WO1996030776A1 - Rf squid with tank circuit - Google Patents

Rf squid with tank circuit Download PDF

Info

Publication number
WO1996030776A1
WO1996030776A1 PCT/DE1996/000529 DE9600529W WO9630776A1 WO 1996030776 A1 WO1996030776 A1 WO 1996030776A1 DE 9600529 W DE9600529 W DE 9600529W WO 9630776 A1 WO9630776 A1 WO 9630776A1
Authority
WO
WIPO (PCT)
Prior art keywords
squid
tank circuit
tank
substrate
resonant circuit
Prior art date
Application number
PCT/DE1996/000529
Other languages
German (de)
French (fr)
Inventor
Yi Zhang
Martin Gottschlich
Helmut Soltner
Original Assignee
Forschungszentrum Jülich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Jülich GmbH filed Critical Forschungszentrum Jülich GmbH
Publication of WO1996030776A1 publication Critical patent/WO1996030776A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/035Measuring direction or magnitude of magnetic fields or magnetic flux using superconductive devices
    • G01R33/0354SQUIDS
    • G01R33/0358SQUIDS coupling the flux to the SQUID

Definitions

  • the invention relates to an rf-SQUID with tank oscillating circuit according to the preamble of the main claim.
  • SQUIDs superconducting quantum interference detectors
  • HTSL high-temperature superconductors
  • SQUIDs are the most sensitive detectors for determining the value of a magnetic flux, a magnetic field or a magnetic field gradient. Their potential area of application has emerged through the discovery of so-called high-temperature superconductors (HTSL) as materials for the production of so-called.
  • HTSL-SQUIDs increases and no longer only includes basic research. Rather, the SQUIDs are increasingly penetrating into areas such as non-destructive material testing, biomagnetic and geomagnetic investigations.
  • the damping of this tank resonant circuit is therefore a measure of the field created from the outside and can be measured and evaluated using suitable electronics.
  • the sensitivity of the SQUID is largely determined by the quality of the tank circuit. This quality is expressed quantitatively by the quality Q, ie by the ratio of the half width of the resonance to the resonance frequency f Q.
  • the aim for the operation of rf-SQUIDs is to achieve the highest possible quality so that even a small change in the field results in a significant change in the resonance curve.
  • the highest possible resonance frequencies are also sought, because the field noise, i.e. the field that can still be resolved by the SQUID is indirectly proportional to the root of this operating frequency.
  • the Washer-SQUID is often used as rf-SQUID. To do this, the sensor is considered a superconducting
  • the washer hole of the rf-SQUID enclosed by the SQUID surface is positioned at one end of the coil on its axis.
  • Q qualities in the range from 20 to 35 Although the value of one of these variables can in principle be increased, this is disadvantageously at the expense of a decrease in the other variable.
  • Such washer SQUIDs with the well-known tank swinging Circles also have the disadvantage of a coupling of these two components that is difficult to set.
  • the SQUID has a tank resonant circuit which is formed in a planar layer technique on a separate substrate and which allows the variability via spacers to the Washer SQUID.
  • the tank resonant circuit located on a separate substrate is coupled to the SQUID using flip-chip technology. It is important in this context that the inductive area of the tank resonant circuit is coupled to the SQUID hole.
  • the tank resonant circuit is coupled capacitively to the electronics for evaluating the recorded SQUID signal.
  • the higher quality Q thus enables a lower coupling k and thus a higher voltage modulation.
  • the coupling can be adjusted by varying the distance between SQUID and tank resonant circuit with the aid of thin insulating foils, optimal values adapted to the boundary conditions.
  • FIG. 2 Another possible design of the layout of a planar resonant circuit is given by FIG. 2.
  • Figure 1 layout of a resonant circuit with two capacitive, superconducting surfaces
  • Figure 2 layout of a resonant circuit with a capacitive, superconducting surface
  • FIG. 3 lateral view of an arrangement of a substrate A, B containing a washer SQUID to form a tank oscillating circle-containing substrate C, D;
  • FIG. 4 oblique view of the arrangement according to FIG. 3.
  • FIG. 1 shows the layout of an oscillating circuit, structured from a high-temperature (HTSL), low-temperature superconducting (TTSL) or, if necessary, normal-conducting layer. This structure takes place on a standard substrate with a lateral dimension of 1 cm 2 .
  • HTSL high-temperature
  • TTSL low-temperature superconducting
  • the structured conductive layer is indicated by the black areas.
  • the loop in the lower half represents the turn of the coil degenerated to one turn as an inductive element of the circle over which the SQUID hole is placed.
  • the first tank oscillating circuits produced in this way with the layout shown in FIG. 1 in YBa 2 Cu 3 0 7 technology showed qualities Q of up to 700 and resonance frequencies fg of up to 1.3 GHz;
  • layouts slightly modified by varying the gap width a between the two rectangular structures forming the capacitive element led to qualities of up to 2700 at a resonance frequency f Q of 0.6 GHz.
  • the width of the line that joins the two surfaces the other connects and forms the inductive winding in the lower half is 30 ⁇ m.
  • the layer thickness of the superconducting layer was chosen to be 200 nm.
  • FIG. 2 shows an alternative possibility of a layout for the construction of a normally conducting or superconducting resonant circuit.
  • This layout can therefore be used for the structuring of copper boards.
  • grades of 125 were achieved at a resonance frequency of 600 MHz.
  • FIG. 3 shows the substrate A containing the washer SQUID B in a side view of the substrate D which contains the planar tank resonant circuit (LC circuit) C.
  • LC circuit planar tank resonant circuit
  • the distance between the SQUID and the tank resonant circuit can be set and an individually selectable coupling k can be selected in accordance with the boundary conditions.
  • FIG. 3 shows an oblique view of a substrate containing a tank resonant circuit B with the layout according to FIG. 1 relative to a substrate A containing a washer SQUID. Not to scale the washer SQUID hole is shown; in reality this is not as large as the inductively acting element of the LC circuit. In fact, the dimension of the washer hole was 20 * 20 ⁇ m 2 .
  • FIG. 4 shows the relative arrangement of the inductive element of the LC circuit on one substrate to the washer SQUID hole on the other substrate. For inductive coupling, the inductive element lies over the SQUID hole.
  • planar tank circuit can be e.g. can be formed from a copper layer or another metallic material.
  • layouts can also be used which contain a plurality of the above-mentioned inductive and / or capacitive basic elements of the LC circuit.
  • the inductive element as shown in FIG. 1 or 2, can be a coil with a single turn his.
  • planar technology e.g. as a spiral loop, the end of which is passed in the middle of the spiral through the substrate to the back of the substrate.

Abstract

The invention relates to an r.f. SQUID with a tank circuit. It is the aim of the invention to provide such a SQUID in which the variability and reliability of the connection betwen the SQUID and the tank circuit are improved over prior art SQUIDs without adversely affecting the resonant frequency and quality of the SQUID. To this end, for the construction of the tank circuit there is a metallic conductive layer on a substrate which is structured in such a way that at least one lateral flat capacitive structure is bonded to a lateral elongated inductive structure. Such a tank circuit produced by the planar layer method provides the desired variability in the connection of the tank circuit to the SQUID by the flip-chip method on a separate substrate, with distance means.

Description

B e s c h r e i b u n gDescription
rf-SQUID mit Tankschwingkreisrf-SQUID with tank circuit
Die Erfindung betrifft einen rf-SQUID mit Tankschwing¬ kreis gemäß dem Oberbegriff des Hauptanspruchs.The invention relates to an rf-SQUID with tank oscillating circuit according to the preamble of the main claim.
SQUIDs (Supraleitende Quanteninterferenzdetektoren) sind die empfindlichsten Detektoren zur Bestimmung des Wertes eines magnetischen Flusses, eines magnetischen Feldes bzw. eines Magnetfeldgradienten. Ihr potentiel¬ les Einsatzgebiet hat sich durch die Entdeckung der sog. Hochtemperatursupraleiter (HTSL) als Materialien zur Herstellung von sgn. HTSL-SQUIDs vergrößert und umfaßt nicht mehr nur die Grundlagenforschung. Vielmehr dringen die SQUIDs mehr und mehr in Bereiche wie die zerstörungsfreie Werkstoffprüfung, biomagnetische und geomagnetische Untersuchungen vor.SQUIDs (superconducting quantum interference detectors) are the most sensitive detectors for determining the value of a magnetic flux, a magnetic field or a magnetic field gradient. Their potential area of application has emerged through the discovery of so-called high-temperature superconductors (HTSL) as materials for the production of so-called. HTSL-SQUIDs increases and no longer only includes basic research. Rather, the SQUIDs are increasingly penetrating into areas such as non-destructive material testing, biomagnetic and geomagnetic investigations.
Aus J. ow Temp. Phys. 1_ (314) , S. 201-246, 1975 bekannte rf-SQUIDs werden im Gegensatz zu den sgn. dc- SQUIDs nicht direkt (galvanisch) mit Elektroden kontaktiert, sondern es wird ein Tankschwingkreis induktiv an den SQUID, dessen Induktivität eineFrom J. ow Temp. Phys. 1_ (314), pp. 201-246, 1975 known rf-SQUIDs are in contrast to the so-called. dc- SQUIDs are not directly (galvanically) contacted with electrodes, but a tank circuit is inductively connected to the SQUID, the inductance of which is a
Funktion des äußeren Feldes ist, angekoppelt. Die Dämpfung dieses Tankschwingkreises ist damit ein Maß für das von außen angelegte Feld und kann durch eine geeignete Elektronik gemessen und ausgewertet werden. Die Empfindlichkeit des SQUIDs wird wesentlich durch die Qualität des Tankschwingkreises mitbestimmt. Diese Qualität wird quantitativ durch die Güte Q, d.h. durch das Verhältnis von Halbwertsbreite der Resonanz zur Resonanzfrequenz fQ ausgedrückt. Man strebt für den Betrieb von rf-SQUIDs möglichst hohe Güten an, damit auch schon eine kleine Feldänderung eine signifikante Änderung der Resonanzkurve erbringt .Function of the outer field is coupled. The damping of this tank resonant circuit is therefore a measure of the field created from the outside and can be measured and evaluated using suitable electronics. The sensitivity of the SQUID is largely determined by the quality of the tank circuit. This quality is expressed quantitatively by the quality Q, ie by the ratio of the half width of the resonance to the resonance frequency f Q. The aim for the operation of rf-SQUIDs is to achieve the highest possible quality so that even a small change in the field results in a significant change in the resonance curve.
Gleichzeitig werden aber auch möglichst hohe Resonanz¬ frequenzen angestrebt, denn das Feldrauschen, d.h. das Feld, welches noch vom SQUID aufgelöst werden kann, ist indirekt proportional zur Wurzel aus dieser Betriebs- frequenz .At the same time, however, the highest possible resonance frequencies are also sought, because the field noise, i.e. the field that can still be resolved by the SQUID is indirectly proportional to the root of this operating frequency.
Es ist zudem bekannt, für die Herstellung von Tank¬ schwingkreisen Kupferspulen und kommerziell erhältliche Kondensatoren zu verwenden. Es kommen dabei z.B. Spulen mit einem Drahtdurchmesser von 80 μm und einer Windungszahl von 8 Windungen zum Einsatz. Solche Tank¬ schwingkreise zeigen jedoch nachteilig eine schlecht definierte und nicht variierbare Kopplung.It is also known to use copper coils and commercially available capacitors for the production of tank resonant circuits. It comes e.g. Coils with a wire diameter of 80 μm and a number of turns of 8 turns are used. Such tank resonant circuits, however, disadvantageously show a poorly defined and non-variable coupling.
Als rf-SQUID findet vielfach der Washer-SQUID Verwen- düng. Dazu ist der Sensor als eine supraleitendeThe Washer-SQUID is often used as rf-SQUID. To do this, the sensor is considered a superconducting
Schicht relativ großer Fläche zur Fokussierung der Feldlinien auf einem Substrat ausgebildet. Das von der SQUID-Fläche umschlossene Washer-Loch des rf-SQUIDs wird dabei am einen Ende der Spule auf ihrer Achse positioniert. Mit dieser Anordnung erreicht manLayer of relatively large area for focusing the field lines formed on a substrate. The washer hole of the rf-SQUID enclosed by the SQUID surface is positioned at one end of the coil on its axis. With this arrangement one achieves
Resonanzfrequenzen fp von z.B. 150 MHz bei Güten Q im Bereich von 20 bis 35. Zwar kann grundsätzlich der Wert einer dieser Größen erhöht werden, dies geht dann nachteilig auf Kosten einer Abnahme der anderen Größe. Solche Washer-SQUIDs mit den bekannten Tankschwing- kreisen weisen zudem den Nachteil einer schwer ein¬ stellbaren Kopplung dieser beiden Komponenten auf .Resonance frequencies fp of, for example, 150 MHz with Q qualities in the range from 20 to 35. Although the value of one of these variables can in principle be increased, this is disadvantageously at the expense of a decrease in the other variable. Such washer SQUIDs with the well-known tank swinging Circles also have the disadvantage of a coupling of these two components that is difficult to set.
Es ist Aufgabe der Erfindung, einen rf-SQUID zu schaf- fen, bei dem eine gegenüber bekannten SQUIDs erhöhte Variabilität und Zuverlässigkeit der Kopplung erzielt wird ohne die Resonanzfrequenz und die Güte zu beein¬ trächtigen.It is the object of the invention to create an rf-SQUID in which an increased variability and reliability of the coupling compared to known SQUIDs is achieved without impairing the resonance frequency and the quality.
Die Aufgabe wird gelöst durch einen SQUID gemäß der Gesamtheit der Merkmale des Anspruchs 1.The object is achieved by a SQUID in accordance with the entirety of the features of claim 1.
Ohne auf die bewährten Washer-SQUIDs zu verzichten, wird auf diese Weise ein höchstempfindlicher rf-SQUID mit definiert einstellbarer, variabler Kopplung bereitgestellt. Dazu weist der SQUID einen Tankschwing¬ kreis auf, der in planarer Schichttechnik auf einem separaten Substrat gebildet ist und über Abstands¬ halterungen zum Washer-SQUID die Variabilität erlaubt.Without having to do without the tried-and-tested Washer SQUIDs, a highly sensitive rf-SQUID with defined, variable coupling is provided in this way. For this purpose, the SQUID has a tank resonant circuit which is formed in a planar layer technique on a separate substrate and which allows the variability via spacers to the Washer SQUID.
Die Ankopplung des sich auf einem separaten Substrat befindlichen Tankschwingkreises an den SQUID erfolgt in Flip-chip-Technik. Wesentlich ist in diesem Zusammen¬ hang, daß der induktive Bereich des Tankschwingkreises an das SQUID-Loch ankoppelt. Die Ankopplung des Tank¬ schwingkreises an die Elektronik zur Auswertung des aufgenommenen SQUID-Signals erfolgt kapazitiv.The tank resonant circuit located on a separate substrate is coupled to the SQUID using flip-chip technology. It is important in this context that the inductive area of the tank resonant circuit is coupled to the SQUID hole. The tank resonant circuit is coupled capacitively to the electronics for evaluating the recorded SQUID signal.
Wegen des Fehlens des normalleitenden dc-Widerstandes im Falle eines supraleitenden Tankschwingkreises gemäß Anspruch 2 erreicht man bei einem auf diese Weise hergestellten Schwingkreis eine höhere Güte und kann wegen des varierbaren Abstands zwischen SQUID und Tankschwingkreis die Kopplung k zwischen beiden Teilen so einstellen, daß die Forderung k2 * Q > 1Due to the lack of the normally conductive dc resistance in the case of a superconducting tank resonant circuit according to claim 2, a higher quality is achieved in a resonant circuit produced in this way and, because of the variable distance between SQUID and tank resonant circuit, the coupling k between the two parts can be set such that the requirement k 2 * Q> 1
erfüllt ist. Die höhere Güte Q ermöglicht somit eine geringere Kopplung k und damit eine höhere Span¬ nungsmodulation.is satisfied. The higher quality Q thus enables a lower coupling k and thus a higher voltage modulation.
Die Kopplung kann durch Variation des Abstandes zwischen SQUID und Tankschwingkreis mit Hilfe von dünnen isolierenden Folien auf den Randbedingungen angepaßten, optimale Werte eingestellt werden. Durch geeignete Formgebung des Layouts solcher planar ausge¬ bildeten Tankschwingkreise ist es zudem möglich, die Arbeitsfrequenzen in einem weiten Bereich einzustellen.The coupling can be adjusted by varying the distance between SQUID and tank resonant circuit with the aid of thin insulating foils, optimal values adapted to the boundary conditions. By suitably shaping the layout of such planar tank oscillating circuits, it is also possible to set the working frequencies in a wide range.
Durch die räumliche Trennung von Tankkreis und SQUID besteht im übrigen die Möglichkeit, beide Strukturen getrennt voneinander so zu optimieren, daß auch noch andere Schwingkreisstrukturen aus Hochtemperatur- supraleitendem Material ausgetestet werden können. Eine andere mögliche Auslegung des Layouts eines planaren Schwingkreises ist durch Figur 2 gegeben.Due to the spatial separation of the tank circuit and SQUID, there is also the possibility of optimizing both structures separately from one another so that other resonant circuit structures made of high-temperature superconducting material can also be tested. Another possible design of the layout of a planar resonant circuit is given by FIG. 2.
Die Erfindung wird nachfolgend anhand von Ausführungs- beispielen näher erläutert. Es zeigen:The invention is explained in more detail below on the basis of exemplary embodiments. Show it:
Figur 1 Layout eines Schwingkreises mit zwei ka¬ pazitiven, supraleitenden Flächen;Figure 1 layout of a resonant circuit with two capacitive, superconducting surfaces;
Figur 2 Layout eines Schwingkreises mit einer kapazitiven, supraleitenden Fläche;Figure 2 layout of a resonant circuit with a capacitive, superconducting surface;
Figur 3 seitlicher Anblick einer Anordnung eines einen Washer-SQUID enthaltendes Sub- strats A, B zu einem einen Tankschwing- kreis enthaltenden Substrat C, D;FIG. 3 lateral view of an arrangement of a substrate A, B containing a washer SQUID to form a tank oscillating circle-containing substrate C, D;
Figur 4 Schrägansicht der Anordnung gemäß Fi¬ gur 3.FIG. 4 oblique view of the arrangement according to FIG. 3.
Figur 1 zeigt das Layout eines Schwingkreises, struktu¬ riert aus einer hochtemperatur- (HTSL-) , tieftempera¬ tursupraleitenden (TTSL) oder auch ggfs. normal¬ leitenden Schicht. Diese Struktur findet auf einem Standardsubstrat mit einer lateralen Ausdehnung von 1 cm2 Platz.FIG. 1 shows the layout of an oscillating circuit, structured from a high-temperature (HTSL), low-temperature superconducting (TTSL) or, if necessary, normal-conducting layer. This structure takes place on a standard substrate with a lateral dimension of 1 cm 2 .
Die strukturierte leitende Schicht ist durch die schwarzen Flächen angedeutet . Die beiden großen rechteckigen Flächen bilden - ggfs. zusammen mit einer auf der Unterseite (Rückseite) des Substrats befind¬ lichen Kupferschicht, der sog. ground plane, - das kapazitive Element des Schwingkreises, den Kondensator.The structured conductive layer is indicated by the black areas. The two large rectangular surfaces, if necessary together with a copper layer, the so-called ground plane, on the underside (back) of the substrate, form the capacitive element of the resonant circuit, the capacitor.
Die Schleife in der unteren Hälfte stellt die auf eine Windung degenerierte Windung der Spule als induktives Element des Kreises dar, über dem das SQUID-Loch ge¬ setzt wird.The loop in the lower half represents the turn of the coil degenerated to one turn as an inductive element of the circle over which the SQUID hole is placed.
Erste auf diese Weise hergestellten Tankschwingkreise mit dem in Figur 1 gezeigten Layout in YBa2Cu307- Technik zeigten Güten Q von bis zu 700 und Resonanz¬ frequenzen fg von bis zu 1,3 GHz; gegenüber dem in Figur 1 angegebenen Layout leicht abgeänderte Layouts durch Variation der Spaltbreite a zwischen den beiden das kapazitive Element bildenden, rechteckigen Strukturen führten zu Güten von bis zu 2700 bei einer Resonanzfrequenz fQ von 0,6 GHz.The first tank oscillating circuits produced in this way with the layout shown in FIG. 1 in YBa 2 Cu 3 0 7 technology showed qualities Q of up to 700 and resonance frequencies fg of up to 1.3 GHz; Compared to the layout given in FIG. 1, layouts slightly modified by varying the gap width a between the two rectangular structures forming the capacitive element led to qualities of up to 2700 at a resonance frequency f Q of 0.6 GHz.
Die Breite der Linie, die die beiden Flächen mitein- ander verbindet und in der unteren Hälfte die induktiv wirkende Windung bildet, beträgt 30 μm. Die Schicht- dicke der supraleitende Schicht wurde zu 200 nm gewählt .The width of the line that joins the two surfaces the other connects and forms the inductive winding in the lower half is 30 μm. The layer thickness of the superconducting layer was chosen to be 200 nm.
Figur 2 zeigt eine alternative Möglichkeit eines Layouts zur Konstruktion eines normalleitenden oder supraleitenden Schwingkreises. Im Gegensatz zu Figur 1 gibt es hier nur einen Kondensator sowie eine Spule mit nur einer Windung. Die untere Linie endet mit einemFIG. 2 shows an alternative possibility of a layout for the construction of a normally conducting or superconducting resonant circuit. In contrast to FIG. 1, there is only one capacitor and one coil with only one turn. The bottom line ends with a
Durchkontakt durch das Substrat zur Erde auf der nicht näher dargestellten Rückseite des Substrats.Through contact through the substrate to earth on the back of the substrate, not shown.
Dieses Layout kann deswegen für die Strukturierung von Kupferplatinen benutzt werden. Mit einem solchen Layout bei Verwendung des Materials Kupfer mit 30 μm Schichtdicke für den LC-Kreis wurden Güten von 125 bei einer Resonanzfrequenz von 600 MHz erreicht.This layout can therefore be used for the structuring of copper boards. With such a layout when using the material copper with a layer thickness of 30 μm for the LC circuit, grades of 125 were achieved at a resonance frequency of 600 MHz.
In der Figur 3 ist das den Washer-SQUID B enthaltende Substrat A in Seitenansicht dem Substrat D, der den planaren Tankschwingkreis (LC-Kreis) C enthält, dargestellt.FIG. 3 shows the substrate A containing the washer SQUID B in a side view of the substrate D which contains the planar tank resonant circuit (LC circuit) C.
Durch geeignete Abstandshalterungen, z.B. mit Hilfe einer elektrisch isolierenden Folie definierter Dicke (z.B. 10 μm) kann der Abstand zwischen SQUID und Tankschwingkreis eingestellt und auf diese Weise den Randbedingungen entsprechend eine individuell wählbare Kopplung k gewählt werden.With suitable spacers, e.g. With the help of an electrically insulating film of defined thickness (e.g. 10 μm), the distance between the SQUID and the tank resonant circuit can be set and an individually selectable coupling k can be selected in accordance with the boundary conditions.
In der Figur 3 ist eine Schrägansicht eines einen Tankschwingkreis B mit Layout nach Figur 1 enthaltenden Substrats relativ zu einem einen Washer-SQUID enthal- tenden Substrat A dargestellt. Nicht maßstabsgerecht dargestellt ist das Washer-SQUID-Loch; dieses ist in Wirklichkeit nicht so groß wie das induktiv wirkende Element des LC-Kreises. Tatsächlich war die Abmessung des Washer-Loch 20*20 μm2. Aus der Figur 4 geht jedoch die relative Anordnung des induktiven Elements des LC- Kreises auf dem einen Substrat zum Washer-SQUID-Loch auf dem anderen Substrat hervor. Zur induktiven Kopp¬ lung liegt das induktive Element über dem SQUID-Loch.FIG. 3 shows an oblique view of a substrate containing a tank resonant circuit B with the layout according to FIG. 1 relative to a substrate A containing a washer SQUID. Not to scale the washer SQUID hole is shown; in reality this is not as large as the inductively acting element of the LC circuit. In fact, the dimension of the washer hole was 20 * 20 μm 2 . However, FIG. 4 shows the relative arrangement of the inductive element of the LC circuit on one substrate to the washer SQUID hole on the other substrate. For inductive coupling, the inductive element lies over the SQUID hole.
Die Erfindung ist nicht auf SQUIDs mit planaren Tank¬ schwingkreisen in HTSL-Technik beschränkt. Vielmehr kann der planar ausgebildete Tankschwingkreis z.B. aus einer Kupfer-Schicht oder einem anderen metallischen Material gebildet werden.The invention is not restricted to SQUIDs with planar tank resonant circuits using HTSL technology. Rather, the planar tank circuit can be e.g. can be formed from a copper layer or another metallic material.
Auch ist es vorstellbar, den planaren Tankschwingkreis in TTSL-, insbesondere Niob-Technik auszubilden und den Washer-SQUID entweder in HTSL-Technik oder ebenfalls auch in TTSL-Technik auszuführen. Soweit der erfindungsgemäße SQUID mit Tankschwingkreis in HTSL-It is also conceivable to design the planar tank circuit using TTSL, in particular niobium technology, and to implement the Washer SQUID either using HTSL technology or also using TTSL technology. As far as the SQUID according to the invention with tank resonant circuit in HTSL
Technik ausgeführt wird, sind alle mit diesem Material behafteten Vorteile, wie z.B. den Einsatz eines solchen SQUIDs bei Temperaturen von bis zu 77 Kelvin gegeben.Technology, all advantages associated with this material, such as given the use of such a SQUID at temperatures of up to 77 Kelvin.
Im übrigen können auch Layouts zur Anwendung kommen, die eine Mehrzahl der oben angegebenen induktiven und / oder kapazitiven Basiselemente des LC-Kreises enthal¬ ten. Dabei kann das induktive Element, wie gezeigt in Figur 1 oder Figur 2, eine Spule mit einer einzigen Windung sein. Es ist jedoch auch vorstellbar, eine mehrere Windungen enthaltende Spule in Planartechnik zu bilden, z.B. als spiralförmige Schleife, deren Ende in der Mitte der Spirale durch das Substrat zur Rückseite des Substrats weitergeleitet wird. Otherwise, layouts can also be used which contain a plurality of the above-mentioned inductive and / or capacitive basic elements of the LC circuit. The inductive element, as shown in FIG. 1 or 2, can be a coil with a single turn his. However, it is also conceivable to form a coil containing several turns using planar technology, e.g. as a spiral loop, the end of which is passed in the middle of the spiral through the substrate to the back of the substrate.

Claims

P a t e n t a n s p r ü c h e Patent claims
1. Rf-SQUID mit Tankschwingkreis, d a d u r c h g e k e n n z e i c h n e t , daß zur Ausbildung des Tankschwingkreises auf einem Substrat eine metallisch leitende Schicht vorgesehen ist, die so strukturiert ist, daß wenigstens eine laterale, flächige kapazitive Struktur mit einer lateral länglichen, induktiven Struktur verbunden ist .1. Rf-SQUID with tank resonant circuit, that means that a metal conductive layer is provided for forming the tank resonant circuit on a substrate, which is structured in such a way that at least one lateral, flat capacitive structure is connected to a laterally elongated, inductive structure.
2. Rf-SQUID nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t daß ein Supraleiter, insbesondere ein Hochtemperatursupraleiter (HTSL) , als Material für die metallisch leitende Schicht vorgesehen ist. 2. Rf-SQUID according to claim 1, that a superconductor, in particular a high-temperature superconductor (HTSL), is provided as the material for the metallically conductive layer.
PCT/DE1996/000529 1995-03-28 1996-03-20 Rf squid with tank circuit WO1996030776A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE1995111172 DE19511172C2 (en) 1995-03-28 1995-03-28 rf-SQUID with tank circuit
DE19511172.9 1995-03-28

Publications (1)

Publication Number Publication Date
WO1996030776A1 true WO1996030776A1 (en) 1996-10-03

Family

ID=7757862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1996/000529 WO1996030776A1 (en) 1995-03-28 1996-03-20 Rf squid with tank circuit

Country Status (2)

Country Link
DE (1) DE19511172C2 (en)
WO (1) WO1996030776A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19717801C2 (en) * 1996-11-28 2000-01-05 Forschungszentrum Juelich Gmbh Arrangement for coupling an rf squid to a superconducting tank circuit
DE10105796A1 (en) * 2001-02-07 2002-08-29 Forschungszentrum Juelich Gmbh rf-SQUID magnetometer
US6911664B2 (en) 2002-04-15 2005-06-28 D-Wave Systems, Inc. Extra-substrate control system
US11790259B2 (en) 2019-09-06 2023-10-17 D-Wave Systems Inc. Systems and methods for tuning capacitance in quantum devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0418848A2 (en) * 1989-09-21 1991-03-27 Forschungszentrum Jülich Gmbh Sensor for the measurement of magnetic flux
EP0567386A2 (en) * 1992-04-20 1993-10-27 Sumitomo Electric Industries, Ltd. Planar magnetism sensor utilizing a squid of oxide superconductor
WO1994029739A1 (en) * 1993-06-16 1994-12-22 Forschungszentrum Jülich GmbH RF-SQUID WITH AN INTEGRATED μ MICROWAVE RESONATOR USEFUL AS HIGHLY SENSITIVE MAGNETOMETER
WO1995007470A2 (en) * 1993-09-07 1995-03-16 Conductus, Inc. Improved squid coupling structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0418848A2 (en) * 1989-09-21 1991-03-27 Forschungszentrum Jülich Gmbh Sensor for the measurement of magnetic flux
EP0567386A2 (en) * 1992-04-20 1993-10-27 Sumitomo Electric Industries, Ltd. Planar magnetism sensor utilizing a squid of oxide superconductor
WO1994029739A1 (en) * 1993-06-16 1994-12-22 Forschungszentrum Jülich GmbH RF-SQUID WITH AN INTEGRATED μ MICROWAVE RESONATOR USEFUL AS HIGHLY SENSITIVE MAGNETOMETER
WO1995007470A2 (en) * 1993-09-07 1995-03-16 Conductus, Inc. Improved squid coupling structure

Also Published As

Publication number Publication date
DE19511172A1 (en) 1996-10-02
DE19511172C2 (en) 1999-09-02

Similar Documents

Publication Publication Date Title
EP2443469B1 (en) Electrical resistance elements and measuring system for measuring time-variable magnetic fields or field gradients
DE19655266B4 (en) Electronic component
DE60205185T2 (en) Magnetic detection element using the magneto-impedance effect, method for manufacturing the element, and portable device with this element
DE102011120784B4 (en) Magnetic field sensor with high-temperature superconductor and manufacturing method thereof
DE102022106002A1 (en) MAGNETIC SENSOR AND MAGNETIC SENSING DEVICE
DE19511172C2 (en) rf-SQUID with tank circuit
DE19846254C2 (en) Infrared sensor
DE69838208T2 (en) Magnetic sensor with superconductor
DE69630994T2 (en) Planar magnetic sensor with a SQUID made of superconducting thin film
EP0941482A2 (en) Device for coupling an rf-squid to a super conducting tank circuit
DE4436448C1 (en) SQUID with increased energy resolution
DE4319693A1 (en) RF-SQUID with an integrated lambda microwave resonator as a highly sensitive magnetometer
DE112018005423B4 (en) MAGNETIC FIELD MEASUREMENT ELEMENT, MAGNETIC FIELD MEASUREMENT DEVICE AND MAGNETIC FIELD MEASUREMENT SYSTEM
DE10041797C2 (en) Magnetic field sensitive thin film sensor device with linear sensor element and flux antenna
DE19611900C2 (en) Arrangement for coupling an rf-SQUID magnetometer to a superconducting tank circuit on a substrate
EP1425754B1 (en) Compensation of a bias magnetic field in a storage surface of a magnetoresistive storage cell
DE19839645B4 (en) magnetic field detector
WO1998008260A1 (en) Layered arrangement and component containing the latter
DE19639941C2 (en) SQUID gradient magnetometer sensor with HTS superconductor material
DE19517399A1 (en) Rf superconductive quantum interference device (SQUID)
EP0742594B1 (en) High temperature superconductor-normal-superconductor (HTSC-SNS) contact, method of making the same and its application
EP0787362B1 (en) Concentrated component and a high-frequency circuit containing such a component
DE19902580B4 (en) Design for a SQUID magnetometer or SQUID gradiometer on a bi-crystal substrate
DE4419297A1 (en) Gradient magnetometer having superconducting quantum interferometers
DE10336007A1 (en) Superconductive quantum interference detector magnetometer for high-precision measurement of magnetic fields uses superconductive closed loops with multiple Johnson contacts

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA