCELERATORS, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT), 1 MARCH 1993, NETHERLANDS, pages 313 - 318, XP000579954 *
BEAUMONT S P ET AL: "First results from GaAs double-sided detectors", THIRD CONFERENCE ON POSITION-SENSITIVE DETECTORS, LONDON, UK, 6-10 SEPT. 1993, vol. 348, no. 2-3, ISSN 0168-9002, NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH, SECTION A (ACCELERATORS, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT), 1 SEPT. 1994, NETHERLANDS, pages 514 - 517, XP000579953 *
BEAUMONT S P ET AL: "Gallium arsenide microstrip detectors for charged particles", NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH, SECTION A (ACCELERATORS, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT), 15 SEPT. 1992, NETHERLANDS, vol. A321, no. 1-2, ISSN 0168-9002, pages 172 - 179, XP000579955 *
MCGREGOR D S ET AL: "DEVELOPMENT OF BULK GAAS ROOM TEMPERATURE RADIATION DETECTORS", PROCEEDINGS OF THE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE, SANTA FE, NOV. 2 - 9, 1991, vol. 1 OF 3, 2 November 1991 (1991-11-02), INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, pages 90 - 94, XP000347838 *
STAB L: "THIN EPITAXIAL SILICON DETECTORS", NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH, SECTION - A: ACCELERATORS, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT, vol. A288, no. 1, 1 March 1990 (1990-03-01), pages 24 - 30, XP000100318 *
SUMNER T J ET AL: "GaAs revisited as a room temperature X-ray detector", SEVENTH INTERNATIONAL WORKSHOP ON ROOM TEMPERATURE SEMICONDUCTOR X- AND GAMMA-RAY DETECTORS AND ASSOCIATED ELECTRONICS, RAVELLO, ITALY, 23-28 SEPT. 1991, vol. A322, no. 3, ISSN 0168-9002, NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH, SECTION A (ACCELERATORS, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT), 15 NOV. 1992, NETHERLANDS, pages 514 - 517, XP000579944 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109192794A (en) * 2018-09-12 2019-01-11 哈尔滨工业大学 Enhanced interdigital electrode diamond ultraviolet detector of backboard and preparation method thereof
CN109192794B (en) * 2018-09-12 2020-04-07 哈尔滨工业大学 Preparation method of back plate enhanced interdigital electrode diamond ultraviolet detector

Also Published As

Publication number Publication date
DE19680300D2 (en) 1998-04-23

Similar Documents

Publication Publication Date Title
DE3122768C2 (en)
DE102004041883B4 (en) Semiconductor device
DE3326534C2 (en)
DE4226888C2 (en) Diamond field effect transistor and method for its production
DE102009056453B4 (en) Silicon carbide semiconductor device and manufacturing method therefor
DE2655341C2 (en) Semiconductor arrangement with a passivation layer made of semiconductor material and method for the production thereof
DE112014001050B4 (en) TRANSISTOR WITH INSULATED GATE AND TEMPERATURE COMPENSATION
DE2160427C3 (en)
DE2513459B2 (en) Semiconductor component with a polycrystalline silicon cover and method for its manufacture
DE2753613A1 (en) INSULATING FIELD EFFECT TRANSISTOR
DE2755500A1 (en) SOLAR CELL AND METHOD OF MANUFACTURING IT
DE69434268T2 (en) Integrated structure of a high-speed MOS technologist power device and related manufacturing method
DE3700620A1 (en) SEMICONDUCTOR BODY AND METHOD FOR PRODUCING THE SAME
DE1614356B2 (en) Method for producing an integrated semiconductor assembly with complementary field effect transistors and material for carrying out the method
DE2241600A1 (en) HIGH VOLTAGE P-N TRANSITION AND ITS APPLICATION IN SEMICONDUCTOR SWITCHING ELEMENTS, AND THE PROCESS FOR ITS MANUFACTURING
DE2354523A1 (en) METHOD FOR GENERATING ELECTRICALLY INSULATING BARRIER AREAS IN SEMICONDUCTOR MATERIAL
DE68927925T2 (en) Superconducting transistor
DE68917696T2 (en) METHOD FOR PRODUCING AN INFRARED PHOTODETECTOR.
DE19947020A1 (en) Compensation component with variable charge balance
DE2911484C2 (en) Metal-insulator-semiconductor component
DE19712796B4 (en) Epitaxial SiC wafer, process for its manufacture and semiconductor device using the same
DE2023936A1 (en) Semiconductor device and method for its manufacture
DE4313625A1 (en) Rectifier contact based on amorphous silicon on diamond and process for its production
DE2449542B2 (en) Process for the production of an amorphous layer on a semiconductor substrate
DE102005036551A1 (en) A silicon carbide semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA DE JP KR SK US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REF Corresponds to

Ref document number: 19680300

Country of ref document: DE

Date of ref document: 19980423

WWE Wipo information: entry into national phase

Ref document number: 19680300

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA