WO1996032627A1 - Halbleiterchip mit auf pfosten ruhender membran - Google Patents

Halbleiterchip mit auf pfosten ruhender membran Download PDF

Info

Publication number
WO1996032627A1
WO1996032627A1 PCT/DE1996/000575 DE9600575W WO9632627A1 WO 1996032627 A1 WO1996032627 A1 WO 1996032627A1 DE 9600575 W DE9600575 W DE 9600575W WO 9632627 A1 WO9632627 A1 WO 9632627A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
supports
semiconductor chip
anchored
substrate
Prior art date
Application number
PCT/DE1996/000575
Other languages
English (en)
French (fr)
Inventor
Ulrich Näher
Adrian Berthold
Thomas Scheiter
Christofer Hierold
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to DE59606550T priority Critical patent/DE59606550D1/de
Priority to EP96907321A priority patent/EP0820581B1/de
Priority to JP53063196A priority patent/JP3509874B2/ja
Priority to US08/930,947 priority patent/US6020050A/en
Publication of WO1996032627A1 publication Critical patent/WO1996032627A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • G01L1/142Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors
    • G01L1/148Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors using semiconductive material, e.g. silicon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24917Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including metal layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24926Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including ceramic, glass, porcelain or quartz layer

Definitions

  • the present invention relates to a semiconductor chip with a membrane resting on metallic supports.
  • Such a structure can e.g. B. as a membrane for pressure sensors, as a sealing layer of a cavity or as an upper counter electrode for capacitive sensors or actuators.
  • a membrane for. B. a thin aluminum layer can be used as it is applied as part of a CMOS process as a metallization level.
  • Such a metal layer provides an electrically conductive membrane which, after removal of the material located underneath, z. B. can serve as a counter electrode or as a pressure membrane for capacitive measurement.
  • a metal layer can also be used advantageously if a cavity in which a micromechanical element is moving is to be covered to the outside, as is the case for B. is described in the component of the German patent application P 19509868.
  • Stress generally occurs in the metallization, which affects the mechanical stability of a membrane layer which is not supported over the entire surface.
  • the object of the present invention is to provide a semiconductor chip in which a membrane-like structure with sufficient mechanical stability is realized. This object is achieved with the semiconductor chip with the features of claim 1. Further configurations result from the dependent claims.
  • the basic idea of the invention is to fix the membrane layer on pillar-like or web-like supports and to anchor these supports in solid material to a certain depth in such a way that the supports are held firmly on the substrate even when tension occurs in the membrane layer become.
  • a semiconductor layer structure or the like are the supports which keep the membrane at a distance from the substrate, so that on the side of the membrane facing the substrate or the semiconductor layer structure there is a free surface of the membrane Membrane layer can be present.
  • This free surface can e.g. B. are formed by a cavity made between the substrate and the membrane. It is also possible for the membrane layer to be carried only outside of the rest of the semiconductor material by supports.
  • the membrane is completely free of further solid material, at least on the side facing the substrate. It is essential that the pillar-like or web-like supports carrying the membrane layer are anchored with their ends opposite the membrane to a certain depth in the solid material of the substrate or the layer structure located thereon. It is advantageous for this if the supports have lateral boundary surfaces at these ends, which are at least partially perpendicular to the plane of the membrane layer. With such a vertically limited portion, the support can be anchored particularly firmly in the solid material. In the case of cylindrical supports, the end opposite the membrane can, for. B. extend a few microns into the semiconductor material.
  • FIG. 1 shows a semiconductor chip according to the invention in schematic cross section.
  • Figures 2 and 3 show intermediate products of the semiconductor chip after various stages of manufacture in cross section.
  • FIG. 4 shows another embodiment of a chip according to the invention in an oblique top view.
  • FIG. 1 shows a substrate 1, which is drawn without a structure for the sake of simplicity, but in various embodiments can be a substrate, a semiconductor layer structure or the upper portion of a substrate overgrown with semiconductor layers or provided with dielectric or metallic layers.
  • the surface 8 of the membrane layer 4 facing the substrate 1 is thus completely free in this example, with the exception of the locations at which the supports 3 engage.
  • These supports 3, which one z. B. can be imagined as cylindrical columns are anchored with their end facing away from the membrane 4 in the material of the substrate 1.
  • the substrate 1 typically have a diameter of e.g. B. about 1 micron and a depth between z. B. 0.5 .mu.m and 5 .mu.m can be etched out and filled with the material of the supports.
  • the supports 3 are z. B. made of metal or polysilicon. It is advantageous if the anchored ends 5 of the supports 3, as seen in the orientation of the plane given by the membrane 4, have lateral boundary surfaces 9 which are essentially perpendicular to the plane of the membrane 4 run. There should therefore be at least one distance in the boundary surfaces 9 which is perpendicular to the plane of the membrane 4.
  • the opposite end of the membrane of the cylindrical supports in this example can, for. B. be cylindrical.
  • Web-like supports which correspond approximately to a vertical layer, can be anchored in the solid material of the substrate 1 with cuboid parts.
  • cylindrical supports, for. B. are provided with an approximately hemispherical end of the end anchored in the substrate and only this hemispherical end is anchored in the solid material.
  • the dimension, measured perpendicular to the membrane, of the ends 5 of the supports anchored in the substrate 1 depends on the mechanical loading of the supports provided.
  • This structure is manufactured e.g. B. by first applying an auxiliary layer 2 over the entire surface of the substrate 1 according to FIG.
  • This auxiliary layer 2 is produced from a material which can be removed selectively with regard to the material of the substrate 1 and the material provided for the supports and the membrane layer.
  • this auxiliary layer 2 can e.g. B. silicon oxide or another dielectric.
  • this layer z. B. by means of a dry etching process the areas provided for the supports.
  • These etched openings can e.g. B. in the form of contact holes, as they are also etched for the connection contacts in the context of a CMOS process.
  • the openings provided for the supports are etched further into the material of the substrate 1 or the layer structure.
  • the depth of this etching below the auxiliary layer 2 is advantageously z. B. between 0.5 ⁇ m and about 5 ⁇ m.
  • the depth of this etching is not fixed; a deeper etching than about 5 ⁇ m into the substrate 1 does not significantly improve the stability of the supports to be produced.
  • a depth of the anchoring of the supports of at least 1.5 ⁇ m is advantageous.
  • the etched holes are then filled with the material provided for the supports 3.
  • CMOS process known filling of contact holes can be used. It is e.g. For example, a Ti / TiN barrier is first produced which serves as an adhesive layer and is intended to prevent the metal of the supports from alloying with the semiconductor material, d. H. z. B. diffuses the metal into the semiconductor material. Then the holes are made with the metal of the supports, e.g. B. tungsten. If necessary, this metal is etched back to the extent that it closes with the top of the auxiliary layer 2, as shown in FIG. The layer intended for the membrane 4 is then deposited over the entire surface and structured if necessary. It can be z. B. to deal with the first metallization level, the z. B. can be aluminum or tungsten.
  • etching holes are drilled in the membrane, which are numerous and z. B. have a diameter of about 1 ⁇ m.
  • the auxiliary layer 2 is removed through these etching holes in a predominantly isotropic etching step.
  • an etchant containing hydrogen fluoride HF, hydrofluoric acid
  • HF hydrogen fluoride
  • An electrically connected membrane 4 can be connected by electrically conductive supports 3. If such a conductive contact between the support and an area in the substrate 1 is desired, it can be between the support and the provided barrier z.
  • CVD process Chemical Vapor Deposition
  • the etching hole in the auxiliary layer 2 is filled with metal without first producing a barrier layer.
  • Electrical isolation from the surrounding semiconductor material can e.g. B. can be achieved with a pn junction in the region of the ends 5 of the supports 3.
  • Supports 3 are anchored in principle can be any, if sufficient adhesion and mechanical stability are available.
  • the upper layer of a layer structure 1 comes apart from semiconductor material, such as. B. crystalline silicon or polysilicon, also a dielectric layer, for. B. from silicon nitride, in question. It is not necessary to provide the membrane layer with etching holes if the auxiliary layer 2 z. B. can be removed from the side via side etching channels. There is also the possibility of etching holes in the membrane with a subsequently deposited layer, e.g. B. made of oxide or nitride. So you get a z. B. suitable for a pressure sensor sealed airtight, supported only at a few points with high mechanical stability.
  • the membrane can be supported at regular intervals by pillar-like supports, as shown in FIG. 1.
  • the supports 3 in FIG. 1 can also be web-like supports which have the shape shown in FIG. 1 in cross section. Depending on the number and dimensions of the supports, the membrane 4 can be supported more or less stably.
  • the supports are preferably attached to the
  • FIG. 4 shows an alternative embodiment of the chip, in which the membrane 4 is rectangular and only along the two narrow sides with supports shaped like webs

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Pressure Sensors (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

Halbleiterchip mit einer freistehenden Membran (4), die mittels Stützen (3) über einem Substrat (1) aus Halbleitermaterial gehaltern wird, so daß eine dem Substrat (1) zugewandte Oberfläche (8) dieser Membran von festem Material frei ist, und bei dem diese Stützen (3) mit unteren Enden (5) fest in dem Material des Substrates verankert sind.

Description

Beschreibung
HALBLEITERCHIP MIT AUF PFOSTEN RUHENDER MEMBRAN
Die vorliegende Erfindung betrifft einen Halbleiterchip mit einer auf metallischen Stützen ruhenden Membran.
In der Halbleitertechnologie, insbesondere bei der Herstel- lung von Sensoren und Aktuatoren ist es oftmals erforderlich, eine schichtartige Struktur frei über einem Substrat herzu¬ stellen. Eine derartige Struktur kann z. B. als Membran für Drucksensoren, als Verschlußschicht eines Hohlraumes oder als obere Gegenelektrode für kapazitive Sensoren oder Aktuatoren eingesetzt werden. Für eine solche Membran kann z. B. eine dünne Aluminiumschicht verwendet werden, wie sie im Rahmen eines CMOS-Prozesses als Metallisierungsebene aufgebracht wird. Eine solche Metallschicht liefert eine elektrisch lei¬ tende Membran, die nach dem Entfernen des darunter befindli- chen Materiales z. B. als Gegenelektrode oder als Druckmem¬ bran für kapazitive Messung dienen kann. Wegen der mechani¬ schen Stabilität kann eine Metallschicht auch vorteilhaft verwendet werden, wenn ein Hohlraum, in dem sich ein mikrome¬ chanisches Element bewegt, nach außen abgedeckt werden soll, wie das z. B. bei dem Bauelement der deutschen Patentanmel¬ dung P 19509868 beschrieben ist. In der Metallisierung tritt in der Regel eine hohe thermisch bedingte Zugspannung (Stress) auf, die die mechanische Stabilität einer Membran¬ schicht, die nicht ganzflächig abgestützt wird, beeinträch- tigt.
Aufgabe der vorliegenden Erfindung ist es, einen Halbleiter¬ chip anzugeben, bei dem eine membranartige Struktur mit aus¬ reichender mechanischer Stabilität realisiert ist. Diese Aufgabe wird mit dem Halbleiterchip mit den Merkmalen des Anspruches 1 gelöst. Weitere Ausgestaltungen ergeben sich aus den abhängigen Ansprüchen.
Die grundlegende Idee der Erfindung besteht darin, die Mem¬ branschicht auf pfeilerartigen oder stegartigen Stützen zu befestigen und diese Stützen in festem Material bis zu einer gewissen Tiefe derart zu verankern, daß auch beim Auftreten von Verspannungen in der Membranschicht die AbStützungen fest auf dem Untergrund gehalten werden. Zwischen der Membran und einem Substrat, einer Halbleiterschichtstruktur oder derglei¬ chen befinden sich die Stützen, die die Membran in einem Ab¬ stand von dem Substrat halten, so daß auf der dem Substrat oder der Halbleiterschichtstruktur zugewandten Seite der Mem- bran eine freie Oberfläche der Membranschicht vorhanden sein kann. Diese freie Oberfläche kann z. B. durch einen zwischen dem Substrat und der Membran hergestellten Hohlraum gebildet werden. Es ist auch möglich, daß die Membranschicht völlig außerhalb des übrigen Halbleitermateriales nur von Stützen getragen wird. In diesem Fall ist die Membran zumindest auf der dem Substrat zugewandten Seite völlig frei von weiterem festen Material. Wesentlich ist, daß die die Membranschicht tragenden pfeilerartigen oder stegartigen Stützen mit ihren der Membran gegenüberliegenden Enden bis zu einer gewissen Tiefe in dem festen Material des Substrates oder der darauf befindlichen Schichtstruktur verankert sind. Vorteilhaft da¬ für ist es, wenn die Stützen an diesen Enden seitliche Be¬ grenzungsflächen aufweisen, die zumindest teilweise zur Ebene der Membranschicht senkrecht verlaufen. Mit einem solchen senkrecht begrenzten Anteil kann die Stütze in dem festen Ma¬ terial besonders fest verankert sein. Bei zylindrischen Stüt¬ zen kann das der Membran gegenüberliegende Ende z. B. wenige μm in das Halbleitermaterial hineinreichen.
Es folgt eine genauere Beschreibung der Erfindung anhand der Figuren 1 bis 4. Figur 1 zeigt einen erfindungsgemäßen Ηalbleiterchip im Sche¬ ma im Querschnitt. Figuren 2 und 3 zeigen Zwischenprodukte des Halbleiterchips nach verschiedenen Stufen der Herstellung im Quer- schnitt.
Figur 4 zeigt eine andere Ausführungsform eines erfindungsge¬ mäßen Chips in einer schrägen Aufsicht.
Figur 1 zeigt ein Substrat 1, das der Einfachheit halber strukturlos gezeichnet ist, aber bei verschiedenen Ausfüh¬ rungsformen ein Substrat, eine Halbleiterschichtstruktur oder der obere Anteil eines mit Halbleiterschichten überwachsenen oder mit dielektrischen oder metallischen Schichten versehe¬ nes Substrates sein kann. Die im folgenden als Membran 4 be- zeichnete Schicht, die unterschiedliche Dicken aufweisen kann und als Membran, Schutzschicht, Gegenelektrode oder derglei¬ chen ausgebildet und aus verschiedenen Materialien wie z. B. Metall, Halbleitermaterial oder Dielektrikum sein kann, be¬ findet sich in einem Abstand zu diesem Substrat 1 und wird durch die Stützen 3 in diesem Abstand gehalten. Zwischen dem Substrat 1 und der Membran 4 befindet sich in diesem Beispiel ein Hohlraum. Die dem Substrat 1 zugewandte Oberfläche 8 der Membranschicht 4 ist also in diesem Beispiel mit Ausnahme der Stellen, an denen die Stützen 3 angreifen, völlig frei. Diese Stützen 3, die man sich z. B. als zylindrische Säulen vorstellen kann, sind mit ihrem von der Membran 4 abgewandten Ende 5 in dem Material des Substrates 1 verankert.
In dem Substrat 1 sind in diesem Beispiel etwa zylindrische Öffnungen, die typischerweise einen Durchmesser von z. B. etwa 1 μm und eine Tiefe zwischen z. B. 0,5 μm und 5 μm be¬ sitzen können, ausgeätzt und mit dem Material der Stützen aufgefüllt. Die Stützen 3 sind z. B. aus Metall oder Poly- silizium. Vorteilhaft ist es, wenn die verankerten Enden 5 der Stützen 3, in der Ausrichtung der durch die Membran 4 ge¬ gebenen Ebene gesehen, seitliche Berandungsflächen 9 aufwei¬ sen, die zu der Ebene der Membran 4 im wesentlichen senkrecht verlaufen. Es sollte also in den Berandungsflächen 9 mindestens eine Strecke liegen, die zu der Ebene der Membran 4 senkrecht verläuft. Das der Membran gegenüberliegende Ende der in diesem Beispiel zylindrischen Stützen kann z. B. zy- lindrisch sein. Stegförmige Stützen, die etwa einer senk¬ rechten Schicht entsprechen, können mit quaderfόrmigen An¬ teilen in dem festen Material des Substrates 1 verankert sein. Im Prinzip ist es auch möglich, wenn zylindrische Stüt¬ zen z. B. mit einem etwa halbkugelförmigen Abschluß des in dem Substrat verankerten Ende versehen sind und nur dieser halbkugelförmige Abschluß in dem festen Material verankert ist. Die senkrecht zur Membran gemessene Abmessung der im Substrat 1 verankerten Enden 5 der Stützen hängt von der vor¬ gesehenen mechanischen Beanspruchung der Stützen ab.
Die Herstellung dieser Struktur erfolgt z. B., indem zunächst ganzflächig auf das Substrat 1 entsprechend Figur 2 eine Hilfsschicht 2 aufgebracht wird. Diese Hilfsschicht 2 wird aus einem Material hergestellt, das selektiv bezüglich des Materials des Substrates 1 und des für die Stützen und die Membranschicht vorgesehenen Materiales entfernt werden kann. Bei einem Siliziumsubstrat kann diese Hilfsschicht 2 z. B. Siliziumoxid oder ein anderes Dielektrikum sein. In diese Schicht werden z. B. mittels eines Trockenätzverfahrens die für die Stützen vorgesehenen Bereiche ausgeätzt. Diese ausge¬ ätzten Öffnungen können z. B. in der Form von Kontaktlöchern hergestellt werden, wie sie auch für die Anschlußkontakte im Rahmen eines CMOS-Prozesses geätzt werden. Im Unterschied zu der herkömmlichen Kontaktlochätzung werden die für die Stüt- zen vorgesehenen Öffnungen bis in das Material des Substrates 1 oder der Schichtstruktur weitergeätzt. Die Tiefe dieser Ät¬ zung unterhalb der Hilfsschicht 2 wird vorteilhaft z. B. zwi¬ schen 0,5 μm und etwa 5 μm gewählt. Erfindungsgemäß ist die Tiefe dieser Ätzung nicht festgelegt; eine tiefere Ätzung als etwa 5 μm in das Substrat 1 hinein verbessert aber die Stabi¬ lität der herzustellenden Stützen nicht wesentlich. Für ge- forderte größere mechanische Stabilität ist eine Tiefe der Verankerung der Stützen von mindestens 1,5 μm vorteilhaft.
Die geätzten Löcher werden dann mit dem für die Stützen 3 vorgesehenen Material aufgefüllt. Dazu kann eine von dem
CMOS-Prozeß her bekannte Füllung von Kontaktlöchern verwendet werden. Es wird z. B. zunächst eine Ti/TiN-Barriere her¬ gestellt, die als Haftschicht dient und verhindern soll, daß das Metall der Stützen mit dem Halbleitermaterial legiert, d. h. z. B. das Metall in das Halbleitermaterial ausdiffundiert. Anschließend werden die Löcher mit dem Metall der Stützen, z. B. Wolfram, aufgefüllt. Bei Bedarf wird dieses Metall soweit rückgeätzt, daß es wie in Figur 2 gezeichnet eben mit der Oberseite der Hilfsschicht 2 abschließt. Dann wird ganzflächig entsprechend Figur 3 die für die Membran 4 vorgesehene Schicht abgeschieden und ggf. strukturiert. Es kann sich dabei z. B. um die erste Metallisierungsebene han¬ deln, die z. B. Aluminium oder Wolfram sein kann. Um das Ma¬ terial der Hilfsschicht 2 entfernen zu können, werden in die Membran 4 Ätzlöcher gebohrt, die zahlreich sind und z. B. ei¬ nen Durchmesser von etwa 1 μm haben. Durch diese Ätzlöcher hindurch wird die Hilfsschicht 2 in einem vorwiegend isotro¬ pen Ätzschritt entfernt, wobei im Falle einer Oxidschicht z. B. ein Ätzmittel, das Fluorwasserstoff (HF, Flußsäure) ent- hält, verwendet werden kann. Damit ergibt sich die in Figur 1 dargestellte Struktur.
Auf diese Weise ist es möglich, die Membran 4 mittels Stützen 3 fest in dem festen Material des Substrates 1 zu verankern. Die verankerten Strukturen lassen sich, auch wenn sie ganz oder fast vollständig freigeätzt werden, auch durch starke mechanische Beanspruchung nicht mehr von dem Substrat lösen.
Ein elektrischer Anschluß einer leitend hergestellten Membran 4 kann durch elektrisch leitende Stützen 3 erfolgen. Wird ein solcher leitender Kontakt zwischen der Stütze und einem Bereich im Substrat 1 gewünscht, kann die zwischen der Stütze und dem Substrat vorgesehene Barriere z. B. kollimiert ge- sputtert werden (z. B. im Fall von Titan) oder in einem CVD- Prozeß (Chemical Vapor Deposition) abgeschieden werden (z. B. im Fall von TiN) . Für gute mechanische Haftung der Stützen in dem festen Material des Substrates ist es ausreichend, wenn das Ätzloch in der Hilfsschicht 2 ohne vorherige Herstellung einer Barriereschicht mit Metall aufgefüllt wird. Eine elek¬ trische Isolation gegenüber dem umgebenden Halbleitermaterial kann z. B. mit einem pn-Übergang im Bereich der Enden 5 der Stützen 3 erreicht werden. Das feste Material, in dem die
Stützen 3 verankert sind, kann im Prinzip beliebig sein, wenn ausreichende Haftung und mechanische Stabilität vorhanden sind. Als obere Schicht einer Schichtstruktur 1 kommt außer Halbleitermaterial, wie z. B. kristallines Silizium oder Po- lysilizium, auch eine Dielektrikumschicht, z. B. aus Silizi¬ umnitrid, in Frage. Es ist nicht erforderlich, die Membran¬ schicht mit Ätzlöchern zu versehen, wenn die Hilfsschicht 2 z. B. von der Seite her über seitliche Ätzkanäle entfernt werden kann. Es besteht auch die Möglichkeit, Ätzlöcher in der Membran mit einer nachfolgend abgeschiedenen Schicht, z. B. aus Oxid oder Nitrid, zu verschließen. Damit erhält man eine z. B. für einen Drucksensor geeignete luftdicht abge¬ schlossene, nur an wenigen Stellen abgestützte Membran mit hoher mechanischer Stabilität.
Bei dem erfindungsgemäßen Halbleiterchip kann die Membran in regelmäßigen Abständen durch pfeilerartige Stützen abgestützt werden, wie das in Figur 1 dargestellt ist. Bei den Stützen 3 in Figur 1 kann es sich auch um stegartig verlaufende Stützen handeln, die im Querschnitt die in Figur 1 dargestellte Form haben. Je nach Zahl und Abmessung der Stützen kann die Membran 4 mehr oder weniger stabil abgestützt werden. Bei Verwendung dieser Schicht als obere Gegenelektrode oder als Verkapselung eines beweglich angebrachten mikromechanischen Funktionselementes werden die Stützen vorzugsweise an den
Rändern der Membran angebracht sein. Das ist auch bei Verwen¬ dung als Membran eines Drucksensors vorteilhaft, damit die Membran 4 nur seitlich unterstützt ist und in der Mitte den zu messenden Druckänderungen entsprechend verformbar ist .
In Figur 4 ist eine alternative Ausführungsform des Chips dargestellt, bei der die Membran 4 rechteckig ist und nur längs der beiden Schmalseiten mit stegartig geformten Stützen
6 unterstützt ist. Die in dem Substrat 1 verankerten Anteile
7 dieser Stützen 6 sind hier quaderförmig und durch Außenflä¬ chen 9 begrenzt, die rechteckig sind und senkrecht zur Ebene der Membran 4 liegen. Um in der Membran 4 auftretende Zug¬ kräfte zu entspannen, sind die als Beispiel eingezeichneten S-förmigen und H-förmigen Aussparungen vorhanden. Auf diese Weise ist es möglich, auch eine relativ dicke Membran 4 sta¬ bil auf wenigen dünnen Stützen zu befestigen. Wenn viele Stützen vorgesehen sind, kann die mechanische Stabilität so erhöht werden, daß die Membran 4 z. B. als Abdeckungsschicht für empfindliche Strukturen auf dem Chip verwendet werden kann. Bei der weiteren Bearbeitung oder Montage kann der Chip dann hohen mechanischen Belastungen ausgesetzt werden, weil die Abdeckungsschicht ausreichend stabil auf dem Substrat verankert ist.

Claims

Patentansprüche
1. Halbleiterchip mit einer auf Stützen (3; 6) ruhenden Mem¬ bran (4) , bei dem diese Membran auf der mit diesen Stützen versehenen Seite ei¬ ne von festem Material freie Oberfläche (8) aufweist und diese Stützen auf der von dieser Membran abgewandten Seite in festem Material (1) verankert sind.
2. Halbleiterchip nach Anspruch 1, bei dem die Membran (4) eine Metallschicht ist.
3. Halbleiterchip nach Anspruch 1 oder 2, bei dem die Membran (4) Aussparungen, Löcher oder Fenster aufweist.
4. Halbleiterchip nach einem der Ansprüche 1 bis 3, bei dem ein in festem Material (1) verankerter Teil (5; 7) der Stüt¬ zen (3; 6) eine in der Ausdehnung einer von der Membran (4) festgelegten Ebene lateral begrenzende Außenfläche (9) auf¬ weist, in der mindestens eine Strecke liegt, die senkrecht zu dieser Ebene verläuft.
5 .Halbleiterchip nach Anspruch 4, bei dem ein in festem Material (1) verankerter Teil (7) einer Stütze (6) quaderförmig ist.
6. Halbleiterchip nach Anspruch 4, bei dem ein in festem Material (1) verankerter Teil (5) einer Stütze (3) zylindrisch geformt ist.
7. Halbleiterchip nach einem der Ansprüche 1 bis 5, bei dem die Membran (4) rechteckig ist und die Stützen in Form zweier an einander gegenüberliegenden Rändern der Membran längs dieser Ränder angeordneter Stege (6) ausgebildet sind.
8. Halbleiterchip nach einem der Ansprüche 1 bis 7, bei dem die Stützen in einer Tiefe von zwischen 0,5 μm und 5 μm in festem Material verankert sind.
9. Halbleiterchip nach einem der Ansprüche 1 bis 7, bei dem die Stützen in einer Tiefe von mindestens 1,5 μm in festem Material verankert sind.
10. Halbleiterchip nach einem der Ansprüche 1 bis 9, bei dem das feste Material, in dem die Stützen verankert sind, Halb¬ leitermaterial ist.
PCT/DE1996/000575 1995-04-12 1996-04-01 Halbleiterchip mit auf pfosten ruhender membran WO1996032627A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE59606550T DE59606550D1 (de) 1995-04-12 1996-04-01 Verfahren zur herstellung eines halbleiterchips
EP96907321A EP0820581B1 (de) 1995-04-12 1996-04-01 Verfahren zur herstellung eines halbleiterchips
JP53063196A JP3509874B2 (ja) 1995-04-12 1996-04-01 半導体チップ
US08/930,947 US6020050A (en) 1995-04-12 1996-04-01 Semiconductor chip

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19513921A DE19513921C2 (de) 1995-04-12 1995-04-12 Halbleiterchip
DE19513921.6 1995-04-12

Publications (1)

Publication Number Publication Date
WO1996032627A1 true WO1996032627A1 (de) 1996-10-17

Family

ID=7759578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1996/000575 WO1996032627A1 (de) 1995-04-12 1996-04-01 Halbleiterchip mit auf pfosten ruhender membran

Country Status (5)

Country Link
US (1) US6020050A (de)
EP (1) EP0820581B1 (de)
JP (1) JP3509874B2 (de)
DE (2) DE19513921C2 (de)
WO (1) WO1996032627A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU5489799A (en) * 1998-08-19 2000-03-14 Wisconsin Alumni Research Foundation Sealed capacitive pressure sensors

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4256382A (en) * 1979-05-03 1981-03-17 Hughes Aircraft Company Liquid crystal devices having uniform thermal expansion coefficient components
EP0306178A2 (de) * 1987-08-18 1989-03-08 Fujitsu Limited Beschleunigungsmessaufnehmer
EP0506491A2 (de) * 1991-03-28 1992-09-30 The Foxboro Company Gegen Überlast geschützter Differenzdrucksensor und Verfahren zu seiner Herstellung

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4332843C2 (de) * 1993-09-27 1997-04-24 Siemens Ag Verfahren zur Herstellung einer mikromechanischen Vorrichtung und mikromechanische Vorrichtung
DE19509868A1 (de) * 1995-03-17 1996-09-19 Siemens Ag Mikromechanisches Halbleiterbauelement

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4256382A (en) * 1979-05-03 1981-03-17 Hughes Aircraft Company Liquid crystal devices having uniform thermal expansion coefficient components
EP0306178A2 (de) * 1987-08-18 1989-03-08 Fujitsu Limited Beschleunigungsmessaufnehmer
EP0506491A2 (de) * 1991-03-28 1992-09-30 The Foxboro Company Gegen Überlast geschützter Differenzdrucksensor und Verfahren zu seiner Herstellung

Also Published As

Publication number Publication date
DE59606550D1 (de) 2001-04-12
DE19513921C2 (de) 1997-10-16
JPH11503523A (ja) 1999-03-26
DE19513921A1 (de) 1996-10-24
EP0820581B1 (de) 2001-03-07
JP3509874B2 (ja) 2004-03-22
EP0820581A1 (de) 1998-01-28
US6020050A (en) 2000-02-01

Similar Documents

Publication Publication Date Title
EP0732594B1 (de) Verfahren zur Herstellung mikromechanischer Bauelemente
DE4106288C2 (de) Sensor zur Messung von Drücken oder Beschleunigungen
DE3723561C2 (de)
DE102010008044B4 (de) MEMS-Mikrofon und Verfahren zur Herstellung
DE4402085C2 (de) Verfahren zur mikrotechnischen Herstellung eines kapazitiven Differenzdrucksensors und mikrotechnisch hergestellter Differenzdrucksensor
DE4000903C1 (de)
DE102006055147B4 (de) Schallwandlerstruktur und Verfahren zur Herstellung einer Schallwandlerstruktur
DE19921863B4 (de) Halbleitersensor für eine dynamische Größe mit Elektroden in einer Rahmenstruktur
EP1335878B1 (de) Mikrostrukturbauelement
DE10230166A1 (de) Elektrischer Kapazitätsdrucksensor mit einer Elektrode mit fester Fläche und Herstellungsverfahren davon
WO1995009366A1 (de) Mikromechanische vorrichtung und verfahren zu deren herstellung
DE4133009A1 (de) Kapazitiver drucksensor und herstellungsverfahren hierzu
DE4309206C1 (de) Halbleitervorrichtung mit einem Kraft- und/oder Beschleunigungssensor
EP0941460B1 (de) Verfahren zur herstellung von mikromechanischen sensoren
EP0618435A2 (de) Kapazitiver Drucksensor
EP0494143B1 (de) Vorrichtung zur messung mechanischer kräfte und kraftwirkungen
EP0454883B1 (de) Kapazitiver Sensor
EP0793801B1 (de) Drucksensor
DE19839606C1 (de) Mikromechanisches Bauelement und Verfahren zu dessen Herstellung
DE102019205347B4 (de) Mikromechanisches Bauteil für eine kapazitive Sensorvorrichtung
WO1997021986A1 (de) Mikrosensoren mit siliziummembranen und verfahren zur herstellung derselben
EP0645613B1 (de) Herstellverfahren für Dünnschicht-Absolutdrucksensoren
WO1996032627A1 (de) Halbleiterchip mit auf pfosten ruhender membran
DE19820758C1 (de) Herstellverfahren für mikromechanische Bauelemente
WO1995019572A1 (de) Verfahren zur herstellung eines beschleunigungssensors

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1996907321

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1996 530631

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 08930947

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1996907321

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1996907321

Country of ref document: EP