WO1996028560A1 - Novel cell strains - Google Patents

Novel cell strains Download PDF

Info

Publication number
WO1996028560A1
WO1996028560A1 PCT/JP1996/000656 JP9600656W WO9628560A1 WO 1996028560 A1 WO1996028560 A1 WO 1996028560A1 JP 9600656 W JP9600656 W JP 9600656W WO 9628560 A1 WO9628560 A1 WO 9628560A1
Authority
WO
WIPO (PCT)
Prior art keywords
associated virus
vector
recombinant adeno
cells
adeno
Prior art date
Application number
PCT/JP1996/000656
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Shimada
Katsuhiko Akiyama
Hidekazu Kuma
Yousuke Suzuki
Original Assignee
Hisamitsu Pharmaceutical Co., Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hisamitsu Pharmaceutical Co., Inc. filed Critical Hisamitsu Pharmaceutical Co., Inc.
Priority to AU49548/96A priority Critical patent/AU4954896A/en
Publication of WO1996028560A1 publication Critical patent/WO1996028560A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14141Use of virus, viral particle or viral elements as a vector
    • C12N2750/14143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector

Definitions

  • the present invention relates to a recombinant adeno-associated virus vector (hereinafter, recombinant AV vector), a method for producing the same, and a cell producing the same.
  • recombinant AV vector a recombinant adeno-associated virus vector
  • Gene therapy is classified into germ cell gene therapy (Germ line Cell Gene Therapy) and somatic cell gene therapy (Somatic Cell Gene Therapy) according to the type of cells (target cells) to which the gene is to be introduced. It has been. Also, additional gene therapy (Augmentation Gene Therapy) that adds a new (normal) gene while leaving the abnormal (cause) gene intact y) and Replacement gene therapy (Replacement gene gene therapy) in which the abnormal gene is replaced with a normal gene. At present, however, additional genes for somatic cells are subject to ethical and technical constraints. Only treatment is given.
  • virus vector a recombinant virus
  • virus vector a retrovirus vector that utilizes the advantages of the propagation of this virus.
  • Retroviruses are enveloped RNA viruses that enter the cell by binding their envelope proteins to receptors on the host cell. After invasion, single-stranded viral RNA is converted to double-stranded DNA by reverse transcriptase and is randomly but stably integrated into infected cell genomic DNA.
  • the integrated retrovirus gene is called a provirus.
  • RNA is transcribed from the provirus, and viral proteins are synthesized. To those proteins and viral RNA New virus particles are created.
  • the retrovirus gene is recombined into a foreign gene to form a retrovirus vector (AD Mi 11 er, Current To picsin Microbiolo gy a nd Immu no lo gy, 158.1, 1992).
  • MoMLV vectors Furthermore, the most practical problem with MoMLV vectors is the inability to transfer genes into non-dividing cells. Therefore, gene repair of nerve cells, which is a problem in many congenital metabolic disorders, cannot be performed. In addition, gene transfer efficiency of hematopoietic stem cells, hepatocytes, muscle cells, etc., which are the target cells for gene therapy, is usually low in the stationary phase. Cells taken out of the body have been treated to promote division in order to increase the efficiency of gene transfer.However, it is considered difficult to transfer genes to these cells in vivo. There is a need to develop vectors that can efficiently transfer genes to non-dividing cells.
  • Herpesvirus vectors are expected to be vectors that can transfer foreign genes into nerve cells (TD Pa1e11a, eta1..Mo and Ce11.Biol., 8). , 457, 1988) Due to its high power and cytotoxicity, and the virus itself has a very large genome size of 150 kb, development has not progressed at present.
  • the HIV vector human immunodeficiency virus
  • the HIV vector was developed as a vector that allows the introduction of specific genes into CD4-positive T lymphocytes due to the host characteristics of the virus itself (T. Shimada, eta 1 .. J. C li n. Inves t. 88. 1043, 1991). Since lymphocytes are important target cells for gene therapy such as congenital immunodeficiency disease, AIDS, and ⁇ , the usefulness of HIV vectors is expected to be high. The biggest drawback of HIV vectors is the potential for contamination with wild-type strains, which, if resolved, could potentially be used for in vivo gene therapy by intravascular administration.
  • Adenovirus vectors have recently received the most attention because they allow the transfer of genes into non-dividing cells and can easily concentrate vectors to about 10 10. Recent studies have shown that this adenovirus vector can transfer genes into airway epithelial cells, hepatocytes, muscle cells, etc. at a high rate in vitro (LD Lavrero, et al., Hum. Gene Therapy, 1, 241, 1990, B. Qu antin. Proc. Natl. Acad. Sci. USA. 89, 2581, 1992). On the other hand, this vector has the essential property that, when a foreign * gene is introduced into cells, it will not be incorporated into genomic DNA. The effect of the introduction of messenger is lost in Rikitsuki.
  • the adeno-associated virus (AAV) vector has no foreign gene integrated into the target cell genome, DNA, and has no pathogenicity or cytotoxicity (N. Muzyczk a. Current T.). opicsin Microbiolo gy and Immu nolo gy. 158, 97, 1992).
  • packaging into viral particles-ITR (Inverted Terminal Repeat) required for gene integration into genomic DNA has no promoter activity for gene expression. Setting allows for the on-off of gene expression and the use of tissue-specific promoters, Since it has a wide host range and can respond to various target cell diseases, it is expected to be a new viral vector replacing the MoMLV vector.
  • AAV vectors are prepared at the time of use by co-transfection of a helper plasmid and a vector plasmid (R. M. Kotin, Human Gene Therapy, 5, 793. 1994).
  • the transfection method typified by the calcium phosphate method has the following limitations: (1) The efficiency of gene transfer into cells is limited, and it is not possible to obtain a high-titer viral vector required in a clinical setting. Difficult. (2) When transfection is performed by dividing into several mouths, the transfection efficiency between the lots varies, stabilizing the virus vector with a constant titer. 3 It is difficult to prepare a large amount of vector at a time due to the complicated operation of transfection, 4 A large amount of AA
  • helper plasmid and / or packaging plasmid are integrated into the genomic DNA of virus vector-producing cells.
  • This cell line is inherited by daughter cells during cell division because the DNA is stably integrated into the genomic DNA.
  • the replacement virus can be obtained stably.
  • a helper plasmid and / or a packaging plasmid carrying a drug resistance gene such as a neomycin resistance gene or a hygromycin resistance gene are produced, and a virus vector is produced.
  • Transfection of cells to be performed Most of the genes introduced into the cells are not integrated into the genomic DNA at this time—they are occasionally present in the cells and then disappear, but the genes can be integrated into the genomic DNA with very low probability .
  • trans A long-term culture tie is performed in the presence of the drug corresponding to the drug-resistant gene that has been subjected to the functioning to obtain a packaging cell line. It is important to select a clone with a higher copy number in the packaging cell genome DNA to obtain a higher titer of the viral vector.
  • PA 317 AD Miller, eta 1 .. Sowat. Cell Mo 1. Genet. 12. 175, 1986
  • ⁇ 2 R.
  • the AAV vector is expected to be a new viral vector that replaces the MoMLV vector that has been used in the field of gene therapy, but its preparation method has not been completed, and at present, helper plasmid and vector plasmid are used at the time of use. It is prepared by transfusion. However, in this method, the transfection efficiency is not constant each time, so that the titer of the vector fluctuates and stable supply cannot be performed. The transfection operation is complicated, so that a large amount of vector is prepared. There is a major problem in that a large amount of AAV vector cannot be prepared, and a large amount of plasmid vector must be prepared to match it.
  • a packaging cell line has been established in which helper plasmid and vector plasmid have been stably integrated into genomic DNA, but the establishment of a packaging cell line for the AAV vector has not yet been achieved. Absent. Disclosure of the invention
  • the present invention has been made in view of the circumstances described above, and has as its object to provide a method for stably preparing an AAV vector in a large amount.
  • the present inventors have conducted intensive studies to achieve the above object, and as a result, a packaging cell for producing a novel recombinant adeno-associated virus (AAV) vector and a plasmid for establishing the packaging cell.
  • Vector and the plasmid succeeded in developing a method for establishing a packaging cell using a recombinant vector and a method for producing a recombinant AAV vector using the packaging cell, thereby completing the present invention.
  • the present invention provides a recombinant adeno-associated virus HELPER plasmid in which the ITR on the 5 ′ side of the genome of the wild-type adeno-associated virus and the ITR sequence on the 3 ′ side of the genome are replaced by the ITR sequence of the adenovirus. .
  • the present invention also relates to a transfection of the above-mentioned recombinant adeno-associated virus helper plasmid into animal cells, wherein the recombinant adeno-associated virus helper plasmid is stably integrated into the cell genome.
  • An adeno-associated virus vector producing cell is provided.
  • the present invention also relates to a wild-type adeno-associated virus, wherein the genomic sequence of the wild-type adeno-associated virus between the 5 ′ ITR and the 3 ′ ITR sequence of the wild-type adeno-associated virus is replaced by an exogenous gene sequence containing a promoter and a poly-A signal.
  • a recombinant adeno-associated virus vector plasmid Provided a recombinant adeno-associated virus vector plasmid.
  • the present invention further comprises transfecting the above-mentioned recombinant adeno-associated virus vector plasmid into the above-mentioned recombinant adeno-associated virus vector-producing cell, and stably transforming the recombinant adeno-associated virus vector plasmid into the recombinant adeno-associated virus vector.
  • the present invention further provides a recombinant adeno-associated virus vector or an exogenous gene-encapsulated cell by infecting the above-mentioned recombinant adeno-associated virus vector-producing cell or exogenous transgene-encapsulated recombinant adeno-associated virus vector-producing cell with an adenovirus.
  • Methods for propagating the production of an incoming recombinant adeno-associated virus vector are provided.
  • the present invention further provides a recombinant adeno-associated virus vector or a foreign adeno-associated virus vector by freezing and thawing the recombinant adeno-associated virus vector-producing cells or the exogenous gene-encapsulated recombinant adeno-associated virus vector-producing cells grown by the above method.
  • a method for recovering a sex-gene-encapsulated recombinant adeno-associated virus vector The present invention further provides an exogenous gene-encapsulated recombinant adeno-associated virus vector obtained by the above recovery method.
  • FIG. 1 is a schematic diagram showing the structure of helper plasmid pAAVZAd.
  • FIG. 2 is a schematic diagram showing the structure of plasmid psub 201 into which the entire genome sequence of the wild-type adeno-associated virus has been incorporated.
  • FIG. 3 is a schematic diagram showing the structure of the recombinant vector plasmid pNAV.
  • FIG. 4 is a schematic diagram showing the positions of primers in the rep gene used for PCR.
  • Figure 5 is a diagram (electrophoresis photograph) showing the results of Southern printing.
  • FIG. 6 shows the position in the cp gene of the probe used for Southern blotting.
  • FIG. 7 is a diagram (photograph of electrophoresis) showing the results of Southern printing.
  • FIG. 8 is a diagram (photograph showing the morphology of an organism) showing the effect of the pNAV packaging cells prepared in Example 4.
  • FIG. 9 is a diagram (photograph showing the morphology of an organism) showing the effect of the pNAV packaging cells prepared in Example 5.
  • the ITR (inverted termina 1 repeat) of the wild-type adeno-associated virus is a sequence of 145 bases at both ends of the genomic DNA of the adeno-associated virus, which has a T-shaped hairpin structure and replicates the virus.
  • the ITR of adeno-associated virus has no promoter activity and is distinguished from the ITR of adenovirus having promoter activity in this regard. It is.
  • a recombinant adeno-associated virus is constructed by replacing the ITR on the 5′-side of the adeno-associated virus and the ITR on the 3′-side of the genome with the ITR sequence of the adenovirus.
  • the ITRE sequence encoded by the helper plasmid was used to replace an animal cell-derived or virus-derived gene sequence with promoter activity, preferably an adenovirus-derived ITR sequence. It is easier to establish packaging cells described later, and more preferably, those derived from adenovirus type 8 are more likely to establish packaging cells.
  • the recombinant adeno-associated virus helper plasmid of the present invention has a promoter activity by introducing an ITR derived from adenovirus, and thus produces the virus shell itself without the coexistence of adenovirus. can do.
  • the helper plasmid thus obtained is used together with a plasmid encoding a drug resistance gene such as a neomycin resistance gene or a hygromycin resistance gene or the like (hereinafter abbreviated as drug resistance plasmid) together with a known method.
  • a drug resistance gene such as a neomycin resistance gene or a hygromycin resistance gene or the like
  • drug resistance plasmid a drug resistance gene
  • cotransfection of animal cells for example, calcium phosphate method.
  • the animal cell used herein is preferably a cell line that can be infected with adenovirus and adeno-associated virus.
  • the amount of each brasmid used in cotransfection must be in molar ratios.
  • the drug resistance plasmid is about 1 with respect to the helper plasmid 10.
  • the recombinant adeno-associated virus helper plasmid is stably introduced into the cells.
  • An integrated recombinant adeno-associated virus vector producing cell is obtained, which can be used as a packaging cell.
  • the packaging cells are very useful for producing a recombinant adeno-associated virus vector.
  • HA-10NMS September 1, 1994, HA-10NMS, 1-3-1, Higashi, Tsukuba, Ibaraki, Japan As FE RM P—1 450 0 Those deposited in Japan are listed. This deposit has been transferred to the International Deposit under the accession number F ERM BP-5459.
  • a novel recombinant adeno-associated virus vector can be produced using the above-described cells producing the recombinant adeno-associated virus vector (packaging cells).
  • the coding region encoded between the ITR sequence at the 5 'end and the ITR sequence at the 3' end of the plasmid of the plasmid encoding the wild-type adeno-associated virus represented by psub201 was deleted.
  • a plasmid vector plasmid
  • the genomic sequence of the wild-type adeno-associated virus between the ITR sequence at the 5 'end of the genome and the ITR sequence at the 3' end of the wild-type adeno-associated virus is replaced by an exogenous gene sequence containing a promoter and a poly-A signal.
  • the recombinant adeno-associated virus vector plasmid is constructed by a known method.
  • the promoter a promoter of human simple virus-derived thymidine kinase is preferable.
  • drug resistance genes such as the neomycin resistance gene can be incorporated for selection.
  • adeno-associated virus vector plasmid (vector plasmid) is then transfected to the above-mentioned adeno-associated virus vector producing cell (packaging cell). After culturing for several days, the desired recombinant adeno-associated virus vector plasmid is transformed into the recombinant adenovirus by a known method (Samu1 ski R. J., eta 1., J. Viol. 63 3822 1989). An exogenous gene-encapsulated adeno-associated virus vector-producing cell integrated into the genome of the associated virus vector-producing cell can be obtained.
  • the plasmid vector transfected when preparing the adeno-associated virus vector is only the vector plasmid, and no helper plasmid is required.
  • the titer of the resulting recombinant adeno-associated virus vector is the same as that of cotransfection of helper plasmid and vector blasmid, since helper plasmid has already been integrated into all cells. Higher than the price.
  • a recombinant adeno-associated virus vector can be produced in a necessary amount.
  • the above-mentioned packaging cells are also used to re-produce the produced recombinant AAV vector.
  • the packaging cells cultured on an arbitrary scale are infected with a recombinant AAV vector, cultured for several days, and then a recombinant AAV vector is obtained by a known method.
  • helper plasmids and vector plasmids can be used to reduce the complexity of vector plasmid transfection.
  • a packaging cell in which the cells are integrated together is used. This packaging cell can be established by the same method as described above using the helper plasmid and an arbitrary vector plasmid.
  • a recombinant adeno-associated virus vector or an exogenous gene-encapsulated recombinant adeno-associated virus is produced.
  • Viral vector production can be amplified.
  • the adeno-associated virus vector since the adeno-associated virus vector is in the nuclear membrane of the cell, it can be translocated by freezing and thawing to obtain a high-titer vector. That is, the above-mentioned recombinant adeno-associated virus vector-producing cell or exogenous gene-encapsulated recombinant adeno-associated virus vector-producing cell is frozen and thawed to obtain a recombinant adeno-associated virus vector or exogenous gene-encapsulated recombinant adeno-associated virus. The vector can be recovered. Such freezing and thawing techniques are known to those skilled in the art.
  • the present invention provides a method for stably preparing an AAV vector in a large amount.
  • the method of the present invention has a very wide range of applications, and its industrial use can be expected.
  • Example 1 Construction of Plasmid All the operations related to the construction of the brassamide were performed using a general gene manipulation method.
  • the helper plasmid pAAVZ Ad contains the ITR sequence on the 5 ′ side of the plasmid (psub 201, FIG. 2) incorporating the entire genome sequence of wild-type adeno-associated virus (hereinafter, wild-type AAV), and It was constructed by replacing the 3 'ITR sequence with the ITR sequence of type 8 adenovirus.
  • Recombinant vector plasmid pNAV Fig.
  • Example 3 is a human simple virus-derived thymidine kinase derived from the wild-type AAV genomic sequence between the 5 'and 3' ITR sequences of psub201. And a neomycin resistance gene.
  • Example 2 Transfection of helper plasmid into cells and selection of transfectants by drug
  • the transfection method was performed by the calcium phosphate method.
  • Sterile purified water and an aqueous solution of calcium chloride were added to 10 g of pAAV / Ad obtained in Example 1 and 1 g of plasmid LH / B encoding a hygromycin-resistant gene to make a total volume of 0.5 ml. did.
  • This mixture was added dropwise to 0.5 ml of an HBSP buffer solution with shaking, and allowed to stand at room temperature for 30 minutes to obtain a co-precipitate of calcium brasmidolate.
  • hygromycin was added to the culture solution to a final concentration of 500 s / m 1, and 10 Incubated for days.
  • the surviving cell populations were separated one by one, and further incubation was performed in a fresh culture solution to obtain a hygromycin-resistant cell line.
  • Example 3 Gene analysis by PCR method and Southern printing method
  • Helper is inserted into the genomic DNA of the hygromycin-resistant strain obtained in Example 2.
  • the stable integration of the recombinant gene derived from one plasmid was confirmed by the PCR method and the Southern printing method. Extraction of genomic DNA from the cells was carried out by a known method (B1 in N. and DW Stafford, Nucl e.c.
  • the rep gene contained in the helper plasmid was detected by the PCR method.
  • the primer was set at the position shown in Fig. 4 so that a 655 bp gene fragment was amplified if the repII gene was included in the sample.
  • a 655 bp band derived from the rep gene was observed in c clone 8.
  • genomic DNA of cell lines that were positive for the rep gene by PCR was further analyzed by Southern blotting. The probe used was a part of the cap gene radiolabeled with 32 P (Fig. 6).
  • Genomic DNA extracted from cells is digested with the restriction enzyme XbaI, and if the helper plasmid is integrated into the genomic DNA without causing rare-rangement, it is emitted around 4.3 kb. Activity was detected.
  • Fig. 7 shows the results. It was found that the genomic DNA of clone 8 in which the rep ⁇ gene was positive showed that the gene derived from the helper plasmid was stably integrated into the genomic DNA sequence without causing rearrangement.
  • This cell line was named AAVZH e La.
  • Example 4 Transfection of vector plasmid into established packaging cells and preparation of recombinant AAV vector
  • Example 3 Using the packaging cells (AAVZHeLa) established in Example 3, preparation of a recombinant AAV vector was attempted.
  • the packaging cells were cultured in a 9 cm culture dish until 70% confluent.
  • c 4 of this was added to the culture dishes after standing time C0 2 Inkyubeta in one, and further incubated for 2 days and replaced with fresh medium.
  • PBS PBS
  • G418 was added to a final concentration of 1000 / ml. C0 2 Inkyu after standing for 10 days in beta in one, surviving cell population (colony) and one by one separated further continued fin incubation in fresh culture medium, packaging of producing p NA V vector Cells (pNAV packaging cells) were obtained.
  • Example 5 Width of Recombinant AAV Vector Using Established Packaging Cells The width of the recombinant AAV vector using the packaging cells was examined.
  • C The packaging cells established in Example 3 were cultured in a 4 cm culture dish. were seeded (4 104 cells / dish), recombinant AAV vectors prepared by the method of example 4 (PNAV vector titer lxl 0 5 cfu / ml) 100 1 together with DMEM3m 1 containing 10% FC S Was added.
  • the assay of the obtained virus solution was performed by the bioassay method using 3T3 cells shown below. Seeded 4x 10 5 pieces of 3 T 3 cells in culture dishes 4 cm, and allowed to stand in Ichi ⁇ C0 2 incubator. After washing the cells twice with PBS (-), 3 ml DMEM containing 1001 virus solution and 10% FCS was added. At this time, as a negative control, He La cells without transfection were used. For the group to which the supernatant was added, the following examination was performed in the same manner. The cells were incubated in a CO 2 incubator for 2 days, washed with PBS (1), detached with Tribcine-EDTA, and replated on a 9 cm culture dish. After confirming that the cells were contact wear culture dish, G418 were cultured at a final concentration of 500 u / m 1 and so as to the added c 10 days C_ ⁇ 2 incubator to stain the colonies by crystal bio column Bok.
  • FIG. 9 shows an assay of the virus solution prepared by the method shown in Example 5. While no colonies were observed in the negative control group, many colonies were observed in the group in which the virus solution obtained from pNAV packaging cells was allowed to act on 3T3 cells. This result demonstrates that the same recombinant AAV vector can be newly prepared by infecting AAV / HeLa with the recombinant AAV vector.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Virology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

A recombinant adeno-associated virus helper plasmid in which the ITR sequence on the genome 5' side and the ITR sequence on the genome 3' side of the wild type adeno-associated virus have been replaced by the ITR sequence of the Adenovirus; recombinant adeno-associated virus vector-producing cells having the above-mentioned recombinant adeno-associated virus helper plasmid stably integrated into the genome thereof via transfection of animal cells with the helper plasmid; and a process for producing the recombinant adeno-associated virus vector with the use of these recombinant adeno-associated virus vector-producing cells as the packaging cells.

Description

明細書  Specification
新規細胞株 技術分野  New cell line technology
本発明は、 組換えアデノ随伴ウィルスベクタ一 (以下組換え A A Vベクター) とその製造方法、 及びその産生細胞に関する。 背景技術  The present invention relates to a recombinant adeno-associated virus vector (hereinafter, recombinant AV vector), a method for producing the same, and a cell producing the same. Background art
遺伝子工学の急速な発展により、 様々な分子生物学的手法の開発が行われてき た。 それに伴って、 遗伝子惰報の解析および遺伝子の機能解明においては著しい 進歩がみられ、 そこから得られた成果を実際の治療現場に通元しょうとする試み が数多く行われている。 その中でも、 最も進歩の著しい分野の 1つとして遺伝子 治療分野があげられる。 種々の遺伝性疾患における原因遺伝子の発見、 解読が行 われる一方、 それらの遺伝子を物理的および化学的手法により細胞内に導入する 方法が開発され、 遺伝子治療は基礎的実験の段階から、 実際の臨床応用が行われ るまでに発展してきている。  With the rapid development of genetic engineering, various molecular biological techniques have been developed. Along with that, 著 し い remarkable progress has been made in the analysis of gene information and the elucidation of gene functions, and many attempts have been made to transfer the results obtained to actual treatment sites. One of the most advanced fields is the gene therapy field. In addition to discovering and decoding the causative genes of various hereditary diseases, methods for introducing those genes into cells by physical and chemical techniques have been developed. It has evolved before clinical applications are implemented.
遗伝子治療の臨床応用としては、 1989年米国において初めて遺伝子治療の 臨床試験が行われて以来、 すでにイタリア、 オランダ、 フランス、 イギリス、 中 国においても臨床試験が開始されている。 特に米国においては、 1994年 7月 までに 54の遺伝子治療プロ トコールが N I Hの組換え DNA委員会 (RAC) で承認され、 先天性免疫不全症 (アデノシンデ丁ミナーゼ欠損症) 、 家族性高コ レステロール血症、 囊胞性線維症等の遺伝性疾患およびグリォ一マや悪性黒色腫 等の各種癌に対しての遺伝子治療の試みがなされている。 また、 最近では A I D Sに対する遺伝子治療の基礎的検討も数多くなされるようになつている。  遗 As for the clinical application of gene therapy, since the first clinical trial of gene therapy in the United States in 1989, clinical trials have already started in Italy, the Netherlands, France, the United Kingdom, and China. In the United States, in particular, by July 1994, 54 gene therapy protocols had been approved by the NIH Recombinant DNA Committee (RAC), and congenital immunodeficiencies (adenosine deminase deficiency) and familial Gene therapy has been attempted for genetic diseases such as resterolemia and cystic fibrosis and various cancers such as gloma and melanoma. Recently, many basic studies on gene therapy for AIDS have been made.
遺伝子治療は、 遺伝子導入する細胞 (標的細胞) の種類により生殖細胞遺伝子 治療 (G e rm l i n e C e l l G e n e Th e r a p y) と体細胞遺伝 子治療 (S oma t i c C e l l G e n e T h e r a p y ) に分類されて いる。 また、 異常 (原因) 遺伝子をそのままにして、 新しい (正常) 遺伝子を付 け加える付加遺伝子療法 (Au gme n t a t i o n G e n e Th e r a p y) と、 異常遺伝子を正常遠伝子で置き換える置換 ¾伝子療法 (R e p l a c e me n t Ge n e T h e r a p y) に分類されているが、 現時点では倫理的 および技術的制約から、 体細胞に対する付加遺伝子治療のみが行われている。 さ らに、 遺伝子治療の方法としては、 まず患者から標的細胞を体外に取り出し、 目 的とする遗伝子を導入した後に再びその細胞を患者の体内に戻すという自家移植 による方法 (e x V i v o遗伝子治療) が現在行われているが、 将来的には遗 伝子を直接患者に投与する方法 ( i n V i v o遺伝子治療) も検討されている。 以上のような遗伝子治療の臨床応用における大きな技術的課題の 1つとして、 いかにして外来遗伝子を効率良く安全に標的細胞へ導入出来るか、 ということが ある。 1980年代初期にはマイクロインジェクションなど物理的手法の応用が 試みられたが、 遺伝子の導入効率が低く、 安定に導入することができず、 さらに は当時の大量細胞培養技術の限界等もあり実用化にはつながらなかった。 その後、 外来遗伝子を効率良く標的細胞に導入するためのベクターとなる組換えウィルス (ウィルスベクター) が開発され、 初めて遗伝子治療の臨床応用が可能となった。 ウィルスベクターには以下に示すようにいくつかの種類があるが、 現在行われ ている遺伝子治療において、 最も広く使用されているウィルスベクターは、 マウ ス白血病ゥイノレス (MoMLV : Mo l o n e y u r i n e L e u k em i a V i r u s ) 由来のレ トロウイルスベクターであり、 本ウィルスの增殖様 式の利点を利用したものである。 レ トロウイルスは、 エンベロープをもつ RNA ウィルスであり、 そのエンベロープ蛋白と宿主細胞側のレセプターが結合するこ とにより細胞内に侵入する。 侵入後、 単一鎖ウィルス RNAが逆転写酵素により 二重鎖 DNAに変換され、 感染細胞ゲノム DNAに、 無作為であるが安定的に組 み込まれる。 ただし組み込まれるためには、 細胞が分裂増殖していなければなら ない (D. G. M i l l e r, e t a 1. , Mo l e c u l a r a n d C e 1 1 u 1 a r B i o l o gy, 10. 8. 4239, 1990) 。 組み込ま れたレ 卜ロウィルス遺伝子はプロウィルスと呼ばれる。 そのプロウィルスから R NAが転写され、 ウィルス蛋白が合成される。 それらの蛋白とウィルス RN Aに より、 新しいウィルス粒子がつく られる。 この場合のレトロウィルス遗伝子を外 来遺伝子に組換えたものがレトロウイルスベクターである (A. D. M i 1 1 e r , Cu r r e n t To p i c s i n M i c r o b i o l o gy a nd I mmu no l o gy, 158. 1, 1992 ) 。 レトロウイルスベクター、 特に MoMLVベクターについてはこれまでに非常に多くの研究があり、 その安 全性についても多くの改良が加えられてきており、 現在まで大きな問題は発生し ていない。 しかしながら、 MoML Vベクターにおいては標的細胞のゲノム DN Aへの組み込みがランダムであることや、 ウィルス遺伝子の一部であるロングタ 一ミナルリピート (以下 LTR) が遺伝子発現のためのプロモーション活性を有 するという性質が知られている。 そのため、 これまでに報告はないものの、 ラン ダムな外来遺伝子組み込みが行われた結果、 偶然その近傍に存在する癌遺伝子を 活性化して標的細胞を癌化させるという可能性を完全に否定することができず、 さらに安全なベクターの開発が強く望まれている。 さらに、 MoMLVベクター において実用的に一番間題となっているのは、 非分裂細胞に遺伝子導入できない 点である。 そのため、 多くの先天性代謝異常症で問題となる神経細胞の遺伝子修 復が行えない。 それ以外にも、 遺伝子治療の対象細胞となっている造血幹細胞、 肝細胞、 筋細胞なども、 通常はほとんど静止期にあるために遺伝子導入効率は低 い。 体外に取り出した細胞については、 遺伝子導入効率を高めるために分裂を促 進するような処理が行われているが、 生体内でこれらの細胞に遺伝子導入を行う ことは難しいと考えられ、 今後は非分裂細胞に対しても効率的に遺伝子を導入で きるベクターの開発が必要とされている。 Gene therapy is classified into germ cell gene therapy (Germ line Cell Gene Therapy) and somatic cell gene therapy (Somatic Cell Gene Therapy) according to the type of cells (target cells) to which the gene is to be introduced. It has been. Also, additional gene therapy (Augmentation Gene Therapy) that adds a new (normal) gene while leaving the abnormal (cause) gene intact y) and Replacement gene therapy (Replacement gene gene therapy) in which the abnormal gene is replaced with a normal gene. At present, however, additional genes for somatic cells are subject to ethical and technical constraints. Only treatment is given. Furthermore, as a method of gene therapy, an autotransplantation method in which target cells are first taken out of a patient, the target gene is introduced, and then the cells are returned to the patient's body (ex Vivo) (Gene therapy) is currently being conducted, but in the future, a method of directly administering genes to patients (in vivo gene therapy) is also being studied. One of the major technical issues in clinical application of gene therapy as described above is how to introduce foreign genes efficiently and safely into target cells. In the early 1980s, application of physical techniques such as microinjection was attempted, but gene transfer efficiency was low and stable transfer was not possible. Did not connect. Later, a recombinant virus (virus vector) was developed as a vector to efficiently introduce foreign genes into target cells, and for the first time clinical application of gene therapy became possible. There are several types of virus vectors, as shown below. In the current gene therapy, the most widely used virus vector is mouse leukemia ゥ inores (MoMLV: Moloneyurine Leukemia V). irus) is a retrovirus vector that utilizes the advantages of the propagation of this virus. Retroviruses are enveloped RNA viruses that enter the cell by binding their envelope proteins to receptors on the host cell. After invasion, single-stranded viral RNA is converted to double-stranded DNA by reverse transcriptase and is randomly but stably integrated into infected cell genomic DNA. However, in order to be integrated, the cells must be dividing and proliferating (DG Miller, eta 1., Molecular and Ce11u1arBiology, 10.8.4439, 1990). The integrated retrovirus gene is called a provirus. RNA is transcribed from the provirus, and viral proteins are synthesized. To those proteins and viral RNA New virus particles are created. In this case, the retrovirus gene is recombined into a foreign gene to form a retrovirus vector (AD Mi 11 er, Current To picsin Microbiolo gy a nd Immu no lo gy, 158.1, 1992). There has been a great deal of research on retroviral vectors, especially MoMLV vectors, and many improvements have been made in their safety, and no major problems have occurred so far. However, in MoML V vectors, the integration of target cells into the genomic DNA is random, and long-term terminal repeats (LTRs), which are part of the viral gene, have a promotion activity for gene expression. Properties are known. Therefore, although there has been no report so far, it is possible to completely deny the possibility that random integration of a foreign gene could result in the activation of an oncogene that is present in the vicinity of the gene and causing the target cell to become cancerous. It is impossible, and the development of safer vectors is strongly desired. Furthermore, the most practical problem with MoMLV vectors is the inability to transfer genes into non-dividing cells. Therefore, gene repair of nerve cells, which is a problem in many congenital metabolic disorders, cannot be performed. In addition, gene transfer efficiency of hematopoietic stem cells, hepatocytes, muscle cells, etc., which are the target cells for gene therapy, is usually low in the stationary phase. Cells taken out of the body have been treated to promote division in order to increase the efficiency of gene transfer.However, it is considered difficult to transfer genes to these cells in vivo. There is a need to develop vectors that can efficiently transfer genes to non-dividing cells.
ヘルぺスウィルスベクターは神経細胞への外来遺伝子導入が可能なべクターと して期待されている (T. D. P a 1 e 1 1 a, e t a 1. . Mo に C e 1 1. B i o l . , 8, 457, 1988) 力、 細胞毒性が強く、 さらにウィル ス自体のゲノムサイズが 150 k bと非常に大きいために現在のところ開発は進 んでいない。  Herpesvirus vectors are expected to be vectors that can transfer foreign genes into nerve cells (TD Pa1e11a, eta1..Mo and Ce11.Biol., 8). , 457, 1988) Due to its high power and cytotoxicity, and the virus itself has a very large genome size of 150 kb, development has not progressed at present.
H I Vベクター (ヒ 卜免疫不全ウィルス) はウィルス自体の宿主特性により、 CD 4陽性 Tリンパ球に対して特異的遣伝子導入を可能とするベクターとして開 発された (T. S h i ma d a, e t a 1. . J . C l i n. I n v e s t. . 88. 1043, 1991) 。 リ ンパ球は先天性免疫不全症、 A I D S、 瘙な どの遺伝子治療を行う際に重要な標的細胞となっているため、 H I Vベクターの 有用性には高い期待が寄せられている。 H I Vベクターには、 最大の欠点として 野生株混入の可能性という問題があるが、 これらが解決されれば血管内投与法に よる i n v i v o遺伝子治療に使用できる可能性がある。 The HIV vector (human immunodeficiency virus) was developed as a vector that allows the introduction of specific genes into CD4-positive T lymphocytes due to the host characteristics of the virus itself (T. Shimada, eta 1 .. J. C li n. Inves t. 88. 1043, 1991). Since lymphocytes are important target cells for gene therapy such as congenital immunodeficiency disease, AIDS, and 瘙, the usefulness of HIV vectors is expected to be high. The biggest drawback of HIV vectors is the potential for contamination with wild-type strains, which, if resolved, could potentially be used for in vivo gene therapy by intravascular administration.
アデノウイルスベクターは非分裂細胞へも遺伝子が導入できること、 またべク ターを容易に 10の 10乗程度まで '濃縮できるため最近最も注目を集めている。 最近の研究によりこのアデノウイルスベクターで、 気道上皮細胞、 肝細胞、 筋細 胞などへ i n V i V 0で高率に遺伝子導入できることが示されている (L. D. L a v r e r o, e t a l. , Hum. Ge n e Th e r a p y, 1, 2 41, 1990, B. Qu a n t i n. P r o c. Na t l . Ac a d. S c i . U. S. A. . 89, 2581, 1992) 。 その一方で、 本ベクターに は外来 *伝子を細胞内に導入した際にゲノム D N Aに組み込まれないという本質 的な性質があり、 ベクターを標的細胞に作用させても数週間、 長くても数力月で 遣伝子導入の効果はなくなつてしまう。 そのため遺伝子導入を頻回に繰り返す必 要があり、 患者への肉体的、 精神的な負担の増加、 抗アデノウイルス抗体の出現 による遺伝子導入効率の低下等が問題となっている。 また、 現在、 嚢胞性線維症 の治療のためにアデノウイルスベクタ一を経気管支鏡的に肺に投与する臨床試験 が開始されているが、 アデノウイルス粒子の免疫原性および細胞毒性に起因する とみられる炎症反応が発生するといわれている。  Adenovirus vectors have recently received the most attention because they allow the transfer of genes into non-dividing cells and can easily concentrate vectors to about 10 10. Recent studies have shown that this adenovirus vector can transfer genes into airway epithelial cells, hepatocytes, muscle cells, etc. at a high rate in vitro (LD Lavrero, et al., Hum. Gene Therapy, 1, 241, 1990, B. Qu antin. Proc. Natl. Acad. Sci. USA. 89, 2581, 1992). On the other hand, this vector has the essential property that, when a foreign * gene is introduced into cells, it will not be incorporated into genomic DNA. The effect of the introduction of messenger is lost in Rikitsuki. For this reason, gene transfer must be repeated frequently, which causes problems such as an increase in physical and mental burden on patients and a decrease in gene transfer efficiency due to the appearance of anti-adenovirus antibodies. In addition, clinical trials of transbronchially administering an adenoviral vector to the lung for the treatment of cystic fibrosis are currently underway, but this is thought to be due to the immunogenicity and cytotoxicity of adenoviral particles. It is said that an inflammatory reaction occurs.
—方、 アデノ随伴ウィルス (AAV : Ad e n o - a s s o c i a t e d v i r u s ) ベクターは、 外来遺伝子が標的細胞ゲノム DN A内に組み込まれるこ と、 病原性、 細胞毒性がないこと (N. Mu z y c z k a. C u r r e n t T o p i c s i n M i c r o b i o l o gy a n d I mmu n o l o gy. 158, 97, 1992) などを特徴としている。 さらに、 ウィルス粒子へのパ ッケージングゃゲノム DN Aへの遺伝子組み込みに必要な I TR ( I n v e r t e d Te rm i n a l R e p e a t ) は遺伝子発現のためのプロモーショ ン 活性がないことから、 目的に合った内部プロモーターを設定することにより、 遺 伝子発現のオン Zオフや組織特異的プロモーターの使用が可能となると同時に、 宿主範囲が広く様々な標的細胞 疾患に対応できるため、 MoMLVベクターに 代わる新しいウィルスベクターとして期待されている。 また、 野生型の AAVは 第 19染色体の特定の位 Sに組み込まれることも発見され (M S uwa d 0 g o a n d R. G. R o e d e r , P r o c. a t l . Ac a d. S c i . U. S. A. . 82. 4394. 1985 ) 、 遺伝子組み込み位置をターゲティ ングできるベクターとして注目されている。 On the other hand, the adeno-associated virus (AAV) vector has no foreign gene integrated into the target cell genome, DNA, and has no pathogenicity or cytotoxicity (N. Muzyczk a. Current T.). opicsin Microbiolo gy and Immu nolo gy. 158, 97, 1992). In addition, packaging into viral particles-ITR (Inverted Terminal Repeat) required for gene integration into genomic DNA has no promoter activity for gene expression. Setting allows for the on-off of gene expression and the use of tissue-specific promoters, Since it has a wide host range and can respond to various target cell diseases, it is expected to be a new viral vector replacing the MoMLV vector. It has also been discovered that wild-type AAV integrates at a specific position S on chromosome 19 (MS uwa d0 goand RG Roeder, Proc. Atl. Acad. Sci. USA. 82. 4394 1985), which has attracted attention as a vector that can target gene integration sites.
現在、 AAVベクターは用時、 ヘルパーブラスミ ドとベクタープラスミ ドをコ トランスフエクションすることにより調製されている (R. M. Ko t i n, H uma n Ge n e Th e r a p y, 5, 793. 1994) 。 し力、し、 リ ン 酸カルシウム法に代表される トランスフヱクション法は、 ①細胞への遺伝子導入 効率に限界があり、 臨床の場で必要とされる高い力価のウィルスベクターを得る ことは困難である、 ②いくつかの口ッ 卜に分けて卜ランスフヱクションを行った 場合に各ロッ ト間の遗伝子導入効率にばらつきが生じ、 一定の力価のウィルスべ クタ一を安定的に供給することができない、 ③卜ランスフヱクションの操作が煩 雑であるために一度に大量のベクターを調製するのは困難である、 ④大量の A A At present, AAV vectors are prepared at the time of use by co-transfection of a helper plasmid and a vector plasmid (R. M. Kotin, Human Gene Therapy, 5, 793. 1994). The transfection method typified by the calcium phosphate method has the following limitations: (1) The efficiency of gene transfer into cells is limited, and it is not possible to obtain a high-titer viral vector required in a clinical setting. Difficult. (2) When transfection is performed by dividing into several mouths, the transfection efficiency between the lots varies, stabilizing the virus vector with a constant titer. ③ It is difficult to prepare a large amount of vector at a time due to the complicated operation of transfection, ④ A large amount of AA
Vベクターを調製するためには、 それに見合う トランスフ Xクシヨン用の大量の プラスミ ドを調製する必要がある、 といういくつかの大きな問題点が存在する。 これらの問題を解決するための手段としてへルパープラスミ ドおよび またはパ ッケージングプラスミ ドをウィルスべクター産生細胞のゲノム DNAに組み込ん だパッケージング細胞株が考案された。 この細胞株は前記 DN Aがゲノム DN A に安定的に組み込まれているために細胞分裂の際にも娘細胞に受け継がれること から、 任意の規模で培養することにより必要に応じた量の組換えウィルスを安定 的に得ることができる。 一般的に、 これらパッケージング細胞株を樹立するため は、 ネオマイシン耐性遺伝子やハイグロマイシン耐性遗伝子等の薬物耐性遺伝子 を保持したヘルパープラスミ ドおよび/またはパッケージングプラスミ ドを、 ゥ ィルスベクターを産生させるための細胞にトランスフヱクシヨンする。 このとき 細胞内に導入された遺伝子は、 ほとんどがゲノム DNAに組み込まれることなく —時的に細胞内に存在した後消失するが、 非常に低い確率で遺伝子がゲノム DN Aに組み込まれることがある。 後者の細胞のみを選択的に得るために、 トランス フニクシヨンした薬物耐性遗伝子に対応する薬物の存在下、 長期間の培餮を行い、 パッケ一ジング細胞株を得る。 より高い力価のウィルスベクターを得るためにパ ッケージング細胞ゲノム DN A内でのコピー数がより多いクローンを選択するこ とが重要である。 これらの方法により、 既に MoML Vベクターにおいては P A 317 (A. D. M i l l e r, e t a 1. . S owa t. C e l l Mo 1. Ge n e t. 12. 175, 1986) や Ψ 2 (R. Ma nn, e t a 1. , C e l l, 33. 153, 1983 ) 等の種々のパッケージング細胞株が確立さ れ、 実際の遺伝子治療におけるベクター調製に利用されている。 一方、 AAVベ クタ一におけるパッケージング細胞株の確立はこれまでにいくつかのトライアル があるが未だ達成されておらず、 その確立が強く望まれている。 To prepare a V vector, there are several major problems: it is necessary to prepare a correspondingly large amount of plasmid for Transfection X-rays. As a means to solve these problems, packaging cell lines in which helper plasmid and / or packaging plasmid are integrated into the genomic DNA of virus vector-producing cells have been devised. This cell line is inherited by daughter cells during cell division because the DNA is stably integrated into the genomic DNA. The replacement virus can be obtained stably. Generally, in order to establish these packaging cell lines, a helper plasmid and / or a packaging plasmid carrying a drug resistance gene such as a neomycin resistance gene or a hygromycin resistance gene are produced, and a virus vector is produced. Transfection of cells to be performed. Most of the genes introduced into the cells are not integrated into the genomic DNA at this time—they are occasionally present in the cells and then disappear, but the genes can be integrated into the genomic DNA with very low probability . In order to selectively obtain only the latter cells, trans A long-term culture tie is performed in the presence of the drug corresponding to the drug-resistant gene that has been subjected to the functioning to obtain a packaging cell line. It is important to select a clone with a higher copy number in the packaging cell genome DNA to obtain a higher titer of the viral vector. By these methods, PA 317 (AD Miller, eta 1 .. Sowat. Cell Mo 1. Genet. 12. 175, 1986) and Ψ2 (R. eta 1., Cell, 33. 153, 1983), etc., and various packaging cell lines have been established and used for vector preparation in actual gene therapy. On the other hand, the establishment of a packaging cell line in the AAV vector has been tried but has not yet been achieved, and its establishment is strongly desired.
AAVベクターは、 遺伝子治療分野において使用実績のある MoMLVベクタ 一に代わる新規ウィルスベクターとして期待されているものの、 その調製方法は 完成されておらず、 現在は用時へルパープラスミ ドとベクタープラスミ ドをコ ト ランスフエクシヨンすることにより調製されている。 しかし、 この方法において は、 トランスフヱクシヨン効率が毎回一定でないためにベクターの力価が変動し て安定した供袷ができない、 トランスフェクションの操作が煩雑であるために大 量のベクターを調製することができない、 大量の A A Vベクターを調製する場合 はそれに見合う大量のプラスミ ドベクターを調製する必要がある、 という大きな 問題点が存在する。 Mo ML Vベクターにおいては、 既にへルパープラスミ ドと ベクタープラスミ ドをゲノム DNAに安定的に組み込んだパッケージング細胞株 が確立されているが、 AAVベクターにおけるパッケージング細胞株の確立は未 だ達成されていない。 発明の開示  The AAV vector is expected to be a new viral vector that replaces the MoMLV vector that has been used in the field of gene therapy, but its preparation method has not been completed, and at present, helper plasmid and vector plasmid are used at the time of use. It is prepared by transfusion. However, in this method, the transfection efficiency is not constant each time, so that the titer of the vector fluctuates and stable supply cannot be performed.The transfection operation is complicated, so that a large amount of vector is prepared. There is a major problem in that a large amount of AAV vector cannot be prepared, and a large amount of plasmid vector must be prepared to match it. For the MoMLV vector, a packaging cell line has been established in which helper plasmid and vector plasmid have been stably integrated into genomic DNA, but the establishment of a packaging cell line for the AAV vector has not yet been achieved. Absent. Disclosure of the invention
本発明は、 以上の通りの事情に鑑みてなされたものであり、 AAVベクターを 大量にかつ安定して調製するための方法を提供することを目的としている。  The present invention has been made in view of the circumstances described above, and has as its object to provide a method for stably preparing an AAV vector in a large amount.
本発明者らは上記目的を達成するために鋭意研究した結果、 新規な組換えアデ ノ随伴ウィルス (AAV) ベクタ一を製造するためのパッケージング細胞および 該パッケージング細胞を確立するためのプラスミ ドベクター、 さらに該プラスミ ドベクターを用いたパッケージング細胞の樹立方法、 および該パッケージング細 胞による組換え A A Vベクターの製造方法を開発することに成功し本発明を完成 した。 The present inventors have conducted intensive studies to achieve the above object, and as a result, a packaging cell for producing a novel recombinant adeno-associated virus (AAV) vector and a plasmid for establishing the packaging cell. Vector and the plasmid And succeeded in developing a method for establishing a packaging cell using a recombinant vector and a method for producing a recombinant AAV vector using the packaging cell, thereby completing the present invention.
すなわち、 本発明は、 野生型アデノ随伴ウィルスのゲノム 5 ' 側の I T R、 及 びゲノム 3 ' 側の I T R配列がアデノウイルスの I T R配列により置換されてい る組換えアデノ随伴ウィルスへルパープラスミ ドを提供する。  That is, the present invention provides a recombinant adeno-associated virus HELPER plasmid in which the ITR on the 5 ′ side of the genome of the wild-type adeno-associated virus and the ITR sequence on the 3 ′ side of the genome are replaced by the ITR sequence of the adenovirus. .
本発明はまた、 上記の組換えアデノ随伴ウィルスへルパープラスミ ドを動物細 胞にトランスフヱクシヨンし、 安定的に該組換えアデノ随伴ウィルスへルパープ ラスミ ドが細胞のゲノム中に組み込まれた組換えアデノ随伴ウィルスベクター産 生細胞を提供する。  The present invention also relates to a transfection of the above-mentioned recombinant adeno-associated virus helper plasmid into animal cells, wherein the recombinant adeno-associated virus helper plasmid is stably integrated into the cell genome. An adeno-associated virus vector producing cell is provided.
本発明はまた、 野生型アデノ随伴ウィルスのゲノム 5 ' 側の I T Rとゲノム 3 ' 側の I T R配列間の野生型アデノ随伴ウィルスのゲノム配列がプロモーターと ポリ Aシグナルを含む外来性遺伝子配列により置換されている組換えアデノ随伴 ウィルスベクタープラスミ ド を提供する。  The present invention also relates to a wild-type adeno-associated virus, wherein the genomic sequence of the wild-type adeno-associated virus between the 5 ′ ITR and the 3 ′ ITR sequence of the wild-type adeno-associated virus is replaced by an exogenous gene sequence containing a promoter and a poly-A signal. Provided a recombinant adeno-associated virus vector plasmid.
本発明はさらに、 上記の組換えアデノ随伴ウィルスベクターブラスミ ドを上記 の組換えアデノ随伴ウィルスベクター産生細胞にトランスフエクシヨ ンし、 安定 的に該組換えアデノ随伴ウィルスベクタープラスミ ドが該組換えアデノ随伴ウイ ルスベクター産生細胞のゲノム中に組み込まれた外来性遺伝子封入組換えアデノ 随伴ウィルスベクター産生細胞を提供する。  The present invention further comprises transfecting the above-mentioned recombinant adeno-associated virus vector plasmid into the above-mentioned recombinant adeno-associated virus vector-producing cell, and stably transforming the recombinant adeno-associated virus vector plasmid into the recombinant adeno-associated virus vector. Provided is a cell producing a recombinant adeno-associated virus vector producing an exogenous gene, which is integrated into the genome of the cell producing an associated virus vector.
本発明はさらに、 上記の組換えアデノ随伴ウィルスベクター産生細胞または外 来性遠伝子封入組換えアデノ随伴ウィルスベクター産生細胞にアデノウイルスを 感染させることにより組換えアデノ随伴ウィルスベクターまたは外来性遺伝子封 入組換えアデノ随伴ウィルスベクターの産生を増殖する方法を提供する。  The present invention further provides a recombinant adeno-associated virus vector or an exogenous gene-encapsulated cell by infecting the above-mentioned recombinant adeno-associated virus vector-producing cell or exogenous transgene-encapsulated recombinant adeno-associated virus vector-producing cell with an adenovirus. Methods for propagating the production of an incoming recombinant adeno-associated virus vector are provided.
本発明はさらに、 上記方法により増殖された組換えアデノ随伴ウィルスべクタ 一産生細胞または外来性遺伝子封入組換えアデノ随伴ウィルスベクター産生細胞 を凍結、 及び融解することにより組換えァデノ随伴ウィルスベクターまたは外来 性遗伝子封入組換えアデノ随伴ウィルスベクターを回収する方法を提供する。 本発明はさらに、 上記回収方法により得られる外来性遺伝子封入組換えアデノ 随伴ウィルスベクターを提供する。 図面の簡単な説明 The present invention further provides a recombinant adeno-associated virus vector or a foreign adeno-associated virus vector by freezing and thawing the recombinant adeno-associated virus vector-producing cells or the exogenous gene-encapsulated recombinant adeno-associated virus vector-producing cells grown by the above method. Provided is a method for recovering a sex-gene-encapsulated recombinant adeno-associated virus vector. The present invention further provides an exogenous gene-encapsulated recombinant adeno-associated virus vector obtained by the above recovery method. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 ヘルパープラスミ ド p A A VZ A dの構造を示す模式図である。  FIG. 1 is a schematic diagram showing the structure of helper plasmid pAAVZAd.
図 2は、 野生型アデノ随伴ウィルスの全ゲノム配列を組み込んだプラスミ ド p s u b 201の構造を示す模式図である。  FIG. 2 is a schematic diagram showing the structure of plasmid psub 201 into which the entire genome sequence of the wild-type adeno-associated virus has been incorporated.
図 3は、 組換えべ.クタ一プラスミ ド p N A Vの構造を示す模式図である。  FIG. 3 is a schematic diagram showing the structure of the recombinant vector plasmid pNAV.
図 4は、 P CRに用いた r e p遺伝子中のプライマーの位置を示す模式図であ る。  FIG. 4 is a schematic diagram showing the positions of primers in the rep gene used for PCR.
図 5は、 サザンプロティ ングの結果を示す図 (電気泳動の写真) である。  Figure 5 is a diagram (electrophoresis photograph) showing the results of Southern printing.
図 6は、 サザンブロティ ングに用いたプローブの c p遺伝子中の位置を示す。 図 7は、 サザンプロティ ングの結果を示す図 (電気泳動の写真) である。  FIG. 6 shows the position in the cp gene of the probe used for Southern blotting. FIG. 7 is a diagram (photograph of electrophoresis) showing the results of Southern printing.
図 8は、 実施例 4により調製した p N A Vパッケージング細胞の効果を示す図 (生物の形態を示す写真) である。  FIG. 8 is a diagram (photograph showing the morphology of an organism) showing the effect of the pNAV packaging cells prepared in Example 4.
図 9は、 実施例 5により調製した pNAVパッケージング細胞の効果を示す図 (生物の形態を示す写真) である。 発明を実施するための最良の形態  FIG. 9 is a diagram (photograph showing the morphology of an organism) showing the effect of the pNAV packaging cells prepared in Example 5. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の構成および好ましい態様について以下に詳しく説明する。  The configuration and preferred embodiments of the present invention will be described in detail below.
まず、 図 1に示される野生型アデノ随伴ウィルスのゲノム 5' 側の I TR、 及 びゲノム 3' 側の I TR配列がアデノウイルスの I TR配列により置換されてい る組換えアデノ随伴ウィルスへルパープラスミ ドを公知の方法により構築する。 ここで、 野生型アデノ随伴ウィルスの I TR ( i n v e r t e d t e r m i n a 1 r e p e a t ) とは、 アデノ随伴ウィルスのゲノム D N Aの両端に存在す る 145塩基の配列であって、 T型のヘアピン構造をもち、 ウィルスの複製、 パ ッケージング、 染色体への組み込みなどに必須である (S amu 1 s k i . R. e t a 1. . P r o c. Na t に Ac a d. S c i. USA. 79 : 2 077-2081. 1982) 。 アデノ随伴ウィルスの I TRにはプロモータ一 活性がなく、 この点でプロモーター活性をもつアデノウイルスの I TRと区別さ れる。 本発明では、 このアデノ随伴ウィルスのゲノム 5 ' 側の I T R、 及びゲノ ム 3 ' 側の I T Rをアデノウイルスの I T R配列により置換して組換えアデノ随 伴ウィルスへルパープラスミ ドを構築する。 First, the recombinant adeno-associated virus helper plasmid in which the ITR sequence at the 5 'end of the wild-type adeno-associated virus and the ITR sequence at the 3' end of the genome of the wild-type adeno-associated virus shown in Fig. 1 have been replaced by the ITR sequence of the adenovirus. Is constructed by a known method. Here, the ITR (inverted termina 1 repeat) of the wild-type adeno-associated virus is a sequence of 145 bases at both ends of the genomic DNA of the adeno-associated virus, which has a T-shaped hairpin structure and replicates the virus. R. eta 1 .. Proc. Nat, Ac ad. Sci. USA. 79: 2077-2081. 1982 ). The ITR of adeno-associated virus has no promoter activity and is distinguished from the ITR of adenovirus having promoter activity in this regard. It is. In the present invention, a recombinant adeno-associated virus is constructed by replacing the ITR on the 5′-side of the adeno-associated virus and the ITR on the 3′-side of the genome with the ITR sequence of the adenovirus.
ヘルパープラスミ ドにコ一ドされる I T RE列はプロモーター活性を有する動 物細胞由来あるいはウィルス由来の他の遺伝子配列と置換することが可能である 力、 好ましくはアデノウイルス由来の I T R配列を用いた方が後述するパッケ一 ジング細胞を樹立しやすく、 より好ましくは 8型アデノウイルス由来のものがよ りパッケージング細胞を樹立しゃすい。  The ITRE sequence encoded by the helper plasmid was used to replace an animal cell-derived or virus-derived gene sequence with promoter activity, preferably an adenovirus-derived ITR sequence. It is easier to establish packaging cells described later, and more preferably, those derived from adenovirus type 8 are more likely to establish packaging cells.
本発明の組換えアデノ随伴ウィルスへルパープラスミ ドは、 アデノウイルス由 来の I T Rを導入したことにより、 プロモーター活性をもつことになり、 したが つて、 アデノウイルスの共存がなく ともウィルスの殻を自ら産生することができ る。  The recombinant adeno-associated virus helper plasmid of the present invention has a promoter activity by introducing an ITR derived from adenovirus, and thus produces the virus shell itself without the coexistence of adenovirus. can do.
このようにして得られたヘルパープラスミ ドをネオマイシン耐性遗伝子、 ハイ グロマイシン耐性遗伝子等の薬物耐性遺伝子をコードしているプラスミ ド (以下 、 薬剤耐性プラスミ ドと略記する) と共に公知の方法 (例えば、 リ ン酸カルシゥ 厶法) により、 動物細胞にコ トランスフヱクションする。 ここで用いられる動物 細胞はアデノウイルスおよびアデノ随伴ウィルスが感染しうる細胞株が好ましい 。 また、 薬物耐性を獲得した細胞株が全てヘルパーブラスミ ドによる トランスフ ォーメーションをも受けていることを確実にするために、 コ トランスフエクショ ンの際に用いられる各ブラスミ ドの量は、 モル比でヘルパープラスミ ド 1 0に対 して薬剤耐性プラスミ ド 1程度が好ましい。 そして、 このトランスフヱクタン ト を薬剤耐性プラスミ ドに対応する薬剤の存在下で長期間培養して薬剤耐性株のみ を選択することにより、 安定的に組換えアデノ随伴ウィルスへルパープラスミ ド が細胞中に組み込まれた組換えアデノ随伴ウィルスベクター産生細胞が得られ、 これをパッケージング細胞として利用できる。  The helper plasmid thus obtained is used together with a plasmid encoding a drug resistance gene such as a neomycin resistance gene or a hygromycin resistance gene or the like (hereinafter abbreviated as drug resistance plasmid) together with a known method. Cotransfection of animal cells (for example, calcium phosphate method). The animal cell used herein is preferably a cell line that can be infected with adenovirus and adeno-associated virus. In addition, to ensure that all cell lines that have acquired drug resistance have also undergone transformation with helper brasmid, the amount of each brasmid used in cotransfection must be in molar ratios. It is preferable that the drug resistance plasmid is about 1 with respect to the helper plasmid 10. By culturing this transfectant for a long time in the presence of the drug corresponding to the drug-resistant plasmid and selecting only the drug-resistant strain, the recombinant adeno-associated virus helper plasmid is stably introduced into the cells. An integrated recombinant adeno-associated virus vector producing cell is obtained, which can be used as a packaging cell.
該パッケージング細胞は、 組換えアデノ随伴ウィルスベクターを製造するため に非常に有用性が高い。 このようなパッケージング細胞の具体例としては、 平成 6年 9月 1曰に、 H A— 1 0 NM Sとして日本国茨城県つくば市東 1丁目 1番 3号の工業技術院生命工学工業技術研究所に、 F E RM P— 1 4 5 0 0として 国内寄託されているものが挙げられる。 なお、 この寄託は受託番号 F ERM B P— 5459として国際寄託に移管された。 The packaging cells are very useful for producing a recombinant adeno-associated virus vector. As a specific example of such a packaging cell, September 1, 1994, HA-10NMS, 1-3-1, Higashi, Tsukuba, Ibaraki, Japan As FE RM P—1 450 0 Those deposited in Japan are listed. This deposit has been transferred to the International Deposit under the accession number F ERM BP-5459.
次いで上記の組換えアデノ随伴ウィルスベクター産生細胞 (パッケージング細 胞) を用いて、 新規の組換えアデノ随伴ウィルスベクターを製造することができ る。  Next, a novel recombinant adeno-associated virus vector can be produced using the above-described cells producing the recombinant adeno-associated virus vector (packaging cells).
まず、 p s u b 201に代表される野生型アデノ随伴ウィルスをコードするプ ラスミ ドのゲノム 5' 末端の I TR配列と 3' 末端の I TR配列の間にコードさ れるコ一ディ ングリージョンを欠失させ任意の外来性遺伝子を挿入したプラスミ ド (ベクタープラスミ ド) を構築する。 すなわち、 野生型アデノ随伴ウィルスの ゲノム 5' 側の I TRとゲノム 3' 側の I TR配列間の野生型アデノ随伴ウィル スのゲノム配列がプロモーターとポリ Aシグナルを含む外来性遺伝子配列により 置換されている組換えアデノ随伴ウィルスベクタープラスミ ドを公知の方法によ り構築する。 プロモーターとしては、 ヒ 卜単純へルぺスウィルス由来チミ ジンキ ナーゼのプロモーターが好ましい。 さらに、 ネオマイシン耐性遺伝子などの薬剤 耐性遺伝子を選択用に組み込みこともできる。  First, the coding region encoded between the ITR sequence at the 5 'end and the ITR sequence at the 3' end of the plasmid of the plasmid encoding the wild-type adeno-associated virus represented by psub201 was deleted. To construct a plasmid (vector plasmid) into which any foreign gene is inserted. That is, the genomic sequence of the wild-type adeno-associated virus between the ITR sequence at the 5 'end of the genome and the ITR sequence at the 3' end of the wild-type adeno-associated virus is replaced by an exogenous gene sequence containing a promoter and a poly-A signal. The recombinant adeno-associated virus vector plasmid is constructed by a known method. As the promoter, a promoter of human simple virus-derived thymidine kinase is preferable. In addition, drug resistance genes such as the neomycin resistance gene can be incorporated for selection.
このようにして得られたアデノ随伴ウィルスベクタープラスミ ド (ベクタープ ラスミ ド) を次いで上記アデノ随伴ウィルスベクター産生細胞 (パッケージング 細胞) に対して トランスフ クションする。 数日間培養した後、 公知の方法 (S amu 1 s k i R. J . , e t a 1. , J . V i o l . 63 3822 1 989 ) により、 目的とする組換えアデノ随伴ウィルスベクタープラスミ ドが組 換えアデノ随伴ウィルスベクター産生細胞のゲノム中に組み込まれた外来性遺伝 子封入組み込みアデノ随伴ウィルスベクター産生細胞を得ることができる。 この 方法によれば、 アデノ随伴ウィルスベクターを調製する際に トランスフエクショ ンされるプラスミ ドベクターはベクタープラスミ ドのみであり、 ヘルパープラス ミ ドは不要である。 得られる組換えアデノ随伴ウィルスベクターの力価は、 すで にへルパープラスミ ドが全ての細胞にィンテグレーションされていることから、 ヘルパープラスミ ドとべクターブラスミ ドをコ トランスフエクシヨンしたときの 力価に比べて高い。 また、 用いられる細胞の数を任意に変えることにより、 必要 に応じた量の組換えアデノ随伴ウィルスベクターを製造することができる。 —方、 上記パッケージング細胞は、 製造した組換え A A Vベクターを再度製造 するためにも利用される。 任意の規模で培養した該パッケージング細胞に対して 組換え A A Vベクターを感染させ、 数日間培養後、 公知の方法で組換え A A Vベ クタ一を得る。 The thus obtained adeno-associated virus vector plasmid (vector plasmid) is then transfected to the above-mentioned adeno-associated virus vector producing cell (packaging cell). After culturing for several days, the desired recombinant adeno-associated virus vector plasmid is transformed into the recombinant adenovirus by a known method (Samu1 ski R. J., eta 1., J. Viol. 63 3822 1989). An exogenous gene-encapsulated adeno-associated virus vector-producing cell integrated into the genome of the associated virus vector-producing cell can be obtained. According to this method, the plasmid vector transfected when preparing the adeno-associated virus vector is only the vector plasmid, and no helper plasmid is required. The titer of the resulting recombinant adeno-associated virus vector is the same as that of cotransfection of helper plasmid and vector blasmid, since helper plasmid has already been integrated into all cells. Higher than the price. In addition, by optionally changing the number of cells used, a recombinant adeno-associated virus vector can be produced in a necessary amount. On the other hand, the above-mentioned packaging cells are also used to re-produce the produced recombinant AAV vector. The packaging cells cultured on an arbitrary scale are infected with a recombinant AAV vector, cultured for several days, and then a recombinant AAV vector is obtained by a known method.
非常に大量の組換え A A Vベクターを製造する場合、 あるいは利用頻度の高い 組換え A A Vベクターを製造する場合、 ベクタープラスミ ドのトランスフヱクシ ヨンの煩雑さを解消するために、 ヘルパープラスミ ドとベクタープラスミ ドが共 にィンテグレーションされたパッケージング細胞が利用される。 本パッケージン グ細胞は前記へルパープラスミ ドと任意のベクタ一プラスミ ドを用いて、 前述と 同様の方法により確立することができる。  When producing very large amounts of recombinant AAV vectors, or when producing frequently used recombinant AAV vectors, helper plasmids and vector plasmids can be used to reduce the complexity of vector plasmid transfection. A packaging cell in which the cells are integrated together is used. This packaging cell can be established by the same method as described above using the helper plasmid and an arbitrary vector plasmid.
さらに、 上記組換えアデノ随伴ウィルスベクター産生細胞また外来性遺伝子封 入組換えアデノ随伴ウィルスベクター産生細胞にアデノウイルスを感染させるこ とによって、 組換えアデノ随伴ウィルスベクターまたは外来性遺伝子封入組換え アデノ随伴ウィルスベクターの産生を増幅することができる。  Further, by infecting the above-mentioned recombinant adeno-associated virus vector-producing cells or exogenous gene-encapsulated recombinant adeno-associated virus vector-producing cells with an adenovirus, a recombinant adeno-associated virus vector or an exogenous gene-encapsulated recombinant adeno-associated virus is produced. Viral vector production can be amplified.
また、 アデノ随伴ウィルスベクターは細胞の核膜中に入っているため、 凍結、 融解によりこれを遊出させて高い力価のベクターを得ることができる。 すなわち、 上記の組換えアデノ随伴ウィルスベクター産生細胞または外来性遺伝子封入組換 えアデノ随伴ウィルスベクター産生細胞を凍結、 及び融解することにより組換え アデノ随伴ウィルスベクターまたは外来性遺伝子封入組換えアデノ随伴ウィルス ベクターを回収することができる。 このような凍結、 融解の技術は当業者に公知 である。  In addition, since the adeno-associated virus vector is in the nuclear membrane of the cell, it can be translocated by freezing and thawing to obtain a high-titer vector. That is, the above-mentioned recombinant adeno-associated virus vector-producing cell or exogenous gene-encapsulated recombinant adeno-associated virus vector-producing cell is frozen and thawed to obtain a recombinant adeno-associated virus vector or exogenous gene-encapsulated recombinant adeno-associated virus. The vector can be recovered. Such freezing and thawing techniques are known to those skilled in the art.
以上詳しく説明した通り、 本発明によって、 A A Vベクターを大量に安定して 調製するための方法が提供される。 本発明の方法は極めて応用範囲が広く、 その 産業上の利用が期待できる。 実施例  As described in detail above, the present invention provides a method for stably preparing an AAV vector in a large amount. The method of the present invention has a very wide range of applications, and its industrial use can be expected. Example
以下、 実施例を示してこの発明をさらに詳しく説明するが、 この発明は以下の 例に限定されるものではない。  Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples.
実施例 1 : プラスミ ドの構築 全てのブラスミ ドの構築に関する操作は一般的な遗伝子操作法を用いて行なつ た。 ヘルパープラスミ ド pAAVZ Adは図 1に示すように野生型アデノ随伴ゥ ィルス (以下野生型 A A V) の全ゲノム配列を組み込んだプラスミ ド (p s u b 20 1、 図 2) の 5' 側 I TR配列、 及び 3' 側 I T R配列を 8型アデノウィル スの I TR配列により置換して構築したものである。 組換えベクタープラスミ ド pNAV (図 3) は p s u b 20 1の 5' 側 I T R配列と 3 ' 側 I T R配列の間 に含まれる野生型 AAVのゲノム配列をヒ ト単純へルぺスウィルス由来チミ ジン キナーゼのプロモーター及びネオマイシン耐性遺伝子で置換することにより構築 したものである。 実施例 2 :ヘルパープラスミ ドの細胞へのトランスフヱクションと薬剤による 卜 ランスフヱクタン トの選択 Example 1: Construction of Plasmid All the operations related to the construction of the brassamide were performed using a general gene manipulation method. As shown in FIG. 1, the helper plasmid pAAVZ Ad contains the ITR sequence on the 5 ′ side of the plasmid (psub 201, FIG. 2) incorporating the entire genome sequence of wild-type adeno-associated virus (hereinafter, wild-type AAV), and It was constructed by replacing the 3 'ITR sequence with the ITR sequence of type 8 adenovirus. Recombinant vector plasmid pNAV (Fig. 3) is a human simple virus-derived thymidine kinase derived from the wild-type AAV genomic sequence between the 5 'and 3' ITR sequences of psub201. And a neomycin resistance gene. Example 2: Transfection of helper plasmid into cells and selection of transfectants by drug
トランスフヱクションの方法はリ ン酸カルシウム法で行なった。 実施例 1によ つて得た pAAV/Ad 10 gとハイグロマイシン耐性遗伝子をコードする プラスミ ド LH/B 1 gに滅菌精製水、 及び塩化カルシウム水溶液を添加 して全量を 0. 5m 1にした。 この混合液を 0. 5m 1の HB S P锾衝液中に振 とうしながら滴下し、 30分間室温で放置してブラスミ ドーリ ン酸カルシウム共 沈物を得た。 9 cmのディ シュで約 70%コンフルェン卜の状態に培養された H e L a細胞の培養液中に上記共沈物を添加して C〇2ィンキュベータ一内で 4時 間インキュベーショ ン後、 新鮮な培養液に置換してさらに 2日間インキュベーシ ョンした。 The transfection method was performed by the calcium phosphate method. Sterile purified water and an aqueous solution of calcium chloride were added to 10 g of pAAV / Ad obtained in Example 1 and 1 g of plasmid LH / B encoding a hygromycin-resistant gene to make a total volume of 0.5 ml. did. This mixture was added dropwise to 0.5 ml of an HBSP buffer solution with shaking, and allowed to stand at room temperature for 30 minutes to obtain a co-precipitate of calcium brasmidolate. 9 cm Dish between about 70% Konfuruen 4:00 in culture medium of Bok H e L a cells cultured in the state of the above coprecipitate was added to C_〇 2 Inkyubeta within one Incubation after sucrose emissions of fresh The medium was replaced with a fresh culture solution and incubated for another 2 days.
次に、 細胞のゲノム DNA内に該組換え DNAが保持されたトランスフェクタ ントのみを選択するために、 ハイグロマイシンを培養液中に最終濃度が 500 s/m 1 になるように添加し 1 0日間ィンキュベーションを铳けた。 生き残った 細胞集団 (コロニー) を 1つづつ分離し新鮮な培養液中でさらにインキュベーシ ョンを続けハイグロマイシン耐性細胞株を得た。 実施例 3 : P C R法及びサザンプロティ ング法による遗伝子解析  Next, in order to select only those transfectants in which the recombinant DNA was retained in the genomic DNA of the cells, hygromycin was added to the culture solution to a final concentration of 500 s / m 1, and 10 Incubated for days. The surviving cell populations (colony) were separated one by one, and further incubation was performed in a fresh culture solution to obtain a hygromycin-resistant cell line. Example 3: Gene analysis by PCR method and Southern printing method
実施例 2によって得られたハイグロマイシン耐性株のゲノム DN A内にヘルパ 一プラスミ ドに由来する組換え遺伝子が安定的にィンテグレーションされている ことは、 PCR法及びサザンプロティ ング法により確認した。 細胞からのゲノム DNAの抽出は公知の方法 (B 1 i n N. an d D. W. S t a f f o r d, Nu c l e i c. Ac i d s Re s. 3, 2303) によって行った。 Helper is inserted into the genomic DNA of the hygromycin-resistant strain obtained in Example 2. The stable integration of the recombinant gene derived from one plasmid was confirmed by the PCR method and the Southern printing method. Extraction of genomic DNA from the cells was carried out by a known method (B1 in N. and DW Stafford, Nucl e.c.
P CR法でヘルパープラスミ ドに含まれる r e p遺伝子を検出した。 プライマ 一を図 4に示すような位置に設定し、 もし、 サンプル内に r e p遗伝子が含まれ る場合には 655 b pの遺伝子断片が増幅されるようにした。 結果を図 5に示す c クローン 8において r e p遺伝子に由来する 655 b pのバンドが認められた。 また、 P C R法によって r e p遺伝子が陽性であった細胞株のゲノム DNAに ついては、 さらにサザンプロティ ングによって解析を行った。 プローブは32 Pで 放射標識した c a p遺伝子の一部分 (図 6) を用いた。 細胞から抽出したゲノム DNAを制限酵素 Xb a Iにより消化し、 もし、 該ヘルパープラスミ ドがレア レンジメ ン トを起こすことなくゲノム DNAにインテグレーショ ンされている場 合には 4. 3 k b付近に放射活性が検出されるようにした。 結果を図 7に示す。 r e p遗伝子が陽性であったクローン 8のゲノム DNAは該ヘルパープラスミ ド に由来する遺伝子がレアレンジメントを起こすことなく安定してゲノム DN A配 列中にィンテグレーショ ンされていることが解った。 本細胞株を AAVZH e L aと命名した。 実施例 4 :榭立したパッケージング細胞へのベクタープラスミ ドのトランスフエ クション及び組換え A A Vベクターの調製 The rep gene contained in the helper plasmid was detected by the PCR method. The primer was set at the position shown in Fig. 4 so that a 655 bp gene fragment was amplified if the repII gene was included in the sample. As shown in FIG. 5, a 655 bp band derived from the rep gene was observed in c clone 8. In addition, genomic DNA of cell lines that were positive for the rep gene by PCR was further analyzed by Southern blotting. The probe used was a part of the cap gene radiolabeled with 32 P (Fig. 6). Genomic DNA extracted from cells is digested with the restriction enzyme XbaI, and if the helper plasmid is integrated into the genomic DNA without causing rare-rangement, it is emitted around 4.3 kb. Activity was detected. Fig. 7 shows the results. It was found that the genomic DNA of clone 8 in which the rep 解 gene was positive showed that the gene derived from the helper plasmid was stably integrated into the genomic DNA sequence without causing rearrangement. This cell line was named AAVZH e La. Example 4: Transfection of vector plasmid into established packaging cells and preparation of recombinant AAV vector
実施例 3において樹立したパッケージング細胞 (AAVZHe L a) を用い組 換え A A Vベクターの調製を試みた。 該パッケージング細胞を 9 c mの培養皿で 70%コンフレン 卜の状態になるまで培養した。 実施例 1で構築したベクタープ ラスミ ド pNAV 10 gを用い、 実施例 2に示した方法と同様の方法により プラスミ ドーリ ン酸カルシウム法共沈物を調製し、 これを上記培養皿に添加した c 4時間 C02ィンキュベータ一内に放置した後、 新鮮な培養液に置換してさらに 2日間インキュベーションした。 PBS (—) で 2度洗浄後、 卜リブシン一 ED TA混液により細胞を培養皿から剥がし、 新しい 9 c mの培養皿に再播種した。 細胞が培養皿に接着したのを確認後、 培養液中にネオマイシンの類縁物質であるUsing the packaging cells (AAVZHeLa) established in Example 3, preparation of a recombinant AAV vector was attempted. The packaging cells were cultured in a 9 cm culture dish until 70% confluent. Using Bekutapu Rasumi de pNAV 10 g constructed in Example 1, Example by a method similar to the method shown in 2 to prepare plasmid dollies phosphate calcium method coprecipitate, c 4 of this was added to the culture dishes after standing time C0 2 Inkyubeta in one, and further incubated for 2 days and replaced with fresh medium. After washing twice with PBS (-), the cells were detached from the culture dish with a mixture of tribcine and EDTA, and replated on a new 9 cm culture dish. After confirming that the cells have adhered to the culture dish, neomycin is a related substance in the culture solution.
G 418を最終濃度 1000 /m 1になるように添加した。 C02ィンキュ ベータ一内に 10日間放置後、 生き残った細胞集団 (コロニー) を 1つづつ分離 して新鮮な培養液中でさらにィンキュベーションを続け、 p NA Vベクターを産 生するパッケージング細胞 (p NAVパッケージング細胞) を得た。 G418 was added to a final concentration of 1000 / ml. C0 2 Inkyu after standing for 10 days in beta in one, surviving cell population (colony) and one by one separated further continued fin incubation in fresh culture medium, packaging of producing p NA V vector Cells (pNAV packaging cells) were obtained.
p N A Vベクターの調製は S a mu 1 s k iらの組換え A A Vベクター調製法 に従った。 実施例 5 :樹立したパッケージング細胞を用いた組換え A A Vベクターの增幅 該パッケージング細胞を用いた組換え A A Vベクターの增幅について検討した c 実施例 3において樹立したパッケージング細胞を 4 c mの培養皿に播種 ( 4 104細胞/培養皿) し、 実施例 4の方法により調製した組換え A A Vベクター (pNAVベクター、 力価 l x l 05c f u/m l ) 100 1を 10%FC Sを含む DMEM3m 1と共に添加した。 C 02インキュベーター内に 2日間放 置後、 PBS (-) で洗浄しトリプシン一 EDTA混液により細胞を剥離して 9 c mの培養皿に再播種した。 細胞が培養皿に接着したことを確認後、 G418を 最終濃度 1000 g/m 1となるように培養皿に添加した。 C〇 2インキュべ 一ター内に 10日間放置後、 生き残った細胞集団 (コロニー) を 1つづつ分離し て新鮮な培養液中でさらにィンキュベーションを続け p N A Vベクターを産生す るパッケージング細胞 ( p N A Vパッケージング細胞) を得た。 pNAVベクタ 一の調製法は実施例 4と同様に公知の組換え A A Vベクター調製法に従った。 実施例 6 :調製した組換え AAVベクターの検定 Preparation of the pNAV vector followed the recombinant AAV vector preparation method of Samulski et al. Example 5: Width of Recombinant AAV Vector Using Established Packaging Cells The width of the recombinant AAV vector using the packaging cells was examined. C The packaging cells established in Example 3 were cultured in a 4 cm culture dish. were seeded (4 104 cells / dish), recombinant AAV vectors prepared by the method of example 4 (PNAV vector titer lxl 0 5 cfu / ml) 100 1 together with DMEM3m 1 containing 10% FC S Was added. After incubation release C 0 2 incubator for 2 days, PBS (-) was washed with and re-seeded in culture dishes peeling to 9 cm cells by trypsin one EDTA mixture. After confirming that the cells adhered to the culture dish, G418 was added to the culture dish to a final concentration of 1000 g / m1. After standing 10 days C_〇 2 incubator base in one coater, the packaging that forms produce a p NAV vector continued for an additional fin incubation in fresh culture medium and one by one separated surviving cell population (colony) Cells (pNAV packaging cells) were obtained. The pNAV vector was prepared according to a known method for preparing a recombinant AAV vector, as in Example 4. Example 6: Assay of prepared recombinant AAV vector
得られたウィルス液の検定は、 以下に示す 3 T 3細胞を用いたバイオアツセィ 法により検定した。 4x 105個の 3 T 3細胞を 4 cmの培養皿に播種し、 一晚 C02インキュベーター内に放置した。 細胞を PBS (—) で 2度洗浄後、 10 0 1のウィルス液及び 10%F C Sを含む 3 m 1 の DM EMを添加した。 また、 このとき、 陰性対照.として、 トランスフヱクシヨンを行わなかった H e L a細胞 の上清液を添加した群についても以下の検討を同様に行った。 2日間 CO 2ィン キュベータ一内でィンキュベーシヨ ンし、 細胞を P B S (一) で洗浄後トリブシ ンー EDT Aで細胞を剥離して 9 cmの培養皿に再播種した。 細胞が培養皿に接 着したのを確認後、 G418を最終濃度 500 u /m 1となるように添加した c 10日間 C〇2インキュベーター内で培養し、 コロニーをクリスタルバイオレツ 卜によって染色した。 The assay of the obtained virus solution was performed by the bioassay method using 3T3 cells shown below. Seeded 4x 10 5 pieces of 3 T 3 cells in culture dishes 4 cm, and allowed to stand in Ichi晚C0 2 incubator. After washing the cells twice with PBS (-), 3 ml DMEM containing 1001 virus solution and 10% FCS was added. At this time, as a negative control, He La cells without transfection were used. For the group to which the supernatant was added, the following examination was performed in the same manner. The cells were incubated in a CO 2 incubator for 2 days, washed with PBS (1), detached with Tribcine-EDTA, and replated on a 9 cm culture dish. After confirming that the cells were contact wear culture dish, G418 were cultured at a final concentration of 500 u / m 1 and so as to the added c 10 days C_〇 2 incubator to stain the colonies by crystal bio column Bok.
図 8に示したように、 陰性対照群では G418に対して耐性を示すコロニーが 全く認められなかったのに対して、 実施例 4により調製された p N A Vパッケ一 ジング細胞を実施例 4に示した公知の方法により処理し、 得られたウイルス液を 3T3細胞に作用させた群においては多くのコロニーが観察された。 この結果は、 AA V/H e L aに対してベクタープラスミ ドを卜ランスフエクシヨンすること により組換え AAVベクターが調製できることを証明するものである。  As shown in FIG. 8, in the negative control group, no colonies showing resistance to G418 were found, whereas the pNAV packaging cells prepared in Example 4 were shown in Example 4. Many colonies were observed in the group treated with the known virus method and applying the obtained virus solution to 3T3 cells. This result proves that a recombinant AAV vector can be prepared by transfection of vector plasmid with AAV / HeLa.
図 9は実施例 5に示した方法で調製されたウィルス液を検定したものである。 陰性対照群ではコロニーが認められなかったのに対して、 p N A Vパッケージン グ細胞から得られたウィルス液を 3 T 3細胞に作用させた群においては多くのコ ロニーが観察された。 この結果は、 AAV/H e L aに対して組換え AA Vべク ターを感染させることにより新たに同じ組換え A A Vベクターが調製できること を証明するものである。  FIG. 9 shows an assay of the virus solution prepared by the method shown in Example 5. While no colonies were observed in the negative control group, many colonies were observed in the group in which the virus solution obtained from pNAV packaging cells was allowed to act on 3T3 cells. This result demonstrates that the same recombinant AAV vector can be newly prepared by infecting AAV / HeLa with the recombinant AAV vector.

Claims

請求の範囲 The scope of the claims
1 . 野生型アデノ随伴ウィルスのゲノム 5 ' 側の I T R、 及びゲノム 3 ' 側の I T R配列がアデノウイルスの I T R配列により置換されている組換えアデノ随伴 ウィルスへルパープラスミ ド。 1. Recombinant adeno-associated virus helper plasmid in which the ITR sequence at the 5 'end of the wild-type adeno-associated virus and the ITR sequence at the 3' end of the genome have been replaced by the ITR sequence of the adenovirus.
2. 請求項 1の組換えアデノ随伴ウィルスへルパープラスミ ドを動物細胞にトラ ンスフヱクシヨ ンし、 安定的に該組換えアデノ随伴ウィルスへルパープラスミ ド が細胞のゲノム中に組み込まれた組換えアデノ随伴ウィルスベクター産生細胞。 2. A recombinant adeno-associated virus vector in which the recombinant adeno-associated virus helper plasmid of claim 1 is transfused into animal cells, and the recombinant adeno-associated virus helper plasmid is stably integrated into the cell genome. Producing cells.
3. 野生型アデノ随伴ウィルスのゲノム 5 ' 側の I T Rとゲノム 3 ' 側の I T R 配列間の野生型アデノ随伴ウィルスのゲノム配列がプロモーターとボリ Aシグナ ルを含む外来性遗伝子配列により置換されている組換えアデノ随伴ウィルスべク タープラスミ ド 。 3. The genomic sequence of the wild-type adeno-associated virus between the 5 ′ ITR sequence and the 3 ′ ITR sequence of the wild-type adeno-associated virus is replaced by an exogenous gene sequence containing a promoter and Bol A signal. Recombinant adeno-associated virus vector plasmid.
4. 上記の組換えアデノ随伴ウィルスベクタープラスミ ドを上記の組換えアデノ 随伴ウィルスベクター産生細胞にトランスフヱクションし、 安定的に該組換えァ デノ随伴ウィルスベクタープラスミ ドが該組換えアデノ随伴ウィルスベクター産 生細胞のゲノム中に組み込まれた外来性遺伝子封入組換えアデノ随伴ウイルスべ クタ一産生細胞。  4. The above recombinant adeno-associated virus vector plasmid is transfected into the above-mentioned recombinant adeno-associated virus vector-producing cells, and the recombinant adeno-associated virus vector plasmid is stably transfected with the recombinant adeno-associated virus vector. An exogenous gene-encapsulated recombinant adeno-associated virus vector-producing cell integrated into the genome of a vector-producing cell.
5. 請求項 3の組換えアデノ随伴ウィルスベクター産生細胞または請求項 4の外 来性遺伝子封入組換えアデノ随伴ウィルスベクター産生細胞にアデノウイルスを 感染させることにより組換えアデノ随伴ウィルスベクターまたは外来性遺伝子封 入組換えアデノ随伴ウィルスベクターの産生を増殖する方法。  5. Recombinant adeno-associated virus vector or exogenous gene by infecting the recombinant adeno-associated virus vector producing cell of claim 3 or the exogenous gene-encapsulated recombinant adeno-associated virus vector producing cell of claim 4 with adenovirus. A method of propagating the production of an encapsulated recombinant adeno-associated virus vector.
6. 請求項 5の方法により増殖された組換えアデノ随伴ウィルスベクター産生細 胞または外来性遺伝子封入組換えアデノ随伴ウィルスベクター産生細胞を凍結、 及び融解することにより組換えアデノ随伴ウィルスベクターまたは外来性遺伝子 封入組換えアデノ随伴ウィルスベクターを回収する方法。  6. Freezing and thawing the recombinant adeno-associated virus vector-producing cell or the exogenous gene-encapsulated recombinant adeno-associated virus vector-produced cell grown by the method of claim 5 to thereby obtain the recombinant adeno-associated virus vector or exogenous cell. A method for recovering a gene-encapsulated recombinant adeno-associated virus vector.
7 . 請求項 6の方法により得られる外来性遺伝子封入組換えァデノ随伴ウィルス べクター。  7. A foreign vector-encapsulated recombinant adeno-associated virus vector obtained by the method of claim 6.
PCT/JP1996/000656 1995-03-16 1996-03-15 Novel cell strains WO1996028560A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU49548/96A AU4954896A (en) 1995-03-16 1996-03-15 Novel cell strains

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP8492395 1995-03-16
JP7/84923 1995-03-16

Publications (1)

Publication Number Publication Date
WO1996028560A1 true WO1996028560A1 (en) 1996-09-19

Family

ID=13844230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/000656 WO1996028560A1 (en) 1995-03-16 1996-03-15 Novel cell strains

Country Status (2)

Country Link
AU (1) AU4954896A (en)
WO (1) WO1996028560A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06504680A (en) * 1991-11-08 1994-06-02 リサーチ・コーポレイション・テクノロジーズ・インコーポレイテッド Safety vectors for gene therapy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06504680A (en) * 1991-11-08 1994-06-02 リサーチ・コーポレイション・テクノロジーズ・インコーポレイテッド Safety vectors for gene therapy

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HUMAN GENE THERAPY, (1994), Vol. 5, No. 7, KOTIN R.M., "Prospects for the Use of Adeno-Associated Virus as a Vector for Human Gene Therapy", pages 793-801. *
J. VIROL., (1989), Vol. 63, No. 9, SAMULSKI R.J. et al., "Helper-Free Stocks of Recombinant Adeno-Associated Viruses: Normal Integration Does not Require Viral Gene Expression", pages 3822-3828. *
PROC. NATL. ACAD. SCI. U.S.A., (1992), Vol. 89, WALSH C.E. et al., "Regulated High Level Expression of a Human Gamma-Globin Gene Introduced Into Erythroid Cells by an Adeno-Associated Virus Vector", pages 7257-7261. *
PROC. NATL. ACAD. SCI. U.S.A., (1994), Vol. 91, MILLER J.L. et al., "Recombinant Adeno-Associated Virus (rAAV)-Mediated Expression of a Human Gamma-Globin Gene in Human Progenitor-Derived Erythroid Cells", pages 10183-10187. *

Also Published As

Publication number Publication date
AU4954896A (en) 1996-10-02

Similar Documents

Publication Publication Date Title
US11866462B2 (en) Recombinant adeno-associated viral vectors
JP4063319B2 (en) Recombinant virus vector system
JP4117023B2 (en) Recombinant virus vector system
US5693531A (en) Vector systems for the generation of adeno-associated virus particles
Tamayose et al. A new strategy for large-scale preparation of high-titer recombinant adeno-associated virus vectors by using packaging cell lines and sulfonated cellulose column chromatography
US7220577B2 (en) Modified AAV
US6846665B1 (en) Method of producing a recombinant adeno-associated virus, suitable means for producing the same and use thereof for producing a medicament
Wu et al. Production of viral vectors for gene therapy applications
JP3533219B2 (en) Targeting vector particles
Buchholz et al. In vivo selection of protease cleavage sites from retrovirus display libraries
CN118581154A (en) Genome editing means for gene therapy of genetic disorders and gene therapy incorporating viral vectors
US6218186B1 (en) HIV-MSCV hybrid viral vector for gene transfer
US20040043490A1 (en) Cells to be used in producing virus vector, process for producing the same, and process for producing virus vector with the use of the cells
JP2001512689A (en) Methods for genetically modifying T cells
Bertran et al. Recombinant adeno-associated virus-mediated high-efficiency, transient expression of the murine cationic amino acid transporter (ecotropic retroviral receptor) permits stable transduction of human HeLa cells by ecotropic retroviral vectors
Goncalves A concise peer into the background, initial thoughts and practices of human gene therapy
WO1996029393A1 (en) Recombinant human immunodeficiency virus-producing cell
WO1996029096A1 (en) Gene transfer preparation
US7208315B2 (en) Compositions and methods for efficient AAV vector production
JP2002505085A (en) Method for producing purified AAV vector
CN114934070B (en) Mesenchymal stem cells and anti-inflammatory application thereof
WO2020187268A1 (en) Fusion protein for enhancing gene editing and use thereof
WO1996028560A1 (en) Novel cell strains
CN114941013A (en) Recombinant mesenchymal stem cells for treating diabetes pneumonia
EP3792367A1 (en) Method for the production of raav and method for the in vitro generation of genetically engineered, linear, single-stranded nucleic acid fragments containing itr sequences flanking a gene of interest

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA