WO1996031009A1 - Systeme de commande de puissance de communication cellulaire - Google Patents
Systeme de commande de puissance de communication cellulaire Download PDFInfo
- Publication number
- WO1996031009A1 WO1996031009A1 PCT/US1995/003898 US9503898W WO9631009A1 WO 1996031009 A1 WO1996031009 A1 WO 1996031009A1 US 9503898 W US9503898 W US 9503898W WO 9631009 A1 WO9631009 A1 WO 9631009A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- quality
- level
- transmitter
- transceiver
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
- H04W52/24—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
- H04W52/22—TPC being performed according to specific parameters taking into account previous information or commands
- H04W52/228—TPC being performed according to specific parameters taking into account previous information or commands using past power values or information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
- H04W52/20—TPC being performed according to specific parameters using error rate
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
- H04W52/24—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
- H04W52/242—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
- H04W52/24—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
- H04W52/245—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account received signal strength
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
- H04W52/24—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
- H04W52/246—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters where the output power of a terminal is based on a path parameter calculated in said terminal
Definitions
- the invention relates to communication systems and in particular, to a cellular mobile communications system having integrated satellite and ground nodes.
- the cellular communications industry has grown at a fast pace in the United States and even faster in some other countries. It has become an important service of substantial utility and because of the growth rate, saturation of the existing service is of concern. High density regions having high use rates, such as Los Angeles, New York and Chicago are of most immediate concern. Contributing to this concern is the congestion of the electromagnetic frequency spectrum which is becoming increasingly severe as the communication needs of society expand. This congestion is caused not only by cellular communications systems but also by other communications systems. However, in the cellular communications industry alone, it is estimated that the number of mobile subscribers will increase on a world-wide level by an order of magnitude within the next ten years. The radio frequency spectrum is limited and in view of this increasing demand for its use, means to more efficiently use it are continually being explored.
- ground cellular and planned satellite technologies complement one another in geographical coverage in that the ground cellular communications service provides voice telephone service in relatively developed urban and suburban areas but not in sparsely populated areas, while the planned earth orbiting satellites will serve the sparsely populated areas.
- Cellular communications systems divide the service areas into geographical cells, each served by a base station or node typically located at its center.
- the central node transmits sufficient power to cover its cell area with adequate field strength. If a mobile user moves to a new cell, the radio link is switched to the new node provided there is an available channel.
- Present land mobile communication systems typically use a frequency modulation (FM) approach and because of the limited interference rejection capabilities of FM modulation, each radio channel may be used only once over a wide geographical area encompassing many cells. This means that each cell can use only a small fraction of the total allocated radio frequency band, resulting in an inefficient use of the available spectrum. In some cases, the quality of speech is poor because of the phenomena affecting FM transmission known as fading and "dead spots.
- FM frequency modulation
- the subjective effect of fading is repeated submersion of the voice signal in background noise frequently many times per second if the mobile unit is in motion.
- the problem is exacerbated by interference from co-channel users in distant cells and resultant crosstalk due to the limited interference rejection capability of FM. Additionally, communications privacy is relatively poor; the FM signal may be heard by others who are receiving that frequency.
- Troubling both terrestrial and satellite communication is channel fading, in which commumcations channel experiences fading due to numerous factors such as changes in weather conditions, signal propagation, local terrain etc..
- Satellite transceivers are generally located in geosynchronous earth orbit, approximately 22,300 miles from earth, and as such, are approximately the same distance from mobile units. Accordingly, path loss in the satellite channel is relatively minor, on the order of only a few dB. Unfortunately, satellite transmissions still experience substantial fading due to the direct component of the satellite signal being summed with multiply reflected components of the satellite signal, thereby inducing channel fading of several dB.
- the terrestrial to mobile transmission is substantially effected by the distance between the mobile unit and the cell site.
- one mobile unit may be located at a distance many miles from the cell site, while another may be only yards away.
- path loss variations of terrestrial transmissions may be orders of magnitude greater than experienced by satellite transmissions.
- the terrestrial transmissions typically experience substantial fading due to the signal being reflected from many different features of the physical environment. As a result, a signal may arrive at a mobile unit from many different directions causing both constructive and destructive summation of the signals. Additionally, the transmitted signal may be partially obstructed by buildings, foliage, and the like to produce additional signal fading.
- the transceivers of typical communications systems commonly radiates at a power level which is 30 to 40 dB greater than is required on the average in order to overcome fading nulls. This results in greatly increased inter-system interference, reduced battery life and a reduction of potential users in the communications system.
- the severely limited commodity in the satellite links is satellite prime power, a major component of the weight of a communication satellite and thereby a major factor in satellite cost.
- the down links to individual users are the largest power consumers and thus for a limited satellite source power, may provide the limiting factor on the number of users that can be served. Thus it is important to design the system for minimum required power per user.
- Wheatlev. III U.S. Patent No. 5,267,262.
- Wheatlev. Ill discloses the cell site measuring the signal strength and signal quality, i.e. bit error rate, of a signal transmitted by the mobile unit. The cell site processes the signal strength and signal quality to determine the desired signal strength for that mobile unit and transmits a power adjustment command back to the mobile unit. This power adjustment command is combined with the mobile unit's one way estimate of received signal strength to obtain a final value of the mobile unit transmitter power.
- Wheatley discloses telemetering the transmit power only as a static parameter at call setup time, not for the purpose, nor at a sample rate sufficient to support dynamic compensation of the received signal strength for adaptive power variations in a two-way adaptive power control system where both transmitters continuously adapt their respective transmit power.
- Wilson et al. discloses the control of the output power level of a transmitted signal by the mobile unit transmitting a first message on a first communications channel to a repeater station.
- the repeater station measures the quality of the received first message to produce a quality metric representative of the quality of the first message.
- the repeater station retransmits the first message back to the mobile unit, appending the quality metric for determination by the mobile unit of its output power.
- the retransmission of the first message is unnecessary in many system applications thus requiring additional power, and causing unnecessary signal interference.
- the invention is directed to a cellular communications system having an adaptive transmitter power control system and method compensate for received signal strength variations, such as those caused by buildings, foliage and other obstructions.
- Each receiver determines the quality of the received signal and provides a local quality signal to its associated transmitter in the respective transceiver indicative of that received signal quality.
- Each transmitter also transmits the local quality signal provided to it from its associated receiver and the transceiver is additionally responsive to the quality signal received from the other transceiver with which it is in communication to control its own output power in the response to that quality signal.
- a path loss measure is derived from the received signal strength and from data included in each transmitted signal which indicates that transmitter's output power level. Based on the derived path loss and the transmitter's power level data, the receiver can then adjust the power output of its own associated transmitter accordingly.
- the error rate of the received signal is determined in providing the quality signal, and in another aspect, the signal-to- noise ratio (SNR) is measured to determine quality.
- the transceiver receiving the error rate signal or the SNR from the other transceiver controls its own transmitter power output in response.
- FIG. 1 is a block diagram showing an overview of the principal elements of a communications system in accordance with the principles of the invention
- FIG. 2 is a diagram of the frequency sub-bands of the frequency band allocation for a cellular system
- FIG. 3 is a overview block diagram of a communications system in accordance with the principles of the invention without a network control center;
- FIG. 4 is a diagram showing the interrelationship of the cellular hierarchical structure of the ground and satellite nodes in a typical section and presents a cluster comprising more than one satellite cell;
- FIG. 5 is a block diagram of a satellite link system showing the user unit and satellite node control center;
- FIG. 6 is a block diagram of one embodiment of satellite signal processing in the system of FIG. 5;
- FIG. 7 is a functional block diagram of a user transceiver showing an adaptive power control system
- FIGS. 8a through 8h show timing diagrams of an adaptive, two-way power control system
- FIG 9 is a functional diagram of a two-way power control system incorporating telemetered signal-quality deficiency supervisory control.
- FIG 10 is a functional diagram of a power control system combining adaptive signal quality power control and adaptive path loss power control.
- the invention though not limited to, is preferredly embodied in a cellular communications system utilizing integrated satellite and ground nodes both of which use the same modulation, coding, and both responding to an identical user unit.
- the system network control center 12 directs the top level allocation of calls to satellite and ground regional resources throughout the system. It also is used to coordinate system- wide operations, to keep track of user locations, to perform optimum allocation of system resources to each call, dispatch facility command codes, and monitor and supervise overall system health.
- the regional node control centers 14, one of which is shown, are connected to the system network control center 12 and direct the allocation of calls to ground nodes within a major metropolitan region.
- the regional node control center 14 provides access to and from fixed land communication lines, such as commercial telephone systems known as the public switched telephone network (PSTN).
- PSTN public switched telephone network
- the ground nodes 16 under direction of the respective regional node control center 14 receive calls over the fixed land line network encode them, spread them according to the unique spreading code assigned to each designated user, combine them into a composite signal, modulate that composite signal onto the transmission carrier, and broadcast them over the cellular region covered.
- Satellite node control centers 18 are also connected to the system network control center 12 via status and control land lines and similarly handle calls designated for satellite links such as from PSTN, encode them, and multiplex them with other similarly directed calls into an uplink trunk, which is beamed up to the designated satellite 20. Satellite nodes 20 receive the uplink trunks, frequency demultiplex the calls intended for different satellite cells, frequency translate and direct each to its appropriate cell transmitter and cell beam, and broadcast the composite of all such similarly directed calls down to the intended satellite cellular area.
- backhaul means the link between a satellite 20 and a satellite node control center 18. In one embodiment, it is a K-band frequency while the link between the satellite 20 and the user unit 22 uses an L-band or an S-band frequency.
- a "node” is a communication site or a communication relay site capable of direct one- or two-way radio communication with users. Nodes may include moving or stationary surface sites or airborne or satellite sites.
- User units 22 respond to signals of either satellite or ground node origin, receive the outbound composite signal, de-modulate, and decode the information and deliver the call to the user. Such user units 22 may be mobile or may be fixed in position. Gateways 24 provide direct trunks, that is, groups of channels, between satellite and the ground public switched telephone system or private trunk users. For example, a gateway may comprise a dedicated satellite terminal for use by a large company or other entity. In the embodiment of FIG. 1, the gateway 24 is also connected to that system network controller 12. All of the above-discussed centers, nodes, units and gateways are full duplex transmit/receive performing the corresponding inbound (user to system) link functions as well in the inverse manner to the outbound (system to user) link functions just described.
- the allocated frequency band 26 of a communications system is shown.
- the allocated frequency band 26 is divided into 2 main sub-bands, an outgoing sub-band 25 and an incoming sub-band 27. Additionally the main sub-bands are themselves divided into further sub-bands which are designated as follows:
- IS Inbound Satellite 36 (user to satellite node)
- IC Inbound Calling and Tracking 38 (user to node)
- a mobile user's unit In one embodiment of the communication system, a mobile user's unit
- an identification signal in the IC sub-band will send an occasional burst of an identification signal in the IC sub-band either in response to a poll or autonomously. This may occur when the unit 22 is in standby mode.
- This identification signal is tracked by the regional node control center 14 as long as the unit is within that respective region, otherwise the signal will be tracked by the satellite node or nodes. In another embodiment, this identification signal is tracked by all ground and satellite nodes capable of receiving it. This information is forwarded to the network control center 12 via status and command lines.
- the applicable regional node control center 14 and the system network control center 12 remain constantly aware of the cellular location and link options for each active user 22.
- An intra-regional call to or from a mobile user 22 will generally be handled solely by the respective regional node control center 14. Inter-regional calls are assigned to satellite or ground regional system resources by the system network control center 12 based on the location of the parties to the call, signal quality on the various link options, resource availability and best utilization of resources.
- a user 22 in standby mode constantly monitors the common outbound calling frequency sub-band OC 32 for calling signals addressed to him by means of his unique spreading code. Such calls may be originated from either ground or satellite nodes. Recognition of his unique call code initiates the user unit 22 ring function. When the user goes "off-hook", e.g. by lifting the handset from its cradle, a return signal is broadcast from the user unit 22 to any receiving node in the user calling frequency sub-band IC 38. This initiates a handshaking sequence between the calling node and the user unit which instructs the user unit whether to transition to either satellite, or ground frequency sub-bands, OS 30 and IS 36 or OG 28 and IG 34.
- a mobile user wishing to place a call simply takes his unit 22 off hook and dials the number of the desired party, confirms the number and "sends" the call. Thereby an incoming call sequence is initiated in the IC sub-band 38.
- This call is generally heard by several ground and satellite nodes which forward call and signal quality reports to the appropriate system network control center 12 which in turn designates the call handling to a particular satellite node 20 or regional node control center 14.
- the call handling element then initiates a handshaking function with the calling unit over the OC 32 and IC 38 sub-bands, leading finally to transition to the appropriate satellite or ground sub-bands for communication.
- FIG. 3 a block diagram of a communications system
- satellite node control centers 42 which does not include a system network control center is presented.
- the satellite node control centers 42 are connected directly into the land line network as are also the regional node control centers 44.
- Gateway systems 46 are also available as in the system of FIG. 1. and connect the satellite communications to the appropriate land line or other communications systems.
- the user unit 22 designates satellite node 48 communication or ground node 50 communication by sending a predetermined code.
- FIG. 4 a hierarchical cellular structure is shown. A pair of clusters 52 of ground cells 54 are shown. Additionally, a plurality of satellite cells 56 are shown. Although numerals 54 and 56 point only to two cells each, this has been done to retain clarity in the drawing.
- Numeral 54 is meant to indicate all ground cells in the figure and similarly numeral 56 is meant to indicate all satellite cells.
- the cells are shown as hexagonal in shape, however, this is exemplary only.
- the ground cells may be from 3 to 15 km across although other sizes are possible depending on user density in the cell.
- the satellite cells may be approximately 200-500 km across as an example depending on the number of beams used to cover a given area. As shown, some satellite cells may include no ground cells. Such cells may cover undeveloped areas for which ground nodes are not practical.
- Part of a satellite cluster 58 is also shown. The cell members of such a cluster share a common satellite node control center 60.
- the satellite nodes 20 make use of large, multiple-feed antennas 62 which in one embodiment provide separate, relatively narrow beamwidth beams and associated separate transmitters for each satellite cell 56.
- the multiple feed antenna 62 may cover an area such as the United States with, typically, about 100 satellite beams/cells and in one embodiment, with about 200 beams/cells.
- "relatively narrow beamwidth” refers to a beamwidth that results in a cell of 500 km or less across.
- the combined satellite/ground nodes system provides a hierarchical geographical cellular structure.
- each satellite cell 56 may further contain as many as 100 or more ground cells 54, which ground cells would normally carry the bulk of the traffic originated therein.
- the number of users of the ground nodes 16 is anticipated to exceed the number of users of the satellite nodes 20 where ground cells exist within satellite cells. Because all of these ground node users would otherwise interfere as background noise with the intended user-satellite links, in one embodiment the frequency band allocation may be separated into separate segments for the ground element and the space element as has been discussed in connection with FIG 2. This combined, hybrid service can be provided in a manner that is smoothly transparent to the user. Calls will be allocated among all available ground and satellite resources in the most efficient manner by the system network control center 12.
- cluster defined as the minimal set of cells such that mutual interference between cells reusing a given frequency sub-band is tolerable provided that such "co-channel cells" are in different clusters.
- all cells within a cluster must use different frequency sub-bands.
- the number of cells in such a cluster is called the “cluster size”.
- frequency reuse factor i.e. the number of possible reuses of a frequency sub-band within the system is thus equal to the number of cells in the system divided by the cluster size.
- the total number of channels that can be supported per cell, and therefore overall bandwidth efficiency of the system is thus inversely proportional to the cluster size.
- a block diagram is shown of a typical user unit 22 to satellite 20 to satellite node control 18 communication and the processing involved in the user unit 22 and the satellite node control 18.
- the handset 64 is lifted and the telephone number entered by the user. After corjfirming a display of the number dialed, the user pushes a "send" button, thus initiating a call request signal.
- This signal is processed through the transmitter processing circuitry 66 which includes spreading the signal using a calling spread code.
- the signal is radiated by the omni-directional antenna 68 and received by the satellite 20 through its narrow beamwidth antenna 62.
- the satellite processes the received signal as will be described below and sends the backhaul to the satellite node control center 18 by way of its backhaul antenna 70.
- the antenna 68 of the user unit 22 receives the signal and the receiver processor 72 processes the signal. Processing by the user unit 22 will be described in more detail below in reference to FIG. 7.
- the satellite node control center 18 receives the signal at its antenna 71 , applies it to a circulator 73, amplifies 74, frequency demultiplexes 76 the signal separating off the composite signal which includes the signal from the user shown in FIG. 5, splits it 78 off to one of a bank of code correlators, each of which comprises a mixer 80 for removing the spreading and identification codes, an AGC amplifier 82, the FECC demodulator 84, a demultiplexer 86 and finally a voice encoder/decoder (CODEC) 88 for converting digital voice information into an analog voice signal.
- the voice signal is then routed to the appropriate land line, such as a commercial telephone system. Transmission by the satellite node control center 18 is essentially the reverse of the above described reception operation.
- a circulator /diplexer 92 receives the uplink signal and applies it to an L-band or S-band amplifier 94 as appropriate.
- the signals from all the M satellite cells within a "cluster" are frequency multiplexed 96 into a single composite K-band backhaul signal occupying M times the bandwidth of an individual L-/S-band mobile link channel.
- the composite signal is then split 98 into N parts, separately amplified 100, and beamed through a second circulator 102 to N separate satellite ground cells.
- This general configuration supports a number of particular configurations various of which may be best adapted to one or another situation depending on system optimization which for example may include considerations related to regional land line long distance rate structure, frequency allocation and subscriber population.
- M-to-M configuration M contiguous cells served by a single common satellite ground node with M limited by available bandwidth.
- an M-to-M configuration would provide an "inter-metropolitan bus" which would tie together all occupants of such M satellite cells as if in a single local calling region.
- the same cells for example, Seattle, Los Angeles, Omaha and others
- comprising the cluster of M user cells on the left side of FIG. 6 are each served by corresponding backhaul beams on the right side of FIG. 6.
- the user unit 22 comprises a small, light-weight, low-cost, mobile transceiver handset with a small, non-directional antenna 68.
- the single antenna 68 provides both transmit and receive functions by the use of a circulator/diplexer 104 or other means. It is fully portable and whether stationary or in motion, permits access to a wide range of communication services from one telephone with one call number. It is anticipated that user units will transmit and receive on frequencies in the 1-3 GHz band but can operate in other bands as well.
- the user unit 22 shown in FIG. 7 comprises a transmitter section 106 and a receiver section 108.
- a microphone couples the voice signal to a voice encoder 110 which performs analog to digital encoding using one of the various modern speech coding technologies well known to those skilled in the art.
- the digital voice signal is combined with local status data, and/or other data, facsimile, or video data forming a composite bit stream in digital multiplexer 112.
- the resulting digital bit stream proceeds sequentially through forward error encoder 114, symbol or bit interleaver 116, symbol or bit, phase, and/or amplitude
- the PRN generator 136 comprises deterministic logic generating a pseudo-random digital bit stream capable of being replicated at the remote receiver.
- the ring generator 138 on command generates a short pseudo-random sequence functionally equivalent to a "ring. ".
- the transceiver receive function 108 demodulation operations mirror the corresponding transmit modulation functions in the transmitter section 106.
- the signal is received by the non-directional antenna 68 and conducted to the circulator 104.
- An amplifier 142 amplifies the received signal for mixing to an IF at mixer 144.
- the IF signal is amplified 146 and multiplied or despread 148 and then IF amplified 150 again.
- the IF signal then is conducted to a bit or symbol detector 152 which decides the polarity or value of each channel bit or symbol, a bit or symbol de-interleaver 154 and then to a forward error decoder 156.
- the composite bit stream from the FEC decoder 156 is then split into its several voice, data, and command components in the de-multiplexer 158.
- a voice decoder 160 performs digital to analog converting and results in a voice signal for communication to the user by a speaker or other means.
- Local oscillator 162 provides the first mixer 144 LO and the bit or symbol detector 152 timing.
- a PRN oscillator 164 and PRN generator 166 provide the deterministic logic of the spread signal for despreading purposes.
- the baud or bit clock oscillator 168 drives the bit in the bit detector 152, forward error decoder 156 and the voice decoder 160.
- the bit or symbol interleaver 116 and de-interleaver 154 provide a type of coded time diversity reception which provides an effective power gain against multipath fading to be expected for mobile users. Its function is to spread or diffuse the effect of short bursts of channel bit or symbol errors so that they can more readily be corrected by the error correction code.
- a command decoder 174 and command logic element 176 are coupled to the forward error decoder 156 for receiving commands or information.
- the non- voice signal output at the forward error decoder 156 may be ignored by the voice decoder 160 but used by the command decoder 174.
- An example of the special coding techniques are illustrated in FIG. 7 by the MUX 112 and DEMUX 158.
- acquisition, control and tracking circuitry 178 are provided
- the automatic gain control (AGC) voltage 184 derived from the received signal is used in the conventional way to control the gain of the preceding amplifiers to an optimum value and in addition as an indicator of short term variations of path loss suffered by the received signal.
- AGC automatic gain control
- this information is combined with simultaneously received digital data 186 in a power level controller 188 indicating the level at which the received signal was originally transmitted to command the local instantaneous transmit power level to a value such that the received value at the satellite node control is approximately constant, independent of fading and shadowing effects.
- the level commanded to the output power amplifier 128 is also provided 190 to the transmitter multiplexer 112 for transmission to the corresponding unit.
- the adaptive power control system at each end, near-end and far- end includes a unique hybrid combination of two complementary sensors, the first being a near-end signal strength measure and the second being a far-end signal quality measure, both in operation simultaneously and symmetrically, with respect to each end of the subject two-way communication link.
- the signal strength measure is inferred from the near-end measure of received signal strength.
- both ends of the link are under adaptive power control depending at least in part on local received signal strength measurement.
- the local received strength depends not only on the path loss but also on the instantaneous adapted power level at which the received signal was transmitted from the far end.
- the far-end transmitter continuously telemeters the adapted power at which it is transmitting, multiplexed by any of several available means signal information.
- the transceiver is able to determine the path loss or changes in the path loss of the received signal. Assuming path reciprocity, this provides a first estimate of the path loss of the outgoing path, and in turn, a first estimate of the power or change in power needed by the local transmitter. This determination is fast, in that it responds almost instantaneously to path loss.
- the adaptive power control system in accordance with the invention comprises two main adaptive systems, the first being an adaptive signal quality power control system and the second being an adaptive path loss power control system.
- Each of these systems may be operated independently, but in a preferred embodiment are a combination of the adaptive signal quality power control system and the adaptive path loss power control system.
- the adaptive power control system in accordance with the invention considers not only path loss but also a measure of data loss or "signal quality" reported to it from another unit with which it is in communication.
- signal quality refers to the accuracy or fidelity of a received signal in representing the quantity or waveform it is supposed to represent. In a digital data system, this may be measured or expressed in terms of a bit error rate, or, if variable, the likelihood of exceeding a specified maximum bit error rate threshold.
- Signal quality involves more than just signal strength, depending also on noise and interference level, and on the variability of signal loss over time.
- grade of service is a collective term including the concepts of fidelity, accuracy, fraction of time that communications are satisfactory, etc. , any of which may be used to describe the quality objectives or specifications for a communication service. Examples of grade of service objectives would include:
- This signal quality measurement by comparison to a nominal signal quality or grade-of-service objective, provides a second estimate of the power or change required of the near-end transmitter.
- each receiver determines the quality of the received signal and provides a local quality signal to its associated transmitter in the respective transceiver indicative of that received signal quality. Each transmitter then transmits the local quality signal provided by the receiver back to the transceiver that transmitted the original transmission.
- the transceiver is responsive to the local quality signal to control its own transmitter power.
- a mobile unit transmits a first signal to a nodal
- the nodal transceiver determines the signal quality of the received signal by analyzing bit error rate, voice diagnostics, fade or the like to provide the local quality signal.
- the nodal transceiver then transmits the local quality signal back to the mobile unit which processes the local quality signal along with other factors such as received signal strength, or other measurements will known in the art to determine the output power of mobile unit's transmitter.
- the local quality signal is appended to the transmission of a second communication signal. In this manner, two way communication provides a carrier signal upon which the local quality signal is transmitted.
- Power adjustment based upon path loss reciprocity alone is subject to several sources of error, including, path non-reciprocity (due to frequency difference), staleness due to transit time delay, and local noise or interference anomalies. Compensation for all these effects is provided in the system and method of the invention by a longer term signal quality monitor, which compares recent past actual error rate statistics, (measured in the forward error correction decoder) and compares against prescribed maximum acceptable error rate statistic.
- the signal quality monitor includes a history compiler, situated at either the mobile unit or the nodal transceiver, that records and processes additional factors such as past signal quality measurements, position determination of the mobile unit, past measurements of received signal strength, past determinations of the output power of the received signal and other measurements well known to those in the art to provide a more comprehensive determination of actual signal quality. The difference is interpreted as a longer-term signal level deficiency.
- This signal level deficiency is then telemetered back to the respondent transceiver as an independent short burst transmission or may be appended to the transmission of a second two-way signal, where it is used to provide a longer term supervisory control over the short term path-reciprocity power adjustment system.
- the longer term signal quality deficiency estimate will sense this and call for a gradual increase in the reference value calibration of the fast, signal sensing power control.
- the two derived estimates of the required near-end transmit power or change in power, have complementary error characteristics such that an optimal combination of the two estimates will yield an overall estimate far superior to either one separately.
- the near-end path loss measurement is fast but error prone.
- the far-end signal quality measurement is slow but accurate.
- the invention of the adaptive power control system combines these two available measures into a single control system taking advantage of the better features of each. Several approaches to this combination are possible.
- present invention includes an adaptive path loss power control system.
- each transmitter telemeters its current signal output level to the counterpart far end receiver by adding a low rate data stream to the composite digital output signal.
- each end can form an estimate of the instantaneous path loss and adjust its current transmit power output to a level which will produce an approximately constant received signal level at the counterpart receiver irrespective of path loss variations.
- FIGS. 8a through 8h timing and waveform diagrams of the adaptive path loss system of an adaptive power control system in accordance with the principles of the invention are presented.
- the two ends of the communications link are referred to generally as A and B.
- A corresponds to the user
- B corresponds to the cellular node.
- A would be the user and B would be the satellite control node; in this case, the satellite is simply a constant gain repeater and the control of its power output is exercised by the level of the signal sent up to it.
- the path loss suddenly increases x dB due for example to the mobile user A driving behind a building or other obstruction in the immediate vicinity of A. This causes the signal strength as sensed by A's AGC to decrease x dB as shown in FIG. 8b.
- the telemetered data at time 192 shown in FIG. 8c indicates that the level at which this signal had been transmitted from B had not been altered,
- A's power level controller 188 subtracts the telemetered transmitted signal level from the observed received signal level and computes that there has been an increase of x dB in path loss. Accordingly it increases its signal level output by x dB at time 192 as shown in FIG. 8d and at the same time adds this information to its status telemeter channel.
- This signal is transmitted to B, arriving after transit time T as shown in FIG. 8e.
- the B receiver sees a constant received signal strength as shown in FIG. 8f but learns from the telemetered data channel as shown in FIG. 8g that the signal has been sent to him at +x dB. Therefore, B also computes that the path loss has increased x dB, adjusts its output signal level accordingly at FIG. 8h and telemeters that information. That signal increase arrives back at station A at 2T as shown in FIG. 8e thus restoring the nominal signal strength with a delay of two transit times (T).
- T two transit times
- filters 256 and 258 compensated by telemetered far-end transmit power, and telemetered far-end signal quality as discussed above. These are filtered in filters 256 and 258 and combined in signal summer 260 to provide the best possible power control 260. Based upon estimates or measurements of the true path loss variability power density spectrum, and the power density spectra of the independent estimates 252 and 254, optimal realizable filters 256 and 258 may be designed by well known Wiener methods and specified in terms of their transfer function or impulsive response characteristics.
- the independent estimates 252 and 254 and the power control output 262 may be in discrete time sampled digital form.
- the combiner may then be implemented as a finite state machine computer algorithm (constant coefficient digital filter), designed by well known Kalman-Bucy filter estimation methodology based upon the estimated or measured autocorrelation statistics of the true path loss variation and of the estimate errors of 252 and 254. These statistics are directly related to the power density spectral statistics used to describe the analog implementation of the Fourier transforms of one another.
- FIG. 9 also shows the operation of an adaptive signal quality power control system acting in concert with the adaptive path loss power control system described above. While FIG. 9 depicts only one of two corresponding transceivers 210 which are in communication with each other, the one not shown functions identically to the one shown in FIG. 9 and described.
- Receiver 212 receives the signal from the corresponding transceiver and provides a measure indicative of the near-end received signal level deviation from a nominal level 214 by techniques well known to those skilled in the art as a step in determining the path loss.
- the nominal level is typically calculated to provide a desired minimum acceptable grade of service under average conditions of fading and interference, as is well known to those skilled in the art.
- the receiver 212 provides a digital output signal 213 based on the received signal.
- Forward error decoder 216 decodes the digital information in the received signal 213, and in the process provides an error rate measure 218, derived from the fraction of transmitted bits needing correction.
- the forward error decoded signal 218 is further processed in the signal quality circuit 220 to derive signal quality deficiency; i.e. , an estimate of the change in transmit power calculated as that which would be required to just achieve the specified, minimum acceptable error rate under average conditions of fading and interference.
- the output from the signal quality circuit 220 is provided to an analog-to-digital converter 221 to provide a digital signal to be multiplexed 244. If the error rate is higher than acceptable, the signal quality circuit output 222 will include a power increase command signal and if the error rate is less than acceptable, a transmit power reduction will be output.
- the circuit of FIG. 9 also includes a consideration of the signal-to-noise ratio (SNR) in the received signal to determine signal quality.
- SNR signal-to-noise ratio
- the SNR of the received signal is determined in the receiver 212 by techniques well known to those skilled in the art; for example, the AGC is monitored, and an SNR signal 223 is provided to the signal quality circuit 220.
- the signal quality circuit 220 considers both the error rate 218 and the SNR when producing its output control signal 222.
- a demultiplexer 224 separates the telemetered data 217 output through the forward error decoder 216 as to far-end signal quality deficiency 226, far- end transmitter power deviation reference 228 from a nominal level, and the traffic signals 230.
- the far-end transmit power deviation signal 228 is combined 232 with the near-end received signal level deviation 214 to yield a signal 234 representative of the path loss deviation from a nominal reference value.
- the telemetered far-end signal quality deficiency 226 and the path loss deviation 234 are combined 236 through complementary filters 238 and 240, which may take any of several forms as described above, to yield the transmit power control signal 242 for controlling the output power of the associated transmitter 250.
- the transmit power control signal 242 is also applied to an analog-to-digital converter 243 to provide a digitized transmit power control signal 245.
- the resulting transmitter power level deviation from nominal reference 245 and the near-end signal quality 222 deficiency signals are multiplexed 244 with the traffic 246, then forward error encoded 248 and transmitted 250 to the far end transceiver in support of identical functions performed there.
- the complementary combining filters 238 and 240 can be designed as optimal
- bandwidth utilization efficiency in either the ground based cellular or mobile satellite elements, radio frequency spectrum allocation is a severely limited commodity.
- the power control system of the present invention may be incorporated with other measures to maximize bandwidth utilization efficiency including the use of code division multiple access (CDMA) technology, and spread spectrum communications techniques which provide important spectral utilization efficiency gain and higher spatial frequency reuse, factors made possible by the use of smaller satellite antenna beams.
- CDMA code division multiple access
- the power control of the present invention may be combined with the use of forward-error-correcting coding, which in turn is enabled by the above use of spread spectrum code division multiple access (SS/CDMA) technology and by the use of relatively high antenna gain on the satellite.
- SS/CDMA spread spectrum code division multiple access
- CDMA and forward-error-correction coding are known to those skilled in the art and no further details are given here.
- Two-way, adaptive power control and signal quality control system in accordance with the invention provides a flexible capability of providing the following additional special services: high quality, high rate voice and data service; facsimile (the standard group 3 as well as the high speed group 4); two way messaging, i.e. data interchange between mobile terminals at variable rates; automatic position determination and reporting to within several hundred feet; paging rural residential telephone; and private wireless exchange. Additionally, the system obviates the usual practice of continuously transmitting at a power level which is 10 to 40 dB greater than required most of the time in order to provide a margin for accommodating infrequent deep fades.
- a satellite node has been described above, it is not intended that this be the only means of providing above-ground service. In the case where a satellite has failed or is unable to provide the desired level of service for other reasons, for example, the satellite has been jammed by a hostile entity, an aircraft or other super-surface vehicle may be commissioned to provide the satellite functions described above.
- the "surface" nodes described above may be located on the ground or in water bodies on the surface of the earth.
- users have been shown and described as being located in automobiles, other users may exist.
- a satellite may be a user of the system for communicating signals, just as a ship at sea may or a user on
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP95914953A EP0801850A1 (fr) | 1995-03-27 | 1995-03-27 | Systeme de commande de puissance de communication cellulaire |
PCT/US1995/003898 WO1996031009A1 (fr) | 1995-03-27 | 1995-03-27 | Systeme de commande de puissance de communication cellulaire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US1995/003898 WO1996031009A1 (fr) | 1995-03-27 | 1995-03-27 | Systeme de commande de puissance de communication cellulaire |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1996031009A1 true WO1996031009A1 (fr) | 1996-10-03 |
Family
ID=22248895
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1995/003898 WO1996031009A1 (fr) | 1995-03-27 | 1995-03-27 | Systeme de commande de puissance de communication cellulaire |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP0801850A1 (fr) |
WO (1) | WO1996031009A1 (fr) |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998057440A2 (fr) * | 1997-06-10 | 1998-12-17 | Northern Telecom Limited | Transmission de donnees sur un systeme de communications sur lignes electriques |
WO1999007105A2 (fr) * | 1997-08-01 | 1999-02-11 | Salbu Research And Development (Proprietary) Limited | Adaptation de puissance dans un reseau multistations |
WO1998037638A3 (fr) * | 1997-02-24 | 1999-03-11 | At & T Wireless Services Inc | Communications a largeur de bande hautement efficace |
FR2769777A1 (fr) * | 1997-10-13 | 1999-04-16 | Telediffusion Fse | Procede et systeme d'evaluation, a la reception, de la qualite d'un signal numerique, tel qu'un signal audio/video numerique |
EP0945997A1 (fr) * | 1998-03-27 | 1999-09-29 | Motorola, Inc. | Système de communication et sa méthode de contr le de puissance |
WO1999053629A2 (fr) * | 1998-04-08 | 1999-10-21 | Nokia Mobile Phones Limited | Methode et systeme permettant de commander la puissance de transmission de certaines parties d'une transmission radio |
FR2780593A1 (fr) * | 1998-06-26 | 1999-12-31 | Nortel Matra Cellular | Procede et dispositif de selection de parametres dans un reseau cellulaire de radiocommunication |
US6128276A (en) * | 1997-02-24 | 2000-10-03 | Radix Wireless, Inc. | Stacked-carrier discrete multiple tone communication technology and combinations with code nulling, interference cancellation, retrodirective communication and adaptive antenna arrays |
GB2363034A (en) * | 2000-05-31 | 2001-12-05 | Motorola Inc | Call establishment and power control in radiocommunications |
US6359923B1 (en) | 1997-12-18 | 2002-03-19 | At&T Wireless Services, Inc. | Highly bandwidth efficient communications |
US6411818B1 (en) | 1999-02-09 | 2002-06-25 | Agilent Technologies, Inc. | Assessing path imbalance in mobile communications networks |
WO2003036816A1 (fr) * | 2001-10-24 | 2003-05-01 | Ipwireless, Inc. | Procede et systeme de puissance utilisant les metriques d'affaiblissement sur les chemins de propagation |
EP1309100A1 (fr) | 2001-11-05 | 2003-05-07 | Hitachi, Ltd. | Procédé de régulation de puissance d'émission pour système de communication sans fil |
US6741866B1 (en) | 1999-06-11 | 2004-05-25 | Telefonaktiebolaget Lm Ericsson (Publ) | Fade margin test |
US6782039B2 (en) | 1997-02-24 | 2004-08-24 | At&T Wireless Services, Inc. | Vertical adaptive antenna array for a discrete multitone spread spectrum communications system |
US6785300B2 (en) | 1997-02-06 | 2004-08-31 | At&T Wireless Services, Inc. | Delay compensation |
US6922551B1 (en) | 1998-07-15 | 2005-07-26 | Telefonaktiebolaget L M Ericsson (Publ) | Interference prevention in a radio communications system |
CN1878017A (zh) * | 1999-03-22 | 2006-12-13 | 交互数字技术公司 | 时分双工通信系统中的外环/加权开环功率控制 |
US7301989B2 (en) | 2003-03-03 | 2007-11-27 | Hitachi, Ltd. | Wireless communication system and transmit power and data rate control method therefor |
US20120236731A1 (en) * | 2010-09-13 | 2012-09-20 | Steve Andre Beaudin | System and Method for Co-Channel Interference Measurement and Managed Adaptive Resource Allocation for Wireless Backhaul |
US8693432B2 (en) | 1997-02-06 | 2014-04-08 | At&T Mobility Ii Llc | Method for frequency division duplex communications |
US8897828B2 (en) | 2004-08-12 | 2014-11-25 | Intellectual Ventures Holding 81 Llc | Power control in a wireless communication system |
US9237529B2 (en) | 2012-03-30 | 2016-01-12 | Blinq Wireless Inc. | Method and apparatus for managing interference in wireless backhaul networks through power control with a one-power-zone constraint |
US9253740B2 (en) | 2012-11-29 | 2016-02-02 | Blinq Wireless Inc. | Method and apparatus for coordinated power-zone-assignment in wireless backhaul networks |
US9338672B2 (en) | 2010-09-13 | 2016-05-10 | Blinq Wireless Inc. | System and method for coordinating hub-beam selection in fixed wireless backhaul networks |
US9338753B2 (en) | 2011-05-06 | 2016-05-10 | Blinq Wireless Inc. | Method and apparatus for performance management in wireless backhaul networks via power control |
US9345032B2 (en) | 2010-09-13 | 2016-05-17 | Blinq Wireless Inc. | Method and apparatus for determining network clusters for wireless backhaul networks |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4777653A (en) * | 1985-12-20 | 1988-10-11 | Telecommunications Radioelectriques Et Telephoniques T.R.T. | Apparatus for controlling transmission power over a digital radio communication channel |
US5241690A (en) * | 1990-06-21 | 1993-08-31 | Telefonaktiebolaget L M Ericsson | Method for regulating power in a digital mobile telephony system |
US5265119A (en) * | 1989-11-07 | 1993-11-23 | Qualcomm Incorporated | Method and apparatus for controlling transmission power in a CDMA cellular mobile telephone system |
US5333175A (en) * | 1993-01-28 | 1994-07-26 | Bell Communications Research, Inc. | Method and apparatus for dynamic power control in TDMA portable radio systems |
US5386589A (en) * | 1991-12-26 | 1995-01-31 | Nec Corporation | Transmission power control system capable of keeping signal quality constant in mobile communication network |
-
1995
- 1995-03-27 EP EP95914953A patent/EP0801850A1/fr not_active Withdrawn
- 1995-03-27 WO PCT/US1995/003898 patent/WO1996031009A1/fr not_active Application Discontinuation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4777653A (en) * | 1985-12-20 | 1988-10-11 | Telecommunications Radioelectriques Et Telephoniques T.R.T. | Apparatus for controlling transmission power over a digital radio communication channel |
US5265119A (en) * | 1989-11-07 | 1993-11-23 | Qualcomm Incorporated | Method and apparatus for controlling transmission power in a CDMA cellular mobile telephone system |
US5241690A (en) * | 1990-06-21 | 1993-08-31 | Telefonaktiebolaget L M Ericsson | Method for regulating power in a digital mobile telephony system |
US5386589A (en) * | 1991-12-26 | 1995-01-31 | Nec Corporation | Transmission power control system capable of keeping signal quality constant in mobile communication network |
US5333175A (en) * | 1993-01-28 | 1994-07-26 | Bell Communications Research, Inc. | Method and apparatus for dynamic power control in TDMA portable radio systems |
Cited By (63)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9088388B2 (en) | 1997-02-06 | 2015-07-21 | At&T Mobility Ii Llc | Method for frequency division duplex communications |
US6785300B2 (en) | 1997-02-06 | 2004-08-31 | At&T Wireless Services, Inc. | Delay compensation |
US8693432B2 (en) | 1997-02-06 | 2014-04-08 | At&T Mobility Ii Llc | Method for frequency division duplex communications |
US6782039B2 (en) | 1997-02-24 | 2004-08-24 | At&T Wireless Services, Inc. | Vertical adaptive antenna array for a discrete multitone spread spectrum communications system |
WO1998037638A3 (fr) * | 1997-02-24 | 1999-03-11 | At & T Wireless Services Inc | Communications a largeur de bande hautement efficace |
US6128276A (en) * | 1997-02-24 | 2000-10-03 | Radix Wireless, Inc. | Stacked-carrier discrete multiple tone communication technology and combinations with code nulling, interference cancellation, retrodirective communication and adaptive antenna arrays |
WO1998057440A3 (fr) * | 1997-06-10 | 1999-11-11 | Northern Telecom Ltd | Transmission de donnees sur un systeme de communications sur lignes electriques |
WO1998057440A2 (fr) * | 1997-06-10 | 1998-12-17 | Northern Telecom Limited | Transmission de donnees sur un systeme de communications sur lignes electriques |
WO1999007105A3 (fr) * | 1997-08-01 | 1999-07-01 | Salbu Res & Dev Pty Ltd | Adaptation de puissance dans un reseau multistations |
AU757947B2 (en) * | 1997-08-01 | 2003-03-13 | Salbu Research And Development (Proprietary) Limited | Power adaption in a multi-station network |
CN100336368C (zh) * | 1997-08-01 | 2007-09-05 | 萨尔布研究及发展私人有限公司 | 多站网络中的功率匹配 |
KR100573422B1 (ko) * | 1997-08-01 | 2006-04-26 | 살부 리서치 앤드 디벨롭먼트 (프로프라이어터리) 리미티드 | 멀티-스테이션 네트웍의 전력 적응 |
EP1641142A1 (fr) * | 1997-08-01 | 2006-03-29 | Iwics Inc. | Adaptation de puissance dans un réseau avec plusieurs stations |
US6898437B1 (en) | 1997-08-01 | 2005-05-24 | Iwics Inc. | Power adaption in a multi-station network |
WO1999007105A2 (fr) * | 1997-08-01 | 1999-02-11 | Salbu Research And Development (Proprietary) Limited | Adaptation de puissance dans un reseau multistations |
AP1142A (en) * | 1997-08-01 | 2003-01-31 | Salbu Res And Development Proprietary Limited | Power adaption in a multi-station network. |
WO1999020017A1 (fr) * | 1997-10-13 | 1999-04-22 | Telediffusion De France | Procede et systeme d'evaluation, a la reception, de la qualite d'un signal numerique, tel qu'un signal audio/video numerique |
FR2769777A1 (fr) * | 1997-10-13 | 1999-04-16 | Telediffusion Fse | Procede et systeme d'evaluation, a la reception, de la qualite d'un signal numerique, tel qu'un signal audio/video numerique |
US6480522B1 (en) | 1997-12-18 | 2002-11-12 | At&T Wireless Services, Inc. | Method of polling second stations for functional quality and maintenance data in a discrete multitone spread spectrum communications system |
US6621851B1 (en) | 1997-12-18 | 2003-09-16 | At&T Wireless Services, Inc. | Priority messaging method for a discrete multitone spread spectrum communications system |
US6359923B1 (en) | 1997-12-18 | 2002-03-19 | At&T Wireless Services, Inc. | Highly bandwidth efficient communications |
EP0945997A1 (fr) * | 1998-03-27 | 1999-09-29 | Motorola, Inc. | Système de communication et sa méthode de contr le de puissance |
US6603773B2 (en) | 1998-04-08 | 2003-08-05 | Nokia Mobile Phones Limited | Method and system for controlling the transmission power of certain parts of a radio transmission |
WO1999053629A2 (fr) * | 1998-04-08 | 1999-10-21 | Nokia Mobile Phones Limited | Methode et systeme permettant de commander la puissance de transmission de certaines parties d'une transmission radio |
WO1999053629A3 (fr) * | 1998-04-08 | 1999-12-23 | Nokia Mobile Phones Ltd | Methode et systeme permettant de commander la puissance de transmission de certaines parties d'une transmission radio |
FR2780593A1 (fr) * | 1998-06-26 | 1999-12-31 | Nortel Matra Cellular | Procede et dispositif de selection de parametres dans un reseau cellulaire de radiocommunication |
WO2000001181A1 (fr) * | 1998-06-26 | 2000-01-06 | Nortel Matra Cellular | Procede et dispositif de selection de parametres dans un reseau cellulaire de radiocommunication |
US6922551B1 (en) | 1998-07-15 | 2005-07-26 | Telefonaktiebolaget L M Ericsson (Publ) | Interference prevention in a radio communications system |
US6411818B1 (en) | 1999-02-09 | 2002-06-25 | Agilent Technologies, Inc. | Assessing path imbalance in mobile communications networks |
CN1878017B (zh) * | 1999-03-22 | 2015-08-26 | 英特尔公司 | 时分双工通信系统中的外环/加权开环功率控制 |
CN1878017A (zh) * | 1999-03-22 | 2006-12-13 | 交互数字技术公司 | 时分双工通信系统中的外环/加权开环功率控制 |
US6741866B1 (en) | 1999-06-11 | 2004-05-25 | Telefonaktiebolaget Lm Ericsson (Publ) | Fade margin test |
GB2363034B (en) * | 2000-05-31 | 2004-04-28 | Motorola Inc | Communications system, call establishment procedure and method of power control in a radio communications environment |
GB2363034A (en) * | 2000-05-31 | 2001-12-05 | Motorola Inc | Call establishment and power control in radiocommunications |
US7171230B2 (en) | 2001-10-24 | 2007-01-30 | Ipwireless, Inc. | Method and arrangement for power control |
WO2003036816A1 (fr) * | 2001-10-24 | 2003-05-01 | Ipwireless, Inc. | Procede et systeme de puissance utilisant les metriques d'affaiblissement sur les chemins de propagation |
EP2426828A3 (fr) * | 2001-11-05 | 2013-07-03 | Hitachi Ltd. | Procédé de commande d'alimentation de transmission pour système de communication sans fil |
EP1309100A1 (fr) | 2001-11-05 | 2003-05-07 | Hitachi, Ltd. | Procédé de régulation de puissance d'émission pour système de communication sans fil |
KR101171693B1 (ko) | 2001-11-05 | 2012-08-06 | 가부시키가이샤 히타치세이사쿠쇼 | 무선 통신 방법 |
US8385393B2 (en) | 2001-11-05 | 2013-02-26 | Hitachi, Ltd. | Transmission power control method for a wireless communication system |
KR101244087B1 (ko) | 2001-11-05 | 2013-03-18 | 가부시키가이샤 히타치세이사쿠쇼 | 무선 통신 시스템에서의 송신 장치 및 수신 장치 |
US7769081B2 (en) | 2001-11-05 | 2010-08-03 | Hitachi, Ltd. | Transmission power control method for a wireless communication system |
US7428264B2 (en) | 2001-11-05 | 2008-09-23 | Hitachi, Ltd. | Transmission power control method for a wireless communication system |
US8804802B2 (en) | 2001-11-05 | 2014-08-12 | Hitachi, Ltd. | Transmission power control method for a wireless communication system |
US7301989B2 (en) | 2003-03-03 | 2007-11-27 | Hitachi, Ltd. | Wireless communication system and transmit power and data rate control method therefor |
US9706500B2 (en) | 2004-08-12 | 2017-07-11 | Intellectual Ventures Ii Llc | Power control in a wireless network |
US10952153B2 (en) | 2004-08-12 | 2021-03-16 | Intellectual Ventures Ii Llc | Power control in a wireless network |
US11523351B2 (en) | 2004-08-12 | 2022-12-06 | Intellectual Ventures Ii Llc | Power control in a wireless network |
US9414326B2 (en) | 2004-08-12 | 2016-08-09 | Intellectual Ventures Ii Llc | Power control in a wireless network |
US11412459B2 (en) | 2004-08-12 | 2022-08-09 | Intellectual Ventures Ii Llc | Power control in a wireless network |
US11134448B2 (en) | 2004-08-12 | 2021-09-28 | Intellectual Ventures Ii Llc | Power control in a wireless network |
US8983522B2 (en) | 2004-08-12 | 2015-03-17 | Intellectual Ventures Holding 81 Llc | Power control in a wireless network |
US10292113B2 (en) | 2004-08-12 | 2019-05-14 | Intellectual Ventures Ii Llc | Power control in a wireless network |
US11729727B2 (en) | 2004-08-12 | 2023-08-15 | Intellectual Ventures Ii Llc | Power control in a wireless network |
US9055586B2 (en) | 2004-08-12 | 2015-06-09 | Intellectual Ventures Holding 81 Llc | Power control in a wireless network |
US8897828B2 (en) | 2004-08-12 | 2014-11-25 | Intellectual Ventures Holding 81 Llc | Power control in a wireless communication system |
US8824311B2 (en) * | 2010-09-13 | 2014-09-02 | Blinq Wireless Inc. | System and method for co-channel interference measurement and managed adaptive resource allocation for wireless backhaul |
US9338672B2 (en) | 2010-09-13 | 2016-05-10 | Blinq Wireless Inc. | System and method for coordinating hub-beam selection in fixed wireless backhaul networks |
US20120236731A1 (en) * | 2010-09-13 | 2012-09-20 | Steve Andre Beaudin | System and Method for Co-Channel Interference Measurement and Managed Adaptive Resource Allocation for Wireless Backhaul |
US9345032B2 (en) | 2010-09-13 | 2016-05-17 | Blinq Wireless Inc. | Method and apparatus for determining network clusters for wireless backhaul networks |
US9338753B2 (en) | 2011-05-06 | 2016-05-10 | Blinq Wireless Inc. | Method and apparatus for performance management in wireless backhaul networks via power control |
US9237529B2 (en) | 2012-03-30 | 2016-01-12 | Blinq Wireless Inc. | Method and apparatus for managing interference in wireless backhaul networks through power control with a one-power-zone constraint |
US9253740B2 (en) | 2012-11-29 | 2016-02-02 | Blinq Wireless Inc. | Method and apparatus for coordinated power-zone-assignment in wireless backhaul networks |
Also Published As
Publication number | Publication date |
---|---|
EP0801850A1 (fr) | 1997-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6108561A (en) | Power control of an integrated cellular communications system | |
US5446756A (en) | Integrated cellular communications system | |
EP0476127B1 (fr) | Systeme de communications cellulaires | |
US5995832A (en) | Communications system | |
EP0801850A1 (fr) | Systeme de commande de puissance de communication cellulaire | |
EP0830752B1 (fr) | Regulation de la puissance d'un signal pilote dans un systeme de communication par satellite en orbite basse | |
RU2153225C2 (ru) | Управление мощностью с обратной связью в системе связи через низкоорбитальные спутники | |
US6240124B1 (en) | Closed loop power control for low earth orbit satellite communications system | |
EP0607359B1 (fr) | Systeme de commande de la puissance d'un emetteur | |
US6347080B2 (en) | Energy based communication rate detection system and method | |
JP4739514B2 (ja) | ループ遅延による予測パラメータ制御方法及び装置 | |
CA2590791A1 (fr) | Systeme de communications par satellite faisant appel a une combinaison de creneaux temporels et de codes orthogonaux | |
WO1995034181A1 (fr) | Systeme de communications | |
US6671250B1 (en) | Method for deep paging | |
RU2100904C1 (ru) | Сотовая система связи | |
EP1169791B1 (fr) | Systeme et procede de correlation des mesures de signaux du canal trafic d'un systeme de communications | |
AU2004203066B2 (en) | Method for deep paging | |
WO2000060769A1 (fr) | Systeme et procede de correlation des mesures de signaux du canal trafic d'un systeme de communications | |
MXPA97009984A (en) | Control of closed circuit power for satellite communications system in the terrestrial orbit b |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CA CN JP RU |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1995914953 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1995914953 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: CA |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1995914953 Country of ref document: EP |