WO1996034420A1 - Process for producing a lithium manganese oxide spinel as the cathode material for lithium secondary batteries - Google Patents

Process for producing a lithium manganese oxide spinel as the cathode material for lithium secondary batteries Download PDF

Info

Publication number
WO1996034420A1
WO1996034420A1 PCT/EP1996/001591 EP9601591W WO9634420A1 WO 1996034420 A1 WO1996034420 A1 WO 1996034420A1 EP 9601591 W EP9601591 W EP 9601591W WO 9634420 A1 WO9634420 A1 WO 9634420A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
manganese oxide
spinel
manganese
spinels
Prior art date
Application number
PCT/EP1996/001591
Other languages
German (de)
French (fr)
Inventor
Hans-Walter Praas
Sibylle Kemmler-Sack
Peter Endres
Original Assignee
Varta Batterie Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Varta Batterie Aktiengesellschaft filed Critical Varta Batterie Aktiengesellschaft
Publication of WO1996034420A1 publication Critical patent/WO1996034420A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1242Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [Mn2O4]-, e.g. LiMn2O4, Li[MxMn2-x]O4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/32Three-dimensional structures spinel-type (AB2O4)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a process for the production of a Uthium manganese oxide spinel for use as an active material of the positive electrode in lithium secondary batteries.
  • lithium manganese oxide spinels are a promising cathode material for electrochemical secondary elements with negative lithium electrodes.
  • the latter can consist of pure lithium metal or a lithium alloy, but particularly advantageously also of one host structure suitable for storage and removal of lithium, for example be made of a highly porous carbon material.
  • LiMn 2 O 4 spinel If lithium is electrochemically removed from a LiMn 2 O 4 spinel until theoretically only MnO 2 is still present, this corresponds to a charge of the spinel cathode. Conversely, a discharge occurs through the storage of additional lithium.
  • the LiMn 2 O 4 spinel thus forms in one
  • a lithium salt, lithium oxide or lithium hydroxide is mixed with a manganese salt, a manganese oxide, manganese hydroxide or, if appropriate, also with a Uthiummanganoxid and the mixture in a non-reducing atmosphere up to 168 h at temperatures between 350 * C and 900 * C annealed.
  • the invention has for its object to provide a method for producing lithium manganese oxide compounds with spinel structure that can be used as electrode material in lithium secondary batteries, the products of which are characterized by good initial capacities, good cycle stability and by insensitivity to high-temperature storage.
  • the method itself should consist of steps that are as simple as possible to carry out.
  • a lithium compound and a manganese salt are first introduced into a liquid medium and either dissolved or dispersed therein.
  • the highly disperse and therefore particularly evenly distributed components are then reacted with an aliphatic dibasic or polybasic carboxylic acid with a maximum of one hydroxyl group or a salt thereof.
  • the reaction product is then freed from the dispersing agent, which is volatile, by evaporation, at the same time removing volatile by-products of the reaction, for example CO 2 released from MnCO 3 or acetic acid released from manganese acetate.
  • H2O is generally suitable as the dispersant.
  • water-like organic solvents of polar character for example ethanol, and non-polar non-aqueous solvents can also be used.
  • the aliphatic carboxylic acid is selected from the group of citric acid, oxalic acid and apple acid. These acids are capable of forming stable complex salts of the chelate complex type with polyvalent metal cations (M ⁇ ).
  • M ⁇ polyvalent metal cations
  • the separation of the dispersant from the reaction product is usually performed by a drying process at temperatures of over 100 * C.
  • spray drying has proven.
  • the next process step consists in the thermal decomposition of the previously finely ground dry residue in air at temperatures between 300 ° C. and 600 ° C., preferably around 500 ° C. After cooling, the decomposition product is again finely ground and finally annealed or annealed under the temperature conditions just mentioned.
  • the production process according to the invention can be subject to certain modifications. Further below, 3 different synthetic routes are described as exemplary embodiments, in which citric acid is always used as the preferred precipitation reagent. Among other things, the examples also provide more detailed information about the duration of the individual treatment steps.
  • the lithium manganese oxide spinels produced according to the invention have a bulk density which is almost twice as high as that of known lithium manganese oxide spinels. This results in a doubling of the achievable volumetric energy density, expressed in watts per liter.
  • the final product obtained after the thermal decomposition is examined by means of an X-ray powder diffractometer for its single-phase and lattice constant.
  • the mean oxidation level of the manganese is determined by potentiometric titration (Fe (II) / Ce (IV)) and the Li and Mn content of the sample is determined by ICP analysis.
  • the hard, pale yellow mass obtained in this way is ball mill in an agate to a fine powder ground, this in a Korundwanne 4h at 500 * C decomposes in air, taken at this temperature from the oven, cooled in air to room temperature, in a Finely rubbed agate bowl, annealed for another 4 hours at 500 * C and finally cooled in air after another removal at the preparation temperature from the oven.
  • lithium manganese oxide compounds of the general composition Li 1 + x Mn 2 _ x O 4 ⁇ ⁇ f can be represented with 0 ⁇ x ⁇ 0.33 and 0 ⁇ ⁇ ⁇ 0.5 according to the process steps given above, which turn out to be uniform spinels by X-ray.
  • a special property of the spinels produced by the new preparation method is that their lattice constants are significantly smaller than in spinels of the same composition, which were produced in a conventional manner by the ceramic process.
  • the products obtained by the new process are thus clearly defined in their initial state, in which they are used as cathode material and which depends on the "start stoichiometry" x, by the lattice constant, the degree of manganese oxidation and the Mn / O ratio.
  • the lattice constant is reduced even more due to contraction of the oxygen lattice, the charging process consisting of an outsourcing (undoping) of lithium.
  • the charging process consisting of an outsourcing (undoping) of lithium.
  • unloading lithium is re-stored, which can lead to the original othium content.
  • the low synthesis temperature is explained above all in the combustion of the organometallic salt mixture during the decomposition, since this is an exothermic process and requires less external heat. Nevertheless, the production process according to the invention delivers the spinels desired in each case and stoichiometrically pre-calculated from the ratio of the material weights. In the ceramic process, however, lithium-rich spinels are obtained with low-temperature preparation and manganese oxides as foreign phase. The shrunk lattice of spinels produced according to the invention is also responsible for good capacities and cycle stability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The reaction of a manganese salt and a lithium compound in the finely dispersed phase or in clear solution with citric acid provides a metallic-organic salt mixture which, after the removal of the dispersing agent (H2O, ethanol, homopolar solvent), is thermally decomposed by evaporation and preferably by spray drying to provide a lithium manganese oxide compound with a spinel structure. Despite a relatively low synthesis temperature (∩ 500 °C), the end product obtained after grinding and stoving is free from phase shift and differs from spinels of the same composition but obtained by ceramic methods in a clearly smaller lattice constant. The contracted lattice gives good capacitive behaviour and good cycle stability.

Description

Verfahren zur Herstellung eines Lithiummanganoxid-Spinells als Kathodenmaterial für Lithium-Sekundärbatterien Process for producing a lithium manganese oxide spinel as a cathode material for lithium secondary batteries
Die Erfindung betrifft ein Verfahren zur Herstellung eines Uthiummanganoxid-Spinells zur Verwen¬ dung als aktives Material der positiven Elektrode in Lithium-Sekundärbatterien.The invention relates to a process for the production of a Uthium manganese oxide spinel for use as an active material of the positive electrode in lithium secondary batteries.
Aufgrund ihrer Befähigung, Li-Ionen in ihrer offenen Skelettstruktur reversibel zu intercaiieren und zu deintercalieren, stellen Lithiummanganoxid-Spinelle ein vielversprechendes Kathodenmaterial für elektrochemische Sekundärelemente mit negativen Lithiumelektroden dar. Letztere können aus dem reinen Lithiummetall oder einer Lithiumlegierung bestehen, besonders vorteilhaft aber aus einer ebenfalls für eine Einlagerung und Auslagerung von Lithium geeigneten Wirtsstruktur, z.B. aus einem hochporösen Kohlematerial, gebildet sein.Due to their ability to reversibly intercai and deintercalate Li ions in their open skeletal structure, lithium manganese oxide spinels are a promising cathode material for electrochemical secondary elements with negative lithium electrodes. The latter can consist of pure lithium metal or a lithium alloy, but particularly advantageously also of one host structure suitable for storage and removal of lithium, for example be made of a highly porous carbon material.
Wird aus einem LiMn2O4 -Spinell Lithium elektrochemisch ausgelagert, bis theoretisch nur noch MnO2 vorhanden ist, wobei der durchschnittliche Oxidationsgrad des Mangans von 3,5 auf 4,0 an¬ steigt, entspricht dies einer Ladung der Spinell-Kathode. Umgekehrt findet durch Einlagerung von weiterem Lithium eine Entladung statt. Der LiMn2O4 -Spinell bildet auf diese Weise in dem einenIf lithium is electrochemically removed from a LiMn 2 O 4 spinel until theoretically only MnO 2 is still present, the average degree of oxidation of the manganese increasing from 3.5 to 4.0, this corresponds to a charge of the spinel cathode. Conversely, a discharge occurs through the storage of additional lithium. The LiMn 2 O 4 spinel thus forms in one
Fall das Entladeprodukt eines Lt-ärmeren Spinells, im anderen Falle das Ladeprodukt einer Li- reicheren Verbindungsreihe Li1+xMn2O4 mit 0 ≤ x ≤ 1, die allerdings keine homogene Phase bildet, weil das Endglied, Li2Mn2O4 nicht im kubischen Spinellgitter kristallisiert, sondern tetragonale Symmetrie besitzt.If the discharge product of a low-Lt spinel, in the other case the charge product of a Li-rich connection series Li 1 + x Mn 2 O 4 with 0 ≤ x ≤ 1, which, however, does not form a homogeneous phase because the end link, Li 2 Mn 2 O 4 does not crystallize in the cubic spinel lattice, but has tetragonal symmetry.
Zwischen stöchiometrischen Spinellen wie z.B. LiMn2O4 oder Li4Mn5Ol2(= Li4/3MnJ/3O4) gibt es andererseits Übergänge, bei denen sich das Mn/O-Verhältnis innerhalb gewisser Grenzen ändert, die Spinellstruktur aber erhalten bleibt. Von Thackeray (DE-OS 4328755) wurden derartige Spinell¬ phasen durch die allgemeine Formel Li1+xMn2_xO4+<J mit 0 ≤ x ≤ 0,33 und 0 ≤ δ ≤ 0,5 beschrieben, wobei Werte der Laufparameter x und δ derart miteinander korrespondieren sollen, daß die mittlere Oxidationsstufe des Mangans innerhalb des Bereiches 3,5 bis 4,0 liegt und noch keine Deformation des Spinellgitters eintritt.On the other hand, there are transitions between stoichiometric spinels such as LiMn 2 O 4 or Li 4 Mn 5 O 12 (= Li 4/3 Mn J / 3 O 4 ), in which the Mn / O ratio changes within certain limits, the spinel structure but is preserved. Such spinel phases were described by Thackeray (DE-OS 4328755) using the general formula Li 1 + x Mn 2 _ x O 4+ <J with 0 ≤ x ≤ 0.33 and 0 ≤ δ ≤ 0.5, where values the running parameters x and δ should correspond to one another in such a way that the mean oxidation level of the manganese lies within the range 3.5 to 4.0 and no deformation of the spinel lattice occurs yet.
Von M.N. Richard et. al. (Solid State lonics 73 (1994) 81-91) wurde auch bereits ein sauer¬ stoffdefizitärer Spinell Li4/3MnJ/3O4_(5 charakterisiert.By MN Richard et. al. (Solid State Ionics 73 (1994) 81-91) has also characterized an oxygen deficient spinel Li 4/3 Mn J / 3 O 4 _ (5 .
Bei der Kathodenreaktion in der elektrochemischen Zelle ist die Diffusion des Lithiums im Spinell¬ gitter der geschwindigkeitsbestimmende Schritt, weshalb ein sehr feinteiliges Kathodenmaterial mit hoher spezifischer Oberfläche erwünscht ist. Diesem Wunsch trägt die übliche Herstellungsweise von Lithiummanganoxid-Spinellen, bei der es sich um ein keramisches Verfahren handelt, nicht immer Rechnung, weil sich Korngröße und Oberfläche leicht einer Kontrolle entziehen. Gemäß US-PS 5240794 wird bei einer solchen keramischen Synthese ein Lithiumsalz, Lithiumoxid oder Lithiumhydroxid mit einem Mangansalz, einem Manganoxid, Manganhydroxid oder gegebenen¬ falls auch mit einem Uthiummanganoxid gemischt und die Mischung in nichtreduzierender Atmosphä- re bis zu 168 h bei Temperaturen zwischen 350*C und 900*C geglüht.In the cathode reaction in the electrochemical cell, the diffusion of the lithium in the spinel grid is the rate-determining step, which is why a very fine-particle cathode material with a high specific surface area is desired. The customary production method of lithium manganese oxide spinels, which is a ceramic process, does not always meet this requirement because the grain size and surface area are difficult to control. According to US Pat. No. 5,240,794, in such a ceramic synthesis, a lithium salt, lithium oxide or lithium hydroxide is mixed with a manganese salt, a manganese oxide, manganese hydroxide or, if appropriate, also with a Uthiummanganoxid and the mixture in a non-reducing atmosphere up to 168 h at temperatures between 350 * C and 900 * C annealed.
Andere bekannte Wege der Herstellung von Spinellen haben die Verwendung organischer Lithium¬ oder Mangansalze mindestens einen der Reaktionspartner gemeinsam. So geht gemäß DE-OS 4327760 aus einer Mischung von Mangandioxid mit Uthiumformiat oder Uthiumacetat, deren Men- genanteile so abgestimmt sind, daß sich ein Molvemältnis Mn : Li = 2 : x mit 0,5 < x < 1,5 ergibt, durch Glühbehandlung bei 600*C bis 750*C ein feinkristalliner Lithium-Manganspinell hervor.Other known ways of producing spinels have in common the use of organic lithium or manganese salts of at least one of the reactants. According to DE-OS 4327760, a mixture of manganese dioxide with othium formate or othium acetate, the proportions of which are so matched that a molar ratio Mn: Li = 2: x with 0.5 <x <1.5, is obtained by annealing a finely crystalline lithium manganese spinel emerges at 600 * C to 750 * C.
Tomoki Tsumura et al. (J. Mater. Chem. 1993, 3 (9), 995-996) erhielten ebenfalls einen einphasigen LiMn 2 O4 -Spinell durch thermische Zersetzung von Lithiumtartrat und Mangantartrat bei relativ niedriger Temperatur zwischen 250*C und 600*C, wobei das Salzgemisch als "Precursor" für den Spinell zunächst durch Umsetzen von Lithiumazetat und Manganazetat mit Weinsäure in alkoholi¬ scher Lösung und Abdampfen des Alkohols sowie der Essigsäure gewonnen worden war.Tomoki Tsumura et al. (J. Mater. Chem. 1993, 3 (9), 995-996) also received a single-phase LiMn 2 O 4 spinel by thermal decomposition of lithium tartrate and manganese tartrate at a relatively low temperature between 250 * C and 600 * C, whereby the Salt mixture as a "precursor" for the spinel had initially been obtained by reacting lithium acetate and manganese acetate with tartaric acid in alcoholic solution and evaporating the alcohol and the acetic acid.
Ebenfalls zu einem LiMn- O4 -Spinell führt nach P. Barboux et al. (J. Solid State Chem. (1991), 94, 185 - 196) die thermische Zersetzung eines homogenen U/Mn-Acetat-Hydrats, welches als Copräzipi- tat aus einer wässerigen Manganacetat-Lösung durch vorsichtige pH-Wert-Anhebung mittels Zugabe von LiOH und NH4OH erhalten wird.According to P. Barboux et al. Also leads to a LiMn-O 4 spinel. (J. Solid State Chem. (1991), 94, 185-196) described the thermal decomposition of a homogeneous U / Mn acetate hydrate, which as a coprecipitate from an aqueous manganese acetate solution by carefully raising the pH by means of addition is obtained from LiOH and NH 4 OH.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Herstellung von in Lithium-Sekundärbat- terien als Elektrodenmaterial verwendbaren Lithiummanganoxid-Verbindungen mit Spinellstruktur anzugeben, dessen Produkte sich durch gute Anfangskapazitäten, gute Zyklenstabilität und durch Unempfindlichkeit gegen Hochtemperaturlagerung auszeichnen. Das Verfahren selbst soll aus mög¬ lichst einfach durchzuführenden Schritten bestehen.The invention has for its object to provide a method for producing lithium manganese oxide compounds with spinel structure that can be used as electrode material in lithium secondary batteries, the products of which are characterized by good initial capacities, good cycle stability and by insensitivity to high-temperature storage. The method itself should consist of steps that are as simple as possible to carry out.
Die Aufgabe wird erfindungsgemäß durch das in Anspruch 1 definierte Verfahren gelöst.The object is achieved according to the invention by the method defined in claim 1.
Danach werden eine Lithiumverbindung und ein Mangansalz zunächst in ein flüssiges Medium ein¬ gebracht und in diesem entweder gelöst oder dispergiert. Die hochdispersen und dadurch besonders gleichmäßig verteilten Komponenten werden darauf mit einer aliphatischen zwei- oder mehrba- sischen Carbonsäure mit maximal einer Hydroxylgruppe oder einem Salz derselben zur Reaktion gebracht. Das Umsetzungsprodukt wird darauf von dem Dispersionsmittel, welches flüchtig ist, durch Abdampfen befreit, wobei gleichzeitig flüchtige Nebenprodukte der Umsetzung wie beispielsweise aus MnCO3 freigesetztes CO2 oder aus Manganacetat freigesetzte Essigsäure entfernt werden. Als Dispersionsmittel kommt im allgemeinen H2O infrage. Es können aber auch wasserähnliche or¬ ganische Lösungsmittel polaren Charakters, z.B. Äthanol, sowie unpolare nichtwässerige Lösungsmit¬ tel verwendet werden.Then a lithium compound and a manganese salt are first introduced into a liquid medium and either dissolved or dispersed therein. The highly disperse and therefore particularly evenly distributed components are then reacted with an aliphatic dibasic or polybasic carboxylic acid with a maximum of one hydroxyl group or a salt thereof. The reaction product is then freed from the dispersing agent, which is volatile, by evaporation, at the same time removing volatile by-products of the reaction, for example CO 2 released from MnCO 3 or acetic acid released from manganese acetate. H2O is generally suitable as the dispersant. However, water-like organic solvents of polar character, for example ethanol, and non-polar non-aqueous solvents can also be used.
Die aliphatische Carbonsäure wird erfindungsgemäß aus der Gruppe Zitronensäure, Oxalsäure, Ap¬ felsäure ausgewählt. Diese Säuren sind befähigt, mit mehrwertigen Metallkationen (Mπ) stabile Kom¬ plexsalze vom Typ der Chelatkomplexe zu bilden. Besonders vorteilhaft ist die Verwendung der Zi¬ tronensäure.According to the invention, the aliphatic carboxylic acid is selected from the group of citric acid, oxalic acid and apple acid. These acids are capable of forming stable complex salts of the chelate complex type with polyvalent metal cations (Mπ). The use of citric acid is particularly advantageous.
Die Abtrennung des Dispersionsmittels vom Umsetzungsprodukt erfolgt gewöhnlich durch einen Trocknungsprozeß bei Temperaturen von mehr als 100*C. Als eine besonders vorteilhafte und prakti¬ sche Maßnahme hat sich ein Sprühtrocknen erwiesen.The separation of the dispersant from the reaction product is usually performed by a drying process at temperatures of over 100 * C. As a particularly advantageous and prakti¬ specific measure, spray drying has proven.
Der nächste Verfahrensschritt besteht in der thermischen Zersetzung des zuvor fein veπmahlenen Trockenrückstandes an Luft bei Temperaturen zwischen 300°C und 600'C, vorzugsweise um ca. 500*C. Das Zersetzungsprodukt wird nach dem Abkühlen erneut fein verrieben und abschließend unter den ebengenannten Temperaturbedingungen getempert bzw. geglüht.The next process step consists in the thermal decomposition of the previously finely ground dry residue in air at temperatures between 300 ° C. and 600 ° C., preferably around 500 ° C. After cooling, the decomposition product is again finely ground and finally annealed or annealed under the temperature conditions just mentioned.
Je nach Wahl der Li-haltigen und der Mn-haltigen Ausgangssubstanzen sowie der Dispersions- flüssigkeit kann das erfindungsgemäße Herstellungsverfahren gewissen Abwandlungen unteriiegen. Werter unten werden 3 verschiedene Synthesewege als Ausführungsbeispiele beschrieben, in denen jedoch stets Zitronensäure als das bevorzugte Fällungsreagenz eingesetzt ist. Unter anderem lassen sich den Beispielen auch nähere Angaben über die Dauer der einzelnen Behandlungsschritte ent¬ nehmen.Depending on the choice of the Li-containing and Mn-containing starting substances and the dispersion liquid, the production process according to the invention can be subject to certain modifications. Further below, 3 different synthetic routes are described as exemplary embodiments, in which citric acid is always used as the preferred precipitation reagent. Among other things, the examples also provide more detailed information about the duration of the individual treatment steps.
Überraschenderweise besitzen die erfindungsgemäß hergestellten Lithiummanganoxid-Spinelle eine nahezu doppelt so hohe Schüttdichte wie bekannte Lithiummanganoxid-Spinelle. Daraus resultiert eine Verdoppelung der erzielbaren volumetrischen Energiedichte angegeben in Watt pro Liter.Surprisingly, the lithium manganese oxide spinels produced according to the invention have a bulk density which is almost twice as high as that of known lithium manganese oxide spinels. This results in a doubling of the achievable volumetric energy density, expressed in watts per liter.
Das nach der thermischen Zersetzung jeweils anfallende Endprodukt wird mittels Röntgen- Pulverdiffraktometer auf seine Einphasigkeit und Gitterkonstante untersucht. Durch potentiometrische Titration (Fe (II) / Ce (IV)) wird die mittlere Oxidationsstufe des Mangans festgestellt und durch ICP- Analyse der Li- und Mn-Gehalt der Probe bestimmt.The final product obtained after the thermal decomposition is examined by means of an X-ray powder diffractometer for its single-phase and lattice constant. The mean oxidation level of the manganese is determined by potentiometric titration (Fe (II) / Ce (IV)) and the Li and Mn content of the sample is determined by ICP analysis.
Synthese 1:Synthesis 1:
Darstellung eines Spinells der stöchiometrischen Zusammensetzung Lil 042Mni 9ilO40l werdenRepresentation of a spinel of the stoichiometric composition Li l 042 Mn i 9il O 40l
16.0000g MnC03 und 3.4971g LiOH x 1H20 in 300ml H2Odes( suspendiert, 50.4181g Zitronensäu- remonohydrat (reinst, Merck) zugegeben, 20min bei Raumtemperatur, dann nochmals 20min bei 100*C gerührt, bis keine CO^Entwicklung mehr zu beobachten ist und ein Farbumschlag der Sus¬ pension von hellbraun nach weiß erfolgt, bevor in einem Gebläsetrockenschrank bei 170*C zur Trockne eingedampft wird. Die auf diese Weise erhaltene harte, hellgelbe Masse wird in einer Achat- kugelmühle zu einem feinem Pulver gemahlen, dieses in einer Korundwanne 4h bei 500*C an Luft zersetzt, bei dieser Temperatur aus dem Ofen genommen, an Luft auf Raumtemperatur abgekühlt, in einer Achatreibschale fein verrieben, wertere 4h bei 500*C geglüht und abschließend nach erneuter Entnahme bei der Präparationstemperatur aus dem Ofen an Luft abgekühlt.16.0000g MnC0 3 and 3.4971g LiOH x 1H 2 0 in 300ml H 2 O des ( suspended, 50.4181g citric acid Remonohydrate (pure, Merck) added, stirred for 20 minutes at room temperature, then stirred for another 20 minutes at 100 ° C. until no CO ^ evolution can be observed and the color of the suspension changes from light brown to white before in a drying cabinet at 170 ° C. C is evaporated to dryness. The hard, pale yellow mass obtained in this way is ball mill in an agate to a fine powder ground, this in a Korundwanne 4h at 500 * C decomposes in air, taken at this temperature from the oven, cooled in air to room temperature, in a Finely rubbed agate bowl, annealed for another 4 hours at 500 * C and finally cooled in air after another removal at the preparation temperature from the oven.
Die Untersuchung der Probe ergab a. Einphasigkeit b. Grtterkonstante a = 8.209 A c. mittlere Oxidationsstufe des Mn: 3,56 (theroret. 3,56)Examination of the sample revealed a. Single phase b. Maximum constant a = 8.209 A c. average oxidation level of Mn: 3.56 (theor. 3.56)
Synthese 2:Synthesis 2:
Zur Darstellung eines Spinells der stöchiometrischen Zusammensetzung Li103Mnl 97O4 werdenTo represent a spinel of the stoichiometric composition Li 103 Mn l 97 O 4
45.0000g Mn(OAc)2 x 4H20 und 4.0284g UOH x IH2O und 58.7544g Zitronensäuremonohydrat in 100ml gelöst. Die klare, leicht rosa gefärbte Lösung wird in einem Sprühtrockner (Einlaßtemperatur 205*C, Auslaßtemperatur 105 - 107*C (max. 111*0)), versprüht. Das auf diese Weise erhaltene weiße Pulver wird in einer Korundwanne 4h bei 500*C an Luft zersetzt, bei dieser Temperatur aus dem Ofen genommen, an Luft auf Raumtemperatur abgekühlt, in einer Achatreib¬ schale fein verrieben, weitere 4h bei 500*C geglüht und abschließend, nach erneuter Entnahme bei der Präparationstemperatur aus dem Ofen an Luft abgekühlt.45.0000g Mn (OAc) 2 x 4H 2 0 and 4.0284g UOH x IH2O and 58.7544g citric acid monohydrate dissolved in 100ml. The clear, light pink colored solution is sprayed in a spray dryer (inlet temperature 205 * C, outlet temperature 105 - 107 * C (max. 111 * 0)). The white powder obtained in this way is decomposed in air in a corundum trough at 500 ° C. for 4 hours, taken out of the oven at this temperature, cooled to room temperature in air, finely ground in an agate grinding bowl, annealed for a further 4 hours at 500 ° C. and finally, after being removed again from the oven at the preparation temperature, cooled in air.
Die Untersuchung der Probe ergab a. Einphasigkeit b. Gitterkonstante a= 8,224 A c. mittlere Oxidationsstufe des Mn: 3,53 (theoret. 3,54)Examination of the sample revealed a. Single phase b. Lattice constant a = 8.224 A c. average oxidation level of Mn: 3.53 (theor. 3.54)
Synthese 3:Synthesis 3:
Zur Darstellung eines Spinells der stöchiometrischen Zusammensetzung Li103Mn197O4 werdenTo represent a spinel of the stoichiometric composition Li 103 Mn 197 O 4
20.0000g MnC03, 3.8175g UOH x 1H20 bzw. 3.3610g Li2C03, 50.9080g bzw. 42.1688g Zitronen¬ säure H2θ-frei (Merck) und 100ml Petrolether (Mahlhilfsflüssigkeit) in einer Achatkugelmühle zu ei¬ nem feinem Pulver gemahlen, dieses nach Entfernen des Petrolethers in einer Korundwanne 4h bei 500*C an Luft zersetzt, bei dieser Temperatur aus dem Ofen genommen, an Luft auf Raumtempera¬ tur abgekühlt, in einer Achatreibschale fein verrieben, weitere 4h bei 500*C geglüht und abschließend nach erneuter Entnahme bei der Präparationstemperatur aus dem Ofen an Luft abgekühlt.20.0000g MnC0 3 , 3.8175g UOH x 1H 2 0 or 3.3610g Li 2 C0 3 , 50.9080g or 42.1688g citric acid H2θ-free (Merck) and 100ml petroleum ether (grinding aid liquid) in an agate ball mill to a fine one powder milled annealed this decomposed after removal of the petroleum ether in a Korundwanne 4h at 500 * C in air, taken at this temperature from the oven, cooled in air to tur Raumtempera¬, finely ground in an agate mortar, further 4h at 500 * C and finally cooled in air after removal from the oven at the preparation temperature.
Die Untersuchung der Probe ergab a. Einphasigkeit b. Gitterkonstante a = 8,217 A c. mittlere Oxidationsstufe des Mn: 3,54 (theoret. 3,54)Examination of the sample revealed a. Single phase b. Lattice constant a = 8.217 A c. average oxidation level of Mn: 3.54 (theor. 3.54)
Es wurde gefunden, daß sich gemäß vorstehend angegebenen Verfahrensschritten Lithium- manganoxid- Verbindungen der allgemeinen Zusammensetzung Li1+xMn2_xO4±<f mit 0 ≤ x ≤ 0,33 und 0 ≤ δ ≤ 0,5 darstellen lassen, die sich als röntgenographisch einheitliche Spinelle erweisen.It was found that lithium manganese oxide compounds of the general composition Li 1 + x Mn 2 _ x O 4 ± <f can be represented with 0 ≤ x ≤ 0.33 and 0 ≤ δ ≤ 0.5 according to the process steps given above, which turn out to be uniform spinels by X-ray.
Eine besondere Eigenschaft der nach der neuen Präparationsmethode hergestellten Spinelle besteht aber darin, daß ihre Gitterkonstanten um einen signifikanten Betrag kleiner sind als bei Spinellen gleicher Zusammensetzung, die auf konventionelle Weise nach dem keramischen Verfahren herge¬ stellt wurden.A special property of the spinels produced by the new preparation method, however, is that their lattice constants are significantly smaller than in spinels of the same composition, which were produced in a conventional manner by the ceramic process.
Die durch das neue Verfahren erhaltenen Produkte sind somit in ihrem Ausgangszustand, in dem sie als Kathodenmaterial eingesetzt werden und der von der "Startstöchiometrie" x abhängt, durch die Gitterkonstante, den Manganoxidationsgrad und das Mn/O-Verhältnis eindeutig definiert.The products obtained by the new process are thus clearly defined in their initial state, in which they are used as cathode material and which depends on the "start stoichiometry" x, by the lattice constant, the degree of manganese oxidation and the Mn / O ratio.
Beim Laden verkleinert sich die Gitterkonstante infolge Kontraktion des Sauerstoffgitters noch werter, wobei der Ladevorgang aus einer Auslagerung (Entdotierung) von Lithium besteht. Beim Entladen findet Wiedereinlagerung von Lithium statt, die bis zum ursprünglichen Uthiumgehalt führen kann.During charging, the lattice constant is reduced even more due to contraction of the oxygen lattice, the charging process consisting of an outsourcing (undoping) of lithium. During unloading, lithium is re-stored, which can lead to the original othium content.
In Figur 1 sind Gitterkonstanten a [A] einer Anzahl von Spinellen Li1+xMn2_xO4±<f gegen den Li-1 shows lattice constants a [A] of a number of spinels Li 1 + x Mn 2 _ x O 4 ± <f against the Li
Anteil x aufgetragen. Die Spinelle sind einesteils nach dem konventionellen keramischen Verfahren, zum anderen Teil durch die erfindungsgemäße Zitronensäure-Synthese hergestellt worden. Die Figur zeigt eindeutig, daß erfindungsgemäß hergestellte Spinelle (leere Quadrate) gegenüber konventionell hergestellten Spinellen (volle Quadrate) mit jeweils gleichem Li-Gehalt (und damit vergleichbarem Ladezustand) eine wesentlich kleinere, um ca. 0,4% geschrumpfte Gitterkonstante besitzen.Portion x applied. The spinels were produced partly by the conventional ceramic process and partly by the citric acid synthesis according to the invention. The figure clearly shows that spinels (empty squares) produced according to the invention have a substantially smaller lattice constant which has shrunk by approximately 0.4% compared to conventionally produced spinels (full squares), each with the same Li content (and thus a comparable charge state).
Als Vorteile des neuen Syntheseverfahrens mit Hilfe komplexierender organischer Säuren ergeben sich, wie aus den Ausführungsbeispielen hervorgeht, relativ niedrige Synthesetemperaturen um 500"C und kurze Reaktionszeiten von 4 bis 12 h.The advantages of the new synthesis process with the aid of complexing organic acids are, as can be seen from the exemplary embodiments, relatively low synthesis temperatures around 500 ° C. and short reaction times of 4 to 12 hours.
Die niedrige Synthesetemperatur findet vor allem in der Verbrennung des metallorganischen Salz¬ gemisches während der Zersetzung, da diese ein exothermer Vorgang ist und einer geringeren Wär- mezufuhr von außen bedarf, eine Erklärung. Trotzdem liefert das erfindungsgemäße Herstellungsver¬ fahren die jeweils gewünschten und aus dem Verhältnis der Materialeinwaagen stöchiometrisch vor¬ berechneten Spinelle. Beim keramischen Verfahren hingegen erhält man bei Niedertemperaturpräpa¬ ration lithiumreiche Spinelle und als Fremdphase Manganoxide. Das geschrumpfte Gitter erfindungsgemäß hergestellter Spinelle ist außerdem verantwortlich für gute Kapazitäten und Zyklenstabilität. The low synthesis temperature is explained above all in the combustion of the organometallic salt mixture during the decomposition, since this is an exothermic process and requires less external heat. Nevertheless, the production process according to the invention delivers the spinels desired in each case and stoichiometrically pre-calculated from the ratio of the material weights. In the ceramic process, however, lithium-rich spinels are obtained with low-temperature preparation and manganese oxides as foreign phase. The shrunk lattice of spinels produced according to the invention is also responsible for good capacities and cycle stability.

Claims

Patentansprüche claims
1. Verfahren zur Herstellung eines Lithiummanganoxid-Spinells zur Verwendung als aktives Material der positiven Elektrode in Lithium-Sekundärbatterien, dadurch gekennzeichnet, daß eine Lithium¬ verbindung und ein Mangansalz in disperser Phase mit einer aliphatischen zwei- oder mehrbasi¬ schen Carbonsäure mit maximal einer Hydroxylgruppe oder deren Salz umgesetzt werden, daß das Dispersionsmittel einschließlich Nebenprodukten der Umsetzung durch Trocknung verflüch- tigt wird, daß der Trockenrückstand zu feinem Pulver vermählen und bei Temperaturen zwischen1. A process for producing a lithium manganese oxide spinel for use as an active material of the positive electrode in lithium secondary batteries, characterized in that a lithium compound and a manganese salt in the disperse phase with an aliphatic dibasic or polybasic carboxylic acid with a maximum of one hydroxyl group or their salt are reacted, that the dispersant, including by-products of the reaction, is evaporated by drying, that the dry residue is ground into fine powder and at temperatures between
300*C und 600*C thermisch zersetzt wird und daß das Zersetzungsprodukt nach Abkühlen erneut fein gemahlen und bei Temperaturen zwischen 300*C und 600°C geglüht wird.300 * C and 600 * C is thermally decomposed and that the decomposition product is again finely ground after cooling and annealed at temperatures between 300 * C and 600 ° C.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß die Oxycarbonsäure aus der Gruppe Zitronensäure, Oxalsäure, Apfelsäure ausgewählt ist.2. The method according to claim 1, characterized in that the oxycarboxylic acid is selected from the group citric acid, oxalic acid, malic acid.
3. Verfahren nach den Ansprüchen 1 bis 2, dadurch gekennzeichnet, daß das Dispersionsmittel durch Sprühtrocknen verflüchtigt wird. 3. Process according to claims 1 to 2, characterized in that the dispersant is volatilized by spray drying.
PCT/EP1996/001591 1995-04-28 1996-04-16 Process for producing a lithium manganese oxide spinel as the cathode material for lithium secondary batteries WO1996034420A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19515629A DE19515629A1 (en) 1995-04-28 1995-04-28 Process for producing a lithium manganese oxide spinel as a cathode material for lithium secondary batteries
DE19515629.3 1995-04-28

Publications (1)

Publication Number Publication Date
WO1996034420A1 true WO1996034420A1 (en) 1996-10-31

Family

ID=7760585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1996/001591 WO1996034420A1 (en) 1995-04-28 1996-04-16 Process for producing a lithium manganese oxide spinel as the cathode material for lithium secondary batteries

Country Status (2)

Country Link
DE (1) DE19515629A1 (en)
WO (1) WO1996034420A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0903796A1 (en) * 1996-12-25 1999-03-24 Mitsubishi Denki Kabushiki Kaisha Anode active material, its producing process, and lithium ion secondary cell using the anode active material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19935091A1 (en) 1999-07-27 2001-02-08 Emtec Magnetics Gmbh Lithium intercalation compounds containing lithium manganese oxide
DE19935090A1 (en) * 1999-07-27 2001-02-08 Emtec Magnetics Gmbh Lithium intercalation compounds containing lithium oxide

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992018425A1 (en) * 1991-04-23 1992-10-29 Bell Communications Research, Inc. Method for the preparation of limn2o4 and licoo2 intercalation compounds for use in secondary lithium batteries
EP0532084A1 (en) * 1991-09-09 1993-03-17 SOLVAY (Société Anonyme) Process for the preparation of mixed metal oxide powder and its use for the production of capacitors and electrical resistors
WO1994025398A1 (en) * 1993-04-23 1994-11-10 Centre National De La Recherche Scientifique Method of preparation of lithium and transition metal mixed oxides, oxides obtained and their use as electrode material
JPH07142065A (en) * 1993-09-22 1995-06-02 Nippondenso Co Ltd Manufacture of active material for lithium secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992018425A1 (en) * 1991-04-23 1992-10-29 Bell Communications Research, Inc. Method for the preparation of limn2o4 and licoo2 intercalation compounds for use in secondary lithium batteries
EP0532084A1 (en) * 1991-09-09 1993-03-17 SOLVAY (Société Anonyme) Process for the preparation of mixed metal oxide powder and its use for the production of capacitors and electrical resistors
WO1994025398A1 (en) * 1993-04-23 1994-11-10 Centre National De La Recherche Scientifique Method of preparation of lithium and transition metal mixed oxides, oxides obtained and their use as electrode material
JPH07142065A (en) * 1993-09-22 1995-06-02 Nippondenso Co Ltd Manufacture of active material for lithium secondary battery

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol. 123, no. 12, 18 September 1995, Columbus, Ohio, US; abstract no. 149032, HAYASHI YASUSHI: "Manufacture of cathodes for secondary lithium batteries" XP002010183 *
MASAKI YOSHIO ET AL: "SYNTHESIS OF LICOO2 FROM COBALT-ORGANIC ACID COMPLEXES AND ITS ELECTRODE BEHAVIOUR IN A LITHIUM SECONDARY BATTERY", JOURNAL OF POWER SOURCES, vol. 40, no. 3, 15 December 1992 (1992-12-15), pages 347 - 353, XP000345088 *
TOMOKI TSUMURA ET AL: "Synthesis of LiMn2O4 Spinel via Tartrates", JOURNAL OF MATERIALS CHEMISTRY, vol. 3, no. 9, 1993, CAMBRIDGE GB, pages 995 - 996, XP002010727 *
YOSHIO M ET AL: "MANGENESE OXIDES AS 3V AND 4V CATHODES MATERIALS FOR RECHARGABLE LITHIUM CELLS", EXTENDED ABSTRACTS, vol. 93/2, 1 January 1993 (1993-01-01), pages 734/735, XP000422399 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0903796A1 (en) * 1996-12-25 1999-03-24 Mitsubishi Denki Kabushiki Kaisha Anode active material, its producing process, and lithium ion secondary cell using the anode active material
EP0903796A4 (en) * 1996-12-25 2002-11-27 Mitsubishi Electric Corp Anode active material, its producing process, and lithium ion secondary cell using the anode active material

Also Published As

Publication number Publication date
DE19515629A1 (en) 1996-10-31

Similar Documents

Publication Publication Date Title
DE4435117C1 (en) Ternary mixed lithium oxides, process for their preparation and their use
DE69206793T2 (en) METHOD FOR PRODUCING LiMn2O4 AND LiCoO2 STORAGE COMPOUNDS FOR USE IN LITHIUM ACCUMULATORS
EP0827636B1 (en) Electrochemical lithium secondary element
EP0735004B1 (en) Process for the preparation of lithium intercalation compounds
DE19615800B9 (en) Active material of a positive electrode for a lithium battery, a process for producing the same and its use
EP3337764B1 (en) Lithium-nickel-manganese-based transition metal oxide particles, production thereof, and use thereof as an electrode material
DE69124158T2 (en) Lithium-containing nickel dioxide and galvanic secondary elements made from it
DE112007001382T5 (en) Alkali metal titanates and process for their synthesis
WO2009146904A1 (en) Process for producing lithium titanium spinel and use thereof
DE4115951A1 (en) MANGANOXIDE COMPOUND, METHOD FOR THE PRODUCTION THEREOF, ELECTROCHEMICAL CELL THAT CONTAINS ITS CATHODE, AND THEIR USE FOR PRODUCING A LITHIUM MANGANOXIDE COMPOUND, AND ELECTROCHEMICAL CELL THAT MAKES THIS LITHIUM OXIDE
DE4111459A1 (en) LITHIUM TRANSITION METAL OXIDE COMPOUND
DE4215130A1 (en) A MATERIAL CONTAINING MANGANE DIOXIDE AND THE USE THEREOF IN AN ELECTROCHEMICAL CELL
EP2834194A1 (en) Doped spinel, method for the production thereof, the use thereof and lithium-ion battery
DE112006001610T5 (en) Lithium-manganese compounds and process for producing the same
DE112011102161T5 (en) Preparation process for a lithium silicate-based compound
DE19727611A1 (en) Process for the preparation of lithium manganese mixed oxides and their use
DE60033433T2 (en) PROCESS FOR PREPARING LITHIUM MANGANATE
WO1998029342A1 (en) Process for preparing lithium and manganese oxides
WO1996034420A1 (en) Process for producing a lithium manganese oxide spinel as the cathode material for lithium secondary batteries
EP0645834B1 (en) Process for preparing a positive electrode for secondary lithium batteries
DE69938411T2 (en) A process for producing a lithiated or over-lithiated transition metal oxide, this electrode containing active electrode material and accumulator
DE2835976C3 (en) Galvanic element
EP1216202B1 (en) Lithium intercalation compounds containing lithium manganese oxide
DE4119944A1 (en) MANGANOXIDE COMPOUND
EP0573818B1 (en) Process for the production of lead perovskites

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CA CN CZ JP KR MX RU SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase