WO1996024341A1 - Concomitant treatment with bismuth and antibacterials - Google Patents

Concomitant treatment with bismuth and antibacterials Download PDF

Info

Publication number
WO1996024341A1
WO1996024341A1 PCT/US1995/015985 US9515985W WO9624341A1 WO 1996024341 A1 WO1996024341 A1 WO 1996024341A1 US 9515985 W US9515985 W US 9515985W WO 9624341 A1 WO9624341 A1 WO 9624341A1
Authority
WO
WIPO (PCT)
Prior art keywords
bismuth
antibacterial
compounds
group
pylori
Prior art date
Application number
PCT/US1995/015985
Other languages
French (fr)
Other versions
WO1996024341A9 (en
Inventor
Narayan Krishnarao Athanikar
Original Assignee
Narayan Krishnarao Athanikar
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Narayan Krishnarao Athanikar filed Critical Narayan Krishnarao Athanikar
Priority to AU45967/96A priority Critical patent/AU4596796A/en
Priority to EP06007503A priority patent/EP1683515A3/en
Priority to DE69636254T priority patent/DE69636254T2/en
Priority to EP96911535A priority patent/EP0879035B1/en
Priority to AT96911535T priority patent/ATE329577T1/en
Priority to AU54396/96A priority patent/AU5439696A/en
Priority to PCT/US1996/004495 priority patent/WO1997007757A1/en
Priority to ES96911535T priority patent/ES2267108T3/en
Publication of WO1996024341A1 publication Critical patent/WO1996024341A1/en
Publication of WO1996024341A9 publication Critical patent/WO1996024341A9/en
Priority to HK99102196A priority patent/HK1016867A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/485Morphinan derivatives, e.g. morphine, codeine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/28Compounds containing heavy metals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/28Compounds containing heavy metals
    • A61K31/29Antimony or bismuth compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/425Thiazoles
    • A61K31/429Thiazoles condensed with heterocyclic ring systems
    • A61K31/43Compounds containing 4-thia-1-azabicyclo [3.2.0] heptane ring systems, i.e. compounds containing a ring system of the formula, e.g. penicillins, penems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7135Compounds containing heavy metals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/245Bismuth; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/66Papaveraceae (Poppy family), e.g. bloodroot
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/164Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/36Carboxylic acids; Salts or anhydrides thereof
    • A61K8/365Hydroxycarboxylic acids; Ketocarboxylic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/42Amides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/49Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/49Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
    • A61K8/494Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with more than one nitrogen as the only hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/60Sugars; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/64Proteins; Peptides; Derivatives or degradation products thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/64Proteins; Peptides; Derivatives or degradation products thereof
    • A61K8/66Enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/67Vitamins
    • A61K8/676Ascorbic acid, i.e. vitamin C
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/88Polyamides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/97Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from algae, fungi, lichens or plants; from derivatives thereof
    • A61K8/9783Angiosperms [Magnoliophyta]
    • A61K8/9789Magnoliopsida [dicotyledons]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • A61K9/0056Mouth soluble or dispersible forms; Suckable, eatable, chewable coherent forms; Forms rapidly disintegrating in the mouth; Lozenges; Lollipops; Bite capsules; Baked products; Baits or other oral forms for animals
    • A61K9/0058Chewing gums
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q11/00Preparations for care of the teeth, of the oral cavity or of dentures; Dentifrices, e.g. toothpastes; Mouth rinses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/005Antimicrobial preparations

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Birds (AREA)
  • Engineering & Computer Science (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Botany (AREA)
  • Emergency Medicine (AREA)
  • Biotechnology (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Inorganic Chemistry (AREA)
  • Medical Informatics (AREA)
  • Nutrition Science (AREA)
  • Physiology (AREA)
  • Dermatology (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The invention relates to concomitant treatment with bismuth compounds, other antibacterial compounds, and/or antibiotics in topical oral and peroral dosage forms to eradicate H. pylori from its nitches both in the dental plaque and in the gastric mucosa in order to improve the ulcer cure rate and prevent ulcer relapse. The invention also provides oral topical dosage forms with pharmaceutically usable bismuth compounds, other antibacterial compounds, and/or antibiotics that eradicate or reduce H. pilori in dental plaque. The invention further provides for treatment with bismuth compounds, other antibacterial compounds, and/or antibiotics which are effective against Campylobacter rectus and Treponema denticola which are responsible for causing halitosis. The invention also provides bismuth compounds which have applications in wound healing, particularly in ocular and dermal wound healing.

Description

DESCRIPTION CONCOMITANT TREATMENT WITH BISMUTH AND ANTIBACTERIALS
BACKGROUND OF THE INVENTION
Until recently, excessive gastric acidity and mental stress were thought to be major pathophysiological reasons for occurrence of peptic ulcers. In the early 1980, Marshall and Warren (Warren, Lancet, 1:1273-1275, 1983 and Marshall et al., Lancet, 2:1311 -1315, 1984) first reported an unidentified curved bacilli in the stomach of patients with gastritis and peptic ulcers These bacilli, which later were identified as a gram negative spiral bacterium and named
Helicobaccer pylori (Goodwin et al., Int. J. Syst. Bacteriol. 39:397-405, 1989), have been demonstrated to be associated with gastritis and peptic ulcers (Buck et al. , J. Infect. Dis. 153 : 664-669, 1986 and Graham. Gastroenterology 26:615 -625, 1989), and are thought to be transmitted by person-to-person contact.
Recent clinical investigations have shown a definitive presence of H . pylori in the dental plaque (Nguyen et al., Journal of Clinical Microbiology 31(4);783-787, 1993; Desai et al , Scandinavian Journal of Gastroenterology
26: 1205 - 1208, 1991; and Lamben et al. , Lancet 341(8850):957, 1993), and have also shown that standard oral hygiene practice does not help reduce H. pylori presence in the oral cavity (Nguyen et al. , Journal of Clinical Microbiology
31(4):783-787, 1993). As a result of these recent discoveries associating bacterial infection in the causation of peptic ulcer disease, questions regarding the previously established paradigms of ulcer treatment and healing processes have been raised.
H2 receptor blockers which suppress acid secretion, such as cimetidine (Tagamet®) and ranitidine (Zantac®), have been used to treat and heal duodenal ulcers (Jones et al., Gut. 28:1120-1127, 1987; Mclsaac et al., Aliment. Pharmacol. Therap. 1:369-381, 1987; and Boyed et al., Amsterdam: Excerpta Medica, 14-42, 1984). Recently, however, a number of clinical investigations have demonstrated that 70-80% of healed duodenal ulcers reoccur within the next year (Goodwin et al., Int. J. Syst. Bacteriol 39:397-407, 1989), and that these drugs do not reverse the tendency for ulcers to form (Wormsley, British Medical Journal 293:1501, 1986; Gudman et al., British Medical Journal i:1095-1097, 1978; and Bardhan et al., British Medical Journal 284:621-623, 1982).
For many years, bismuth compounds have been used for treating ulcers. Clinical investigations comparing the efficacy of CBS (also known as tripotassium dicitrato bismuthate (TDB)) with placebo (Lambert, Scandinavian Journal of Gastroenterology 26 (Supplement 185): 13-21 , 1991), cimetidine (Bianchi, et al., Lancet 2:698, 1984), and ranitidine (Bianchi et al., Gut. 25:565, 1984; Lee et al., Lancet 1:1299-1301, 1985; and Dobrilla et al., Gut. 29: 181-187, 1988) in initial healing and relapse rates of duodenal ulcers, have shown significantly lower relapse rates in patients treated with CBS. The therapeutic efficacy of CBS (and other bismuth compounds), in healing duodenal ulcers and lowering relapse rates, is attributed to its specific antibacterial activity against H. pylori (McNutty et al., Antimicrobial Agents Chemotherapy 28:837-838, 1985; Lambert et al., Antimicrob. Agents Chemotherapy 3:510-511, 1986; and Goodwin et al., J. of Antimicrobial Agents Chemotherapy 17:309-314, 1986). The minimum inhibitory concentration (MIC) for CBS against H. pylori is reported to be 8 mg/L (Lambert et al., Antimicrob. Agents Chemotherapy 2:510-511) and the range is 4-32 mg/L (Lambert et al., Antimicrob. Agents Chemotherapy 3:510- 511).
In addition to its bacteriocidal activity, CBS has been demonstrated to enhance mucus glycoprotein secretion, strengthen viscoelastic gel properties of mucus, cause increased concentration of epithelial growth factor (EGF) in ulcer tissue, and stimulate prostaglandin synthesis in the gastric antral mucosa (Lee, Scandinavian Journal of Gastroenterology 26(Supplement 185): 1-6. 1991). These gastroprotective properties of CBS may contribute to the initial healing of duodenal ulcers and the observed lower rates of relapse by returning the gastric mucosal cells to normal physiologic function. The gastroprotective effects of CBS in prevention of gastric lesions induced by various ulcerogenic agents and the mechanism of ulcer healing have been demonstrated in animal studies (Konturek et al., Digestion 37(Supplement 2):8-15, 1987 and Konturek et al., Scandinavian Journal of Gastroenterology 21(Supplement 122):6-10, 1986).
Because of the finding that bismuth is an effective antibacterial agent against H. pylori, concomitant dosages of bismuth-containing compounds with other antiulcer drugs have been increasingly applied in many clinical cases for treatment of peptic ulcers. The most commonly used regiments include double or triple therapy with bismuth; meanwhile, some recent reports regarding quadruple therapy (wherein a proton pump inhibitor is added to triple dierapy) have shown eradication rates of over 90% , but also cause severe side effects such as vomiting and diarrhea.
Additionally, while antibacterial therapy (bismuth and amoxycillin or doxycycline) was shown to be effective in eliminating H. pylori from the gastric mucosa of duodenal ulcer patients, this therapy had no effect on the H. pylori colonies in their dental plaque (Desai et al., Scandinavian Journal of Gastroenterology 26: 1205-1208, 1991 , Nguyen et al. , Journal of Clinical Microbiology 31(4): 783-787, 1993). The continued presence of H. pylori in the dental plaque raises the question of whether the relapse of duodenal ulcers is inevitable (Desai et al., Scandinavian Journal of Gastroenterology 26:1205-1208, 1991 and Abraham et al., Indian Journal of Gastroenterology 9(4):265-6, Editorial, 1990).
Triple therapy, consisting of an antibiotic (amoxicillin, tetracycline or erythromycin), metronidazole, and bismuth compounds, has been reported to result in more than a 95% eradication rate for H. pylori, and reduced ulcer relapse rate to less than 10% during a 12-month follow-up period (Graham et al., Gastroenterology 102:493-496, 1992 and Borody et al., Gastroenterology 102: A 44, 1992). It is interesting to note that metronidazole as a single agent has only 5% eradication rate for H. pylori, but as a component of triple therapy, it in- creases the eradication rate to as high as 95 % . When metronidazole-resistant strains of H. pylori are encountered (about 25% of the H. pylori strains are resistant), the eradication rate falls to about 50% (Logan et al., Lancet 338:1249-1252, 1991).
One possible explanation for this observed clinical efficacy of metronidazole in combination therapy is that metronidazole is actively secreted in the saliva (Mustofa et al., International Journal of Clinical Pharmacology, Therapy, and Toxicology 29(12):474-478, 1991) where it might be exerting its antimicrobial action against dental plaque-bound H. pylori colonies. The typical steady state saliva represent 10 to 20 times the MIC for H. pylori. Another antibiotic, Clarithromycin, a new-generation macrolide, which has shown a 40 to 60% cure rate as a single agent, is also secreted in the saliva. Therefore, it is reasonable to believe that in order to achieve nearly complete eradication of H. pylori, and prevent peptic ulcer relapse, eradication of this organism from the oral cavity is essential. Colloidal bismuth subcitrate (CBS), the most effective single agent against H. pylori, is however not absorbed significantly from the GI, and therefore, produces no salivary concentrations. But as a single agent, it is about 6 to 8 times more effective in eradicating H. pylori than metronidazole. The present invention therefore is related to development of a therapeutic modality to effectively eradicate H. pylori reservoir from the oral site, as well as the gastric mucosal wall.
Furthermore, recent clinical studies have implicated this insidious organism in gastric cancer (Parsonnet, Gastroenterology Clinics of America, Helicobacter pylori Infection, Dooley CP, Cohen, H. Guest Editors, Volume 22, No. 1, pp. 89-104, March 1993). A progression of gastric pathology from gastritis and ulcers to cancer involving H. pylori has been described (Recavarren-Arie et al. , Scandinavian Journal of Gastroenterology 26(Supplement 181):51-57, 1991). In addition to H. pylori infection, low concentration levels of ascorbic acid in the gastric mucosa has been shown to be a risk factor for gastric cancer (Schorah et al., American Journal of Clinical Nutrition 53(Supplement 1):287S-293S, 1991 and Reed et al., Iarc Scientific Publications, 105: 139-142, 1991). In patients suffering from dyspepsia, chronic gastritis, hypochlorhydria, and duodenal cancer, the intragastric concentrations of vitamin C were significantly lower (Sobala et al., Gastroenterology 22(2): 357-363, 1989 and O' Conner et al., Gut 3Ω(4):436-442, 1989). The present invention therefore also relates to therapies involving both bismuth compounds and ascorbic acid.
SUMMARY QF THE INVENTION
The invention relates to concomitant treatment with bismuth compounds and/or with other antibacterial compounds and/or with antibiotics in topical oral and peroral dosage forms to eradicate H. pylori from its niches both in the dental plaque and in the gastric mucosa in order to improve the ulcer cure rate and prevent ulcer relapse. The invention also provides oral topical dosage forms with pharmaceutically usable bismuth compounds and/or antibacterial compounds and/or antibiotics that eradicate or reduce H. pylori in dental plaque. The invention further provides for treatment with bismuth compounds and/or antibacterial compounds and/or antibiotics which are effective against Campylobacter rectus and Treponema denticola which are responsible for causing halitosis. The invention also provides bismuth compounds which have applications in wound healing, particularly in ocular and dermal wound healing.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a generalized reaction diagram for the synthesis of bismuth sulfates.
Figure 2 is a graph of human saliva concentration versus time which shows the release of bismuth from CBS chewing gum.
DETA ILED DESCRIPTTON OF THE INVENTION
Therefore, bismuth compound used in this invention should be a pharmaceutically acceptable antimicrobacterial agent against H. pylori, such as colloidal bismuth subcitrate (CBS), bismuth subcitrate, bismuth citrate, bismuth salicylate, bismuth subsalicylate, bismuth subnitrate, bismuth subcarbonate, bismuth tartrate, bismuth subgallate, tripotassium dicitrato bismuthate and bismuth aluminate. Preferably, colloidal bismuth subcitrate (CBS), tripotassium dicitrato bismuthate, bismuth subcitrate, bismuth subsalicylate and their combination are chosen. More preferably, CBS and tripotassium dicitrato bismuthate are chosen. And further selection is made for CBS.
The structural formula of CBS is:
[Bi(OH)3]3BiC6H6O7(1,2,3-PROPANETRICARBONIC ACID, 2-HYDROXY, BISMUTH(3T)POTASSIUM); CAS#57644-54-9
Other novel bismuth-containing compounds which are useful in the present invention are those described in Bos et al., U.S. Patent No. 4,801,608 and in Serfortein, U.S. Patent No. 4,153,685, both of which are expressly incorporated herein by reference. Other bismuth compounds, namely complexes of polysulfates, of polyhydroxy compounds such as sugars, sugar alcohols, and ascorbic acid and its derivatives, as well as alpha-D-glucopyranoside bismuth complex, beta-D-fructofuranosyl-oktakis (hydrogen sulfate) bismuth complex, and L-dihydro ascorbyl-tetrakis (hydrogen sulfate) bismuth complex are part of die present invention. A generalized reaction diagram for the synthesis of bismuth sulfates is shown in Figure 1. These novel compounds will deliver bismuth more effectively and will have less side effects in treating H. pylori positive gastro duodenal diseases. The compounds will lend themselves to controlled release oral dosage forms and oral topical dosage forms for eradication of H. pylori in dental plaque.
Chemical structures of the compounds conceived in this invention are complexes of poly-sulfates and of poly-hydroxy compounds such as sugars, sugar alcohols, and ascorbic acid and its derivatives. These novel compounds will deliver bismuth more effectively and will have less side effects in treating H. Pylori positive duodenal ulcers and gastritis. These compounds moreover lend themselves to controlled release oral dosage forms and oral topical dosage forms for eradication of H. Pylori in dental plaque. Chemical structures of the compounds conceived in this invention are illustrated below:
Figure imgf000009_0001
Figure imgf000009_0002
Figure imgf000010_0001
The ascorbic acid-derived molecules are synthesized in a manner completely analogous to the reaction diagram for synthesis of bismuth sulfates set forth above. These compounds can also be used in embodiments relating to would healing as described below.
In addition to antibacterial bismuth-compounds and antibiotics to the oral cavity for reduction/elimination of Hellcobacter pylori in the oral cavity as a means of treatment and prevention of gastrointestinal diseases including peptic ulcers, recurring gastritis, non-ulcer dyspepsia and gastric cancer. Antibiotics useful herein include, but are not limited to, Tetracycline, Amoxicillin, Ampicillin, Doxycycline, Erythromycin, Clarithromycin, Metronidazole, Tinidazole, Ciproflaxacin, Oflaxacin, Norflaxacin, Furazolidine, Nitrofiirantoin. Antibacterials useful herein include, but are not limited to naturally occurring peptides and synthetic peptide antibacterials such as Lanthocins, and particularly, Nicin and related peptides, Proton pump inhibitors such as Omeprazole and Lansoprazole, Sanguinaria and other antibacterials obtained from plant sources, as well as bismuth-containing compounds. The present methods utilize topical oral dosage forms to deliver bismuth compounds, antibiotics, and/or antibacterials directly to the oral cavity in concentrations sufficient to reduce or eliminate H. pylori in tn oral cavity.
Each oral-topical dosage form of this invention is the one which can make it possible to release bismuth compound and/or antibacterial compounds and/or antibiotics into oral cavity in a predictable manner and result in appropriate antibacterial concentration. Those examples of such forms include a chewing-gum form, a chewable form including chewable tablets, lozenges, dental paints, viscous gels, dental implants, polymer film adhesives, a troche form, a toothpaste form, a gargling-gel form and mouth-rinse form. Preferably, a chewing-gum form and a troche form are chosen. Further, a chewing-gum form is most preferred due to its easy-to-use characteristic, predictable drug release and increased drug contact with dental surface. The chewing gum delivery system especially enables sustained contact of the antibacterial agents with the entire oral cavity and therefore, enhance bactericidal/bacteriostatic efficacy. We have already demonstrated that chewing gum formulation containing an antibacterial agent, colloidal bismuth subcitrate, releases the drug in a precise and reproducible fashion during a 15 minute chewing time. Chewable tablets, Viscous get formulations and dental paint formulations also will be able to provide sustained concentration of antibacterial agents in the oral cavity.
Oral-topical dosage forms containing bismuth in this invention must release enough bismuth, antibiotic, and/or antibacterial into saliva for eradication of H. pylori in the oral cavity. The minimum inhibitory concentration (MIC) of bismuth for H. pylori varies in each bismuth compound. For instance, it is reported that the MIC of CBS for H. pylori is 8 mg/L and its range is 4 to 32 mg/L.
Therefore, the dosage form is required to release bismuth into saliva up to at least two times the MIC, preferably a minimum of 2 to 10 times, most preferably 2 to 250 times. In order to achieve this level of release rate, the bismuth content per dosage form should be about 50 mg to 200 mg, preferably a minimum of 10 mg to 50 mg, most preferably 25 mg to 50 mg. For instance, each piece of CBS-containing chewing gum should contain approximately 50 mg to 200 mg of CBS, preferably a minimum of 10 mg to 50 mg, most preferably 25 mg to 50 mg.
Time release of each dosage form in this invention must be long enough to eradicate H. pylori. Although the duration of time release varies in each bismuth compound and in each dosage form, it is required at least 75% of the dose is released within 2 minutes, preferably within 2 to 15 minutes, most preferably within 10 to 15 minutes.
In other preferred embodiments of the invention presented herein, a chewing gum drug delivery system is utilized to provide sustained concentration of bismuth compounds, antibiotics, and/or antibacterial compounds which are proven antibacterial agents against H. pylori and anti-plaque agents to help these compounds penetrate the dental plaques to reach the site of H. pylori infection. The chewing gum delivery system enables sustained contact of the antibacterial agents with the entire oral cavity and therefore, enhances bacteriocidal efficacy.
Where antibiotic and/or antibacterial agents other than bismuth are to be used, oral-topical dosage form in this invention must release enough antibiotic/antibacterial into saliva for eradication of H. pylori from the oral cavity. The minimum inhibitory concentration (MIC) varies for each antibiotic/antibacterial agent. However, for most of the antibiotics listed in this invention, the MIC values are between less than 1 to 10 mcg/mL, or 1 to 10 mg/L.
Therefore, the topical-oral dosage from is required to release the antibacterial agent into saliva up to at least 2 times the MIC, preferably a minimum of 2 to 10 times, most preferably 2 to 100 times. In order to achieve this level of release, the antibacterial content per unit of dosage form should be about 10 to 100 mg, preferably a rmnimum of 5 to 50 mg, most preferably 10 to 25 mg. For instance, each piece of chewing gum should contain approximately 10 to 100 mg. of the antibiotic or antibacterial agent. Preferably a minimum of 5 to 50 mg, most preferably 10 to 25 mg.
The topical-oral dosage forms of this invention must release the antibiotic/antibacterial over an extended time. The duration of release must be at least 5 minutes, preferably 10 minutes, most preferably 15 minutes. Further 75% of the antibiotics/antibacterial content is required to be released within 5 minutes, preferably within 2 to 15 minutes, most preferably within 10 to 15 minutes.
In other preferred embodiment of this invention, a chewing gum delivery system is utilized to provide sustained concentration of antibiotic/antibacterial agent several times above its MIC for H. pylori over at least 10 times.
The anti-plaque agents further contribute to improved efficacy by breaking down the plaque and exposing the bacterial colonies to the antibacterial agents. The chewing gum formulation containing CBS, antibiotic, and/or antibacterial releases the drug in a precise and reproducible fashion during a 15-minute chewing time. Anti-plaque agents include, but are not limited to, glucanase anhydroglucosidase, glucose oxidase, silicon oil, sanguinarine, and the like.
Chewing gum formulations may optionally include crystalline sorbitol, sorbitol solution, mannitol, Nova-base*", or any other gum base, dextrans, cellulose derivatives, buffer salts, sweeteners, flavors, and the like.
Optionally, metronidazole can be added to CBS chewing gum to broaden the antimicrobial activity against H. pylori.
Bismuth compounds embodied in these inventions also have been found to stimulate cellular production of growth factors, and therefore have applications in wound healing, specifically in ocular and dermal wound healing. Therefore, the present invention also contemplates use of novel bismuth complexes with sulfated polyhydroxy hydrophilic film-forming polymers to accelerate wound healing in ulcerative diseases of the eye, skin, and other mucosal tissues. For these embodiments, the invention involves synthesis of unique complexes of bismuth with partially sulfated hydrophilic film-forming polymers such as hydroxyprobal cellulose, hydroxyethyl cellulose, hydroxypropyl-methyl cellulose, carboxymethyl cellulose, and polyvinyl alcohol. These compounds are formulated in unique film-forming solutions, aerosols, and gels for treatment of corneal ulcers, skin ulcers, gastric ulcers, and other wounds of the skin and mucous membranes. The general structures of this class of complexes are represented below:
Figure imgf000014_0001
Figure imgf000014_0002
where R=
Figure imgf000014_0003
Example 1 - Preparation of Therapeutic Substance
To an aqueous solution of ammonia are added bismuth citrate, citric acid, and caustic potash in specific stoichiometric proportions, and at specific temperatures. The solution is examined for turbidity and, if required, additional volume of ammonia solution is added to render the solution clear. The solution is then filtered on a carbon bed and spray dried to obtain free-flowing powder material The product is packaged in an air and moisture proof glass container.
Example 2 - Preparation of Topical Dosage Form
Brief general description of the preferred topical dosage form, chewing gum, is set forth as follows. Fully melt the gum base (at approximately 90°C) in Brabender mixer, a jacketed mixer with sigma blades. Remove the hot water from the mixer jacket, allow to cool, and add lecithin and mix well. Cool further to approximately 50ºC, and add liquid flavor and mannitol. Mix until uniform. Dry blend colloidal bismuth subcitrate in sorbitol, and blend sodium citrate in sorbo syrup. Add sorbitol and sorbo syrup blends to the gum base. Cool the product to 35°C, add flavor and sweetener and mix until smooth.
Remove the product from the mixing kettle, roll to form a sheet of uniform thickness and score to produce chewing gum sticks weighing 2.5 g each Wrap individual gum sticks in aluminum foil and place in plastic bags. Where the gum is to include antibiotic or antibacterial compounds, the agent is coated with a polymeric substance to mask any untoward taste or odor, and to further regulate its release in the saliva.
Example 3 - Composition of CBS-Containing Gum
Two variations of the 50 mg CBS gum (Table 1) were used Both formulations used were identical with the exception that Formula-2 contained sodium citrate to impart a firmer texture, while Formula-1 did not.
Figure imgf000015_0001
Colloidal Bismuth Subcitrate (CBS) and other bismuth compounds, including bismuth subcitrate, bismuth citrate, bismuth salicylate, bismuth subsalicylate, bismuth subnitrate, bismuth subcarbonate, bismuth tartrate, bismuth subgallate, tripotassium dicitrato bismuthate and bismuth aluminate Preferably, colloidal bismuth subcitrate (CBS), tripotassium dicitrato bismuthate, bismuth subcitrate, bismuth subsalicylate are coated with the following coating agent to regulate their dissolution and salivary release: bee's wax, carnauba wax, shellac, cellulose acetate phthalate, methyl cellulose, propyl cellulose, hydroxy propyl- cellulose, ethyl cellulose, hydroxy propylmethylcellulose, ethylcellulose, polymethyl methacrylate, and Eudragit® polymers, polyvinyl pyrohidone, polyvinyl alcohol, etc.
Moderately water soluble bismuth compounds such as bismuth ascorbyl sulfate, bismuth sucrose sulfate, bismuth subascorbate, cyclodextrin bismuth sulfate are used in the chewing gum dosage form to produce sustained concentration in the saliva.
Synthetic and natural latex-based chewing gum bases are used to tightly enclose bismuth compounds and other antibacterial/antibiotic compounds to cause their gradual release in the saliva.
These formulation/composition modifications are designed to:
(1 ) provide control release of antibacterial/antibiotic compounds to
increase their bactericidal efficacy against oral cavity /dental plaque bound H. pylori; and
(2) avoid/minimize oral cavity discoloration/blackening caused by quick or instant release of bismuth compounds in the saliva.
Example 4— Measurement of Release Rate of Bismuth into Saliva
Among six healthy human subjects, who gave informed consent, three chewed the CBS-containing gum with sodium citrate, and the other three chewed CBS-containing gum without sodium citrate. The subjects chewed the gum samples for a total of 15 minutes. Saliva samples were collected at time interval of 0, 1 , 5, 10, and 15 minutes of chewing. The saliva samples were then submitted to an analytical laboratory for bismuth analysis. Results are shown in Table 2.
Figure imgf000017_0001
Saliva samples were analyzed for elemental bismuth in ppm units. The results were then converted to mg of active CBS per mL of saliva and also expressed as a multiple of minimum inhibitory concentration (MIC) of CBS for H. pylori. As can be seen from the results (formula-2 of Table-3), the salivary concentrations of CBS are 156, 64, 5, and 1.8 times the MIC at 1, 5, 10 and 15 minutes, respectively. The constant bathing of the oral cavity from saliva containing sufficient concentration of CBS (2 to 5 times the MIC) for up to 15 minutes can be expected to further reduce the viable cells of H. pylori. These results are plotted in Figure 2 which shows a graph of human saliva concentration versus time.
Example 5— Sensory Analysis of Chewing Gum
Sensory characteristics of the chewing gum were evaluated by the subjects during the 15 minutes of chewing. Again, three subjects chewed the CBS gum containing sodium citrate and three subjects chewed the CBS gum without sodium citrate. A nine point rating scale was used to evaluate each category (Tables 3 and 4).
Figure imgf000018_0001
Figure imgf000019_0001
In general, there were no dramatic differences in the sensory analysis between the two formulas. The sensory panel clearly shows that both chewing gum formulations have a desirable level of flavor and taste, and cause a minimal unpleasant aftertaste after chewing.
Example 6— Topical Safety
Topical safety was evaluated in the six volunteers for up to 60 minutes after administration of the gum. The subjects were asked to report any adverse effects such as discomfort or irritation in the oral cavity.
There were no reports of any discomfort or irritation in the oral cavity by any of the subjects at either the 15 or 60 minute post administration time periods. Example 7 - Storage Stability Study
Samples of CBS-containing gum (50mg) were wrapped individually in foil wrappers. The sticks of gum were then placed in foil laminate bags, sealed, and placed in storage. Storage conditions include 40°C and room temperature (RT). The duration of the stability testing was 90 days. The results are shown in Tables 5-8 below.
Figure imgf000021_0001
Figure imgf000022_0001
Figure imgf000023_0001
Figure imgf000024_0001
Each stick of the gums used for the stability study (1 for zero-time, 2 for three month, total 3 sticks) was from the same lot number. The results show that bismuth concentration remains stable over the tested time period.
Example 8 - Denture Material Exposure Study
An evaluation of CBS salivary concentration on various denture materials was conducted in order to test any potential staining effect of the CBS on denture materials. Artificial saliva was used (Table 9).
Figure imgf000025_0001
The test saliva was prepared by dissolving 0.500 g of colloidal bismuth subcitrate in 100 mL of the above artificial saliva. 500 mL of Artificial Saliva (RT) was placed in one of two identical glass jars with lids. In the other jar was placed 500 mL of the Artificial Saliva (RT) containing 0.50% of CBS. In each of the jars the denture material block and a magnetic stirrer was placed. The jars were then placed on the magnetic platform and set to agitate at a minimum rate. The denture materials that were exposed to artificial saliva containing CBS or placebo included (Table 10).
Figure imgf000026_0001
The four hour exposure of natural tooth and other denture materials to 0.5% CBS in artificial saliva with mild agitation did not cause any staining, discoloration, or changes in texture.
Example 9— Clinical Efficacy Data
An open label, placebo-controlled pilot clinical study in ten patients with initial positive response for H. pylori in the dental plaque has been initiated. Data from six patients (four patients treated with CBS 50 mg chewing gum six times-a-day and two patients treated with placebo chewing gum six times-a-day for fifteen days) has been obtained. The dental plaque samples from the patients were collected before treatment, day 7 and day 15 after treatment, and tested by microbiological culture and CLO test. The results are set forth in Table 11 below:
Figure imgf000027_0001
The data show that for patients treated with CBS 50 mg chewing gum and placebo chewing gum on day 15 the mean CLO response times are 4.125 hours and 2.0 hours, respectively. The longer CLO test response time for CBS 50 mg chewing gum group compared to the placebo chewing gum group is indicative of substantial reduction in H. pylori density in the oral cavity of the active treatment group.
Example 10 - Toxicology
A number of animal toxicity studies and human clinical investigations have demonstrated safety of bismuth compounds, especially CBS, in therapeutic dose ranges. No toxicity has been reported in chronic daily administration of high doses of CBS (160, 320, and 640 mg/kg body weight representing 2, 4, and 8 times the human therapeutic dose respectively) in rats treated for three months or dogs treated for six months. See Wieriks et al., Journal of Gastroenterology 17(Supplement 80):11-16 (1982), incorporated herein by reference.
Long term safety of CBS and treatment of peptic ulcers at a standard dose of 480 mg (expressed as bismuthtrioxide) in four daily divided doses has been examined by Bader, Digestion 37(Supplement 2):53-59 (1987), incorporated herein by reference. CBS was first introduced in Europe in 1971 and since that time 1.5 million treatments have been dispensed. During eight years of use of CBS tablets [De-Nol( R)] in Europe between 1978 and 1986 under a more comprehensive adverse reaction monitoring system, only 13 adverse reaction forms were completed. Five of these adverse reactions were ascribed to CBS: one case of headache, one case of stomach pain, one case of diarrhea, and two cases of allergy (mainly in the form of skin rashes). A high degree of safety of CBS in therapeutic applications for the treatment of peptic ulcers is reported in a recent review of pharmacology of bismuth-containing compounds by Lambert, Review of Infectious Diseases 13(Supplement 8):691-695 (1991), incorporated herein by reference. In reviewing safety and pharmacokinetics of CBS, Bennet, Scandinavian Journal of Gastroenterology 26(Supplement 185):29-35 (1991), incorporated herein by reference, has calculated the systemic bioavailability of bismuth after oral dosing of CBS to be in the range of 0.16 to 0.28% of the administered dose, and concluded that steady-state blood levels of 50-100 mg/mL are unlikely to cause any neurotoxicity.
Example 11 - Composition of Antibiotic or Antihacterial-Containing Gum
The chewing gum formulation comprises antibiotic or antibacterial agents in concentration ranges from 10 to 50 mg per piece of gum. The chewing gum-base consists of Crystalline Sorbitol, Gum Base, Sorbitol Solution, Mannitol, Peppermint Oil, Spray Dried Peppermint, Grade t Lecithin, Aspartame, and Sodium Citrate, as set forth in Table 1 above. The formulation may also contain Glucanase, Anhydroglucosidase, Glucose oxidase, Silicon oil, Sanguinarine and related compounds as anti-plaque agents. Caboxy methyl cellulose, Hydroxy propyl methyl cellulose, Polyethylene glycol, Poly methyl methacrylates, Acrylic acid copolymers and other polymers as coating agents.
Saliva samples are analyzed for antibiotic or antibacterial agents in ppm units. The results are then converted to mg of active agent per mL of saliva and also expressed as a multiple of minimum inhibitory concentration (MIC) of the agent for H. pylori. The salivary concentrations of the agent are 156, 64, 5, and 1.8 times the MIC at 1, 5, 10 and 15 minutes, respectively. The constant bathing of the oral cavity from saliva containing sufficient concentration of the agent (2 to 5 times the MIC) for up to 15 minutes can be expected to further reduce the viable cells of H. pylori. These results are plotted to show a graph of human saliva concentration versus time.
Sensory characteristics of the chewing gum are evaluated by the subjects during the 15 minutes of chewing. Again, three subjects chews the gum containing sodium citrate and three subjects chewed the gum without sodium citrate. A nine point rating scale is used to evaluate each category.
In general, there are no dramatic differences in the sensory analysis between the two formulas. The sensory panel shows that both chewing gum formulations have a desirable level of flavor and taste, and cause a minimal unpleasant aftertaste after chewing.
Topical safety is evaluated in the six volunteers for up to 60 minutes after administration of the gum. The subjects are asked to report any adverse effects such as discomfort or irritation in the oral cavity.
There are no reports of any discomfort or irritation in the oral cavity by any of the subjects at either the 15 or 60 minute post administration time periods. Samples of the agent-contaming gum (50mg) are wrapped individually in foil wrappers. The sticks of gum are then placed in foil laminate bags, sealed, and placed in storage. Storage conditions include 40°C and room temperature (RT). The duration of the stability testing is 90 days.
Each stick of the gums used for the stability study (1 for zero-time, 2 for three month, total 3 sticks) is from the same lot number. The results show that bismuth concentration remains stable over the tested time period.
An evaluation of salivary concentration of the agent on various denture materials is conducted in order to test any potential staining effect of the CBS on denture materials. Artificial saliva is used (Table 9).
The test saliva is prepared by dissolving 0.500 g of the antibiotic or antibacterial agent in 100 mL of the above artificial saliva. 500 mL of Artificial Saliva (RT) is placed in one of two identical glass jars with lids. In the other jar is placed 500 mL of the Artificial Saliva (RT) containing 0.50% of the agent. In each of the jars the denture material block and a magnetic stirrer is placed. The jars are then placed on the magnetic platform and set to agitate at a minimum rate. The denture materials that are were exposed to artificial saliva containing the agent or placebo are included. The four hour exposure of natural tooth and other denture materials to 0.5% of the agent in artificial saliva with mild agitation does not cause any staining, discoloration, or changes in texture.
To assess clinical efficacy, patients with positive response for the presence of H. pylori in the dental plaque/oral cavity are divided into two treatment groups. Group I is given placebo chewing gum to be chewed 2 or 6 times a day for 2 or 4 weeks. Group II is given chewing gum containing antibiotic/antibacterial agent to be chewed 2 or 6 times a day for 2 or 4 weeks. Patient's dental plaque/saliva samples are collected at time 0 (Pre-treatment) on days 7, 14, 28, and tested for H. pylori presence and density . The incidence of H. pylori presence in the placebo group and the active treatment group is compared. The group receiving the chewing gum containing antibiotic/antibacterial shows significantly lower incidence of H. pylori presence in the dental plaque/saliva compared to Dlacebo chewing gum group after 2 and 4 weeks of treatment.
Example 12— Antibacterial Efficacy for Treatment of Halitosis
Campylobacter rectus, Helicobacter pylori, and Treponema denticola have been demonstrated to be associated with Halitosis (bad breath). The compounds and methods of the present invention, including CBS as well as ascorbyl bismuth derivative, have demonstrated in vitro activity against all three bacteria, as indicated by their minimum effective concentrations (MICs) presented in Table 12 below.
Figure imgf000032_0001
Example 13 - In Vitro Mesentery Culture Model
Colloidal bismuth subcitrate and other bismuth compounds are known to accelerate wound healing by increasing the concentration of epithelial growth factor (EGF) and fibroblast growth factor (FGF) in the wounded tissue.
Utilizing a rat mesentery culture model (Wu et al., Annals of Plastic Surgery 21(2): 155-161 (1994), incorporated herein by reference) and a medium containing 2% fetal calf serum, wound closure rates are measured. This tissue culture model is useful for gaining insights into growth factor interactions and wound healing. CBS or bismuth ascorbyl sulfate or glucose (placebo) are added to the medium in concentration ranges from 10 mcg/mL to 1,000 mcg/mL, and the wound closure is assessed at 24-hour, 48-hour and 72-hour intervals. Significantly higher concentrations of growth factors EGF and FGF are observed. Moreover, a significantly faster wound closure rate and complete closure is seen in the culture to which CBS or bismuth ascorbyl sulfate are added, compared to the placebo.
Example 14— Diabetic Mouse Wound Healing Model
Further, wound healing potential of the above bismuth compounds is evaluated using a diabetic mouse wound healing model (Matuszewska et al. , Pharmaceutical Research li(l):65-71 (1994), incorporated herein by reference). Wounds treated with CBS and bismuth ascorbyl sulfate formulations at concentration ranges of 10 mcg/mL to 1 ,000 mcg/mL heal faster compared to placebo treated wound. The wound healing rates produced by the bismuth compounds are comparable to the wound healing rate produced by 0.5 to 5 mcg/mL concentration of basic fibroblast growth factor (bFGF) .
Example 15 - Freeze-injured Skin Graft Model
The efficacy of CBS and bismuth ascorbyl sulfate at enhancing wound healing is also studied in a freeze-injured skin graft model for quantitative evaluation of promoters of wound healing (Lees et al. , British Journal of Plastic Surgery 47(5):349-359 (1994), incorporated herein by reference). Application of CBS or bismuth ascorbyl sulfate stimulates wound healing in cryoinjured grafts in a dose-related fashion. Doses of 10 to 1000 mcg/mL produce significant increase in wound healing rates compared to placebo.
Thus, while several embodiments have been shown and described, various modifications may be made, without departing from the spirit and scope of the present invention.

Claims

What is claimed is:
1. In a method of treating Helicobacter Pylori infection by administering tablets of an antibacterial compound, the improvement comprising concomitant administration of an antibacterial compound in a topical dosage form.
2. A method of Claim 1 wherein said antibacterial compound is selected from the group consisting of naturally occurring peptides, synthetic peptides, proton pump inhibitors, and plant-derived antibacterials.
3. The method of Claim 2 wherein the synthetic peptide is derived from the Lanthocins.
4. The method of Claim 3 wherein the Lanthocin is selected from the group consisting of Nicin peptides and Nicin-related peptides.
5. The method of Claim 2 wherein the proton pump inhibitor is selected from the group consisting of Omeprazole and Lansoprazole.
6. The method of Claim 2 wherein the plant derived antibacterial is Sanguinaria.
7. The method of Claim 1 wherein said antibacterial compound is an antibiotic.
8. The method of Claim 7 wherein the antibiotic is selected form the group consisting of Tetracycline, Amoxicillin, Ampicillin.
9. A method of Claim 1, wherein said topical dosage form is selected from the group consisting of a chewing gum, a chewable tablet, a troche, a toothpaste, a gargling gel, and a mouth rinse.
10. A method of Claim 1 , wherein said bismuth compound is colloidal bismuth subcitrate and wherein said dosage form is a chewing gum.
11. The method of Claim 1 , wherein said tablets are administered in a peroral dosage form.
12. A topical dosage form for treatment of Helicobacter Pylori in oral cavity, which contains a pharmaceutically acceptable antibacterial compound.
13. A dosage form according to Claim 12 wherein said antibacterial compound is selected from the group consisting of naturally occurring peptides, synthetic peptides, proton pump inhibitors, and plant-derived antibacterials.
14. The method of Claim 13 wherein the synthetic peptide is derived from the Lanthocins.
15. The method of Claim 14 wherein the Lanthocin is selected from the group consisting of Nicin peptides and Nicin-related peptides.
16. The method of Claim 14 wherein the proton pump inhibitor is selected from the group consisting of Omeprazole and Lansoprazole.
17. The method of Claim 14 wherein the plant derived antibacterial is Sanguinaria.
18. The method of Claim 13 wherein said antibacterial compound is an antibiotic.
19. The method of Claim 18 wherein the antibiotic is selected form the group consisting of Tetracycline, Amoxicillin, Ampicillin.
PCT/US1995/015985 1995-02-07 1995-12-08 Concomitant treatment with bismuth and antibacterials WO1996024341A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
AU45967/96A AU4596796A (en) 1995-02-07 1995-12-08 Concomitant treatment with bismuth and antibacterials
EP06007503A EP1683515A3 (en) 1995-08-24 1996-04-01 Bismuth-containing compounds in topical dosage forms
DE69636254T DE69636254T2 (en) 1995-08-24 1996-04-01 BISMUT CONTAINING MEDICINES IN TOPICAL PHARMACEUTICAL FORMS
EP96911535A EP0879035B1 (en) 1995-08-24 1996-04-01 Bismuth-containing compositions in topical dosage forms
AT96911535T ATE329577T1 (en) 1995-08-24 1996-04-01 MEDICINAL PRODUCTS CONTAINING BISMUTH IN TOPICAL DOSAGE FORMS
AU54396/96A AU5439696A (en) 1995-08-24 1996-04-01 Bismuth-containing compounds in topical dosage forms
PCT/US1996/004495 WO1997007757A1 (en) 1995-08-24 1996-04-01 Bismuth-containing compounds in topical dosage forms
ES96911535T ES2267108T3 (en) 1995-08-24 1996-04-01 COMPOSITIONS CONTAINING BISMUTE IN TOPIC DOSAGE FORMS.
HK99102196A HK1016867A1 (en) 1995-08-24 1999-05-18 Bismuth-containing compositions in topical dosage forms

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US38506095A 1995-02-07 1995-02-07
US08/385,060 1995-02-07
US51897195A 1995-08-24 1995-08-24
US08/518,971 1995-08-24

Publications (2)

Publication Number Publication Date
WO1996024341A1 true WO1996024341A1 (en) 1996-08-15
WO1996024341A9 WO1996024341A9 (en) 1996-10-03

Family

ID=27010874

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/US1995/016171 WO1996024342A1 (en) 1995-02-07 1995-12-08 Concomitant treatment with oral bismuth compounds
PCT/US1995/015985 WO1996024341A1 (en) 1995-02-07 1995-12-08 Concomitant treatment with bismuth and antibacterials

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/US1995/016171 WO1996024342A1 (en) 1995-02-07 1995-12-08 Concomitant treatment with oral bismuth compounds

Country Status (3)

Country Link
AU (2) AU4596796A (en)
SG (1) SG40063A1 (en)
WO (2) WO1996024342A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5753711A (en) * 1997-03-18 1998-05-19 Collagenex Pharmaceuticals, Inc. Method for treatment of H. pylori
FR2778104A1 (en) * 1998-05-04 1999-11-05 Synthelabo USE OF A FLUORIDE ION VECTOR FOR THE PREPARATION OF A MEDICAMENT FOR THE PREVENTION OR TREATMENT OF DISEASES ASSOCIATED WITH HELICOBACTER PYLORI
US6017950A (en) * 1997-08-05 2000-01-25 Millennium Pharmaceuticals, Inc. Methods for controlling gram negative bacteria in mammals
WO2000051445A2 (en) * 1999-03-05 2000-09-08 Shanbrom Technologies Llc Soluble plant derived natural color concentrates and antimicrobial nutraceuticals
WO2001052667A2 (en) * 2000-01-18 2001-07-26 Societe Des Produits Nestle S.A. Pet food composition for treating helicobacter species in pets
US6306838B1 (en) 1999-01-25 2001-10-23 Panacea Biotec Limited Targeted vesicular constructs for cyto protection and treatment of h. pylori
WO2003032985A2 (en) * 2001-10-16 2003-04-24 Mcneil-Ppc, Inc. Concomitant oral and topical administration of anti - infective agents
US6576625B2 (en) 2001-03-16 2003-06-10 Panacea Biotic Limited Targeted vesicular constructs for cytoprotection and treatment of H. pylori infections

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5834002A (en) * 1994-05-02 1998-11-10 Josman Laboratories, Inc. Chewing gum containing colloidal bismuth subcitrate
US5981499A (en) * 1998-02-20 1999-11-09 Atlantic Biomed Corporation Lesion-directed antibiotics in dry dosage forms for the treatment of shallow ulcers of the oral mucosa
US6248718B1 (en) 1999-08-18 2001-06-19 Atlantic Biomed Corporation Lesion-directed dry dosage forms of antibacterial agents for the treatment of acute mucosal infections of the oral cavity
CN110833561A (en) * 2019-12-24 2020-02-25 正大制药(青岛)有限公司 Omeprazole compound chewable tablet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5093342A (en) * 1989-02-09 1992-03-03 Aktiebolaget Hassle Use of omeprazole as an antimicrobial agent
US5352679A (en) * 1993-03-23 1994-10-04 Alfa Wassermann S.P.A. Use of rifaximin and pharmaceutical formulations containing it in the treatment of gastric dyspepsia caused by helicobacter pylori
US5385739A (en) * 1992-06-16 1995-01-31 Ethypharm Stable compositions of gastroprotected omerprazole microgranules and process for the production thereof
US5425948A (en) * 1992-04-10 1995-06-20 Kemiprogress S.R.L. Pharmaceutical compositions for the treatment and prevention of cutaneous and oral mucous membrane inflammations
US5466681A (en) * 1990-02-23 1995-11-14 Microcarb, Inc. Receptor conjugates for targeting penicillin antibiotics to bacteria
US5476669A (en) * 1987-10-12 1995-12-19 Examed Australia Pty. Ltd. Method for treatment of gastro intestinal disorders

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PH20649A (en) * 1981-09-22 1987-03-16 Gist Brocades Nv Bismuth containing composition and method for the preparation thereof
FI910088A (en) * 1990-01-09 1991-07-10 Gist Brocades Nv ORAL PHARMACEUTICAL COMPOSITION.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5476669A (en) * 1987-10-12 1995-12-19 Examed Australia Pty. Ltd. Method for treatment of gastro intestinal disorders
US5093342A (en) * 1989-02-09 1992-03-03 Aktiebolaget Hassle Use of omeprazole as an antimicrobial agent
US5466681A (en) * 1990-02-23 1995-11-14 Microcarb, Inc. Receptor conjugates for targeting penicillin antibiotics to bacteria
US5425948A (en) * 1992-04-10 1995-06-20 Kemiprogress S.R.L. Pharmaceutical compositions for the treatment and prevention of cutaneous and oral mucous membrane inflammations
US5385739A (en) * 1992-06-16 1995-01-31 Ethypharm Stable compositions of gastroprotected omerprazole microgranules and process for the production thereof
US5352679A (en) * 1993-03-23 1994-10-04 Alfa Wassermann S.P.A. Use of rifaximin and pharmaceutical formulations containing it in the treatment of gastric dyspepsia caused by helicobacter pylori

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5753711A (en) * 1997-03-18 1998-05-19 Collagenex Pharmaceuticals, Inc. Method for treatment of H. pylori
US6017950A (en) * 1997-08-05 2000-01-25 Millennium Pharmaceuticals, Inc. Methods for controlling gram negative bacteria in mammals
US6271256B1 (en) 1997-08-05 2001-08-07 Millennium Pharmaceuticals, Inc. Methods for controlling gram negative bacteria in mammals with bicyclo spiroether compounds
FR2778104A1 (en) * 1998-05-04 1999-11-05 Synthelabo USE OF A FLUORIDE ION VECTOR FOR THE PREPARATION OF A MEDICAMENT FOR THE PREVENTION OR TREATMENT OF DISEASES ASSOCIATED WITH HELICOBACTER PYLORI
WO1999056756A1 (en) * 1998-05-04 1999-11-11 Sanofi-Synthelabo Use of a fluoride ion vector for preparing a medicine for preventing or treating diseases associated with helicobacter pylori
US6306838B1 (en) 1999-01-25 2001-10-23 Panacea Biotec Limited Targeted vesicular constructs for cyto protection and treatment of h. pylori
WO2000051445A2 (en) * 1999-03-05 2000-09-08 Shanbrom Technologies Llc Soluble plant derived natural color concentrates and antimicrobial nutraceuticals
WO2000051445A3 (en) * 1999-03-05 2000-12-21 Shanbrom Tech Llc Soluble plant derived natural color concentrates and antimicrobial nutraceuticals
WO2001052667A2 (en) * 2000-01-18 2001-07-26 Societe Des Produits Nestle S.A. Pet food composition for treating helicobacter species in pets
WO2001052667A3 (en) * 2000-01-18 2002-05-02 Nestle Sa Pet food composition for treating helicobacter species in pets
US6576625B2 (en) 2001-03-16 2003-06-10 Panacea Biotic Limited Targeted vesicular constructs for cytoprotection and treatment of H. pylori infections
WO2003032985A2 (en) * 2001-10-16 2003-04-24 Mcneil-Ppc, Inc. Concomitant oral and topical administration of anti - infective agents
WO2003032985A3 (en) * 2001-10-16 2003-11-06 Mcneil Ppc Inc Concomitant oral and topical administration of anti - infective agents

Also Published As

Publication number Publication date
AU5019196A (en) 1996-08-27
SG40063A1 (en) 1997-06-14
WO1996024342A1 (en) 1996-08-15
AU4596796A (en) 1996-08-27

Similar Documents

Publication Publication Date Title
AU730881B2 (en) Chewing gum containing colloidal bismuth subcitrate
JP2927850B2 (en) Topical preparations for the treatment of symptoms of teeth and their supporting tissues
CA2019410C (en) Liquid polymer composition, and method of use
US20070098650A1 (en) Dental formulation
US9597276B2 (en) Composition for the prophylaxis of candidiasis
US6426085B1 (en) Use of bismuth-containing compounds in topical oral dosage forms for the treatment of halitosis
US6017516A (en) Pharmaceutical dental formulation for topical application of metronidazole benzoate and chlorhexidine gluconate
US6379651B1 (en) Oral-topical dosage forms for delivering antibacterials/antibiotics to oral cavity to eradicate H. pylori as a concomitant treatment for peptic ulcers and other gastro-intestinal diseases
WO1996024341A1 (en) Concomitant treatment with bismuth and antibacterials
WO1996024341A9 (en) Concomitant treatment with bismuth and antibacterials
US20060088481A1 (en) Topical oral dosage forms containing bismuth compounds
JP3288550B2 (en) Oral topical formulation for killing Helicobacter pylori
EP0879035B1 (en) Bismuth-containing compositions in topical dosage forms
US6372784B1 (en) Bismuth-containing compounds in topical dosage forms for treatment of corneal and dermal wounds
EP1683515A2 (en) Bismuth-containing compounds in topical dosage forms
AU2013329086B2 (en) Topical ubiquinol oral supplement compositions with amorphous calcium phosphate
RU2703530C2 (en) Dental gel for treating and preventing periodontitis
BR112021008102A2 (en) oral mucosa carrier and protector
WO2015182993A1 (en) Composition for prevention, improvement or treatment of periodontal diseases
RU2201194C2 (en) Medicinal film "piyavit" for treatment of inflammatory diseases of parodontium
WO2006110183A2 (en) Dental formulation
Mandel New approaches to plaque prevention
JPS63179823A (en) Composition for oral cavity
HN FORMULATION AND EVALUATION OF MUCOADHESIVE BUCCAL FILMS CONTAINING ANTIBIOTICS FOR THE TREATMENT OF PERIODONTITIS
DK169606B1 (en) Use of sulphated saccharides for producing preparations, and preparations which comprise sulphated saccharides

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN CZ HU KR MX NZ PL RU SK

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

COP Corrected version of pamphlet

Free format text: PAGES 1-31,DESCRIPTION,REPLACED BY NEW PAGES 1-32;PAGES 32-33,CLAIMS,REPLACED BY NEW PAGES 33-34;PAGES 1/2-2/2,DRAWINGS,REPLACED BY NEW PAGES BEARING THE SAME NUMBER;DUE TO LATE TRANSMITTAL BY THE RECEIVING OFFICE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA