WO1996031174A1 - Pull back stent delivery system - Google Patents

Pull back stent delivery system Download PDF

Info

Publication number
WO1996031174A1
WO1996031174A1 PCT/US1996/004744 US9604744W WO9631174A1 WO 1996031174 A1 WO1996031174 A1 WO 1996031174A1 US 9604744 W US9604744 W US 9604744W WO 9631174 A1 WO9631174 A1 WO 9631174A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
medical device
pull back
delivery system
inner shaft
Prior art date
Application number
PCT/US1996/004744
Other languages
French (fr)
Other versions
WO1996031174B1 (en
Inventor
Connie Del Toro
Original Assignee
Scimed Life Systems Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scimed Life Systems Inc. filed Critical Scimed Life Systems Inc.
Priority to DE69613572T priority Critical patent/DE69613572T2/en
Priority to AT96912594T priority patent/ATE202464T1/en
Priority to JP8530521A priority patent/JPH11503054A/en
Priority to EP96912594A priority patent/EP0821574B1/en
Priority to CA002216952A priority patent/CA2216952C/en
Publication of WO1996031174A1 publication Critical patent/WO1996031174A1/en
Publication of WO1996031174B1 publication Critical patent/WO1996031174B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/9517Instruments specially adapted for placement or removal of stents or stent-grafts handle assemblies therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters

Definitions

  • the present invention relates to an improved delivery system for delivering and deploying a medical device, such as a stent. More specifically, the invention relates to a delivery system for more accurate placement of a medical device such as a stent when using a pull back delivery system.
  • Stents and delivery systems for deploying stents are highly developed and well known field of medical technology. Stents have many well known uses and applications.
  • a stent is a prosthesis which is generally tubular and which is expanded radially in a vessel or lumen to maintain its patency. Stents are widely used in body vessels, body canals, ducts or other body lumens.
  • Stents, stent-grafts and the like are commonly delivered using a catheter delivery system.
  • a common type of delivery system for delivering a self- expanding stent is called a pull back delivery system.
  • This type of delivery system utilizes two catheters or shafts which are concentrically arranged, one around another.
  • the stent is carried axially around the distal end of the inner catheter or shaft.
  • the stent is carried to the delivery site on the distal end of the delivery device, held in its compressed delivery position by the outer shaft or catheter. Once at the desired placement site, the outer shaft is pulled back, releasing the stent to self-expand.
  • a common and well known type of delivery is a contralateral insertion approach, where the distal end of the delivery device is placed on the opposite illiac from the original insertion site.
  • the pull back delivery systems can also cause the curve placed inside the illiac vessels to straighten out or flatten slightly as the outer catheter or shaft is pulled back. This also causes undesired forward movement of the inner shaft, which can lead to inaccurate placement of the stent.
  • Schneider's WALLSTENT ® product with UnistepTM delivery system utilizes a stainless steel tube as the inner shaft for the portion of the delivery system outside the body, and a plastic flexible tube as the inner shaft inside the body.
  • the stainless steel tube prevents the proximal end of the device from curving outside the body.
  • This device prevents placement error from the curve flattening out outside the body, but does not prevent placement error from a curve flattening out inside the body.
  • the Schneider approach may require different lengths of stainless steel tubing depending on the type of procedure, such as an ipsilateral femoral artery insertion versus a contralateral insertion, or a biliary duct insertion.
  • the inventive delivery device includes a catheter which is comprised of three concentric shafts.
  • a medical device such as a self-expanding stent is held in a reduced delivery configuration for insertion and transport through a body lumen to a predetermined site for deployment.
  • the stent is carried axially around the inner shaft and is held in its reduced delivery configuration by the middle shaft.
  • An outer shaft is used to stiffen the delivery device so that the arc of the inner shaft will not change outside of the body when the middle shaft is pulled back to release the stent to self-expand.
  • the outer shaft is connected to the inner shaft at the proximal end of the device, which stiffens the delivery system so that the inner shaft will not be urged forward as the middle shaft is pulled backward.
  • Figure 1 is a prior art delivery device having two shafts concentrically arranged and with an arc outside the body;
  • Figure 2 shows the arc outside the body of the prior art delivery device of Figure 1 flattening out as the outer shaft or catheter is pulled back to release the stent;
  • Figure 3 shows the arc inside the body of a prior art delivery device during a contralateral insertion, with the flattening of the arc during deployment shown in silhouette;
  • Figure 4 is a sectional view of the inventive delivery system, showing the stent undeployed
  • Figure 5 is a sectional view of the inventive delivery system of Figure 3, showing the stent deployed;
  • Figure 6 schematically shows the arc outside the body of the inventive delivery system with the stent undeployed
  • Figure 7 schematically shows the arc unchanged outside the body of the inventive delivery system with the stent deployed.
  • Figure 1 shows a prior art stent delivery system, shown generally at 10, which is comprised of two concentrically arranged catheters, shafts or manifolds.
  • the inner shaft is shown at 12 and the outer shaft is shown at 14.
  • a medical device such as a self-expanding stent (not shown) is carried axially around the inner shaft 12 and is held in its reduced delivery configuration by the outer shaft 14.
  • the stent is carried near the distal end 16 of the delivery system 10.
  • Reference numeral 18 shows schematically the separation between the portion of the device which is outside the body and the portion of the device which is inside the body.
  • Reference numeral 20 shows the arc outside the body prior to deployment of the stent.
  • Figure 2 shows the prior art device of Figure 1 after the outer manifold or shaft has been pulled back to allow the stent to self-expand and deploy.
  • Figure 2 shows that arc 20 has flattened out as the outer shaft 14 is pulled back and inner shaft 12 moves forward.
  • Figure 3 shows the distal end of a prior art device during a contralateral insertion. As the medical device is deployed, the arc at 22 flattens out from its predeployment position to its deployed position, shown in silhouette at 24.
  • the inventive deployment system is shown schematically and generally referred to as 30.
  • the outer stiffening shaft is referred to at 32
  • the middle pull back shaft is referred to at 34
  • the inner shaft is referred to at 36.
  • the inner shaft 36 can function as the lumen for a guide wire.
  • a medical device, such as self-expanding stent 38 is shown in the delivery position in Figure 4, carried axially around inner shaft 36 and held in its reduced delivery configuration by middle pull back shaft 34.
  • the outer shaft 32 and inner shaft 36 are connected together by manifold stabilizer 40 at the proximal end of the device.
  • the two shafts are connected together far enough apart to provide enough room for the middle pull back shaft to be fully retracted to completely release the stent 38 to self-expand, as shown in Figure 5.
  • the inner shaft 36 is held in position during pull back of the middle pull back shaft 34, thereby preventing any flattening of the outside the body arc or the inside the body arc during deployment.
  • the inventive delivery system provides for accurate placement of the medical device.
  • FIG. 7 shows that the manifold stabilizer 40 prevents any flattening of arc 20 as middle pull back shaft 34 is retracted to allow the stent 38 to self-expand (shown in Figure 5).
  • the inventive delivery device will prevent any flattening of the arc inside the body, shown in Figure 3, during a contralateral insertion. This completes the description of the preferred and alternate embodiments of the invention.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Prostheses (AREA)

Abstract

A delivery system (30) for implantation of a medical device in a vessel which has three concentric shafts (32, 34, 36), an inner shaft (36) for carrying a medical device (38), a middle pull back shaft (34) and an outer stiffening shaft (32). The inner and outer shafts are connected together at the proximal end (40) of the delivery system to preclude the inner shaft from moving axially relative to the outer shaft as the middle pull back shaft is retracted. This allows for accurate placement of the medical device.

Description

Pull Back Stent Delivery System Background of the Invention
1. Field of the Invention
The present invention relates to an improved delivery system for delivering and deploying a medical device, such as a stent. More specifically, the invention relates to a delivery system for more accurate placement of a medical device such as a stent when using a pull back delivery system.
2. Description of the Related Art
Stents and delivery systems for deploying stents are highly developed and well known field of medical technology. Stents have many well known uses and applications. A stent is a prosthesis which is generally tubular and which is expanded radially in a vessel or lumen to maintain its patency. Stents are widely used in body vessels, body canals, ducts or other body lumens.
Stents, stent-grafts and the like are commonly delivered using a catheter delivery system. A common type of delivery system for delivering a self- expanding stent is called a pull back delivery system. This type of delivery system utilizes two catheters or shafts which are concentrically arranged, one around another. The stent is carried axially around the distal end of the inner catheter or shaft. The stent is carried to the delivery site on the distal end of the delivery device, held in its compressed delivery position by the outer shaft or catheter. Once at the desired placement site, the outer shaft is pulled back, releasing the stent to self-expand.
In testing, applicant's have observed that the portion of the catheter outside the body is typically not straight, but is curved during pull back. The frictional forces caused by pulling back the outer catheter or shaft cause the curve of the entire device to flatten out, which causes the distal end of the inner shaft or catheter to be urged forward. This undesired forward movement of the inner shaft often leads to inaccurate placement of the stent.
Another factor which can lead to placement inaccuracy are curves inside the body. A common and well known type of delivery is a contralateral insertion approach, where the distal end of the delivery device is placed on the opposite illiac from the original insertion site. In this case, the pull back delivery systems can also cause the curve placed inside the illiac vessels to straighten out or flatten slightly as the outer catheter or shaft is pulled back. This also causes undesired forward movement of the inner shaft, which can lead to inaccurate placement of the stent. Schneider's WALLSTENT® product with Unistep™ delivery system utilizes a stainless steel tube as the inner shaft for the portion of the delivery system outside the body, and a plastic flexible tube as the inner shaft inside the body. The stainless steel tube prevents the proximal end of the device from curving outside the body. This device prevents placement error from the curve flattening out outside the body, but does not prevent placement error from a curve flattening out inside the body. Also, the Schneider approach may require different lengths of stainless steel tubing depending on the type of procedure, such as an ipsilateral femoral artery insertion versus a contralateral insertion, or a biliary duct insertion.
There remains a need in the art for a stent delivery system which prevents axial movement of one catheter shaft from causing forward movement of the other catheter shaft, which will allow for accurate placement of a medical device. Summary of the Invention
The inventive delivery device includes a catheter which is comprised of three concentric shafts. A medical device such as a self-expanding stent is held in a reduced delivery configuration for insertion and transport through a body lumen to a predetermined site for deployment. The stent is carried axially around the inner shaft and is held in its reduced delivery configuration by the middle shaft. An outer shaft is used to stiffen the delivery device so that the arc of the inner shaft will not change outside of the body when the middle shaft is pulled back to release the stent to self-expand. The outer shaft is connected to the inner shaft at the proximal end of the device, which stiffens the delivery system so that the inner shaft will not be urged forward as the middle shaft is pulled backward. Brief Description of the Drawings
A detailed description of the invention is hereafter described with specific reference being made to the drawings in which:
Figure 1 is a prior art delivery device having two shafts concentrically arranged and with an arc outside the body;
Figure 2 shows the arc outside the body of the prior art delivery device of Figure 1 flattening out as the outer shaft or catheter is pulled back to release the stent;
Figure 3 shows the arc inside the body of a prior art delivery device during a contralateral insertion, with the flattening of the arc during deployment shown in silhouette;
Figure 4 is a sectional view of the inventive delivery system, showing the stent undeployed;
Figure 5 is a sectional view of the inventive delivery system of Figure 3, showing the stent deployed;
Figure 6 schematically shows the arc outside the body of the inventive delivery system with the stent undeployed, and
Figure 7 schematically shows the arc unchanged outside the body of the inventive delivery system with the stent deployed. Description of the Preferred Embodiments
While this invention may be embodied in many different forms, there are shown in the drawings and described in detail herein specific preferred embodiments of the invention. The present disclosure is an exemplification of the principles of the invention and is not intended to limit the invention to the particular embodiments illustrated.
Figure 1 shows a prior art stent delivery system, shown generally at 10, which is comprised of two concentrically arranged catheters, shafts or manifolds. The inner shaft is shown at 12 and the outer shaft is shown at 14. A medical device such as a self-expanding stent (not shown) is carried axially around the inner shaft 12 and is held in its reduced delivery configuration by the outer shaft 14. The stent is carried near the distal end 16 of the delivery system 10. Reference numeral 18 shows schematically the separation between the portion of the device which is outside the body and the portion of the device which is inside the body. Reference numeral 20 shows the arc outside the body prior to deployment of the stent.
Figure 2 shows the prior art device of Figure 1 after the outer manifold or shaft has been pulled back to allow the stent to self-expand and deploy. Figure 2 shows that arc 20 has flattened out as the outer shaft 14 is pulled back and inner shaft 12 moves forward.
Figure 3 shows the distal end of a prior art device during a contralateral insertion. As the medical device is deployed, the arc at 22 flattens out from its predeployment position to its deployed position, shown in silhouette at 24.
Referring now to Figures 4 and 5, the inventive deployment system is shown schematically and generally referred to as 30. The outer stiffening shaft is referred to at 32, the middle pull back shaft is referred to at 34 and the inner shaft is referred to at 36. The inner shaft 36 can function as the lumen for a guide wire. A medical device, such as self-expanding stent 38 is shown in the delivery position in Figure 4, carried axially around inner shaft 36 and held in its reduced delivery configuration by middle pull back shaft 34. The outer shaft 32 and inner shaft 36 are connected together by manifold stabilizer 40 at the proximal end of the device. It is important that the two shafts are connected together far enough apart to provide enough room for the middle pull back shaft to be fully retracted to completely release the stent 38 to self-expand, as shown in Figure 5. By connecting the outer shaft 32 and the inner shaft 36 with manifold stabilizer 40, the inner shaft 36 is held in position during pull back of the middle pull back shaft 34, thereby preventing any flattening of the outside the body arc or the inside the body arc during deployment. The inventive delivery system provides for accurate placement of the medical device.
Referring now to Figures 6 and 7, the inventive delivery device 30 is shown prior to deployment and after deployment. Figure 7 shows that the manifold stabilizer 40 prevents any flattening of arc 20 as middle pull back shaft 34 is retracted to allow the stent 38 to self-expand (shown in Figure 5). Similarly, the inventive delivery device will prevent any flattening of the arc inside the body, shown in Figure 3, during a contralateral insertion. This completes the description of the preferred and alternate embodiments of the invention. It is to be understood that even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with the details of the structure and function of the invention, the disclosure is illustrative only and changes may be made in detail, especially in matters of shape, size and arrangement of parts within the principals of the invention, to the full extent indicated by the broad, general meaning of the terms in which the appended claims are expressed. Those skilled in the art may recognize other equivalents to the specific embodiment described herein which are intended to be encompassed by the claims attached hereto.

Claims

WHAT IS CLAIMED IS:
1. A delivery system for implantation of a medical device in a vessel, comprising: elongate flexible catheter means having proximal and distal ends for delivering a medical device to a predetermined location in a vessel of a patient, the elongate flexible catheter means being further comprised of: an inner shaft which carries the medical device near its distal end, a middle pull back shaft concentrically arranged around the inner shaft, the medical device being carried between the inner shaft and middle pull back shaft, and an outer stiffening shaft concentrically arranged around the middle pull back shaft, the inner and outer shafts being connected at their proximal ends to prevent axial movement of the inner shaft with respect to the outer shaft, whereby the medical device is delivered at the desired site by pulling on the proximal end of the middle pull back shaft, which deploys the medical device, and where the outer stiffening shaft connection to the inner shaft prevents axial movement of the inner shaft with respect to the outer stiffening shaft, thereby preventing the distal end of the inner shaft from being urged forward during delivery and therefore allowing for more accurate placement of the medical device.
2. The delivery system of claim 1 wherein the inner and outer shafts are connected together far enough apart to allow the middle pull back shaft to retract a distance at least as great as the axial length of the medical device to be delivered.
3. The delivery system of claim 1 wherein the inner shaft provides a lumen for a guide wire.
4. The delivery system of claim 1 wherein the medical device is a self- expanding stent.
5. A method of delivering a medical device using the delivery system of claim 1 , comprising the steps of: moving the distal end of the elongate flexible catheter means to a delivery site, and delivering the medical device by pulling back on the middle pull back shaft which releases the medical device, whereby the outer stiffening shaft connection to the inner shaft prevents the distal end of the inner shaft from being urged forward as the middle pull back shaft is retracted, thereby allowing for more accurate placement of the medical device.
PCT/US1996/004744 1995-04-05 1996-04-05 Pull back stent delivery system WO1996031174A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE69613572T DE69613572T2 (en) 1995-04-05 1996-04-05 DEVICE FOR INSERTING A VASCULAR PROSTHESIS THAT RELEASES THIS PROSTHESIS BY WITHDRAWAL OF A TUBE
AT96912594T ATE202464T1 (en) 1995-04-05 1996-04-05 DEVICE FOR INSERTING A VASCULAR PROSTHESIS WHICH RELEASES THIS PROSTHESIS BY PULLING BACK A TUBE
JP8530521A JPH11503054A (en) 1995-04-05 1996-04-05 Retraction stent introduction system
EP96912594A EP0821574B1 (en) 1995-04-05 1996-04-05 Pull back stent delivery device
CA002216952A CA2216952C (en) 1995-04-05 1996-04-05 Pull back stent delivery system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/417,385 1995-04-05
US08/417,385 US5571168A (en) 1995-04-05 1995-04-05 Pull back stent delivery system

Publications (2)

Publication Number Publication Date
WO1996031174A1 true WO1996031174A1 (en) 1996-10-10
WO1996031174B1 WO1996031174B1 (en) 1996-11-21

Family

ID=23653817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1996/004744 WO1996031174A1 (en) 1995-04-05 1996-04-05 Pull back stent delivery system

Country Status (7)

Country Link
US (2) US5571168A (en)
EP (1) EP0821574B1 (en)
JP (1) JPH11503054A (en)
AT (1) ATE202464T1 (en)
CA (1) CA2216952C (en)
DE (1) DE69613572T2 (en)
WO (1) WO1996031174A1 (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5810871A (en) * 1997-04-29 1998-09-22 Medtronic, Inc. Stent delivery system
US6174316B1 (en) 1998-05-28 2001-01-16 Medtronic, Inc. Stent delivery system
US6312407B1 (en) 1995-06-05 2001-11-06 Medtronic Percusurge, Inc. Occlusion of a vessel
EP1776938A2 (en) * 2003-09-03 2007-04-25 Bolton Medical Inc. Stent graft, stent graft delivery system and kit for implanting the stent graft
WO2008051941A3 (en) * 2006-10-22 2008-06-19 Idev Technologies Inc Devices and methods for stent advancement
WO2010021836A1 (en) * 2008-08-19 2010-02-25 Merit Medical Systems, Inc. Delivery device with a protective member
US7815669B2 (en) 2005-03-28 2010-10-19 Terumo Kabushiki Kaisha Stent delivery device
US8535366B2 (en) 2004-01-08 2013-09-17 Merit Medical Systems, Inc. Implantable device delivery system handle and method of use
US8876880B2 (en) 1999-02-01 2014-11-04 Board Of Regents, The University Of Texas System Plain woven stents
US8926683B2 (en) 2010-12-07 2015-01-06 Merit Medical Systems, Inc. Stent delivery systems and methods
US8986360B2 (en) 2005-05-13 2015-03-24 Merit Medical Systems, Inc. Delivery device with shortened inner tube and associated method
US8998970B2 (en) 2012-04-12 2015-04-07 Bolton Medical, Inc. Vascular prosthetic delivery device and method of use
US9023095B2 (en) 2010-05-27 2015-05-05 Idev Technologies, Inc. Stent delivery system with pusher assembly
US9101506B2 (en) 2009-03-13 2015-08-11 Bolton Medical, Inc. System and method for deploying an endoluminal prosthesis at a surgical site
US9192496B2 (en) 2011-10-31 2015-11-24 Merit Medical Systems, Inc. Systems and methods for sheathing an implantable device
US9198786B2 (en) 2003-09-03 2015-12-01 Bolton Medical, Inc. Lumen repair device with capture structure
US9220617B2 (en) 2003-09-03 2015-12-29 Bolton Medical, Inc. Dual capture device for stent graft delivery system and method for capturing a stent graft
US9320631B2 (en) 2003-09-03 2016-04-26 Bolton Medical, Inc. Aligning device for stent graft delivery system
US9364314B2 (en) 2008-06-30 2016-06-14 Bolton Medical, Inc. Abdominal aortic aneurysms: systems and methods of use
US9408730B2 (en) 2006-10-22 2016-08-09 Idev Technologies, Inc. Secured strand end devices
US9439751B2 (en) 2013-03-15 2016-09-13 Bolton Medical, Inc. Hemostasis valve and delivery systems
RU2610213C2 (en) * 2012-07-27 2017-02-08 Мединол Лтд. Catheter with sleeve, designed possibility of removal and method of using catheter system
US9877857B2 (en) 2003-09-03 2018-01-30 Bolton Medical, Inc. Sheath capture device for stent graft delivery system and method for operating same
US10022255B2 (en) 2016-04-11 2018-07-17 Idev Technologies, Inc. Stent delivery system having anisotropic sheath
USD836194S1 (en) 2017-03-21 2018-12-18 Merit Medical Systems, Inc. Stent deployment device
US10258802B2 (en) 2015-11-20 2019-04-16 Cardiac Pacemakers, Inc. Delivery devices and methods for leadless cardiac devices
US10285834B2 (en) 2015-03-05 2019-05-14 Merit Medical Systems, Inc. Vascular prosthesis deployment device and method of use
US10470906B2 (en) 2015-09-15 2019-11-12 Merit Medical Systems, Inc. Implantable device delivery system
US10500395B2 (en) 2015-11-20 2019-12-10 Cardiac Pacemakers, Inc. Delivery devices and methods for leadless cardiac devices
US10646365B2 (en) 2003-09-03 2020-05-12 Bolton Medical, Inc. Delivery system and method for self-centering a proximal end of a stent graft
US10744009B2 (en) 2017-03-15 2020-08-18 Merit Medical Systems, Inc. Transluminal stents and related methods
US10799378B2 (en) 2016-09-29 2020-10-13 Merit Medical Systems, Inc. Pliant members for receiving and aiding in the deployment of vascular prostheses
US11259945B2 (en) 2003-09-03 2022-03-01 Bolton Medical, Inc. Dual capture device for stent graft delivery system and method for capturing a stent graft
US11596537B2 (en) 2003-09-03 2023-03-07 Bolton Medical, Inc. Delivery system and method for self-centering a proximal end of a stent graft
US11628078B2 (en) 2017-03-15 2023-04-18 Merit Medical Systems, Inc. Transluminal delivery devices and related kits and methods
US11963893B2 (en) 2020-10-26 2024-04-23 Merit Medical Systems, Inc. Esophageal stents with helical thread
US12090038B2 (en) 2020-07-24 2024-09-17 Merit Medical Systems , Inc. Esophageal stents and related methods

Families Citing this family (202)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5591172A (en) * 1991-06-14 1997-01-07 Ams Medinvent S.A. Transluminal implantation device
EP0539237A1 (en) * 1991-10-25 1993-04-28 Cook Incorporated Expandable transluminal graft prosthesis for repair of aneurysm and method for implanting
US5989280A (en) * 1993-10-22 1999-11-23 Scimed Lifesystems, Inc Stent delivery apparatus and method
US5571168A (en) * 1995-04-05 1996-11-05 Scimed Lifesystems Inc Pull back stent delivery system
US6071300A (en) * 1995-09-15 2000-06-06 Sub-Q Inc. Apparatus and method for percutaneous sealing of blood vessel punctures
US6533805B1 (en) 1996-04-01 2003-03-18 General Surgical Innovations, Inc. Prosthesis and method for deployment within a body lumen
US7686846B2 (en) 1996-06-06 2010-03-30 Devax, Inc. Bifurcation stent and method of positioning in a body lumen
US8728143B2 (en) * 1996-06-06 2014-05-20 Biosensors International Group, Ltd. Endoprosthesis deployment system for treating vascular bifurcations
US7238197B2 (en) 2000-05-30 2007-07-03 Devax, Inc. Endoprosthesis deployment system for treating vascular bifurcations
US5662124A (en) * 1996-06-19 1997-09-02 Wilk Patent Development Corp. Coronary artery by-pass method
US5755682A (en) 1996-08-13 1998-05-26 Heartstent Corporation Method and apparatus for performing coronary artery bypass surgery
US5954764A (en) 1996-09-20 1999-09-21 Parodi; Juan Carlos Device for concurrently placing an endovascular expander with an endovascular prosthesis
US5772669A (en) * 1996-09-27 1998-06-30 Scimed Life Systems, Inc. Stent deployment catheter with retractable sheath
US6432127B1 (en) 1996-10-11 2002-08-13 Transvascular, Inc. Devices for forming and/or maintaining connections between adjacent anatomical conduits
US6206888B1 (en) 1997-10-01 2001-03-27 Scimed Life Systems, Inc. Stent delivery system using shape memory retraction
US6146373A (en) * 1997-10-17 2000-11-14 Micro Therapeutics, Inc. Catheter system and method for injection of a liquid embolic composition and a solidification agent
US6511468B1 (en) 1997-10-17 2003-01-28 Micro Therapeutics, Inc. Device and method for controlling injection of liquid embolic composition
AU754067B2 (en) 1997-11-14 2002-11-07 Boston Scientific Limited Multi-sheath delivery catheter
US6330884B1 (en) * 1997-11-14 2001-12-18 Transvascular, Inc. Deformable scaffolding multicellular stent
US6197324B1 (en) 1997-12-18 2001-03-06 C. R. Bard, Inc. System and methods for local delivery of an agent
US6251418B1 (en) 1997-12-18 2001-06-26 C.R. Bard, Inc. Systems and methods for local delivery of an agent
US6533807B2 (en) 1998-02-05 2003-03-18 Medtronic, Inc. Radially-expandable stent and delivery system
US6425898B1 (en) 1998-03-13 2002-07-30 Cordis Corporation Delivery apparatus for a self-expanding stent
US6146389A (en) * 1998-04-23 2000-11-14 Boston Scientific Corporation Stent deployment device and method for deploying a stent
US20010045575A1 (en) 1998-05-01 2001-11-29 Mark Ashby Device and method for facilitating hemostasis of a biopsy tract
US6406488B1 (en) * 1998-08-27 2002-06-18 Heartstent Corporation Healing transmyocardial implant
EP1112041A1 (en) 1998-09-10 2001-07-04 Percardia, Inc. Tmr shunt
US6641610B2 (en) * 1998-09-10 2003-11-04 Percardia, Inc. Valve designs for left ventricular conduits
US6290728B1 (en) * 1998-09-10 2001-09-18 Percardia, Inc. Designs for left ventricular conduit
US6254564B1 (en) 1998-09-10 2001-07-03 Percardia, Inc. Left ventricular conduit with blood vessel graft
US6196230B1 (en) * 1998-09-10 2001-03-06 Percardia, Inc. Stent delivery system and method of use
EP1669042A3 (en) 1998-09-10 2006-06-28 Percardia, Inc. TMR shunt
US6261304B1 (en) 1998-09-10 2001-07-17 Percardia, Inc. Delivery methods for left ventricular conduit
US6689121B1 (en) 1998-09-24 2004-02-10 C. R. Bard, Inc. Systems and methods for treating ischemia
US6432126B1 (en) 1998-09-30 2002-08-13 C.R. Bard, Inc. Flexible vascular inducing implants
US6248112B1 (en) 1998-09-30 2001-06-19 C. R. Bard, Inc. Implant delivery system
WO2000018330A1 (en) 1998-09-30 2000-04-06 Impra, Inc. Delivery mechanism for implantable stent
US6458092B1 (en) 1998-09-30 2002-10-01 C. R. Bard, Inc. Vascular inducing implants
US6113608A (en) * 1998-11-20 2000-09-05 Scimed Life Systems, Inc. Stent delivery device
US6692520B1 (en) 1998-12-15 2004-02-17 C. R. Bard, Inc. Systems and methods for imbedded intramuscular implants
US6254609B1 (en) 1999-01-11 2001-07-03 Scimed Life Systems, Inc. Self-expanding stent delivery system with two sheaths
US8034100B2 (en) * 1999-03-11 2011-10-11 Endologix, Inc. Graft deployment system
US6261316B1 (en) * 1999-03-11 2001-07-17 Endologix, Inc. Single puncture bifurcation graft deployment system
US6214016B1 (en) * 1999-04-29 2001-04-10 Medtronic, Inc. Medical instrument positioning device internal to a catheter or lead and method of use
US6409697B2 (en) 1999-05-04 2002-06-25 Heartstent Corporation Transmyocardial implant with forward flow bias
US6986784B1 (en) 1999-05-14 2006-01-17 C. R. Bard, Inc. Implant anchor systems
US6375676B1 (en) 1999-05-17 2002-04-23 Advanced Cardiovascular Systems, Inc. Self-expanding stent with enhanced delivery precision and stent delivery system
US6168617B1 (en) 1999-06-14 2001-01-02 Scimed Life Systems, Inc. Stent delivery system
US6398802B1 (en) * 1999-06-21 2002-06-04 Scimed Life Systems, Inc. Low profile delivery system for stent and graft deployment
US6221078B1 (en) * 1999-06-25 2001-04-24 Stephen S. Bylsma Surgical implantation apparatus
US6287329B1 (en) * 1999-06-28 2001-09-11 Nitinol Development Corporation Stent keeper for a self-expanding stent delivery system
US6302892B1 (en) 1999-08-04 2001-10-16 Percardia, Inc. Blood flow conduit delivery system and method of use
US6638237B1 (en) 1999-08-04 2003-10-28 Percardia, Inc. Left ventricular conduits and methods for delivery
US6855160B1 (en) 1999-08-04 2005-02-15 C. R. Bard, Inc. Implant and agent delivery device
US7033372B1 (en) 1999-08-04 2006-04-25 Percardia, Inc. Corkscrew reinforced left ventricle to coronary artery channel
WO2001030420A1 (en) * 1999-10-28 2001-05-03 Situs Corporation Method and apparatus for placement and activation of a medical device within a body cavity
US6368344B1 (en) 1999-12-16 2002-04-09 Advanced Cardiovascular Systems, Inc. Stent deployment system with reinforced inner member
US6443979B1 (en) 1999-12-20 2002-09-03 Advanced Cardiovascular Systems, Inc. Expandable stent delivery sheath and method of use
JP3782297B2 (en) * 2000-03-28 2006-06-07 株式会社東芝 Solid-state imaging device and manufacturing method thereof
US6854467B2 (en) 2000-05-04 2005-02-15 Percardia, Inc. Methods and devices for delivering a ventricular stent
US7232421B1 (en) 2000-05-12 2007-06-19 C. R. Bard, Inc. Agent delivery systems
US7204847B1 (en) 2000-07-28 2007-04-17 C. R. Bard, Inc. Implant anchor systems
US6773446B1 (en) 2000-08-02 2004-08-10 Cordis Corporation Delivery apparatus for a self-expanding stent
US20020016597A1 (en) * 2000-08-02 2002-02-07 Dwyer Clifford J. Delivery apparatus for a self-expanding stent
US20020032478A1 (en) * 2000-08-07 2002-03-14 Percardia, Inc. Myocardial stents and related methods of providing direct blood flow from a heart chamber to a coronary vessel
US7510572B2 (en) * 2000-09-12 2009-03-31 Shlomo Gabbay Implantation system for delivery of a heart valve prosthesis
US6589273B1 (en) 2000-10-02 2003-07-08 Impra, Inc. Apparatus and method for relining a blood vessel
US6692458B2 (en) * 2000-12-19 2004-02-17 Edwards Lifesciences Corporation Intra-pericardial drug delivery device with multiple balloons and method for angiogenesis
US6976990B2 (en) * 2001-01-25 2005-12-20 Percardia, Inc. Intravascular ventriculocoronary bypass via a septal passageway
US6736839B2 (en) * 2001-02-01 2004-05-18 Charles Cummings Medical device delivery system
US8187625B2 (en) 2001-03-12 2012-05-29 Boston Scientific Scimed, Inc. Cross-linked gelatin composition comprising a wetting agent
EP1406671A1 (en) * 2001-03-12 2004-04-14 Sub Q, Inc. Methods for sterilizing cross-linked gelatin compositions
US6863680B2 (en) * 2001-11-08 2005-03-08 Sub-Q, Inc. System and method for delivering hemostasis promoting material to a blood vessel puncture site by fluid pressure
US7008440B2 (en) * 2001-11-08 2006-03-07 Sub-Q, Inc. System and method for delivering hemostasis promoting material to a blood vessel puncture site by fluid pressure
DE60230143D1 (en) * 2001-07-06 2009-01-15 Angiomed Ag DISTRIBUTION SYSTEM WITH A SLIDER ARRANGEMENT FOR A SELF-EXPANDING STENT AND A QUICK-CHANGE CONFIGURATION
US6645238B2 (en) * 2001-07-09 2003-11-11 Scimed Life Systems, Inc. Skids stent delivery system
US20030036698A1 (en) * 2001-08-16 2003-02-20 Robert Kohler Interventional diagnostic catheter and a method for using a catheter to access artificial cardiac shunts
GB0123633D0 (en) * 2001-10-02 2001-11-21 Angiomed Ag Stent delivery system
AU2002364514B2 (en) * 2001-11-29 2008-12-18 Cook Medical Technologies Llc Medical device delivery system
US6949118B2 (en) * 2002-01-16 2005-09-27 Percardia, Inc. Encased implant and methods
US7008397B2 (en) * 2002-02-13 2006-03-07 Percardia, Inc. Cardiac implant and methods
US7169170B2 (en) 2002-02-22 2007-01-30 Cordis Corporation Self-expanding stent delivery system
US6911039B2 (en) * 2002-04-23 2005-06-28 Medtronic Vascular, Inc. Integrated mechanical handle with quick slide mechanism
US7105016B2 (en) 2002-04-23 2006-09-12 Medtronic Vascular, Inc. Integrated mechanical handle with quick slide mechanism
US6796989B2 (en) * 2002-05-06 2004-09-28 Renan Uflacker Intraluminal cutter for vascular, biliary and other applications
US20030220661A1 (en) * 2002-05-21 2003-11-27 Heartstent Corporation Transmyocardial implant delivery system
JP2004049583A (en) * 2002-07-22 2004-02-19 Piolax Medical Device:Kk Inserting device for therapeutic instrument for tubular organ
US7326219B2 (en) * 2002-09-09 2008-02-05 Wilk Patent Development Device for placing transmyocardial implant
US7455680B1 (en) 2002-11-04 2008-11-25 Boston Scientific Scimed, Inc. Apparatus and method for inhibiting blood loss
WO2004041126A1 (en) 2002-11-08 2004-05-21 Jacques Seguin Endoprosthesis for vascular bifurcation
JP2004181230A (en) * 2002-11-20 2004-07-02 Olympus Corp Stent delivery system
US6928669B2 (en) * 2003-01-10 2005-08-16 Tyler Pipe Company Closet carrier system and method of assembly
CA2513082C (en) * 2003-01-15 2010-11-02 Angiomed Gmbh & Co. Medizintechnik Kg Trans-luminal surgical device
GB0327306D0 (en) * 2003-11-24 2003-12-24 Angiomed Gmbh & Co Catheter device
US20040147868A1 (en) * 2003-01-27 2004-07-29 Earl Bardsley Myocardial implant with collar
US7166088B2 (en) * 2003-01-27 2007-01-23 Heuser Richard R Catheter introducer system
JP2006518625A (en) * 2003-02-14 2006-08-17 サルヴィアック・リミテッド Stent delivery and placement system
JP2006521161A (en) * 2003-03-26 2006-09-21 カーディオマインド インコーポレイティッド Implant delivery technology
US7771463B2 (en) * 2003-03-26 2010-08-10 Ton Dai T Twist-down implant delivery technologies
US8016869B2 (en) * 2003-03-26 2011-09-13 Biosensors International Group, Ltd. Guidewire-less stent delivery methods
US20050209672A1 (en) * 2004-03-02 2005-09-22 Cardiomind, Inc. Sliding restraint stent delivery systems
GB0310714D0 (en) 2003-05-09 2003-06-11 Angiomed Ag Fluid flow management in stent delivery system
US8318078B2 (en) * 2003-06-23 2012-11-27 Boston Scientific Scimed, Inc. Asymmetric stent delivery system with proximal edge protection and method of manufacture thereof
US20080033570A1 (en) * 2003-08-01 2008-02-07 Blitz Benjamin T Prostatic stent placement device
WO2005013855A2 (en) * 2003-08-01 2005-02-17 Cook Urological, Incorporated Implant delivery device
US7402141B2 (en) 2003-08-27 2008-07-22 Heuser Richard R Catheter guidewire system using concentric wires
JP4713478B2 (en) * 2003-09-02 2011-06-29 アボット・ラボラトリーズ Medical device delivery system
US7780716B2 (en) * 2003-09-02 2010-08-24 Abbott Laboratories Delivery system for a medical device
US7794489B2 (en) * 2003-09-02 2010-09-14 Abbott Laboratories Delivery system for a medical device
US7758625B2 (en) * 2003-09-12 2010-07-20 Abbott Vascular Solutions Inc. Delivery system for medical devices
US7993384B2 (en) * 2003-09-12 2011-08-09 Abbott Cardiovascular Systems Inc. Delivery system for medical devices
US7867268B2 (en) * 2003-09-24 2011-01-11 Boston Scientific Scimed, Inc. Stent delivery system for self-expanding stent
US7875043B1 (en) 2003-12-09 2011-01-25 Sub-Q, Inc. Cinching loop
US7162030B2 (en) * 2003-12-23 2007-01-09 Nokia Corporation Communication device with rotating housing
US7887574B2 (en) * 2003-12-23 2011-02-15 Scimed Life Systems, Inc. Stent delivery catheter
US20050154439A1 (en) 2004-01-08 2005-07-14 Gunderson Richard C. Medical device delivery systems
US7468070B2 (en) 2004-01-23 2008-12-23 Boston Scientific Scimed, Inc. Stent delivery catheter
US7651521B2 (en) * 2004-03-02 2010-01-26 Cardiomind, Inc. Corewire actuated delivery system with fixed distal stent-carrying extension
JP4714736B2 (en) 2004-03-31 2011-06-29 ウィルソン−クック・メディカル・インコーポレーテッド Stent introducer system
US20050278011A1 (en) * 2004-06-10 2005-12-15 Peckham John E Stent delivery system
US8500785B2 (en) 2004-07-13 2013-08-06 Boston Scientific Scimed, Inc. Catheter
US20090012429A1 (en) * 2004-08-25 2009-01-08 Heuser Richard R Catheter guidewire system using concentric wires
US8545418B2 (en) 2004-08-25 2013-10-01 Richard R. Heuser Systems and methods for ablation of occlusions within blood vessels
US7658757B2 (en) * 2004-10-08 2010-02-09 Boston Scientific Scimed, Inc. Endoprosthesis delivery system
EP1833431B1 (en) * 2004-12-28 2010-10-13 Cook Incorporated Unidirectional delivery system
DE102005003632A1 (en) 2005-01-20 2006-08-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Catheter for the transvascular implantation of heart valve prostheses
JP4917089B2 (en) 2005-05-09 2012-04-18 アンギオメット ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コムパニー メディツィンテヒニク コマンデイトゲゼルシャフト Implant delivery device
US20070073379A1 (en) * 2005-09-29 2007-03-29 Chang Jean C Stent delivery system
WO2007005799A1 (en) * 2005-06-30 2007-01-11 Abbott Laboratories Delivery system for a medical device
US20070100414A1 (en) * 2005-11-02 2007-05-03 Cardiomind, Inc. Indirect-release electrolytic implant delivery systems
WO2007084370A1 (en) 2006-01-13 2007-07-26 C.R. Bard, Inc. Stent delivery system
US11026822B2 (en) 2006-01-13 2021-06-08 C. R. Bard, Inc. Stent delivery system
US8062321B2 (en) * 2006-01-25 2011-11-22 Pq Bypass, Inc. Catheter system for connecting adjacent blood vessels
US7374567B2 (en) * 2006-01-25 2008-05-20 Heuser Richard R Catheter system for connecting adjacent blood vessels
US20070203572A1 (en) * 2006-01-25 2007-08-30 Heuser Richard R Catheter system with stent apparatus for connecting adjacent blood vessels
US20070203515A1 (en) * 2006-01-25 2007-08-30 Heuser Richard R Catheter system for connecting adjacent blood vessels
US20070185567A1 (en) * 2006-01-25 2007-08-09 Heuser Richard R Catheter system with stent device for connecting adjacent blood vessels
US7621946B2 (en) * 2006-03-06 2009-11-24 Boston Scientific Scimed, Inc. Implantable medical endoprosthesis delivery system with hub
US20070208350A1 (en) * 2006-03-06 2007-09-06 Gunderson Richard C Implantable medical endoprosthesis delivery systems
US20070219617A1 (en) * 2006-03-17 2007-09-20 Sean Saint Handle for Long Self Expanding Stent
US9211206B2 (en) * 2006-04-13 2015-12-15 Medtronic Vascular, Inc. Short handle for a long stent
GB0615658D0 (en) 2006-08-07 2006-09-13 Angiomed Ag Hand-held actuator device
US20080221666A1 (en) * 2006-12-15 2008-09-11 Cardiomind, Inc. Stent systems
US20080177249A1 (en) * 2007-01-22 2008-07-24 Heuser Richard R Catheter introducer system
US20080234813A1 (en) * 2007-03-20 2008-09-25 Heuser Richard R Percutaneous Interventional Cardiology System for Treating Valvular Disease
US20080255651A1 (en) * 2007-04-12 2008-10-16 Medtronic Vascular, Inc. Telescoping Stability Sheath and Method of Use
US7896915B2 (en) 2007-04-13 2011-03-01 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
GB0713497D0 (en) 2007-07-11 2007-08-22 Angiomed Ag Device for catheter sheath retraction
US8114144B2 (en) 2007-10-17 2012-02-14 Abbott Cardiovascular Systems Inc. Rapid-exchange retractable sheath self-expanding delivery system with incompressible inner member and flexible distal assembly
US20090210046A1 (en) * 2008-02-20 2009-08-20 Abbott Laboratories Handle assembly for a delivery system
US9044318B2 (en) 2008-02-26 2015-06-02 Jenavalve Technology Gmbh Stent for the positioning and anchoring of a valvular prosthesis
ES2903231T3 (en) 2008-02-26 2022-03-31 Jenavalve Tech Inc Stent for positioning and anchoring a valve prosthesis at an implantation site in a patient's heart
US8236040B2 (en) 2008-04-11 2012-08-07 Endologix, Inc. Bifurcated graft deployment systems and methods
JP5134729B2 (en) 2008-07-01 2013-01-30 エンドロジックス、インク Catheter system
US7976574B2 (en) * 2008-08-08 2011-07-12 Advanced Cardiovascular Systems, Inc. Delivery system with variable delivery rate for deploying a medical device
EP2444116B1 (en) 2008-08-19 2016-01-06 Covidien LP Detachable tip microcatheter
US8657870B2 (en) * 2009-06-26 2014-02-25 Biosensors International Group, Ltd. Implant delivery apparatus and methods with electrolytic release
US9439652B2 (en) * 2009-08-24 2016-09-13 Qualimed Innovative Medizinprodukte Gmbh Implantation device with handle and method of use thereof
US9999531B2 (en) 2009-08-24 2018-06-19 Qualimed Innovative Medizinprodukte Gmbh Variable scale stent deployment device
US20120238806A1 (en) 2009-08-24 2012-09-20 Quali-Med Gmbh Implantation system with handle and catheter and method of use thereof
US8771335B2 (en) * 2009-09-21 2014-07-08 Boston Scientific Scimed, Inc. Rapid exchange stent delivery system
US20110118817A1 (en) * 2009-11-17 2011-05-19 Boston Scientific Scimed, Inc. Stent delivery system
EP2506776A4 (en) * 2009-12-02 2015-03-18 Apica Cardiovascular Ireland Ltd Device system and method for tissue access site closure
US9445796B2 (en) 2010-02-26 2016-09-20 ProMed, Inc. Method for vessel access closure
AU2011237339B2 (en) 2010-04-08 2014-10-30 BiO2 Medical, Inc. Catheter hub
US8663305B2 (en) 2010-04-20 2014-03-04 Medtronic Vascular, Inc. Retraction mechanism and method for graft cover retraction
US8623064B2 (en) 2010-04-30 2014-01-07 Medtronic Vascular, Inc. Stent graft delivery system and method of use
US8747448B2 (en) 2010-04-30 2014-06-10 Medtronic Vascular, Inc. Stent graft delivery system
JP2013526388A (en) 2010-05-25 2013-06-24 イエナバルブ テクノロジー インク Artificial heart valve, and transcatheter delivery prosthesis comprising an artificial heart valve and a stent
EP2598195B1 (en) * 2010-07-26 2015-12-30 Steerable Instruments B.V.B.A. Capillary tube assembly
GB201017834D0 (en) 2010-10-21 2010-12-01 Angiomed Ag System to deliver a bodily implant
JP5891236B2 (en) 2010-11-17 2016-03-22 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Stent delivery system
CN103298433B (en) 2010-11-17 2016-03-16 波士顿科学西美德公司 Stent delivery system and the Lock Part for using together with stent delivery system
EP2640324B1 (en) 2010-11-17 2015-02-18 Boston Scientific Scimed, Inc. Stent delivery system
US9486348B2 (en) * 2011-02-01 2016-11-08 S. Jude Medical, Cardiology Division, Inc. Vascular delivery system and method
EP2680915B1 (en) 2011-03-01 2021-12-22 Endologix LLC Catheter system
US9101507B2 (en) 2011-05-18 2015-08-11 Ralph F. Caselnova Apparatus and method for proximal-to-distal endoluminal stent deployment
US10058443B2 (en) 2011-11-02 2018-08-28 Boston Scientific Scimed, Inc. Stent delivery systems and methods for use
EP2811939B8 (en) 2012-02-10 2017-11-15 CVDevices, LLC Products made of biological tissues for stents and methods of manufacturing
US10124087B2 (en) 2012-06-19 2018-11-13 Covidien Lp Detachable coupling for catheter
CA2874563C (en) * 2012-10-17 2021-01-12 Angiomed Gmbh & Co. Medizintechnik Kg Hand unit to release a self-expanding implant
WO2014124356A2 (en) 2013-02-11 2014-08-14 Cook Medical Technologies Llc Expandable support frame and medical device
US11291573B2 (en) 2013-03-15 2022-04-05 Cook Medical Technologies Llc Delivery system for a self-expanding medical device
CN103356316B (en) * 2013-07-25 2015-07-01 苏州英络医疗器械有限公司 High shrinkage intravascular stent delivery system
JP6563394B2 (en) 2013-08-30 2019-08-21 イェーナヴァルヴ テクノロジー インコーポレイテッド Radially foldable frame for an artificial valve and method for manufacturing the frame
US10016292B2 (en) 2014-04-18 2018-07-10 Covidien Lp Stent delivery system
US10583022B2 (en) 2014-11-19 2020-03-10 Boston Scientific Scimed, Inc. Stent delivery systems with a reconstraining member
US10159587B2 (en) 2015-01-16 2018-12-25 Boston Scientific Scimed, Inc. Medical device delivery system with force reduction member
EP4403138A3 (en) 2015-05-01 2024-10-09 JenaValve Technology, Inc. Device and method with reduced pacemaker rate in heart valve replacement
EP4417169A2 (en) 2015-06-30 2024-08-21 Endologix LLC Locking assembly for coupling guidewire to delivery system
WO2017048308A1 (en) * 2015-09-18 2017-03-23 Qualimed Innovative Medizinprodukte Gmbh Variable scale stent deployment device
US11351048B2 (en) 2015-11-16 2022-06-07 Boston Scientific Scimed, Inc. Stent delivery systems with a reinforced deployment sheath
US11141177B2 (en) 2015-11-30 2021-10-12 Piranha Medical Llc Blockage clearing devices, systems, and methods
CN109069281B (en) 2016-02-26 2021-03-09 波士顿科学国际有限公司 Stent delivery system with reduced profile
CN109475419B (en) 2016-05-13 2021-11-09 耶拿阀门科技股份有限公司 Heart valve prosthesis delivery systems and methods for delivering heart valve prostheses through guide sheaths and loading systems
US11197754B2 (en) 2017-01-27 2021-12-14 Jenavalve Technology, Inc. Heart valve mimicry
EP3592291A1 (en) * 2017-03-10 2020-01-15 St. Jude Medical, Cardiology Division, Inc. Transseptal mitral valve delivery system
US11013627B2 (en) 2018-01-10 2021-05-25 Boston Scientific Scimed, Inc. Stent delivery system with displaceable deployment mechanism
US10441449B1 (en) 2018-05-30 2019-10-15 Vesper Medical, Inc. Rotary handle stent delivery system and method
US10449073B1 (en) 2018-09-18 2019-10-22 Vesper Medical, Inc. Rotary handle stent delivery system and method
CN113645927A (en) 2019-02-13 2021-11-12 波士顿科学国际有限公司 Stent delivery system
US11219541B2 (en) 2020-05-21 2022-01-11 Vesper Medical, Inc. Wheel lock for thumbwheel actuated device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4665918A (en) * 1986-01-06 1987-05-19 Garza Gilbert A Prosthesis system and method
US5201757A (en) * 1992-04-03 1993-04-13 Schneider (Usa) Inc. Medial region deployment of radially self-expanding stents
EP0627201A1 (en) * 1993-06-02 1994-12-07 Schneider (Europe) Ag Device for releasing a self-expanding endoprosthesis

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0408245B1 (en) * 1989-07-13 1994-03-02 American Medical Systems, Inc. Stent placement instrument
US5160341A (en) * 1990-11-08 1992-11-03 Advanced Surgical Intervention, Inc. Resorbable urethral stent and apparatus for its insertion
US5571168A (en) * 1995-04-05 1996-11-05 Scimed Lifesystems Inc Pull back stent delivery system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4665918A (en) * 1986-01-06 1987-05-19 Garza Gilbert A Prosthesis system and method
US5201757A (en) * 1992-04-03 1993-04-13 Schneider (Usa) Inc. Medial region deployment of radially self-expanding stents
EP0627201A1 (en) * 1993-06-02 1994-12-07 Schneider (Europe) Ag Device for releasing a self-expanding endoprosthesis

Cited By (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6312407B1 (en) 1995-06-05 2001-11-06 Medtronic Percusurge, Inc. Occlusion of a vessel
US5951569A (en) * 1997-04-29 1999-09-14 Medtronic, Inc. Stent delivery system
US5810871A (en) * 1997-04-29 1998-09-22 Medtronic, Inc. Stent delivery system
US6174316B1 (en) 1998-05-28 2001-01-16 Medtronic, Inc. Stent delivery system
US8876880B2 (en) 1999-02-01 2014-11-04 Board Of Regents, The University Of Texas System Plain woven stents
US9925074B2 (en) 1999-02-01 2018-03-27 Board Of Regents, The University Of Texas System Plain woven stents
US9913743B2 (en) 2003-09-03 2018-03-13 Bolton Medical, Inc. Methods of implanting a prosthesis and treating an aneurysm
US9198786B2 (en) 2003-09-03 2015-12-01 Bolton Medical, Inc. Lumen repair device with capture structure
US9877857B2 (en) 2003-09-03 2018-01-30 Bolton Medical, Inc. Sheath capture device for stent graft delivery system and method for operating same
US10646365B2 (en) 2003-09-03 2020-05-12 Bolton Medical, Inc. Delivery system and method for self-centering a proximal end of a stent graft
US11813158B2 (en) 2003-09-03 2023-11-14 Bolton Medical, Inc. Stent graft delivery device
US9561124B2 (en) 2003-09-03 2017-02-07 Bolton Medical, Inc. Methods of self-aligning stent grafts
US10213291B2 (en) 2003-09-03 2019-02-26 Bolto Medical, Inc. Vascular repair devices
US9655712B2 (en) 2003-09-03 2017-05-23 Bolton Medical, Inc. Vascular repair devices
US10105250B2 (en) 2003-09-03 2018-10-23 Bolton Medical, Inc. Dual capture device for stent graft delivery system and method for capturing a stent graft
US9907686B2 (en) 2003-09-03 2018-03-06 Bolton Medical, Inc. System for implanting a prosthesis
US11596537B2 (en) 2003-09-03 2023-03-07 Bolton Medical, Inc. Delivery system and method for self-centering a proximal end of a stent graft
US11413173B2 (en) 2003-09-03 2022-08-16 Bolton Medical, Inc. Stent graft with a longitudinal support member
EP1776938A2 (en) * 2003-09-03 2007-04-25 Bolton Medical Inc. Stent graft, stent graft delivery system and kit for implanting the stent graft
US9173755B2 (en) 2003-09-03 2015-11-03 Bolton Medical, Inc. Vascular repair devices
US11259945B2 (en) 2003-09-03 2022-03-01 Bolton Medical, Inc. Dual capture device for stent graft delivery system and method for capturing a stent graft
US10390929B2 (en) 2003-09-03 2019-08-27 Bolton Medical, Inc. Methods of self-aligning stent grafts
US9220617B2 (en) 2003-09-03 2015-12-29 Bolton Medical, Inc. Dual capture device for stent graft delivery system and method for capturing a stent graft
US9320631B2 (en) 2003-09-03 2016-04-26 Bolton Medical, Inc. Aligning device for stent graft delivery system
US9333104B2 (en) 2003-09-03 2016-05-10 Bolton Medical, Inc. Delivery systems for delivering and deploying stent grafts
US9925080B2 (en) 2003-09-03 2018-03-27 Bolton Medical, Inc. Methods of implanting a prosthesis
EP1776938A3 (en) * 2003-09-03 2007-05-16 Bolton Medical Inc. Stent graft, stent graft delivery system and kit for implanting the stent graft
US10182930B2 (en) 2003-09-03 2019-01-22 Bolton Medical, Inc. Aligning device for stent graft delivery system
US9408734B2 (en) 2003-09-03 2016-08-09 Bolton Medical, Inc. Methods of implanting a prosthesis
US9408735B2 (en) 2003-09-03 2016-08-09 Bolton Medical, Inc. Methods of implanting a prosthesis and treating an aneurysm
US11103341B2 (en) 2003-09-03 2021-08-31 Bolton Medical, Inc. Stent graft delivery device
US10945827B2 (en) 2003-09-03 2021-03-16 Bolton Medical, Inc. Vascular repair devices
US10918509B2 (en) 2003-09-03 2021-02-16 Bolton Medical, Inc. Aligning device for stent graft delivery system
US8535366B2 (en) 2004-01-08 2013-09-17 Merit Medical Systems, Inc. Implantable device delivery system handle and method of use
US8419784B2 (en) 2005-03-28 2013-04-16 Terumo Kabushiki Kaisha Stent delivery device
US7815669B2 (en) 2005-03-28 2010-10-19 Terumo Kabushiki Kaisha Stent delivery device
US8986360B2 (en) 2005-05-13 2015-03-24 Merit Medical Systems, Inc. Delivery device with shortened inner tube and associated method
US9408729B2 (en) 2006-10-22 2016-08-09 Idev Technologies, Inc. Secured strand end devices
US10470902B2 (en) 2006-10-22 2019-11-12 Idev Technologies, Inc. Secured strand end devices
US9629736B2 (en) 2006-10-22 2017-04-25 Idev Technologies, Inc. Secured strand end devices
US9895242B2 (en) 2006-10-22 2018-02-20 Idev Technologies, Inc. Secured strand end devices
US9408730B2 (en) 2006-10-22 2016-08-09 Idev Technologies, Inc. Secured strand end devices
EP3494937A1 (en) * 2006-10-22 2019-06-12 IDEV Technologies, INC. Devices for stent advancement
WO2008051941A3 (en) * 2006-10-22 2008-06-19 Idev Technologies Inc Devices and methods for stent advancement
US8876881B2 (en) 2006-10-22 2014-11-04 Idev Technologies, Inc. Devices for stent advancement
US10105248B2 (en) 2008-06-30 2018-10-23 Bolton Medical, Inc. Abdominal aortic aneurysms: systems and methods of use
US10864097B2 (en) 2008-06-30 2020-12-15 Bolton Medical, Inc. Abdominal aortic aneurysms: systems and methods of use
US9364314B2 (en) 2008-06-30 2016-06-14 Bolton Medical, Inc. Abdominal aortic aneurysms: systems and methods of use
US11382779B2 (en) 2008-06-30 2022-07-12 Bolton Medical, Inc. Abdominal aortic aneurysms: systems and methods of use
US10307275B2 (en) 2008-06-30 2019-06-04 Bolton Medical, Inc. Abdominal aortic aneurysms: systems and methods of use
US8439934B2 (en) 2008-08-19 2013-05-14 Merit Medical Systems, Inc. Medical delivery device with a protective member
WO2010021836A1 (en) * 2008-08-19 2010-02-25 Merit Medical Systems, Inc. Delivery device with a protective member
US9101506B2 (en) 2009-03-13 2015-08-11 Bolton Medical, Inc. System and method for deploying an endoluminal prosthesis at a surgical site
US10898357B2 (en) 2009-03-13 2021-01-26 Bolton Medical, Inc. System for deploying an endoluminal prosthesis at a surgical site
US9827123B2 (en) 2009-03-13 2017-11-28 Bolton Medical, Inc. System for deploying an endoluminal prosthesis at a surgical site
US9023095B2 (en) 2010-05-27 2015-05-05 Idev Technologies, Inc. Stent delivery system with pusher assembly
US8926683B2 (en) 2010-12-07 2015-01-06 Merit Medical Systems, Inc. Stent delivery systems and methods
US9526645B2 (en) 2011-10-31 2016-12-27 Merit Medical Systems, Inc. Safety mechanism for an implantable device deployment apparatus
US9192496B2 (en) 2011-10-31 2015-11-24 Merit Medical Systems, Inc. Systems and methods for sheathing an implantable device
US9681969B2 (en) 2011-10-31 2017-06-20 Merit Medical Systems, Inc. Delivery systems and methods for sheathing and deploying an implantable device
US9456912B2 (en) 2011-10-31 2016-10-04 Merit Medical Systems, Inc. Implantable device deployment apparatus
US9554929B2 (en) 2012-04-12 2017-01-31 Bolton Medical, Inc. Vascular prosthetic delivery device and method of use
US8998970B2 (en) 2012-04-12 2015-04-07 Bolton Medical, Inc. Vascular prosthetic delivery device and method of use
US11351049B2 (en) 2012-04-12 2022-06-07 Bolton Medical, Inc. Vascular prosthetic delivery device and method of use
US10299951B2 (en) 2012-04-12 2019-05-28 Bolton Medical, Inc. Vascular prosthetic delivery device and method of use
US11998469B2 (en) 2012-04-12 2024-06-04 Bolton Medical, Inc. Vascular prosthetic delivery device and method of use
US10226369B2 (en) 2012-07-27 2019-03-12 Medinol Ltd. Catheter with retractable cover and pressurized fluid
RU2610213C2 (en) * 2012-07-27 2017-02-08 Мединол Лтд. Catheter with sleeve, designed possibility of removal and method of using catheter system
RU2737289C2 (en) * 2012-07-27 2020-11-26 Мединол Лтд. Catheter system for use in delivery and deployment of intravascular device
US10973667B2 (en) 2012-07-27 2021-04-13 Medinol Ltd. Catheter with retractable cover and pressurized fluid
US11872148B2 (en) 2012-07-27 2024-01-16 Medinol Ltd. Catheter with retractable cover and pressurized fluid
US9439751B2 (en) 2013-03-15 2016-09-13 Bolton Medical, Inc. Hemostasis valve and delivery systems
US11666467B2 (en) 2013-03-15 2023-06-06 Bolton Medical, Inc. Hemostasis valve and delivery systems
US10555826B2 (en) 2013-03-15 2020-02-11 Bolton Medical, Inc. Hemostasis valve and delivery systems
US10285834B2 (en) 2015-03-05 2019-05-14 Merit Medical Systems, Inc. Vascular prosthesis deployment device and method of use
US10470906B2 (en) 2015-09-15 2019-11-12 Merit Medical Systems, Inc. Implantable device delivery system
US11304837B2 (en) 2015-09-15 2022-04-19 Merit Medical Systems, Inc. Implantable device delivery system
US10500395B2 (en) 2015-11-20 2019-12-10 Cardiac Pacemakers, Inc. Delivery devices and methods for leadless cardiac devices
US10258802B2 (en) 2015-11-20 2019-04-16 Cardiac Pacemakers, Inc. Delivery devices and methods for leadless cardiac devices
US11389649B2 (en) 2015-11-20 2022-07-19 Cardiac Pacemakers, Inc. Delivery devices and methods for leadless cardiac devices
US10022255B2 (en) 2016-04-11 2018-07-17 Idev Technologies, Inc. Stent delivery system having anisotropic sheath
US10799378B2 (en) 2016-09-29 2020-10-13 Merit Medical Systems, Inc. Pliant members for receiving and aiding in the deployment of vascular prostheses
US10744009B2 (en) 2017-03-15 2020-08-18 Merit Medical Systems, Inc. Transluminal stents and related methods
US11628078B2 (en) 2017-03-15 2023-04-18 Merit Medical Systems, Inc. Transluminal delivery devices and related kits and methods
US11707370B2 (en) 2017-03-15 2023-07-25 Merit Medical Systems, Inc. Stents and related methods
USD836194S1 (en) 2017-03-21 2018-12-18 Merit Medical Systems, Inc. Stent deployment device
US12090038B2 (en) 2020-07-24 2024-09-17 Merit Medical Systems , Inc. Esophageal stents and related methods
US11963893B2 (en) 2020-10-26 2024-04-23 Merit Medical Systems, Inc. Esophageal stents with helical thread

Also Published As

Publication number Publication date
JPH11503054A (en) 1999-03-23
CA2216952C (en) 2004-08-24
EP0821574B1 (en) 2001-06-27
CA2216952A1 (en) 1996-10-10
US5571168A (en) 1996-11-05
ATE202464T1 (en) 2001-07-15
DE69613572D1 (en) 2001-08-02
US5733267A (en) 1998-03-31
DE69613572T2 (en) 2002-04-25
EP0821574A1 (en) 1998-02-04

Similar Documents

Publication Publication Date Title
US5571168A (en) Pull back stent delivery system
EP1508313B1 (en) Double sheath deployment system
US7850724B2 (en) Self-expanding stent delivery system
US7651520B2 (en) Means and method for the accurate placement of a stent at the ostium of an artery
JP4201354B2 (en) Disposable delivery device for endoluminal prosthesis
EP1480581B1 (en) Apparatus and methods for conduits and materials
JP5419924B2 (en) Repair of the body's path by prosthesis
US8075606B2 (en) Delivery system having a rapid pusher assembly for self-expanding stent, and stent exchange configuration
EP1929979B1 (en) Spring stop for stent delivery system and delivery system provided with same
US7967807B2 (en) Vascular fluoroscopic marker
WO2007022496A2 (en) Medical device deployment instrument
US20070225790A1 (en) Introducer sheath for the placement of a stent at the ostium of an artery
CN113556992A (en) Medical tubular body transport device
EP3245986A1 (en) Wire retention and release mechanisms
CN116269964A (en) Delivery system for delivering cardiovascular devices

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2216952

Country of ref document: CA

Ref country code: CA

Ref document number: 2216952

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1996912594

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1996 530521

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1996912594

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1996912594

Country of ref document: EP