WO1996029422A1 - Nucleic acid carrier - Google Patents

Nucleic acid carrier Download PDF

Info

Publication number
WO1996029422A1
WO1996029422A1 PCT/JP1996/000654 JP9600654W WO9629422A1 WO 1996029422 A1 WO1996029422 A1 WO 1996029422A1 JP 9600654 W JP9600654 W JP 9600654W WO 9629422 A1 WO9629422 A1 WO 9629422A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
toxin
gene
cells
carrier
Prior art date
Application number
PCT/JP1996/000654
Other languages
French (fr)
Japanese (ja)
Inventor
Takuma KUSUNOKI
Osamu Iijima
Yousuke Suzuki
Original Assignee
Hisamitsu Pharmaceutical Co., Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hisamitsu Pharmaceutical Co., Inc. filed Critical Hisamitsu Pharmaceutical Co., Inc.
Priority to AU49546/96A priority Critical patent/AU4954696A/en
Priority to JP08528276A priority patent/JP3095248B2/en
Publication of WO1996029422A1 publication Critical patent/WO1996029422A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation

Definitions

  • the present invention relates to a novel carrier for introducing a nucleic acid into a cell. More specifically, the present invention relates to a carrier containing a toxin B chain protein and a nucleic acid-compatible substance for efficiently and safely introducing a nucleic acid into cells.
  • the present invention further relates to a regulator for promoting the introduction of a nucleic acid into cells, comprising the carrier and the nucleic acid.
  • augmentation gene therapy in which the abnormal (pathogenic) gene is left intact and a new (normal) gene is added
  • Replacement Gene Therapy replacement gene therapy
  • viral vector a recombinant virus
  • a recombinant virus was developed as a carrier to efficiently introduce foreign genes into target cells, and the first clinical application of gene therapy became possible.
  • viral vectors There are several types of viral vectors currently being considered for use in gene therapy, as shown below. However, these methods have not been generalized because their production methods are very complicated and at the same time, methods for ensuring their safety have not been established.
  • the virus vector currently receiving the most attention as a virus vector that can be used for gene therapy is a retrovirus vector derived from the mouse leukemia virus (Mo MLV: Moloney Murine Leukemia Virus). It takes advantage of the style. Retroviruses are enveloped RNA viruses that enter the cell by binding their envelope proteins to receptors on the host cell side. After invasion, the single-stranded virus RNA is converted to double-stranded DNA by reverse transcriptase and integrated into the infected cell genome DNA. However, for such integration to occur, the cells must be dividing and proliferating. Therefore, the biggest problem in practice is the inability to transfer genes to non-dividing cells.
  • Hematopoietic stem cells, hepatocytes, and muscle cells, which are the target cells for gene therapy, as well as nerve cells, are usually in the stationary phase, and therefore have low gene transfer efficiency. Cells that have been removed from the body are treated to promote division to increase gene transfer efficiency, but it is considered difficult to transfer genes into these cells in vivo. .
  • adenovirus vectors have recently attracted attention as being able to introduce genes into non-dividing cells.
  • adenovirus vectors do not integrate foreign genes into the genomic DNA of target cells, the genes can take several weeks to several months. The effect of introduction is lost. For this reason, gene transfer must be repeated frequently, which causes problems such as an increase in physical and physical burden on patients and a decrease in gene transfer efficiency due to the production of anti-adenovirus antibodies. .
  • clinical trials have been started to administer the adenovirus vector transbronchially to the lungs for the treatment of cystic fibrosis, but inflammation that appears to be due to the immunogenicity and cytotoxicity of adenovirus particles It is said that a reaction occurred.
  • Herpes virus vector is expected to be a vector that can introduce foreign genes into nerve cells, but it is highly cytotoxic and has a small genome size of the virus itself.
  • the HIV vector was developed as a vector that allows specific transfer of arrested genes to CD4 + T lymphocytes due to the host characteristics of the virus itself (Shimada T., et al., J. Clin. Invest. 88, 1043 (1991)).
  • One of the biggest drawbacks of HIV vectors is the possibility of contamination with wild strains.
  • AAV Addeno-Associated Virus
  • nuclear proteins derived from living organisms which are unlikely to be recognized as foreign substances, are also being studied. Since a nucleoprotein has a property of specifically binding to a nucleic acid and its derivative, there is a possibility that a nuclear protein can be used as a vector for gene transfer by forming an electrostatic complex.
  • histone proteins which are nuclear proteins, as a carrier for plasmid DNA (Yasufumi Kaneda, et al., SCIENCE 243, 375-378 (1899), Mirjam Breeuwer and David S. Goldfarb, Cell 60. 999-1008 (1990), JIAN CHEN, et al., Hunan Gene Therapy 5, 429-435 (1994)).
  • histone proteins which are nuclear proteins, as a carrier for plasmid DNA
  • the present inventors have focused on the effect of toxin protein being introduced into the cytoplasm by binding to a receptor present on the cell surface, and as a result of diligent studies, they have completed the present invention.
  • the carrier of the present invention is characterized by containing a toxin B chain protein and a nucleic acid binding substance.
  • the present invention provides a novel carrier (carrier) for introducing a nucleic acid into a cell.
  • C The present invention further provides a regulator for promoting the introduction of a nucleic acid into a cell, comprising the carrier and the nucleic acid.
  • FIG. 1 shows the incorporation of oligonucleotides into HeLa cells.
  • FIG. 2 shows the incorporation of plasmid DNA into He La cells.
  • FIG. 3 shows the uptake of plasmid DNA containing the galactosidase gene into HeLa cells and gene expression.
  • Figure 4 shows the construction of plasmid PHSX2.
  • FIG. 5 shows the construction of plasmid pUC—Neo2.
  • FIG. 6 shows the construction of plasmid pHS—Ne02.
  • FIG. 7 shows the construction of plasmid pHS—Luci.
  • FIG. 8 shows the expression of the luciferase gene introduced using the carrier of the present invention by thermotherapy. Best mode for carrying out the invention
  • Toxin protein is composed of two types of parts: A chain, which actually exerts toxicity in the cytoplasm, and B chain, which acts to introduce A chain into cells by binding to a receptor present on the cell surface.
  • a chain which actually exerts toxicity in the cytoplasm
  • B chain which acts to introduce A chain into cells by binding to a receptor present on the cell surface.
  • the B chain has little toxicity, and the portion responsible for the toxicity of the toxin molecule can be said to be the A chain.
  • the A chain and the B chain often form a conjugate, and do not show toxicity when used alone. This indicates that the A chain can be introduced into the cell only after the A chain and the B chain form a conjugate.
  • the carrier 1 of the present invention utilizes such a property that the B chain of the toxin protein introduces a high molecular weight substance into the cytoplasm.
  • Toxin B chain protein binds to sugar sialic acid on the cell surface. Therefore, the introduction of the nucleic acid into cells is promoted.
  • Glucose sialic acid is widely present in many cells in a living body, and therefore, according to the carrier of the present invention, a nucleic acid can be introduced into various cells. Therefore, it is possible to introduce a nucleic acid into non-dividing cells such as nerve cells, and even into cells taken out of a living body.
  • the toxin B chain protein has almost no toxicity, and has the advantage that, when used as a carrier together with a nucleic acid fusion substance, the nucleic acid can be safely introduced into cells.
  • the carrier of the present invention containing a toxin B chain protein and a nucleic acid binding substance has an advantage that it can be easily constructed and used as compared with conventional virus vectors and the like.
  • the toxin B chain protein that can be used as the carrier of the present invention is not particularly limited as long as it has a property of introducing a high-molecular-weight substance into the cytoplasm, but bacterial or vegetable proteins are preferable.
  • ricin or a related toxin such as abrin, diphtheria toxin, exotoxin, enterotoxin, cholera toxin, pertussis toxin, tetanus toxin, and B-chain protein of an attenuated strain of botulinum toxin can be used.
  • toxin B chain protein a protein obtained by a known method from a naturally expressed protein can be used.
  • the amino acid sequence and the gene sequence of these proteins are known, and can be produced by gene engineering techniques established based on these sequences.
  • the toxin B chain protein may or may not have a sugar chain bound, if desired.
  • Toxin B chain protein produced by the gene recombination technique is commercially available, and some are readily available.
  • ricin B chain protein is commercially available from Vector, and Used in
  • Toxin B chain protein also introduces high-molecular-weight substances into the cytoplasm, even if one or more amino acid residues in the amino acid sequence of the natural protein are mutated by substitution, deletion, insertion, etc. Any material having the following properties can be used as a component of the carrier of the present invention.
  • the mutation may be naturally occurring or may have been subjected to genetic engineering techniques. One of skill in the art would readily be able to produce such a mutant protein by conventional methods.
  • the carrier of the present invention further contains a nucleic acid binding substance.
  • Nucleic acid binding substances In the state of coexisting with or binding to the toxin B chain protein, those that can bind to nucleic acid introduced into cells can be used. By binding a nucleic acid to such a nucleic acid binding substance, it is possible to efficiently introduce the nucleic acid into the cytoplasm. Examples of such nucleic acid binding substances include, but are not limited to, various cationic lipids, polyamino acid derivatives, histone proteins.
  • cationic lipid examples include lipofectin (Lipoffect)-ribofectase (LipoffectAc): and lipofectamine (Lipoffectamine).
  • polyamino acid derivative examples include poly-L-lysine, poly-D-lysine, poly-L-orditin, poly-D-orutin, poly-L-lysine-L-serine copolymer, poly-D- Lysine-D-Serine Copolymer, Poly-L-Ordinine-L-Serine Copolymer, Poly-D-Ordinine-D-Serine Copolymer, Poly-L-Lysine Polyethylene Glycol (PEG) Block Copolymer, Poly-D- Lysine PEG Block Copolymer, Poly-L-Orditin PEG Block Copolymer, Poly-D-Orditin PEG Block Copolymer, Poly-L-Lysine-L-Serine PEG Block Copolymer, Poly-D-Lysine-D-Serine PEG Block Copolymer , Poly-L-orditin-L-serine PEG block copolymer, poly-D-
  • polyamino acid derivatives can be obtained by converting ⁇ -carbobenzoic acid L-lysine mono-carboxylic acid anhydride and benzylic L-serine ⁇ -carbonic acid anhydride into polyethylene oxide having a single amino group at one terminal (molecular weight 200- 25 0000), and the like.
  • the molecular weight of the polyamino acid moiety in the polyethylene oxide polyamino acid block copolymer can vary from 200 to more than 50,000.
  • the carrier 1 includes, but is not particularly limited to, a toxin II chain protein and a nucleic acid binding substance in a molar ratio of about 1: 1 to 1:10, preferably 1: 1 to 1: 5.
  • the toxin ⁇ chain protein and the nucleic acid binding substance may exist in a free state, or may be bound by an S—S bond or the like.
  • the size and type of nucleic acid that can be introduced into cells by the carrier of the present invention are particularly Not limited.
  • Examples of the type of nucleic acid include linear double-stranded DNA, circular double-stranded DNA, oligonucleotide, and RNA.
  • a structural gene encoding a useful protein can be introduced into cells to express the gene.
  • the gene expression is very high as shown in Example 9 below.
  • the expression of a specific gene can be controlled by introducing antisense.
  • it can be used as a carrier for Ribozyme, Triplex, Abata and others.
  • the nucleic acid also includes a derivative such as a phosphothioate nucleotide in which a phosphonate bond is replaced with a phosphothioate bond.
  • a carrier of about 0.1 to 1000 / zmo 1 is used for nucleic acid 1 / mo 1 without limitation.
  • the present invention further provides a regulator for promoting the introduction of a nucleic acid into a cell, comprising the above-mentioned carrier.
  • the modulator of the present invention can be used for autologous gene therapy (ex vivo gene therapy) in which target cells are first taken out of a patient, the target gene is introduced, and then the cells are returned to the patient.
  • ⁇ ⁇ ⁇ Can also be used for gene therapy in which genes are directly administered to patients (in vivo gene therapy).
  • gene therapy there is a method of adding a new (normal) gene while leaving the abnormal (cause) gene intact (Augmentation Gene Therapy) and a method of replacing the abnormal gene with a normal gene (Replacement Gene Therapy). ), But can be used for both.
  • the administration of the preparation of the present invention is not limited, it is generally performed parenterally, and can be preferably performed by, for example, injection.
  • the amount used in the present invention varies depending on the method of use, purpose of use, and the like.For example, when used as a carrier containing a ricin B-chain protein by injection, for example, a daily dose of about 0.1 lgZk It is preferable to administer 1 g Omg / kg, and more preferably, 1 mg / kg—1 mgZkg.
  • a gene designed to express various marker genes and therapeutic genes by temperature stimulation is introduced, and then a temperature stimulus such as hyperthermia is applied to thereby provide gene stimulation.
  • a temperature stimulus such as hyperthermia
  • Site-specific gene expression in E. coli The carrier containing the toxin B chain protein and the nucleic acid-compatible substance of the present invention forms a complex with a desired nucleic acid, and enables safe and efficient introduction of the nucleic acid into cells.
  • gene expression occurs with extremely high efficiency.
  • One-end methoxy One-end amino group polyethylene oxide (molecular weight 5000: Nippon Oil & Fats Co.) Dissolve 4.0 g in a 15-ml form of black-mouthed form and dilute the solution with ⁇ -carbobenzoxy-L-lysine- ⁇ -Rubonic anhydride and benzyl-L-serine Add to ⁇ -Rubonic anhydride solution. After 26 hours, the reaction mixture was dropped into 330 ml of getyl ether, and the precipitated polymer was collected by filtration, washed with getyl ether (manufactured by Wako Pure Chemical Industries, Ltd.), dried in vacuo, and treated with hydrobromic acid.
  • S-PLPJ N-terminal S-introduced poly-L-lysine PEG block copolymer
  • S-PL SP N-terminal S-introduced poly-L-lysine-L-serine PEG block copolymer
  • S-PLLJ N-terminal S-introduced poly-L-lysine
  • Oligonucleotides were synthesized using a DNA synthesizer (Type 392: manufactured by Abu Biosystems). Poly L-lysine (PLL: Sigma), PLP, PLSP, Lipofectamine (Gibco) was used as a vector. The amount of oligonucleotide uptake was calculated by measuring the radiation dose of cells in each well after 2 hours. Figure 1 shows the results. The carrier synthesized this time shows much higher oligonucleotide uptake properties than lipofectamine, a cationic liposome that has been conventionally used as a carrier, and is effective as a carrier for various oligonucleotides. It became clear.
  • Carriers include poly-L-lysine (PLL: Sigma), PLP, PLSP, lipofectamine (giving Co.) was used.
  • the gene uptake was calculated by measuring the radiation dose of the cells in each cell 2 hours later.
  • Figure 2 shows the results.
  • the carrier synthesized this time showed much higher gene uptake properties than lipofectamine, a cationic liposome used conventionally as a carrier, and was found to be effective as a carrier.
  • HeLa cells were seeded on a 6-well cell culture dish at 4 ⁇ 10 5 cells and cultured in 10% FCS DMEM (manufactured by Gibco) for 18 hours. Thereafter, model plasmid DNA (pSV ⁇ -ga lactosidase: manufactured by Promega) was added to a concentration of 1 gZ / ml, in which case the various carriers were added in the same amount by weight as that of the plasmid DNA. And mixed. 48 hours later, the cells were stained with X-gal (manufactured by Gibco) to evaluate the gene transfer efficiency. The transgene introduction efficiency was compared by setting the staining degree when Lipofectamine (manufactured by Gibco) was 100 to 100. Figure 3 shows the results. The carrier synthesized this time showed much higher gene expression than ribofectamine, which is a cationic ribosome conventionally used as a carrier, and was found to be effective as a carrier.
  • model plasmid DNA pSV
  • Plasmid pBR322 (Pharmacia) was digested with Sa1I (Takara Shuzo) and Hind III (Takara Shuzo), and an approximately 3.74 kb DNA fragment containing the ampicillin-resistant gene and the replication origin was cut. Prepared. Next, plasmid P 1730R (manufactured by Stress Gen) containing the promoter of heat shock protein 70B (HSP70B) was cut with XhoI (manufactured by Takara Shuzo) and HindIII, and the HSP70B promoter region was cut.
  • Plasmid pHSXl was constructed by ligating these two DNA fragments with T4 DNA ligase (Takara Shuzo). This plasmid was digested with Pvu II (Takara Shuzo) and BamHI (Takara Shuzo), and the HSP70B promoter region was cut. An about 2.80 kb fragment containing about 0.47 kb at the 3 'end was prepared. The protruding end of this fragment was blunt-ended with Mung Bean N c 1 ease (Takara Shuzo) and K1 enow Fragment (Takara Shuzo), religated with T4 DNA ligation, and mixed with plasmid. PHSX2 was built.
  • Figure 5 shows all the general methods used to construct the prototype plasmid pUC-Neo2 containing the neomycin resistance gene.
  • Plasmid PUC119 (Takara Shuzo) was cut with Smal (Takara Shuzo) and then cut with BamHI to prepare an approximately 3.15 kb DNA fragment containing the ampicillin resistance gene and the replication origin.
  • the plasmid HXN2 (provided by Nippon Medical School) containing the neomycin resistance gene was cut with XhoI to prepare a DNA fragment of about 1.2 kb containing the neomycin resistance gene.
  • the protruding end of the DNA fragment was blunt-ended with K1newFrament and then cut with BamHI.
  • Plasmid pUC—Neo 2 was constructed with the ATG codon deleted at the I site.
  • the general method used to construct the prototype plasmid pHS-Ne0 containing the heat shock promoter and the neomycin resistance gene is shown in FIG.
  • the plasmid pHSX2 constructed in Example 10 was cleaved with EcoRI (Takara Shuzo) and HindIII to prepare a DNA fragment of about 2.77 kb.
  • the plasmid pUC-Neo2 constructed in Example 11 was digested with EcoRI and HindIII to prepare a DNA fragment of about 1.25 kb. These two DNA fragments were ligated in a T4 DNA case to construct pHS-Ne0.
  • Figure 7 shows the general method used to construct the plasmid pHS-Luci with the luciferase gene ligated downstream of the heat shock promoter.
  • Example 1 The plasmid pHS-Neo constructed in step 2 was digested with HindII and Sa1I to prepare a DNA of about 4.01 kb.
  • a plasmid pGV-P manufactured by Futaba Gene
  • a DNA fragment of about 2.69 kb was digested with HindIII and Sa1I to prepare a DNA fragment of about 2.69 kb.
  • HeLa cells were seeded on a 6-well cell culture dish with 4 ⁇ 10 5 nodules and cultured in 10% FCS DMEM (manufactured by Gibco) for 18 hours at 37 ° C, 5% carbon dioxide concentration. . Then, pHS-Luci was added to a concentration of 1 / gZ, and various carriers were mixed with plasmid DNA in the same amount by weight. After 24 hours, a part of the sample was cultured at 42 ° C for 3 hours, and then returned to the original environment and further cultured for 24 hours. Thereafter, the luciferase expressed in the cells was quantified using Norecyclase 'Atsushi System (Pitka Gene: manufactured by Toyo Ink Co., Ltd.).
  • Figure 8 shows the results. Since the expression of luciferase is higher when cultured at 42 ° C than when cultured at 37 ° C, the regulation of gene expression by hyperthermia can be controlled by introducing a therapeutic gene downstream of the heat shock promoter. It has been shown to be possible.

Landscapes

  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

A novel carrier for the introduction of a nucleic acid into cells and a regulator containing this carrier and the nucleic acid for promoting the introduction of the nucleic acid into the cells. This carrier comprises a toxin B chain protein and a substance capable of binding to the nucleic acid.

Description

明細書 核酸運搬体 技術分野  Description Nucleic acid carrier Technical field
本発明は、 細胞へ核酸を導入するための新規キャリアー (運搬体) に関する。 より詳しくは、 本発明は、 核酸を細胞内へ効率よく安全に導入するための、 トキ シン B鎖タンパク質および核酸桔合性物質を含むキヤリァーに関する。  The present invention relates to a novel carrier for introducing a nucleic acid into a cell. More specifically, the present invention relates to a carrier containing a toxin B chain protein and a nucleic acid-compatible substance for efficiently and safely introducing a nucleic acid into cells.
本発明はさらに、 上記キャリアーおよび核酸を含む、 核酸の細胞内への導入を 促進するための調節剤に関する。 背景技術  The present invention further relates to a regulator for promoting the introduction of a nucleic acid into cells, comprising the carrier and the nucleic acid. Background art
遺伝子工学の急速な発展により、 様々な分子生物学的手法の開発が行われてき た。 それにともなって、 遗伝子情報の解析および遺伝子の機能解明においては著 しい進歩がみられ、 そこから得られた成果を実際の治療現場に通元しょうとする 試みが数多く行われている。 その中でも、 最も進歩の著しい分野の 1つとして遗 伝子治療分野があげられる。 種々の遺伝性疾患における原因遺伝子の発見、 解読 が行われ、 遗伝子治療は基礎的実験の段階から、 実際の臨床応用の段階までに発 展しつつある。 例えば、 米国においては、 1 9 9 4年 7月までに 5 4の遗伝子治 療プロトコールが N I Hの組換え D N A委員会 (R A C ) で承認され、 先天性免 疫不全症、 家族性高コレステロール血症、 囊胞性線維症等の遺伝性疾患および各 種の癌を対象とし、 既に 2 0 G人以上の患者に対して臨床試験が行われている (実験医学 V o l . 1 2— N o . 3 1 9 9 4 第 3 0 3頁一第 3 0 7頁) 。 以上のように、 遺伝子治療は病気を細胞レベルの根本から治療できる方法とし て注目されているが、 臨床応用における大きな技術的課題の 1つとして、 いかに して外来遺伝子を効率良く安全に標的細胞へ導入するか、 という問題がある。 即ち、 遺伝子治療は、 異常 (病原) 遺伝子をそのままにして、 新しい (正常) 遺伝子を付け加える付加遺伝子療法 (Augmentation Gene Therapy) と、 異常遗 伝子を正常遗伝子で置き換える置換遺伝子療法 (Replacement Gene Therapy) に 大別されるが、 いずれの療法の場合にも、 正常遠伝子を効率良く安全に標的細胞 へ導入する方法が必要とされる。 With the rapid development of genetic engineering, various molecular biological techniques have been developed. Along with this, 解析 remarkable progress has been made in the analysis of gene information and the elucidation of gene functions, and many attempts have been made to transfer the results obtained therefrom to actual treatment sites. Among them, one of the most remarkable fields is the gene therapy field. The genes responsible for various genetic diseases have been discovered and deciphered, and gene therapy is developing from the stage of basic experiments to the stage of actual clinical application. For example, in the United States, 54 gene therapy protocols were approved by the NIH Recombinant DNA Committee (RAC) by July 1994, and congenital immunodeficiency disorders, familial high cholesterol Clinical trials have already been conducted on more than 20 G patients for hereditary diseases such as hematosis, cystic fibrosis, and various types of cancer (Experimental Medicine Vol. 12—N o 31 9 9 4 pp. 03-page 307). As described above, gene therapy has been attracting attention as a method of treating diseases from the root of the cell level.However, one of the major technical issues in clinical application is how to efficiently and safely target foreign genes to target cells. Or introduce it to There are two types of gene therapy: augmentation gene therapy (Augmentation Gene Therapy), in which the abnormal (pathogenic) gene is left intact and a new (normal) gene is added, and replacement gene therapy (Replacement Gene Therapy), in which the abnormal gene is replaced with the normal gene. Therapy) Although roughly classified, any therapy requires a method for efficiently and safely introducing normal telegenes into target cells.
1 9 8 0年代初期にはマイクロインジェクションなど物理的手法の応用が試み られたが、 遗伝子の導入効率が低く、 安定に導人することができず、 さらには大 量細胞培養技術の限界等もあり実用化にはつながらなかった。  Attempts to apply physical techniques such as microinjection were made in the early 1980s, but the efficiency of gene transfer was low, and it was not possible to stably guide humans. It did not lead to practical use.
その後、 外来遺伝子を効率良く標的細胞に導入するためのキャリア一となる組 換えウィルス (ウィルスベクター) が開発され、 初めて遺伝子治療の臨床応用が 可能となった。 現在、 遗伝子治療への使用が検討されているウィルスベクターに は、 以下に示すようにいくつかの種類がある。 しかしながら、 これらは、 生産方 法が非常に複雑であると同時に、 それぞれの安全性を保証する方法が確立されて いないため、 一般化されるには至っていない。  Later, a recombinant virus (viral vector) was developed as a carrier to efficiently introduce foreign genes into target cells, and the first clinical application of gene therapy became possible. There are several types of viral vectors currently being considered for use in gene therapy, as shown below. However, these methods have not been generalized because their production methods are very complicated and at the same time, methods for ensuring their safety have not been established.
例えば、 遗伝子治療に使用可能なウィルスベクターとして、 現在最も注目され ているウイルスベクターは、 マウス白血病ゥィルス (M o M L V : Moloney Muri ne Leukemia Virus) 由来のレトロウイルスベクターであり、 本ウィルスの増殖 様式の利点を利用したものである。 レトロウイルスは、 エンベロープをもつ R N Aウイルスであり、 そのエンベロープ蛋白と宿主細胞側のレセブターが結合する ことにより細胞内に侵入する。 侵入後、 単一鎖ウィルス R N Aが逆転写酵素によ り二重鎖 D N Aに変換され、 感染細胞ゲノム D N Aに組み込まれる。 しかしなが ら、 このような組み込みが起こるためには、 細胞が分裂増殖していなければなら ない。 従って、 実用的に一番問題となるのは、 非分裂細胞に遠伝子導入できない 点である。 そのため、 多くの先天性代謝異常症で問題となる神経細胞の遺伝子修 復が行えない。 神経細胞以外にも、 遗伝子治療の対象細胞となっている造血幹細 胞、 肝細胞、 筋細胞なども、 通常はほとんど静止期にあるため、 遺伝子導入効率 は低い。 体外に取り出した細胞については、 遺伝子導入効率を高めるために分裂 を促進するような処理が行われているが、 生体内でこれらの細胞に遗伝子導入を 行うことは難しいと考えられている。  For example, the virus vector currently receiving the most attention as a virus vector that can be used for gene therapy is a retrovirus vector derived from the mouse leukemia virus (Mo MLV: Moloney Murine Leukemia Virus). It takes advantage of the style. Retroviruses are enveloped RNA viruses that enter the cell by binding their envelope proteins to receptors on the host cell side. After invasion, the single-stranded virus RNA is converted to double-stranded DNA by reverse transcriptase and integrated into the infected cell genome DNA. However, for such integration to occur, the cells must be dividing and proliferating. Therefore, the biggest problem in practice is the inability to transfer genes to non-dividing cells. Therefore, gene repair of nerve cells, which is a problem in many congenital metabolic disorders, cannot be performed. Hematopoietic stem cells, hepatocytes, and muscle cells, which are the target cells for gene therapy, as well as nerve cells, are usually in the stationary phase, and therefore have low gene transfer efficiency. Cells that have been removed from the body are treated to promote division to increase gene transfer efficiency, but it is considered difficult to transfer genes into these cells in vivo. .
また、 アデノゥィルスベクターは非分裂細胞へも遺伝子が導入できるものとし て最近注目されている。 しかし、 アデノウイルスベクターでは外来遺伝子が標的 細胞ゲノム D N A内に組み込まれないため、 数週間から長くても数力月で遺伝子 導入の効果はなくなつてしまう。 そのため遺伝子導入を頻回に緣り返す必要があ り、 患者への肉体的、 身体的な負担の増加、 抗アデノウイルス抗体が産生される ことによる遺伝子導入効率の低下などが問題となっている。 現在、 囊胞性線維症 の治療のためにアデノゥィルスベクターを経気管支镜的に肺に投与する臨床試験 が開始されているが、 アデノウイルス粒子の免疫原性および細胞毒性に起因する とみられる炎症反応が発生したといわれている。 In addition, adenovirus vectors have recently attracted attention as being able to introduce genes into non-dividing cells. However, since adenovirus vectors do not integrate foreign genes into the genomic DNA of target cells, the genes can take several weeks to several months. The effect of introduction is lost. For this reason, gene transfer must be repeated frequently, which causes problems such as an increase in physical and physical burden on patients and a decrease in gene transfer efficiency due to the production of anti-adenovirus antibodies. . Currently, clinical trials have been started to administer the adenovirus vector transbronchially to the lungs for the treatment of cystic fibrosis, but inflammation that appears to be due to the immunogenicity and cytotoxicity of adenovirus particles It is said that a reaction occurred.
ヘルぺスゥィルスべクタ一は神経細胞への外来遺伝子導入が可能なベクターと して期待されているが、 細胞毒性が強く、 さらにウィルス自体のゲノムサイズが Herpes virus vector is expected to be a vector that can introduce foreign genes into nerve cells, but it is highly cytotoxic and has a small genome size of the virus itself.
1 5 0 k bと非常に大きいために開発は進んでいない。 Development is not progressing because it is very large at 150 kb.
H I Vベクターはウィルス自体の宿主特性により、 C D 4陽性 Tリンパ球に対 して特異的逮伝子導入を可能とするベクターとして開発された (Shimada T. , et al., J. Clin. Invest. 88, 1043 (1991))。 H I Vベクターには、 最大の欠点 として野生株混入の可能性という問題がある。  The HIV vector was developed as a vector that allows specific transfer of arrested genes to CD4 + T lymphocytes due to the host characteristics of the virus itself (Shimada T., et al., J. Clin. Invest. 88, 1043 (1991)). One of the biggest drawbacks of HIV vectors is the possibility of contamination with wild strains.
A A V (Adeno - Associated Virus) ベクターの野生型は第 1 9染色体の特定 の位置に組み込まれることが発見され、 遺伝子組み込み位置をターゲティングで きるベクターとして注目された。 しかし最近の研究によると、 組換え A A Vべク ターはこの特性を失っており、 外来遺伝子は染色体の非特異的位置に組み込まれ るといわれている。 さらに A A Vベクターは導入できる外来遺伝子のサイズに限 界があり、 5 k b以下の遺伝子しかベクター内にパッケージングできないという 欠点もある。  The wild type of the AAV (Adeno-Associated Virus) vector was found to be integrated at a specific location on chromosome 19, and was noted as a vector that could target the location of the gene integration. However, recent studies indicate that recombinant AV vectors have lost this property, and that foreign genes are integrated into non-specific locations on the chromosome. Furthermore, AAV vectors have a limitation that the size of foreign genes that can be introduced is limited, and that only genes of 5 kb or less can be packaged in vectors.
ゥィルスベクター以外にも、 各種の人工的な遺伝子導入システムを用いて遺伝 子治療を行おうとする試みが多くなされている。 例えば、 正電荷を有する脂質に よる遺伝子 -脂質複合体が遺伝子治療用非ゥィルスキャリアーとして開発されて いる。 しかしながら、 これらのキャリアー (運搬体) は、 大量に用いた場合に細 胞毒性が高い等の問題点が指摘されている (Bioconjugate Chem. 3, 323-327 (1 992)、 Proc. Natl. Acad. Sci. USA 89, 7934-7938 (1992)、 J. Biol. Chem. 26 9, 12918-12924 (1994)、 特表平 6-505980、 特表平 6-507158)。  Many attempts have been made to perform gene therapy using various artificial gene transfer systems other than virus vectors. For example, gene-lipid complexes with positively charged lipids have been developed as non-viral carriers for gene therapy. However, it has been pointed out that these carriers have high cytotoxicity when used in large amounts (Bioconjugate Chem. 3, 323-327 (1992), Proc. Natl. Acad. Sci. USA 89, 7934-7938 (1992), J. Biol. Chem. 269, 12918-12924 (1994), Tokuhei 6-505980, Tokuhei 6-507158).
また、 核酸およびその誘導体が負電荷を有することを利用し、 正電荷を有する 合成高分子誘導体との間で静電的複合体を形成させることにより、 標的となる細 胞もしくは細胞内へ遺伝子を送達させることを試みた研究報告も多く見られるIn addition, by utilizing the fact that nucleic acids and their derivatives have a negative charge, an electrostatic complex is formed with a synthetic polymer derivative having a positive charge, thereby forming a target cell. Many research reports have attempted to deliver genes into cells or cells
(Bioconjugate Chem. 3, 323-327 (1992)、 Proc. Natl. Acad. Sci. USA 89, 7 934-7938 (1992)、 J. Biol. Chem. 269, 12918-12924 (1994)、 特表平 6-505980、 特表平 6-507158) 。 しかしながら、 正電荷を有する合成高分子は、 単独で用いた 場合には細胞毒性が高いことが以前より指摘されている (Bio-conjugate Chem. 1, 149-153 (1990)) 。 それと同時に、 これら合成高分子の誘導体が生体内へ投 与された場合は、 異物として認識されることにより、 アナフィラキシーショ ック 等の免疫系への影響も懸念される。 (Bioconjugate Chem. 3, 323-327 (1992), Proc. Natl. Acad. Sci. USA 89, 7 934-7938 (1992), J. Biol. Chem. 269, 12918-12924 (1994), Tokuheihei 6-505980, Tokuhyohei 6-507158). However, it has long been pointed out that a synthetic polymer having a positive charge has high cytotoxicity when used alone (Bio-conjugate Chem. 1, 149-153 (1990)). At the same time, when these synthetic polymer derivatives are injected into a living body, they are recognized as foreign substances, and there is a concern that they may affect the immune system such as anaphylactic shock.
一方、 異物として認識されにくいと考えられる生体由来の核タンパク質を用い た試みも検討されている。 核タンパク質は、 核酸およびその誘導体と特異的に結 合する性質を有していることから、 静電的複合体を形成することにより、 遗伝子 導入用ベクターとなり得る可能性がある。 核タンパク質であるヒストンタンパク 質を用い、 それらをプラスミ ド D N A用のキャリア一として研究をおこなってい る例がある (Yasufumi Kaneda, et al. , SCIENCE 243, 375-378 (1899)、 Mirjam Breeuwer and David S. Goldfarb, Cell 60. 999-1008 (1990)、 JIAN CHEN, et al. , Hunan Gene Therapy 5, 429-435 (1994)) 。 し力、し、 これらの例におい ても、 遺伝子を細胞に取り込ませる方法についてのみ検討されており、 必ずしも 多くの細胞種において遺伝子の発現効率を向上させることを目的としているわけ ではない。 従って、 多くの細胞種において遗伝子を効率よく細胞質内に導入する ためのベクターとして設計された例はない。  On the other hand, attempts to use nuclear proteins derived from living organisms, which are unlikely to be recognized as foreign substances, are also being studied. Since a nucleoprotein has a property of specifically binding to a nucleic acid and its derivative, there is a possibility that a nuclear protein can be used as a vector for gene transfer by forming an electrostatic complex. There are examples of studies using histone proteins, which are nuclear proteins, as a carrier for plasmid DNA (Yasufumi Kaneda, et al., SCIENCE 243, 375-378 (1899), Mirjam Breeuwer and David S. Goldfarb, Cell 60. 999-1008 (1990), JIAN CHEN, et al., Hunan Gene Therapy 5, 429-435 (1994)). In these examples, only methods for incorporating genes into cells have been studied, and are not necessarily aimed at improving gene expression efficiency in many cell types. Therefore, there is no example designed as a vector for efficiently introducing a gene into the cytoplasm in many cell types.
以上、 遗伝子治療において、 外来遺伝子を細胞内に導入するための、 効率が高 く安全な方法が必要とされていた。 発明の開示  As described above, in gene therapy, a highly efficient and safe method for introducing a foreign gene into cells was required. Disclosure of the invention
本発明者らはトキシンタンパク質が、 細胞表面に存在するレセプターに結合す ることにより毒素タンパク質を細胞質内導入する作用に着目し、 鋭意検討を重ね た結果、 本発明を完成するに至った。  The present inventors have focused on the effect of toxin protein being introduced into the cytoplasm by binding to a receptor present on the cell surface, and as a result of diligent studies, they have completed the present invention.
本発明のキャリア一は、 トキシン B鎖タンパク質および核酸結合物質を含むこ とを特徴とする。 本発明は、 細胞へ核酸を導入するための新規キャリアー (運搬体) を提供する c 本発明はさらに、 上記キャリアー及び核酸を含む、 核酸の細胞内への導入を促 進するための調節剤を提供する。 図面の簡単な説明 The carrier of the present invention is characterized by containing a toxin B chain protein and a nucleic acid binding substance. The present invention provides a novel carrier (carrier) for introducing a nucleic acid into a cell. C The present invention further provides a regulator for promoting the introduction of a nucleic acid into a cell, comprising the carrier and the nucleic acid. provide. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 オリゴヌクレオチドの HeLa細胞への取り込みを示す。  FIG. 1 shows the incorporation of oligonucleotides into HeLa cells.
図 2は、 プラスミ ド DNAの He La細胞への取り込みを示す。  FIG. 2 shows the incorporation of plasmid DNA into He La cells.
図 3は、 —ガラクトシダーゼ遺伝子を含むプラスミ ド DNAの H e L a細胞 への取り込みおよび遺伝子発現を示す。  FIG. 3 shows the uptake of plasmid DNA containing the galactosidase gene into HeLa cells and gene expression.
図 4は、 プラスミ ド PHSX2の構築を示す。  Figure 4 shows the construction of plasmid PHSX2.
図 5は、 プラスミ ド pUC— Ne o 2の構築を示す。  FIG. 5 shows the construction of plasmid pUC—Neo2.
図 6は、 プラスミ ド pHS— Ne 02の構築を示す。  FIG. 6 shows the construction of plasmid pHS—Ne02.
図 7は、 プラスミ ド pHS— Luc iの構築を示す。  FIG. 7 shows the construction of plasmid pHS—Luci.
図 8は、 本発明のキヤリア一を用いて導入したルシフ ラーゼ遺伝子の温熱療 法による発現を示す。 発明の実施するための鋟良の態様  FIG. 8 shows the expression of the luciferase gene introduced using the carrier of the present invention by thermotherapy. Best mode for carrying out the invention
本発明の構成および好ましい態様について以下に詳しく説明する。  The configuration and preferred embodiments of the present invention will be described in detail below.
トキシンタンパク質は、 細胞質内において実際に毒性を発揮する A鎖と、 細胞 表面に存在するレセプターと結合して A鎖を細胞内に導入する作用を有する B鎖 の 2種類の部分から構成される場合が多い。 一般的に、 B鎖にはほとんど毒性が 無く、 トキシン分子の毒性を担っている部分は A鎖であるといえる。 また、 A鎖 と B鎖は結合体を形成している場合が多く、 単独では毒性を示さないことが知ら れている。 これは、 A鎖と B鎖は結合体を形成することによって初めて細胞内に A鎖が導入されることが可能となることを示している。 本発明のキャリア一は、 このようなトキシンタンパク質の B鎖が細胞質内に高分子量の物質を導入する性 質を利用するものである。  Toxin protein is composed of two types of parts: A chain, which actually exerts toxicity in the cytoplasm, and B chain, which acts to introduce A chain into cells by binding to a receptor present on the cell surface. There are many. In general, the B chain has little toxicity, and the portion responsible for the toxicity of the toxin molecule can be said to be the A chain. In addition, it is known that the A chain and the B chain often form a conjugate, and do not show toxicity when used alone. This indicates that the A chain can be introduced into the cell only after the A chain and the B chain form a conjugate. The carrier 1 of the present invention utilizes such a property that the B chain of the toxin protein introduces a high molecular weight substance into the cytoplasm.
トキシン B鎖タンパク質は、 細胞表面に存在する糖シアル酸に結合することに よって、 核酸の細胞内への導入を促進する。 糖シアル酸は、 生体内の多くの細胞 に広く存在するものであり、 このため、 本発明のキャリアーによれば核酸を種々 の細胞に導入させることができる。 従って、 神経細胞等の非分裂細胞、 さらには、 生体外に取り出した細胞への核酸の導入が可能となる。 また、 トキシン B鎖タン パク質は毒性がほとんどなく、 核酸融合物質とともにキャリア一として使用した 場合、 核酸を安全に細胞に導入できるという利点がある。 さらに、 トキシン B鎖 タンパク質および核酸結合物質を含む本発明のキャリア一は、 従来のウィルスべ クタ一等と比較して構築、 使用が簡便であるという利点がある。 Toxin B chain protein binds to sugar sialic acid on the cell surface. Therefore, the introduction of the nucleic acid into cells is promoted. Glucose sialic acid is widely present in many cells in a living body, and therefore, according to the carrier of the present invention, a nucleic acid can be introduced into various cells. Therefore, it is possible to introduce a nucleic acid into non-dividing cells such as nerve cells, and even into cells taken out of a living body. In addition, the toxin B chain protein has almost no toxicity, and has the advantage that, when used as a carrier together with a nucleic acid fusion substance, the nucleic acid can be safely introduced into cells. Furthermore, the carrier of the present invention containing a toxin B chain protein and a nucleic acid binding substance has an advantage that it can be easily constructed and used as compared with conventional virus vectors and the like.
本発明のキャリア一として利用できるトキシン B鎖タンパク質は、 細胞質内に 高分子量の物質を導入する性質を有する限り、 特に限定されないが、 細菌性また は植物性のものが好ましい。 例えば、 リシンあるいはその関連トキシン、 例えば アブリ ン、 ジフテリア毒素、 ェキソ トキシン、 ェンテロ トキシン、 コレラ毒素、 百日咳毒素、 破傷風毒素、 ボツリヌス毒素の弱毒株の B鎖タンパク質が利用でき る。  The toxin B chain protein that can be used as the carrier of the present invention is not particularly limited as long as it has a property of introducing a high-molecular-weight substance into the cytoplasm, but bacterial or vegetable proteins are preferable. For example, ricin or a related toxin such as abrin, diphtheria toxin, exotoxin, enterotoxin, cholera toxin, pertussis toxin, tetanus toxin, and B-chain protein of an attenuated strain of botulinum toxin can be used.
トキシン B鎖タンパク質は天然に発現しているものから既知の方法により得ら れたものを使用できる。 これらのタンパク質のァミノ酸配列および遠伝子配列は 既知であり、 これらの配列に基づいて確立されている遗伝子工学的手法により産 生することもできる。 トキシン B鎖タンパク質はまた、 所望により糖鎖が結合し ていてもよく、 また結合していなくてもよい。 遗伝子組換えの手法によって製造 されたトキシン B鎖タンパク質は市販されていて、 容易に入手可能なものもある c 例えば、 リシン B鎖タンパク質はベクター社から市販されており、 本発明の実施 例において使用した。  As the toxin B chain protein, a protein obtained by a known method from a naturally expressed protein can be used. The amino acid sequence and the gene sequence of these proteins are known, and can be produced by gene engineering techniques established based on these sequences. The toxin B chain protein may or may not have a sugar chain bound, if desired.ト Toxin B chain protein produced by the gene recombination technique is commercially available, and some are readily available.c For example, ricin B chain protein is commercially available from Vector, and Used in
トキシン B鎖タンパク質はさらに、 天然のタンパク質のァミノ酸配列のうち 1 つまたは複数のアミノ酸残基が置換、 欠失、 挿入等により変異したものであって も、 細胞質内に高分子量の物質を導入する性質を有するものであれば、 本発明の キャリアーの成分として利用できる。 変異は自然に生じたものであっても、 遺伝 子工学的手法を施したものであってもよい。 当業者は、 慣用された方法により容 易にこのような変異タンパク質を作製することができるであろう。  Toxin B chain protein also introduces high-molecular-weight substances into the cytoplasm, even if one or more amino acid residues in the amino acid sequence of the natural protein are mutated by substitution, deletion, insertion, etc. Any material having the following properties can be used as a component of the carrier of the present invention. The mutation may be naturally occurring or may have been subjected to genetic engineering techniques. One of skill in the art would readily be able to produce such a mutant protein by conventional methods.
本発明のキャリア一はさらに、 核酸結合性物質を含む。 核酸結合性物質は、 ト キシン B鎖タンパク質と共存もしくは結合した状態において、 細胞内に導入する 核酸と結合可能なものが利用できる。 このような核酸結合性物質に、 核酸を結合 させることにより、 効率的に細胞質内へ導入することが可能となる。 このような 核酸桔合性物質の例としては、 限定されるわけではないが各種カチオン性脂質、 ポリアミノ酸誘導体、 ヒストンタンパク質が挙げられる。 The carrier of the present invention further contains a nucleic acid binding substance. Nucleic acid binding substances In the state of coexisting with or binding to the toxin B chain protein, those that can bind to nucleic acid introduced into cells can be used. By binding a nucleic acid to such a nucleic acid binding substance, it is possible to efficiently introduce the nucleic acid into the cytoplasm. Examples of such nucleic acid binding substances include, but are not limited to, various cationic lipids, polyamino acid derivatives, histone proteins.
カチオン性脂質としては、 例えば、 リポフエクチン (L i p 0 f e c t i n) - リボフェクテース (L i po f e c tAc e:) 、 リポフエクタミン (L i po f e c t Am i n e ) が挙げられる。  Examples of the cationic lipid include lipofectin (Lipoffect)-ribofectase (LipoffectAc): and lipofectamine (Lipoffectamine).
ポリアミノ酸誘導体としては、 例えば、 ポリ一 L—リジン、 ポリ一 D—リジン, ポリ一 L一オル二チン、 ポリ一 D—オル二チン、 ポリ一 L一リジン一Lーセリン コポリマー、 ポリ一 D—リジン一 D—セリン コポリマー、 ポリ一 L一オル二 チン一 Lーセリン コポリマー、 ポリ一 D—オル二チン一 D—セリン コポリマ 一、 ポリ一 L一リジン ポリエチレングリコール (PEG) ブロックコポリマー、 ポリ一 D -リジン P E Gブロックコポリマー、 ポリ一 L一オル二チン PEG ブロックコポリマー、 ポリ一 D—オル二チン PEGブロックコポリマー、 ポリ 一 L一リジン一 Lーセリン PEGブロックコポリマー、 ポリ一 D—リジン一 D ーセリン PEGブロックコポリマー、 ポリ一 L一オル二チン一 Lーセリン P EGブロックコポリマー、 ポリ一 D—オル二チン一 D—セリン PEGブロック コポリマーが挙げられる。 これらのポリアミノ酸誘導体は、 ε—カルボべンゾキ シー Lーリジン一Ν—力ルボン酸無水物およびべンジルー Lーセリ ンー Ν—カル ボン酸無水物を、 片末端アミノ基のポリエチレンォキシド (分子量 200— 25 0000) 等の第 1級アミンを開始剤として重合させることにより合成できる。 このポリエチレンォキシドーポリアミノ酸ブ口ックコポリマーにおけるポリアミ ノ酸部分の分子量は 200から 50000以上まで可変である。  Examples of the polyamino acid derivative include poly-L-lysine, poly-D-lysine, poly-L-orditin, poly-D-orutin, poly-L-lysine-L-serine copolymer, poly-D- Lysine-D-Serine Copolymer, Poly-L-Ordinine-L-Serine Copolymer, Poly-D-Ordinine-D-Serine Copolymer, Poly-L-Lysine Polyethylene Glycol (PEG) Block Copolymer, Poly-D- Lysine PEG Block Copolymer, Poly-L-Orditin PEG Block Copolymer, Poly-D-Orditin PEG Block Copolymer, Poly-L-Lysine-L-Serine PEG Block Copolymer, Poly-D-Lysine-D-Serine PEG Block Copolymer , Poly-L-orditin-L-serine PEG block copolymer, poly-D-orditin-D-serine PEG Click copolymers thereof. These polyamino acid derivatives can be obtained by converting ε-carbobenzoic acid L-lysine mono-carboxylic acid anhydride and benzylic L-serine Ν-carbonic acid anhydride into polyethylene oxide having a single amino group at one terminal (molecular weight 200- 25 0000), and the like. The molecular weight of the polyamino acid moiety in the polyethylene oxide polyamino acid block copolymer can vary from 200 to more than 50,000.
キャリア一は、 特に限定されないが、 トキシン Β鎖タンパク質と核酸結合物質 をモル比で約 1 : 1から 1 : 10、 好ましくは 1 : 1から 1 : 5の割合で含む。 また、 トキシン Β鎖タンパク質と核酸結合物質とは、 遊離した状態で存在しても よいし、 S— S結合等により結合していてもよい。  The carrier 1 includes, but is not particularly limited to, a toxin II chain protein and a nucleic acid binding substance in a molar ratio of about 1: 1 to 1:10, preferably 1: 1 to 1: 5. In addition, the toxin Β chain protein and the nucleic acid binding substance may exist in a free state, or may be bound by an S—S bond or the like.
本発明のキャリアーによって細胞内に導入できる核酸の大きさ、 種類等は特に 限定されない。 核酸の種類としては、 例えば、 線状二本鎖 DNA、 環状二本鎖 D NA、 オリゴヌクレオチド、 RNA等がある。 例えば、 本発明のキャリアーの利 用により、 細胞に有用なタンパク質をコードする構造遺伝子を導入して、 該遗伝 子を発現させることができる。 構造遠伝子が導入された場合、 後述の実施例 9に 示すように非常に高い遗伝子発現を示す。 また、 アンチセンスを導入して特定の 遺伝子の発現の制御を行うことができる。 このほか、 リボザィム、 トリプレック ス、 アブタマ一等のキャリアーとしても利用できる。 さらに、 核酸には、 ホスフエ 一ト結合をホスフォチォエート結合に置換した、 ホスフォチォエートヌクレオチ ド等の誘導体も含む。 また、 限定されるわけではないが、 核酸 1 / mo 1に対し て約 0. 1— 1000/zmo 1のキャリアーを使用する。 The size and type of nucleic acid that can be introduced into cells by the carrier of the present invention are particularly Not limited. Examples of the type of nucleic acid include linear double-stranded DNA, circular double-stranded DNA, oligonucleotide, and RNA. For example, by using the carrier of the present invention, a structural gene encoding a useful protein can be introduced into cells to express the gene. When a structural gene is introduced, the gene expression is very high as shown in Example 9 below. In addition, the expression of a specific gene can be controlled by introducing antisense. In addition, it can be used as a carrier for Ribozyme, Triplex, Abata and others. Further, the nucleic acid also includes a derivative such as a phosphothioate nucleotide in which a phosphonate bond is replaced with a phosphothioate bond. In addition, a carrier of about 0.1 to 1000 / zmo 1 is used for nucleic acid 1 / mo 1 without limitation.
本発明は、 さらに、 上記キャリアーを含む、 核酸の細胞内への導入を促進する ための調節剤を提供する。  The present invention further provides a regulator for promoting the introduction of a nucleic acid into a cell, comprising the above-mentioned carrier.
本発明の調節剤は、 まず患者から標的細胞を体外に取り出し、 目的とする遺伝 子を導入した後に再びその細胞を患者の体内に戻すという自家移植による遺伝子 治療 (ex vivo遺伝子治療) にも、 遗伝子を直接患者に投与する遺伝子治療 (in vivo遺伝子治療) にも使用できる。 また、 遗伝子治療は、 異常 (原因) 遺伝子 をそのままにして、 新しい (正常) 遗伝子を付け加える方法 (Augmentation Gen e Therapy) と、 異常遺伝子を正常遗伝子で置き換える方法 (Replacement Gene Therapy) に大別できるが、 どちらにも使用できる。  The modulator of the present invention can be used for autologous gene therapy (ex vivo gene therapy) in which target cells are first taken out of a patient, the target gene is introduced, and then the cells are returned to the patient.で き る Can also be used for gene therapy in which genes are directly administered to patients (in vivo gene therapy). In gene therapy, there is a method of adding a new (normal) gene while leaving the abnormal (cause) gene intact (Augmentation Gene Therapy) and a method of replacing the abnormal gene with a normal gene (Replacement Gene Therapy). ), But can be used for both.
本発明の調製剤の投与は、 限定するわけではないが、 一般に非経口的に行われ、 例えば注射投与することにより好ましく実施できる。 本発明の使用量は、 その使 用方法、 使用目的等により異なるが、 例えば、 リシン B鎖タンパク質を含むキヤ リア一として注射投与して用いる場合には、 例えば、 1日量約 0. l gZk g 一 l Omg/k gを投与するのが好ましく、 より好ましくは、 1曰量約 l ;ti g/ k g— 1 mgZk gである。  Although the administration of the preparation of the present invention is not limited, it is generally performed parenterally, and can be preferably performed by, for example, injection. The amount used in the present invention varies depending on the method of use, purpose of use, and the like.For example, when used as a carrier containing a ricin B-chain protein by injection, for example, a daily dose of about 0.1 lgZk It is preferable to administer 1 g Omg / kg, and more preferably, 1 mg / kg—1 mgZkg.
さらに、 本発明を利用することにより、 温度刺激により各種マーカー遺伝子お よび治療用遺伝子が発現されるように設計されたプラスミ ドを導入した後、 温熱 療法等の温度刺激を与えることにより、 遺伝子刺激における部位特異的遗伝子発 現が可能となる。 本発明のトキシン B鎖タンパク質および核酸桔合性物質を含むキヤリア一は、 所望の核酸との間で複合体を形成し、 細胞に安全に効率よく核酸を導入すること を可能とする。 さらに、 本発明のキャリア一により遺伝子が導入された場合、 非 常に高い効率で遗伝子発現が起こる。 実施例 Furthermore, by utilizing the present invention, a gene designed to express various marker genes and therapeutic genes by temperature stimulation is introduced, and then a temperature stimulus such as hyperthermia is applied to thereby provide gene stimulation. Site-specific gene expression in E. coli. The carrier containing the toxin B chain protein and the nucleic acid-compatible substance of the present invention forms a complex with a desired nucleic acid, and enables safe and efficient introduction of the nucleic acid into cells. Furthermore, when a gene is introduced by the carrier of the present invention, gene expression occurs with extremely high efficiency. Example
以下、 実施例を挙げて、 本発明をより具体的に説明する。 なお、 本発明はこれ らの例によって制限されるものではな 、。  Hereinafter, the present invention will be described more specifically with reference to examples. Note that the present invention is not limited by these examples.
実施例 1 : Example 1:
e—カルボベンゾキシ一 L一リジン一N—カルボン酸無水物 2. 0 g (シグマ 社製) を、 N、 N—ジメチルホルムアミ ド (以下 DMF) (和光純薬製) 30m 1に溶かして、 クロ口ホルム (和光純薬製) 15m lを加える。 片末端メ トキシ 片末端アミノ基のポリエチレンォキシド (分子量 5000 : 日本油脂製) 4. 0 gをクロ口ホルム 15m 1に溶かし、 その溶液を £一カルボべンゾキシー L一リ ジン一 N—力ルボン酸無水物溶液に加える。 26時間後に、 反応混合液を 330 m 1のジェチルエーテルに滴下して沈殿したポリマーをろ過で回収してジェチル エーテル (和光純薬製) で洗浄した後に真空で乾燥し、 臭化水素酢酸溶液 (和光 純薬製) で脱保護を行いポリ一 L一リジン PEGブロックコポリマー (以下、 「PLP」 という) を得る。 収量 5. 0 g。  Dissolve 2.0 g of e-carbobenzoxy-L-lysine-N-carboxylic anhydride (manufactured by Sigma) in 30 ml of N, N-dimethylformamide (DMF) (manufactured by Wako Pure Chemical) Add 15 ml of black mouth form (manufactured by Wako Pure Chemical Industries). One-end methoxide One-end amino group polyethylene oxide (molecular weight 5000, manufactured by Nippon Oil & Fats) 4.0 g is dissolved in 15 ml of a form of black mouth, and the solution is added to the solution. Add to the anhydride solution. After 26 hours, the reaction mixture was dropped into 330 ml of getyl ether, and the precipitated polymer was recovered by filtration, washed with getyl ether (manufactured by Wako Pure Chemical Industries, Ltd.), dried in vacuo, and treated with a hydrogen bromide acetic acid solution. (Wako Pure Chemical Industries, Ltd.) to obtain a poly-L-lysine PEG block copolymer (hereinafter referred to as “PLP”). Yield 5.0 g.
実施例 2 : Example 2:
ε—カルボベンゾキシ一 L一リジン一 N—力ルボン酸無水物 1. 0 g (シグマ 社製) およびべンジルー Lーセリン一 N—力ルボン酸無水物 1. 0 g (シグマ社 製) を、 DMF (和光純薬製) 30m lに溶かして、 クロ口ホルム (和光純薬製) 15m lを加える。 片末端メ トキシ片末端アミノ基のポリエチレンォキシド (分 子量 5000 : 日本油脂製) 4. 0 gをクロ口ホルム 15 m 1に溶かしてその溶 液を ε一カルボベンゾキシ一L一リジン一 Ν—力ルボン酸無水物およびべンジル 一 Lーセリ ン一 Ν—力ルボン酸無水物溶液に加える。 26時間後に、 反応混合液 を 330m 1のジェチルエーテルに滴下して沈殿したポリマーをろ過で回収して ジェチルエーテル (和光純薬製) で洗浄した後に真空で乾燥し、 臭化水素齚酸溶 液 (和光純薬製) で脱保護を行いポリ一 L一リジン一 Lーセリ ン PEGブロッ クコポリマー (以下、 「PLSP」 という) を得る。 収量 4. 6g。 1.0 g of ε-carbobenzoxy-L-lysine-N-carboxylic acid anhydride (manufactured by Sigma) and 1.0 g of Benziru L-serine-N-carboxylic acid anhydride (manufactured by Sigma) were Dissolve in 30 ml of DMF (manufactured by Wako Pure Chemical Industries), and add 15 ml of black mouth form (manufactured by Wako Pure Chemical Industries). One-end methoxy One-end amino group polyethylene oxide (molecular weight 5000: Nippon Oil & Fats Co.) Dissolve 4.0 g in a 15-ml form of black-mouthed form and dilute the solution with ε-carbobenzoxy-L-lysine-力 -Rubonic anhydride and benzyl-L-serine Add to 力 -Rubonic anhydride solution. After 26 hours, the reaction mixture was dropped into 330 ml of getyl ether, and the precipitated polymer was collected by filtration, washed with getyl ether (manufactured by Wako Pure Chemical Industries, Ltd.), dried in vacuo, and treated with hydrobromic acid. Dissolution Deprotection with a liquid (manufactured by Wako Pure Chemical Industries, Ltd.) to obtain poly-L-lysine-L-serine PEG block copolymer (hereinafter referred to as “PLSP”). Yield 4.6 g.
実施例 3 : Example 3:
実施例 1中で得られる、 脱保護していないポリ一 Lーリジン PEGブロック コポリマー 30mg、 N—スクシミジル 3— (2—ピリジルジチォ) プロビオネ ート (以下 SPDP) (ピアス社製) 7mg、 トリエタノールァミン (和光純薬 製) 5 21を DMFO. 5mlに溶解し、 室温で 16時間撹拌する。 反応物を 1 Omlの蒸留水中に滴下して析出したポリマーをろ過で回収して凍結乾燥を行う。 その後、 臭化水素酔酸溶液 (和光純薬製) で脱保護を行い N末端 S導入ポリ一 L 一リジン PEGブロックコポリマー (以下、 「S— PLPJ という) を得る。 収量 18mg。  30 mg of undeprotected poly-L-lysine PEG block copolymer obtained in Example 1, N-succimidyl 3- (2-pyridyldithio) probionate (hereinafter SPDP) (manufactured by Pierce) 7 mg, triethanolamine (Wako Pure Chemical Industries) 52 21 is dissolved in 5 ml of DMFO and stirred at room temperature for 16 hours. The reaction product is dropped into 1 Oml of distilled water, and the precipitated polymer is recovered by filtration and freeze-dried. Thereafter, deprotection is performed with a hydrobromic acid solution (manufactured by Wako Pure Chemical Industries, Ltd.) to obtain an N-terminal S-introduced poly-L-lysine PEG block copolymer (hereinafter referred to as “S-PLPJ”).
実施例 4 : Example 4:
実施例 1中で得られる、 脱保護していないポリ一 Lーリジン一 Lーセリン P EGブロックコポリマー 30mg、 SPDP7mg、 トリエタノールァミ ン (和 光純薬製) 5 1を DMFO. 5m 1に溶解し、 室温で 16時間撹拌する。 反応 物を 10m 1の蒸留水中に滴下して析出したポリマーをろ過で回収して凍結乾燥 を行う。 その後、 臭化水素酢酸溶液 (和光純薬製) で脱保護を行い N末端 S導入 ポリ一 L一リジン一 Lーセリン PEGブロックコポリマー (以下、 「S— PL SP」 という) を得る。 収量 16mg。  Dissolve 30 mg of undeprotected poly-L-lysine-L-serine PEG block copolymer 30 mg, SPDP 7 mg, and triethanolamine (manufactured by Wako Pure Chemical Industries) 51 obtained in Example 1 in 5 ml of DMFO. Stir at room temperature for 16 hours. The reaction product is dropped into 10 ml of distilled water, and the precipitated polymer is recovered by filtration and lyophilized. Thereafter, deprotection is performed with a hydrogen bromide acetic acid solution (manufactured by Wako Pure Chemical Industries, Ltd.) to obtain an N-terminal S-introduced poly-L-lysine-L-serine PEG block copolymer (hereinafter, referred to as “S-PL SP”). Yield 16mg.
実施例 5 : Example 5:
ポリ ε—力ルポべンゾキシー L一リジン (シグマ社製) 30mg、 SPDP7 mg、 トリエタノールァミン (和光純薬製) 5 1を DMF 0. 5mlに溶解し、 室温で 16時間撹拌する。 反応物を 1 Omlの蒸留水中に滴下して析出したポリ マーをろ過で回収して凍結乾燥を行う。 その後、 臭化水素酢酸溶液 (和光純薬製) で脱保護を行い N末端 S導入ポリ— L—リジン (以下、 「S— PLLJ という) を得る。 収量 18mg。  Dissolve 30 mg of poly ε-potency L-lysine L-lysine (manufactured by Sigma), 7 mg of SPDP, and triethanolamine (manufactured by Wako Pure Chemical Industries) 51 in 0.5 ml of DMF and stir at room temperature for 16 hours. The reaction product is dropped into 1 Oml of distilled water, and the precipitated polymer is recovered by filtration and freeze-dried. After that, deprotection is performed with hydrogen bromide acetic acid solution (manufactured by Wako Pure Chemical Industries, Ltd.) to obtain N-terminal S-introduced poly-L-lysine (hereinafter referred to as “S-PLLJ”) Yield 18 mg.
実施例 6 : Example 6:
実施例 3、 4および 5において得られる N末端 S導入ポリアミノ酸 1 Omgと リ シン B鎖 (ベクター社製) 1 Omgをへぺス緩衝液 2m 1に溶解し、 4°Cで 1 6時間撹拌する。 生成物を、 セフアデックス G— 75 (フアルマシア社製) を用 いてゲル滅過精製した。 目的とする分画を限外 »過により脱塩 ·濃縮して目的物 を得た。 それぞれ To xB— PL P (14mg/m 1 ) 、 ToxB-PLSP (15mg/m 1 )、 ToxB-PLL (16mg/m 1 ) の水溶液を得た。 実施例 7 : 1 Omg of the N-terminal S-introduced polyamino acid and 1 Omg of lysine B chain (manufactured by Vector) obtained in Examples 3, 4 and 5 were dissolved in 2 ml of a buffer solution, and dissolved at 4 ° C. Stir for 6 hours. The product was gel-purified using Sephadex G-75 (Pharmacia). The desired fraction was desalted and concentrated by ultrafiltration to obtain the desired product. An aqueous solution of ToxB-PLP (14 mg / m1), ToxB-PLSP (15 mg / m1), and ToxB-PLL (16 mg / m1) was obtained. Example 7:
24ゥ ルの細胞培養用ディッシュに、 105個 Zゥュルで H e L a細胞 (大 日本製薬) を播種し 10%FCS (ギブコ社製) を含む DMEM (ギブコ社製) 中で 18時間培養を行った。 その後、 DNA5' 末端標識キッ ト (宝製) により 32P標識したモデルオリゴヌクレオチド (2 Ome r) を、 最終濃度で 10 μ mo 1 / 1の濃度になるように非標識モデルオリゴヌクレオチドで希釈して加え た。 その際、 今回合成した各種遗伝子導入用キャリアーをオリゴヌクレオチドと 重量で同量の割合で混合した。 オリゴヌクレオチドは、 DNA合成機 (タイプ 3 92: アブイ ドバイオシステム社製) を用いて合成した。 ベクターとしては、 ポ リー L-リジン (P L L: シグマ社製) 、 P L P、 P L S P、 リポフエクタミン (ギブコ社製) を用いた。 オリゴヌクレオチドの取り込み量は、 2時間後に各ゥェ ルにおける細胞の放射線量を測定することにより算出した。 その結果を図 1に示 す。 今回合成したキャリア一は、 従来キャリア一として用いられてきたカチオン 性リポソームであるリポフ クタミンと比較して、 はるかに高いオリゴヌクレオ チド取り込み性を示し、 各種ォリゴヌクレオチド用のキャリアーとして有効であ ることが明らかとなった。 24 © Le dish cell culture, 10 5 Z Uyuru with H e L a cell (Dainippon Pharmaceutical) seeding cultured for 18 h in DMEM (Gibco) containing 10% FCS (Gibco) and Was done. Then, the model oligonucleotide (2 Omer) labeled with 32 P with the DNA 5 'end labeled kit (Takara) was diluted with the unlabeled model oligonucleotide to a final concentration of 10 μmo 1/1. added. At that time, the various carriers for gene transfer synthesized this time were mixed with the oligonucleotide at the same ratio by weight. Oligonucleotides were synthesized using a DNA synthesizer (Type 392: manufactured by Abu Biosystems). Poly L-lysine (PLL: Sigma), PLP, PLSP, Lipofectamine (Gibco) was used as a vector. The amount of oligonucleotide uptake was calculated by measuring the radiation dose of cells in each well after 2 hours. Figure 1 shows the results. The carrier synthesized this time shows much higher oligonucleotide uptake properties than lipofectamine, a cationic liposome that has been conventionally used as a carrier, and is effective as a carrier for various oligonucleotides. It became clear.
実施例 8 : Example 8:
24ゥエルの細胞培養用ディッシュに、 105個 Zゥエルで H e L a細胞 (大 日本製薬) を播種し 10%FCS (ギブコ社製) を含む DMEM (ギブコ社製) 中で 18時間培養を行った。 その後、 ニック トランスレーションラベルキッ ト (アマシャム社製) により一部32 P標識したモデルプラスミ ド DNA (PGV- C:東洋インキ製) を最終濃度で 0. l mo 1 1の濃度になるように非標識 プラスミ ド DNAで希釈して加えた。 その際、 各種遺伝子導入用キャリアーをプ ラスミ ド DNAと重量で同量の割合で混合した。 キャリア一としては、 ポリ一 L 一リジン (P L L: シグマ社製) 、 PLP、 PLSP、 リポフエクタミン (ギブ コ社製) を用いた。 遺伝子の取り込み量は、 2時間後に各ゥ ルにおける細胞の 放射線量を測定することにより算出した。 その結果を図 2に示す。 今回合成した キャリア一は、 従来キヤリア一として用いられてきたカチオン性リポソームであ るリポフエクタミンと比較して、 はるかに高い遺伝子取り込み性を示し、 キヤリ ァ一として有効であることが明らかとなった。 24 Ueru dish cell culture, a 18-hour culture in DMEM (Gibco) containing 10 5 Z Ueru with H e L a cell (Dainippon Pharmaceutical) were seeded 10% FCS (Gibco) went. Thereafter, nick translation labeled kit in part by (Amersham) 32 P-labeled model plus Mi de DNA: Non to a concentration of 0. l mo 1 1 at a final concentration of (PGV- C manufactured by Toyo Ink) Diluted with labeled plasmid DNA was added. At that time, various gene transfer carriers were mixed with the plasmid DNA at the same ratio by weight. Carriers include poly-L-lysine (PLL: Sigma), PLP, PLSP, lipofectamine (giving Co.) was used. The gene uptake was calculated by measuring the radiation dose of the cells in each cell 2 hours later. Figure 2 shows the results. The carrier synthesized this time showed much higher gene uptake properties than lipofectamine, a cationic liposome used conventionally as a carrier, and was found to be effective as a carrier.
実施例 9 : Example 9:
6ゥヱルの細胞培養用ディッシュに、 4x 105個 Zゥヱルで He La細胞を 播種し 10%FCSの DMEM (ギブコ社製) 中で 18時間培養を行った。 その 後、 モデルプラスミ ド DNA (p S V ^-ga l a c t o s i d a s e :プロ メガ社製) を 1 gZゥヱルの濃度になるように加え、 その際には各種キャリア 一をブラスミ ド DNAと重量で同量の割合で混合した。 48時間後に、 細胞を X — ga l (ギブコ社製) で染色することにより、 遺伝子導入効率の評価を行った。 遠伝子導入効率は、 リポフエクタミン (ギブコ社製) を用いた際の染色度を 10 0として比較を行った。 その結果を図 3に示す。 今回合成したキャリア一は、 従 来キヤリア一として用いられてきたカチオン性リボソームであるリボフヱクタミ ンと比較して、 はるかに高い遺伝子発現を示し、 キャリア一として有効であるこ とが明らかとなった。 HeLa cells were seeded on a 6-well cell culture dish at 4 × 10 5 cells and cultured in 10% FCS DMEM (manufactured by Gibco) for 18 hours. Thereafter, model plasmid DNA (pSV ^ -ga lactosidase: manufactured by Promega) was added to a concentration of 1 gZ / ml, in which case the various carriers were added in the same amount by weight as that of the plasmid DNA. And mixed. 48 hours later, the cells were stained with X-gal (manufactured by Gibco) to evaluate the gene transfer efficiency. The transgene introduction efficiency was compared by setting the staining degree when Lipofectamine (manufactured by Gibco) was 100 to 100. Figure 3 shows the results. The carrier synthesized this time showed much higher gene expression than ribofectamine, which is a cationic ribosome conventionally used as a carrier, and was found to be effective as a carrier.
実施例 10 :組換えプラスミ ド pHSX2の構築 Example 10: Construction of recombinant plasmid pHSX2
熱ショックプロモーター (he a t s ho ck p r omo t e r) を含む、 原型プラスミ ド pHSX2を構築するために用いた一般的全方法を図 4に示す。 プラスミ ド pBR322 (フアルマシア社製) を Sa 1 I (宝酒造社製) 及び H i n d I I I (宝酒造社製) で切断し、 アンピシリン耐性遗伝子及び複製開始点 を含む約 3. 74 k bの DNA断片を調製した。 次に、 熱ショック蛋白質 70 B (HSP70B) のプロモーターを含むプラスミ ド P 1730R (S t r e s s G e n社製) を Xh o I (宝酒造社製) 及び H i n d I I Iで切断し、 H S P 7 0 Bプロモーター領域を含む約 2. 57 k bの DNA断片を調製した。 これらの 2つの DNA断片を T4 DNAライゲース (宝酒造社製) で連結することによ り、 プラスミ ド pHSXlを構築した。 このプラスミ ドを Pvu I I (宝酒造社 製) および BamH I (宝酒造社製) で切断し、 H S P 70 Bプロモーター領域 のうちの 3' 末端約 0. 47kbを含む約 2. 80kb断片を調製した。 この断 片の突出末端を Mung Be an Nじ c 1 e a s e (宝酒造社製) 及び K 1 enow F r a gme n t (宝酒造社製) で平滑化した後、 T4 DNAライ ゲースで再連結し、 プラスミ ド PHSX2を構築した。 The general method used to construct the prototype plasmid pHSX2, including the heat shock promoter (he atsock promoter), is shown in FIG. Plasmid pBR322 (Pharmacia) was digested with Sa1I (Takara Shuzo) and Hind III (Takara Shuzo), and an approximately 3.74 kb DNA fragment containing the ampicillin-resistant gene and the replication origin was cut. Prepared. Next, plasmid P 1730R (manufactured by Stress Gen) containing the promoter of heat shock protein 70B (HSP70B) was cut with XhoI (manufactured by Takara Shuzo) and HindIII, and the HSP70B promoter region was cut. Approximately 2.57 kb DNA fragment was prepared. Plasmid pHSXl was constructed by ligating these two DNA fragments with T4 DNA ligase (Takara Shuzo). This plasmid was digested with Pvu II (Takara Shuzo) and BamHI (Takara Shuzo), and the HSP70B promoter region was cut. An about 2.80 kb fragment containing about 0.47 kb at the 3 'end was prepared. The protruding end of this fragment was blunt-ended with Mung Bean N c 1 ease (Takara Shuzo) and K1 enow Fragment (Takara Shuzo), religated with T4 DNA ligation, and mixed with plasmid. PHSX2 was built.
実施例 11 :組換えプラスミ ド pUC— Ne 02の構築 Example 11: Construction of recombinant plasmid pUC—Ne02
ネオマイシン耐性遺伝子を含む原型ブラスミ ド pUC— Ne o 2を構築するた めに用いた一般的全方法を図 5に示す。 プラスミ ド PUC119 (宝酒造社製) を Sma l (宝酒造社製) で切断した後、 B amH Iで切断し、 アンピシリン耐 性遺伝子及び複製開始点を含む約 3. 15kbの DNA断片を調製した。 次にネ ォマイシン耐性遗伝子を含むブラスミ ド HXN2 (日本医科大学より供与) を X ho Iで切断し、 ネオマイシン耐性遺伝子を含む約 1. 20kbのDNA断片を 調製した。 この DN A断片の突出末端を K 1 e n ow F r a men tで平滑 化した後、 BamHIで切断した。 これら 2つの D N A断片を T 4 DNAライ ゲースで連結し、 プラスミ ド pUC— Ne oを構築した。 このプラスミ ドを Sp h I (宝酒造社製) で切断し、 突出末端を Mun g Be an Nu c l e a s e及び Kl enow F r a gm e n tで平滑化した後、 T 4 DNAライゲー スで再連結し、 S p h I部位の ATGコドンを欠失させたプラスミ ド pUC— N e o 2を構築した。  Figure 5 shows all the general methods used to construct the prototype plasmid pUC-Neo2 containing the neomycin resistance gene. Plasmid PUC119 (Takara Shuzo) was cut with Smal (Takara Shuzo) and then cut with BamHI to prepare an approximately 3.15 kb DNA fragment containing the ampicillin resistance gene and the replication origin. Next, the plasmid HXN2 (provided by Nippon Medical School) containing the neomycin resistance gene was cut with XhoI to prepare a DNA fragment of about 1.2 kb containing the neomycin resistance gene. The protruding end of the DNA fragment was blunt-ended with K1newFrament and then cut with BamHI. These two DNA fragments were ligated with T4 DNA ligation to construct plasmid pUC-Neo. This plasmid was cut with SphI (Takara Shuzo), the protruding end was blunted with Mung Bean Nuclease and Klenow Fragment, religated with T4 DNA ligation, and spliced. Plasmid pUC—Neo 2 was constructed with the ATG codon deleted at the I site.
実施例 12 :組換えプラスミ ド pHS— Ne oの構築 Example 12: Construction of recombinant plasmid pHS-Neo
熱ショックプロモーター及びネオマイシン耐性遺伝子を含む原型プラスミ ド p HS-Ne 0を構築するために用いた一般的全方法を図 6に示す。 実施例 10で 構築したプラスミ ド pHSX2を Ec oR I (宝酒造社製) 及び H i n d I I I で切断し、 約 2. 77 k bの DNA断片を調製した。 次に、 実施例 11で構築し たプラスミ ド pUC— Ne o2を Ec oR I及び H i n d I I Iで切断し、 約 1. 25 k bの DNA断片を調製した。 これら 2つの DNA断片を T4 DNAライ ケースで連結し、 pHS— Ne 0を構築した。  The general method used to construct the prototype plasmid pHS-Ne0 containing the heat shock promoter and the neomycin resistance gene is shown in FIG. The plasmid pHSX2 constructed in Example 10 was cleaved with EcoRI (Takara Shuzo) and HindIII to prepare a DNA fragment of about 2.77 kb. Next, the plasmid pUC-Neo2 constructed in Example 11 was digested with EcoRI and HindIII to prepare a DNA fragment of about 1.25 kb. These two DNA fragments were ligated in a T4 DNA case to construct pHS-Ne0.
実施例 13 :組換えプラスミ ド pHS— Lu c iの構築 Example 13: Construction of recombinant plasmid pHS—Luci
熱ショックプロモーターの下流にルシフヱラーゼ遺伝子を連結したプラスミ ド pHS-Lu c iを構築するために用いた一般的全方法を図 7に示す。 実施例 1 2で榱築したブラスミ ド pHS— Neoを H i nd i I I及び S a 1 Iで切断し、 約 4. 01 kbの DNAを調製した。 次に、 ルシフヱラーゼ遗伝子を含むプラス ミ ド p GV— P (二ツボンジーン社製) を H i n d I I I及び S a 1 Iで切断し、 約 2. 69 k bの DNA断片を調製した。 これら 2つの DNA断片を T4 DN Αライゲースで連結し、 プラスミ ド pHS— Lu c iを構築した。 Figure 7 shows the general method used to construct the plasmid pHS-Luci with the luciferase gene ligated downstream of the heat shock promoter. Example 1 The plasmid pHS-Neo constructed in step 2 was digested with HindII and Sa1I to prepare a DNA of about 4.01 kb. Next, a plasmid pGV-P (manufactured by Futaba Gene) containing the luciferase gene was digested with HindIII and Sa1I to prepare a DNA fragment of about 2.69 kb. These two DNA fragments were ligated with T4 DN ligase to construct plasmid pHS-Luci.
実施例 14 : Example 14:
6ゥヱルの細胞培養用ディ ッシュに、 4X 105個ノウヱルで HeLa細胞を 播種し 10%FCSの DMEM (ギブコ社製) 中で、 二酸化炭素濃度 5 %、 37 °Cで 18時間培養を行った。 その後、 pHS— Lu c iを 1 / gZゥヱルの濃度 になるように加え、 その際には各種キャリアーをプラスミ ド DNAと重量で同量 の割合で混合した。 24時間後に、 1部のサンプルを 42°Cにおいて 3時間培養 した後、 もとの環境に戻してさらに 24時間培養を行った。 その後、 細胞内に発 現したルシフェラーゼを、 ノレシフヱラーゼ ' アツセィシステム (ピツカジーン : 東洋インキ社製) を用いて定量を行った。 その結果を図 8に示す。 37°Cで培養 した場合と比較して、 42°Cにおいて培養した場合、 ルシフユラーゼの発現量が 高いことから、 熱ショックプロモーター下流に治療遺伝子を導入することにより、 温熱療法による遺伝子発現の調節が可能となることが示された。 HeLa cells were seeded on a 6-well cell culture dish with 4 × 10 5 nodules and cultured in 10% FCS DMEM (manufactured by Gibco) for 18 hours at 37 ° C, 5% carbon dioxide concentration. . Then, pHS-Luci was added to a concentration of 1 / gZ, and various carriers were mixed with plasmid DNA in the same amount by weight. After 24 hours, a part of the sample was cultured at 42 ° C for 3 hours, and then returned to the original environment and further cultured for 24 hours. Thereafter, the luciferase expressed in the cells was quantified using Norecyclase 'Atsushi System (Pitka Gene: manufactured by Toyo Ink Co., Ltd.). Figure 8 shows the results. Since the expression of luciferase is higher when cultured at 42 ° C than when cultured at 37 ° C, the regulation of gene expression by hyperthermia can be controlled by introducing a therapeutic gene downstream of the heat shock promoter. It has been shown to be possible.

Claims

請求の範囲 The scope of the claims
1 . トキシン B鎖タンパク質および核酸結合性物質を含む、 核酸の細胞内への 導入を促進するためのキヤリア一。  1. Carriers for promoting the transfer of nucleic acids, including toxin B chain proteins and nucleic acid binding substances, into cells.
2. トキシン B鎖タンパク質が、 細菌性または植物性トキシン B鎖タンパク質 である、 請求項 1に記載のキャリアー。  2. The carrier according to claim 1, wherein the toxin B chain protein is a bacterial or plant toxin B chain protein.
3. トキシン B鎖タンパク質が、 天然に存在する トキシン B鎖タンパク質のァ ミノ酸配列のうち一つまたは複数のァミノ酸残基が置換、 欠失または挿入してい るが、 細胞内に進入し、 核酸結合性物質および核酸を細胞内に導入する活性を保 持しているものである、 請求項 1または 2に記載のキャリアー。  3. One or more amino acid residues in the amino acid sequence of naturally occurring toxin B chain protein have been substituted, deleted or inserted in the toxin B chain protein. 3. The carrier according to claim 1, which has an activity of introducing a nucleic acid binding substance and a nucleic acid into cells.
4. トキシン B鎖タンパク質が、 リシン B鎖タンパク質である、 請求項 1ー3 のいずれか 1項に記載のキャリアー。  4. The carrier according to any one of claims 1 to 3, wherein the toxin B chain protein is a ricin B chain protein.
5. 核酸結合性物質が、 正電荷を有する脂質、 ポリアミノ酸もしくはその誘導 体、 ならびに核タンパク質もしくはその誘導体からなるグループから選択される、 請求項 1一 4のいずれか 1項に記載のキヤリァー。  5. The carrier according to any one of claims 14 to 14, wherein the nucleic acid binding substance is selected from the group consisting of a positively charged lipid, a polyamino acid or a derivative thereof, and a nucleoprotein or a derivative thereof.
6. 核酸結合性物質が、 ポリ一 L一リジン P E Gブロックコポリマーまたは ポリ一 L一リジン一 Lーセリン P E Gブロックコポリマーである、 請求項 5に 記載のキヤリア一。  6. The carrier according to claim 5, wherein the nucleic acid binding substance is a poly-L-lysine PEG block copolymer or a poly-L-lysine-L-serine PEG block copolymer.
7. トキシン B鎖タンパク質と核酸結合性物質とが S— S結合によって結合し ている、 請求項 1一 6のいずれか 1項に記載のキヤリア一。  7. The carrier according to claim 16, wherein the toxin B chain protein and the nucleic acid binding substance are bound by an SS bond.
8. 請求項 1一 7のいずれか 1項に記載のキャリアーおよび核酸を含む、 核酸 の細胞内への導入を促進するための調節剤。  8. A regulator for promoting the introduction of a nucleic acid into a cell, comprising the carrier according to any one of claims 17 to 17 and a nucleic acid.
PCT/JP1996/000654 1995-03-17 1996-03-15 Nucleic acid carrier WO1996029422A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU49546/96A AU4954696A (en) 1995-03-17 1996-03-15 Nucleic acid carrier
JP08528276A JP3095248B2 (en) 1995-03-17 1996-03-15 Nucleic acid carrier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP5919495 1995-03-17
JP7/59194 1995-03-17

Publications (1)

Publication Number Publication Date
WO1996029422A1 true WO1996029422A1 (en) 1996-09-26

Family

ID=13106374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/000654 WO1996029422A1 (en) 1995-03-17 1996-03-15 Nucleic acid carrier

Country Status (3)

Country Link
JP (1) JP3095248B2 (en)
AU (1) AU4954696A (en)
WO (1) WO1996029422A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06303987A (en) * 1991-11-27 1994-11-01 Boehringer Mannheim Gmbh Method of carrying nucleic acid to cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06303987A (en) * 1991-11-27 1994-11-01 Boehringer Mannheim Gmbh Method of carrying nucleic acid to cell

Also Published As

Publication number Publication date
AU4954696A (en) 1996-10-08
JP3095248B2 (en) 2000-10-03

Similar Documents

Publication Publication Date Title
Taha et al. Delivery of CRISPR-Cas tools for in vivo genome editing therapy: Trends and challenges
Garnett Gene-delivery systems using cationic polymers
AU706643B2 (en) Composition containing nucleic acids, preparation and use
US6413942B1 (en) Methods of delivering a physiologically active polypeptide to a mammal
US20230416787A1 (en) SYSTEMS AND METHODS FOR ONE-SHOT GUIDE RNA (ogRNA) TARGETING OF ENDOGENOUS AND SOURCE DNA
US7250404B2 (en) Lipid-mediated polynucleotide administration to deliver a biologically active peptide and to induce a cellular immune response
EP0792166B1 (en) Internalisation of dna, using conjugates of poly-l-lysine and a peptide integrin receptor ligand
US6710035B2 (en) Generation of an immune response to a pathogen
US5693622A (en) Expression of exogenous polynucleotide sequences cardiac muscle of a mammal
US6214804B1 (en) Induction of a protective immune response in a mammal by injecting a DNA sequence
US20070219118A1 (en) Therapeutic methods for nucleic acid delivery vehicles
US6228844B1 (en) Stimulating vascular growth by administration of DNA sequences encoding VEGF
JPH09508100A (en) Compositions containing nucleic acids, preparation and use
EP0737750A2 (en) Expression of exogenous polynucleotide sequences in a vertebrate
JP2002502243A (en) Integrin-targeting vector with transfection activity
US5843770A (en) Antisense constructs directed against viral post-transcriptional regulatory sequences
AU720697B2 (en) Pharmaceutical composition which is useful for the transfection of nucleic acids, and uses thereof
US6706694B1 (en) Expression of exogenous polynucleotide sequences in a vertebrate
US20030186913A1 (en) Expression of exogenous polynucleotide sequences in a vertebrate
WO1996029422A1 (en) Nucleic acid carrier
WO2023283246A1 (en) Modular prime editor systems for genome engineering
EP1007549B1 (en) Compositions and methods for highly efficient transfection
JP2000510334A (en) Cytoplasmic gene expression system using prokaryotic RNA polymerase self gene
Weber-Lotfi et al. Targeting Therapeutic Nucleic Acids into Mitochondria: A Long Challenge
US20230175013A1 (en) Controlled modification of adeno-associated virus (aav) for enhanced gene therapy

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA