WO1996032078A1 - Rolling membrane stent delivery device - Google Patents
Rolling membrane stent delivery device Download PDFInfo
- Publication number
- WO1996032078A1 WO1996032078A1 PCT/IB1996/000146 IB9600146W WO9632078A1 WO 1996032078 A1 WO1996032078 A1 WO 1996032078A1 IB 9600146 W IB9600146 W IB 9600146W WO 9632078 A1 WO9632078 A1 WO 9632078A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- stent
- sheath
- catheter
- layer
- distal end
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/95—Instruments specially adapted for placement or removal of stents or stent-grafts
- A61F2/962—Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve
- A61F2/966—Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve with relative longitudinal movement between outer sleeve and prosthesis, e.g. using a push rod
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/95—Instruments specially adapted for placement or removal of stents or stent-grafts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2210/00—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2210/0014—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol
- A61F2210/0019—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol operated at only one temperature whilst inside or touching the human body, e.g. constrained in a non-operative shape during surgery, another temperature only occurring before the operation
Definitions
- the present invention relates to devices for deploying body implantable prosthesis intended for fixation in body lumens, and more particularly to the delivery and placement of radially self-expanding stents or other radially expandable stents.
- Certain prosthesis known as radially self-expanding stents are useful in a variety of patient treatment and diagnostic procedures, for fixation in blood vessels, biliary ducts and other lumens to maintain the passages.
- a highly preferred construction for a radially self-expanding stent is a flexible tubular braided structure formed of helically wound thread elements, as disclosed in U.S. Patent No. 4,655,771 (Wallsten).
- Wallsten teaches use of a catheter for delivering the stent to the intended treatment site.
- a pair of grips maintain the stent at the distal end of the catheter and are controlled by an operational member at the proximal end of the catheter to release the stent after positioning and initial medial stent self-expansion.
- Another approach to deploying self-expanding stents is shown in U.S. Patent No. 4,732,152 (Wallsten et al) and in U.S. Patent No. 4,848,343 (Wallsten et al).
- this approach utilizes a tubular membrane folded over upon itself to provide a double wall for maintaining a self- expanding stent at the distal end of the catheter.
- the outer wall of the membrane is movable proximally to expose the stent and allow a radial self-expansion, beginning at the distal end of the stent. More particularly, one end of the membrane is attached to an inner catheter or probe, and the other end of the membrane is connected to an outer catheter that surrounds the probe. When the outer catheter is moved proximally relative to the inner catheter, it moves the outer wail of the membrane proximally as well, to expose the stent and allow radial self-expansion. Yet another approach is shown in PCT patent application, Publication No.
- WO 94/15549 entitled “Method for Deploying Body Implantable Stent”.
- This application describes several stent deployment devices employing interior and exterior catheters to deploy prostheses including radially self-expanding stents.
- One of these versions ( Figures 9-13) employs a rolling membrane controlled through manipulation of the catheters to release a stent for self-expansion.
- Stents constructed of a recovery metal can be used in lieu of radially self- expanding stents for certain applications.
- a recovery metal stent may be formed initially in an expanded radius configuration, then plastically deformed while cool into a reduced radius configuration for delivery to a treatment site. Following delivery the stent is heated, which causes K to radially expand toward its original radius and into contact with tissue at the treatment site.
- Devices for delivering recovery metal stents and radially self-expanding stents can be constructed according to the same general principles.
- these devices While quite effective in certain applications, these devices generally incorporate interior catheters, probes or other members surrounded by the stent being deployed, and generally rely on a relatively rigid outer member, usually an exterior catheter, to surround and maintain the stent under radial compression.
- a relatively rigid outer member usually an exterior catheter
- Such devices may be too large for deploying stents within narrower blood vessels and other body passages, and may be difficult to maneuver distally through serpentine passages defined by the body lumens.
- a dilatation balloon mounted near the distal end of the catheter, can be used for this purpose.
- Another object is to provide a reduced diameter stent retaining tip for a stent deployment catheter.
- a device for deploying an expandable stent at a treatment site within a body includes a first (or inner) catheter and a stent retaining member.
- the member is disposed at the distal end region of first catheter and includes an inner layer extending distally beyond the first catheter.
- the member is turned back upon itself to form an outer layer extended toward the first catheter.
- the inner layer is adapted to retain an expandable stent in a reduced state along its axial length, with the stent located distally of the first catheter.
- a means is operable to displace the outer layer relative to the first catheter after delivery, to remove the member from its retaining relation to the stent, to release the stent for expansion at the treatment site.
- the retaining member is a sheath or rolling membrane that surrounds the stent to retain the stent in the reduced state.
- the preferred sheath comprises a tubular rolling membrane. Because the stent is maintained distally of the catheter rather than surrounding the catheter, it can be delivered at a diameter less than that of the catheter.
- the inner layer preferably has an inside diameter no larger than the outside diameter of the first catheter. When the stent is radially self- expanding, the inner layer alone (or a combination of the inner and outer layers) retains the stent in a radially compressed, axialiy elongated state. The compressed stent and sheath cooperate with one another to provide an improved distal tip for the catheter.
- the compressed stent and membrane provide a highly favorable combination of axial rigidity and compliance of the tip in bending to accommodate tortuous passageways in blood vessels and other body lumens. Further improvement is realized by shaping the sheath to form a tapered distal tip. This is accomplished by forming the sheath so that the inner and outer layers, near the point at which the sheath is turned back upon itself, converge in the distal direction. If desired, axial filaments or other stiffening can be provided along the sheath.
- Release of the stent involves retracting the sheath, i.e. moving the outer sheath layer proximally to progressively peel or roll the sheath membrane away from the stent. Preferably this is accomplished with a second or outer catheter that surrounds the first catheter and is attached at its distal end to the sheath outer layer.
- the sheath is rolled by moving the outer catheter proximally relative to the first (inner) catheter. Release is enhanced by a fluid tight construction of the membrane that facilitates introduction of a fluid under pressure between the inner and outer layers.
- selection of low friction membrane material, or application of low friction coatings to the membrane between the inner and outer sheath layers can allow the rolling membrane to be withdrawn without applying pressure between the layers.
- a dilatation balloon is provided near the distal tip of the catheter.
- the sheath has sufficient length in its inner and outer layers combined, to exceed the axial distance from the catheter distal tip to a proximal end of the dilatation balloon. Consequently, the sheath after retraction extends proximally along the catheter from the distal tip, in surrounding relation to the balloon along the full length of the balloon. So arranged, the sheath provides a layer of protection particulariy useful during high pressure angioplasty procedures. Were the dilatation balloon to burst, the dilatation fluid would tend to flow proximally along the sheath and catheter and remain inside of the sheath. Thus, the sheath protects arterial or other tissue against the risk of exposure to exploding or jetting balloon dilatation fluid. The sheath also prevents any resultant fragments of balloon material from escaping into the bloodstream.
- a highly preferred device employs an exterior catheter with a lumen containing an interior catheter, with opposite ends of the sheath secured to the respective catheters and with the sheath inner and outer layers extending distally of both catheters.
- the outer catheter provides a reliable means for proximally pulling the outer sheath layer to release the stent. Fluids can be provided to the region between the sheath layers via a lumen of the exterior catheter.
- the sheath alone retains the stent, for a smaller diameter and more maneuverable yet axialiy rigid deployment device. When the sheath is retracted or proximally withdrawn, the distal end of the inner catheter becomes the distal tip of the device.
- the sheath overlies and surrounds a dilatation balloon to protect tissue from exposure to jetting balloon dilatation fluid in the event of a balloon rupture during an angioplasty procedure.
- Figure 1 is an elevation of a device for delivering and deploying a radially self-expanding stent in accordance with the present invention
- Rgures 2 and 3 are enlarged sectional views of portions of Figure 1 ;
- Figure 4 is a sectional view taken along the line 4-4 in Figure 1 ;
- Figure 5 is a further enlarged view of the device distal end;
- Rgures 6-9 are schematic views illustrating use of the device to deploy a radially self-expanding stent;
- Figure 10 is an elevation in section of a distal end region of an alternative embodiment device for deploying radially self-expanding stents
- Figure 11 is an elevational view of a distal region of another alternative embodiment deployment device
- Figure 12 is a sectional view taken along the line 12-12 in Figure 11 ; and Rgures 13 and 14 illustrate the distal end portion of a further alternative embodiment device.
- a deployment device 16 for delivering a prosthesis, in particular a radially self-expanding stent, to an intended treatment location within a body lumen such as an artery.
- deployment device 16 is manipulated to controllably release the stent for radial self-expansion to a fixation site within the lumen.
- a balloon mounted on the device is expanded to force the stent radially outward against surrounding tissue, to more reliably establish a final stent position and axial length.
- Deployment device 16 includes an elongate and flexible outer catheter 18 constructed of a biocompatible thermoplastic elastomer, e.g. polyurethane or nylon.
- the outside diameter of the catheter typically is in the range of 2-42 Fr. (0.7-14 mm).
- the preferred catheter diameter depends largely on the intended use. For example, the preferred range for coronary applications is about 2-7 Fr. (0.7-2.3 mm), with peripheral applications calling for diameters of about 2-12 Fr. (0.7-4 mm). For abdominal aortic aneurysm, esophageal and trachea! applications, a more preferred range is 7-42 Fr. (2.3-14 mm).
- Outer catheter 18 has a lumen 20 that runs the length of the catheter.
- a tubular sheath 22 is mounted to the distal end 24 of catheter 18.
- Sheath 22 extends distally beyond the catheter and is shaped to provide a distally converging tip 26.
- a portion of the outer catheter is broken away to reveal an elongate and flexible inner catheter 28 contained within lumen 20.
- the inner catheter can be constructed of similar materials employed to form the outer catheter.
- Inner catheter 28 has a lumen 30 running the catheter length, for containing a guidewire 32, shown to extend distally beyond tip 26.
- outer catheter 18 is mounted to a valve 34.
- the valve includes a port 36 for receiving fluids supplied via an extension tube 38. Such fluids proceed through the valve to lumen 30, then to the region about tip 26.
- a portion of valve 34 is removed to reveal an internal sealing gasket 40 that supports an elongate stainless steel tube 42 to guide axial movement of the valve.
- the stainless steel tube extends distally of the valve into lumen 20 of the outer catheter, and its distal end is joined to the proximal region of inner catheter 28.
- the stainless steel tube can extend from 10 mm to 200 mm distally along lumen 20, advantageously increasing the axial rigidity of device 16.
- Steel tube 42 can be perforated or formed as a coil near the distal end of the catheter to enhance its bending flexibility.
- Catheters 18 and 28 can be moved axialiy relative to one another by hand manipulation to move valve 34 relative to steel tube 42.
- a hub 44 is bonded at the proximal end of stainless steel tube 42. For example, moving the valve proximally while maintaining the steel tube fixed retracts the outer catheter, i.e. moves catheter 18 in the proximal axial direction relative to inner catheter 28.
- Sheath 22 often referred to as a rolling membrane, is pliable and flexible, and constructed of a suitable body compatible thermoplastic elastomer such as polyurethane. Polyethylene, nylon and their copolymers also may be employed. As best seen in Figure 2, sheath 22 is doubled over upon itself to form an inner sheath layer 46 and an adjacent outer layer 48, both of which are tubular. Sheath 22 is formed so that both layers 46 and 48 converge in the distal axial direction along tip -7-
- a proximal end 50 of the outer layer is mounted to the distal end 24 of outer catheter 18, in an annular, fluid tight joint.
- An opposite end of the sheath, i.e. a proximal end 52 of the inner layer, is attached in similar fashion to the distal end 54 of inner catheter 28.
- sheath 22 extends axialiy such that its wall, in particular inner layer 46, defines an extension of guidewire lumen 30.
- At the distal tip is an opening of reduced size, yet sufficient to admit guidewire 32 and provide a transition zone from the guidewire to the constrained stent.
- a radially self-expanding stent 56 is contained by sheath 22, entirely distally of inner catheter 28.
- Stent 56 has an open mesh or weave construction, formed of helically wound and braided filaments or perforated tubing of a resilient material, e.g. a body compatible metal such as stainless steel or a titanium nickel alloy.
- the stent also can be formed of a resilient polymer such as polypropylene or polyethylene.
- stent 56 is elastically deformed into a delivery configuration that reduces its radius and increases its axial length as compared to its normal shape when not subject to external stress.
- Inner and outer layers 46 and 48 surround the stent and cooperate to maintain it in the delivery configuration.
- sheath layers 46 and 48 When stent 56 is radially compressed as shown, its elastic restoring force is applied radially against sheath layers 46 and 48. These sheath layers expand in response to the force of stent 56, until a restoring force in the layers counterbalances the stent restoring force. Sheath expansion is preferably virtually negligible.
- the stent can be formed of a recovery metal, such as the nickel titanium alloy sold under the brand name Nitenol.
- a recovery metal such as the nickel titanium alloy sold under the brand name Nitenol.
- Nitenol nickel titanium alloy sold under the brand name Nitenol.
- Such stent is plastically deformable, so long as it remains sufficiently cool, into a reduced radius delivery configuration. While cool (e.g. at or below ambient temperature), the stent tends to remain in the reduced radius state. Consequently the surrounding sheath can have greater elasticity if desired, since the sheath need not counteract an elastic restoring force of the stent.
- Sheath 22 is retractable by moving outer layer 48 proximally relative to inner layer 46.
- a hydrophilic material e.g. polyvinyl pryoladone, is applied to sheath 22 along the outer surface of inner layer 46 and the inner surface of outer layer 48. Silicone or other lubricants also may be used.
- a liquid lubricant and priming fluid can be provided between the sheath layers, via lumen 20. The coating and lubricant facilitate sliding of the inner and outer layers relative to one another during retraction.
- sheath 22 is specially shaped in the region of the distal tip. More particularly, a distal region 66 of the outer layer and a distal region 68 of the inner layer are tapered to converge in the distal direction. Thus, not only does the tip profile converge; its thickness, as well, diminishes in the distal direction. Regions 66 and 68 further provide a transition region over which sheath 22 is treated to substantially alter its hardness. More particulariy, sheath 22 and constrained stent 56 over the majority of their length are relatively rigid. Over the transition region, hardness diminishes steadily and considerably to a soft distal end of the tip.
- the durom ⁇ ter of the distal end is within a range of 20D-55D, and more preferably is about 90A.
- an annular feature 70 is formed into the sheath along inner layer 46, to provide a better transition from the relatively rigid stent constraining region to the soft distal end.
- a micropore 69 is formed through outer layer 48 to allow egress of liquids from between sheath layers 46 and 48. If desired, the micropore diameter can be selected for maintaining liquids between the sheath layers at a predetermined pressure.
- a typical diameter for micropore 69 is about 0.001 inches (0.0254 mm). Depending on the application, the micropore diameter may range from about 0.0005 to 0.12 inches (0.0127-3 mm).
- the distal region along the stent can conform to serpentine arterial passages as device 16 is advanced over guidewire 32 to the intended treatment site.
- the soft tip and transition regions 66 and 68 reduce the risk of damage to arterial walls or other tissue as the device is advanced.
- a dilatation balloon 58 is secured to the inner catheter in fluid tight fashion at a proximal neck 60 and a distal neck 62.
- a balloon inflation lumen 64 is formed in the inner catheter, and is open to the interior of balloon 58, whereby a balloon inflation fluid can be provided under pressure to radially expand balloon 58.
- Radiopaque markers 65 and 67 can be used to fluoroscopicaJly indicate the balloon location.
- the initial step is to position guidewire 32 within the patients body using a guide cannula (not illustrated). This leaves guidewire 32 in place along an artery or other lumen, with a proximal portion of the guidewire outside of the patient.
- Deployment device 16 is advanced over the guidewire beginning at the proximal portion, with the guidewire being received into guidewire lumen 30.
- the physician or other user continues to advance device 16 until the distal end region, including stent 56, is positioned at the treatment site, e.g. a lesion 72 along an artery 74 ( Figure 6). Preferably distal tip 26 is beyond lesion 72.
- Stent 56 still maintained within the sheath, is axialiy aligned with the lesion. Sheath 22 remains in the stent retaining state.
- Stent 56 has radially self-expanded to a diameter up to 30 times the diameter of outer catheter 18.
- the distal end of the inner catheter becomes the distal tip of the device.
- device 16 is advanced distally to axialiy align balloon 58 within stent 56.
- fluid under pressure is supplied to balloon 58 via balloon inflation lumen 64, to expand the balloon against stent 56.
- the pressure from dilatation balloon 58 achieves several beneficial results. First, stent 56 is radially pressed into a more firm engagement with surrounding tissue of the arterial wall, to reduce the risk of stent migration and facilitate more laminar blood flow.
- the added radial expansion is accompanied by an axial shortening of the stent, to more closely approximate a final stent axial dimension that otherwise might occur over a longer period of time (approximately 1 hour to 1 day). This permits a more reliable determination of whether stent 56 is sufficiently long to cover lesion 72.
- balloon 58 With stent 56 in place and pressed against artery 74, balloon 58 is evacuated and device 16 is proximally withdrawn. Guidewire 32 can be withdrawn as well, or left in place to permit advancing any device contemplated for a further procedure.
- outer catheter 18 when outer catheter 18 is retracted (i.e. moved proximally relative to inner catheter 28), it draws sheath 22 proximally as well, so that the rolling membrane eventually overlies and surrounds dilatation balloon 58.
- the axial length of the sheath is sufficient to provide sheath extension proximally of the dilatation balloon, so that the balloon is completely surrounded and covered.
- the sheath axial length is sufficient if, with the sheath in the stent retaining state, the combined axial length of inner and outer sheath layers 46 and 48 exceeds the axial distance from distal end 54 to proximal neck 60.
- the primary advantage of this configuration is that the rolling membrane, in addition to retaining the stent before retraction, provides a protective layer between tissue and the dilatation balloon after retraction. If the dilatation balloon were to burst during high pressure angioplasty, or if a tear or other fault allowed dilatation fluid to exit the balloon, sheath 22 would cause the dilatation fluid to flow proximally into lumen 20 of the outer catheter, thus protecting surrounding arterial tissue against exposure to exploding or jetting dilatation fluid. Also, as balloon 58 is inflated ( Figure 9), sheath 22 provides a layer between the dilatation balloon and stent 56, preventing any damage to the balloon that might result from direct contact with the stent.
- sheath 22 will generally be chosen to provide sufficient strength to counteract the restoring force of elastically compressed stent 56 during delivery while providing sufficient elasticity so that the sheath does not unduly interfere with dilatation of balloon 58. In certain applications a recovery metal stent is advantageous.
- the sheath when not required to constrain a self-expanding stent during delivery, can be substantially more elastic.
- the expanded balloon acts through sheath 22 to press stent 56 radially outward and against the surrounding arterial tissue. Momentarily, this radially expands and axialiy shortens stent 56 beyond a state of equilibrium at which the respective restoring forces within the stent and within surrounding tissue counterbalance one another.
- stent 56 When balloon 58 is evacuated and withdrawn, stent 56 slightly radially contracts and axialiy elongates to re-establish equilibrium. Thus stent 56 is caused to overexpand and then contract radially into equilibrium. As a result, the fluid flow path in the artery is smoother and flow is more laminar. With flow turbulence reduced, the potential for thrombus formation in the area of the stent likewise is reduced. The balloon expansion of the stent also enables the physician to more reliably confirm that the implanted stent has sufficient length relative to the lesion under treatment.
- the distal region of the device reassumes the shape shown in Figure 8, whereby the device is easily proximally withdrawn to leave the stent in place.
- Figure 10 shows the distal region of an alternative stent deployment device 80.
- Device 80 includes an inner catheter 82 with a guidewire lumen 84 that accommodates a guidewire 86.
- An outer catheter 88 has a catheter lumen 90 containing the inner catheter.
- a tubular sheath 92 includes a first end 94 mounted to the distal end 96 of the inner catheter, and a second end 98 mounted to the distal end 100 of outer catheter 88.
- a radially self-expanding stent 102 extends distally of the inner catheter, maintained in an axialiy elongated and radially compressed state.
- Device 80 differs from device 16 primarily in that outer catheter 88 extends distally beyond the inner catheter along the stent, and thus cooperates with an inner sheath layer 104 to maintain the stent under radial compression.
- Sheath 92 is turned back upon itself to provide a distal turn 106 and a relatively short outer sheath layer 108.
- Outer layer 108 and inner layer 104 converge to form a tapered distal tip of the device.
- a dilatation balloon 110 is mounted to inner catheter 82 near distal end 96, and expandable in the same manner as dilatation balloon 58. When retracted, outer catheter 88 is proximal of balloon 110, so that sheath 92 once again overlies and surrounds the dilatation balloon to perform its protective function.
- the combined length of the inner and outer sheath layers in this case primarily the length of inner layer 104, exceeds the distance from the inner catheter distal end to the balloon proximal end.
- Another feature of device 80 concerns guidewire lumen 84.
- the guidewire lumen does not run the length of inner catheter 82 as before, but ends just proximally of dilatation balloon 110.
- An elongate slit 114 through outer catheter 88 runs axialiy along the outer catheter and allows the guidewire to exit deployment device 80.
- aperture 112 of the inner catheter is axialiy aligned with the distal end of slit 114.
- FIGS 11 and 12 illustrate a stent retaining sheath 118 formed according to a further alternative embodiment of the invention.
- Sheath 118 is doubled over upon itself to provide inner and outer sheath layers 120 and 122 that surround a radially self-expanding stent 124, to maintain the stent in a radially compressed, axialiy elongated state against a restoring force.
- the distal portions of sheath layers 120 and 122 converge to provide a tapered distal tip 126 that terminates at a distal end 128.
- the proximal end of the inner sheath layer is mounted to an inner catheter 130, while the proximal end of outer layer 122 is attached to an outer catheter 132.
- outer layer 122 is movable proximally to roll sheath 118 from its surrounding relation to the stent, whereby the stent progressively radially self-expands.
- filaments 134 are embedded into sheath 118 and extend axialiy along outer sheath layer 122.
- Filaments 134 preferably are formed of a high modulus of elasticity fiber such as that sold under the brand name Kevlar, or Dacron fibers. Filaments 134 lend rigidity in the axial direction, for improved "pushability" of the device through arterial and other passageways.
- Figures 13 and 14 illustrate a further embodiment device 140 in which an inner balloon catheter 142 is contained within a lumen 144 of an outer catheter 146.
- Balloon catheter 142 includes a lumen for a guidewire.
- a dilatation balloon 148 is mounted to catheter 142 near its distal end, and is in fluid communication with a balloon dilatation lumen of the catheter, through which a fluid under pressure can be supplied to the balloon to expand the balloon.
- a tubular sheath 150 is fixed at one end to a distal end 152 of the outer catheter.
- the opposite end of the sheath is fixed to balloon catheter 142, but not at its distal end. Rather, the sheath is fixed at a location proximal relative to balloon 148, as indicated at 154. Consequently a substantial portion of a sheath inner layer 156 surrounds the balloon.
- a distal portion of the inner layer extends beyond distal end 158 of the inner catheter, to surround and contain a stent 160 in a radially reduced delivery state as described in connection with device 16.
- the sheath includes an outer sheath layer 162, and the sheath is modified to form a distal tip 164 in the manner previously explained.
- retraction of the sheath leaves dilatation balloon 148 exposed, rather than surrounded by the sheath as in the first embodiment.
- the primary advantage of this embodiment ( Figures 13 and 14) is that sheath 150 can have a relatively high elastic modulus for confining a radially self-expanding stent having a higher spring constant.
- the sheath need not have sufficient elasticity to accommodate dilatation balloon expansion in this embodiment. In certain applications, this advantage outweighs the loss of the sheath as a surrounding, protective layer over the dilatation balloon.
- sheaths 92, 118 and 150 can incorporate a controlled narrowing of the sheath layers near the distal tip, as explained above in connection with Figure 5, to reduce the risk of damage to tissue during advancement of the device to the intended treatment site.
- the sheaths surround their respective stents and maintain the stents radially compressed, while in each case deriving added axial stiffness from the stent restoring force.
- the stents are maintained distally of their respective inner catheters, resulting in smaller diameter devices able to enter narrower arterial passages. In addition to their smaller diameters, the resulting devices exhibit improved pushing and tracking characteristics.
- axial stiffness can be enhanced by a distal extension of the outer catheter, or by axial filaments embedded into the sheath.
- the retracted sheath can surround the dilatation balloon to provide an added protective layer useful in high pressure angioplasty.
- the sheath can be attached at a point where it exposes the dilatation balloon when retracted.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Transplantation (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Cardiology (AREA)
- Animal Behavior & Ethology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- External Artificial Organs (AREA)
- Surgical Instruments (AREA)
- Prostheses (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU46321/96A AU4632196A (en) | 1995-04-14 | 1996-02-26 | Rolling membrane stent delivery device |
EP96901941A EP0820259B1 (en) | 1995-04-14 | 1996-02-26 | Rolling membrane stent delivery device |
AT96901941T ATE232067T1 (en) | 1995-04-14 | 1996-02-26 | STENT DELIVERY DEVICE WITH ROLLING MEMBRANE |
DE69626108T DE69626108T2 (en) | 1995-04-14 | 1996-02-26 | STENTING DEVICE WITH ROLLING MEMBRANE |
JP53083396A JP3199383B2 (en) | 1995-04-14 | 1996-02-26 | Rolling membrane type stent supply device |
MXPA/A/1997/007886A MXPA97007886A (en) | 1995-04-14 | 1997-10-13 | Stenosis implant supply device (stent) with arrollamie membrane |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US42196095A | 1995-04-14 | 1995-04-14 | |
US08/421,960 | 1995-04-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1996032078A1 true WO1996032078A1 (en) | 1996-10-17 |
Family
ID=23672794
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB1996/000146 WO1996032078A1 (en) | 1995-04-14 | 1996-02-26 | Rolling membrane stent delivery device |
Country Status (8)
Country | Link |
---|---|
US (1) | US5662703A (en) |
EP (1) | EP0820259B1 (en) |
JP (1) | JP3199383B2 (en) |
AT (1) | ATE232067T1 (en) |
AU (1) | AU4632196A (en) |
CA (1) | CA2218072A1 (en) |
DE (1) | DE69626108T2 (en) |
WO (1) | WO1996032078A1 (en) |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6019778A (en) * | 1998-03-13 | 2000-02-01 | Cordis Corporation | Delivery apparatus for a self-expanding stent |
WO2000027309A1 (en) * | 1998-11-06 | 2000-05-18 | Scimed Life Systems, Inc. | Improved rolling membrane stent delivery system |
WO2000041525A2 (en) * | 1999-01-11 | 2000-07-20 | Scimed Life Systems, Inc. | Self-expanding stent delivery system with two sheaths |
EP1025813A3 (en) * | 1999-02-03 | 2001-07-18 | Cordis Corporation | A delivery apparatus for a self-expanding stent |
US6264689B1 (en) | 1998-03-31 | 2001-07-24 | Scimed Life Systems, Incorporated | Low profile medical stent |
WO2001078627A1 (en) * | 2000-04-12 | 2001-10-25 | Scimed Life Systems, Inc. | Stent delivery catheter with retractable balloon |
WO2002049538A2 (en) * | 2000-12-18 | 2002-06-27 | Advanced Cardiovascular Systems, Inc. | Ostial stent and method for deploying same |
US6520983B1 (en) | 1998-03-31 | 2003-02-18 | Scimed Life Systems, Inc. | Stent delivery system |
US6544278B1 (en) | 1998-11-06 | 2003-04-08 | Scimed Life Systems, Inc. | Rolling membrane stent delivery system |
EP1181906A3 (en) * | 2000-08-02 | 2004-01-28 | Cordis Corporation | A delivery apparatus for a self-expanding stent |
US6699274B2 (en) * | 2001-01-22 | 2004-03-02 | Scimed Life Systems, Inc. | Stent delivery system and method of manufacturing same |
WO2005107644A1 (en) * | 2004-04-27 | 2005-11-17 | Boston Scientific Limited | Stent delivery system |
EP1621160A1 (en) * | 2004-07-28 | 2006-02-01 | Cordis Corporation | Low deployment force delivery device |
WO2006020028A1 (en) * | 2004-08-06 | 2006-02-23 | Boston Scientific Limited | Stent delivery system |
WO2006023168A1 (en) * | 2004-08-17 | 2006-03-02 | Boston Scientific Scimed, Inc. | Stent delivery system |
DE102005020785A1 (en) * | 2005-05-04 | 2006-11-09 | Jotec Gmbh | Delivery system with a self-expanding braid stent |
WO2006123046A1 (en) * | 2005-05-19 | 2006-11-23 | Laboratoires Perouse | Kit for inserting a cavity-treatment element and method of preparing an associated treatment element |
DE10004979B4 (en) * | 1999-02-18 | 2008-04-03 | Tokendo (S.A.R.L.) | System for inserting endoprostheses |
US7632296B2 (en) | 2005-03-03 | 2009-12-15 | Boston Scientific Scimed, Inc. | Rolling membrane with hydraulic recapture means for self expanding stent |
US8029555B2 (en) * | 2004-03-31 | 2011-10-04 | Cook Medical Technologies Llc | Stent introducer system |
EP2491894A1 (en) | 2008-12-31 | 2012-08-29 | Angiomed GmbH & Co. Medizintechnik KG | Stent delivery device with rolling stent retaining sheath |
US8876880B2 (en) | 1999-02-01 | 2014-11-04 | Board Of Regents, The University Of Texas System | Plain woven stents |
US8876881B2 (en) | 2006-10-22 | 2014-11-04 | Idev Technologies, Inc. | Devices for stent advancement |
US8966733B2 (en) | 2006-10-22 | 2015-03-03 | Idev Technologies, Inc. | Secured strand end devices |
US9023095B2 (en) | 2010-05-27 | 2015-05-05 | Idev Technologies, Inc. | Stent delivery system with pusher assembly |
EP2283892B1 (en) * | 1997-03-06 | 2015-06-10 | Boston Scientific Scimed, Inc. | Retrieval device for withdrawing a protection device from a body lumen |
US9168164B2 (en) | 2010-12-01 | 2015-10-27 | C. R. Bard, Inc. | Device to release a self-expanding implant |
US9387101B2 (en) | 2007-10-17 | 2016-07-12 | C.R. Bard, Inc. | Delivery system for a self-expanding device for placement in a bodily lumen |
US9687370B2 (en) | 2008-05-09 | 2017-06-27 | C.R. Bard, Inc. | Method of loading a stent into a sheath |
US9687369B2 (en) | 2009-12-03 | 2017-06-27 | C.R. Bard, Inc. | Stent device delivery system with an outer sheath polymeric reinforcement layer |
US9717612B2 (en) | 2009-12-03 | 2017-08-01 | C.R. Bard, Inc. | Stent device delivery system with a varying radial profile pull member |
US9724216B2 (en) | 2009-12-03 | 2017-08-08 | C. R. Bard, Inc. | Stent device delivery system with inwardly tapering stent bed |
US9833349B2 (en) | 2008-08-21 | 2017-12-05 | C. R. Bard, Inc. | Method of loading a stent into a sheath |
US9931232B2 (en) | 2010-10-21 | 2018-04-03 | Boston Scientific Scimed, Inc. | Stent delivery system |
US10278845B2 (en) | 2009-12-03 | 2019-05-07 | C. R. Bard, Inc. | Stent device delivery system with a heat shrink resistant support member |
US10888691B2 (en) | 2018-04-24 | 2021-01-12 | Olympus Corporation | Stent delivery method |
Families Citing this family (298)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6039749A (en) | 1994-02-10 | 2000-03-21 | Endovascular Systems, Inc. | Method and apparatus for deploying non-circular stents and graftstent complexes |
US5843090A (en) * | 1996-11-05 | 1998-12-01 | Schneider (Usa) Inc. | Stent delivery device |
US5957974A (en) | 1997-01-23 | 1999-09-28 | Schneider (Usa) Inc | Stent graft with braided polymeric sleeve |
US5906641A (en) * | 1997-05-27 | 1999-05-25 | Schneider (Usa) Inc | Bifurcated stent graft |
CA2424551A1 (en) * | 1997-05-27 | 1998-11-27 | Schneider (Usa) Inc. | Stent and stent-graft for treating branched vessels |
US6168616B1 (en) | 1997-06-02 | 2001-01-02 | Global Vascular Concepts | Manually expandable stent |
EP0891752B1 (en) | 1997-07-17 | 2005-01-12 | Schneider (Europe) GmbH | Stent and method for manufacturing such a stent |
US6070589A (en) | 1997-08-01 | 2000-06-06 | Teramed, Inc. | Methods for deploying bypass graft stents |
US6340367B1 (en) | 1997-08-01 | 2002-01-22 | Boston Scientific Scimed, Inc. | Radiopaque markers and methods of using the same |
US5980564A (en) * | 1997-08-01 | 1999-11-09 | Schneider (Usa) Inc. | Bioabsorbable implantable endoprosthesis with reservoir |
US6174330B1 (en) | 1997-08-01 | 2001-01-16 | Schneider (Usa) Inc | Bioabsorbable marker having radiopaque constituents |
US6245103B1 (en) | 1997-08-01 | 2001-06-12 | Schneider (Usa) Inc | Bioabsorbable self-expanding stent |
US7628795B2 (en) * | 1997-09-24 | 2009-12-08 | Atrium Medical Corporation | Tunneling device for use with a graft |
US5972028A (en) * | 1997-10-07 | 1999-10-26 | Atrion Medical Products, Inc. | Stent holder/compression instrument |
US20100030256A1 (en) * | 1997-11-12 | 2010-02-04 | Genesis Technologies Llc | Medical Devices and Methods |
US20040260333A1 (en) * | 1997-11-12 | 2004-12-23 | Dubrul William R. | Medical device and method |
US9498604B2 (en) | 1997-11-12 | 2016-11-22 | Genesis Technologies Llc | Medical device and method |
US6626939B1 (en) * | 1997-12-18 | 2003-09-30 | Boston Scientific Scimed, Inc. | Stent-graft with bioabsorbable structural support |
US6296633B1 (en) | 1998-01-09 | 2001-10-02 | Schneider (Usa) Inc. | Medical device tubing assembly and method of making the same |
US6149996A (en) * | 1998-01-15 | 2000-11-21 | Schneider (Usa) Inc. | Molded tip and tubing and method of making same |
US6533807B2 (en) | 1998-02-05 | 2003-03-18 | Medtronic, Inc. | Radially-expandable stent and delivery system |
US6656215B1 (en) | 2000-11-16 | 2003-12-02 | Cordis Corporation | Stent graft having an improved means for attaching a stent to a graft |
US6290731B1 (en) | 1998-03-30 | 2001-09-18 | Cordis Corporation | Aortic graft having a precursor gasket for repairing an abdominal aortic aneurysm |
US7004962B2 (en) | 1998-07-27 | 2006-02-28 | Schneider (Usa), Inc. | Neuroaneurysm occlusion and delivery device and method of using same |
WO2000018330A1 (en) | 1998-09-30 | 2000-04-06 | Impra, Inc. | Delivery mechanism for implantable stent |
US6187036B1 (en) | 1998-12-11 | 2001-02-13 | Endologix, Inc. | Endoluminal vascular prosthesis |
JP4189127B2 (en) | 1998-12-11 | 2008-12-03 | エンドロジックス、インク | Intraluminal artificial blood vessels |
US6660030B2 (en) | 1998-12-11 | 2003-12-09 | Endologix, Inc. | Bifurcation graft deployment catheter |
US6733523B2 (en) | 1998-12-11 | 2004-05-11 | Endologix, Inc. | Implantable vascular graft |
US6102932A (en) * | 1998-12-15 | 2000-08-15 | Micrus Corporation | Intravascular device push wire delivery system |
US8034100B2 (en) | 1999-03-11 | 2011-10-11 | Endologix, Inc. | Graft deployment system |
US6261316B1 (en) | 1999-03-11 | 2001-07-17 | Endologix, Inc. | Single puncture bifurcation graft deployment system |
US6726712B1 (en) | 1999-05-14 | 2004-04-27 | Boston Scientific Scimed | Prosthesis deployment device with translucent distal end |
US6168617B1 (en) * | 1999-06-14 | 2001-01-02 | Scimed Life Systems, Inc. | Stent delivery system |
US6287329B1 (en) * | 1999-06-28 | 2001-09-11 | Nitinol Development Corporation | Stent keeper for a self-expanding stent delivery system |
US6440161B1 (en) | 1999-07-07 | 2002-08-27 | Endologix, Inc. | Dual wire placement catheter |
US7850643B1 (en) * | 1999-09-27 | 2010-12-14 | Advanced Cardiovascular Systems, Inc. | Drug diffusion barriers for a catheter assembly |
CA2386844A1 (en) * | 1999-10-12 | 2001-04-19 | Allan R. Will | Methods and devices for protecting a passageway in a body |
US7758624B2 (en) * | 2000-11-13 | 2010-07-20 | C. R. Bard, Inc. | Implant delivery device |
US6458153B1 (en) | 1999-12-31 | 2002-10-01 | Abps Venture One, Ltd. | Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof |
US6402771B1 (en) | 1999-12-23 | 2002-06-11 | Guidant Endovascular Solutions | Snare |
US7918820B2 (en) | 1999-12-30 | 2011-04-05 | Advanced Cardiovascular Systems, Inc. | Device for, and method of, blocking emboli in vessels such as blood arteries |
US20020193863A1 (en) * | 2000-09-18 | 2002-12-19 | Endotex Interventional Systems, Inc. | Apparatus for delivering endoluminal prosthesis and methods for preparing such apparatus for delivery |
US6565595B1 (en) | 2000-09-18 | 2003-05-20 | Scimed Life Systems, Inc. | Two component sleeves |
US6945989B1 (en) * | 2000-09-18 | 2005-09-20 | Endotex Interventional Systems, Inc. | Apparatus for delivering endoluminal prostheses and methods of making and using them |
US6607552B1 (en) | 2000-09-18 | 2003-08-19 | Scimed Life Systems, Inc. | Rolling socks |
US6733520B2 (en) | 2000-09-22 | 2004-05-11 | Scimed Life Systems, Inc. | Sandwich striped sleeve for stent delivery |
US6554841B1 (en) | 2000-09-22 | 2003-04-29 | Scimed Life Systems, Inc. | Striped sleeve for stent delivery |
US6506203B1 (en) | 2000-12-19 | 2003-01-14 | Advanced Cardiovascular Systems, Inc. | Low profile sheathless embolic protection system |
US7208002B2 (en) | 2001-01-04 | 2007-04-24 | Boston Scientific Scimed, Inc. | Expansion-assisting delivery system for self-expanding stent |
US6979343B2 (en) * | 2001-02-14 | 2005-12-27 | Ev3 Inc. | Rolled tip recovery catheter |
US6589274B2 (en) | 2001-03-23 | 2003-07-08 | Medtronic Ave, Inc. | Stent delivery catheter and method of making same |
US6547813B2 (en) | 2001-03-23 | 2003-04-15 | Medtronic Ave, Inc. | Stent delivery catheter with folded sleeve and method of making same |
US6800090B2 (en) | 2001-05-14 | 2004-10-05 | Cardiac Dimensions, Inc. | Mitral valve therapy device, system and method |
US7780693B2 (en) * | 2001-06-27 | 2010-08-24 | Salviac Limited | Catheter |
US7789860B2 (en) * | 2001-06-27 | 2010-09-07 | Salviac Limited | Catheter for delivery and/or retrieval of a medical device |
US7338510B2 (en) | 2001-06-29 | 2008-03-04 | Advanced Cardiovascular Systems, Inc. | Variable thickness embolic filtering devices and method of manufacturing the same |
DE60230143D1 (en) * | 2001-07-06 | 2009-01-15 | Angiomed Ag | DISTRIBUTION SYSTEM WITH A SLIDER ARRANGEMENT FOR A SELF-EXPANDING STENT AND A QUICK-CHANGE CONFIGURATION |
US6592606B2 (en) | 2001-08-31 | 2003-07-15 | Advanced Cardiovascular Systems, Inc. | Hinged short cage for an embolic protection device |
AUPR748801A0 (en) * | 2001-09-04 | 2001-09-27 | Stentco Llc | A stent |
GB0123633D0 (en) * | 2001-10-02 | 2001-11-21 | Angiomed Ag | Stent delivery system |
US6824562B2 (en) * | 2002-05-08 | 2004-11-30 | Cardiac Dimensions, Inc. | Body lumen device anchor, device and assembly |
US6918920B1 (en) * | 2001-11-01 | 2005-07-19 | Advanced Cardiovascular Systems, Inc. | Catheter having an improved distal tip |
US7635387B2 (en) | 2001-11-01 | 2009-12-22 | Cardiac Dimensions, Inc. | Adjustable height focal tissue deflector |
US7892273B2 (en) | 2001-12-03 | 2011-02-22 | Xtent, Inc. | Custom length stent apparatus |
US7147656B2 (en) * | 2001-12-03 | 2006-12-12 | Xtent, Inc. | Apparatus and methods for delivery of braided prostheses |
US20040186551A1 (en) | 2003-01-17 | 2004-09-23 | Xtent, Inc. | Multiple independent nested stent structures and methods for their preparation and deployment |
US7137993B2 (en) | 2001-12-03 | 2006-11-21 | Xtent, Inc. | Apparatus and methods for delivery of multiple distributed stents |
US7179282B2 (en) | 2001-12-05 | 2007-02-20 | Cardiac Dimensions, Inc. | Device and method for modifying the shape of a body organ |
US6976995B2 (en) | 2002-01-30 | 2005-12-20 | Cardiac Dimensions, Inc. | Fixed length anchor and pull mitral valve device and method |
US7153320B2 (en) * | 2001-12-13 | 2006-12-26 | Scimed Life Systems, Inc. | Hydraulic controlled retractable tip filter retrieval catheter |
US7004964B2 (en) * | 2002-02-22 | 2006-02-28 | Scimed Life Systems, Inc. | Apparatus and method for deployment of an endoluminal device |
US6830561B2 (en) * | 2002-05-08 | 2004-12-14 | Scimed Life Systems, Inc. | Catheter with protective sleeve |
CA2877641C (en) | 2002-05-08 | 2017-01-17 | Cardiac Dimensions Pty. Ltd. | Device and method for modifying the shape of a body organ |
US8518096B2 (en) * | 2002-09-03 | 2013-08-27 | Lifeshield Sciences Llc | Elephant trunk thoracic endograft and delivery system |
US7331973B2 (en) | 2002-09-30 | 2008-02-19 | Avdanced Cardiovascular Systems, Inc. | Guide wire with embolic filtering attachment |
US20050261719A1 (en) * | 2002-11-25 | 2005-11-24 | Israel Chermoni | Catheter and method of its use |
US7316708B2 (en) | 2002-12-05 | 2008-01-08 | Cardiac Dimensions, Inc. | Medical device delivery system |
US7837729B2 (en) | 2002-12-05 | 2010-11-23 | Cardiac Dimensions, Inc. | Percutaneous mitral valve annuloplasty delivery system |
US6841213B2 (en) | 2002-12-27 | 2005-01-11 | Scimed Life Systems, Inc | Fiber pattern printing |
GB0327306D0 (en) * | 2003-11-24 | 2003-12-24 | Angiomed Gmbh & Co | Catheter device |
CA2513082C (en) * | 2003-01-15 | 2010-11-02 | Angiomed Gmbh & Co. Medizintechnik Kg | Trans-luminal surgical device |
US8016752B2 (en) * | 2003-01-17 | 2011-09-13 | Gore Enterprise Holdings, Inc. | Puncturable catheter |
US9433745B2 (en) * | 2003-01-17 | 2016-09-06 | W.L. Gore & Associates, Inc. | Puncturing tool for puncturing catheter shafts |
US7198636B2 (en) * | 2003-01-17 | 2007-04-03 | Gore Enterprise Holdings, Inc. | Deployment system for an endoluminal device |
US7625337B2 (en) * | 2003-01-17 | 2009-12-01 | Gore Enterprise Holdings, Inc. | Catheter assembly |
US7753945B2 (en) * | 2003-01-17 | 2010-07-13 | Gore Enterprise Holdings, Inc. | Deployment system for an endoluminal device |
US20060058866A1 (en) * | 2003-01-17 | 2006-03-16 | Cully Edward H | Deployment system for an expandable device |
US7314485B2 (en) | 2003-02-03 | 2008-01-01 | Cardiac Dimensions, Inc. | Mitral valve device using conditioned shape memory alloy |
US8591540B2 (en) | 2003-02-27 | 2013-11-26 | Abbott Cardiovascular Systems Inc. | Embolic filtering devices |
US7658747B2 (en) * | 2003-03-12 | 2010-02-09 | Nmt Medical, Inc. | Medical device for manipulation of a medical implant |
US7637920B2 (en) * | 2003-03-28 | 2009-12-29 | Ev3 Inc. | Double ended intravascular medical device |
US20040267347A1 (en) * | 2003-05-01 | 2004-12-30 | Cervantes Marvin John | Protective elongated sleeve for stent systems |
US20040220654A1 (en) | 2003-05-02 | 2004-11-04 | Cardiac Dimensions, Inc. | Device and method for modifying the shape of a body organ |
US7776078B2 (en) * | 2003-05-22 | 2010-08-17 | Boston Scientfic Scimed, Inc. | Catheter balloon with improved retention |
US7887582B2 (en) | 2003-06-05 | 2011-02-15 | Cardiac Dimensions, Inc. | Device and method for modifying the shape of a body organ |
US8318078B2 (en) * | 2003-06-23 | 2012-11-27 | Boston Scientific Scimed, Inc. | Asymmetric stent delivery system with proximal edge protection and method of manufacture thereof |
US20050049668A1 (en) * | 2003-08-29 | 2005-03-03 | Jones Donald K. | Self-expanding stent and stent delivery system for treatment of vascular stenosis |
US20050049669A1 (en) * | 2003-08-29 | 2005-03-03 | Jones Donald K. | Self-expanding stent and stent delivery system with distal protection |
US20050049670A1 (en) * | 2003-08-29 | 2005-03-03 | Jones Donald K. | Self-expanding stent and stent delivery system for treatment of vascular disease |
US7867268B2 (en) * | 2003-09-24 | 2011-01-11 | Boston Scientific Scimed, Inc. | Stent delivery system for self-expanding stent |
DE10346200A1 (en) * | 2003-09-30 | 2005-05-04 | Jotec Gmbh | Delivery system with a self-expanding stent |
WO2005034810A1 (en) * | 2003-10-10 | 2005-04-21 | Cook Incorporated | Stretchable prosthesis fenestration |
CA2547021A1 (en) * | 2003-11-25 | 2005-06-09 | F.D. Cardio Ltd. | Stent positioning using inflation tube |
US7794496B2 (en) | 2003-12-19 | 2010-09-14 | Cardiac Dimensions, Inc. | Tissue shaping device with integral connector and crimp |
US7837728B2 (en) | 2003-12-19 | 2010-11-23 | Cardiac Dimensions, Inc. | Reduced length tissue shaping device |
US20060271174A1 (en) * | 2003-12-19 | 2006-11-30 | Gregory Nieminen | Mitral Valve Annuloplasty Device with Wide Anchor |
US9526616B2 (en) | 2003-12-19 | 2016-12-27 | Cardiac Dimensions Pty. Ltd. | Mitral valve annuloplasty device with twisted anchor |
US7326236B2 (en) | 2003-12-23 | 2008-02-05 | Xtent, Inc. | Devices and methods for controlling and indicating the length of an interventional element |
US9254213B2 (en) * | 2004-01-09 | 2016-02-09 | Rubicon Medical, Inc. | Stent delivery device |
US8262694B2 (en) | 2004-01-30 | 2012-09-11 | W.L. Gore & Associates, Inc. | Devices, systems, and methods for closure of cardiac openings |
US7686825B2 (en) | 2004-03-25 | 2010-03-30 | Hauser David L | Vascular filter device |
US7323006B2 (en) | 2004-03-30 | 2008-01-29 | Xtent, Inc. | Rapid exchange interventional devices and methods |
US8267985B2 (en) | 2005-05-25 | 2012-09-18 | Tyco Healthcare Group Lp | System and method for delivering and deploying an occluding device within a vessel |
US20050278011A1 (en) * | 2004-06-10 | 2005-12-15 | Peckham John E | Stent delivery system |
US8317859B2 (en) | 2004-06-28 | 2012-11-27 | J.W. Medical Systems Ltd. | Devices and methods for controlling expandable prostheses during deployment |
US20050288766A1 (en) | 2004-06-28 | 2005-12-29 | Xtent, Inc. | Devices and methods for controlling expandable prostheses during deployment |
US8795315B2 (en) | 2004-10-06 | 2014-08-05 | Cook Medical Technologies Llc | Emboli capturing device having a coil and method for capturing emboli |
DE102005003632A1 (en) | 2005-01-20 | 2006-08-17 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Catheter for the transvascular implantation of heart valve prostheses |
JP4926980B2 (en) | 2005-01-20 | 2012-05-09 | カーディアック ディメンションズ インコーポレイテッド | Tissue shaping device |
US8945169B2 (en) | 2005-03-15 | 2015-02-03 | Cook Medical Technologies Llc | Embolic protection device |
US8221446B2 (en) * | 2005-03-15 | 2012-07-17 | Cook Medical Technologies | Embolic protection device |
WO2006108010A2 (en) | 2005-04-04 | 2006-10-12 | Burpee Materials Technology, Llc | Flexible stent |
JP4917089B2 (en) * | 2005-05-09 | 2012-04-18 | アンギオメット ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コムパニー メディツィンテヒニク コマンデイトゲゼルシャフト | Implant delivery device |
WO2006127005A1 (en) | 2005-05-25 | 2006-11-30 | Chestnut Medical Technologies, Inc. | System and method for delivering and deploying and occluding device within a vessel |
US8435279B2 (en) * | 2005-06-14 | 2013-05-07 | Advanced Cardiovascular Systems, Inc. | Delivery system for a device such as a stent |
US8038704B2 (en) * | 2005-07-27 | 2011-10-18 | Paul S. Sherburne | Stent and other objects removal from a body |
US8187298B2 (en) | 2005-08-04 | 2012-05-29 | Cook Medical Technologies Llc | Embolic protection device having inflatable frame |
US8377092B2 (en) | 2005-09-16 | 2013-02-19 | Cook Medical Technologies Llc | Embolic protection device |
US8632562B2 (en) | 2005-10-03 | 2014-01-21 | Cook Medical Technologies Llc | Embolic protection device |
US8182508B2 (en) | 2005-10-04 | 2012-05-22 | Cook Medical Technologies Llc | Embolic protection device |
US8252017B2 (en) | 2005-10-18 | 2012-08-28 | Cook Medical Technologies Llc | Invertible filter for embolic protection |
US8216269B2 (en) | 2005-11-02 | 2012-07-10 | Cook Medical Technologies Llc | Embolic protection device having reduced profile |
US8152831B2 (en) | 2005-11-17 | 2012-04-10 | Cook Medical Technologies Llc | Foam embolic protection device |
US20070213813A1 (en) | 2005-12-22 | 2007-09-13 | Symetis Sa | Stent-valves for valve replacement and associated methods and systems for surgery |
US9375215B2 (en) * | 2006-01-20 | 2016-06-28 | W. L. Gore & Associates, Inc. | Device for rapid repair of body conduits |
US20070208350A1 (en) * | 2006-03-06 | 2007-09-06 | Gunderson Richard C | Implantable medical endoprosthesis delivery systems |
WO2007109621A2 (en) | 2006-03-20 | 2007-09-27 | Xtent, Inc. | Apparatus and methods for deployment of linked prosthetic segments |
US11285005B2 (en) | 2006-07-17 | 2022-03-29 | Cardiac Dimensions Pty. Ltd. | Mitral valve annuloplasty device with twisted anchor |
AU2007294534B2 (en) * | 2006-09-08 | 2012-11-01 | Edwards Lifesciences Corporation | Integrated heart valve delivery system |
US20080071307A1 (en) | 2006-09-19 | 2008-03-20 | Cook Incorporated | Apparatus and methods for in situ embolic protection |
US9622888B2 (en) | 2006-11-16 | 2017-04-18 | W. L. Gore & Associates, Inc. | Stent having flexibly connected adjacent stent elements |
US8177798B2 (en) * | 2006-12-05 | 2012-05-15 | Tyco Healthcare Group Lp | Adhesive coated stent and insertion instrument |
US20080161902A1 (en) * | 2006-12-26 | 2008-07-03 | William Cook Europe Aps | Delivery system and sheath for endoluminal prosthesis |
EP2111189B1 (en) * | 2007-01-03 | 2017-04-05 | St. Jude Medical, Cardiology Division, Inc. | Implantable devices for controlling the size and shape of an anatomical structure or lumen |
US8523931B2 (en) | 2007-01-12 | 2013-09-03 | Endologix, Inc. | Dual concentric guidewire and methods of bifurcated graft deployment |
US20080199510A1 (en) | 2007-02-20 | 2008-08-21 | Xtent, Inc. | Thermo-mechanically controlled implants and methods of use |
US9901434B2 (en) | 2007-02-27 | 2018-02-27 | Cook Medical Technologies Llc | Embolic protection device including a Z-stent waist band |
US8486132B2 (en) * | 2007-03-22 | 2013-07-16 | J.W. Medical Systems Ltd. | Devices and methods for controlling expandable prostheses during deployment |
US7896915B2 (en) | 2007-04-13 | 2011-03-01 | Jenavalve Technology, Inc. | Medical device for treating a heart valve insufficiency |
US8764816B2 (en) * | 2007-05-07 | 2014-07-01 | W. L. Gore & Associates, Inc. | Stent delivery and deployment system |
US20080319527A1 (en) * | 2007-06-22 | 2008-12-25 | Lee Jeffrey A | Shaped multi-durometer filler |
US8128592B2 (en) * | 2007-07-11 | 2012-03-06 | Apollo Endosurgery, Inc. | Methods and systems for performing submucosal medical procedures |
US7988723B2 (en) | 2007-08-02 | 2011-08-02 | Flexible Stenting Solutions, Inc. | Flexible stent |
DE202008018551U1 (en) | 2007-08-21 | 2015-10-26 | Symetis Sa | A replacement flap |
US8252018B2 (en) | 2007-09-14 | 2012-08-28 | Cook Medical Technologies Llc | Helical embolic protection device |
US8419748B2 (en) | 2007-09-14 | 2013-04-16 | Cook Medical Technologies Llc | Helical thrombus removal device |
US9138307B2 (en) | 2007-09-14 | 2015-09-22 | Cook Medical Technologies Llc | Expandable device for treatment of a stricture in a body vessel |
US8066755B2 (en) | 2007-09-26 | 2011-11-29 | Trivascular, Inc. | System and method of pivoted stent deployment |
EP2679198B1 (en) | 2007-10-25 | 2021-03-24 | Symetis SA | Valved-stents and systems for delivery thereof |
US8926688B2 (en) | 2008-01-11 | 2015-01-06 | W. L. Gore & Assoc. Inc. | Stent having adjacent elements connected by flexible webs |
US8845712B2 (en) * | 2008-01-15 | 2014-09-30 | W. L. Gore & Associates, Inc. | Pleated deployment sheath |
US8221494B2 (en) | 2008-02-22 | 2012-07-17 | Endologix, Inc. | Apparatus and method of placement of a graft or graft system |
US9044318B2 (en) | 2008-02-26 | 2015-06-02 | Jenavalve Technology Gmbh | Stent for the positioning and anchoring of a valvular prosthesis |
ES2903231T3 (en) | 2008-02-26 | 2022-03-31 | Jenavalve Tech Inc | Stent for positioning and anchoring a valve prosthesis at an implantation site in a patient's heart |
US9101503B2 (en) | 2008-03-06 | 2015-08-11 | J.W. Medical Systems Ltd. | Apparatus having variable strut length and methods of use |
WO2009121006A1 (en) * | 2008-03-27 | 2009-10-01 | Nfocus Neuromedical, Inc. | Friction-release distal latch implant delivery system and components |
US8236040B2 (en) | 2008-04-11 | 2012-08-07 | Endologix, Inc. | Bifurcated graft deployment systems and methods |
CA2722037C (en) | 2008-04-21 | 2016-03-22 | Nfocus Neuromedical, Inc. | Braid-ball embolic devices and delivery systems |
US9675482B2 (en) | 2008-05-13 | 2017-06-13 | Covidien Lp | Braid implant delivery systems |
US20090312832A1 (en) * | 2008-06-13 | 2009-12-17 | Cook Incorporated | Slip layer delivery catheter |
US20090319019A1 (en) * | 2008-06-23 | 2009-12-24 | Cook Incorporated | Expandable Tip Delivery System For Endoluminal Prosthesis |
JP5134729B2 (en) | 2008-07-01 | 2013-01-30 | エンドロジックス、インク | Catheter system |
RU2011102994A (en) | 2008-07-22 | 2012-08-27 | Микро Терапьютикс, Инк. (Us) | VESSEL RECONSTRUCTION DEVICE |
US8006594B2 (en) | 2008-08-11 | 2011-08-30 | Cardiac Dimensions, Inc. | Catheter cutting tool |
US9149376B2 (en) * | 2008-10-06 | 2015-10-06 | Cordis Corporation | Reconstrainable stent delivery system |
US8388644B2 (en) | 2008-12-29 | 2013-03-05 | Cook Medical Technologies Llc | Embolic protection device and method of use |
US20100249815A1 (en) * | 2009-03-25 | 2010-09-30 | Cook Incorporated | Everted sheath thrombectomy device |
EP2419060B1 (en) * | 2009-04-15 | 2018-02-28 | Cook Medical Technologies LLC | Everting deployment system and handle |
BRPI1013573A2 (en) * | 2009-04-24 | 2016-04-12 | Flexible Stenting Solutions Inc | flexible devices |
US20110054587A1 (en) | 2009-04-28 | 2011-03-03 | Endologix, Inc. | Apparatus and method of placement of a graft or graft system |
JP2012525239A (en) | 2009-05-01 | 2012-10-22 | エンドロジックス、インク | Transcutaneous methods and devices for treating dissociation (priority information and incorporation by reference) |
US10772717B2 (en) | 2009-05-01 | 2020-09-15 | Endologix, Inc. | Percutaneous method and device to treat dissections |
US8936634B2 (en) | 2009-07-15 | 2015-01-20 | W. L. Gore & Associates, Inc. | Self constraining radially expandable medical devices |
US8435282B2 (en) | 2009-07-15 | 2013-05-07 | W. L. Gore & Associates, Inc. | Tube with reverse necking properties |
US8491646B2 (en) | 2009-07-15 | 2013-07-23 | Endologix, Inc. | Stent graft |
JP5588511B2 (en) | 2009-07-27 | 2014-09-10 | エンドロジックス、インク | Stent graft |
US20110034987A1 (en) * | 2009-08-04 | 2011-02-10 | Kennedy Kenneth C | Roll sleeve mechanism for proximal release stent |
US20110046709A1 (en) * | 2009-08-18 | 2011-02-24 | Abbott Cardiovascular Systems, Inc. | Methods for implanting a stent using a guide catheter |
CN102695475B (en) | 2009-11-02 | 2015-11-25 | 西美蒂斯股份公司 | Aorta bioprosthesis and the system of sending for it |
US8016872B2 (en) * | 2009-12-22 | 2011-09-13 | Cook Medical Technologies Llc | Deployment and dilation with an expandable roll sock delivery system |
CN102781369B (en) * | 2010-01-14 | 2015-03-11 | 亭阁医疗创新公司 | Systems and methods for bariatric therapy |
US8778007B2 (en) * | 2010-01-25 | 2014-07-15 | Empirilon Technology, Llc | Systems for performing intralumenal reconstruction |
US9468442B2 (en) | 2010-01-28 | 2016-10-18 | Covidien Lp | Vascular remodeling device |
DE102010006187B4 (en) * | 2010-01-29 | 2017-11-16 | Acandis Gmbh & Co. Kg | Medical catheter for delivering a self-expanding non-preloaded stent |
AU2011212061A1 (en) * | 2010-02-08 | 2012-09-27 | Stryker Corporation | Method and device for treating cerebrovascular pathologies and delivery system therefor |
US20110301502A1 (en) * | 2010-02-12 | 2011-12-08 | Sukhjit Gill | In-vessel positioning device |
JP2013526388A (en) | 2010-05-25 | 2013-06-24 | イエナバルブ テクノロジー インク | Artificial heart valve, and transcatheter delivery prosthesis comprising an artificial heart valve and a stent |
US10751206B2 (en) | 2010-06-26 | 2020-08-25 | Scott M. Epstein | Catheter or stent delivery system |
US20110319902A1 (en) * | 2010-06-26 | 2011-12-29 | Scott Epstein | Catheter delivery system |
US9561094B2 (en) | 2010-07-23 | 2017-02-07 | Nfinium Vascular Technologies, Llc | Devices and methods for treating venous diseases |
US8771336B2 (en) | 2010-08-21 | 2014-07-08 | Cook Medical Technologies Llc | Endoluminal prosthesis comprising a valve replacement and at least one fenestration |
CA2748206C (en) | 2010-08-21 | 2015-06-23 | Blayne A. Roeder | Prosthesis having pivoting fenestration |
US8870939B2 (en) | 2010-08-21 | 2014-10-28 | Cook Medical Technologies Llc | Prosthesis having pivoting fenestration |
US8702786B2 (en) | 2010-08-21 | 2014-04-22 | Cook Medical Technologies Llc | Prosthesis having pivoting fenestration |
WO2012061526A2 (en) | 2010-11-02 | 2012-05-10 | Endologix, Inc. | Apparatus and method of placement of a graft or graft system |
US20120191174A1 (en) | 2010-11-16 | 2012-07-26 | Trivascular, Inc. | Advanced endovascular graft and delivery system |
JP5891236B2 (en) | 2010-11-17 | 2016-03-22 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | Stent delivery system |
CN103298433B (en) | 2010-11-17 | 2016-03-16 | 波士顿科学西美德公司 | Stent delivery system and the Lock Part for using together with stent delivery system |
EP2640324B1 (en) | 2010-11-17 | 2015-02-18 | Boston Scientific Scimed, Inc. | Stent delivery system |
US9393100B2 (en) | 2010-11-17 | 2016-07-19 | Endologix, Inc. | Devices and methods to treat vascular dissections |
US8177742B1 (en) | 2010-12-23 | 2012-05-15 | Kimberly-Clark Wordwide, Inc. | Inflatable retention system for an enteral feeding device |
CA2825774C (en) | 2011-02-11 | 2017-02-28 | Frank P. Becking | Two-stage deployment aneurysm embolization devices |
EP2680915B1 (en) | 2011-03-01 | 2021-12-22 | Endologix LLC | Catheter system |
WO2012134990A1 (en) | 2011-03-25 | 2012-10-04 | Tyco Healthcare Group Lp | Vascular remodeling device |
EP2510972B1 (en) * | 2011-04-14 | 2014-08-06 | Biotronik AG | Catheter device |
US9061127B2 (en) | 2011-04-29 | 2015-06-23 | Boston Scientific Scimed, Inc. | Protective surfaces for drug-coated medical devices |
US9101507B2 (en) | 2011-05-18 | 2015-08-11 | Ralph F. Caselnova | Apparatus and method for proximal-to-distal endoluminal stent deployment |
AU2012209013B2 (en) * | 2011-08-02 | 2013-11-14 | Cook Medical Technologies Llc | Delivery device having a variable diameter introducer sheath |
US10213329B2 (en) | 2011-08-12 | 2019-02-26 | W. L. Gore & Associates, Inc. | Evertable sheath devices, systems, and methods |
US9060886B2 (en) | 2011-09-29 | 2015-06-23 | Covidien Lp | Vascular remodeling device |
US10058443B2 (en) | 2011-11-02 | 2018-08-28 | Boston Scientific Scimed, Inc. | Stent delivery systems and methods for use |
US10213187B1 (en) | 2012-01-25 | 2019-02-26 | Mubin I. Syed | Method and apparatus for percutaneous superficial temporal artery access for carotid artery stenting |
US11207176B2 (en) | 2012-03-22 | 2021-12-28 | Boston Scientific Scimed, Inc. | Transcatheter stent-valves and methods, systems and devices for addressing para-valve leakage |
US20130274873A1 (en) | 2012-03-22 | 2013-10-17 | Symetis Sa | Transcatheter Stent-Valves and Methods, Systems and Devices for Addressing Para-Valve Leakage |
US9498363B2 (en) | 2012-04-06 | 2016-11-22 | Trivascular, Inc. | Delivery catheter for endovascular device |
US9155647B2 (en) | 2012-07-18 | 2015-10-13 | Covidien Lp | Methods and apparatus for luminal stenting |
US9314248B2 (en) | 2012-11-06 | 2016-04-19 | Covidien Lp | Multi-pivot thrombectomy device |
US8784434B2 (en) | 2012-11-20 | 2014-07-22 | Inceptus Medical, Inc. | Methods and apparatus for treating embolism |
US10639179B2 (en) | 2012-11-21 | 2020-05-05 | Ram Medical Innovations, Llc | System for the intravascular placement of a medical device |
US9295571B2 (en) * | 2013-01-17 | 2016-03-29 | Covidien Lp | Methods and apparatus for luminal stenting |
US9763819B1 (en) | 2013-03-05 | 2017-09-19 | W. L. Gore & Associates, Inc. | Tapered sleeve |
BR112015020226A2 (en) * | 2013-03-08 | 2017-07-18 | Coloplast As | catheter assembly and method of operation of a catheter |
US9463105B2 (en) | 2013-03-14 | 2016-10-11 | Covidien Lp | Methods and apparatus for luminal stenting |
US10265202B2 (en) | 2013-03-14 | 2019-04-23 | Cook Medical Technologies Llc | Prosthesis having an everting pivoting fenestration |
CN105142545B (en) | 2013-03-15 | 2018-04-06 | 柯惠有限合伙公司 | Locking device |
US11291573B2 (en) | 2013-03-15 | 2022-04-05 | Cook Medical Technologies Llc | Delivery system for a self-expanding medical device |
JP6563394B2 (en) | 2013-08-30 | 2019-08-21 | イェーナヴァルヴ テクノロジー インコーポレイテッド | Radially foldable frame for an artificial valve and method for manufacturing the frame |
US10238406B2 (en) | 2013-10-21 | 2019-03-26 | Inari Medical, Inc. | Methods and apparatus for treating embolism |
US9526875B2 (en) * | 2013-10-31 | 2016-12-27 | Cook Medical Technologies Llc | Adjustable length dilation balloon |
US9907641B2 (en) | 2014-01-10 | 2018-03-06 | W. L. Gore & Associates, Inc. | Implantable intraluminal device |
US10966850B2 (en) * | 2014-03-06 | 2021-04-06 | W. L. Gore & Associates, Inc. | Implantable medical device constraint and deployment apparatus |
EP3151904A4 (en) | 2014-06-04 | 2018-02-14 | Nfinium Vascular Technologies, LLC | Low radial force vascular device and method of occlusion |
CN106659873B (en) * | 2014-07-28 | 2020-08-18 | 智能医疗系统有限公司 | Controlled furling balloon assembly |
US10569063B2 (en) | 2014-10-03 | 2020-02-25 | W. L. Gore & Associates, Inc. | Removable covers for drug eluting medical devices |
JP6672286B2 (en) | 2014-10-23 | 2020-03-25 | トリバスキュラー・インコーポレイテッドTriVascular, INC. | Stent graft delivery system with access conduit |
US10299948B2 (en) | 2014-11-26 | 2019-05-28 | W. L. Gore & Associates, Inc. | Balloon expandable endoprosthesis |
US10159587B2 (en) | 2015-01-16 | 2018-12-25 | Boston Scientific Scimed, Inc. | Medical device delivery system with force reduction member |
US9636244B2 (en) * | 2015-04-09 | 2017-05-02 | Mubin I. Syed | Apparatus and method for proximal to distal stent deployment |
EP4403138A3 (en) | 2015-05-01 | 2024-10-09 | JenaValve Technology, Inc. | Device and method with reduced pacemaker rate in heart valve replacement |
JP6803340B2 (en) | 2015-05-27 | 2020-12-23 | トリバスキュラー・インコーポレイテッドTriVascular, INC. | Balloon support intraluminal prosthesis deployment |
EP4417169A2 (en) | 2015-06-30 | 2024-08-21 | Endologix LLC | Locking assembly for coupling guidewire to delivery system |
US10695206B2 (en) | 2015-07-30 | 2020-06-30 | Trivascular, Inc. | Endoluminal prosthesis deployment devices and methods |
US10478194B2 (en) | 2015-09-23 | 2019-11-19 | Covidien Lp | Occlusive devices |
EP3355829B1 (en) | 2015-09-28 | 2020-09-16 | Stryker Corporation | Mechanical thrombectomy apparatuses |
FI3364891T3 (en) | 2015-10-23 | 2023-09-25 | Inari Medical Inc | Device for intravascular treatment of vascular occlusion |
US10327929B2 (en) | 2015-10-30 | 2019-06-25 | Ram Medical Innovations, Llc | Apparatus and method for stabilization of procedural catheter in tortuous vessels |
US11020256B2 (en) | 2015-10-30 | 2021-06-01 | Ram Medical Innovations, Inc. | Bifurcated “Y” anchor support for coronary interventions |
US10779976B2 (en) | 2015-10-30 | 2020-09-22 | Ram Medical Innovations, Llc | Apparatus and method for stabilization of procedural catheter in tortuous vessels |
US10492936B2 (en) | 2015-10-30 | 2019-12-03 | Ram Medical Innovations, Llc | Apparatus and method for improved access of procedural catheter in tortuous vessels |
US9980838B2 (en) | 2015-10-30 | 2018-05-29 | Ram Medical Innovations Llc | Apparatus and method for a bifurcated catheter for use in hostile aortic arches |
US11351048B2 (en) | 2015-11-16 | 2022-06-07 | Boston Scientific Scimed, Inc. | Stent delivery systems with a reinforced deployment sheath |
CN109069281B (en) | 2016-02-26 | 2021-03-09 | 波士顿科学国际有限公司 | Stent delivery system with reduced profile |
US10022255B2 (en) * | 2016-04-11 | 2018-07-17 | Idev Technologies, Inc. | Stent delivery system having anisotropic sheath |
US11497512B2 (en) | 2016-04-25 | 2022-11-15 | Stryker Corporation | Inverting thrombectomy apparatuses and methods |
ES2925057T3 (en) | 2016-04-25 | 2022-10-13 | Stryker Corp | Preloaded Inverter Tractor Thrombectomy Sets |
US11896247B2 (en) | 2016-04-25 | 2024-02-13 | Stryker Corporation | Inverting mechanical thrombectomy apparatuses |
JP6934935B2 (en) | 2016-04-25 | 2021-09-15 | ストライカー コーポレイションStryker Corporation | Inverted mechanical thrombectomy and intravascular use |
EP3590446B1 (en) | 2016-04-25 | 2021-01-06 | Stryker Corporation | Anti-jamming and macerating thrombectomy apparatuses |
CN109475419B (en) | 2016-05-13 | 2021-11-09 | 耶拿阀门科技股份有限公司 | Heart valve prosthesis delivery systems and methods for delivering heart valve prostheses through guide sheaths and loading systems |
US10568752B2 (en) | 2016-05-25 | 2020-02-25 | W. L. Gore & Associates, Inc. | Controlled endoprosthesis balloon expansion |
ES2924974T3 (en) | 2016-06-03 | 2022-10-13 | Stryker Corp | Reversal Thrombectomy Apparatus |
US10173031B2 (en) | 2016-06-20 | 2019-01-08 | Mubin I. Syed | Interchangeable flush/selective catheter |
EP3509507A1 (en) | 2016-09-12 | 2019-07-17 | Stryker Corporation | Self-rolling thrombectomy apparatuses and methods |
EP4400076A3 (en) | 2016-10-24 | 2024-10-02 | Inari Medical, Inc. | Devices and methods for treating vascular occlusion |
US11197754B2 (en) | 2017-01-27 | 2021-12-14 | Jenavalve Technology, Inc. | Heart valve mimicry |
EP3369401B1 (en) | 2017-02-28 | 2024-07-10 | Cook Medical Technologies LLC | Delivery system for a preloaded fenestrated device having a ratcheted wire release |
US10390953B2 (en) | 2017-03-08 | 2019-08-27 | Cardiac Dimensions Pty. Ltd. | Methods and devices for reducing paravalvular leakage |
US11865334B2 (en) * | 2017-08-21 | 2024-01-09 | MRM MedTech, LLC | Lead with integrated feature including a low friction component to facilitate extraction and associated methods of extraction |
US10933247B2 (en) * | 2017-08-21 | 2021-03-02 | MRM MedTech, LLC | Lead with integrated features to facilitate extraction and associated methods of extraction |
WO2019050765A1 (en) | 2017-09-06 | 2019-03-14 | Inari Medical, Inc. | Hemostasis valves and methods of use |
AU2018348150B2 (en) | 2017-10-11 | 2021-08-12 | W. L. Gore & Associates, Inc. | Implantable medical device constraint and deployment apparatus |
EP4176830A1 (en) | 2017-11-09 | 2023-05-10 | Stryker Corporation | Inverting thrombectomy apparatuses having enhanced tracking |
US11013627B2 (en) | 2018-01-10 | 2021-05-25 | Boston Scientific Scimed, Inc. | Stent delivery system with displaceable deployment mechanism |
US11154314B2 (en) | 2018-01-26 | 2021-10-26 | Inari Medical, Inc. | Single insertion delivery system for treating embolism and associated systems and methods |
US11007075B2 (en) | 2018-02-18 | 2021-05-18 | Ram Medical Innovations, Inc. | Vascular access devices and methods for lower limb interventions |
CN112423683B (en) | 2018-05-14 | 2024-06-18 | 史赛克公司 | Turnover thrombectomy device and method of use |
CN110693635B (en) * | 2018-07-09 | 2022-05-27 | 先健科技(深圳)有限公司 | Lumen stent conveyor |
CA3114285A1 (en) | 2018-08-13 | 2020-02-20 | Inari Medical, Inc. | System for treating embolism and associated devices and methods |
US11253291B2 (en) | 2018-09-10 | 2022-02-22 | Stryker Corporation | Laser slotted grabbing device |
JP7440496B2 (en) | 2018-09-10 | 2024-02-28 | ストライカー コーポレイション | Inversion thrombectomy device and method of use |
CN113645927A (en) | 2019-02-13 | 2021-11-12 | 波士顿科学国际有限公司 | Stent delivery system |
KR102610812B1 (en) | 2019-02-15 | 2023-12-06 | 보스톤 싸이엔티픽 싸이메드 인코포레이티드 | stent delivery system |
WO2021076954A1 (en) | 2019-10-16 | 2021-04-22 | Inari Medical, Inc. | Systems, devices, and methods for treating vascular occlusions |
USD994884S1 (en) * | 2020-03-04 | 2023-08-08 | Olympus Corporation | Handle of stent placement device |
EP4259045A1 (en) | 2020-12-14 | 2023-10-18 | Cardiac Dimensions Pty. Ltd. | Modular pre-loaded medical implants and delivery systems |
CN116077255B (en) * | 2023-04-07 | 2023-06-06 | 北京爱霖医疗科技有限公司 | Braided stent delivery system |
CN116942252B (en) * | 2023-09-20 | 2023-11-28 | 杭州亿科医疗科技有限公司 | Bolt taking device and bolt taking system |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4655771A (en) * | 1982-04-30 | 1987-04-07 | Shepherd Patents S.A. | Prosthesis comprising an expansible or contractile tubular body |
US4732152A (en) * | 1984-12-05 | 1988-03-22 | Medinvent S.A. | Device for implantation and a method of implantation in a vessel using such device |
US5180362A (en) * | 1990-04-03 | 1993-01-19 | Worst J G F | Gonio seton |
US5224953A (en) * | 1992-05-01 | 1993-07-06 | The Beth Israel Hospital Association | Method for treatment of obstructive portions of urinary passageways |
EP0554579A1 (en) * | 1992-02-03 | 1993-08-11 | Schneider (Europe) Ag | Catheter with vessel support |
WO1993022986A1 (en) * | 1992-05-08 | 1993-11-25 | Schneider (Usa) Inc. | Esophageal stent and delivery tool |
WO1994015549A1 (en) * | 1992-12-30 | 1994-07-21 | Schneider (Usa) Inc. | Apparatus for deploying body implantable stents |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE455834B (en) * | 1986-10-31 | 1988-08-15 | Medinvent Sa | DEVICE FOR TRANSLUMINAL IMPLANTATION OF A PRINCIPLE RODFORMALLY RADIALLY EXPANDABLE PROSTHESIS |
-
1996
- 1996-02-26 AU AU46321/96A patent/AU4632196A/en not_active Abandoned
- 1996-02-26 AT AT96901941T patent/ATE232067T1/en not_active IP Right Cessation
- 1996-02-26 CA CA002218072A patent/CA2218072A1/en not_active Abandoned
- 1996-02-26 JP JP53083396A patent/JP3199383B2/en not_active Expired - Lifetime
- 1996-02-26 WO PCT/IB1996/000146 patent/WO1996032078A1/en active IP Right Grant
- 1996-02-26 DE DE69626108T patent/DE69626108T2/en not_active Expired - Lifetime
- 1996-02-26 EP EP96901941A patent/EP0820259B1/en not_active Expired - Lifetime
- 1996-09-19 US US08/716,052 patent/US5662703A/en not_active Expired - Lifetime
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4655771A (en) * | 1982-04-30 | 1987-04-07 | Shepherd Patents S.A. | Prosthesis comprising an expansible or contractile tubular body |
US4655771B1 (en) * | 1982-04-30 | 1996-09-10 | Medinvent Ams Sa | Prosthesis comprising an expansible or contractile tubular body |
US4732152A (en) * | 1984-12-05 | 1988-03-22 | Medinvent S.A. | Device for implantation and a method of implantation in a vessel using such device |
US5180362A (en) * | 1990-04-03 | 1993-01-19 | Worst J G F | Gonio seton |
EP0554579A1 (en) * | 1992-02-03 | 1993-08-11 | Schneider (Europe) Ag | Catheter with vessel support |
US5224953A (en) * | 1992-05-01 | 1993-07-06 | The Beth Israel Hospital Association | Method for treatment of obstructive portions of urinary passageways |
WO1993022986A1 (en) * | 1992-05-08 | 1993-11-25 | Schneider (Usa) Inc. | Esophageal stent and delivery tool |
WO1994015549A1 (en) * | 1992-12-30 | 1994-07-21 | Schneider (Usa) Inc. | Apparatus for deploying body implantable stents |
Cited By (74)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2283892B1 (en) * | 1997-03-06 | 2015-06-10 | Boston Scientific Scimed, Inc. | Retrieval device for withdrawing a protection device from a body lumen |
EP0941716A3 (en) * | 1998-03-13 | 2001-07-18 | Cordis Corporation | A delivery apparatus for a self-expanding stent |
US6425898B1 (en) | 1998-03-13 | 2002-07-30 | Cordis Corporation | Delivery apparatus for a self-expanding stent |
US6019778A (en) * | 1998-03-13 | 2000-02-01 | Cordis Corporation | Delivery apparatus for a self-expanding stent |
US8491647B2 (en) | 1998-03-31 | 2013-07-23 | Boston Scientific Scimed, Inc. | Low profile medical stent |
US7172617B2 (en) | 1998-03-31 | 2007-02-06 | Boston Scientific Scimed, Inc. | Stent delivery system |
US6264689B1 (en) | 1998-03-31 | 2001-07-24 | Scimed Life Systems, Incorporated | Low profile medical stent |
US8197528B2 (en) | 1998-03-31 | 2012-06-12 | Boston Scientific Scimed, Inc. | Low profile medical stent |
US6520983B1 (en) | 1998-03-31 | 2003-02-18 | Scimed Life Systems, Inc. | Stent delivery system |
US8377109B2 (en) | 1998-11-06 | 2013-02-19 | Boston Scientific Scimed, Inc. | Rolling membrane stent delivery system |
US6238410B1 (en) | 1998-11-06 | 2001-05-29 | Scimed Life Systems, Inc. | Pulling membrane stent delivery system |
US6544278B1 (en) | 1998-11-06 | 2003-04-08 | Scimed Life Systems, Inc. | Rolling membrane stent delivery system |
WO2000027309A1 (en) * | 1998-11-06 | 2000-05-18 | Scimed Life Systems, Inc. | Improved rolling membrane stent delivery system |
US6942682B2 (en) | 1998-11-06 | 2005-09-13 | Boston Scientific Scimed, Inc. | Rolling membrane stent delivery system |
US7794488B2 (en) | 1998-11-06 | 2010-09-14 | Boston Scientific Scimed, Inc. | Rolling membrane stent delivery system |
US6676666B2 (en) | 1999-01-11 | 2004-01-13 | Scimed Life Systems, Inc | Medical device delivery system with two sheaths |
WO2000041525A2 (en) * | 1999-01-11 | 2000-07-20 | Scimed Life Systems, Inc. | Self-expanding stent delivery system with two sheaths |
WO2000041525A3 (en) * | 1999-01-11 | 2000-09-28 | Scimed Life Systems Inc | Self-expanding stent delivery system with two sheaths |
US6254609B1 (en) | 1999-01-11 | 2001-07-03 | Scimed Life Systems, Inc. | Self-expanding stent delivery system with two sheaths |
US9925074B2 (en) | 1999-02-01 | 2018-03-27 | Board Of Regents, The University Of Texas System | Plain woven stents |
US8876880B2 (en) | 1999-02-01 | 2014-11-04 | Board Of Regents, The University Of Texas System | Plain woven stents |
US8974516B2 (en) | 1999-02-01 | 2015-03-10 | Board Of Regents, The University Of Texas System | Plain woven stents |
EP1025813A3 (en) * | 1999-02-03 | 2001-07-18 | Cordis Corporation | A delivery apparatus for a self-expanding stent |
AU758842B2 (en) * | 1999-02-03 | 2003-04-03 | Cordis Corporation | A delivery apparatus for a self-expanding stent |
DE10004979B4 (en) * | 1999-02-18 | 2008-04-03 | Tokendo (S.A.R.L.) | System for inserting endoprostheses |
WO2001078627A1 (en) * | 2000-04-12 | 2001-10-25 | Scimed Life Systems, Inc. | Stent delivery catheter with retractable balloon |
US6702843B1 (en) * | 2000-04-12 | 2004-03-09 | Scimed Life Systems, Inc. | Stent delivery means with balloon retraction means |
US6743219B1 (en) | 2000-08-02 | 2004-06-01 | Cordis Corporation | Delivery apparatus for a self-expanding stent |
EP1181906A3 (en) * | 2000-08-02 | 2004-01-28 | Cordis Corporation | A delivery apparatus for a self-expanding stent |
WO2002049538A2 (en) * | 2000-12-18 | 2002-06-27 | Advanced Cardiovascular Systems, Inc. | Ostial stent and method for deploying same |
WO2002049538A3 (en) * | 2000-12-18 | 2003-01-09 | Advanced Cardiovascular System | Ostial stent and method for deploying same |
US7127789B2 (en) | 2001-01-22 | 2006-10-31 | Scimed Life Systems, Inc. | Method of manufacturing a stent delivery system |
US6699274B2 (en) * | 2001-01-22 | 2004-03-02 | Scimed Life Systems, Inc. | Stent delivery system and method of manufacturing same |
US8029555B2 (en) * | 2004-03-31 | 2011-10-04 | Cook Medical Technologies Llc | Stent introducer system |
WO2005107644A1 (en) * | 2004-04-27 | 2005-11-17 | Boston Scientific Limited | Stent delivery system |
US7285130B2 (en) | 2004-04-27 | 2007-10-23 | Boston Scientific Scimed, Inc. | Stent delivery system |
US7794487B2 (en) | 2004-07-28 | 2010-09-14 | Cordis Corporation | Reduced deployment force delivery device |
EP1621160A1 (en) * | 2004-07-28 | 2006-02-01 | Cordis Corporation | Low deployment force delivery device |
US7955370B2 (en) | 2004-08-06 | 2011-06-07 | Boston Scientific Scimed, Inc. | Stent delivery system |
WO2006020028A1 (en) * | 2004-08-06 | 2006-02-23 | Boston Scientific Limited | Stent delivery system |
US7393358B2 (en) | 2004-08-17 | 2008-07-01 | Boston Scientific Scimed, Inc. | Stent delivery system |
WO2006023168A1 (en) * | 2004-08-17 | 2006-03-02 | Boston Scientific Scimed, Inc. | Stent delivery system |
US7632296B2 (en) | 2005-03-03 | 2009-12-15 | Boston Scientific Scimed, Inc. | Rolling membrane with hydraulic recapture means for self expanding stent |
US8066754B2 (en) | 2005-03-03 | 2011-11-29 | Boston Scientific Scimed, Inc. | Rolling membrane with hydraulic recapture means for self expanding stent |
DE102005020785A1 (en) * | 2005-05-04 | 2006-11-09 | Jotec Gmbh | Delivery system with a self-expanding braid stent |
US8043353B2 (en) | 2005-05-04 | 2011-10-25 | Jotec Gmbh | Delivery system having a self-expanding braided stent |
US8202309B2 (en) | 2005-05-19 | 2012-06-19 | Laboratoires Perouse | Kit for inserting a cavity-treatment element and method for preparing an associated treatment element |
WO2006123046A1 (en) * | 2005-05-19 | 2006-11-23 | Laboratoires Perouse | Kit for inserting a cavity-treatment element and method of preparing an associated treatment element |
US9629736B2 (en) | 2006-10-22 | 2017-04-25 | Idev Technologies, Inc. | Secured strand end devices |
US10470902B2 (en) | 2006-10-22 | 2019-11-12 | Idev Technologies, Inc. | Secured strand end devices |
US9895242B2 (en) | 2006-10-22 | 2018-02-20 | Idev Technologies, Inc. | Secured strand end devices |
US9149374B2 (en) | 2006-10-22 | 2015-10-06 | Idev Technologies, Inc. | Methods for manufacturing secured strand end devices |
US8876881B2 (en) | 2006-10-22 | 2014-11-04 | Idev Technologies, Inc. | Devices for stent advancement |
US9408730B2 (en) | 2006-10-22 | 2016-08-09 | Idev Technologies, Inc. | Secured strand end devices |
US9408729B2 (en) | 2006-10-22 | 2016-08-09 | Idev Technologies, Inc. | Secured strand end devices |
US9585776B2 (en) | 2006-10-22 | 2017-03-07 | Idev Technologies, Inc. | Secured strand end devices |
US8966733B2 (en) | 2006-10-22 | 2015-03-03 | Idev Technologies, Inc. | Secured strand end devices |
US9387101B2 (en) | 2007-10-17 | 2016-07-12 | C.R. Bard, Inc. | Delivery system for a self-expanding device for placement in a bodily lumen |
US9687370B2 (en) | 2008-05-09 | 2017-06-27 | C.R. Bard, Inc. | Method of loading a stent into a sheath |
US9833349B2 (en) | 2008-08-21 | 2017-12-05 | C. R. Bard, Inc. | Method of loading a stent into a sheath |
US10271979B2 (en) | 2008-12-31 | 2019-04-30 | C. R . Bard, Inc. | Stent delivery device with rolling stent retaining sheath |
EP2491894A1 (en) | 2008-12-31 | 2012-08-29 | Angiomed GmbH & Co. Medizintechnik KG | Stent delivery device with rolling stent retaining sheath |
US9687369B2 (en) | 2009-12-03 | 2017-06-27 | C.R. Bard, Inc. | Stent device delivery system with an outer sheath polymeric reinforcement layer |
US9724216B2 (en) | 2009-12-03 | 2017-08-08 | C. R. Bard, Inc. | Stent device delivery system with inwardly tapering stent bed |
US9717612B2 (en) | 2009-12-03 | 2017-08-01 | C.R. Bard, Inc. | Stent device delivery system with a varying radial profile pull member |
US10278845B2 (en) | 2009-12-03 | 2019-05-07 | C. R. Bard, Inc. | Stent device delivery system with a heat shrink resistant support member |
US10449072B2 (en) | 2009-12-03 | 2019-10-22 | C.R. Bard, Inc. | Stent device delivery system with an outer sheath polymeric reinforcement layer |
US10555824B2 (en) | 2009-12-03 | 2020-02-11 | C. R. Bard, Inc. | Stent device delivery system with inwardly tapering stent bed |
US10779975B2 (en) | 2009-12-03 | 2020-09-22 | C. R. Bard, Inc. | Stent device delivery system with a varying radial profile pull member |
US9023095B2 (en) | 2010-05-27 | 2015-05-05 | Idev Technologies, Inc. | Stent delivery system with pusher assembly |
US9931232B2 (en) | 2010-10-21 | 2018-04-03 | Boston Scientific Scimed, Inc. | Stent delivery system |
US9168164B2 (en) | 2010-12-01 | 2015-10-27 | C. R. Bard, Inc. | Device to release a self-expanding implant |
US10821013B2 (en) | 2010-12-01 | 2020-11-03 | C. R. Bard, Inc. | Device to release a self-expanding implant |
US10888691B2 (en) | 2018-04-24 | 2021-01-12 | Olympus Corporation | Stent delivery method |
Also Published As
Publication number | Publication date |
---|---|
ATE232067T1 (en) | 2003-02-15 |
DE69626108T2 (en) | 2003-11-20 |
US5662703A (en) | 1997-09-02 |
AU4632196A (en) | 1996-10-30 |
JPH10507675A (en) | 1998-07-28 |
DE69626108D1 (en) | 2003-03-13 |
EP0820259A1 (en) | 1998-01-28 |
EP0820259B1 (en) | 2003-02-05 |
CA2218072A1 (en) | 1996-10-17 |
JP3199383B2 (en) | 2001-08-20 |
MX9707886A (en) | 1997-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5662703A (en) | Rolling membrane stent delivery device | |
KR100818903B1 (en) | Medical device with braid and coil | |
US6755855B2 (en) | Apparatus for deploying body implantable stents | |
US5456667A (en) | Temporary stenting catheter with one-piece expandable segment | |
US6139572A (en) | Delivery system for intraluminal vascular grafts | |
US6613067B1 (en) | Balloon protector | |
EP1121174B1 (en) | Stent delivery perfusion catheter | |
US6280465B1 (en) | Apparatus and method for delivering a self-expanding stent on a guide wire | |
US7637933B2 (en) | Method for preparing and employing an implant delivery apparatus | |
US7942917B2 (en) | Hollow helical stent system | |
US20070173918A1 (en) | Apparatus and methods for locating an ostium of a vessel | |
AU2001273446A1 (en) | Medical device with braid and coil | |
JP2003265619A (en) | Self-expanding stent delivery system | |
WO1996017645A1 (en) | Vascular dilatation device and method | |
EP2701787A2 (en) | Guidewire with two flexible end portions and method of accessing a branch vessel therewith | |
EP0897730A2 (en) | Retainer for a stent-carrying balloon catheter | |
WO2000062709A1 (en) | Delivery system for balloon expandable stent | |
MXPA97007886A (en) | Stenosis implant supply device (stent) with arrollamie membrane | |
MXPA98006472A (en) | A retainer for globe cateter that transportsoprote |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU CA DE JP MX |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1996901941 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2218072 Country of ref document: CA Ref country code: CA Ref document number: 2218072 Kind code of ref document: A Format of ref document f/p: F |
|
WWE | Wipo information: entry into national phase |
Ref document number: PA/a/1997/007886 Country of ref document: MX |
|
WWP | Wipo information: published in national office |
Ref document number: 1996901941 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 1996901941 Country of ref document: EP |