WO1996032254A1 - Bande comportant une matiere polymerique chargee de microspheres creuses (mousse) - Google Patents

Bande comportant une matiere polymerique chargee de microspheres creuses (mousse) Download PDF

Info

Publication number
WO1996032254A1
WO1996032254A1 PCT/FR1996/000507 FR9600507W WO9632254A1 WO 1996032254 A1 WO1996032254 A1 WO 1996032254A1 FR 9600507 W FR9600507 W FR 9600507W WO 9632254 A1 WO9632254 A1 WO 9632254A1
Authority
WO
WIPO (PCT)
Prior art keywords
strip
layer
strip according
foam
thickness
Prior art date
Application number
PCT/FR1996/000507
Other languages
English (en)
Inventor
Philippe Bussi
Jacky Amiaud
Christelle Guibouin
Original Assignee
Elf Atochem S.A.
Alphacan Soveplast
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elf Atochem S.A., Alphacan Soveplast filed Critical Elf Atochem S.A.
Priority to AU54034/96A priority Critical patent/AU5403496A/en
Publication of WO1996032254A1 publication Critical patent/WO1996032254A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/15Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state
    • B32B37/153Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state at least one layer is extruded and immediately laminated while in semi-molten state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/15Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state
    • B32B37/156Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state at least one layer is calendered and immediately laminated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • F16L59/027Bands, cords, strips or the like for helically winding around a cylindrical object
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2323/00Polyalkenes
    • B32B2323/10Polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2325/00Polymers of vinyl-aromatic compounds, e.g. polystyrene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2327/00Polyvinylhalogenides
    • B32B2327/06PVC, i.e. polyvinylchloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2333/00Polymers of unsaturated acids or derivatives thereof
    • B32B2333/04Polymers of esters
    • B32B2333/12Polymers of methacrylic acid esters, e.g. PMMA, i.e. polymethylmethacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2367/00Polyesters, e.g. PET, i.e. polyethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2377/00Polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2597/00Tubular articles, e.g. hoses, pipes

Definitions

  • Strip comprising a polymeric material charged with hollow microspheres (foam)
  • the invention relates to a strip comprising a polymeric material charged with hollow microspheres hereinafter called "foam” and intended to be wound helically around a tubular structure for thermal insulation.
  • the invention also relates to the tubular structure comprising the wound band as well as to the method of manufacturing the band.
  • thermo insulation effect provided by polymeric materials comprising hollow charges is known. This effect is exploited in the insulation of underwater pipes transporting products at a higher temperature than that of ambient water, for example the transport of crude oil.
  • Patent application EP 0575012 A1 proposes a method for isolating these underwater pipes. This consists in winding a strip produced by extrusion through a die of particular dimensions of a polyolefin-based polymeric material - in particular polypropylene - charged with hollow microspheres.
  • microspheres does not necessarily have a geometric connotation and therefore the microspheres may or may not be truly spherical.
  • the microspheres are made of polymers or inorganic materials, in particular silica-based glass.
  • This patent application stresses the need for a good surface condition of the extruded strip which must be free from defects or nicks which may lead to a break in the strip during winding. This surface quality is only obtained by precise relative dimensions of the die and an extrusion temperature at most 215 ° C. A good surface condition also makes it easier to reel tape to tape on reel during the tape storage step, before it is then wound on a pipe.
  • Patent application EP 0557807 A1 discloses a method for obtaining molded articles based on polypropylene and hollow fillers - in particular hollow glass beads - where the breakage rate of these fillers is less than 30%.
  • Patent application JP 63-278,967 teaches a process for preparing a composite composition which is characterized by the fact that a thermoplastic resin is melted in a biaxial extruder with two screws rotating in opposite directions and that one adds thin-walled hollow glass beads in said molten resin before extruding the whole to produce a sheet or pellets. This process avoids significant breakage of the hollow glass beads having a density of 0.1 to 0.9 g / cm ⁇ and an average particle size of 15 to 70 ⁇ m. These balls are introduced for example in a weight ratio with the resin of 27.4%.
  • the resin can be polypropylene or polyphenylene oxide.
  • the implementation of an insulating strip loaded with hollow microspheres, by its winding on a pipe, causes significant tensile stresses on its external face and compression on its internal face. This is all the more true when the diameter of the pipe is small. These constraints are such that at the surface of the strip, the material very often exceeds its elongation at the threshold. The material must therefore be intrinsically sufficiently ductile, otherwise the strip breaks during the winding. However when the charge rate of hollow microspheres increases to improve the insulation specific, the ductility of the resulting compound decreases. This means that in practice the rate of shaped charges in such compounds is limited so as not to lead to breakage of the strip during its implementation.
  • the object of the present invention is to produce a strip having an excellent surface appearance and which can be wound without breaking on pipes, even of small diameter, even for high hollow microsphere charge rates. This object is achieved by a strip comprising a polymeric material charged with hollow microspheres
  • this strip intended to be wound helically around a tubular structure for thermal insulation, characterized in that this strip comprises a layer of foam mechanically attached to at least one other layer of a polymeric composition, thermoplastic and / or elastomeric, the two layers extending over the entire length of the strip and each showing a determined thickness in radial section, the thickness of the foam being between 0.5 mm and 50 mm and representing at least 50 % of the total thickness of the strip, the thickness of the other layer being between 50 ⁇ m and 5 mm.
  • This two-layer strip is intended to be rolled up and brought into contact with the tubular structure by its layer of foam, the layer of the thermoplastic and / or elastomeric polymer composition being the visible external layer of the assembly thus produced.
  • the strip further comprises a third layer of a thermoplastic and / or elastomeric polymer composition mechanically integral with the foam layer, the two layers of polymeric composition being located on either side of the foam layer, the third layer having a determined thickness between 50 ⁇ m and 5 mm.
  • the foam layer is then between the two outer layers of polymeric composition. These two layers reinforce the mechanical strength of the strip on winding.
  • the two outer layers can either have a substantially identical thickness, or have different thicknesses. In addition, they can be in the same polymeric composition or else be in different polymeric compositions.
  • the thickness of the foam layer represents at least 75% of the total thickness of the strip and preferably at least 85% of the total thickness of the strip.
  • the foam loaded with hollow microspheres has a specific insulation coefficient higher than those of the other layer or layers and must therefore be strongly present to ensure effective thermal insulation of the tubular structure.
  • each layer of polymeric composition has a thickness of between 50 ⁇ m and 2 mm, the foam layer having a thickness of 3 mm to 8 mm.
  • the strip comprises a third layer of a polymeric composition
  • the two layers of polymeric composition join at the lateral edges of the strip to form together a sheath entirely surrounding the layer of foam, this sheath showing a determined lateral thickness. between 50 ⁇ m and 5 mm.
  • This sheath has the advantage of strongly mechanically consolidating the foam layer and also of protecting the foam and its possible cracks against any future introduction of an ambient medium, in particular fresh water and sea water.
  • the lateral presence of a thermoplastic and / or elastomeric polymer layer makes it possible to ensure good sealing between the turns of the helical winding and thus makes it possible to protect the tubular structure itself from contact with the surrounding environment.
  • the strip has a determined width of between 10 mm and 100 mm.
  • the strip has the overall shape of a very elongated parallelepiped, in other words, it has in radial section, the shape of a parallelogram, in particular a rectangle. But it can have any other shape compatible with a helical winding.
  • the strip on the sides may have complementary areas of extension and withdrawal which overlap during the winding.
  • each layer of polymeric composition be separated from the foam layer by a layer of an adhesion binder.
  • the binders between polymeric layers are known to one skilled in the art working in the field of coextrusion of multilayer objects.
  • the polymeric material has a good mixing or adhesion affinity with the polymeric composition of the strip, for example when the polymeric material is the same as the polymeric composition, it is generally not necessary, despite the presence of the microspheres in polymeric material, to provide a binder.
  • the polymeric material and the polymer composition are different and do not have good adhesion, so it can be highly advantageous to separate these different layers with a layer of an adhesion binder.
  • This binder is chosen according to the nature of the polymeric material and the polymeric composition to be joined.
  • the polymeric material is based on polyolefin. This means that it contains by weight a predominant part of polyolefin.
  • This polyolefin is for example polyethylene or polypropylene or polybutylene or their copolymers.
  • the polymeric material is based on polyvinyl chloride.
  • the polymeric material comprises hollow microspheres of generally spherical shape but similar shapes are also suitable.
  • hollow microspheres is meant in particular the hollow beads made of inorganic materials and in particular glass, but also the beads of hollow polymers, pre-expanded or not.
  • These hollow polymer beads consist of a polymer shell and contain a swelling agent which takes effect when these beads are brought to a sufficient temperature. This agent can by heating release carbon dioxide or nitrogen which then swells the ball.
  • the average real density (MVRM) (measured according to ASTM D 2840-84 by air pycnometer) of hollow microspheres is generally between 0.03 and 0.90 g / cm 3 .
  • this MVRM is preferably between 0.3 and 0.5 g / cm 3 .
  • the average diameter of the microspheres is generally from 10 to 100 ⁇ m and preferably from 20 to 60 ⁇ m.
  • the resistance to isostatic compression of hollow microspheres is also greater than 1 MPa and preferably between 5 and 100 MPa.
  • These microspheres can be treated with known coupling agents such as silanes or titanates. These coupling agents are generally present at less than 3% by weight.
  • the polymeric material in addition to the microspheres, may also contain other fillers, for example talc, mica, powdered chalk, kaolin, wollastonite, glass or carbon fibers.
  • the fillers are introduced into the polymeric material and the assembly is homogenized in an extruder.
  • the extruder is, for example, a single-screw extruder, a twin-screw extruder or a combiner of the BUSS type, and preferably a self-cleaning co-rotating twin-screw extruder or extruder.
  • the fillers are preferably introduced into the molten zone of the polymeric material.
  • thermoplastic and / or elastomeric polymer composition is based on polymer (s), chosen (s) from polyolefins.
  • these polyolefins are chosen from polyethylene and its copolymers with acetates, acrylates, ⁇ -olefins, polypropylene and polybutylene.
  • polyolefins can be grafted with unsaturated acid or acid anhydride monomers, in particular maleic acid or anhydride, or else grafted with glycidyl methacrylate.
  • polystyrene resin those based on polypropylene and in particular those based on propylene / ethylene block copolymers are preferred. These copolymers can contain from 4% to 16% by weight of ethylene.
  • copolymers can also contain the polyolefins modified by grafting reported above.
  • the melt flow index of polymeric compositions based on polyolefins is generally between 1 and 200 g / 10 min at 230 ° C. 2.16 kg (Standard ISO 1133), is preferably between 2 and 100 g / 10 min and more particularly between 2 and 50 g / 10 min.
  • thermoplastic and / or elastomeric polymeric compositions of the present invention can also be based on other polymers.
  • the composition is based on polymer (s) chosen from polyamides, polyesters, polycarbonates, polyvinyl chloride, polychlorinated vinyl chloride, polymethyl methacrylate, polystyrene, polyvinylidene fluoride, polyoxymethylene, polybutylene terephthalate.
  • the thermoplastic and / or elastomeric polymer composition has a flexural modulus of less than 300 MPa.
  • This composition is then preferably chosen from copolymers of ethylene and propylene, terpolymers of ethylene, propylene and of a diene, and block, linear or branched copolymers, of styrene and of butadiene, and their hydrogenated derivatives. All of the above polymeric compositions and the foregoing polymeric materials can be formulated to contain additives, for example: Thermal stabilizer, flame retardant, nucleating agent, reinforcing filler, impact modifier, pigment, plasticizer, lubricating agent.
  • the present invention also makes it possible to obtain a tubular structure, characterized in that it comprises at its periphery a strip according to one of claims 1 to 14, wound helically.
  • the strip according to the present invention is very long and stored intermediately on reels.
  • the helical winding of the strip around the tubular structure is obtained in the same way as the known winding of monolayer strips loaded with hollow microspheres.
  • the present invention implements a method of manufacturing the strip according to one of claims 1 to 14, characterized in that it consists in coextruding the different layers.
  • the different coextruded layers can optionally be subjected to calendering.
  • the different layers are coextruded by coextrusion tools equipped with flat dies supplying coat racks.
  • coextrusion tools equipped with flat dies supplying coat racks.
  • polypropylene is a homopolymer. Its melt flow index is 5.5 g / 10 min. (ISO 1133 standard). This product is marketed by the company SHELL under the reference PM 6100.
  • - PP3 is a polypropylene block copolymer grafted with maleic anhydride (1% by weight) in an extruder.
  • melt flow index is 40 g / 10 min. at 190 ° C under 325 g (ISO 1133 standard).
  • the Shock Modifier is a concentrate of EPR (Copolymer of ethylene and propylene) diluted in a polyolefin.
  • This product is marketed by AES under the reference VM 23.
  • Hollow microspheres are hollow glass beads (BDVC) with an average diameter of 38 ⁇ m and a density of 0.38.
  • the thermal stabilizer consists of 50% by weight of decanedioic acid, bis (2,2,6,6- tetramethyl-4-piperidinyl) ester (Trade name: Tinuvin 770), 33% by weight of distearyl ester of 1 thiodipropionic acid (Trade name: PS 802) and 17% by weight of an equal parts mixture by weight of Tris (2, 4-diterbutylphenyl) phosphite and Tetrakis methylene [(3,5- diterbytyl-4-hydroxy ) hydrocinnamate-methane]
  • BDVC All components, except BDVC, are introduced at the start of the extruder. BDVCs are introduced in the molten zone approximately
  • the set temperatures of the extruder heating zones are those, conventional, of polypropylene-based compounds: 220 ° C-250 ° C.
  • the total flow rate is fixed at 50 kg / hour.
  • the screw profile is specially adapted to this type of compound, being particularly little mixer between the BDVC addition zone and the die outlet of the machine in order to minimize the breakage rate of BDVC.
  • a degassing well is available after the BDVC introduction zone.
  • the rods coming from the machine are cooled by water tank, then granules.
  • the density of compound A is 0.687, that of compound B is 0.645 (densities measured by pycnometry according to ISO R 1183 B). These values close to the theoretically obtainable values mean that the process induces practically no case of BDVC.
  • These compounds A or B are then used to feed one of the extruders of a coextruded plate installation comprising 3 layers. These plates are cooled and calendered at the outlet of the coextrusion die.
  • the coextrusion die is such that the plates have a width of 365 mm and a total thickness of 5 mm, for a length of 2 m.
  • the extruders feeding the different layers are such as:
  • Middle layer extruder A single screw extruder with a diameter of 90 mm and a length of 26 diameters is used.
  • the screw profile is suitable for the extrusion of polyolefins.
  • the compression ratio of the screw is such that for the chosen screw speed, the pressure at the head of the extruder is sufficient to overcome the pressure drop generated by the coextrusion tool but less than the isostatic compressive strength of the spheres hollow.
  • the extruder set temperatures are 205-225 ° C.
  • Extruders of the two outer layers Each extruder has a diameter of 30 mm and a length of 23 diameters.
  • the set temperatures are 200 to 230 ° C.
  • the screw speed and screw profile are such that the break rate of BDVC is minimized.
  • the pressure at the head of the extruder is however sufficient to overcome the pressure drop generated by the coextrusion tool.
  • the screw speeds between the extruder feeding the middle layer and the extruders feeding the outer layers are also chosen as a function of the desired distribution of the thickness of each of the three layers.
  • the coextrusion die as well as the connections between the extruders and the die are at a temperature of 220 ° C.
  • the coextruded plate is calendered at a speed of 0.7 m / min.
  • the temperature of the calendering rolls is 90-100 ° C.
  • the plate has a length of 1 m.
  • Plate No. 4 is in fact a single-material plate since the three extruders are supplied with compound A. This plate serves as a control. In the other three tests leading to plates No. 1 to 3, the outer layers are made of PP1 or PP2.
  • the density of plate No. 4 is close to that of compound A. This indicates that the coextrusion step did not generate any significant breakage of the BDVCs.
  • Plate no. 3 has a density close to that of control plate no. 4. This results from the use of compound B which is less dense than compound A.
  • the coextruded sheets above are cut into strips with a width of 50 ⁇ 0.3 mm and a length of 1 m.
  • the test consists of winding a strip on a steel cylinder of a determined diameter.
  • Winding consists of manually forming a complete helical turn around the cylinder and in contact with the latter.
  • the invention makes it possible to obtain a multilayer strip containing hollow insulating microspheres and having better mechanical resistance to breakage during winding than a single-layer strip.
  • the multilayer strips according to the invention have an excellent surface appearance without apparent roughness.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Laminated Bodies (AREA)

Abstract

Cette bande multicouche destinée à être enroulée de manière hélicoïdale autour d'une structure tubulaire en vue de son isolation thermique, comporte une couche de la mousse mécaniquement solidaire à au moins une autre couche d'une composition polymérique, thermoplastique et/ou élastomérique, les deux couches s'étendant sur toute la longueur de la bande et montrant en section radiale chacune une épaisseur déterminée, l'épaisseur de la mousse étant comprise entre 0,5 mm et 50 mm et représentant au moins 50 % de l'épaisseur totale de la bande, l'épaisseur de l'autre couche étant comprise entre 50 νm et 5 mm.

Description

Bande comportant une matière polymérique chargée de microsphères creuses (mousse)
L'invention concerne une bande comportant une matière polymérique chargée de microsphères creuses ci- après dénommée "mousse" et destinée à être enroulée de manière hélicoïdale autour d'une structure tubulaire en vue de son isolation thermique.
L'invention a trait également à la structure tubulaire comportant la bande enroulée ainsi qu' au procédé de fabrication de la bande.
L'effet d'isolation thermique apporté par des matières polymériques comportant des charges creuses est connu. Cet effet est exploité dans l'isolation des conduites sous-marines transportant des produits à une température plus élevée que celle de l'eau ambiante, par exemple le transport de pétrole brut .
La demande de brevet EP 0575012 Al propose une méthode pour isoler ces conduites sous-marines . Cela consiste à enrouler une bande produite par extrusion au travers d'une filière de dimensions particulières d'une matière polymérique à base de polyoléfine - en particulier le polypropylène - chargée de microsphères creuses.
L'expression "microsphères" n'a pas forcément une connotation géométrique et par conséquent les microsphères peuvent ou non, être réellement sphériques .
Les microsphères sont faites de polymères ou de matériaux inorganiques, notamment le verre à base de silice . Cette demande de brevet souligne la nécessité d'un bon état de surface de la bande extrudée qui doit être exempte de défauts ou d'entailles susceptibles de conduire à une rupture de bande pendant l'enroulement. Cette qualité de surface n'est obtenue que par des dimensions relatives précises de la filière et une température d' extrusion au plus de 215°C Un bon état de surface permet aussi un enroulement bande à bande sur bobine plus facile lors de l'étape de stockage de la bande, avant que celle-ci soit enroulée ensuite sur une conduite. La demande de brevet EP 0557807 Al divulgue une méthode pour obtenir des objets moulés à base de polypropylène et de charges creuses - en particulier de billes de verres creuses - où le taux de casse de ces charges est inférieur à 30 %. Les exemples montrent que ce taux de casse peut même être inférieur à 10 % si les conditions de mise en oeuvre sont bien choisies. En effet, l'isolation est d'autant meilleure qu'il y a le moins de taux de casse de ces billes dans la bande avant enroulement . La demande de brevet JP 63-278,967 enseigne un procédé pour préparer une composition composite qui se caractérise par le fait qu'on fond une résine thermoplastique dans une extrudeuse bi-axiale à deux vis tournant dans des sens opposés et que l'on ajoute des billes de verres creuses à mince paroi dans ladite résine fondue avant d'extruder le tout pour produire une feuille ou des pastilles. Ce procédé évite une casse importante des billes de verres creuses ayant un poids volumique de 0,1 à 0,9 g/cm^ et une taille de particule moyenne de 15 à 70 μm. Ces billes sont introduites par exemple dans un rapport en poids avec la résine de 27,4 %. La résine peut être du polypropylène ou de 1 'oxyde de polyphénylène.
La mise en oeuvre d'une bande isolante chargée de microsphères creuses, par son enroulement sur une conduite, entraîne d'importantes contraintes de traction sur sa face externe et de compression sur sa face interne. Ceci est d'autant plus vrai que le diamètre de la conduite est faible. Ces contraintes sont telles qu'en surface de la bande, le matériau dépasse bien souvent son allongement au seuil. Le matériau doit être donc intrinsèquement suffisamment ductile, sinon la bande casse durant 1 ' enroulement. Or lorsque le taux de charges de microsphères creuses augmente pour améliorer l'isolation spécifique, la ductilité du compound résultant diminue. Cela signifie qu'en pratique le taux de charges creuses dans de tels compounds est limité pour ne pas conduire à des ruptures de la bande lors de sa mise en oeuvre . La présente invention a pour objet de produire une bande présentant un excellent aspect de surface et pouvant s'enrouler sans rupture sur des conduites même de faible diamètre et ce, même pour des taux de charges de microsphères creuses élevés . Ce but est atteint par une bande comportant une matière polymérique chargée de microsphères creuses
(mousse) , destinée à être enroulée de manière hélicoïdale autour d'une structure tubulaire en vue de son isolation thermique, caractérisée en ce que cette bande comporte une couche de la mousse mécaniquement solidaire à au moins une autre couche d'une composition polymérique, thermoplastique et/ou élastomérique, les deux couches s 'étendant sur toute la longueur de la bande et montrant en section radiale chacune une épaisseur déterminée, l'épaisseur de la mousse étant comprise entre 0,5 mm et 50 mm et représentant au moins 50% de l'épaisseur totale de la bande, l'épaisseur de l'autre couche étant comprise entre 50 μm et 5 mm.
Cette bande à deux couches est destinée à être enroulée et mise en contact avec la structure tubulaire par sa couche de mousse, la couche de la composition polymérique thermoplastique et/ou élastomérique étant la couche externe visible de l'ensemble ainsi réalisé.
Cette couche externe subit alors d'importantes contraintes de traction. La composition polymérique est choisie de telle manière qu'elle présente de bonnes propriétés d'allongement en traction. Cette couche externe mécaniquement solidaire de la couche de mousse va donc consolider cette dernière tout en recouvrant toute microfissure de la couche de mousse provenant éventuellement d'un début de rupture de cette dernière lors de sa mise en courbure autour de la structure tubulaire. La couche externe bloque les départs de rupture de la bande et assure donc sa solidité générale. Avantageusement, la bande comporte en outre une troisième couche d'une composition polymérique thermoplastique et/ou élastomérique mécaniquement solidaire de la couche de mousse, les deux couches de composition polymérique étant situées de part et d'autre de la couche de mousse, la troisième couche ayant une épaisseur déterminée comprise entre 50 μm et 5 mm.
La couche du mousse est alors comprise entre les deux couches externes de composition polymérique. Ces deux couches renforcent la solidité mécanique de la bande à 1 ' enroulement . Les deux couches externes peuvent, soit avoir une épaisseur sensiblement identique, soit avoir des épaisseurs différentes. De plus, elles peuvent être en une même composition polymérique ou bien être en des compositions polymériques différentes.
Avantageusement, l'épaisseur de la couche de mousse représente au moins 75 % de l'épaisseur totale de la bande et de préférence au moins 85% de l'épaisseur totale de la bande. En effet la mousse chargée de microsphères creuses possède un coefficient d'isolation spécifique supérieur à ceux de la ou des autres couches et doit par conséquent être fortement présente pour assurer une isolation thermique efficace de la structure tubulaire.
Dans les applications courantes, généralement, chaque couche de composition polymérique a une épaisseur comprise entre 50 μm et 2 mm, la couche de mousse ayant une épaisseur de 3 mm à 8 mm.
De préférence, lorsque la bande comporte une troisième couche d'une composition polymérique, les deux couches de composition polymérique se rejoignent sur les bords latéraux de la bande pour former ensemble une gaine entourant entièrement la couche de mousse, cette gaine montrant une épaisseur latérale déterminée comprise entre 50 μm et 5 mm.
Cette gaine a l'avantage de fortement consolider mécaniquement la couche de mousse et également de protéger la mousse et ses éventuelles fissures contre toute introduction future d'un milieu ambiant, notamment eau douce et eau de mer. De plus la présence latérale d'une couche polymérique thermoplastique et/ou élastomérique permet d'assurer une bonne étanchéité entre les spires de l'enroulement hélicoïdal et ainsi permet de protéger la structure tubulaire elle-même du contact avec le milieu ambiant .
Généralement, dans ses applications courantes, la bande présente une largeur déterminée comprise entre 10 mm et 100 mm.
Avantageusement, la bande a la forme globalement d'un parallélépipède très allongé, autrement dit, elle présente en section radiale, la forme d'un parallélogramme, notamment un rectangle. Mais elle peut présenter toute autre forme compatible avec un enroulement hélicoïdal. En particulier, la bande sur les cotés peut avoir des zones complémentaires d'extension et de retrait venant s' imbriquer lors de 1 'enroulement .
Ces extensions sur les cotés augmentent la surface de contact des bords latéraux de la bande enroulée et ainsi l'étanchéité de l'enroulement hélicoïdal. Ce dernier produit alors une sorte de tube disposé autour de la structure tubulaire.
Avantageusement, afin d'assurer une bonne solidarité mécanique entre chaque couche de composition polymérique et la mousse, on préfère que chaque couche de composition polymérique soit séparée de la couche de mousse par une couche d'un liant d'adhésion. Les liants entre couches polymériques sont connus de 1 'homme de l'art travaillant dans le domaine de la coextrusion d'objet multicouches .
Si la matière polymérique a une bonne affinité de mélange ou d'adhésion avec la composition polymérique de la bande, par exemple lorsque la matière polymérique est la même que la composition polymérique il n'est en général pas nécessaire, malgré la présence des microsphères dans la matière polymérique, de prévoir un liant.
Par contre, lorsque la matière polymérique et la composition polymérique sont différentes et ne présentent pas une bonne adhésion, alors il peut être fortement avantageux de séparer ces couches différentes par une couche d'un liant d'adhésion. Ce liant est choisi en fonction de la nature de la matière polymérique et de la composition polymérique à solidariser.
Avantageusement, la matière polymérique est à base de polyoléfine. Cela signifie qu'elle contient en poids une part prépondérante de polyoléfine. Cette polyoléfine est par exemple du polyéthylène ou du polypropylène ou du polybutylène ou leurs copolymères .
Avantageusement également, la matière polymérique est à base de polychlorure de vinyle. La matière polymérique comporte des microsphères creuses de forme globalement sphérique mais des formes proches conviennent également. Par microsphères creuses, on entend notamment les billes creuses constituées de matériaux inorganiques et en particulier le verre, mais aussi les billes de polymères creuses, pré-expansées ou non. Ces billes de polymères creuses sont constituées d'une coque polymérique et contiennent un agent gonflant qui fait effet lorsque ces billes sont portées à une température suffisante. Cet agent peut par chauffage libérer du gaz carbonique ou de l'azote qui gonfle alors la bille.
La masse volumique réelle moyenne (MVRM) (mesurée selon ASTM D 2840-84 par pycnomètre à air) des microsphères creuses est généralement comprise entre 0,03 et 0,90 g/cm3. Lorsque les microsphères creuses sont constituées de matériaux inorganiques, tel le verre, cette MVRM est de préférence comprise entre 0,3 et 0,5 g/cm3. Le diamètre moyen des microsphères est en général de 10 à 100 μm et de préférence de 20 à 60 μm.
La résistance à la compression isostatique des microsphères creuses, mesurée selon ASTM D 3102-72 dans le glycérol et conduisant à une réduction de leur volume de 10 %, est également supérieure à 1 MPa et de préférence comprise entre 5 et 100 MPa. Ces microsphères peuvent être traitées avec des agents de couplage connus tels que les silanes ou les titanates. Ces agents de couplage sont en général présents à moins de 3 % en poids.
La matière polymérique, en plus des microsphères, peut comporter également d'autres charges, par exemple le talc, le mica, la craie pulvérulente, le kaolin, la wollastonite, les fibres de verre ou de carbone.
Avantageusement, les charges, creuses ou non, sont introduites dans la matière polymérique et l'ensemble est homogénéisé dans une extrudeuse. L'extrudeuse est par exemple une extrudeuse monovis, une extrudeuse bivis ou un comalaxeur du type BUSS, et de préférence un comalaxeur ou une extrudeuse bivis corotative autonettoyante. Les charges sont de préférence introduites dans la zone fondue de la matière polymérique.
Avantageusement, la composition polymérique thermoplastique et/ou élastomérique est à base de polymère (s) , choisi (s) parmi les polyoléfines . De préférence ces polyoléfines sont choisies parmi le polyéthylène et ses copolymères avec les acétates, les acrylates, les α-oléfines, le polypropylène et le polybutylène.
Ces polyoléfines peuvent être greffées par des monomères insaturés d'acide ou d'anhydride d'acide notamment acide ou anhydride maleïque ou encore greffées par du méthacrylate de glycidyle.
Parmi les compositions polymériques, on préfère celles basées sur le polypropylène et en particulier celles basées sur les copolymères bloc propylène/éthylène. Ces copolymères peuvent contenir de 4 % à 16 % en poids d'éthylène.
Ces derniers copolymères peuvent également contenir les polyoléfines modifiées par greffage ci-dessus rapportées .
L'indice de fluidité ("Melt Flow Index") des compositions polymériques à base de polyoléfines est généralement compris entre 1 et 200 g/10 min à 230°C sous 2,16 kg (Norme ISO 1133) , est de préférence entre 2 et 100 g/10 min et plus particulièrement entre 2 et 50 g/10 min.
Les compositions polymériques thermoplastiques et/ou élastomériques de la présente invention peuvent être également à base d'autres polymères. Avantageusement, la composition est à base de polymère (s) choisi (s) parmi les polyamides, les polyesters, les polycarbonates, le polychlorure de vinyle, le polychlorure de vinyle surchloré, le polyméthacrylate de méthyle, le polystyrène, le polyfluorure de vinylidène, le polyoxyméthylène, le polybutylène terephtalate.
Dans certains cas, la composition polymérique thermoplastique et/ou élastomérique a un module de flexion inférieur à 300 MPa. Cette composition est alors de préférence choisie parmi les copolymères de 1 ' éthylène et du propylène, les terpolymères de l' éthylène, du propylène et d'un diène, et les copolymères blocs, linéaires ou branchés, du styrène et du butadiène, et leurs dérivés hydrogénés . Toutes les compositions polymériques précédentes et les matières polymériques précédentes peuvent être formulées pour contenir des additifs, par exemple : Stabilisant thermique, agent ignifugeant, agent nucléant, charge renforçante, modifiant choc, pigment, plastifiant, agent lubrifiant.
Un descriptif non exhaustif de ces additifs utilisables est disponible dans l'ouvrage annuel "Plastics Compounding Redbook" ISBN 0148-9119.
La présente invention permet également d'obtenir une structure tubulaire, caractérisée en ce qu'elle comporte à sa périphérie une bande selon 1 'une des revendications 1 à 14, enroulée de manière hélicoïdale.
Habituellement, la bande selon la présente invention est de grande longueur et stockée intermédiairement sur des bobines. L'enroulement hélicoïdal de la bande autour de la structure tubulaire est obtenu de la même manière que 1 ' enroulement connu des bandes monocouches chargées de microsphères creuses. La présente invention met en oeuvre un procédé de fabrication de la bande selon l'une des revendications 1 à 14, caractérisé en ce qu'il consiste à coextruder les différentes couches. Les différentes couches coextrudees peuvent être éventuellement soumises à un calandrage.
La technique générale de la coextrusion - suivi ou non d'un calandrage - est décrite dans le chapitre 3 de l'ouvrage "Plastics Processing Data Handbook", ISBN 0-442- 31869-3, Editeur : Van Nostrand Reinhold, New-York.
Dans la présente invention, avantageusement, les différentes couches sont coextrudees par des outils de coextrusion équipés de filières plates à alimentation en portemanteaux. La présente invention sera mieux comprise à
1 ' aide des exemples qui vont suivre et qui sont rapportés à titre purement illustratif.
Partie Expérimentale
1) Description des matériaux utilisés - Le PP1 (polypropylène) est un copolymère bloc éthylène/propylène à 8 % en poids d' éthylène par rapport au poids total de PP1.
Son indice de fluidité est de 12g/10 min. à 230°C sous 2,16 kg (norme ISO 1133) . Ce produit est commercialisé par la Société APPRYL sous la référence 3060 MN5.
- Le PP2 (polypropylène) est un homopolymère . Son indice de fluidité est de 5,5 g/10 min. (norme ISO 1133) . Ce produit est commercialisé par la Société SHELL sous la référence PM 6100.
- Le PP3 est un polypropylène copolymère bloc greffé anhydride maleïque (1 % en poids) en extrudeuse.
Son indice de fluidité est de 40 g/ 10 min. à 190°C sous 325 g (norme ISO 1133) .
Ce produit est commercialisé par la Société ELF ATOCHEM sous la référence OREVAC CA 100.
Le Modifiant Choc est un concentré d'EPR (Copolymère d'éthylène et de propylène) dilué dans une polyoléfine.
Sa densité est de 0,89 et son indice de fluidité est de 0,6g/ 10 min. à 230°C sous 2,16 Kg (norme ISO 1133) .
Ce produit est commercialisé par la Société AES sous la référence VM 23.
- Les microsphères creuses sont des billes de verres creuses (BDVC) ayant un diamètre moyen de 38 μm et une densité de 0,38.
La résistance à la compression isostatique de ces BDVC conduisant à une réduction de volume de 10 % est de 28 MPa (mesuré selon ASTM D 3102-72 dans le glycérol) . Ce produit est commercialisé par la Société 3M sous la référence SCOTCHLITE B 38.
- Le stabilisant thermique est constitué de 50 % en poids d'acide décanedioïque, bis (2,2,6,6- tetraméthyl-4-piperidinyl) ester (Nom commercial: Tinuvin 770) , de 33 % en poids de distéarylester de 1 ' acide thiodipropionique (Nom commercial : PS 802) et de 17 % en poids d'un mélange à parts égales en poids de Tris (2, 4-diterbutylphenyl) phosphite et de Tétrakis méthylène [ (3,5- diterbytyl-4-hydroxy) hydrocinnamate-méthane]
(Nom commercial : B 225) . 2) Réalisation de bande multicouches 2.1.) Préparation de la matière polymérique chargée de BDVC. Sur une extrudeuse Bivis corotative autonettoyante WERNER ZSK 40 de diamètre 40 mm et de longueur égale à 40 diamètres, on prépare les compounds suivants : les chiffres rapportés ci-après expriment le pourcentage en poids par rapport au poids total . 2.1.1.) Compound A
PP1 34,2
PP2 34,2 PP3 1,0
Modifiant choc 10,0
BDVC 20,0
Stabilisant thermique 0,6
100 % 2.1.2) Compound B
PP1 30,2 PP2 30,7
PP3 1,0
Modifiant choc 10,0
BDVC 27,0
Stabilisant thermique 0,6
100 % Tous les composants, à l'exception de BDVC, sont introduits en début d' extrudeuse . Les BDVC sont introduites en zone fondue environ
24 diamètres après l'entrée de la machine. Les températures de consignes des zones de chauffe de l'extrudeuse sont celles, classiques, des compounds à base de polypropylène : 220°C-250°C. Le débit total est fixé à 50 Kg/heure. Le profil de vis est spécialement adapté à ce type de compound, en étant particulièrement peu malaxeur entre la zone d'addition des BDVC et la sortie filière de la machine afin de minimiser le taux de casse des BDVC. Un puits de dégazage est disponible après la zone d'introduction des BDVC. Les joncs issus de la machine sont refroidis par bac à eau, puis granulés.
La densité du compound A est de 0,687, celle du compound B de 0,645 (densités mesurées par pycnomêtrie selon la norme ISO R 1183 B) . Ces valeurs proches des valeurs théoriquement obtenables signifient que le procédé n'induit pratiquement pas de casse des BDVC.
Ces compounds A ou B sont ensuite utilisés pour alimenter l'une des extrudeuses d'une installation de plaques coextrudees comportant 3 couches. Ces plaques sont refroidies et calandrées en sortie de filière de coextrusion. La filière de coextrusion est telle que les plaques ont une largeur de 365 mm est une épaisseur totale de 5 mm, pour une longueur de 2 m.
Les extrudeuses alimentant les différentes couches sont telles que :
2.2) Extrudeuse de la couche médiane On utilise une extrudeuse monovis de diamètre 90 mm et de longueur 26 diamètres. Le profil de vis est adapté à l'extrusion de polyoléfines. Le taux de compression de la vis est tel que pour la vitesse de vis choisie, la pression en tête d' extrudeuse est suffisante pour vaincre la perte de charge générée par l'outillage de coextrusion mais inférieure à la résistance à la compression isostatique des sphères creuses. Les températures de consigne de l'extrudeuse sont de 205-225°C.
2.3) Extrudeuses des deux couches externes Chaque extrudeuse a un diamètre de 30 mm et une longueur de 23 diamètres. Les températures de consigne sont de 200 à 230°C. La vitesse de vis et le profil de vis sont tels que le taux de casse des BDVC est minimisé. La pression en tête d' extrudeuse est cependant suffisante pour vaincre la perte de charge générée par l'outillage de coextrusion. Les vitesses de vis entre l'extrudeuse alimentant la couche médiane et les extrudeuses alimentant les couches externes sont également choisies en fonction de la répartition désirée de l'épaisseur de chacune des trois couches .
La filière de coextrusion ainsi que les raccords entre les extrudeuses et la filière sont à une température de 220°C.
La plaque coextrudée est calandrée à une vitesse de 0,7 m/min. La température des cylindres de calandrage est de 90-100°C. La plaque a une longueur de 1 m.
On prépare ainsi 4 plaques tri-couches en maintenant sensiblement constantes les épaisseurs des couches : la couche médiane à une épaisseur de 4,0 mm. Elle est entourée de part et d'autre d'une couche externe de 0,5 mm d'épaisseur. Les autres caractéristiques de ces plaques apparaissent dans le tableau I suivant :
TABLEAU I
Figure imgf000015_0001
* Plaque témoin
La plaque n° 4 est en fait une plaque monomatériau puisque les trois extrudeuses sont alimentées avec le compound A. Cette plaque sert de témoin. Dans les trois autres essais conduisant aux plaques N° 1 à 3, les couches externes sont en PP1 ou PP2.
La densité de la plaque n° 4 est proche de celle du compound A. Cela indique que l'étape de coextrusion n'a pas généré de casse importante des BDVC.
Les plaques n° 1 et 2 ont une densité légèrement supérieure à la densité de la plaque n° 4. Cela est dû à la densité plus forte du PP1 ou du PP2 (densité = 0,905) par rapport à celle du compound A.
La plaque n° 3 a une densité voisine de celle de la plaque témoin n° 4. Cela résulte de l'utilisation du compound B moins dense que le compound A.
Dans la fabrication des plaques ci-dessus, on a choisi de préparer les compounds A ou B puis de les réextruder dans un appareillage de coextrusion. Ces deux étapes d'extrusion puis de coextrusion peuvent être ramenées à une seule si l'extrudeuse servant à préparer ces compounds alimente directement la couche centrale de l'appareillage de coextrusion. 3.) Préparation des bandes
Les plaques coextrudees ci-dessus sont découpées en bandes d'une largeur de 50 ± 0,3 mm et d'une longueur de 1 m.
Ces bandes auraient pu être réalisées directement par une filière ayant les dimensions requises.
Les plaques N° 1 à 4 conduisent donc à des bandes correspondantes n° 1 à .
3.1.) Test d'enroulement sur mandrin. Les bandes N° 1 à 4 sont testées pour évaluer leur aptitude à résister à un enroulement hélicoïdal autour d'une structure tubulaire.
Le test consiste à enrouler une bande sur un cylindre en acier d'un diamètre déterminé.
L'enroulement consiste à former manuellement une spire hélicoïdale complète autour du cylindre et en contact avec ce dernier.
Les résultats sont constatés sur 5 bandes issues de chaque plaque et reportés dans le tableau II suivant.
TABLEAU II
Mandrin de Mandrin de
Bande diamètre 100 mm diamètre 50 mm N° Nombre de bandes Nombre de bandes cassées cassées sur 5 essais sur 5 essais
1 0 0
2 0 0
3 0 0
4* 1 5
* Bande comparative
L'invention permet d'obtenir une bande multicouche contenant des microsphères creuses isolantes et possédant une meilleure résistance mécanique à la rupture lors de l'enroulement qu'une bande mono-couche.
De plus, les bandes multicouches selon l'invention ont un excellent aspect de surface sans rugosité apparente.

Claims

REVENDICATIONS
1. Bande comportant une matière polymérique chargée de microsphères creuses (mousse) , destinée à être enroulée de manière hélicoïdale autour d'une structure tubulaire en vue de son isolation thermique, caractérisée en ce que cette bande comporte une couche de la mousse mécaniquement solidaire à au moins une autre couche d'une composition polymérique, thermoplastique et/ou élastomérique, les deux couches s 'étendant sur toute la longueur de la bande et montrant en section radiale chacune une épaisseur déterminée, l'épaisseur de la mousse étant comprise entre 0,5 mm et 50 mm et représentant au moins 50% de l'épaisseur totale de la bande, l'épaisseur de l'autre couche étant comprise entre 50 μm et 5 mm.
2. Bande selon la revendication 1, caractérisée en ce qu'elle comporte en outre une troisième couche d'une composition polymérique thermoplastique et/ou élastomérique mécaniquement solidaire de la couche de mousse, les deux couches de composition polymérique étant situées de part et d'autre de la couche de mousse, la troisième couche ayant une épaisseur déterminée comprise entre 50 μm et 5 mm.
3. Bande selon la revendication 1 ou 2, caractérisée en ce que chaque couche de composition polymérique a une épaisseur comprise entre 50 μm et 2 mm, la couche de mousse ayant une épaisseur de 3 mm à 8 mm.
4. Bande selon la revendication 2, caractérisée en ce que les deux couches de composition polymérique se rejoignent sur les bords latéraux de la bande pour former ensemble une gaine entourant entièrement la couche de mousse, cette gaine montrant une épaisseur latérale déterminée comprise entre 50 μm et 5 mm.
5. Bande selon l'une des revendications 1 à 4, caractérisée en ce qu'elle présente une largeur déterminée comprise entre 10 mm et 100 mm.
6. Bande selon l'une des revendications 1 à 5, caractérisée en ce que chaque couche de composition polymérique est séparée de la couche de mousse par une couche d'un liant d'adhésion.
7. Bande selon l'une des revendications 1 à 6, caractérisée en ce que la matière polymérique est à base de polyoléfine.
8. Bande selon l'une des revendications 1 à 6, caractérisée en ce que la matière polymérique est à base de polychlorure de vinyle.
9. Bande selon l'une des revendications 1 à 8, caractérisée en ce que la composition polymérique thermoplastique et/ou élastomérique est à base de polymère (s) choisi (s) parmi les polyoléfines.
10. Bande selon la revendication 9, caractérisée en ce que les polyoléfines sont choisies parmi le polyéthylène et ses copolymères avec les acétates, les acrylates, les α-oléfines, le polypropylène et le polybutylène .
11. Bande selon la revendication 9 ou 10, caractérisée en ce que les polyoléfines sont greffées par des monomères insaturés d'acide ou d'anhydride d'acide ou encore par du méthacrylate de glycidyle.
12. Bande selon l'une des revendications 1 à 8, caractérisée en ce que la composition polymérique thermoplastique et/ou élastomérique est à base de polymère (s) choisi (s) parmi les polyamides, les polyesters, les polycarbonates, le polychlorure de vinyle, le polychlorure de vinyle surchloré, le polymethacrylate de méthyle, le polystyrène, le polyfluorure de vinylidène, le polyoxyméthylène, le polybutylène terephatalate .
13. Bande selon l'une des revendications 1 à 8, caractérisée en ce que la composition polymérique thermoplastique et/ou élastomérique a un module de flexion inférieur à 300 MPa.
14. Bande selon la revendication 13, caractérisée en ce que la composition polymérique thermoplastique et/ou élastomérique est choisie parmi les copolymères de 1'éthylène et du propylène, les terpolymères de l' éthylène, du propylène et d'un diène, et les copolymères blocs, linéaires ou branchés, du styrène et du butadiène, et leurs dérivés hydrogénés.
15. Structure tubulaire, caractérisée en ce qu'elle comporte à sa périphérie une bande, selon l'une des revendications 1 à 14, enroulée de manière hélicoïdale.
16. Procédé de fabrication de la bande selon l'une des revendications 1 à 14, caractérisé en ce qu'il consiste à coextruder les différentes couches.
17. Procédé suivant la revendication 16, caractérisé en ce que les différentes couches sont coextrudees par des outils de coextrusion équipés de filières plates à alimentation en portemanteau.
18. Procédé suivant la revendication 16 ou 17, caractérisé en ce les différentes couches coextrudees sont soumises à un calandrage.
PCT/FR1996/000507 1995-04-11 1996-04-03 Bande comportant une matiere polymerique chargee de microspheres creuses (mousse) WO1996032254A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU54034/96A AU5403496A (en) 1995-04-11 1996-04-03 Strip comprising a hollow microsphere containing polymeric ( foam) material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9504326A FR2732974B1 (fr) 1995-04-11 1995-04-11 Bande comportant une matiere polymerique chargee de microspheres creuses (mousse)
FR95/04326 1995-04-11

Publications (1)

Publication Number Publication Date
WO1996032254A1 true WO1996032254A1 (fr) 1996-10-17

Family

ID=9477988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1996/000507 WO1996032254A1 (fr) 1995-04-11 1996-04-03 Bande comportant une matiere polymerique chargee de microspheres creuses (mousse)

Country Status (3)

Country Link
AU (1) AU5403496A (fr)
FR (1) FR2732974B1 (fr)
WO (1) WO1996032254A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004360756A (ja) * 2003-06-03 2004-12-24 Three M Innovative Properties Co フランジ部シール材

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0188340A1 (fr) * 1985-01-17 1986-07-23 Webco Limited Pipeline avec enduit
FR2587934A2 (fr) * 1985-08-13 1987-04-03 Hutchinson Materiau d'isolation thermique du type syntactique, machine et procede pour sa fabrication et moyen d'isolation comportant un tel materiau
DE3625230A1 (de) * 1986-07-25 1988-02-04 Missel Gmbh & Co E Wickelband
GB2215427A (en) * 1988-03-04 1989-09-20 Marathon Oil U K Ltd Coated pipes
WO1993019927A1 (fr) * 1992-03-31 1993-10-14 W.R. Grace & Co.-Conn. Mousse thermoplastique a microspheres servant a isoler un tuyau
EP0575012A1 (fr) * 1992-06-19 1993-12-22 Shell Internationale Researchmaatschappij B.V. Matériaux composites polyoléfine/charge et leur utilisation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0188340A1 (fr) * 1985-01-17 1986-07-23 Webco Limited Pipeline avec enduit
FR2587934A2 (fr) * 1985-08-13 1987-04-03 Hutchinson Materiau d'isolation thermique du type syntactique, machine et procede pour sa fabrication et moyen d'isolation comportant un tel materiau
DE3625230A1 (de) * 1986-07-25 1988-02-04 Missel Gmbh & Co E Wickelband
GB2215427A (en) * 1988-03-04 1989-09-20 Marathon Oil U K Ltd Coated pipes
WO1993019927A1 (fr) * 1992-03-31 1993-10-14 W.R. Grace & Co.-Conn. Mousse thermoplastique a microspheres servant a isoler un tuyau
EP0575012A1 (fr) * 1992-06-19 1993-12-22 Shell Internationale Researchmaatschappij B.V. Matériaux composites polyoléfine/charge et leur utilisation

Also Published As

Publication number Publication date
FR2732974B1 (fr) 1997-05-16
FR2732974A1 (fr) 1996-10-18
AU5403496A (en) 1996-10-30

Similar Documents

Publication Publication Date Title
EP1042394B2 (fr) Compositions antistatiques a base de polyamide
CA2419408C (fr) Structure multicouche thermoplastique pour reservoir a gaz
US8057732B2 (en) Method for making a polyamide hollow body
EP2098365B1 (fr) Structure multicouche en polyamide comprenant une couche stabilisée avec un stabilisant organique et une couche stabilisée avec un stabilisant à base de cuivre
EP1036967B1 (fr) Tube antistatique à base de polyamides pour transport d'essence
EP0791153B2 (fr) Canalisations a base de polyamide et de polyolefine pour le transport
US20070204929A1 (en) Multilayer Pipe
EP1321703B2 (fr) Tuyaux en plastique
EP0250278A1 (fr) Nouveau matériau de remplissage et de flottabilité-procédé de fabrication et ensembles tubulaires incorporant ce matériau
EP0786319B1 (fr) Film ayant une faible perméabilité aux hydrocarbures
WO1996032254A1 (fr) Bande comportant une matiere polymerique chargee de microspheres creuses (mousse)
CA1328551C (fr) Procede de fabrication de films a partir de polymeres fluides semi-cristallins
EP1397248B1 (fr) Tube protege en matiere plastique et procede de fabrication dudit tube
EP0440559A2 (fr) Composition de polyoléfine et son utilisation
BE1008712A3 (fr) Article composite et procede pour sa fabrication.
EP1004627B1 (fr) Matériaux de résines thermoplastiques renforcées par des fibres longues et incorporant des charges, et leur procédé de fabrication
EP3325272B1 (fr) Composition thermoplastique de liant de coextrusion versatile et structure multicouche incluant cette composition
EP2522506A1 (fr) Nouveau film thermo-rétractable à base de polypropylène
FR2740381A1 (fr) Procede de fabrication d'objet par extrusion d'un broyat de film multicouches
WO1996002786A9 (fr) Tuyau composite et procede pour sa fabrication

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN JP KR MX NO RU UA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: CA

122 Ep: pct application non-entry in european phase