WO1996034173A1 - Drill string fitting - Google Patents

Drill string fitting Download PDF

Info

Publication number
WO1996034173A1
WO1996034173A1 PCT/NZ1996/000034 NZ9600034W WO9634173A1 WO 1996034173 A1 WO1996034173 A1 WO 1996034173A1 NZ 9600034 W NZ9600034 W NZ 9600034W WO 9634173 A1 WO9634173 A1 WO 9634173A1
Authority
WO
WIPO (PCT)
Prior art keywords
fitting
section
drill string
rollers
bore
Prior art date
Application number
PCT/NZ1996/000034
Other languages
French (fr)
Inventor
Geoffrey Neil Murray
Denis Robert Fernandes
Original Assignee
Austoil Technology Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Austoil Technology Limited filed Critical Austoil Technology Limited
Priority to CA002219426A priority Critical patent/CA2219426C/en
Priority to AT96912335T priority patent/ATE243296T1/en
Priority to NZ306581A priority patent/NZ306581A/en
Priority to DE69628749T priority patent/DE69628749T2/en
Priority to AU55177/96A priority patent/AU710393B2/en
Priority to BR9608227A priority patent/BR9608227A/en
Priority to US08/952,343 priority patent/US6209667B1/en
Priority to EA199700342A priority patent/EA000513B1/en
Priority to EP96912335A priority patent/EP0824629B1/en
Publication of WO1996034173A1 publication Critical patent/WO1996034173A1/en
Priority to NO19974922A priority patent/NO318106B1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/10Wear protectors; Centralising devices, e.g. stabilisers
    • E21B17/1078Stabilisers or centralisers for casing, tubing or drill pipes
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/10Wear protectors; Centralising devices, e.g. stabilisers
    • E21B17/1042Elastomer protector or centering means
    • E21B17/105Elastomer protector or centering means split type
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/10Wear protectors; Centralising devices, e.g. stabilisers
    • E21B17/1057Centralising devices with rollers or with a relatively rotating sleeve

Definitions

  • the present invention relates to a fitting for reducing friction between a drill string and the wall of a well. More particularly, but not exclusively, in a first aspect the present invention relates to a fitting having a plurality of longitudinal recesses enabling lubrication between the fitting and a drill string using drilling fluid. According to a second aspect there is provided a fitting having rotatable rollers to reduce both axial and rotational friction. According to a third aspect there is provided a fitting having an outer section rotatable relative to an inner section secured about a drill string.
  • the depth to which and angle at which a well can be drilled are often limited by the degree of friction experienced by the drill string.
  • the life of a drill string may also be reduced due to friction.
  • Using wellstream fluids as a lubricant results in drill string wear due to particulate matter carried in the fluids. Further, currently available similar fittings cannot be rebuilt or reconditioned.
  • a fitting for reducing friction between a fitting and a section of a drill string or further fitting on a drill string, said fitting comprising a body having a tubular bore provided with a plurality of longitudinally extending recesses spaced circumferentially about the bore, dimensioned to lubricate the interface between the fitting and the drill string or further fitting with fluid in a drilling well.
  • the bore of the fitting has a polygonal cross-section.
  • a filtering means is provided at either end of the fitting to prevent the debris entering the longitudinal recesses.
  • the fitting may preferably be formed as a two part casing which can be secured to an assembled drill string.
  • rollers are provided on the outside of the fitting to reduce friction between the fitting and a wall of the well.
  • the fitting will be secured to a sleeve having collars at either end which is securable to a section of drill pipe.
  • the fittings may have a substantially circular cross- section and the sleeve may have a polygonal cross-section.
  • a fitting for engagement to a drill string or further fitting having a body with a bore therethrough provided with a plurality of roller means on the exterior of the body, said roller means being rotatable relative to said fitting about an axis transverse to the axis of the bore, the arrangement being such that the roller means can rotate relative to said body to facilitate reduction of rotational and axial friction.
  • the rollers have a substantially tapered cylindrical form and rotate about an axis transverse to the axis of rotation of the roller means.
  • the body may be of two part construction and the rollers are preferably formed of a nylon or ceramic material.
  • a fitting for engagement with a drill string or further fitting comprising an inner section for securement about a drill string or further fitting and an outer section secured about said inner section and rotatable relative thereto.
  • a sealed bearing is provided between the inner and outer sections.
  • a plurality of fins project radially from the outer section which are profiled to reduce drag in the axial direction.
  • Figure 1 Shows a two part fitting having a polygonal bore.
  • Figure 2 Shows the interface between a drill string and the interior polygonal bore of the fitting shown in Figure 1.
  • Figure 3 Shows a section of drill string having collars at either end for receiving the fitting of Figure 1 therebetween.
  • Figure 4 Shows an end view of the fitting of Figure 1.
  • Figure 5 Shows an end view of the fitting of
  • Figure 6 Shows a front view of the fitting of Figure 1 showing a partial cross- sectional view.
  • Figure 7 Shows a fitting having rotatable rollers provided on the body thereof.
  • Figure 8 Shows a cross-sectional view of a rotatable roller shown in Figure 7
  • Figure 9 Shows a cross-sectional view of a roller of a rotatable roller shown in Figure 7 or Figure 8.
  • Figure 10 Shows a perspective view of a fitting according to a third embodiment.
  • Figure 11 Shows a cross-sectional view along the axis of the fitting shown in figure 10,
  • Figure 12 Shows an enlarged view of the seal arrangement shown in figure 11. Best mode for carrying out the invention
  • FIG. 1 to 6 there is shown a fitting for reducing friction on a pipe string.
  • the fitting comprises a body formed of two parts 1 and 2 which may be secured together by bolts which pass through apertures 3.
  • a plurality of rollers 4 are provided about the outside of the fitting to reduce longitudinal friction on the pipe string.
  • the bore 5 of the body sections is polygonal so as to provide a number of longitudinal recesses 6 between the body 1 and a sleeve 7.
  • Drilling pipe is usually forged from high tensile steel.
  • the outside surface is typically rough.
  • the preferred method of securing the fitting of the invention to a drilling pipe is as follows. Firstly, a section of the drilling pipe is machined so as to have a relatively smooth outside surface. The two halves 7a and 7b of the sleeve shown in Figure 3 are then secured to the drilling pipe by bolts etc passing through the apertures of collars 8a, 8b, 9a and 9b. Once the sleeve has been secured to a section of pipe, the two halves 1 and 2 of the fitting are secured about sleeve portions 7a and 7b and secured by bolts passing through apertures 3.
  • Collars 8 and 9 restrict the longitudinal movement of the fitting.
  • the fitting is however free to rotate about sleeve 7. Accordingly, friction due to rotation of the drilling rig is minimised due to the fluid lubricant provided in recesses 6 between body sections 1 and 2 and sleeve 7. Axial friction is reduced by rollers 4 which minimise friction between the wall of the well and the fitting in the longitudinal direction. It would be possible to secure the fitting directly about a section of pipe. This would however not reduce friction to the same extent as by providing smooth sleeve 7. Where a new section of pipe is being manufactured, it may of course be provided with a smooth section having separate collars 8 and 9 integrally formed at either end thereof for receiving the fitting.
  • interior bore 5 of the fitting has been described as polygonal, it will be appreciated that other shapes of internal bore (eg: sinusoidal) may be provided as long as suitable recesses are provided between the sleeves and the body of the fitting to minimise friction.
  • the bore 5 of the fitting may be spiralled to minimise the effect of transitions from one recess to another and to promote fluid flow through the fitting.
  • Filtering means such as wire mesh may preferably be provided at either end of the fitting to prevent large debris entering the recesses.
  • each roller 4 is secured to body 1 by a pin 10 passing through roller 4.
  • Pin 10 may pass through aperture 12 in body 1 into recess 11. The aperture 12 may then be welded closed to prevent the pin 10 be removed.
  • Roller 4 may preferably be formed of a ceramic or nylon material. Ceramic materials have the advantage that they exhibit excellent wear properties and have a low friction coefficient. Newly developed ceramics have acceptable "ductility" properties and are easily formed. Ceramics are also very stable at high temperatures and are self lubricating, so do not require oil-based lubrication. Ceramics materials are not susceptible to rheological failure or welding either.
  • a protective section 13 may be provided between the collars 8a, 8b and 9a, 9b and between the rollers 4 to create a smooth exterior profile so that parts of the fitting do not catch as the fitting is moved up and down in a well.
  • Figures 7 to 9 show a second embodiment of the invention.
  • the aim again is to reduce longitudinal and rotational friction on a pipe string or fittings employed therewith.
  • a simple one part construction is described although it will be appreciated that a two part body as previously described, may be employed.
  • Body 20 is provided with a plurality of rotatable roller means 21, shown in more detail in Figure 8.
  • Rotatable roller means 21 are substantially disc-shaped and have a cylindrical recess 22 located at the centre thereof.
  • Pin 23 of body 20 engages in recess 22 so that the rotatable roller means 21 is rotatable about pin 23.
  • Circumferential flange 24 is secured after roller means 21 has been inserted and retains the roller means 21 in place in use.
  • Circumferential flange 24 may be secured firmly in place by welding etc.
  • the rotatable rollers 25 are secured off-centre from pin 23 so that the rotatable roller means 21 may be rotated as it is exposed to different types of frictional force (i.e. longitudinal or rotational) .
  • rollers 25 will not be able to rotate (in the position shown in Figure 7) and will cause the rotatable roller means 21 to rotate 90° so that the axes of the rollers are aligned with the axis of the drilling rig. When in this position, the rollers can freely rotate to minimise friction. When the drill string is moved purely in the longitudinal direction, the rollers will stay in the position as shown in Figure 7 so that they may freely rotate to reduce longitudinal friction. It will be appreciated that when there is a combination of rotational and axial movement the axis of the rollers will be somewhere between the two positions described above.
  • the fitting of the third embodiment comprises an inner section 30 and an outer section 31 which is rotatable about inner section 30.
  • Inner section 30 is adapted to be secured about a drill pipe which passes through bore 32.
  • Inner section 30 may be of two part construction (similar to that shown in figure 3) where the two parts are secured together by bolts or similar fastening means.
  • Outer section 31 may similarly be of two part construction and be secured about inner section 30.
  • Outer section 31 is provided with a plurality of fins 33 extending radially from body 34.
  • Figure 11 shows a cross-sectional view along the axis of the fitting shown in figure 10. In this case the fitting is secured to a drill pipe 35.
  • a layer of friction reducing material 36 is provided between faces 42 to 47 to reduce friction as outer section 31 rotates about inner section 30.
  • Layer 36 will preferably be formed of a plastics material such as nylon (zytel 70633L for example) .
  • Seals 37 and 38 are provided at either end of the bearing formed by the inter-engaging faces 42 to 47 of inner section 30 and outer section 31 and friction reducing layer 36. These seals serve to prevent the ingress of fluid from a well into the bearing. This greatly reduces friction on bearing surfaces, thus reducing wear and decreasing the torque required to drive a drill string.
  • the pressure compensating system 39 is provided to compensate the pressure within the bearing as the external pressure varies.
  • the pressure compensating system comprises a diaphragm 40 containing grease within region 41 which moves in and out of the bearing as external pressure varies. This prevents external fluid being drawn into the bearing as the external pressure increases.
  • the bearing journals 42 and 43 are preferably precision ground. Bearing sleeves may be provided if required. Sections 44 and 45, and 46 and 47 of the bearing minimise friction when the outer section 31 is forced in the axial direction relative to the inner section 30.
  • seal 37 is shown in detail.
  • the seal is seen to include a resilient seal 48 located within a recess 49 in outer section 31.
  • Seal 48 is preferably formed of a fibre reinforced PTFE.
  • the profile of the fins 33 is shown to be semi ⁇ circular in figures 10 and 11. It is to be appreciated that other profiles may be employed which reduce drag in the axial direction. The curved profile shown is preferred due to its drag reduction in both directions. It is to be appreciated that rollers could be provided upon fins 31 to assist in the reduction of axial drag.
  • the fins are preferably coated with a ceramic coating such as CERAM-KOTE" 1 .
  • Bearing surfaces 42 to 47 are preferably coated with a hard material such as Technogenia "technopoudre" or similar. Channels are preferably provided in bearing surfaces 42 and 43 to facilitate the flow of lubricant. These channels will preferably be semi ⁇ circular in profile and will preferably spiral along the length of the journals (similar to the recesses 6 shown in figure 2) .
  • This fitting may be mounted directly onto a drill pipe during production or may be retrofitted to an existing drill pipe.
  • the fitting may be provided on its own separate “sub” or mandrill, in which case the "sub” or mandrill may be screwed into the drill string between two lengths of drill pipe.
  • the invention provides a number of simple inexpensive fittings for reducing the friction experienced between a drill string and the wall of a well.
  • the fittings may be used to protect the joints of pipe strings or fitting tools as required.
  • the invention reduces friction and thus the required torque to drill a well. Reduction of friction also reduces drill string vibration and thus fatigue in the drill string.
  • the invention also minimises environmental damage by using a water-based mud lubricant.
  • the present invention may find particular application in the reduction of friction experienced by drilling strings.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Earth Drilling (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)
  • Adornments (AREA)
  • Road Repair (AREA)
  • Soil Working Implements (AREA)
  • Drilling Tools (AREA)
  • Magnetic Heads (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Centrifugal Separators (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)

Abstract

A fitting for reducing friction between a drilling string and the wall of a well. In a first aspect the fitting has recesses (6) provided along the bore of the fitting to lubricate the interface between the fitting and the drill string to minimise friction. In a second aspect a fitting is provided on a drill string having rotatable roller means (21) which can rotate about a point of rotation (23) so as to minimise both axial and rotational friction. According to a third aspect the fitting comprises an inner section (30) secured to a drill pipe (35) or other fitting and an outer section (31) rotatable about the inner section (30). Preferably a sealed bearing (36, 42-47, 37, 38) is provided between the inner section (30) and outer section (31).

Description

DRILL STRING FITTING
Technical Field
The present invention relates to a fitting for reducing friction between a drill string and the wall of a well. More particularly, but not exclusively, in a first aspect the present invention relates to a fitting having a plurality of longitudinal recesses enabling lubrication between the fitting and a drill string using drilling fluid. According to a second aspect there is provided a fitting having rotatable rollers to reduce both axial and rotational friction. According to a third aspect there is provided a fitting having an outer section rotatable relative to an inner section secured about a drill string.
Background of the invention
The depth to which and angle at which a well can be drilled are often limited by the degree of friction experienced by the drill string. The life of a drill string may also be reduced due to friction. With increasing environmental concerns it is also becoming less acceptable to reduce friction by injecting chemicals down a well. Using wellstream fluids as a lubricant results in drill string wear due to particulate matter carried in the fluids. Further, currently available similar fittings cannot be rebuilt or reconditioned.
Disclosure of the invention
It is an object of the present invention to provide a fitting which reduces the friction on a drill string or at least to provide the public with a useful choice. According to a first aspect of the invention there is provided a fitting for reducing friction between a fitting and a section of a drill string or further fitting on a drill string, said fitting comprising a body having a tubular bore provided with a plurality of longitudinally extending recesses spaced circumferentially about the bore, dimensioned to lubricate the interface between the fitting and the drill string or further fitting with fluid in a drilling well.
Preferably, the bore of the fitting has a polygonal cross-section. Preferably, a filtering means is provided at either end of the fitting to prevent the debris entering the longitudinal recesses.
The fitting may preferably be formed as a two part casing which can be secured to an assembled drill string. Preferably, rollers are provided on the outside of the fitting to reduce friction between the fitting and a wall of the well.
Preferably, the fitting will be secured to a sleeve having collars at either end which is securable to a section of drill pipe. In another embodiment the fittings may have a substantially circular cross- section and the sleeve may have a polygonal cross-section.
According to a further aspect of the invention there is provided a fitting for engagement to a drill string or further fitting having a body with a bore therethrough provided with a plurality of roller means on the exterior of the body, said roller means being rotatable relative to said fitting about an axis transverse to the axis of the bore, the arrangement being such that the roller means can rotate relative to said body to facilitate reduction of rotational and axial friction.
Preferably, the rollers have a substantially tapered cylindrical form and rotate about an axis transverse to the axis of rotation of the roller means. The body may be of two part construction and the rollers are preferably formed of a nylon or ceramic material.
According to a further aspect of the invention there is provided a fitting for engagement with a drill string or further fitting comprising an inner section for securement about a drill string or further fitting and an outer section secured about said inner section and rotatable relative thereto.
Preferably a sealed bearing is provided between the inner and outer sections. Preferably a plurality of fins project radially from the outer section which are profiled to reduce drag in the axial direction.
Brief Description of the drawinσs
Further aspects of the invention will become apparent from the following description which is given by way of example of possible embodiments with reference to the accompanying drawings in which:
Figure 1; Shows a two part fitting having a polygonal bore.
Figure 2: Shows the interface between a drill string and the interior polygonal bore of the fitting shown in Figure 1. Figure 3 : Shows a section of drill string having collars at either end for receiving the fitting of Figure 1 therebetween.
Figure 4: Shows an end view of the fitting of Figure 1.
Figure 5: Shows an end view of the fitting of
Figure 1 engaged with the sleeve shown in Figure 3.
Figure 6: Shows a front view of the fitting of Figure 1 showing a partial cross- sectional view.
Figure 7: Shows a fitting having rotatable rollers provided on the body thereof.
Figure 8: Shows a cross-sectional view of a rotatable roller shown in Figure 7
Figure 9: Shows a cross-sectional view of a roller of a rotatable roller shown in Figure 7 or Figure 8.
Figure 10: Shows a perspective view of a fitting according to a third embodiment.
Figure 11: Shows a cross-sectional view along the axis of the fitting shown in figure 10,
Figure 12: Shows an enlarged view of the seal arrangement shown in figure 11. Best mode for carrying out the invention
Referring firstly to Figures 1 to 6, there is shown a fitting for reducing friction on a pipe string. The fitting comprises a body formed of two parts 1 and 2 which may be secured together by bolts which pass through apertures 3. A plurality of rollers 4 are provided about the outside of the fitting to reduce longitudinal friction on the pipe string. The bore 5 of the body sections is polygonal so as to provide a number of longitudinal recesses 6 between the body 1 and a sleeve 7.
Drilling pipe is usually forged from high tensile steel. The outside surface is typically rough. The preferred method of securing the fitting of the invention to a drilling pipe is as follows. Firstly, a section of the drilling pipe is machined so as to have a relatively smooth outside surface. The two halves 7a and 7b of the sleeve shown in Figure 3 are then secured to the drilling pipe by bolts etc passing through the apertures of collars 8a, 8b, 9a and 9b. Once the sleeve has been secured to a section of pipe, the two halves 1 and 2 of the fitting are secured about sleeve portions 7a and 7b and secured by bolts passing through apertures 3.
Collars 8 and 9 restrict the longitudinal movement of the fitting. The fitting is however free to rotate about sleeve 7. Accordingly, friction due to rotation of the drilling rig is minimised due to the fluid lubricant provided in recesses 6 between body sections 1 and 2 and sleeve 7. Axial friction is reduced by rollers 4 which minimise friction between the wall of the well and the fitting in the longitudinal direction. It would be possible to secure the fitting directly about a section of pipe. This would however not reduce friction to the same extent as by providing smooth sleeve 7. Where a new section of pipe is being manufactured, it may of course be provided with a smooth section having separate collars 8 and 9 integrally formed at either end thereof for receiving the fitting.
Although the interior bore 5 of the fitting has been described as polygonal, it will be appreciated that other shapes of internal bore (eg: sinusoidal) may be provided as long as suitable recesses are provided between the sleeves and the body of the fitting to minimise friction. In some applications the bore 5 of the fitting may be spiralled to minimise the effect of transitions from one recess to another and to promote fluid flow through the fitting. Filtering means, such as wire mesh may preferably be provided at either end of the fitting to prevent large debris entering the recesses.
In viewing Figure 5 it will be seen that each roller 4 is secured to body 1 by a pin 10 passing through roller 4. Pin 10 may pass through aperture 12 in body 1 into recess 11. The aperture 12 may then be welded closed to prevent the pin 10 be removed.
Roller 4 may preferably be formed of a ceramic or nylon material. Ceramic materials have the advantage that they exhibit excellent wear properties and have a low friction coefficient. Newly developed ceramics have acceptable "ductility" properties and are easily formed. Ceramics are also very stable at high temperatures and are self lubricating, so do not require oil-based lubrication. Ceramics materials are not susceptible to rheological failure or welding either. One of the key advantages, however, is that the density of ceramic materials is such that if a roller breaks the pieces can be circulated out of the well bore, unlike steel fragments which sink to the bottom of the well and interfere with drilling.
As shown in Figure 6 a protective section 13 may be provided between the collars 8a, 8b and 9a, 9b and between the rollers 4 to create a smooth exterior profile so that parts of the fitting do not catch as the fitting is moved up and down in a well.
It is estimated that using fittings as herein before described about drill pipe joints will reduce the drag by at least 30%. This enables wells to be drilled to greater displacements and at higher angles. Further, expensive drill pipe is protected and the fitting is exposed to most of the wear. The fitting is designed for easy retrofitting to existing pipe and so avoids the need for large expenditure on new pipe strings.
Figures 7 to 9 show a second embodiment of the invention. The aim again is to reduce longitudinal and rotational friction on a pipe string or fittings employed therewith. A simple one part construction is described although it will be appreciated that a two part body as previously described, may be employed.
Body 20 is provided with a plurality of rotatable roller means 21, shown in more detail in Figure 8. Rotatable roller means 21 are substantially disc-shaped and have a cylindrical recess 22 located at the centre thereof. Pin 23 of body 20 engages in recess 22 so that the rotatable roller means 21 is rotatable about pin 23. Circumferential flange 24 is secured after roller means 21 has been inserted and retains the roller means 21 in place in use. Circumferential flange 24 may be secured firmly in place by welding etc. The rotatable rollers 25 are secured off-centre from pin 23 so that the rotatable roller means 21 may be rotated as it is exposed to different types of frictional force (i.e. longitudinal or rotational) .
From the above it will be apparent that when body 20 experiences pure rotation relative to the wall of a well, rollers 25 will not be able to rotate (in the position shown in Figure 7) and will cause the rotatable roller means 21 to rotate 90° so that the axes of the rollers are aligned with the axis of the drilling rig. When in this position, the rollers can freely rotate to minimise friction. When the drill string is moved purely in the longitudinal direction, the rollers will stay in the position as shown in Figure 7 so that they may freely rotate to reduce longitudinal friction. It will be appreciated that when there is a combination of rotational and axial movement the axis of the rollers will be somewhere between the two positions described above.
Referring to figures 10 to 12 a third embodiment will be described. The fitting of the third embodiment comprises an inner section 30 and an outer section 31 which is rotatable about inner section 30. Inner section 30 is adapted to be secured about a drill pipe which passes through bore 32. Inner section 30 may be of two part construction (similar to that shown in figure 3) where the two parts are secured together by bolts or similar fastening means. Outer section 31 may similarly be of two part construction and be secured about inner section 30. Outer section 31 is provided with a plurality of fins 33 extending radially from body 34. Figure 11 shows a cross-sectional view along the axis of the fitting shown in figure 10. In this case the fitting is secured to a drill pipe 35. A layer of friction reducing material 36 is provided between faces 42 to 47 to reduce friction as outer section 31 rotates about inner section 30. Layer 36 will preferably be formed of a plastics material such as nylon (zytel 70633L for example) .
Seals 37 and 38 are provided at either end of the bearing formed by the inter-engaging faces 42 to 47 of inner section 30 and outer section 31 and friction reducing layer 36. These seals serve to prevent the ingress of fluid from a well into the bearing. This greatly reduces friction on bearing surfaces, thus reducing wear and decreasing the torque required to drive a drill string.
Due to the sealed nature of the bearing a pressure compensating system 39 is provided to compensate the pressure within the bearing as the external pressure varies. The pressure compensating system comprises a diaphragm 40 containing grease within region 41 which moves in and out of the bearing as external pressure varies. This prevents external fluid being drawn into the bearing as the external pressure increases.
The bearing journals 42 and 43 are preferably precision ground. Bearing sleeves may be provided if required. Sections 44 and 45, and 46 and 47 of the bearing minimise friction when the outer section 31 is forced in the axial direction relative to the inner section 30.
Referring now to figure 12, seal 37 is shown in detail. The seal is seen to include a resilient seal 48 located within a recess 49 in outer section 31. Seal 48 is preferably formed of a fibre reinforced PTFE.
The profile of the fins 33 is shown to be semi¬ circular in figures 10 and 11. It is to be appreciated that other profiles may be employed which reduce drag in the axial direction. The curved profile shown is preferred due to its drag reduction in both directions. It is to be appreciated that rollers could be provided upon fins 31 to assist in the reduction of axial drag. The fins are preferably coated with a ceramic coating such as CERAM-KOTE"1.
Bearing surfaces 42 to 47 are preferably coated with a hard material such as Technogenia "technopoudre" or similar. Channels are preferably provided in bearing surfaces 42 and 43 to facilitate the flow of lubricant. These channels will preferably be semi¬ circular in profile and will preferably spiral along the length of the journals (similar to the recesses 6 shown in figure 2) .
This fitting may be mounted directly onto a drill pipe during production or may be retrofitted to an existing drill pipe. Alternatively, the fitting may be provided on its own separate "sub" or mandrill, in which case the "sub" or mandrill may be screwed into the drill string between two lengths of drill pipe.
It will thus be seen that the invention provides a number of simple inexpensive fittings for reducing the friction experienced between a drill string and the wall of a well. The fittings may be used to protect the joints of pipe strings or fitting tools as required. The invention reduces friction and thus the required torque to drill a well. Reduction of friction also reduces drill string vibration and thus fatigue in the drill string. The invention also minimises environmental damage by using a water-based mud lubricant.
Where in the foregoing description reference has been made to integers or components having known equivalents then such equivalents are herein incorporated as if individually set forth.
Although this invention has been described by way of example and with reference to possible embodiments thereof, it is to be appreciated that improvements and/or modifications may be made thereto without departing from the scope of the invention as defined in the claims.
Industrial applicability
The present invention may find particular application in the reduction of friction experienced by drilling strings.

Claims

CLAIMS :
1. A fitting for reducing friction between a fitting and a section of a drill string or further fitting on a drill string, said fitting comprising a body having a tubular bore provided with a plurality of longitudinally extending recesses spaced circumferentially about the bore, dimensioned to lubricate the interface between the fitting and the drill string or further fitting with fluid in a drilling well.
2. A fitting as claimed in claim 1 wherein the bore of the fitting is polygonal in cross-section.
3. A fitting as claimed in claim 1 or claim 2 wherein the recesses spiral along the length of the bore.
4. A fitting as claimed in any one of the preceding claims wherein rollers are provided about the periphery of the body to reduce friction in the axial direction.
5. A fitting as claimed in claim 4 wherein rollers are provided in banks about the circumference of the body.
6. A fitting as claimed in claim 5 wherein each bank of rollers includes a protective mounting assembly which exposes only a portion of each roller.
7. A fitting as claimed in any one of the preceding claims wherein the fitting is of two part
TITUTE SHEET construction adapted to be secured about a drill string.
8. A fitting as claimed in any one of the preceding claims wherein a filtering means is provided at either end of the fitting to prevent debris entering the longitudinal recesses.
9. A fitting as claimed in any one of the preceding claims in combination with a sleeve having collars at either end adapted to be secured to a section of drill pipe with the fitting secured thereabout between said collars.
10. A fitting as claimed in claim 1 having a bore of substantially circular cross section in combination with a sleeve for securement to a section of drill p pe wherein the sleeve has a substantially polygonal cross-section.
11. A fitting for engagement to a drill string or further fitting having a body with a bore therethrough provided with a plurality of roller means on the exterior of the body, said roller means being rotatable relative to the body about an axis transverse to the axis of the bore, the arrangement being such that the roller means can rotate relative to said body to facilitate reduction of rotational and axial friction.
12. A fitting as claimed in claim 11 wherein the roller means includes rollers positioned away from the transverse axis so as to rotate said roller means to keep the axis of said rollers substantially transverse to the direction of movement.
13. A fitting as claimed in claim 12 wherein a plurality of rollers are provided on each said roller means.
14. A fitting as claimed in any one of claims 11 to 13 wherein the roller means comprises a substantially disc-shaped member located within a corresponding recess in the body.
15. A fitting as claimed in claim 14 wherein said disc-shaped member includes a central bore which locates with a pin extending outwardly from said body.
16. A fitting as claimed in claim 14 or 15 wherein a plate is secured above the peripheral edge of each roller means to retain it within its recess.
17. A fitting as claimed in any one of claims 11 to
16 wherein the rollers are formed of a nylon or ceramic material.
18. A fitting a claimed in any one of claims 11 to
17 wherein the rollers have a substantially tapered cylindrical form and rotate about an axis transverse to the axis of rotation of the roller means.
19. A fitting as claimed in any one of claims 11 to
18 wherein the body is of two part construction so that it may be secured about a section of drilling pipe.
20. A fitting for engagement with a drill string or further fitting comprising an inner section for securement to a drill string or further fitting and an outer section secured about said inner section and rotatable relative thereto about a drill string.
21. A fitting as claimed in claim 20 wherein a sealed bearing is provided between the inner and outer sections.
22. A fitting as claimed in claim 20 or claim 21 wherein a layer of friction reducing material is provided between the inner and outer sections.
23. A fitting as claimed in claim 22 wherein the layer of friction reducing material is formed of a plastics material.
24. A fitting as claimed in claim 23 wherein the plastics material is nylon.
25. A fitting as claimed in any one of claims 21 to
24 wherein seals are provided on either side of the friction reducing layer between the inner and outer sections.
26. A fitting as claimed in any one of claims 21 to
25 wherein a pressure compensating means is provided to maintain the pressure within the bearing substantially the same as the external pressure.
27. A fitting as claimed in any one of claims 20 to
26 wherein a plurality of fins project radially from said outer section which are profiled to reduce drag in the axial direction.
28. A fitting as claimed in claim 27 wherein the fins have a curved profile.
29. A fitting as claimed in any one of claims 20 to 28 wherein rollers are provided on the periphery of said outer section to reduce friction in the axial direction.
30. A fitting as claimed in any one of claims 21 to 26 wherein the bearing comprises first journal surfaces on said inner and outer sections in the axial direction of said fitting and second and third journal surfaces on said inner and outer sections extending radially outwards to restrict movement of said outer section relative to said inner section in the axial direction.
31. A fitting as claimed in any one of the preceding claims constructed in such a manner as to allow the fitting to be rebuilt or reconditioned.
PCT/NZ1996/000034 1995-04-27 1996-04-26 Drill string fitting WO1996034173A1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
CA002219426A CA2219426C (en) 1995-04-27 1996-04-26 Drill string fitting
AT96912335T ATE243296T1 (en) 1995-04-27 1996-04-26 AUXILIARY DEVICE FOR A DRILL ROD
NZ306581A NZ306581A (en) 1995-04-27 1996-04-26 Drill string fitting
DE69628749T DE69628749T2 (en) 1995-04-27 1996-04-26 AUXILIARY DEVICE FOR A DRILL ROD
AU55177/96A AU710393B2 (en) 1995-04-27 1996-04-26 Drill string fitting
BR9608227A BR9608227A (en) 1995-04-27 1996-04-26 Drill stringer trim
US08/952,343 US6209667B1 (en) 1995-04-27 1996-04-26 Drill string fitting
EA199700342A EA000513B1 (en) 1995-04-27 1996-04-26 Drill string fitting
EP96912335A EP0824629B1 (en) 1995-04-27 1996-04-26 Drill string fitting
NO19974922A NO318106B1 (en) 1995-04-27 1997-10-24 Drillstrings Bet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NZ272003 1995-04-27
NZ27200395 1995-04-27

Publications (1)

Publication Number Publication Date
WO1996034173A1 true WO1996034173A1 (en) 1996-10-31

Family

ID=19925240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/NZ1996/000034 WO1996034173A1 (en) 1995-04-27 1996-04-26 Drill string fitting

Country Status (10)

Country Link
US (1) US6209667B1 (en)
EP (2) EP1318269B1 (en)
AT (1) ATE243296T1 (en)
AU (1) AU710393B2 (en)
BR (1) BR9608227A (en)
DE (2) DE69635360T2 (en)
EA (1) EA000513B1 (en)
NO (1) NO318106B1 (en)
NZ (2) NZ306581A (en)
WO (1) WO1996034173A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2321264B (en) * 1995-09-27 1999-03-03 Western Well Tool Inc Tubing friction reducers
GB2299598B (en) * 1995-04-07 1999-03-17 Weatherford Lamb Apparatus for use in a wellbore
WO1999024690A1 (en) * 1997-11-10 1999-05-20 Weatherford U.S., L.P. A friction reducing tool
WO1999035366A1 (en) 1998-01-05 1999-07-15 Weatherford U.S., L.P A drill pipe and method of forming and reconditioning a drill pipe
WO1999025949A3 (en) * 1997-11-15 1999-07-15 Brunel Oilfield Serv Uk Ltd Improvements in or relating to downhole tools
WO1999042698A1 (en) 1998-02-23 1999-08-26 Weatherford/Lamb, Inc. Centralizer
WO1999045229A1 (en) 1998-03-05 1999-09-10 Weatherford U.S, L.P. An axle, a friction reducing fitting and an axle installation method
EP0968352A1 (en) * 1997-03-11 2000-01-05 Austoil Technology Limited Friction reducing tool
US6435275B1 (en) 1997-02-21 2002-08-20 Downhole Products Plc Casing centralizer
US6688409B1 (en) 1999-01-22 2004-02-10 Weatherford/Lamb, Inc. Friction reducing tool and method for its use in a wellbore
US7025142B2 (en) 1997-11-21 2006-04-11 Superior Energy Services, Llc Bi-directional thruster pig apparatus and method of utilizing same
NO331192B1 (en) * 2009-10-07 2011-10-31 Innovar Engineering As Pressurized rotary sleeve
WO2012092985A1 (en) * 2011-01-07 2012-07-12 Statoil Petroleum As Centralizer
WO2013142576A1 (en) 2012-03-20 2013-09-26 Blackhawk Specialty Tools, Llc Well centralizer
RU2597899C1 (en) * 2015-04-29 2016-09-20 Открытое акционерное общество "Татнефть" имени В.Д. Шашина Centralizer for pipe string run in inclined-horizontal well
USD849800S1 (en) 2012-04-04 2019-05-28 Summit Energy Services, Inc. Casing centralizer having spiral blades

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0015020D0 (en) * 2000-06-20 2000-08-09 Downhole Products Plc Centraliser
DE10235700B3 (en) * 2002-08-03 2004-01-22 Deutsche Montan Technologie Gmbh directional drilling
EA023048B1 (en) 2009-05-06 2016-04-29 Дайномэкс Дриллинг Тулз Инк. Downhole tool and cartridge insertable into tool
GB2482668B (en) * 2010-08-09 2016-05-04 Wheater Guy Low friction wireline standoff
US9200487B2 (en) 2010-12-13 2015-12-01 Baker Hughes Incorporated Alignment of downhole strings
US8733455B2 (en) * 2011-04-06 2014-05-27 Baker Hughes Incorporated Roller standoff assemblies
EP2623707B1 (en) * 2011-04-21 2019-10-09 China University of Petroleum (East China) Method and system for improving drilling speed by using drill string vibration
US8960273B2 (en) * 2011-10-27 2015-02-24 Oilfield Equipment Development Center Limited Artificial lift system for well production
EP3726001B1 (en) 2012-11-16 2023-08-09 Petromac IP Limited Sensor transportation apparatus and guide device
WO2014134736A1 (en) 2013-03-07 2014-09-12 Dynomax Drilling Tools Inc. Downhole motor
DE112013007226T5 (en) * 2013-07-09 2016-04-28 Halliburton Energy Services, Inc. Method and apparatus for mitigating borehole torsional vibration
EP3025012B1 (en) 2013-07-24 2017-11-01 Impact Selector International, LLC Wireline roller standoff
US20160060972A1 (en) * 2014-08-26 2016-03-03 Option Industries Inc. Drill pipe with roller assembly
CN105604495B (en) * 2016-02-01 2018-08-21 成都维泰油气能源技术有限公司 A kind of eccentric wheel type antifriction device
US10947811B2 (en) 2017-12-01 2021-03-16 Saudi Arabian Oil Company Systems and methods for pipe concentricity, zonal isolation, and stuck pipe prevention
US10557317B2 (en) 2017-12-01 2020-02-11 Saudi Arabian Oil Company Systems and methods for pipe concentricity, zonal isolation, and stuck pipe prevention
US10612360B2 (en) 2017-12-01 2020-04-07 Saudi Arabian Oil Company Ring assembly for measurement while drilling, logging while drilling and well intervention
US10557326B2 (en) 2017-12-01 2020-02-11 Saudi Arabian Oil Company Systems and methods for stuck pipe mitigation
US11448016B2 (en) 2018-02-05 2022-09-20 Saudi Arabian Oil Company Casing friction reduction methods and tool
US10920502B2 (en) 2018-02-05 2021-02-16 Saudi Arabian Oil Company Casing friction reduction methods and tool
RU198248U1 (en) * 2018-05-30 2020-06-26 Открытое акционерное общество "Очерский машиностроительный завод" COUPLING
RU199437U1 (en) * 2020-04-08 2020-09-01 Тимур Рустамович Акчурин PROTECTIVE CENTRALIZER
US11993986B1 (en) * 2023-01-18 2024-05-28 Alaskan Energy Resources, Inc. System, method and apparatus for a protection clamp for pipe

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1651088A (en) * 1926-12-18 1927-11-29 Harry H Isaacs Antifriction pipe sleeve
GB271839A (en) * 1926-05-25 1928-03-29 U S Tool Company Improvements relating to the hydraulic rotary system of well drilling
US1905158A (en) * 1930-04-05 1933-04-25 Craig Edward Drill pipe protector
US3410613A (en) * 1966-05-25 1968-11-12 Byron Jackson Inc Non-rotating single-collar drill pipe protector
EP0333450A1 (en) * 1988-03-15 1989-09-20 Charles Abernethy Anderson Downhole Stabilisers
GB2233690A (en) * 1989-06-29 1991-01-16 Red Baron Drill string component
GB2275284A (en) * 1993-02-19 1994-08-24 Graeme Kenneth Speirs Drill pipe protector
WO1995010685A2 (en) * 1993-10-14 1995-04-20 Rototec Limited Drill pipe tubing and casing protectors
WO1995021986A1 (en) * 1994-02-14 1995-08-17 Austoil Drilling Services Pty. Ltd. Drill casing installation equipment with external friction reducing means

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1877395A (en) * 1928-05-14 1932-09-13 Emsco Derrick & Equip Co Antifriction device for drill pipe
US1913365A (en) * 1929-01-05 1933-06-13 Carol Supplies Inc Antifriction bearing
US2601478A (en) * 1946-07-16 1952-06-24 Charlie T Weir Sucker rod guide
US3109501A (en) * 1960-11-07 1963-11-05 James B Pugh Well drilling guide
US3318397A (en) * 1964-10-06 1967-05-09 Chevron Res Apparatus for use in well drilling
US3361493A (en) * 1965-10-22 1968-01-02 Robert H. Melton Drill guide
US4102552A (en) * 1976-09-07 1978-07-25 Smith International, Inc. Tandem eccentric roller stabilizer for earth boring apparatus
US4372622A (en) * 1980-11-17 1983-02-08 Cheek Alton E Recirculating bearing antifriction system for well strings
US4606417A (en) * 1985-04-08 1986-08-19 Webb Derrel D Pressure equalized stabilizer apparatus for drill string
US5033558A (en) * 1985-05-16 1991-07-23 R.C.R. Oilfield, Inc. Well tool for use with down-hole drilling apparatus
USH1192H (en) * 1990-10-26 1993-06-01 Exxon Production Research Company Low-torque centralizer
WO1993024728A1 (en) * 1992-05-27 1993-12-09 Astec Developments Limited Downhole tools
GB9321695D0 (en) * 1993-10-21 1993-12-15 Anderguage Ltd Downhole apparatus
US5485890A (en) * 1994-06-14 1996-01-23 Smith International, Inc. Rock bit

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB271839A (en) * 1926-05-25 1928-03-29 U S Tool Company Improvements relating to the hydraulic rotary system of well drilling
US1651088A (en) * 1926-12-18 1927-11-29 Harry H Isaacs Antifriction pipe sleeve
US1905158A (en) * 1930-04-05 1933-04-25 Craig Edward Drill pipe protector
US3410613A (en) * 1966-05-25 1968-11-12 Byron Jackson Inc Non-rotating single-collar drill pipe protector
EP0333450A1 (en) * 1988-03-15 1989-09-20 Charles Abernethy Anderson Downhole Stabilisers
GB2233690A (en) * 1989-06-29 1991-01-16 Red Baron Drill string component
GB2275284A (en) * 1993-02-19 1994-08-24 Graeme Kenneth Speirs Drill pipe protector
WO1995010685A2 (en) * 1993-10-14 1995-04-20 Rototec Limited Drill pipe tubing and casing protectors
WO1995021986A1 (en) * 1994-02-14 1995-08-17 Austoil Drilling Services Pty. Ltd. Drill casing installation equipment with external friction reducing means

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
DERWENT ABSTRACT, Accession No. 04193K/02, Class Q49; & SU,A,911 007 (BASHKIR PETRO IND), 10 March 1982. *
DERWENT ABSTRACT, Accession No. 55981B/30, Class H01, Q49; & SU,A,627 230 (BORING TECH RES INS), 11 September 1978. *
DERWENT ABSTRACT, Accession No. 71801E/34, Class H01, Q49; & SU,A,874 947 (SAKHALIN GAS IND), 28 October 1981. *
DERWENT ABSTRACT, Accession No. 84-286695/46, Class Q49; & SU,A,1 016 475 (PARKHOMENKO V F), 7 May 1983. *
DERWENT ABSTRACT, Accession No. 94-224135/27, Class Q49; & SU,A,1 810 474 (TYUMEN IND INST), 23 April 1993. *
DERWENT ABSTRACT, Accession No. 94-348318/43, Class Q49; & SU,A,1 821 548 (UKR NAT GASES RES INST), 15 June 1993. *

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2299598B (en) * 1995-04-07 1999-03-17 Weatherford Lamb Apparatus for use in a wellbore
GB2321264B (en) * 1995-09-27 1999-03-03 Western Well Tool Inc Tubing friction reducers
US6435275B1 (en) 1997-02-21 2002-08-20 Downhole Products Plc Casing centralizer
US6382333B1 (en) 1997-03-11 2002-05-07 Weatherford/Lamb, Inc. Friction reducing tool for oilfield drilling applications
EP0968352A4 (en) * 1997-03-11 2004-07-21 Weatherford Lamb Friction reducing tool
EP0968352A1 (en) * 1997-03-11 2000-01-05 Austoil Technology Limited Friction reducing tool
WO1999024690A1 (en) * 1997-11-10 1999-05-20 Weatherford U.S., L.P. A friction reducing tool
US6585043B1 (en) 1997-11-10 2003-07-01 Weatherford/Lamb, Inc. Friction reducing tool
US6666267B1 (en) 1997-11-15 2003-12-23 Brunel Oilfield Services (Uk) Limited Downhole tools
GB2347953A (en) * 1997-11-15 2000-09-20 Brunel Oilfield Services Improvements in or relating to downhole tools
GB2347953B (en) * 1997-11-15 2002-07-24 Brunel Oilfield Services Casing centraliser
WO1999025949A3 (en) * 1997-11-15 1999-07-15 Brunel Oilfield Serv Uk Ltd Improvements in or relating to downhole tools
US7025142B2 (en) 1997-11-21 2006-04-11 Superior Energy Services, Llc Bi-directional thruster pig apparatus and method of utilizing same
US6557654B1 (en) 1998-01-05 2003-05-06 Weatherford/Lamb, Inc. Drill pipe having a journal formed thereon
WO1999035366A1 (en) 1998-01-05 1999-07-15 Weatherford U.S., L.P A drill pipe and method of forming and reconditioning a drill pipe
US6453999B1 (en) 1998-02-23 2002-09-24 Weatherford/Lamb, Inc. Centralizer
WO1999042698A1 (en) 1998-02-23 1999-08-26 Weatherford/Lamb, Inc. Centralizer
US6494274B1 (en) 1998-03-05 2002-12-17 Weatherford/Lamb, Inc. Axle, a friction reducing fitting and an axle installation method
WO1999045229A1 (en) 1998-03-05 1999-09-10 Weatherford U.S, L.P. An axle, a friction reducing fitting and an axle installation method
US6688409B1 (en) 1999-01-22 2004-02-10 Weatherford/Lamb, Inc. Friction reducing tool and method for its use in a wellbore
NO331192B1 (en) * 2009-10-07 2011-10-31 Innovar Engineering As Pressurized rotary sleeve
US9534456B2 (en) 2011-01-07 2017-01-03 Statoil Petroleum As Centralizer
GB2503124A (en) * 2011-01-07 2013-12-18 Statoil Petroleum As Centralizer
WO2012092985A1 (en) * 2011-01-07 2012-07-12 Statoil Petroleum As Centralizer
US9963942B2 (en) 2011-01-07 2018-05-08 Statoil Petroleum As Centralizer
GB2503124B (en) * 2011-01-07 2018-08-29 Statoil Petroleum As Rotatable centralizer with inner bearing tube
WO2013142576A1 (en) 2012-03-20 2013-09-26 Blackhawk Specialty Tools, Llc Well centralizer
EP2828467A4 (en) * 2012-03-20 2016-03-16 Blackhawk Specialty Tools Llc Well centralizer
USD849800S1 (en) 2012-04-04 2019-05-28 Summit Energy Services, Inc. Casing centralizer having spiral blades
USD983231S1 (en) 2012-04-04 2023-04-11 Summit Casing Services, Llc Casing centralizer having spiral blades
RU2597899C1 (en) * 2015-04-29 2016-09-20 Открытое акционерное общество "Татнефть" имени В.Д. Шашина Centralizer for pipe string run in inclined-horizontal well

Also Published As

Publication number Publication date
DE69635360D1 (en) 2005-12-01
EA000513B1 (en) 1999-10-28
NO974922L (en) 1997-12-05
AU710393B2 (en) 1999-09-16
AU5517796A (en) 1996-11-18
EP0824629A1 (en) 1998-02-25
EP0824629A4 (en) 2000-03-29
EA199700342A1 (en) 1998-06-25
NO974922D0 (en) 1997-10-24
NZ306581A (en) 1999-07-29
BR9608227A (en) 1998-12-29
NZ335944A (en) 2000-09-29
MX9708253A (en) 1998-06-28
DE69635360T2 (en) 2006-07-27
EP0824629B1 (en) 2003-06-18
DE69628749T2 (en) 2004-04-29
EP1318269A3 (en) 2003-09-24
EP1318269A2 (en) 2003-06-11
NO318106B1 (en) 2005-01-31
EP1318269B1 (en) 2005-10-26
DE69628749D1 (en) 2003-07-24
ATE243296T1 (en) 2003-07-15
US6209667B1 (en) 2001-04-03

Similar Documents

Publication Publication Date Title
US6209667B1 (en) Drill string fitting
AU698810B2 (en) Drill pipe tubing and casing protectors
CA2034817C (en) Drill pipe/casing protector
AU739602B2 (en) A friction reducing tool
US9598913B2 (en) Friction reducing wear band and method of coupling a wear band to a tubular
US9115546B2 (en) Drill pipe tubing and casing protector
MX2010008273A (en) Spiral ribbed aluminum drillpipe.
NO20240169A1 (en) Non-rotating drill pipe protector tool having multiple types of hydraulic bearings
CA2219426C (en) Drill string fitting
MXPA97008253A (en) Adapter for sarta of rods of perforac
CA2567339C (en) Drill string fitting
Moore et al. Reduction of drill string torque and casing wear in extended reach wells using non-rotating drill pipe protectors
US20230323742A1 (en) Circumferential wear bands for oilfield tubulars
CA3127104A1 (en) Circumferential wear bands for oilfield tubulars
GB2409482A (en) Drill pipe protector assembly

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU IS JP KE KG KP KR KZ LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 306581

Country of ref document: NZ

ENP Entry into the national phase

Ref document number: 2219426

Country of ref document: CA

Ref document number: 2219426

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PA/a/1997/008253

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1996912335

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 199700342

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: 08952343

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1996912335

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 1996912335

Country of ref document: EP