WO1996025530A1 - High-strength ferritic heat-resistant steel excellent in resistance to embrittlement caused by intermetallic compound deposition - Google Patents

High-strength ferritic heat-resistant steel excellent in resistance to embrittlement caused by intermetallic compound deposition Download PDF

Info

Publication number
WO1996025530A1
WO1996025530A1 PCT/JP1996/000319 JP9600319W WO9625530A1 WO 1996025530 A1 WO1996025530 A1 WO 1996025530A1 JP 9600319 W JP9600319 W JP 9600319W WO 9625530 A1 WO9625530 A1 WO 9625530A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
strength
intermetallic compound
creep rupture
rupture strength
Prior art date
Application number
PCT/JP1996/000319
Other languages
French (fr)
Japanese (ja)
Inventor
Yasushi Hasegawa
Masahiro Ohgami
Hisashi Naoi
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to EP96902438A priority Critical patent/EP0758025B1/en
Priority to US08/722,057 priority patent/US5772956A/en
Priority to DE69608744T priority patent/DE69608744T2/en
Publication of WO1996025530A1 publication Critical patent/WO1996025530A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt

Definitions

  • the present invention relates to a heat-resistant steel-based steel, and more particularly, to an excellent creep rupture strength for use in a high-temperature and high-pressure environment and an excellent intermetallic compound precipitation embrittlement resistance. This is related to heat-resistant steels. Background art
  • the refractory materials used in thermal power plants are exposed to different environments depending on where they are used. In areas with high ambient temperatures, called so-called superheater tubes and reheater tubes, austenitic materials with particularly excellent corrosion resistance and strength at high temperatures, or 9 to 12 when considering steam oxidation resistance and thermal conductivity Martensite-based materials containing% Cr are often used.
  • JP-A-5-263196 JP-A-5-311342, JP-A-5-311343, and JP-A-5-311344.
  • the high-temperature strength of the heat-resistant steel is controlled by solid solution strengthening and precipitation strengthening.
  • Recent technologies have succeeded in increasing the high-temperature creep strength by blending the two in a well-balanced manner.
  • W and Mo are used for solid solution strengthening
  • Nb and V and their carbides or nitrides are used for precipitation strengthening. It has been confirmed that it is effective for improving the break rupture strength.
  • the only practical problem with these additive elements that are effective in improving the strength is that any of them is a ferrite stabilizing element, so the Cr equivalent value of the material is increased, and as a result, the structure becomes Instead of a single phase, it will have a two-phase structure of delta-plated tempered martensite.
  • the two-phase structure has characteristics different from those of the martensite single-phase structure, and is often avoided when uniform material properties are required.
  • a problem may occur in a material having insufficient corrosion resistance.
  • a single-phase structure in the material of a heat-resistant steel that achieves high strength by obtaining a tempered martensite structure.
  • the usual method is to add a certain amount of a stabilizing element and to design the components to obtain a martensitic single-phase structure during cooling after solution heat treatment.
  • Austenitic stabilizing elements used for the above purposes include Ni, Mn, Co, Cu, C, N, etc., where high-temperature creep strength is important.
  • Ni and Mn are excluded from the selection candidate elements based on the reason for inducing a decrease in the creep strength, and Cu is excluded in order to ensure weldability.
  • N and N greatly change the mechanical properties of a material, its design is often determined in consideration of the balance between the strength and toughness of the material. In many cases, it cannot be used for addition. Therefore, Co, which is expensive but does not significantly affect other mechanical properties, is finally selected and is being used in recent heat-resistant steels.
  • the present inventors have paid attention to the new ferritic heat-resistant steel technology mainly composed of W, Mo, and Co. Depending on the chemical composition and heat treatment conditions, ferrite-based heat-resistant steel In general, Cr 4 was not observed. Mo 2 . Co 2. W,. An intermetallic compound having a composition of C 2 —Fe (presumed to be a subspecies of ASTM force number 23-196) was found to precipitate. Therefore, this intermetallic compound precipitates in a Cr steel to which Co, W, and Mo are added in a practical use environment, and its morphology is film-like, and 50 m along the grain boundary. It has been found that it can grow rapidly to oversize.
  • the creep rupture strength is about 30% as the estimated rupture strength outside the straight line for 100,000 hours, and the ductile brittle fracture fiber temperature rises about 40 ° C in the toughness test after aging. This was also found as a result of the study.
  • the present invention has the above-mentioned disadvantages of the conventional steel, namely, approximately Cr. 3 ⁇ 4 ⁇ 0 2 . (; 0 2. ⁇ ⁇ . Prevents precipitation of intermetallic compounds having a composition of C 2 _Fe, contains 8 to 13% of Cr, has sufficient corrosion resistance, and contains Mo and W. It is an object of the present invention to provide a new frit-based heat-resistant steel having a Co-containing martensite single-phase structure having high creep rupture strength. According to
  • Nb 0.002 to 0.500% N 0.002 to 0.200%
  • One or two of the above may be used alone or in combination.
  • the present invention provides a high-strength, high-temperature, heat-resistant steel excellent in intermetallic compound precipitation embrittlement resistance, characterized in that the balance is limited to Fe and inevitable impurities.
  • Figure 1 is a perspective view showing the steel sheet specimen, the rolling direction, and the sampling direction of the creep rupture strength evaluation specimen;
  • Figure 2 is a graph showing the effect of adding Ti, Zr and Ca, Ba, in steel
  • Fig. 3 is a graph showing the effect of adding Ti, Zr and La, Ce, Y in steel
  • Figure 4 shows the results of the creep rupture strength evaluation of the steel of the present invention and an example of the estimated creep rupture strength outside the straight line at 650 ° C for 100,000 hours based on the results. This is a graph shown in comparison with the data band of the break rupture strength;
  • Figure 5 is a graph showing the relationship between W content in steel and creep rupture strength;
  • Figure 6 is a graph showing the relationship between the Co content in steel and creep rupture strength.
  • C is necessary for maintaining strength, but if it is less than 0.01%, it is not enough to secure strength, and if it exceeds 0.30%, the heat affected zone is hardened significantly, causing low temperature cracking during welding. Therefore, the range was set to 0.01 to 0.30%. C is contained in trace amounts even in harmful intermetallic compounds, but there is no correlation between the amount of added C and the precipitation conditions of intermetallic compounds.
  • Si is important for ensuring oxidation resistance and is a necessary element as a deoxidizing agent.However, if it is less than 0.01%, it is insufficient, and if it exceeds 0.80%, the creep strength is reduced, so 0.02 to 0.80 % Range.
  • Mn is a component necessary not only for deoxidation but also for maintaining strength. To obtain a sufficient effect, it is necessary to add 0.20% or more, and if it exceeds 1.50%, the creep strength may decrease. Therefore, the range was set to 0.20 to 1.50%.
  • Cr is an element essential to the oxidation resistance, Cr 2 combines with C at the same time
  • the lower limit was set to 8.00%, and the upper limit was set to 13.00% in order to stably obtain a martensite single phase structure.
  • W is an element that significantly increases creep strength by solid solution strengthening, and significantly enhances long-term creep strength especially at high temperatures of 500 ° C or higher. .
  • a large amount of Laves phase intermetallic compound precipitates mainly at the grain boundaries and significantly lowers the base metal toughness and the creep strength, so the upper limit was set to 5.00%. If the content is less than 0.10%, the effect of solid solution strengthening is insufficient, so the lower limit was set to 0.10%.
  • Co is an effective element for lowering the Cr equivalent value without significantly changing the mechanical properties and the thermodynamic properties such as the transformation point of the material, such as the strength and toughness.
  • No effect as the austenite stability element is less than 0.05%, if added over 6.00%, the intermetallic compound of Co entity (schematic C ⁇ 4 . ⁇ 2 (:. ⁇ 2 . ⁇ ⁇ . (Different in structure and properties from the intermetallic compound having the composition of 2 —Fe) precipitates in large quantities, and the creep rupture strength of the base material is reduced. Therefore, the addition range is determined to be 0.05 to 6.00%. did.
  • Mo is also an element that enhances high-temperature strength by solid solution strengthening. ⁇ Less than 0.01%, the effect is insufficient.If it is more than 3.00%, a large amount of Mo 2 C-type carbide precipitates, or Fe 2 Mo-type The upper limit was set to 3.00% because the toughness of the base metal may be significantly reduced when it is added simultaneously with W due to the precipitation of intermetallic compounds.
  • V is an element that remarkably enhances the high-temperature creep rupture strength of steel, whether it precipitates as a precipitate or forms a solid solution in the matrix like W.
  • the content is less than 0.002%, precipitation strengthening by V precipitates is insufficient, and if it exceeds 0.800%, clusters of V-based carbide or carbonitride are formed, resulting in a decrease in toughness.
  • the range was 0.002 to 0.800%.
  • Nb enhances high-temperature strength by precipitation as MX-type carbide or carbonitride, and also contributes to solid solution strengthening. If less than 0.002%, the effect of addition was not recognized, and if added more than 0.500%, coarse precipitation occurred and the toughness was reduced, so the addition range was limited to 0.002 to 0.500%.
  • N forms solid solution in the matrix or precipitates as nitride or carbonitride.
  • VN, NbN, or their respective carbonitrides they contribute to both solid solution strengthening and precipitation strengthening. Addition of less than 0.002% hardly contributes to strengthening, and the upper limit of addition is set to 0.200% in consideration of the upper limit value that can be added to molten steel depending on the amount of Cr added up to 13%.
  • Ca, Ba, Mg, Y, Ce, and La Ca: 0.0005-0.0050%, Ba: 0.0003-0.0020%, Mg: 0.0005-0.0050%, La: 0.001-0.020% , Ce: 0.001 to 0.020%, and Y: 0.001 to 0.020%, are just one of the fundamental technologies of the present invention.
  • W 1. Prevents about 90% of grain boundary film-like precipitation of intermetallic compounds having the composition of C 2 —Fe.
  • Ca, Ba, and Mg hardly form a solid solution in steel, and exist mainly as sulfides near the grain boundaries or as inclusions in the form of oxides inside the grain boundaries. Each is strong 0 2 . (: 0 2 ..
  • La, Ce, and Y exist in the form of sulfides and oxides, or dissolve in steel, and suppress the formation of intermetallic compounds by the same mechanism as Ca, Ba, and Mg.
  • Y, Ce, and La in a solid solution state have a higher effect of suppressing the formation of intermetallic compounds than in a precipitation state.
  • the effect is the highest in the above component range, the effect is insufficient when the amount is less than the lower limit, and when the amount is excessive, the hot workability decreases with Ca, Ba, and Mg, and Y, Ce, La defines the above-mentioned component range because a large number of coarse oxides are generated and the toughness is reduced.
  • Ti and Zr have a strong carbide-producing ability to capture C, a trace constituent element in the intermetallic compound, and as a result, have the function of spheroidizing the intermetallic compound.
  • This technique is also the basis of the present invention. Less than 0.002% The effect is insufficient, and if added over 0.500%, coarse carbides, carbonitrides, or nitrides precipitate and reduce toughness, so the addition range was limited to 0.002 to 0.500%.
  • steels in the chemical composition range of the present invention are melted with V1M (vacuum induction heating furnace) and EF (electric furnace), and A0D (Ar oxygen blow decarburizer), V0D (Vacuum exhaust oxygen blow decarburizer), LF (Molten steel ladle refiner) and use it continuously or with a normal steel ingot
  • V1M vacuum induction heating furnace
  • EF electric furnace
  • A0D Ar oxygen blow decarburizer
  • V0D Vauum exhaust oxygen blow decarburizer
  • LF Molten steel ladle refiner
  • creep rupture strength evaluation specimens (2) were sampled in the direction shown in Fig. 1 for the hot rolled material in parallel with the rolling direction (3) of the steel sheet (2), and from the forged ingots, Similarly, creep rupture test pieces were collected from the longitudinal direction of the test pieces. Intermetallic compound precipitation behavior of test materials In order to investigate this, a block test piece was cut out from the creep-ruptured test piece, the substrate was electrolyzed with an organic acid, and the precipitate was separated and extracted by suction filtration. The extracted residue is quantitatively analyzed using a calibration curve by atomic absorption spectroscopy or gas chromatography, or
  • X-ray diffraction qualitative analysis confirmed the presence of each precipitate.
  • thin film samples or replica samples were prepared as necessary, and the structure of the precipitates was analyzed and the morphology was observed.
  • the creep rupture strength was evaluated by estimating the creep rupture strength of 100,000 hours outside the straight line based on the creep rupture strength measurement data for 10,000 hours at 650 ° C. Assuming the boiler operating conditions at 650 ° C and 350 bar, the OOMPa was set to the standard value, taking into account the stress applied to parts such as steam piping and heat exchangers. That is, if the creep rupture strength estimated at 650 ° C. and 100,000 hours by linear extrapolation exceeds l OOMPa, there is almost no precipitation of intermetallic compounds, and the creep rupture which is the object of the present invention is intended. It was considered that the strength was achieved.
  • FIG. 4 is a diagram plotting the concentration of each additive element when one of them is added.
  • the number in the plot circle indicates the creep rupture strength (MPa).
  • Element symbols below or beside the circle indicate the selected additive element type.
  • one kind of Ti or Zr and one kind of Ca, Mg, Ba When the amount of addition is within the range, that is, when Ti and Zr are 0.002 to 0.500%, Ca and Mg are 0.0005 to 0.0050%, and Ba is 0.0003 to 0.0020%, the creep rupture strength exceeds lOOMPa, and the Microscopic analysis and quantification and qualitative analysis of electrolytic extraction residues indicated that the specimens with a creep rupture strength of 10 OMPa or more were roughly rated C. It was confirmed that no intermetallic compound having a composition of MO CO W-Fe (presumed to be a subspecies of ASTM force No. 23-196) was not precipitated.
  • the steel to which Ti, Zr, Ca, Mg, and Ba are added has approximately Cr 4 . Mo 2 . Co 2. W,.
  • An intermetallic compound having a composition of C 2 —Fe was detected, and its presence was confirmed.
  • Figure 3 shows the results of performing exactly the same experiment, replacing the Ca, Mg, and Ba groups in Figure 2 with Y, Ce, and La.
  • the behavior of ⁇ , Ce, La was exactly the same as Ca, Mg, Ba.
  • Y, Ce, and La are 0.001 to 0.020% and Ti and Zr are 0.002 to 0.500%, out of a straight line at 650 ° C for 100,000 hours.
  • the estimated creep rupture strength is lOOMPa or more, and 4 . Mo 2 . Co 20 W,.
  • An intermetallic compound having a composition of C 2 —Fe was not detected.
  • steels containing Ti, Zr, Ca, Mg, and Ba that are out of the component range of the present invention
  • the method for melting the steel of the present invention is not limited at all, and the process to be used may be determined in consideration of the chemical composition and cost of the steel, such as a converter, an induction heating furnace, an arc melting furnace, and an electric furnace. .
  • the production process is equipped with a hopper to which Ti, Zr, Ca, Mg, Ba, Y, Ce, and La can be added, and the oxygen concentration in the molten steel does not slag as an oxide of these added elements. It must be capable of controlling it sufficiently low. Therefore, it is useful to apply an LF or vacuum degassing device equipped with an Ar bubble blowing device, an arc heating device, or a plasma heating device, which enhances the effects of the present invention.
  • Other manufacturing processes specifically rolling, heat treatment, pipe making, welding, cutting, inspection, etc., which are considered necessary or useful for manufacturing steel or steel products according to the present invention, shall be applied. It does not hinder the effects of the present invention.
  • the steel of the present invention can also be provided in the form of a thick plate and a thin plate, and can be used in the form of various heat-resistant materials by using a plate subjected to a necessary heat treatment. Which has no effect on the effects of the present invention. Absent.
  • powder metallurgy methods such as HIP (hot isostatic pressing and sintering), C1P (cold isostatic pressing) and sintering can be applied. Therefore, it is possible to obtain products of various shapes by applying the necessary heat treatment after the molding process.
  • the above steps can be applied by repeating each step a plurality of times within a range necessary for sufficiently exhibiting material properties, and do not affect the effects of the present invention at all.
  • Example 1 The above steps may be appropriately selected and applied to the steel manufacturing process of the present invention.
  • Example 2 The above steps may be appropriately selected and applied to the steel manufacturing process of the present invention.
  • 300 tons, 120 tons, 60 tons, 1 ton, 300 kg, 100 kg, and 50 kg of the steel of the present invention were respectively blasted using a normal blast furnace iron-converter blowing method, VIM, EF or a laboratory vacuum melting equipment.
  • VIM normal blast furnace iron-converter blowing method
  • EF EF or a laboratory vacuum melting equipment
  • the ingot was made from 50 kg to 50 ton.
  • the obtained flakes, billets and ingots can be hot rolled or hot forged into plates of 50 thickness and 12 plates, or round billets.
  • a tube with an outer diameter of 74 mm and a wall thickness of 10 mm was manufactured by hot extrusion, and a pipe with an outer diameter of 380 mm and a wall thickness of 50 IMI was manufactured by seamless rolling. Furthermore, the thin plate was formed and subjected to ERW welding to form an ERW steel pipe with an outer diameter of 280 mm and a wall thickness of 12 mm.
  • All plates and tubes were subjected to solution heat treatment at a maximum heating temperature of 950 to 1350 ° C for 1 hour, then air-cooled, and then tempered at 750 to 800 hours for 1 hour.
  • the creep characteristics of the base metal were determined as shown in Fig. 1 by cutting out a 6 mm-diameter creep test specimen ⁇ and measuring the creep rupture strength at 650 ° C for up to 10,000 hours. The obtained data was extrapolated to a straight line to obtain a creep rupture strength of 100,000 hours.
  • Figure 4 shows the measurement results of the base metal's break rupture strength up to 10,000 hours, together with an extrapolated straight line of the estimated break strength at 100,000 hours. It can be seen that the high-temperature creep rupture strength of the steel of the present invention is higher than that of the conventional 9-12% Cr steel.
  • Figure 5 shows the W content and creep rupture estimated at 650 ° C for 100,000 hours. It is a figure which shows the relationship of intensity. When the W content is between 0.10 and 5.00%, the creep rupture strength exceeds 100MPa.
  • Figure 6 shows the relationship between the Co content and the estimated creep rupture strength at 650 ° C for 100,000 hours. If the Co content is 0.05% or more, the creep rupture strength becomes 100MPa or more.If the addition exceeds 6.0%, an intermetallic compound mainly composed of Co is precipitated and cleaved. Breaking strength decreases O
  • the 98th and 99th steels have no added Ti and Zr, and are outlined. 2 . .. (; 0 2 "/ 1 (2 - intermetallic compound having a 6 a composition Chikaraku, in click Li-loop test 650 ° C, precipitated in the grain boundaries in the full I Lum shape, 650 .C,
  • 109 steel had no added C and thus had low creep rupture strength.No. 110 steel had too much W and a large amount of Fe 2 W type Laves phase was precipitated, resulting in creep rupture strength. No. 111 steel lacked Co, a large amount of delta fluoride remained, and the creep rupture strength decreased.Steel No. 112 was excessive in Co and was mainly composed of Co. This is an example in which a compound (Fe 2 Co) is precipitated and the creep rupture strength is reduced.
  • CRS 650 ° C, chestnut up to 10,000 f ⁇ f3 ⁇ 4 ⁇ ], Naotsuru ⁇ Estimated 650 ° C, 100,000 estimated chestnut
  • Presence or absence of intermetallic compound X-ray diffraction of intermetallic ⁇ with composition Cr.nMo, nCo 20 W, nC 2 —Fe, by mm
  • the present invention has excellent high-temperature creep strength, contains Co, and has a high C temperature of 600 ° C. or more. Mo Co ⁇ W ,. (I) To provide a martensitic heat-resistant steel which does not generate an intermetallic compound having a composition of Fe.

Abstract

A martensitic heat-resistant steel that is excellent in high-temperature creep strength, contains Co, and does not yield an intermetallic compound with an approximate composition of Cr40Mo20Co20W10C2-Fe at a temperature as high as 600 °C. The deposition of the above intermetallic compound is suppressed and an excellent high-temperature creep strength is secured by adding minute amounts of Mg, Ba, Ca, Y, Ce, La, etc., and small amounts of Ti and Zr to a heat-resistant steel containing at least 8 % Cr and also Co, Mo and W.

Description

明 細 書 耐金属間化合物析出脆化特性の優れた高強度フ ユライ ト系耐熱鋼 技術分野  Description High-strength, heat-resistant steel with excellent intermetallic compound precipitation embrittlement resistance Technical field
本発明は、 フ ユライ ト系耐熱鋼に関する ものであり、 さ らに詳し く は高温 · 高圧環境下で使用するク リ ープ破断強度に優れ、 かつ耐 金属間化合物析出脆化特性の優れたフ 二ライ ト系耐熱鋼に関する も のである。 背景技術  The present invention relates to a heat-resistant steel-based steel, and more particularly, to an excellent creep rupture strength for use in a high-temperature and high-pressure environment and an excellent intermetallic compound precipitation embrittlement resistance. This is related to heat-resistant steels. Background art
近年、 火力発電ボイラの操業条件は高温、 高圧化が著し く 、 一部 では 566°C、 31 6 ba rでの操業が計画されている。 将来的には 649 °C 、 352 ba rまでの条件が想定されており、 使用する材料には極めて苛 酷な条件となっている。  In recent years, the operating conditions of thermal power boilers have been remarkably high temperature and high pressure, and in some cases, operation at 566 ° C and 316 bar is planned. In the future, conditions up to 649 ° C and 352 bar are assumed, and the materials used will be extremely harsh.
火力発電プラ ン トに使用される耐熱材料は、 その使用される部位 によって曝される環境が異なる。 いわゆる過熱器管、 再熱器管と呼 ばれる雰囲気温度の高い部位では高温での耐食性、 強度に特に優れ たオーステナイ 卜系材料、 あるいは耐水蒸気酸化特性、 熱伝導率を 考慮する場合は 9〜12 %の C rを含有したマルテンサイ ト系の材料が 多く使用される。  The refractory materials used in thermal power plants are exposed to different environments depending on where they are used. In areas with high ambient temperatures, called so-called superheater tubes and reheater tubes, austenitic materials with particularly excellent corrosion resistance and strength at high temperatures, or 9 to 12 when considering steam oxidation resistance and thermal conductivity Martensite-based materials containing% Cr are often used.
近年では新たに Wを高温強度向上に発効させるベく 添加した新し い耐熱材料が研究開発、 実用化されており、 発電プラ ン トの高効率 化の達成に大き く 寄与している。 例えば特開昭 63 - 89644号公報、 特 開昭 6 1— 23 1 1 39号公報、 特開昭 62— 297435号公報等に、 Wを固溶強 化元素と して使用するこ とで、 従来の Mo添加型フ ライ ト系耐熱鋼 に比較して飛躍的に高いク リ ープ強度を達成できるフ ユライ ト系耐 熱鋼に関する開示がある。 これらは多く の場合、 組織が焼き戻しマ ルテンサイ ト単相であり、 耐水蒸気酸化特性に優れたフ ェライ ト鋼 の優位性と、 高強度の特性が相俟って、 次世代の高温 · 高圧環境下 で使用される材料と して期待されている。 その一例と して、 高温ク リ 一プ強度の優れた 12% Cr鋼が特開平 5 — 263196号公報、 特開平 5 — 311342号公報、 特開平 5 — 311343号公報、 特開平 5 — 311344号公 報、 特開平 5311345号公報、 特開平 5 — 311346号公報に開示され ている。 In recent years, new heat-resistant materials that have been newly added to W to improve the high-temperature strength have been researched, developed, and put into practical use, and have greatly contributed to achieving higher efficiency of power generation plants. For example, the use of W as a solid solution strengthening element has been disclosed in JP-A-63-89644, JP-A-6-231139, JP-A-62-297435, etc. Compared to conventional Mo-containing heat-resistant heat-resistant steel, it is possible to achieve a dramatically higher creep strength. There is disclosure about hot steel. In many cases, these have a single-phase tempered martensite structure, which combines the advantages of ferritic steel with excellent steam oxidation resistance and high-strength properties to create next-generation high-temperature and high-pressure. It is expected as a material used in the environment. As an example, 12% Cr steel having excellent high-temperature creep strength is disclosed in JP-A-5-263196, JP-A-5-311342, JP-A-5-311343, and JP-A-5-311344. Gazette, JP-5 - 3113 45 JP, Hei 5 - disclosed in 311346 JP.
フ ライ 卜系耐熱鋼の高温強度は固溶強化と析出強化によ って支 配される。 最近の技術では両者をバラ ンス良く 配合して高温ク リ ー プ強度を高めるこ とに成功しており、 W, Moが固溶強化に、 Nb, V とその炭化物あるいは窒化物が析出強化による ク リ ーブ破断強度向 上に有効であるこ とが確認されている。 これらの強度向上に有効な 添加元素の唯一の実用上の問題点は、 いずれもフ ェ ラ イ ト安定化元 素であるために材料の Cr当量値を高め、 結果と して組織がマルテン サイ ト単相ではなく 、 デルタフ ヱライ トー焼き戻しマルテ ンサイ ト の 2相組織になってしま う。 2相組織はマルテ ンサイ ト単相組織と は異なる特性を有し、 材料特性と して均質性が要求される場合には 敬遠されるこ とが多い。 また、 各種元素の相間分配が起こるため、 耐食性が不十分な材料では問題とされるこ とがある。  The high-temperature strength of the heat-resistant steel is controlled by solid solution strengthening and precipitation strengthening. Recent technologies have succeeded in increasing the high-temperature creep strength by blending the two in a well-balanced manner. W and Mo are used for solid solution strengthening, and Nb and V and their carbides or nitrides are used for precipitation strengthening. It has been confirmed that it is effective for improving the break rupture strength. The only practical problem with these additive elements that are effective in improving the strength is that any of them is a ferrite stabilizing element, so the Cr equivalent value of the material is increased, and as a result, the structure becomes Instead of a single phase, it will have a two-phase structure of delta-plated tempered martensite. The two-phase structure has characteristics different from those of the martensite single-phase structure, and is often avoided when uniform material properties are required. In addition, since interphase distribution of various elements occurs, a problem may occur in a material having insufficient corrosion resistance.
従って、 フ ユライ ト系耐熱鋼のうち焼き戻しマルテ ンサイ ト組織 を得て高強度を達成する材料においては組織を単相にするこ とが必 須であって、 材料に構成成分と してオーステナイ ト安定化元素をあ る程度添加し、 固溶化熱処理後の冷却時にマルテンサイ 卜単相組織 を得るべく成分設計するのが通常の方法である。  Therefore, it is indispensable to use a single-phase structure in the material of a heat-resistant steel that achieves high strength by obtaining a tempered martensite structure. The usual method is to add a certain amount of a stabilizing element and to design the components to obtain a martensitic single-phase structure during cooling after solution heat treatment.
以上の目的で使用されるオーステナイ ト安定化元素と しては Ni, Mn, Co, Cu, C, N等があり、 高温ク リ ープ強度が重視される場合 には N i , Mnがク リ ーブ強度低下を誘引する理由に基づき選択候補元 素から除外され、 溶接性を確保する場合には Cuが除外される。 じ と Nは材料の機械的特性を大幅に変化させるため、 その設計は材料の 強度 · 靱性バラ ンスを考慮して決定するこ とが多く 、 積極的なマル テンサイ ト単相組織獲得のための添加には使用できない場合が多い 。 従って、 高価ではあるが他の機械的特性に大きな影響を及ぼさな い Coが最終的に選択されて、 最近のフ ユライ ト系耐熱鋼に使用され つつある。 Austenitic stabilizing elements used for the above purposes include Ni, Mn, Co, Cu, C, N, etc., where high-temperature creep strength is important. In this case, Ni and Mn are excluded from the selection candidate elements based on the reason for inducing a decrease in the creep strength, and Cu is excluded in order to ensure weldability. Since N and N greatly change the mechanical properties of a material, its design is often determined in consideration of the balance between the strength and toughness of the material. In many cases, it cannot be used for addition. Therefore, Co, which is expensive but does not significantly affect other mechanical properties, is finally selected and is being used in recent heat-resistant steels.
本発明者らはこの新しい W, Mo, Coを主体とするフ ェライ ト系耐 熱鋼の技術に注目 し、 研究を続けた結果、 Co, Mo, Wを同時に添加 した 8 %以上の C rを含有する鋼においては、 化学成分と熱処理条件 によって、 600°C以上のク リ一プ破断試験で 1 万時間以上が経過し た鋼中の粒界に、 従来までにフ ェライ ト系耐熱鋼では観察されてい なかった概略 Cr 4。 Mo 2。 Co 2。 W ,。 C 2— Feなる組成を有する金属間化合 物 (ASTM力一 ド番号 23— 196 の亜種と推定) が析出するこ とを見い だした。 この金属間化合物は従って、 Co, W , Moを複合添加した Cr 鋼中に、 実使用環境下で析出 し、 しかもその形態がフ ィ ルム状であ り、 かつ粒界に沿って 50 mを超える大きさにまで急速に成長する 場合があることを見いだした。 The present inventors have paid attention to the new ferritic heat-resistant steel technology mainly composed of W, Mo, and Co. Depending on the chemical composition and heat treatment conditions, ferrite-based heat-resistant steel In general, Cr 4 was not observed. Mo 2 . Co 2. W,. An intermetallic compound having a composition of C 2 —Fe (presumed to be a subspecies of ASTM force number 23-196) was found to precipitate. Therefore, this intermetallic compound precipitates in a Cr steel to which Co, W, and Mo are added in a practical use environment, and its morphology is film-like, and 50 m along the grain boundary. It has been found that it can grow rapidly to oversize.
この金属間化合物が析出した材料ではク リ一プ破断強度が 10万時 間直線外揷推定破断強度で約 30 %、 時効後の靱性試験で延性脆性破 面繊維温度が約 40°C上昇する こ とをも研究の結果見いだした。  In the material in which this intermetallic compound is precipitated, the creep rupture strength is about 30% as the estimated rupture strength outside the straight line for 100,000 hours, and the ductile brittle fracture fiber temperature rises about 40 ° C in the toughness test after aging. This was also found as a result of the study.
従って本研究結果から、 8 %以上の Crを含有する高強度 Co, Mo, W複合添加耐熱鋼では該金属間化合物の析出を抑制する技術を開発 しない限りは、 650°C、 350気圧という苛酷な環境での使用が困難 である こ とが明らかとなつた。  Therefore, from the results of this study, in high-strength Co, Mo, W composite-added heat-resistant steel containing 8% or more of Cr, unless the technology to suppress the precipitation of the intermetallic compound was developed, the severeness of 650 ° C and 350 atm was considered. It has become clear that it is difficult to use it in various environments.
さ らなる本発明者らの研究によって、 このフ ィ ルム状金属間化合 物は、 従来脱硫材と して鋼中の Sを固定する目的で添加されてきた Mg, Ba, Ca, Y, Ce, La等を同時に微量添加する場合、 70%程度の 析出が抑制されるこ と、 さ らには強力な炭化物形成元素のう ち Tiと Zrの少量添加によって金属間化合物中に極く 僅か含有される Cが固 定され、 その結果金属間化合物が変質して、 僅かに析出する場合も 球状化するこ とを見いだした。 両者の技術は同時に用いられなけれ ば完全に金属間化合物の析出を抑制するこ とは困難であり、 どちら か一方のみを用いた場合にはク リ ープ破断強度で約 20%の低下、 延 性脆性破面繊維温度で 20°Cの上昇を避けるこ とはできない。 発明の開示 Further research by the present inventors revealed that this film-like intermetallic compound If a small amount of Mg, Ba, Ca, Y, Ce, La, etc., which has been added as a desulfurizing material to fix S in steel at the same time, is added simultaneously, precipitation of about 70% is suppressed. Furthermore, the addition of a small amount of the strong carbide-forming elements, Ti and Zr, fixes the C contained in the intermetallic compound in a very small amount. It was also found that spheroidization occurs when precipitation occurs. If both techniques are not used simultaneously, it is difficult to completely suppress the precipitation of intermetallic compounds, and when only one of them is used, the creep rupture strength is reduced by about 20% and the elongation is reduced. A rise of 20 ° C in brittle fracture surface fiber temperature cannot be avoided. Disclosure of the invention
本発明は上記のような従来鋼の欠点、 即ち概略 Cr 。¾<02。(;02。\^。 C2 _ Feなる組成を有する金属間化合物の析出を抑制し、 8 〜13%の Crを含有して十分な耐食性を有し、 かつ Mo, Wを含有して高いク リ 一プ破断強度を有する Co含有のマルテンサイ ト単相組織を有する、 新しいフ ライ ト系耐熱鋼を提供するこ とを目的とする ものである 上記の目的を達成するために、 本発明によれば、 The present invention has the above-mentioned disadvantages of the conventional steel, namely, approximately Cr. ¾ <0 2 . (; 0 2. \ ^. Prevents precipitation of intermetallic compounds having a composition of C 2 _Fe, contains 8 to 13% of Cr, has sufficient corrosion resistance, and contains Mo and W. It is an object of the present invention to provide a new frit-based heat-resistant steel having a Co-containing martensite single-phase structure having high creep rupture strength. According to
C : 0.01〜0.30%、 Si 0.01〜0.80%、  C: 0.01 ~ 0.30%, Si 0.01 ~ 0.80%,
Mn : 0.20〜1.50%、 Cr 8.00〜 13.00 %、  Mn: 0.20 to 1.50%, Cr 8.00 to 13.00%,
Mo : 0.01〜3.00%、 W 0. 10〜5.00%、  Mo: 0.01 ~ 3.00%, W 0.10 ~ 5.00%,
Co : 0.05〜6· 00%、 V 0.002〜0.800 %  Co: 0.05 to 600%, V 0.002 to 0.800%
Nb: 0.002〜0.500 % N 0.002〜0.200 %  Nb: 0.002 to 0.500% N 0.002 to 0.200%
を含有し、 加えて Containing, in addition to
Ca 0.0005~0.0050%、 Ba 0.0003〜0, 0020%  Ca 0.0005 ~ 0.0050%, Ba 0.0003 ~ 0, 0020%
Mg 0.0005- 0.0050%、 La 0.001〜0.020 %  Mg 0.0005- 0.0050%, La 0.001-0.020%
Ce 0.001〜0.020 %、 Y 0.001〜0.020 % の 1 種または 2種以上を Ca, Ba, Mgについては析出物の形態で、 La , Ce, Yは析出物または固溶状態で含有し、 同時に Ce 0.001 to 0.020%, Y 0.001 to 0.020% Of Ca, Ba, and Mg in the form of precipitates, and La, Ce, and Y in the form of precipitates or solid solutions.
Ti : 0.002〜0.500 %、 Zr : 0.002- 0.500 %  Ti: 0.002-0.500%, Zr: 0.002-0.500%
の 1 種または 2種を単独であるいは複合して含有し、 あるいはさ ら Contains one or two of the above, alone or in combination, or
Ni : 0. 10〜2, 00%、 Cu : 0. 10〜2.00% Ni: 0.10 to 2.00%, Cu: 0.10 to 2.00%
の 1 種または 2種を単独であるいは複合して含有し、 加えてさ らに One or two of the above may be used alone or in combination.
B : 0.0005〜0.010 % B: 0.0005 to 0.010%
を含有し、 Containing
P : 0.030%以下、 S : 0.010%以下、  P: 0.030% or less, S: 0.010% or less,
0 : 0.020%以下  0: 0.020% or less
に制限し、 残部が Feおよび不可避の不純物よりなるこ とを特徴とす る耐金属間化合物析出脆化特性の優れた高強度フ ライ 卜系耐熱鋼 が提供される。 図面の簡単な説明 The present invention provides a high-strength, high-temperature, heat-resistant steel excellent in intermetallic compound precipitation embrittlement resistance, characterized in that the balance is limited to Fe and inevitable impurities. BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 鋼板試験片と圧延方向、 ク リ ープ破断強度評価試験片の 採取方向を示す斜視図であり ;  Figure 1 is a perspective view showing the steel sheet specimen, the rolling direction, and the sampling direction of the creep rupture strength evaluation specimen;
図 2 は、 鋼中の Ti, Zrと Ca, Ba, 複合添加効果を示すグラフで あり ;  Figure 2 is a graph showing the effect of adding Ti, Zr and Ca, Ba, in steel;
図 3 は、 鋼中の Ti, Zrと La, Ce, Y複合添加効果を示すグラフで あり ;  Fig. 3 is a graph showing the effect of adding Ti, Zr and La, Ce, Y in steel;
図 4 は、 本発明鋼のク リ ープ破断強度評価結果と、 結果に基づく 650°C、 10万時間直線外揷推定ク リ ーブ破断強度の一例を従来の 9 〜12%Cr鋼のク リ ーブ破断強度のデータバン ドとの比較で示したグ ラフであり ; 図 5 は、 鋼中 W含有量と ク リ ープ破断強度の関係を示すグラフで あり ; Figure 4 shows the results of the creep rupture strength evaluation of the steel of the present invention and an example of the estimated creep rupture strength outside the straight line at 650 ° C for 100,000 hours based on the results. This is a graph shown in comparison with the data band of the break rupture strength; Figure 5 is a graph showing the relationship between W content in steel and creep rupture strength;
図 6 は、 鋼中 Co含有量と ク リ ープ破断強度の関係を示すグラフで める。 発明を実施するための最良の形態  Figure 6 is a graph showing the relationship between the Co content in steel and creep rupture strength. BEST MODE FOR CARRYING OUT THE INVENTION
本発明において各成分範囲を前記のごと く 限定した理由を以下に 説明する。  The reason for limiting each component range in the present invention as described above will be described below.
Cは強度の保持に必要であるが、 0.01%未満では強度確保に不+ 分であり、 0.30%超の場合には溶接熱影響部が著し く 硬化し、 溶接 時低温割れの原因となるため、 範囲を 0.01〜0.30%と した。 Cは有 害な金属間化合物にも極微量含有されてはいるが、 添加する C量と 金属間化合物の析出条件には相関がない。  C is necessary for maintaining strength, but if it is less than 0.01%, it is not enough to secure strength, and if it exceeds 0.30%, the heat affected zone is hardened significantly, causing low temperature cracking during welding. Therefore, the range was set to 0.01 to 0.30%. C is contained in trace amounts even in harmful intermetallic compounds, but there is no correlation between the amount of added C and the precipitation conditions of intermetallic compounds.
Siは耐酸化性確保に重要で、 かつ脱酸剤と して必要な元素である が、 0.01%未満では不十分であって、 0.80%超ではク リ ープ強度を 低下させるので 0.02〜0.80%の範囲と した。  Si is important for ensuring oxidation resistance and is a necessary element as a deoxidizing agent.However, if it is less than 0.01%, it is insufficient, and if it exceeds 0.80%, the creep strength is reduced, so 0.02 to 0.80 % Range.
Mnは脱酸のためのみでな く 強度保持上も必要な成分である。 効果 を十分に得るためには 0.20%以上の添加が必要であり、 1.50%を超 すと、 ク リ ープ強度が低下する場合があるので、 0.20〜1.50%の範 囲と した。  Mn is a component necessary not only for deoxidation but also for maintaining strength. To obtain a sufficient effect, it is necessary to add 0.20% or more, and if it exceeds 1.50%, the creep strength may decrease. Therefore, the range was set to 0.20 to 1.50%.
Crは耐酸化性に不可欠の元素であって、 同時に C と結合して Cr2 Cr is an element essential to the oxidation resistance, Cr 2 combines with C at the same time
3C6, Cr7C3等の形態で母材マ 卜 リ ッ ク ス中に微細析出するこ とでク リ ーブ強度の上昇に寄与している。 耐酸化性の観点から、 下限は 8. 00%と し、 上限は、 マルテンサイ ト単相組織を安定して得るために 13.00%と した。 3 C 6, and contributes in the form of such Cr 7 C 3 in the base material Ma Bok Li Tsu fine precipitates child in click scan to increase the click rie blanking strength. From the viewpoint of oxidation resistance, the lower limit was set to 8.00%, and the upper limit was set to 13.00% in order to stably obtain a martensite single phase structure.
Wは固溶強化により ク リ ープ強度を顕著に高める元素であり、 特 に 500°C以上の高温において長時間のク リ ーブ強度を著し く 高める 。 5.00%を超えて添加すると Laves相型の金属間化合物と して粒界 を中心に大量に析出し母材靱性、 ク リ ーブ強度を著し く低下させる ため、 上限を 5.00%と した。 また、 0. 10%未満では固溶強化の効果 が不十分であるので下限を 0. 10%と した。 W is an element that significantly increases creep strength by solid solution strengthening, and significantly enhances long-term creep strength especially at high temperatures of 500 ° C or higher. . When added in excess of 5.00%, a large amount of Laves phase intermetallic compound precipitates mainly at the grain boundaries and significantly lowers the base metal toughness and the creep strength, so the upper limit was set to 5.00%. If the content is less than 0.10%, the effect of solid solution strengthening is insufficient, so the lower limit was set to 0.10%.
Coは、 材料の強度靱性等を機械的特性、 変態点等の熱力学的特性 に大きな変化を与えることなく、 Cr当量値を下げる有効な元素であ る。 0.05%未満ではオーステナイ ト安定性元素と して効果がなく、 6.00%を超えて添加する場合には、 Co主体の金属間化合物 (概略 C Γ4。ΜΟ2。(:Ο2。Ι^。( 2— Feなる組成を有する金属間化合物とは構造 · 性 質が異なる) が多量に析出し、 母材のク リ一プ破断強度が低下する ことから、 添加範囲を 0.05〜 6.00%に決定した。 Co is an effective element for lowering the Cr equivalent value without significantly changing the mechanical properties and the thermodynamic properties such as the transformation point of the material, such as the strength and toughness. No effect as the austenite stability element is less than 0.05%, if added over 6.00%, the intermetallic compound of Co entity (schematic C Γ 4 .ΜΟ 2 (:. Ο 2 .Ι ^. (Different in structure and properties from the intermetallic compound having the composition of 2 —Fe) precipitates in large quantities, and the creep rupture strength of the base material is reduced. Therefore, the addition range is determined to be 0.05 to 6.00%. did.
Moも固溶強化により、 高温強度を高める元素である力《、 0.01%未 満では効果が不十分であり、 3.00%超では Mo2C型の炭化物の大量析 出、 あるいは Fe2Mo型の金属間化合物の析出によって Wと同時に添 加した場合に母材靱性を著しく低下させる場合があるので上限を 3. 00%と した。 Mo is also an element that enhances high-temperature strength by solid solution strengthening. <Less than 0.01%, the effect is insufficient.If it is more than 3.00%, a large amount of Mo 2 C-type carbide precipitates, or Fe 2 Mo-type The upper limit was set to 3.00% because the toughness of the base metal may be significantly reduced when it is added simultaneously with W due to the precipitation of intermetallic compounds.
Vは析出物と して析出しても、 Wと同様にマ 卜 リ ッ クスに固溶し ても、 鋼の高温ク リープ破断強度を著しく高める元素である。 本発 明においては 0.002%未満では V析出物による析出強化が不十分で あり、 逆に 0.800%を超えると V系炭化物あるいは炭窒化物のクラ スターが生成して靱性低下をきたすために添加の範囲を 0.002〜0. 800 %と した。  V is an element that remarkably enhances the high-temperature creep rupture strength of steel, whether it precipitates as a precipitate or forms a solid solution in the matrix like W. In the present invention, if the content is less than 0.002%, precipitation strengthening by V precipitates is insufficient, and if it exceeds 0.800%, clusters of V-based carbide or carbonitride are formed, resulting in a decrease in toughness. The range was 0.002 to 0.800%.
Nbは MX型の炭化物、 も しく は炭窒化物と しての析出によって高温 強度を高め、 また固溶強化にも寄与する。 0.002%未満では添加効 果が認められず、 0.500%を超えて添加すると、 粗大析出し、 靱性 を低下させるので添加範囲を 0.002〜0.500 %に限った。  Nb enhances high-temperature strength by precipitation as MX-type carbide or carbonitride, and also contributes to solid solution strengthening. If less than 0.002%, the effect of addition was not recognized, and if added more than 0.500%, coarse precipitation occurred and the toughness was reduced, so the addition range was limited to 0.002 to 0.500%.
Nはマ ト リ ッ クスに固溶あるいは窒化物、 炭窒化物と して析出し 、 主に VN, NbN、 あるいはそれぞれの炭窒化物の形態をとつて固溶 強化にも析出強化にも寄与する。 0.002%未満の添加では強化への 寄与は殆どなく 、 また最大 13%までの Cr添加量に応じて溶鋼中に添 加できる上限値を考慮して添加限度を 0.200%と した。 N forms solid solution in the matrix or precipitates as nitride or carbonitride. However, mainly in the form of VN, NbN, or their respective carbonitrides, they contribute to both solid solution strengthening and precipitation strengthening. Addition of less than 0.002% hardly contributes to strengthening, and the upper limit of addition is set to 0.200% in consideration of the upper limit value that can be added to molten steel depending on the amount of Cr added up to 13%.
Ca, Ba, Mg, Y, Ce, Laのうち 1 種または 2種以上をそれぞれ Ca : 0.0005-0.0050% , Ba: 0.0003- 0.0020% , Mg: 0.0005~ 0.0050 %、 La : 0· 001〜0.020 %、 Ce: 0.001〜0.020 %、 Y : 0.001〜 0.020 %の範囲に限定して添加することは、 まさに本発明の根幹技 術の 1 つをなすものであり、 概略 C 。 Mo2。Co2。W1。C2— Feなる組成 を有する金属間化合物の粒界フィ ルム状析出を約 90%防止する。 Ca , Ba, Mgは鋼中に殆ど固溶せず、 主に粒界近傍に硫化物あるいは粒 界粒内を問わず酸化物の形態で介在物とて存在する。 それぞれは強 力な 02。(:02。 。(:2— Fe金属間化合物生成抑制元素であり、 硫 化物あるいは酸化物の形態から一次的に分解して当該金属間化合物 の格子構造を切断し、 別の球状金属間化合物となるか、 も しく は金 属間化合物を鋼中に再固溶させる。 One or more of Ca, Ba, Mg, Y, Ce, and La: Ca: 0.0005-0.0050%, Ba: 0.0003-0.0020%, Mg: 0.0005-0.0050%, La: 0.001-0.020% , Ce: 0.001 to 0.020%, and Y: 0.001 to 0.020%, are just one of the fundamental technologies of the present invention. Mo 2 . Co 2. W 1. Prevents about 90% of grain boundary film-like precipitation of intermetallic compounds having the composition of C 2 —Fe. Ca, Ba, and Mg hardly form a solid solution in steel, and exist mainly as sulfides near the grain boundaries or as inclusions in the form of oxides inside the grain boundaries. Each is strong 0 2 . (: 0 2 .. (: 2 — Fe intermetallic compound formation inhibiting element, which temporarily decomposes from the form of sulfide or oxide and cuts the lattice structure of the intermetallic compound to form another spherical intermetallic compound. Compound or intermetallic compound is re-dissolved in steel.
La, Ce, Yは硫化物、 酸化物の形態で存在しても、 鋼中に固溶し ても金属間化合物の生成を Ca, Ba, Mgと同様な機構で抑制する。 こ の場合、 固溶状態の Y , Ce, Laは析出状態の場合に比較して金属間 化合物生成抑制効果が高い。 いずれも上記の成分範囲で最も効果が 高く、 下限添加量未満の添加量では効果が不十分、 超過の添加量で は、 Ca, Ba, Mgでは熱間加工性を低下させ、 Y, Ce, Laは粗大な酸 化物が多数生成して靱性が低下するため、 上記の成分範囲を定めた ものである。  La, Ce, and Y exist in the form of sulfides and oxides, or dissolve in steel, and suppress the formation of intermetallic compounds by the same mechanism as Ca, Ba, and Mg. In this case, Y, Ce, and La in a solid solution state have a higher effect of suppressing the formation of intermetallic compounds than in a precipitation state. In any case, the effect is the highest in the above component range, the effect is insufficient when the amount is less than the lower limit, and when the amount is excessive, the hot workability decreases with Ca, Ba, and Mg, and Y, Ce, La defines the above-mentioned component range because a large number of coarse oxides are generated and the toughness is reduced.
Ti, Zrは金属間化合物中の微量構成元素である Cを強い炭化物生 成能で奪取し、 結果と して当該金属間化合物を球状化する働きを有 する。 この技術も本発明の根幹にかかわる。 いずれも 0.002%未満 では効果が不十分であり、 0.500%を超えて添加した場合は粗大な 炭化物、 炭窒化物、 あるいは窒化物が析出して靱性を低下させるた め、 添加範囲を 0.002〜 0.500 %に限定した。 Ti and Zr have a strong carbide-producing ability to capture C, a trace constituent element in the intermetallic compound, and as a result, have the function of spheroidizing the intermetallic compound. This technique is also the basis of the present invention. Less than 0.002% The effect is insufficient, and if added over 0.500%, coarse carbides, carbonitrides, or nitrides precipitate and reduce toughness, so the addition range was limited to 0.002 to 0.500%.
Tiおよび Zrの 1 種または 2種と Ca, Ba, Mg, Ce, Y, Laの 1 種ま たは 2種以上添加の技術は同時に適用しなければ Cr4。Mo2。Co20 C2— Fe金属間化合物の生成を完全に抑制することができず、 目的と する機械的特性は確保できない。 この複合添加技術は本発明に不可 欠の要素であり、 かつ最大の特徴である。 この複合添加効果は以下 の実験に基づいて確認した。 Ti and one or a Ca of Zr, Ba, Mg, Ce, Y, addition of technology one or two or more kinds of La is to be applied at the same time Cr 4. Mo 2 . Co 2. 0 The formation of C 2 —Fe intermetallic compounds cannot be completely suppressed, and the desired mechanical properties cannot be secured. This composite addition technique is an essential element of the present invention and is the most significant feature. This composite addition effect was confirmed based on the following experiment.
Ti, Zr, Ca, Ba, Mg, La, Ce, Yを除いて、 本発明の化学成分範 囲の鋼を V1M (真空誘導加熱炉) 、 EF (電気炉) で溶製し、 必要に応 じて A0D(Ar酸素吹き脱炭精鍊装置) 、 V0D (真空排気酸素吹き脱炭装 置) 、 LF (溶鋼取鍋精鍊装置) を選んで使用 し、 連続铸造装置も し く は通常の鋼塊铸造装置にて铸造し、 連続铸造铸片の場合には最大 210 X 1600mmの断面を有するスラブ、 あるいはそれ以下の断面積を 有するビレツ トと し、 通常の鋼塊铸造装置による铸造では種々の大 きさのイ ンゴッ 卜と した後に鍛造あるいは熱間圧延して、 後の調査 に支障のない大きさの鋼塊試験片 (10kg〜20ton の種々の大きさを 有する) に加工した。  Except for Ti, Zr, Ca, Ba, Mg, La, Ce, and Y, steels in the chemical composition range of the present invention are melted with V1M (vacuum induction heating furnace) and EF (electric furnace), and A0D (Ar oxygen blow decarburizer), V0D (Vacuum exhaust oxygen blow decarburizer), LF (Molten steel ladle refiner) and use it continuously or with a normal steel ingot A slab having a maximum cross section of 210 X 1600 mm or a billet having a cross-sectional area smaller than that in the case of a continuous slab is formed by a steel slab. After being formed into ingots of size, they were forged or hot-rolled to form ingots (having various sizes of 10 kg to 20 tons) of a size that would not interfere with the subsequent investigation.
スラブ、 ビレッ ト、 鋼塊試験片は、 1100°Cにて 1 時間の固溶化処 理 (焼準処理) を施し、 空冷にしてマルテンサイ 卜組織に焼入れた 後、 本発明鋼の概略の A1変態点以下である 780°Cに再加熱して 1 時 間焼き戻し、 後に空冷した。  Slabs, billets, and ingots were subjected to a solution treatment (normalizing treatment) at 1100 ° C for 1 hour, air-cooled, and quenched into a martensite structure. It was reheated to 780 ° C, below the temperature, tempered for one hour, and then air-cooled.
熱処理の終了した試験片から、 熱間圧延材料では図 1 に示す要領 で、 鋼板①の圧延方向③と平行に、 ク リープ破断強度評価試験片② を採取し、 鍛造した鋼塊試験片からは、 試験片の長手方向より同様 にク リープ破断試験片を採取した。 試験材の金属間化合物析出挙動 を調査するために、 ク リ ープ破断した試験片からブロ ッ ク試験片を 切り出し、 有機酸による基材の電解を行い、 析出物を吸引濾過によ り分離抽出 した。 さ らに抽出 した残渣を原子吸光光度法あるいはガ スク ロマ ト グラフィ一により検量線を用いて定量分析し、 あるいはFrom the heat-treated specimens, creep rupture strength evaluation specimens (2) were sampled in the direction shown in Fig. 1 for the hot rolled material in parallel with the rolling direction (3) of the steel sheet (2), and from the forged ingots, Similarly, creep rupture test pieces were collected from the longitudinal direction of the test pieces. Intermetallic compound precipitation behavior of test materials In order to investigate this, a block test piece was cut out from the creep-ruptured test piece, the substrate was electrolyzed with an organic acid, and the precipitate was separated and extracted by suction filtration. The extracted residue is quantitatively analyzed using a calibration curve by atomic absorption spectroscopy or gas chromatography, or
X線回折定性分析により、 各析出物の存在を確認した。 また、 必要 に応じて薄膜試料あるいはレプリ カ試料を準備し、 析出物の構造解 析を実施し、 形態を観察した。 X-ray diffraction qualitative analysis confirmed the presence of each precipitate. In addition, thin film samples or replica samples were prepared as necessary, and the structure of the precipitates was analyzed and the morphology was observed.
ク リ ープ破断強度の評価は、 650 °Cにて 1 万時間までのク リ ープ 破断強度測定データに基づき、 1 0万時間のク リ ープ破断強度を直線 外揷にて推定し、 650 °C、 350 ba rでのボイ ラ操業条件を想定して、 蒸気配管、 熱交換器等の部品に負荷される応力を勘案して、 l OOMPa を基準値に設定した。 すなわち、 650°C、 10万時間の直線外挿推定 ク リ 一プ破断強度が l OOMPaを超えていれば、 金属間化合物の析出が 殆どな く 、 本発明の目的とするク リ ープ破断強度を達成できたもの と考えた。  The creep rupture strength was evaluated by estimating the creep rupture strength of 100,000 hours outside the straight line based on the creep rupture strength measurement data for 10,000 hours at 650 ° C. Assuming the boiler operating conditions at 650 ° C and 350 bar, the OOMPa was set to the standard value, taking into account the stress applied to parts such as steam piping and heat exchangers. That is, if the creep rupture strength estimated at 650 ° C. and 100,000 hours by linear extrapolation exceeds l OOMPa, there is almost no precipitation of intermetallic compounds, and the creep rupture which is the object of the present invention is intended. It was considered that the strength was achieved.
図 2 は、 650°C、 1 0万時間の直線外揷推定ク リ ープ破断強度を M Pa単位の数字で、 T iあるいは Z rのう ち 1 種を、 および Ca, Mg, Baの うちの 1 種をそれぞれ添加した場合の、 それぞれの添加元素を濃度 に対してプロ ッ 卜 した図である。 プロ ッ 卜円の数字がク リ ープ破断 強度(MPa) を示すものである。 円の下あるいは横に記してある元素 記号は、 選択された添加元素種を示す。  Figure 2 shows the estimated creep rupture strength outside the straight line at 100,000 hours at 650 ° C in Mpa units. One of Ti or Zr and one of Ca, Mg, Ba FIG. 4 is a diagram plotting the concentration of each additive element when one of them is added. The number in the plot circle indicates the creep rupture strength (MPa). Element symbols below or beside the circle indicate the selected additive element type.
T iあるいは Z rのみを単独で、 も し く は Ca, Ba, Mgのう ち 1 種を単 独で添加した場合には、 その添加量に拘わらず、 650 °C、 1 0万時間 の直線外揷推定ク リ一プ破断強度は l OOMPa以下となる。 これは T i , Z rも し く は Ca, Mg, Baを単独で添加しても、 金属間化合物の析出を 抑制できず、 ク リ ープ破断強度が低下するこ とを表している。 一方 、 T iあるいは Z rの 1 種、 および Ca, Mg, Baの 1 種を、 本発明の請求 範囲の量だけ添加する場合、 すなわち Tiおよび Zrは 0.002〜 0.500 %、 Ca, Mgは 0.0005〜0.0050%、 Baは 0.0003〜 0.0020 %の場合には 、 ク リープ破断強度は lOOMPaを超えており、 電子顕微鏡解析および 電解抽出残渣の定量、 定性分析では、 これらク リーブ破断強度が 10 OMPa以上の試験片では、 概略 C 。 MO CO W — Feなる組成を有 する金属間化合物 (ASTM力一 ド番号 23— 196 の亜種と推定) が析出 していないことが確認できた。 逆に、 本発明の成分範囲を外れると Ti, Zr, Ca, Mg, Baを添加した鋼では、 概略 Cr 4。Mo 2。 Co 2。W ,。 C 2— Feなる組成を有する金属間化合物を検出することができ、 その存在 を確認した。 When only Ti or Zr alone or one of Ca, Ba and Mg was added alone, regardless of the amount of addition, the temperature was 650 ° C for 100,000 hours. The estimated creep rupture strength outside the straight line is less than 10 OOMPa. This indicates that the addition of Ti, Zr, or Ca, Mg, or Ba alone could not suppress the precipitation of intermetallic compounds and reduced creep rupture strength. On the other hand, one kind of Ti or Zr and one kind of Ca, Mg, Ba When the amount of addition is within the range, that is, when Ti and Zr are 0.002 to 0.500%, Ca and Mg are 0.0005 to 0.0050%, and Ba is 0.0003 to 0.0020%, the creep rupture strength exceeds lOOMPa, and the Microscopic analysis and quantification and qualitative analysis of electrolytic extraction residues indicated that the specimens with a creep rupture strength of 10 OMPa or more were roughly rated C. It was confirmed that no intermetallic compound having a composition of MO CO W-Fe (presumed to be a subspecies of ASTM force No. 23-196) was not precipitated. Conversely, if the composition is out of the range of the present invention, the steel to which Ti, Zr, Ca, Mg, and Ba are added has approximately Cr 4 . Mo 2 . Co 2. W,. An intermetallic compound having a composition of C 2 —Fe was detected, and its presence was confirmed.
図 3 は、 図 2の Ca, Mg, Baの群を Y , Ce, Laに置換して全く 同様 の実験を実施した結果である。 γ, Ce, Laの挙動は、 Ca, Mg, Baと 全く 同様であった。 すなわち、 Y, Ce, Laが 0.001〜 0.020 %でか つ Ti, Zrが 0.002〜0.500 %の場合には 650°C、 10万時間の直線外 揷推定ク リープ破断強度は lOOMPa以上となり、 概略 Cr4。Mo2。Co20W ,。C2— Feなる組成を有する金属間化合物は検出されなかった。 逆に 、 本発明の成分範囲を外れる Ti, Zr, Ca, Mg, Baを添加した鋼ではFigure 3 shows the results of performing exactly the same experiment, replacing the Ca, Mg, and Ba groups in Figure 2 with Y, Ce, and La. The behavior of γ, Ce, La was exactly the same as Ca, Mg, Ba. In other words, when Y, Ce, and La are 0.001 to 0.020% and Ti and Zr are 0.002 to 0.500%, out of a straight line at 650 ° C for 100,000 hours. 揷 The estimated creep rupture strength is lOOMPa or more, and 4 . Mo 2 . Co 20 W,. An intermetallic compound having a composition of C 2 —Fe was not detected. Conversely, in steels containing Ti, Zr, Ca, Mg, and Ba that are out of the component range of the present invention,
、 概略 (;「4。\102。(02。《[1。(:2_ 6なる組成を有する金属間化合物を検 出することができ、 その存在を確認した。 さ らに、 この場合にはク リ 一プ破断強度は常に lOOMPaを下回つた。 , Schematic (; "4 \ 10 2 (0 2" [1 (:..... An intermetallic compound having a 2 _ 6 having a composition able to detect, in is found confirming its existence, this In all cases, the creep rupture strength was always below 100MPa.
以上の結果は、 Tiと Zrを複合して添加した場合、 および Ca, Mg, Ba, Y, La, Ceの 2種以上を複合して添加した場合についても、 各 々の元素が本発明の化学成分範囲に入っている場合、 および 1 つで もその範囲を外れる場合において、 全く 同様であった。 これらの結 果は表 1 にその一部を示した。  The above results show that each of the elements of the present invention was obtained in the case where Ti and Zr were added in combination, and in the case where two or more of Ca, Mg, Ba, Y, La and Ce were added in combination. The situation was exactly the same when it was within the chemical composition range and when even one was out of the range. Table 1 shows some of these results.
すなわち、 Ti, Zrの 1 種または 2種を、 Ca, Mg, Ba, Y, Ce, La の 1 種または 2種以上と複合して添加することが必要であり、 かつ 各種元素の添加量は請求範囲に定めた値でなければならないこ とが 判明したものである。 That is, it is necessary to add one or two kinds of Ti and Zr in combination with one or more kinds of Ca, Mg, Ba, Y, Ce and La, and It has been found that the added amounts of various elements must be the values specified in the claims.
本発明鋼の溶解方法は全く 制限がな く 、 転炉、 誘導加熱炉、 ァー ク溶解炉、 電気炉等、 鋼の化学成分とコ ス トを勘案して使用プロセ スを決定すれば良い。 ただし、 製鍊工程は T i, Z r, Ca, Mg, Ba, Y , Ce, Laを添加できるホッパーを備え、 しかも溶鋼中の酸素濃度を これら添加元素が酸化物と してスラ グァゥ 卜 しない程度に十分低く 制御できる能力がなければならない。 従って Ar気泡吹き込み装置や アーク加熱も し く はプラズマ加熱機を装備した LFあるいは真空脱ガ ス処理装置を適用するこ とが有益であって、 本発明の効果を高める ものである。 それ以外の製造工程、 具体的には圧延、 熱処理、 製管 、 溶接、 切断、 検査等の本発明によって鋼または鋼製品を製造する 上で必要または有用と考えられるあらゆる製造工程は、 これを適用 するこ とができて、 本発明の効果を何ら妨げる ものではない。  The method for melting the steel of the present invention is not limited at all, and the process to be used may be determined in consideration of the chemical composition and cost of the steel, such as a converter, an induction heating furnace, an arc melting furnace, and an electric furnace. . However, the production process is equipped with a hopper to which Ti, Zr, Ca, Mg, Ba, Y, Ce, and La can be added, and the oxygen concentration in the molten steel does not slag as an oxide of these added elements. It must be capable of controlling it sufficiently low. Therefore, it is useful to apply an LF or vacuum degassing device equipped with an Ar bubble blowing device, an arc heating device, or a plasma heating device, which enhances the effects of the present invention. Other manufacturing processes, specifically rolling, heat treatment, pipe making, welding, cutting, inspection, etc., which are considered necessary or useful for manufacturing steel or steel products according to the present invention, shall be applied. It does not hinder the effects of the present invention.
特に、 鋼管の製造工程と しては、 本発明の製造工程を必ず含む条 件の下に、 丸ビレツ トあるいは角 ビレ ツ 卜へ加工した後に、 熱間押 し出 し、 あるいは種々のシーム レス圧延法によってシーム レスパイ プおよびチューブに加工する方法、 薄板に熱間圧延、 冷間圧延した 後に電気抵抗溶接によって電縫鋼管とする方法、 および T 1 G, M I G, SAW, LASER, EB溶接を単独で、 あるいは併用 して溶接鋼管とする方 法が適用できて、 さ らには以上の各方法の後に熱間あるいは温間で SR (絞り圧延) ない しは定形圧延、 さ らには各種矯正工程を追加実 施するこ と も可能であり、 本発明鋼の適用寸法範囲を拡大する こと が可能である。  In particular, in the manufacturing process of the steel pipe, under the conditions including the manufacturing process of the present invention, after being processed into a round billet or a square billet, it is hot-extruded or variously seamless. Rolling method to form seam repipe and tube, hot rolling to thin plate, cold rolling and then to electric resistance welding by electric resistance welding, and T1G, MIG, SAW, LASER, EB welding alone In addition to the above methods, it is possible to apply a method of forming a welded steel pipe, and after each of the above methods, hot (or hot) SR (draw rolling) or regular rolling, and various types of straightening. It is also possible to carry out additional steps, and it is possible to expand the applicable dimensional range of the steel of the present invention.
本発明鋼はさ らに、 厚板および薄板の形で提供するこ と も可能で あり、 必要とされる熱処理を施した板を用いて種々の耐熱材料の形 状で使用するこ とが可能であって、 本発明の効果に何ら影響を与え ない。 The steel of the present invention can also be provided in the form of a thick plate and a thin plate, and can be used in the form of various heat-resistant materials by using a plate subjected to a necessary heat treatment. Which has no effect on the effects of the present invention. Absent.
加えてさ らに、 HIP (熱間等方静水圧加圧焼結装置) 、 C1P (冷間等 方静水圧加圧成形装置) 、 焼結等の粉末冶金法を適用することも可 能であって、 成形処理後に必須の熱処理を加えて各種形状の製品と することができる。  In addition, powder metallurgy methods such as HIP (hot isostatic pressing and sintering), C1P (cold isostatic pressing) and sintering can be applied. Therefore, it is possible to obtain products of various shapes by applying the necessary heat treatment after the molding process.
以上の鋼管、 板、 各種形状の耐熱部材にはそれぞれ目的、 用途に 応じて各種熱処理を施すことが可能であって、 また本発明の効果を 十分に発揮する上で重要である。  The above-described steel pipes, plates, and heat-resistant members of various shapes can be subjected to various heat treatments according to the purpose and application, respectively, and are important in sufficiently exerting the effects of the present invention.
通常は焼準 (固溶化熱処理) +焼き戻し工程を経て製品とする場 合が多いが、 これに加えて再焼き戻し、 焼準工程を単独で、 あるい は併用 して施すことが可能であり、 また有用である。 ただし、 固溶 化熱処理後の冷却停止および保持は必須である。  Normally, products are usually subjected to normalizing (solution heat treatment) + tempering process, but in addition to this, re-tempering and normalizing processes can be performed alone or in combination. Yes, and useful. However, it is essential to stop and maintain the cooling after the solution heat treatment.
窒素あるいは炭素含有量が比較的高い場合および Co, Ni等のォー ステナイ 卜安定化元素を多く含有する場合、 Cr当量値が低く なる場 合には残留オーステナイ ト相を回避するべく 0 °C以下に冷却する、 いわゆる深冷処理を適用することができて、 本発明鋼の機械的特性 の十分な発現に有効である。  When the nitrogen or carbon content is relatively high, when the content of austenitic stabilizing elements such as Co and Ni is high, or when the Cr equivalent value is low, 0 ° C to avoid the residual austenite phase It is possible to apply a so-called cryogenic treatment for cooling below, which is effective for sufficiently expressing the mechanical properties of the steel of the present invention.
材料特性の十分な発現に必要な範囲で、 以上の工程は各々の工程 を複数回繰り返して適用することもまた可能であって、 本発明の効 果に何ら影響を与えるものではない。  The above steps can be applied by repeating each step a plurality of times within a range necessary for sufficiently exhibiting material properties, and do not affect the effects of the present invention at all.
以上の工程を適宜選択して、 本発明鋼の製造プロセスに適用すれ ば良い。 実施例  The above steps may be appropriately selected and applied to the steel manufacturing process of the present invention. Example
表 1 に示す、 本発明の鋼それぞれ 300ton, 120ton, 60ton, 1 ton , 300kg, 100kg, 50kgを通常の高炉銑—転炉吹鍊法、 VIM, EFある いは実験室真空溶解設備を用いて溶製し、 アーク再加熱設備を付帯 する Ar吹き込み可能な LF設備も し く は同等能力を付帯する小型再現 試験設備によって精練し、 連続铸造によって 1200mmx 210mm の铸片 、 560 X 210mm のビレ ツ ト と し、 あるいは通常の造塊法によって 50 kgから 50 tonの鋼塊と した。 得られた铸片、 ビレ ツ 卜および鋼塊は 熱間圧延も し く は熱間鍛造にて板厚 50隱の厚板、 および 12關の薄板 とする力、、 も し く は丸ビレツ 卜に加工して熱間押出にて外径 74mm、 肉厚 10mmのチューブを、 シームレス圧延にて外径 380mm、 肉厚 50IMI のパイプをそれぞれ製造した。 さ らに薄板は成形加工して電縫溶接 して外径 280mm、 肉厚 12mmの電縫鋼管と した。 As shown in Table 1, 300 tons, 120 tons, 60 tons, 1 ton, 300 kg, 100 kg, and 50 kg of the steel of the present invention were respectively blasted using a normal blast furnace iron-converter blowing method, VIM, EF or a laboratory vacuum melting equipment. Melted, with arc reheating equipment Refined by LF equipment capable of injecting Ar or a small reproduction test equipment with the same capacity, and made into 1200 mm x 210 mm pieces and 560 x 210 mm billets by continuous manufacturing, or by ordinary ingot making method The ingot was made from 50 kg to 50 ton. The obtained flakes, billets and ingots can be hot rolled or hot forged into plates of 50 thickness and 12 plates, or round billets. Then, a tube with an outer diameter of 74 mm and a wall thickness of 10 mm was manufactured by hot extrusion, and a pipe with an outer diameter of 380 mm and a wall thickness of 50 IMI was manufactured by seamless rolling. Furthermore, the thin plate was formed and subjected to ERW welding to form an ERW steel pipe with an outer diameter of 280 mm and a wall thickness of 12 mm.
全ての板および管は固溶化熱処理を最高加熱温度 950〜 1350°C、 1 時間保持の条件で施し、 後に空冷し、 さ らに 750〜800 てで 1 時 間焼き戻し処理を実施した。  All plates and tubes were subjected to solution heat treatment at a maximum heating temperature of 950 to 1350 ° C for 1 hour, then air-cooled, and then tempered at 750 to 800 hours for 1 hour.
母材のク リ ープ特性は図 1 に示す要領で、 直径 6 mmのク リ ーブ試 験片②を切り出 し、 650°Cにてク リ ーブ破断強度を 1 万時間まで測 定し、 得られたデータを直線外挿して 10万時間のク リ ープ破断強度 と した。  The creep characteristics of the base metal were determined as shown in Fig. 1 by cutting out a 6 mm-diameter creep test specimen 測 and measuring the creep rupture strength at 650 ° C for up to 10,000 hours. The obtained data was extrapolated to a straight line to obtain a creep rupture strength of 100,000 hours.
図 4 には母材のク リ ーブ破断強度の 1 万時間までの測定結果を、 10万時間推定破断強度の外挿直線と一緒に示した。 本発明鋼の高温 ク リ ープ破断強度は従来の 9〜12%Cr鋼に比較して高いことが判る 図 5 は、 Wの含有量と 650°C、 10万時間推定ク リ ープ破断強度の 関係を示す図である。 W含有量が 0. 10〜 5.00%の間にある場合には 、 ク リ ープ破断強度は lOOMPaを超えている。  Figure 4 shows the measurement results of the base metal's break rupture strength up to 10,000 hours, together with an extrapolated straight line of the estimated break strength at 100,000 hours. It can be seen that the high-temperature creep rupture strength of the steel of the present invention is higher than that of the conventional 9-12% Cr steel.Figure 5 shows the W content and creep rupture estimated at 650 ° C for 100,000 hours. It is a figure which shows the relationship of intensity. When the W content is between 0.10 and 5.00%, the creep rupture strength exceeds 100MPa.
図 6 は、 Coの含有量と 650°C、 10万時間推定ク リ ープ破断強度の 関係を示す図である。 Co含有量が 0.05%以上であればク リ ーブ破断 強度は lOOMPa以上となる力 6.0%を超えて添加された場合には、 Coを主体とする金属間化合物を析出 し、 ク リ ープ破断強度が低下す る o Figure 6 shows the relationship between the Co content and the estimated creep rupture strength at 650 ° C for 100,000 hours. If the Co content is 0.05% or more, the creep rupture strength becomes 100MPa or more.If the addition exceeds 6.0%, an intermetallic compound mainly composed of Co is precipitated and cleaved. Breaking strength decreases O
比較のために、 化学成分において本発明のいずれにも該当 しない 鋼を同様の方法で評価した。 化学成分と評価結果のう ち CRS (650°C 、 1 万時間までのク リ一プ破断強度測定結果から直線外挿で推定し た 650°C、 10万時間の推定ク リ ープ破断強度) 、 金属間化合物の分 析結果を表 2 に示した。  For comparison, a steel which does not correspond to any of the present invention in chemical composition was evaluated by the same method. Chemical composition and evaluation results CRS (Estimated creep rupture strength at 650 ° C, 100,000 hours estimated by linear extrapolation from measurement results of creep rupture strength up to 10,000 hours at 650 ° C, 10,000 hours) Table 2 shows the analysis results of the intermetallic compounds.
表 2の比較鋼のう ち、 98, 99番鋼は Tiおよび Zrを全く 添加してお らず、 概略 。 2。(;02。《/1。( 2— 6なる組成を有する金属間化合物 力く、 650°Cのク リ ープ試験中に、 粒界にフ ィ ルム状に析出 し、 650 。C、 10万時間の直線外挿推定ク リ ープ破断強度が低下した例、 100 番鋼は、 Tiを 0.5%超含有し、 粗大炭窒化物が大量に生成し、 靱性 は熱処理直後、 0 °Cで 2 J と極めて低く 、 同時にク リ ープ破断強度 が低下した例、 101番鋼は Zrを 0.5%超含有し、 粗大炭窒化物が大 量に生成し、 靱性は熱処理直後、 0 °Cで 1 J と極めて低く 、 同時に ク リ ープ破断強度が低下した例、 102番鋼は、 Ti, Zrいずれも 0.5 %を超え、 粗大炭窒化物が大量に生成し、 靱性は熱処理直後、 0 °C で 0.5J と極めて低く 、 同時にク リ ープ破断強度が低下した例、 10 3, 104番鋼は、 Ti, Zrを含有している ものの、 Ca, Ba, Mg, La, Ce , Yの中から選ばれる元素を 1 種以上含有していないため、 概略 C 。 Mo Co^W,。C2— Feなる組成を有する金属間化合物が、 650°Cの ク リ ープ試験中に、 粒界にフ ィ ルム状に析出 し、 650°C、 10万時間 の直線外揷推定ク リ ーブ破断強度が低下した例である。 Of the comparison steels in Table 2, the 98th and 99th steels have no added Ti and Zr, and are outlined. 2 . .. (; 0 2 "/ 1 (2 - intermetallic compound having a 6 a composition Chikaraku, in click Li-loop test 650 ° C, precipitated in the grain boundaries in the full I Lum shape, 650 .C, An example in which the estimated creep rupture strength by linear extrapolation for 100,000 hours decreased.No. 100 steel contained more than 0.5% Ti, large amounts of coarse carbonitrides were generated, and the toughness was 0 ° C immediately after heat treatment. In this case, the creep rupture strength was extremely low at 2 J, and at the same time, the creep rupture strength was reduced. In the case of steel No. 102, both Ti and Zr exceeded 0.5%, large amounts of coarse carbonitrides were generated, and the toughness was 0% immediately after heat treatment. At 0.5 ° C, it was extremely low at 0.5J, and at the same time, the creep rupture strength decreased. Choose from For that element a does not contain one or more, schematic C Mo Co ^ W, .C 2 -. Intermetallic compounds with Fe made composition, in click Li-loop test 650 ° C, off the grain boundaries This is an example of precipitation in the form of a film, and the estimated creep rupture strength outside the straight line at 650 ° C for 100,000 hours decreased.
また、 105番鋼は Caが、 106番鋼は Mgが、 107番鋼は Yが、 108 番鋼は Ceが、 それぞれ 0.005%、 0.005%、 0.02%、 0.02%を超え 、 Ca, Mg添加鋼では熱間加工性が低下して、 熱間圧延中に鋼塊が割 れ、 製造に失敗した例、 Y, Ce添加鋼では多数の粗大酸化物が大量 に生成し、 靱性が、 熱処理直後の 0 で 0.8J、 および 0.5 J と極 めて低下し、 同時に Y, Ceはほぼ全量が酸化物と して鋼中に存在し たため、 金属間化合物生成抑制効果を発現できず、 結果的にク リ ー プ破断強度が低下した例、 109番鋼は Wが無添加であったため、 ク リ ーブ破断強度が低かった例、 110番鋼は Wが過多で、 Fe2W型 Lav es相が大量析出 し、 ク リ ープ破断強度が低下した例、 111番鋼は Co が不足し、 デルタフ ユライ トが大量に残留し、 ク リ ープ破断強度が 低下した例、 112番鋼は Coが過多で、 Coを主体とする金属間化合物 (Fe2Co) を析出し、 ク リ ープ破断強度が低下した例である。 Steel No. 105 is Ca, Steel No. 106 is Mg, Steel No. 107 is Y, Steel No. 108 is Ce, respectively, exceeding 0.005%, 0.005%, 0.02%, 0.02%, and Ca, Mg added steel In the case where the hot workability deteriorates and the ingot cracks during hot rolling and the production fails, in the case of Y and Ce-added steel, a large number of coarse oxides are generated in large quantities, and the toughness decreases immediately after the heat treatment. 0.8J at 0, and 0.5J and pole At the same time, almost all of Y and Ce were present in the steel as oxides, so that the effect of suppressing the formation of intermetallic compounds could not be exhibited, resulting in a decrease in creep rupture strength. Example No. 109 steel had no added C and thus had low creep rupture strength.No. 110 steel had too much W and a large amount of Fe 2 W type Laves phase was precipitated, resulting in creep rupture strength. No. 111 steel lacked Co, a large amount of delta fluoride remained, and the creep rupture strength decreased.Steel No. 112 was excessive in Co and was mainly composed of Co. This is an example in which a compound (Fe 2 Co) is precipitated and the creep rupture strength is reduced.
表 1 (1一 1 ) :本発明鋼 Table 1 (111): Steel of the present invention
Figure imgf000019_0001
Figure imgf000019_0001
表 1 (1一 2 ) :本発明鋼 Table 1 (1-2): Steel of the present invention
Figure imgf000020_0001
Figure imgf000020_0001
CRS: 650°C、 1万 f^f¾までのクリ一^ 彻] 、ら直鶴^推定した 650°C、 10万 の推定クリ一  CRS: 650 ° C, chestnut up to 10,000 f ^ f¾ ^^], Naotsuru ^ Estimated 650 ° C, 100,000 estimated chestnut
«間化 の有無:瞧 Cr Jo2。Co2。W, — Feなる繊を有する^ 間化^ lの X線回折、 電子顕 MSg^による同定結果。 «Alternation: 瞧 Cr Jo 2 . Co 2. W, — Identification of ^ intercalated ^ l with Fe fibers by X-ray diffraction and electron microscopy MSg ^.
その他の金属間化^ Jか する は、 その觀を I己して「有り」 と表示, Other metallization ^ J
6ISd一 0£si6 ΟΑλ 6ISd one 0 £ si6 ΟΑλ
Figure imgf000021_0001
Figure imgf000021_0001
酶½¾本: (ϊ-2) ΐ 酶 ½¾ 本 : (ϊ-2) ΐ
表 1 (2 - 2 ) :本発明鋼 Table 1 (2-2): Steel of the present invention
Figure imgf000022_0002
Figure imgf000022_0001
Figure imgf000022_0002
Figure imgf000022_0001
Figure imgf000023_0001
Figure imgf000023_0001
o o o o o o o o o o o  o o o o o o o o o o o o
LO  LO
in CD  in CD
o o
D to m D to m
表 1 (3—2 ) :本発明鋼 Table 1 (3-2): Steel of the present invention
Figure imgf000024_0001
Figure imgf000024_0001
CRS: 650°C 1万 までのクリ ¾S«iJ ii ヽら H i 推定した 650°C 10万 B#fBの推定クリー CRS: Clearance up to 10,000 at 650 ° C ¾S «iJ ii Pla H i Estimated 650 ° C 100,000 B # f B
金属問化合物の有無:概略 Cr.nMo,nCo20W, nC2—Feなる組成を -る金属間化^の X線回折、 m mによる同 ¾ ¾ο Presence or absence of intermetallic compound: X-ray diffraction of intermetallic ^ with composition Cr.nMo, nCo 20 W, nC 2 —Fe, by mm
その他の 間化^!か被する は、 その觀を I己して 「有り」 と表示。 Other interludes ^! Will be displayed as "Yes" on their own.
表 1 (4一 1) :本発明鋼 Table 1 (4-1): Steel of the present invention
ο:  ο:
Να C 01 Μη Ρ S Cr Μθ W Co Nb V Ν 0 Να C 01 Μη Ρ S Cr Μθ W Co Nb V Ν 0
7D 0· 13ο 0.5ο9 0.5 ^ 0.0058 0.0097 9.746 0.136 3.316 4.612 0.426 0.259 0.1840 ϋ· 014ώ7D 013ο 0.5ο9 0.5 ^ 0.0058 0.0097 9.746 0.136 3.316 4.612 0.426 0.259 0.1840 ώ014ώ
77 0.28ο 1.143 0.0232 0.0061 10.521 0.256 1.022 1.267 0.361 0.561 0.0510 77 0.28ο 1.143 0.0232 0.0061 10.521 0.256 1.022 1.267 0.361 0.561 0.0510
78 0.094 0, J85 0, 75 0.0050 0.0094 8.926 0.166 4.251 0.996 0.363 0.002 0.1^90 ϋ· 78 0.094 0, J85 0, 75 0.0050 0.0094 8.926 0.166 4.251 0.996 0.363 0.002 0.1 ^ 90 ϋ
79 U.151 0. όίΐ 1.147 0.0058 11.220 0.296 0.798 0.982 0. 98 0.4^9 0.115ο ϋ· Ulbo79 U.151 0.όίΐ 1.147 0.0058 11.220 0.296 0.798 0.982 0.98 0.4 ^ 9 0.115ο Ul
80 0.10b 0.49ο 0.000b 9.884 0.280 0.407 1.110 0. όο 0. όίο 0.14^7 80 0.10b 0.49ο 0.000b 9.884 0.280 0.407 1.110 0.όο 0.όίο 0.14 ^ 7
J 八  J eight
81 0.165 0.656 1.095 0.0064 0.0034 12.629 0.211 1.432 1.110 0.410 0.394 0.0781 0.0115 81 0.165 0.656 1.095 0.0064 0.0034 12.629 0.211 1.432 1.110 0.410 0.394 0.0781 0.0115
82 0.132 0.214 1.026 0.0245 0.0002 10.073 0.047 1.253 4.618 0.355 0.796 0.1040 0. ΌΰΔό82 0.132 0.214 1.026 0.0245 0.0002 10.073 0.047 1.253 4.618 0.355 0.796 0.1040 0.ΌΰΔό
83 , 0^1 0, 1ο4 1.489 0· 0037 0.0055 10.500 0.144 1.058 4.348 0.157 0, 4ο4 0.057ο 01U583, 0 ^ 1 0, 1ο4 1.489 0 0037 0.0055 10.500 0.144 1.058 4.348 0.157 0, 4ο4 0.057ο 01U5
84 0.059 0.18^ 577 0. O^bd 0. ΟΟ ο 10.7ab 534 0. ϋ 4 0.434 U.0UJ7 U. UU7U fl「 84 0.059 0.18 ^ 577 0.O ^ bd 0.ΟΟ ο 10.7ab 534 0.ϋ 4 0.434 U.0UJ7 U.UU7U fl
85 0.258 0.130 1.330 0.0243 0.0042 11.900 0.189 1.565 4.986 0.429 0.536 0.0402 0.0200 85 0.258 0.130 1.330 0.0243 0.0042 11.900 0.189 1.565 4.986 0.429 0.536 0.0402 0.0200
86 0.113 0.196 0.725 0.0193 0.0043 12.768 0.039 2.351 1.996 0.350 0.223 0.0939 0.007386 0.113 0.196 0.725 0.0193 0.0043 12.768 0.039 2.351 1.996 0.350 0.223 0.0939 0.0073
87 八 no 87 eighty no
ϋ, 1ό6 ϋ· 590 1, 397 0· 078 0. Wic 8.777 0.041 380 .80ο 0.015 0· Obb 0.05^4 0.0001 ϋ, 1ό6 ϋ 590 1, 397 0 · 078 0.Wic 8.777 0.041 380 .80ο 0.015 0Ob 0.05 ^ 4 0.0001
88 0· 0^8 0· Όόί 0.544 0.0126 0.0075 9.701 0.253 2.474 0.575 0· 023 0· 252 0.0911 0.011588 0 0 8 0 0 44 0.544 0.0126 0.0075 9.701 0.253 2.474 0.575 0 023 0 252 0.0911 0.0115
89 0. Ub 0.54ο 1. όοό 0.0175 0.0079 8. Οοο 0.045 1.956 L.650 0.171 0.419 0.1623 0.0083 υ. β ηι Δνι U.0U U. ο9ο U. UUU9 oo リ.1DO リ.400 4. ο4 U. 1 / U. i U. UlDo U. Ulol89 0.Ub 0.54ο 1.όοό 0.0175 0.0079 8.Οοο 0.045 1.956 L.650 0.171 0.419 0.1623 0.0083 υ.β ηι Δνι U.0U U.ο9ο U. / U. i U. UlDo U. Ulol
91 0.014 0.018 0.804 0.0071 0.0096 8.117 0.181 2.956 4.184 0.192 0.694 0.0291 0.018991 0.014 0.018 0.804 0.0071 0.0096 8.117 0.181 2.956 4.184 0.192 0.694 0.0291 0.0189
92 0.141 0.038 0.981 0.0020 0.0068 8.098 0.297 4.117 0.489 0.320 0.587 0.1805 0.000392 0.141 0.038 0.981 0.0020 0.0068 8.098 0.297 4.117 0.489 0.320 0.587 0.1805 0.0003
93 0.049 0.735 1.344 0.0083 0.0050 8.375 0.210 0.835 2.526 0.292 0.710 0.1420 0.011293 0.049 0.735 1.344 0.0083 0.0050 8.375 0.210 0.835 2.526 0.292 0.710 0.1420 0.0112
94 0.190 0.685 1.219 0.0019 0.0054 9.371 0.162 3.772 3.725 0.498 0.766 0.1552 0.018594 0.190 0.685 1.219 0.0019 0.0054 9.371 0.162 3.772 3.725 0.498 0.766 0.1552 0.0185
95 0.266 0.694 1.208 0.0126 0.0012 11.607 0.174 2.689 5.947 0.428 0.429 0.1928 0.011795 0.266 0.694 1.208 0.0126 0.0012 11.607 0.174 2.689 5.947 0.428 0.429 0.1928 0.0117
96 0.069 0.476 1.143 0.0168 0.0012 10.540 0.275 3.016 5.368 0.115 0.075 0.0142 0.015896 0.069 0.476 1.143 0.0168 0.0012 10.540 0.275 3.016 5.368 0.115 0.075 0.0142 0.0158
97 0.162 0.073 0.263 0.0118 0.0096 10.515 0.198 4.595 4.394 0.196 0.076 0.1853 0.0173 97 0.162 0.073 0.263 0.0118 0.0096 10.515 0.198 4.595 4.394 0.196 0.076 0.1853 0.0173
表 1 (4一 2 ) :本発明鋼 Table 1 (4-2): Steel of the present invention
Figure imgf000026_0002
Figure imgf000026_0002
CRS: 650° (:、 1万時間までのクリ ^^。 金属間化^!の有無:讓 Cr
Figure imgf000026_0001
による同雄 ¾ その他の金属間化^!か! ½する^は、 その灘頁を 己して 「有り」 と表示。
CRS: 650 ° (: chestnuts up to 10,000 hours ^^. Metallization ^!
Figure imgf000026_0001
同 Other metal intermetallic ^! Or! ½Suru ^ displays the Nada page as “Yes”.
表 2 (1) :比較鋼 Table 2 (1): Comparative steel
Figure imgf000027_0001
Figure imgf000027_0001
表 2 (2) :比較鋼 Table 2 (2): Comparative steel
Figure imgf000028_0001
Figure imgf000028_0001
CRS: 650°C. 1万 B ^までのクリ一 5^¾¾泪 ヽら した 650°C、 10万 ff曰の ϋ¾クリー^  CRS: 650 ° C. Clear up to 10,000 B ^ 5 ^ ¾¾ Tearing 650 ° C, 100,000 ff says ϋ¾Cree ^
間化^/の有無:鹏 ^4。1*)2。(;02(^。(2—卩6なる繊を有する 間化^¾の 線晰、 電子顕 による同雄 その他の金属間化^/か被する齢は、 その麵を 己して 「有り」 と表示。 Presence of intercalation ^ /: ^ 4 . 1 *) 2 . (; 0 2 ( ^. ( 2 —The intercalation ^ ¾ which has a fiber of syrup6, the clarity of the 顕, the same male and other intermetallics by electron microscopy ^ /) Is displayed.
産業上の利用可能性 Industrial applicability
本発明は、 高温ク リープ強度に優れ、 Coを含有し、 600°C以上の 高温で、 概略 C 。 Mo Co^W,。 一 Feなる組成を有する金属間化合 物を生成しないマルテ ンサイ ト系耐熱鋼を提供する。  The present invention has excellent high-temperature creep strength, contains Co, and has a high C temperature of 600 ° C. or more. Mo Co ^ W ,. (I) To provide a martensitic heat-resistant steel which does not generate an intermetallic compound having a composition of Fe.

Claims

1 . 質量%で、 1. In mass%,
c 0.0卜 0.30%、  c 0.0% 0.30%,
Si 0.0卜 0.80%、  0.8% of Si 0.0%,
O  O
Mn 0.20〜 1.50%、  Mn 0.20-1.50%,
1  1
Cr 8.00〜13.00 %、  Cr 8.00 to 13.00%,
Mo 0.01〜3.00%、  Mo 0.01 ~ 3.00%,
 Contract
W 0. 10〜5.00%、  W 0.10-5.00%,
Co 0.05〜6.00%、  Co 0.05 ~ 6.00%,
V 0.002〜0.800 %、 の Nb 0.002〜0.500 %、  V 0.002-0.800%, Nb 0.002-0.500%,
N 0.002〜0.200 %  N 0.002 to 0.200%
を含有し、 加えて Containing, in addition to
Ca: 0.0005〜 0. 0050%、  Ca: 0.0005-0.0050%,
Ba : 0.0003- 0. 0020%、  Ba: 0.0003-0.0020%,
Mg : 0.0005〜 0. 0050%、  Mg: 0.0005-0.0050%,
し& : 0.00卜 0. 020 %  &&: 0.00 ton 0.002%
Ce : 0.001〜 0. 020 %、  Ce: 0.001 to 0.002%,
Y : 0. 020 %  Y: 0.020%
の 1 種または 2種以上を Ca, Ba, Mgについては析出物の形態で、 La , Ce, Yは析出物または固溶状態で含有し、 同時に Of Ca, Ba, Mg in the form of precipitate, La, Ce, Y in the form of precipitate or solid solution.
Ti : 0.002〜0.500 %、  Ti: 0.002-0.500%,
Zr : 0.002-0.500 %  Zr: 0.002-0.500%
の 1 種または 2種を単独であるいは複合して含有し、 One or two of the above alone or in combination,
P : 0.030%以下、  P: 0.030% or less,
S : 0.010%以下、 0 : 0.020%以下 S: 0.010% or less, 0: 0.020% or less
に制限し、 残部が Feおよび不可避の不純物よ りなる こ とを特徴とす る耐金属間化合物析出脆化特性の優れた高強度フ ライ ト系耐熱鋼 ο High-strength heat-resistant steel with excellent intermetallic compound precipitation embrittlement resistance characterized by the fact that the balance consists of Fe and unavoidable impurities.
2 . 請求項 1 記載の成分に、 さ らに質量%で、  2. The composition according to claim 1, further comprising
Ni : 0. 10〜2.00%、  Ni: 0.10-2.00%,
Cu : 0. 10〜2.00%  Cu: 0.10-2.00%
の 1 種または 2種を含有するこ とを特徴とする耐金属間化合物析出 脆化特性の優れた高強度フ ェ ラ イ 卜系耐熱鋼。 A high-strength ferritic heat-resistant steel having excellent intermetallic compound precipitation embrittlement characteristics, characterized by containing one or two of the following.
3 . 請求項 1 または 2記載の成分に、 さ らに質量%で、  3. In addition to the component of claim 1 or 2,
B : 0.0005〜0.010 %  B: 0.0005 to 0.010%
を含有するこ とを特徴とする耐金属間化合物析出脆化特性の優れた 高強度フ Xライ ト系耐熱鋼。 High-strength X-ray heat-resistant steel with excellent intermetallic compound precipitation embrittlement resistance characterized by containing.
PCT/JP1996/000319 1995-02-14 1996-02-14 High-strength ferritic heat-resistant steel excellent in resistance to embrittlement caused by intermetallic compound deposition WO1996025530A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP96902438A EP0758025B1 (en) 1995-02-14 1996-02-14 High-strength ferritic heat-resistant steel excellent in resistance to embrittlement caused by intermetallic compound deposition
US08/722,057 US5772956A (en) 1995-02-14 1996-02-14 High strength, ferritic heat-resistant steel having improved resistance to intermetallic compound precipitation-induced embrittlement
DE69608744T DE69608744T2 (en) 1995-02-14 1996-02-14 HIGH-STRENGTH, HEAT-RESISTANT, FERRITIC STEEL WITH EXCELLENT RESISTANCE TO BRITISHING CAUSED BY INTERMETALLIC JOINT EXHAUST.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7/25738 1995-02-14
JP2573895 1995-02-14

Publications (1)

Publication Number Publication Date
WO1996025530A1 true WO1996025530A1 (en) 1996-08-22

Family

ID=12174169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/000319 WO1996025530A1 (en) 1995-02-14 1996-02-14 High-strength ferritic heat-resistant steel excellent in resistance to embrittlement caused by intermetallic compound deposition

Country Status (1)

Country Link
WO (1) WO1996025530A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9789219B2 (en) 2007-03-26 2017-10-17 Prolitec Inc. Glycol sensor for feedback loop control

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5361514A (en) * 1976-11-16 1978-06-02 Daido Steel Co Ltd Ferriteebased precipitation hardening type stainless steel
JPS60224754A (en) * 1984-04-19 1985-11-09 Daido Steel Co Ltd Alloy tool steel
JPS6169948A (en) * 1984-09-12 1986-04-10 Nippon Steel Corp High strength ferritic heat resistance steel
JPS6389644A (en) * 1986-10-03 1988-04-20 Nippon Steel Corp High-strength ferritic steel for boiler steel tube
JPH02290950A (en) * 1989-02-23 1990-11-30 Hitachi Metals Ltd Ferritic heat resisting steel excellent in strength at high temperature
JPH04268044A (en) * 1991-02-22 1992-09-24 Nippon Steel Corp High cr steel for line pipe excellent in weldability
JPH04371552A (en) * 1991-06-18 1992-12-24 Nippon Steel Corp High strength ferritic heat resisting steel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5361514A (en) * 1976-11-16 1978-06-02 Daido Steel Co Ltd Ferriteebased precipitation hardening type stainless steel
JPS60224754A (en) * 1984-04-19 1985-11-09 Daido Steel Co Ltd Alloy tool steel
JPS6169948A (en) * 1984-09-12 1986-04-10 Nippon Steel Corp High strength ferritic heat resistance steel
JPS6389644A (en) * 1986-10-03 1988-04-20 Nippon Steel Corp High-strength ferritic steel for boiler steel tube
JPH02290950A (en) * 1989-02-23 1990-11-30 Hitachi Metals Ltd Ferritic heat resisting steel excellent in strength at high temperature
JPH04268044A (en) * 1991-02-22 1992-09-24 Nippon Steel Corp High cr steel for line pipe excellent in weldability
JPH04371552A (en) * 1991-06-18 1992-12-24 Nippon Steel Corp High strength ferritic heat resisting steel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0758025A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9789219B2 (en) 2007-03-26 2017-10-17 Prolitec Inc. Glycol sensor for feedback loop control

Similar Documents

Publication Publication Date Title
EP3391989B1 (en) Welding material for ferrite heat-resistant steel, welding joint for ferrite heat-resistant steel, and method for producing welding joint for ferrite heat-resistant steel
KR100933114B1 (en) Ferritic Heat Resistant Steel
EP2885440B1 (en) High-chromium heat-resistant steel
JP5685198B2 (en) Ferritic-austenitic stainless steel
JP3336573B2 (en) High-strength ferritic heat-resistant steel and manufacturing method thereof
US5772956A (en) High strength, ferritic heat-resistant steel having improved resistance to intermetallic compound precipitation-induced embrittlement
JP2004323937A (en) Austenitic stainless steel
EP3485046B1 (en) High chromium martensitic heat-resistant steel with combined high creep rupture strength and oxidation resistance
EP0703301B1 (en) High chromium ferritic heat-resistant steel
CN101258256B (en) Low alloy steel
JPWO2019189871A1 (en) Duplex stainless clad steel sheet and its manufacturing method
CN102041450A (en) Ferrite heat resisting steel and manufacture method thereof
JPWO2018003823A1 (en) Austenitic stainless steel
JPH08225833A (en) Production of martensitic heat resistant steel excellent in high temperature creep strength
JP2021195603A (en) Low-alloy heat-resistant steel, method for producing low-alloy heat-resistant steel
JP3531228B2 (en) High Cr ferritic heat resistant steel
CN116601324A (en) Austenitic stainless steel
WO1996025530A1 (en) High-strength ferritic heat-resistant steel excellent in resistance to embrittlement caused by intermetallic compound deposition
JP3118566B2 (en) Precipitation-hardened martensitic iron-base heat-resistant alloy
JP2002241903A (en) HIGH Cr FERRITIC HEAT RESISTANT STEEL
JP2948324B2 (en) High-strength, high-toughness heat-resistant steel
JP7464817B2 (en) Austenitic stainless steel
KR20240034213A (en) Ferritic heat-resistant steel
JP2021195602A (en) Low-alloy heat-resistant steel
JPH1192878A (en) Ferritic heat resistant steel

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1996902438

Country of ref document: EP

Ref document number: 08722057

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1996902438

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1996902438

Country of ref document: EP